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Preface

This book introduces a number of fundamental techniques for computing semantic rep-
resentations for fragments of natural language and performing inference with the result.
Both the underlying theory and their implementation in Prolog are discussed. We believe
that the reader who masters these techniques will be in a good position to appreciate (and
critically assess) ongoing developments in computational semantics.

Computational semantics is a relatively new subject, and trying to de�ne such a lively
area (if indeed it is a single area) seems premature, even counterproductive. However, in
this book we take `semantics' to mean `formal semantics' (that is, the business of giving
model-theoretic interpretations to fragments of natural language, usually with the help of
some intermediate level of logical representation) and `computational semantics' to be the
business of using a computer to actually build such representations (semantic construction)
and reason with the result (inference). Thus this book is devoted to introducing techniques
for tackling the following two questions:

1. How can we automate the process of associating semantic representations with ex-
pressions of natural language?

2. How can we use logical representations of natural language expressions to automate
the process of drawing inferences?

Two comments should immediately be made. First, we've presented semantic construction
and inference as if they were independent, but of course they're not. Indeed, how semantic
construction and inference can best be interleaved is a deep and important problem. We
won't solve it, but by the end of the book we will have seen some nice examples of semantic
construction and inference harnessed together in a single architecture.

Second, our working de�nition of computational semantics isn't quite as innocent as it
looks. Many semanticists claim that intermediate levels of logical representation are essen-
tially redundant. Whether or not this is true, the move to a computational perspective on
formal semantics certainly increases the practical importance of the representation level.
Logical representations|that is, formulas of a logical language|encapsulate meaning in
a clean compact way. They make it possible to use well understood proof systems to
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perform inference, and we shall learn how to exploit this possibility. Models may be the
heart of semantics, but representations are central to its computational cousin. However,
as will become clear in the course of the book, we feel that the computational perspec-
tive vividly brings out theoretical importance of representations. The success of Discourse
Representation Theory, the explosion of interest in underspeci�cation, and the exploration
of alternative glue languages such as linear logic to drive the process of semantic construc-
tion all bear witness to an important lesson: semanticists ignore representations at their
peril. Representations are well-de�ned mathematical entities that (among other things)
can be formed into more abstract abstract entities, explored geometrically, and speci�ed
indirectly with the aid of constraints; we'll see examples of all these things in this book.
Even if representations are eliminable, they need to be taken seriously.

Chapter 1. First-Order Logic. Here we introduce the syntax and semantics
of �rst order logic (the representation language used in the �rst half of the
book), show how formulas and (simple �nite) models may be represented in
Prolog, build a simple model checker, and discuss the problems that arise when
Prolog variables are used to represent �rst-order variables.

Chapter 2. Lambda Calculus. Here we start studying semantic construc-
tion. We outline the methodology underlying our work (namely, compositional-
ity) and motivate our use of Prolog's De�nite Clause Grammars. We then write
two rather naive programs that build semantic representations for a very small
fragment of English. These experiments lead us to the lambda calculus, the
tool that drives this books approach to semantic construction. We implement
�-conversion, the computational core of the lambda calculus, in two di�erent
ways, and then integrate it into the grammatical architecture that will be used
throughout the book.

Chapter 3. Underspeci�ed Representations. Here we investigate a fun-
damental problem for computational semantics: scope ambiguities. These are
semantic ambiguities that can arise in syntactically unambiguous expressions,
and they pose a problem for compositional approaches to semantic construction.
We illustrate the problem, and present four (increasingly more sophisticated)
solutions: Montague's use of quanti�er raising, Cooper storage, Keller storage,
and a more recent underspeci�cation-based method called Hole Semantics. We
implement all four approaches.

Chapter 4. Propositional Inference. Here we turn to the second major
theme of the book: inference. Our approach to inference will be based on
�rst-order theorem proving and model building, and in this chapter we start
developing the necessary tools. We introduce a signed tableaux system for
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propositional calculus, show how to implement it in Prolog, discuss some ex-
tensions, and conclude with an informal discussion of a number of theoretical
issues.

Chapter 5. First-Order Inference. Here we extend our propositional signed
tableaux system to full-�rst order logic|and immediately run into a problem.
Naive approaches to �rst-order tableaux are doomed to hopeless ineÆciency.
So we rethink the problem. Instead of asking the tableaux system to solve the
entire inference problem, we reformulate it so that it generates a collection of
constraints on possible solutions. We then feed these constraints to a uni�cation
component, which (hopefully) will compute a useful solution. As we shall see,
this new approach lends itself to computational implementation.

Chapter 6. Putting It All Together. In this chapter we combine the
techniques we have learned so far. By plugging together our lambda calculus,
quanti�er storage, model checking, and theorem proving programs we are able
(more or less immediately) to de�ne simple question handling and argumenta-
tion predicates. Does Vincent give every woman a foot massage? Which robber
loves Honey Bunny? Find out in this week's exciting episode . . .

Each chapter concludes with two sections: Software Summary lists the programs developed
in the chapter, and Notes lists references the reader may �nd helpful, and discusses more
advanced topics.

We have tried to make this book self-contained, and believe that readers with relatively
modest backgrounds in linguistics and logic should be able to follow the theoretical dis-
cussion. But the fact remains that this is a book in computational semantics, and getting
the most out of it requires a working knowledge of Prolog. We have included an appendix
which outlines the main ideas of Prolog, and we hope that this will be useful|but, bluntly,
the reader who has never thought about computational problems from the declarative per-
spective typical of logic or constraint-based programming will �nd parts of it tough going.
We develop many theoretical ideas by thinking problems through from a declarative per-
spective. For example, our account of the lambda calculus in Chapter 2 makes no appeal
to types, function valued functions, or higher-order logic|rather, lambda calculus is pre-
sented as a beautiful piece of data-abstraction that emerges naturally from a declarative
analysis of semantic construction. Computational ideas are not an optional extra in com-
putational semantics; they are the heart of the enterprise.

This book developed out of material for a course on Computational Semantics we regularly
o�er at the Department of Computational Linguistics, University of the Saarland. We
also taught a preliminary version (essentially the material that now makes up Part I) as
an introductory course at ESSLLI'97, the European Summer School in Logic, Language
and Information held at Aix-en-Provence, France in August 1997. When designing these
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courses, we found no single source which contained all the material we wanted to present.
At that time, the only notes solely devoted to computational semantics we knew of were
Cooper et al. 1993. These notes, which we recommend to our readers, were developed at
the University of Edinburgh, and are probably the �rst systematic introduction to modern
computational semantics. Like the present book they are Prolog based, and cover some
of the same ground using interestingly di�erent tools and techniques. However we wanted
to teach the subject in a way that emphasized such ideas as inference, underspeci�cation,
and architectural issues. This led us to a �rst version of the book, which was heavily
inuenced by Pereira and Shieber 1987 for semantic construction, and Fitting 1996 and
Smullyan 1995 for tableaux systems. Since then, the project has taken on a life of its own,
and grown in a variety of (often unexpected) directions. Both the code and the text has
been extensively rewritten and we are now (we hope!) in the �nal stretch of producing the
kind of introduction to computational semantics that we wanted all along.

vi



Blackburn & Bos Preface September 3, 1999

Acknowledgments

We would like to thank Manfred Pinkal and all our colleagues at the Department of Com-
putational Linguistics, University of Saarland, Saarbr�ucken, Germany. Thanks to Manfred,
the department has become an extremely stimulating place for working on computational
semantics; it was the ideal place to write this book.

Johan Bos would like to thank his colleagues in the Verbmobil Project (grant 01 IV 701
R4 and 01 IV 701 N3) at IMS-Stuttgart, TU-Berlin, CSLI Stanford, the DFKI, and the
Department of Computational Linguistics at Saarbr�ucken, and those in the Trindi Project
(Task Oriented Instructional Dialogue; LE4-8314) at the University of Gothenburg, SRI
Cambridge, University of Edinburgh, and Xerox Grenoble.

Conversations with Paul Dekker, Andreas Franke, Martin Kay, Hans Kamp, Michael
Kohlhase, Karsten Konrad, Christof Monz, Reinhard Muskens, Maarten de Rijke, and
Henk Zeevat were helpful in clarifying our goals. We're grateful to David Beaver, Ju-
dith Baur, Bj�orn Gamb�ack, Ewan Klein, Emiel Krahmer, Rob van der Sandt, and Frank
Schilder for their comments on an early draft of this book. We're also very grateful to all
our students, who have provided us with invaluable feedback. In particular we would like
to thank Aljoscha Burchardt, Gerd Fliedner, Malte Gabsdil, Kristina Striegnitz, Stefan
Thater, and Stephan Walter. Patrick Blackburn would like to thank Aravind Joshi and
the sta� of Institute for Research in Cognitive Science at the University of Pennsylvania
for their hospitality while the Montreal version was being prepared.

Finally, we are deeply grateful to Robin Cooper, who taught a course based on the previous
draft of this book, and provided us with extremely detailed feedback on what worked and
what didn't. His comments have greatly improved the book.

Patrick Blackburn and Johan Bos,
Computerlinguistik, Universit�at des Saarlandes,
September 1999.

vii



Chapter 1

First-Order Logic

First-order logic is the formalism used in the �rst half of this book to represent the meaning
of natural language sentences. In this chapter we introduce �rst-order logic, write some
simple Prolog programs that work with it, and discuss the role of �rst-order logic in natural
language semantics.

Here's what we'll do. First, we'll discuss the syntax and semantics of �rst-order logic. Next,
we'll write a simple �rst-order model checker (or semantic evaluator) in Prolog. The model
checker takes a �rst-order formula and a (special kind of) �rst-order model as input and
checks whether the formula is satis�ed in the model. As we shall see, such a model checker
is extremely simple to implement if we use Prolog variables to simulate �rst-order variables,
but this strategy leads to problems if carried out naively; we discuss these problems and
show how to deal with them. We conclude with a discussion of the relevance of �rst-order
logic to natural language semantics.

1.1 First-Order Logic

In this section we review the syntax and semantics of �rst-order logic. We discuss vo-
cabularies, �rst-order models and �rst-order languages, tie them together via the crucial
satisfaction de�nition, de�ne the key logical concepts of validity and logical consequence,
and conclude with a discussion of function symbols and equality .

Vocabularies

Our ultimate goal is to de�ne how �rst-order formulas (that is, certain kinds of descrip-
tions) are evaluated in �rst-order models (that is, certain kinds of situations). Simplifying
somewhat, the purpose of the evaluation process is to tell us whether a description is true
or false in a situation.
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We shall shortly do this|but we need to exercise a little care. Intuitively, it doesn't
make much sense to ask whether or not an arbitrary description is true in an arbitrary
situation. Some descriptions and situations simply don't belong together. For example,
if we are given a formula (that is, a description) from a �rst-order language intended for
talking about the various relationships and properties (such as loving , being a robber , and
being a customer) that hold between Mia, Honey Bunny, Vincent, and Pumpkin, and
we are given a model (that is, a situation) which records information about something
completely di�erent (for example, which household cleaning products are best at getting
rid of particularly nasty stains) then it doesn't really make much sense to evaluate this
particular formula in that particular model. Vocabularies allow us to avoid such problems:
they tell us which �rst-order languages and models belong together.

Here is our �rst vocabulary:

f (love,2),
(customer,1),
(robber,1),
(mia,0),
(vincent,0),
(honey-bunny,0),
(pumpkin,0) g

Intuitively, this vocabulary is telling us two important things: the topic of conversation,
and the language the conversation is going to be conducted in. Let's spell out this a little.

First, the vocabulary tells us what we're going to be talking about. In the present case,
we're going to be talking about loving (the 2 indicates that loving is taken to be a two
place relation) and the properties (or 1-place relations) of being a customer and being a
robber . In addition to these relations we're going to be talking about four special entities
named Mia, Honey Bunny , Vincent , and Pumpkin (the 0s indicate that these symbols are
constants, or names).

Second, the vocabulary also tells us how we can talk about these things. In the above case
it tells us that we will be using a symbol love of arity 2 (that is, a 2-place symbol) for
talking about loving, two symbols of arity 1 (customer and robber) for talking about
customers and robbers, and four constant symbols (or names), namely mia, vincent,
honey-bunny, and pumpkin for naming certain entities of special interest.

In short, a vocabulary gives us all the information needed to de�ne the class of models
of interest (that is, the kinds of situations we want to describe) and the relevant �rst-
order language (that is, the kinds of descriptions we can use). So let's now look at what
�rst-order models and languages actually are.

2
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First-Order Models

Suppose we've �xed some vocabulary. What should a �rst-order model for this vocabulary
be?

Actually, our previous discussion has pretty much given the answer. Intuitively a model
is a situation. That is, it is a semantic entity: it contains the kinds of things we want
to talk about. Thus a model for a given vocabulary gives us two pieces of information.
First, it tells us which collection of entities we are talking about; this collection is usually
called the domain. Second, for each symbol in the vocabulary, it gives us an appropriate
semantic entity, built from the items in D. This task is carried out by a function F which
speci�es, for each symbol in the vocabulary, an appropriate semantic value; we call such
functions interpretation functions. Thus, in set theoretic terms, a model M is an ordered
pair (D;F ) consisting of a domain D and an interpretation function F specifying semantic
values in D.

What are appropriate semantic values? There's no mystery here. As constants are names,
each constant should be interpreted as an element of D. (That is, for each constant symbol
c in the vocabulary, F (c) 2 D.) As n-place relation symbols are intended to denote n-place
relations, each n-place relation symbol R should be interpreted as an n-place relation on
D. (That is, F (R) should be a set of n-tuples of elements of D.)

Let's consider an example. We shall de�ne a simple model for the vocabulary given above.
Let D be fd1; d2; d3; d4g. That is, this four element set is the domain of our little model.

Next, we must specify an interpretation function F . Here's one possibility:

F (mia) = d1
F (honey-bunny) = d2
F (vincent) = d3
F (pumpkin) = d4
F (customer) = fd1; d3g
F (robber) = fd2; d4g
F (love) = f(d4; d2); (d3; d1)g

Note that every symbol in the vocabulary does indeed correspond to an appropriate seman-
tic entity. The four names pick out individuals, the two arity 1 symbols pick out subsets of
D (that is, properties, or 1-place relations on D) and the arity 2 symbol picks out a 2-place
relation on D. Intuitively, in this model d1 is called Mia, d2 is called Honey Bunny, d3 is
called Vincent and d4 is called Pumpkin. Both Honey Bunny and Pumpkin are robbers,
while both Vincent and Mia are customers. Pumpkin loves Honey Bunny and Vincent
loves Mia. Sadly, Honey Bunny does not love Pumpkin, Mia does not love Vincent, and
nobody loves themselves.

Here's a second model for the same vocabulary. We'll use the same domain (that is,
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D = fd1; d2; d3; d4g) but change the interpretation function. To emphasize that the inter-
pretation function has changed, we'll use a di�erent symbol (namely F2) for it.

F2(mia) = d2
F2(honey-bunny) = d1
F2(vincent) = d4
F2(pumpkin) = d3
F2(customer) = fd1; d2; d4g
F2(robber) = fd3g
F2(love) = f(d3; d4)g

In this model, three of the individuals are customers, only one is a robber, and Pumpkin
loves Vincent.

One point is worth emphasizing. Both models just de�ned are rather special, for they have
the following property: every entity in D is named by exactly one constant. We shall call
any model with this property an exact model. Now, exact models are particularly easy
to work with, but it is important to realize that not all models are exact. For example,
suppose we add two more entities to the domain of the �rst model; that is, we create a new
domain D0 = D [ fd5; d6g say. Suppose that we then de�ne a new interpretation function
F 0 on D0 as follows:

F 0(mia) = d2
F 0(honey-bunny) = d1
F 0(vincent) = d4
F 0(pumpkin) = d3
F 0(customer) = fd1; d2; d4; d5g
F 0(robber) = fd3; d6g
F 0(love) = f(d3; d4); (d6; d5)g

This new model is like our very �rst model, except that it has two extra entities. Neither
of these new entities has a name, but one of them is a customer, one of them is a robber,
and the unnamed robber loves the unnamed customer. This is a perfectly good �rst-order
model; there is no requirement that every entity in the model must have a name (we only
bother to name entities of special interest). Similarly, there is no requirement that each
entity in a model must be named by at most one constant. For example, if we wanted to
we could give some entity both the name Vincent and Honey Bunny (perhaps one of these
names is a nickname).

First-Order Languages

Given some vocabulary, we build the �rst-order language over that vocabulary out of the
following ingredients:
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1. All the symbols in the vocabulary. We call these symbols the non-logical symbols of
the language.

2. A countably in�nite collection of variables x, y, z, w, . . . , and so on.

3. The Boolean connectives : (negation),! (implication), _ (disjunction), and ^ (con-
junction).

4. The quanti�ers 8 (the universal quanti�er) and 9 (the existential quanti�er).

5. The round brackets ) and ( and the comma. (These are essentially punctuation
marks; they are used to group symbols.)

Items 2{5 are common to all �rst-order languages: the only thing that distinguishes one
�rst-order language from another is the choice of non-logical symbols (that is, the choice
of vocabulary).

So, suppose we've chosen some vocabulary. How do we mix these ingredients together?
That is, what is the syntax of �rst-order languages? First of all, we de�ne a �rst-order
term � to be any constant or any variable. Roughly speaking, terms are the noun phrases
of �rst-order languages: constants can be thought of as �rst-order analogs of proper names,
and variables as �rst-order analogs of pronouns.

We can then combine our `noun phrases' with our `predicates' (that is, the various relation
symbols in the vocabulary) to form atomic formulas:

If R is a relation symbol of arity n, and �1, . . . , �n are terms, then R(�1; � � � ; �n)
is an atomic (or basic) formula.

Intuitively, an atomic formula is the �rst-order counterpart of a natural language sen-
tence consisting of a single clause (that is, a simple sentence). The intended meaning of
R(�1; � � � ; �n) is that the entities named by the terms �1; � � � ; �n stand in the relation named
by the symbol R. For example

love(pumpkin,honey-bunny)

means that the entity named pumpkin stands in the relation denoted by love to the
entity named honey-bunny|or more simply, that Pumpkin loves Honey Bunny.

Now that we know how to build atomic formulas, we can de�ne more complex descriptions.
The following inductive de�nition tells us exactly which well formed formulas (or w�s, or
simply formulas) we can form.

1. All atomic formulas are w�s.
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2. If � and  are w�s then so are :�, (�!  ), (� _  ), and (� ^  ).
3. If � is a w�, and x is a variable, then both 9x� and 8x� are w�s. (We call � the

matrix of such w�s.)

4. Nothing else is a w�.

Roughly speaking, formulas built using :, !, _ and ^ correspond to natural language
expressions of the form it is not the case that . . . , if . . . then . . . , . . . or . . . , and . . . and . . . ,
respectively. (We discuss the strengths and weaknesses of these correspondences at the
end of the chapter.) First-order formulas of the form 9x� and 8x� correspond to natural
language expressions of the form some. . . or all . . . .

In what follows, we occasionally talk of subformulas. The subformulas of a formula � are
� itself and all the formulas used to build �. For example, the subformulas of

:8y person(y)

are person(y), 8y person(y), and :8y person(y). We leave it to the interested reader
to give an inductive de�nition of subformulahood, and turn to a more important topic: the
distinction between free and bound variables.

Consider the following formula:

: (customer(x) _ 8x(robber(x) ^ 8y person(y)))

The �rst occurrence of x is free. The second and third occurrences of x are bound ; they
are bound by the �rst occurrence of the quanti�er 8. The �rst and second occurrences of
the variable y are also bound; they are bound by the second occurrence of the quanti�er
8. Here's the full de�nition:

1. Any occurrence of any variable is free in any atomic formula.

2. No occurrence of any variable is bound in any atomic formula.

3. If an occurrence of any variable is free in � or in  , then that same occurrence is free
in :�, (�!  ), (� _  ), and (� ^  ).

4. If an occurrence of any variable is bound in � or in  , then that same occurrence is
bound in :�, (� !  ), (� _  ), (� ^  ). Moreover, that same occurrence is bound
in 8y� and 9y�, for any choice of variable y.

5. In any formula of the form 8y� or 9y� (here y can be any variable at all) the
occurrence of y that immediately follows the initial quanti�er symbol is bound.

6
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6. If an occurrence of a variable x is free in �, then that same occurrence is free in 8y�
and 9y�, for any variable y distinct from x. On the other hand, all occurrences of x
that are free in �, are bound in 8x� and in 9x�.

If a formula contains no occurrences of free variables then we call it a sentence.

Although they are both called variables, free and bound variables are really very di�erent.
(In fact, some formulations of �rst-order logic use two distinct kinds of symbol for what
we have lumped together under the heading `variable'.) Here's an analogy. Try thinking
of a free variable as something like the pronoun she in

She even has a stud in her tongue.

Uttered in isolation, this would be somewhat puzzling, as we don't know who she refers
to. But of course, such an utterance would be made in an appropriate context. This
context might be either non-linguistic (for example, the speaker might be pointing to a
heavily tattooed biker, in which case we would say that she was being used deictically or
demonstratively) or linguistic (perhaps the speaker's previous sentence was Honey Bunny is

heavily into body piercing, in which case the name Honey Bunny supplies a suitable anchor
for an anaphoric interpretation of she).

What's the point of the analogy? Just as the pronoun she required something else (namely,
contextual information) to supply a suitable referent, so will formulas containing free vari-
ables. Simply supplying a model won't be enough; we need additional information on how
to link the free variables to the entities in the model.

Sentences, on the other hand, are relatively self-contained. For example, consider the
sentence 8x robber(x). This is a claim that every individual is a robber. Roughly
speaking, the bound variable x in robber(x) acts as a sort of placeholder. In fact, the use
of x is completely arbitrary; the sentence 8y robber(y) means exactly the same thing.
Both sentences are simply a way of stating that no matter what entity we take the second
occurrence of x (or y) as standing for, that entity will be a robber. In any model of
appropriate vocabulary this sentence (and in fact any sentence over that vocabulary) will
either be true or false.

Our discussion of the interpretation of �rst-order languages in �rst-order models will make
these distinctions precise (indeed, most of the real work involved in interpreting �rst-order
logic centers on the correct handling of free and bound variables). But before turning to
semantic issues, one �nal remark. In what follows, we won't always keep to the oÆcial
�rst-order syntax de�ned above. In particular, we'll generally try and use as few brackets
as possible, as this tends to improve readability. For example, we would rarely write

(customer(vincent) ^ robber(pumpkin))
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which is the oÆcial syntax. Instead, we would (almost invariably) drop the outermost
brackets and write

customer(vincent) ^ robber(pumpkin)

To help further reduce the bracket count, we assume the following precedence conventions
for the Boolean connectives: : binds more tightly than _ and ^, both of which in turn
bind more tightly that !. What this means, for example, is that the formula

8x (: customer(x) ^ robber(x) ! robber(x))

is shorthand for the following:

8x ((: customer(x) ^ robber(x)) ! robber(x))

In addition, we sometimes use the square brackets ] and [ as well as the oÆcial round
brackets, as this can make the intended grouping of symbols easier to grasp visually.

The Satisfaction De�nition

Given a model of appropriate vocabulary, a sentence such as 8xrobber(x) is either true
or false in that model. To put it more formally, there is a relation called truth which
holds, or does not hold, between sentences and models of the same vocabulary. Now it is
often obvious how to check whether a given sentence is true in a given model (for example,
to check the truth of 8xrobber(x) we simply need to check that every individual in the
model is a robber). What is not so clear is how to give a precise de�nition of this relation
for arbitrary sentences.

Note that we cannot give a direct inductive de�nition of truth, for the matrix of a quanti�ed
sentence typically won't be a sentence. For example, 8xrobber(x) is a sentence, but
its matrix robber(x) is not. Thus an inductive truth de�nition de�ned solely in terms
of sentences couldn't explain why 8xrobber(x) was true in a model, for there are no
sentential subformulas for such a de�nition to bite on.

Instead we proceed indirectly. We de�ne a three place relation|called satisfaction|which
holds between a formula, a model, and an assignment of values to variables. Given a model
M = (D;F ), an assignment of values to variables in M (or more simply, an assignment
in M) is a function g from the set of variables to D. Assignments are a technical device
which tell us what the free variables stand for. By making use of assignment functions, we
can inductively interpret arbitrary formulas in a natural way, and this will make it possible
to de�ne the concept of truth for sentences.

8
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But before going further, one point is worth stressing: the reader should not view assign-
ment functions simply as a technical �x designed to get round the problem of de�ning
truth. Moreover, the reader should not think of satisfaction as being a poor relation of
truth. If anything, satisfaction, not truth, is the fundamental notion, at least as far as
natural language is concerned. Why is this?

The key to the answer is the word context . As we said earlier, free variables can be thought
of as analogs of pronouns, whose values need to supplied by context. An assignment
of values to variables can be thought of as a (highly idealized) mathematical model of
context; it rolls up all the contextual information into one easy to handle unit, specifying a
denotation for every free variable. Thus if we want to use �rst-order logic to model natural
language semantics, it is sensible to think in terms of three components: �rst-order formulas
(descriptions), �rst-order models (situations) and variable assignments (contexts). The
idea of assignment-functions-as-contexts is important in contemporary formal semantics;
it has a long history and has been explored in a number of interesting directions. We shall
periodically return to it in the course of the book, particularly when we discuss Discourse
Representation Theory in Part II.

But let's return to the satisfaction de�nition. Suppose we've �xed our vocabulary. (That
is, from now on, when we talk of a model M, we mean a model of this vocabulary, and
whenever we talk of formulas, we mean the formulas built from the symbols in that vo-
cabulary.) We now give two further technical de�nitions which will enable us to state the
satisfaction de�nition concisely.

First, let M = (D;F ) be a model, let g be an assignment of values to variables in M, and
let � be a term. Then by the interpretation of � with respect to M and g is meant F (�)
if � is a constant, and g(�) if � is a variable. We denote the interpretation of � by IgF (�).

The second idea we need is that of a variant of an assignment of values to variables. So,
let g be an assignment of values to variables in some model, and let x be a variable. If
g0 is an assignment of values to variables in the same model, and for all variables y such
that y6=x, g0(y)= g(y) then we say that g0 is an x-variant of g. Variant assignments are
the technical tool that allows us to try out new values for a given variable (say x) while
keeping the values assigned to all other variables the same.

We are now ready for the satisfaction de�nition. Let � be a formula, let M = (D;F )
be a model, and let g be an assignment of values to variables in M. Then the relation
M; g j= � (� is satis�ed in M with respect to the assignment of values to variables g) is
de�ned inductively as follows:

9



Blackburn & Bos Chapter 1: First-Order Logic September 3, 1999

M; g j= R(�1; � � � ; �n) i� (IgF (�1); � � � ; IgF (�n)) 2 F (R)
M; g j= :� i� not M; g j= �
M; g j= � ^  i� M; g j= � and M; g j=  
M; g j= � _  i� M; g j= � or M; g j=  
M; g j= �!  i� not M; g j= � or M; g j=  
M; g j= 9x� i� M; g0 j= �; for some x-variant g0 of g
M; g j= 8x� i� M; g0 j= �; for all x-variants g0 of g

(Here `i�' is shorthand for `if and only if'.) Note the crucial|and indeed, intuitive|role
played by the x-variants in the clauses for the quanti�ers. For example, what the clause
for the existential quanti�er boils down to is this: 9x� is satis�ed in a given model, with
respect to an assignment g, if and only if there is some x-variant g0 of g that satis�es � in
the model. That is, we have to try to �nd some value for x that satis�es � in the model,
while keeping the assignments to all other variables the same.

We can now de�ne what it means for a sentence to be true in a model:

A sentence � is true in a modelM if and only if for any assignment g of values
to variables in M, we have that M; g j= �. If � is true in M we write M j= �

This is an elegant de�nition of truth that beautifully mirrors the special, self-contained
nature of sentences. It hinges on the following observation: it simply doesn't matter which
variable assignment we use to compute the satisfaction of sentences. Sentences contain no
free variables, so the only free variables we will encounter when evaluating one are those
produced when evaluating its quanti�ed subformulas (if it has any). But the satisfaction
de�nition tells us what to do with such free variables: simply try out variants of the current
assignment and see whether they satisfy the matrix or not. In short, start with whatever
assignment you like; the result will be the same. It is reasonably straightforward to make
this informal argument precise, and the reader is asked to do so in Exercise 1.1.1.

Still, for all the elegance of the truth de�nition, satisfaction is the fundamental concept.
Not only is satisfaction the technical engine powering the de�nition of truth, but from the
perspective of natural language semantics it is conceptually prior. By making explicit the
role of variable assignments, it holds up an (admittedly imperfect) mirror to the process
of evaluating descriptions in situations while making use of contextual information.

Exercise 1.1.1 We claimed that when evaluating sentences, it doesn't matter which variable
assignment we start with. Formally, we are claiming that given any sentence � and any model
M (of the same vocabulary), and any variable assignments g and g0 in M, then M; g j= � i�
M; g0 j= �: We want the reader to do two things. First, show that the claim is false if � is not
a sentence but a formula containing free variables. Second, show that the claim is true if � is a
sentence.
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Exercise 1.1.2 This exercise shows that free variables and constants are very similar. In par-
ticular, if a free variable x and a constant c denote the same individual, we can replace the free
variable by the constant without a�ecting satis�ability. Formally, let M = (D;F ) be a model, let
g be an assignment in M, and suppose that F (c) = g(x). Let � be any formula, and let �[c=x]
denote the formula obtained by replacing all free occurrences of x in � by c. Then M; g j= � i�
M; g0 j= �[c=x], where g0 is any x-variant of g. It follows that when working with exact models,
every formula is equivalent to a sentence. Explain why.

Validities and Valid Arguments

In this book we are going to make heavy use of logical inference, and by making use of
the semantic concepts just introduced we can explain what we mean by this. We do so in
two steps. First we say what valid formulas (or more simply, validities) are, and then we
de�ne valid arguments (or valid inferences).

A valid formula is a formula that is satis�ed in all models (of the appropriate vocabulary)
given any variable assignment. That is, if � is a valid formula, it is impossible to �nd a
situation and a context in which � is not satis�ed. We indicate that a formula � is valid
by writing j= �.

For example,

j=robber(x) _ :robber(x).

In any model, given any variable assignment, one (and indeed, only one) of the two disjuncts
must be true, and hence the whole formula will be satis�ed too.

Note that for sentences the de�nition of validity can be rephrased as follows: a valid
sentence is a sentence that is true in all models (of the appropriate vocabulary). That is,
it is impossible to falsify a valid sentence. For example,

j= 8x(robber(x)! customer(x)) ^ robber(mia) ! customer(mia).

Exercise 1.1.3 This exercise shows that the validity of arbitrary formulas is equivalent to the
validity of certain sentences. As a �rst step, the reader should show that if � is a formula
containing x as a free variable, then � is valid i� 8x� is valid. It follows that the validity of
formulas is reducible to the validity of sentences. Explain why. [Hint: we've just found a way of
reducing number of free variables by one while maintaining validity. Iterate this process.]

Now, validities are clearly in some sense logical; they are descriptions which carry a cast-
iron guarantee of satis�ability. But logic has traditionally appealed to the more dynamic
notion of valid arguments, a movement, or inference, from premises to conclusions.
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Suppose �1, . . . , �n, and  are a �nite collection of �rst-order formulas. Then we say that
the argument with premises �1, . . . , �n and conclusion  is a valid argument if and only
if whenever all the premises are satis�ed in some model, using some variable assignment,
then the conclusion is satis�ed in the same model using the same variable assignment. The
notation

�1; : : : ; �n j=  

means that the argument with premises �1, . . . , �n and conclusion  is valid. There is
a wide range of terminology for talking about valid arguments. For example, we some-
times say that  is a valid inference from the premises �1, . . . , �n, or that  is a logical
consequence of �1, . . . , �n.

Note that if the premises and conclusion are all sentences the de�nition of valid argument
can be rephrased as follows: an argument is valid if whenever the premises are true in some
model, the conclusion is too. Or more simply: the truth of the premises guarantees the
truth of the conclusion.

Here's an example. The argument with premises 8x(robber(x) ! customer(x)) and
robber(mia) and the conclusion customer(mia) is valid. That is,

8x(robber(x) ! customer(x)), robber(mia) j= customer(mia).

As the reader may suspect, there is a connection between the validity of this argument and
the fact that

j= 8x(robber(x) ! customer(x)) ^ robber(mia) ! customer(mia).

This example suggests that with the help of the Boolean connectives ^ and ! we can
convert valid arguments into validities. The reader is asked to explore this in Exercise 1.1.5
below.

Validity and valid arguments are the fundamental logical concepts, and they underly the
treatment of inference in this book. Both concepts are semantically de�ned (that is, they
are de�ned in terms of models and variable assignments) but in Chapters 4 and 5 we will
�nd a syntactic way of thinking about them that lends itself to computational implementa-
tion (that is, we will develop various proof systems). Moreover, as we shall learn in Part II,
these concepts provide a useful basis for discussing inference in Discourse Representation
Theory.

This concludes our review of the syntax and semantics of �rst-order logic. We �nish with a
global remark. As the reader has doubtless observed, most of the ideas we have discussed
are fairly straightforward|with the notable exception of variable handling. This required
a certain amount of care, and the introduction of concepts such as assignments and variant
assignments. Unsurprisingly, if we want to work with �rst-order logic in Prolog, the key
issue that faces us is how to cope with variables. Indeed, the theme of how best to handle
variables recurs in various guises throughout the book.
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Exercise 1.1.4 We say that two sentences � and  are logically equivalent if and only if � j=  
and  j= �. Show that 8x� and :9x:� are logically equivalent.

Exercise 1.1.5 The Deduction Theorem for �rst-order logic says that �1; : : : ; �n j=  if and
only if j= (�1 ^ � � � ^ �n) !  : (That is, there is an intimate link between validities and valid
arguments.) Prove the Deduction Theorem.

Exercise 1.1.6 Show that the validity of arguments whose premises or conclusions contain free
variables, is reducible to the validity of arguments whose premises and conclusions are sentences.
[Hint: think about Exercise 1.1.3.]

Function Symbols and Equality

We now discuss two important extensions of �rst-order logic; namely �rst-order logic with
function symbols, and �rst-order logic with equality. Function symbols play an important
role when we discuss �rst-order inference in Chapter 5. Equality plays an important role
in our discussion of Discourse Representation Theory in Part II.

Suppose we want to talk about Butch, Butch's father, Butch's grandfather, Butch's great
grandfather, and so on. Now, if we know the names of all these people this is easy to do|
but what if we don't? A natural solution is to add a 1-place function symbol father to
the language. Then if butch is the constant that names Butch, father(butch) is a term
that picks out Butch's father, father(father(butch)) picks out Butch's grandfather,
and so on. That is, function symbols are a syntactic device that let us form recursively
structured terms, thus letting us express many concepts in a natural way.

Let's make this precise. First, we shall suppose that it is the task of the vocabulary to tell
us which function symbols we have at our disposal, and what the arity of each of these
symbols is. Second, given this information, we say (as before) that a model M is a pair
(D;F ) where F interprets the constants and relation symbols as described earlier, and, in
addition, F assigns to each function symbol f an appropriate semantic entity. What's an
appropriate interpretation for an n-place function symbol? Simply a function that takes
n-tuples of elements of D as input, and returns an element of D as output. Third, we need
to say what terms we can form using these new symbols. Here's the de�nition we require:

1. All constants and variables are terms.

2. If f is a function symbol of arity n, and �1,. . . , �n are terms, then f(�1; : : : ; �n) is also
a term.

3. Nothing else is a term.

A term is said to be closed if and only if it contains no variables.
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Only one task remains: interpreting these new terms. In fact we need simply extend
our earlier de�nition of IgF in the obvious way. Given a model M and an assignment
g in M, we de�ne (as before) IgF (�) to be F (�) if � is a constant, and g(�) if � is a
variable. On the other hand, if � is a term of the form f(�1; : : : ; �n), then we de�ne IgF (�)
to be F (f)(IgF (�1); : : : ; I

g
F (�n)). (That is, we apply the n-place function F (f)|the function

interpreting f|to the interpretation of the n argument terms.)

Function symbols are certainly a natural extension to �rst-order languages, as the fa-
therhood example should suggest. However, they are also important for more technical
purposes. In particular, they play a key role in Chapter 5, where they will help us formulate
an inference system for �rst-order logic that is suitable for computational implementation.

The �rst-order languages we have so far de�ned have an obvious expressive shortcoming:
we have no way to assert that two terms denote the same entity. We will need to be able
to express such identities in Chapter ??, when we link Discourse Representation Theory
with �rst-order logic. So what are we to do?

Actually, the solution is straightforward. Given any language of �rst-order logic (with
or without function symbols) we can turn it into a �rst-order language with equality by
adding the special two place relation symbol =. We use this relation symbol in the natural
in�x way: that is, if �1 and �2 are terms then we write �1 = �2 rather than the rather
ugly = (�1; �2). Beyond this notational convention, there's nothing more to say about the
syntax of = ; it's just a two place relation symbol. But what about its semantics?

Here matters are more interesting. Although, syntactically, = is just a 2-place relation
symbol, it is a very special one. In fact (unlike loves, or hates, or any other two place
relation symbol) we are not free to interpret it how we please. In fact, given any model
M, any assignment g in M, and any terms �1 and �2, we shall insist that

M; g j= �1 = �2 i� IgF (�1) = IgF (�2):

That is, the atomic formula �1 = �2 is satis�ed if and only if �1 and �2 have exactly the
same interpretation. That is, = really means equality. In fact, = is usually regarded as a
logical symbol on a par with : or 8, for like these symbols it has a �xed interpretation,
and a semantically fundamental one at that.

1.2 A Simple Model Checker

We will now implement a simple �rst-order model checker in Prolog. The checker will take
the Prolog representation of a model and the Prolog representation of a formula and test
whether or not the formula is satis�ed in the model. (Actually, to keep things simple,
we are only going to work with exact models, and we are not going to deal with function
symbols or equality.) We will learn two important lessons from this exercise:
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1. By making use of Prolog variables to represent �rst-order variables, it is easy to
implement the satisfaction de�nition. This is because Prolog's built-in uni�cation
and backtracking mechanisms can take care|more or less automatically|of the
process of assigning values to variables.

2. On the other hand, this simple strategy has its dangers: as we shall see, the obvious
implementation is incorrect. We demonstrate some of its shortcomings and show how
to correct them in the next section.

How should we implement such a model checker? We have four principal tasks: deciding
how to represent vocabularies, deciding how to represent models, deciding how to represent
formulas, and specifying how (representations of) formulas are to be evaluated in (repre-
sentations of) models. The representations introduced here will be used throughout the
book.

Representing Vocabularies

Vocabularies will be represented as Prolog databases. Let's consider an example. Suppose
we are working with the following vocabulary:

f (love,2), (hate,2),
(customer,1), (robber,1),
(mia,0), (vincent,0),
(honey-bunny,0), (pumpkin,0) g

This would be represented by the following database:

relation(love,2). constant(mia).

relation(hate,2). constant(vincent).

relation(customer,1). constant(honey_bunny).

relation(robber,1). constant(pumpkin).

This should be self explanatory: the database simply lists the relation symbols in the
vocabulary (together with their arity), and the constant symbols. Both relation symbols
and constant symbols are represented by Prolog atoms in the obvious way.

Representing Models

Suppose we have �xed our vocabulary|for example, suppose we've decided to work with
the vocabulary just given. How should we represent models of this vocabulary in Prolog?
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Actually, this is an impossibly diÆcult question. We don't have the remotest chance of
dealing with all models of this vocabulary, for there are models of this vocabulary based
on any non-empty domain D whatsoever. In particular, there are lots of in�nite models.
Now, it is possible to give useful �nite representations of some in�nite models|but most
are too big and too unruly to be worked with computationally. Hence we shall con�ne
our attention to �nite models of this vocabulary. In addition, matters are simpler if we
only have to deal with exact models. (Recall that an exact model is a model over a
vocabulary containing constants such that every element in the model is named by exactly
one constant.) So, let's rephrase our question: how should we represent the �nite exact
models over the above vocabulary?

Here is an example of how we shall do it:

[customer(vincent),customer(mia),

robber(honey_bunny),robber(pumpkin),

loves(pumpkin,honey_bunny)]

Fairly obviously, this list represents a model in which both Vincent and Mia are customers,
both Pumpkin and Honey Bunny are robbers, and Pumpkin loves Honey Bunny. But it
is important to be aware that other properties are implicitly recorded. For example, no
facts about the hate relationships are given|and hate is one of the relation symbols in our
vocabulary. This is Prolog's way of recording the fact that the binary relation hate is empty;
in this little world, nobody hates anybody. Moreover, although Pumpkin loves Honey
Bunny, he doesn't love himself nor anybody else, for no such facts are recorded. In fact,
no other loving relationships at all hold. Thus, by explicitly listing positive information,
and implicitly listing negative information, we have completely described a unique exact
model over this vocabulary.

Here's a second example, again over the same vocabulary.

[customer(vincent),

robber(honey_bunny),robber(pumpkin),

loves(pumpkin,honey_bunny)]

Now for a trick question: how many individuals are there in the domain of the model that
this Prolog term represents? The answer is four . If you thought the answer was three|
because only Vincent, Pumpkin and Honey Bunny are explicitly mentioned|you haven't
properly grasped the role played by the constants listed in the vocabulary. In any model
of this vocabulary there is an individual that corresponds to Mia. As it happens, in this
particular model no positive facts are listed about Mia|but lots of negative facts about
Mia are implicitly given. For example, Mia is neither a customer nor a robber (perhaps
Mia is a waitress), and Mia neither loves nor hates anyone or anything, and is not loved
or hated by anyone or anything.
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In short, be careful. The list of constants in the vocabulary plays an important role for us:
it tells us exactly how many individuals there are in any exact model of that vocabulary,
namely one and only one for each constant. Indeed, we can think of the constants listed
in the vocabulary as simply being the domain of quanti�cation of exact models.

Exercise 1.2.1 Give the set theoretic description of the models that the two Prolog terms given
above represent.

Exercise 1.2.2 Suppose we are working with the following vocabulary:

f (works-for,2),
(boxer,1), (problem-solver,1),
(the-wolf,0), (marsellus,0), (butch,0)g

First, represent this vocabulary as a Prolog database. Then, represent each of the following two
(exact) models (D;F ) over this vocabulary as Prolog terms.

1. D = fd1; d2; d3g,
F (the-wolf) = d1,
F (marsellus) = d2,
F (butch) = d3,
F (boxer) = fd3g,
F (problem-solver) = fd1g.

2. D = fentity-1; entity-2; entity-3g
F (the-wolf) = entity-3,
F (marsellus) = entity-1,
F (butch) = entity-2,
F (boxer) = fentity-2; entity-3g,
F (problem-solver) = fentity-2g,
F (works-for) = f(entity-3; entity-1); (entity-2; entity-1)g.

Exercise 1.2.3 Write a Prolog program which when given a vocabulary, and a list, determines
whether or not the list represents an (exact) model over that vocabulary. Can your program be
used to generate all the exact models over that vocabulary? If not, write a program that can.

Representing Formulas

Let us now decide how to represent �rst-order formulas (for languages without function
symbols or equality) in Prolog. The �rst (and most fundamental) decision is how to
represent �rst-order variables. We make the following choice:

First-order variables will be represented by Prolog variables.
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As has already been mentioned, this decision will enable us to implement a model checker
very simply|but it will also give rise to a number of problems.

Next, we must decide how to represent the non-logical symbols. We do so in the obvious
way: a �rst-order constant c will be represented by the Prolog atom c, and a �rst-order
relation symbol R will be represented by the Prolog atom r.

Given this convention, it is obvious how atomic formulas should be represented. For exam-
ple, love(vincent,mia) would be represented by the Prolog term love(vincent,mia),
and hate(butch,x) would be represented by hate(butch,X). Note that �rst-order atomic
sentences (for example boxer(butch)) are represented by exactly the same Prolog term
(namely boxer(butch)) that is used to represent the fact that Butch is a boxer in our
Prolog representation of models. This will enable us to give a simple implementation of
the satisfaction clause for atomic formulas.

Next the Booleans. The symbols

& v > ~

will be used to represent the connectives ^, _,!, and : respectively. The following Prolog
code ensure that these connectives have their usual precedences:

:- op(900,yfx,>). % implication

:- op(850,yfx,v). % disjunction

:- op(800,yfx,&). % conjunction

:- op(750, fy,~). % negation

Finally, we must decide how to represent the quanti�ers. Suppose formula is a �rst-order
formula, and Formula is its representation as a Prolog term. Then 8x formula will be
represented as

forall(X,Formula)

and 9x formula will be represented as

exists(X,Formula)

Semantic Evaluation

We now turn to the fourth and �nal task: evaluating (representations of) formulas in
(representations of) models. The predicate which carries out the task is called satisfy/2,
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and the clauses of satisfy/2 mirror the �rst-order satisfaction de�nition in a fairly natural
way.

The clause which evaluates (representations of) atomic formulas is:

satisfy(Formula,Model):-

member(Formula,Model).

The member/2 predicate is one of the predicates in the library comsemPredicates.pl. It
succeeds if its �rst argument, any Prolog term, is a member of its second argument, which
has to be a list. It is de�ned as follows:

member(X,[X|_]).

member(X,[_|L]):-

member(X,L).

Hence an atomic formula is true if and only if that formula is one of the facts recorded in
the list Model.

Now for Boolean combinations of formulas.

satisfy(Formula1 & Formula2,Model):-

satisfy(Formula1,Model),

satisfy(Formula2,Model).

satisfy(Formula1 v Formula2,Model):-

satisfy(Formula1,Model);

satisfy(Formula2,Model).

satisfy(Formula1 > Formula2,Model):-

satisfy(Formula2,Model);

\+ satisfy(Formula1,Model).

satisfy(~ Formula,Model) :-

\+ satisfy(Formula,Model).

These mirror the �rst-order satisfaction de�nition in an obvious way. However note that in
the clauses for > and ~ we have made use of Prolog negation (that is, negation as failure).
This is a simple and natural thing to do, but as we shall see in the next section, it can
interact with our use of Prolog variables to represent �rst-order variables in unexpected|
and unintended|ways.

Finally come the quanti�er clauses. The one for the existential quanti�er couldn't be
simpler:
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satisfy(exists(X,Formula),Model):-

constant(X),

satisfy(Formula,Model).

That is, the program uni�es X to some entity in the model (recall that because we are
working with exact models, the entities we are talking about are essentially the constants)
and then tries evaluating Formula in Model. If Formula is not satis�ed in Model the
program will backtrack and unify X to another entity (if this is still possible) and then
evaluate the formula again. Either it eventually succeeds (which means that there exists
an entity in the model that does satisfy Formula), or it doesn't (which means there isn't).
Clearly, this captures the semantics of the existential quanti�er. Moreover it does so in a
straightforward way: Prolog's uni�cation and backtracking mechanisms are being used to
simulate the process of assigning values to �rst-order variables.

At �rst glance, the following clause for the universal quanti�er may look a little strange|
but recall that 8x� is logically equivalent to :9x:� (the reader was asked to show this in
Exercise 1.1.4). The following clause simply represents this equivalence in Prolog (using
negation as failure), and makes use of Prolog's uni�cation and backtracking mechanisms
in much the same way as the clause for exists does.

satisfy(forall(X,Formula),Model):-

satisfy(~ exists(X,~ Formula),Model).

So, it's time to start checking models. Here are some examples of models over our original
vocabulary:

example(1,[customer(mia),customer(vincent),

robber(pumpkin),robber(honey_bunny),

love(pumpkin,honey_bunny)]).

example(2,[customer(mia),

robber(pumpkin),robber(honey_bunny),

love(pumpkin,honey_bunny)]).

example(3,[customer(mia),customer(vincent),

robber(pumpkin),robber(honey_bunny),

love(pumpkin,honey_bunny),love(mia,vincent)]).

And here is a driver predicate which evaluates a formula on the desired example model:

evaluate(Formula,Example):-

example(Example,Model),

satisfy(Formula,Model).
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Exercise 1.2.4 Systematically test the model checker on these models. Are the results always
what you expected? If not, why not?

1.3 Some Re�nements

As the reader who has tested the model checker will have learned, the current version of
the model checker is far from satisfactory. In fact, it does quite a number of silly things.
Let's try pinning down the various problems.

First Problem

What happens if we ask Prolog to evaluate a variable in one of our example models:

?- evaluate(X,1).

This is a perfectly reasonable query; in fact there are two motives we might have for making
it. The �rst is simply to ask Prolog to generate a formula that can be evaluated in model
1. The second|recall that we decided to use Prolog variables for representing �rst-order
variables|is to check whether our predicate successfully recognizes that a variable is not
a formula, and hence cannot be evaluated. Both are good ideas, but neither works as
planned, for the program immediately goes into an in�nite loop.

Exercise 1.3.1 Why does the program get in an in�nite loop when posing the above query? If
this is not clear, perform a trace.

To solve this problem, we will simply reject queries that try to evaluate variables. This is
easily done by adding a �ltering clause to the evaluation predicate:

evaluate(Formula,Example):-

\+ var(Formula),

example(Example,Model),

satisfy(Formula,Model).

This ensures that evaluate only succeeds if Formula is not a variable. However, this
problem is deeper and more structural, and this proposed solution is not satisfactorily. To
�nd out why you might try the following exercise.

Exercise 1.3.2 [Easy] Try the above evaluation predicate on formulas that contain subformulas
that are represented as Prolog variables, for example the formula exists(X,robber(X) > Y).
What happens and why?
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Exercise 1.3.3 [Hard] Try to modify the program in such a way that it generates formulas that
can be evaluated in a speci�ed model when given the query evaluate(X,1) (for example model
1).

Second Problem

The second problem has to do with the way negation as failure interacts with our use of
Prolog variables to represent �rst-order variables.

Suppose we evaluate

customer(X)

in example 1. That is, we're asking whether it is possible to assign a value to the free
variable that satis�es the formula; thus Prolog's task is to �nd an entity in this model that
is a customer. In example 1, of course, it �nds two: Mia and Vincent.

Now suppose we evaluate

~ customer(X)

in example 1. That is, we're again asking whether it is possible to assign a value to the free
variable that satis�es the formula, thus Prolog's task is to �nd an entity in this model that
is not a customer. In example 1, of course, there are two non-customers, namely Honey
Bunny and Pumpkin.

However, Prolog wrongly answers no. This is because we de�ned the interpretation of
negated clauses using negation as failure. As customer(X) is satis�able, Prolog (incor-
rectly) decides that ~ customer(X) is not satis�able.

This is unacceptable and has to be �xed. But before doing so, let's look at another problem.

Third Problem

We run into problems if we ask our model checker to verify formulas using completely new
non-logical vocabulary. For example, suppose we try evaluating the atomic formula

tasty(royale_with_cheese)

in any of example models. Then our model checker will say no. This response is not , strictly
speaking, correct. Formally the satisfaction relation is not de�ned between formulas and
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models of di�erent vocabularies. The correct response of our model checker would be to
throw out this formula and say something like \Hey, I don't know anything about these
symbols!".

This example may not strike the reader as too problematic|but worse is in store. If we
evaluate

~ tasty(royale_with_cheese)

in any of example models they will return the answer yes! This happens because we used
negation as failure to de�ne the evaluation clause for negated formulas. Clearly this needs
�xing.

However the problem is not particularly deep; the solution is simply to be explicit about
what a well formed formula over a given vocabulary is. That is, we should make use
of the information in the vocabulary about which relation symbols we are working with
(and, of course, what their arities are), which constants we have, and explicitly state which
combinations of these symbols are well formed. (Note that at present we're not making any
use of the information stored in our vocabulary. It's hardly surprising that we're having
these diÆculties.) Our driver should check that any sequence of symbols it has to evaluate
really is a well formed combination of the chosen relation and constant symbols|and it
should refuse to evaluate anything that isn't.

Now, to do this we're going to have to recursively work through the structure of the input
formula|so this gives us a good opportunity to solve the second problem as well. In fact,
we shall de�ne a predicate sentence/2 whose primary task is to transform a formula with
free variables into a sentence by substituting constants of the vocabulary for occurrences of
free variables. While doing this it will check that the Prolog terms it encounters represent
well formed formulas built out of the given vocabulary. Thus sentence/2 will solve the
second and third problems simultaneously.

We de�ne sentence/2 as follows. Its �rst argument will be a list; we use it to keep track of
all the bound variables we have encountered in the course of analysis. The second argument
is a formula.

The �rst clause deals with evaluating uninstiatiated Prolog variables. This immediately
causes failure, and therefore deals with the �rst problem. (We use the !, fail combination
to exclude all other clauses for possible solutions.)

sentence(_,Var):-

var(Var), !, fail.

The required clauses for non-atomic formulas are fairly obvious:
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sentence(Bound,forall(X,Formula)):-

var(X),

sentence([X|Bound],Formula).

sentence(Bound,exists(X,Formula)):-

var(X),

sentence([X|Bound],Formula).

sentence(Bound,Formula1 > Formula2):-

sentence(Bound,Formula1),

sentence(Bound,Formula2).

sentence(Bound,Formula1 & Formula2):-

sentence(Bound,Formula1),

sentence(Bound,Formula2).

sentence(Bound,Formula1 v Formula2):-

sentence(Bound,Formula1),

sentence(Bound,Formula2).

sentence(Bound,~ Formula):-

sentence(Bound,Formula).

Note the way the clauses for forall and exists push the variable currently being bound
onto the bound variable list (after �rst testing that it really is a legitimate Prolog variable).

But that's the easy part. The real work is done at the atomic level, where we substitute
constants for free variables. Here's the code:

sentence(Bound,Formula):-

compose(Formula,Symbol,Arguments),

length(Arguments,Arity),

relation(Symbol,Arity),

goodArguments(Bound,Arguments).

goodArguments(_Bound,[]).

goodArguments(Bound,[Arg|Others]):-

member(Var,Bound),

Var==Arg,!,

goodArguments(Bound,Others).

goodArguments(Bound,[Arg|Others]):-

constant(Arg),

goodArguments(Bound,Others).
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Here compose/3 is a predicate in the library �le comsemPredicates.pl. It is de�ned as
follows:

compose(Term,Symbol,ArgList):-

Term =.. [Symbol|ArgList].

In short, compose/3 uses the built in Prolog =.. functor to atten a term into a list.

Thus, at the base of the recursion, sentence/2 uses compose/3 to take the atomic formula
apart into a list. It then checks that the �rst item on the list really is one of our relation
symbols, and that it has the correct number of arguments. If everything is satisfactory,
it hands the list over to goodArguments/2. This predicate recursively checks through the
tail of the list (that is, the terms used to build the atomic formula). If one of these items
is a Prolog variable, it checks to see whether it is listed in Bound. If it is, that's �ne;
we are dealing with a bound variable and don't have to worry. On the other hand, if
it's not on this list, we have found a free variable which needs replacing by a constant.
The call constant(Arg) uni�es it to one of the constants in the vocabulary. Note that
on backtracking this call will successively unify the free variable to every constant in the
vocabulary. In e�ect this code is taking advantage of the similarity between free variables
and constants discussed in Exercise 1.1.2; as we observed, when working with exact models,
every formula is equivalent to a sentence.

And that's it. It only remains to write a new driver which puts these predicates to work.
We'll implement the driver using two clauses. The �rst clauses deals with formulas that
are sentences, the second clause with formulas that aren't sentence (in that case it alerts
the user with a message saying that the formula cannot be evaluated).

evaluate(Formula,Example):-

sentence([],Formula),

example(Example,Model),

satisfy(Formula,Model).

evaluate(Formula,_Example):-

\+ sentence([],Formula),

nl,write('Not a wff over the given vocabulary.'),

nl,write('Cannot be evaluated.'),nl.

It should be clear that this revised version of our evaluation predicate �xes the third
problem.

This is a much cleaner model checker. Simply by making use of the information stored in
vocabularies it tidies up a lot of silly problems in one fell swoop; indeed, it even tidies up
a problem not mentioned in the text. It is important that you understands what is going
on here, so we suggest you work through the following problems right away.
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Exercise 1.3.4 Try out the new evaluation predicate on the query ~ customer(X). Why has
problem 2 vanished?

Exercise 1.3.5 Suppose we continue to work with the same vocabulary and we add the model
[] to our list of examples. That is, we add the model that contains no positive information about
any of our four individuals. Does the �rst version of evaluate/2 handle queries about this model
correctly? Does the revised version? Explain why.

Another Problem

Our new evaluation predicate takes care of the sillier shortcomings of our �rst version, and
we won't bother making any further improvements. Nonetheless, the reader should realize
that it is still not perfect. There is another problem, due solely to our decision to use
Prolog variables to represent �rst-order variables.

Although more complex than the original version, the new evaluate/2 is a fairly simple
predicate. This is because all the real work of variable handling is being taken care of|
more or less automatically|by Prolog's in-built uni�cation and backtracking mechanisms.
But in a sense, we've cheated. Neither the original evaluate nor its successor really
understand how to treat free and bound variables at all.

An example should make this clear. In �rst-order logic the formulas

9x (customer(x)) ^ 9y (robber(y))

and

9x (customer(x)) ^ 9x (robber(x))

are equivalent. Now, their Prolog representations are

exists(X,customer(X)) & exists(Y,robber(Y))

and

exists(X,customer(X)) & exists(X,robber(X))

respectively. However

?- evaluate(exists(X,customer(X)) & exists(Y,robber(Y)),1).
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succeeds (it returns all four of the successful ways of instantiating X and Y) while

?- evaluate(exists(X,customer(X)) & exists(X,robber(X)),1).

returns no.

The diÆculty is easy to spot. Prolog doesn't know that the X in customer(X) is intended
to play a di�erent role than the X in robber(X); it will always instantiate them to the
same thing.

But fortune seems on our side, as their is a simple Prolog trick that helps us here. The
problem lies in instantiating bound variables by one of the constants of our vocabulary
using constant/1 in the predicate satisfy/2. Here is where this happens (and note that
this is the only spot where variables get instantiated):

satisfy(exists(X,Formula),Model):-

constant(X),

satisfy(Formula,Model).

Once X gets instantiated, it remains instantiated. And that's what causes the problem.
A simple Prolog-remedy is to use double negation, which ensures that variables inside it
are not instantiated (in fact, they are only instantiated during the proof of the negation).
Here is a revised clause for handling the existential quanti�er:

satisfy(exists(X,Formula),Model):-

\+ \+ (constant(X), satisfy(Formula,Model)).

However, this trick doesn't cover all problems of binding. Here is an example of a formula
that doesn't get evaluated in model 1 although it's a perfectly �ne formula in �rst-order
logic (and satis�ed in our example model 1!).

9x (customer(x) ^ 9x robber(x))

The moral is clear. We should either write a better evaluation predicate that guards against
this shortcoming (the reader is asked to do this as an exercise) or we should ensure that
di�erent occurrences of quanti�ers bind distinct variables. More generally, it is clear that
`clever' Prolog solutions to variable manipulation problems require careful scrutiny; we will
see another example in the following chapter when we implement �-reduction.

Exercise 1.3.6 [easy] Write a predicate which when given a formula, checks for reused variables.
Rede�ne the predicate evaluate that �lters out such sentences.

Exercise 1.3.7 [hard] Rede�ne the predicate satisfy/2 such that it uses explicit assignment
functions.
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1.4 First-Order Logic and Natural Language

Expressivity Problems

(to be provided)

Representational Problems

(to be provided)

'

&

$

%

Software Summary of Chapter 1

modelChecker.pl The �le that contains the code for the simple model checker for

�rst-order logic. This version neither takes care of free variables, nor does it

consult the vocabulary to exclude ill-formed formulas. (page 209)

modelChecker2.pl This �le contains the code for the revised model checker for

�rst-order logic. This version takes care of free variables and excludes ill-

formed formulas. (page 211)

exampleModels.pl Contains the speci�cation of the vocabulary and a few example

models. (page 214)

Notes

There are many good introductions to �rst-order logic, and the best advice we can give
the reader is to spend some time browsing in a library to see what's on o�er. That said,
there's three references we particularly recommend. For an unhurried introduction that
motivates the subject linguistically, try the �rst volume of Gamut 1991a. For a wide-
ranging discursive overview, we recommend Hodges 1983. This survey article covers a
lot of ground|from truth tables to Lindstr�om's celebrated characterization of �rst-order
logic. Parts of the article are quite technical, but, by and large, it's the sort of article that
many readers will enjoy browsing through. On the other hand, the reader who wants a
more focussed approach may prefer Enderton 1972. This is a good, solid, and extremely
readable introduction to �rst-order logic.
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Chapter 2

Lambda Calculus

Now that we know something of �rst-order logic and how to work with it in Prolog, it is
time to turn to the �rst major theme of the book, namely:

How can we automate the process of associating semantic representations with
natural language expressions?

In this chapter we explore the issue concretely. We proceed by trial and error. We �rst
write a simple Prolog program that performs the task in a limited way. We note where
it goes wrong, and why, and develop a more sophisticated alternative. These experiments
lead us, swiftly and directly, to formulate a version of the lambda calculus. The lambda
calculus is a tool for controlling the process of making substitutions. With its help, we will
be able to describe, neatly and concisely, how semantic representations should be built.
The lambda calculus is one of the main tools used in this book, and by the end of the
chapter the reader should have a reasonable grasp of why it is useful to computational
semantics and how to work with it in Prolog.

2.1 Compositionality

Given a sentence of English, is there a systematic way of constructing its semantic rep-
resentation? This question is far too general, so let's ask a more speci�c one: is there a
systematic way of translating simple sentences such as `Vincent likes Mia' and `A woman

snorts' into �rst-order logic?

The key to answering this is to be more precise about what we mean by `systematic'.
Consider `Vincent likes Mia'. Its semantic content is at least partially captured by the
�rst-order formula like(vincent,mia). Now, the most basic observation we can make
about systematicity is the following: the proper name `Vincent' contributes the constant
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vincent to the representation, the transitive verb `likes' contributes the relation symbol
like, and `Mia' contributes mia.

This �rst observation is important, and by no means as trivial as it may seem. If we
generalize it to the claim that the words making up a sentence contribute all the bits
and pieces needed to build the sentence's semantic representation, we have formulated a
principle that is a valuable guide to the complexities of natural language semantics. The
principle is certainly plausible. Moreover, it has the advantage of forcing us to face up to a
number of non-trivial issues sooner rather than later (for example, what exactly does the
determiner `every' contribute to the representation of `Every woman loves a boxer'?).

Nonetheless, though important, this principle doesn't tell us everything we need to know
about systematicity. For example, from the symbols like, mia and vincent we can
also form like(mia,vincent). Why don't we get this (incorrect) representation when
we translate `Vincent likes Mia'? What exactly is it about the sentence `Vincent likes Mia'
that forces us to translate it as like(vincent,mia)? Note that the answer \But `Vincent
likes Mia' means like(vincent,mia), stupid!", which in many circumstances would be
appropriate, isn't particularly helpful here. Computers are stupid. We can't appeal to their
semantic insight, because they don't have any. If we are to have any hope of automating
semantic construction, we must �nd another kind of answer.

The missing ingredient is a notion of syntactic structure. `Vincent likes Mia' isn't just a
string of words: it has a hierarchical structure. In particular, `Vincent likes Mia' is an S
(sentence) that is composed of the subject NP (noun phrase) `Vincent' and the VP (verb
phrase) `likes Mia'. This VP is in turn composed of the TV (transitive verb) `likes' and
the direct object NP `Mia'. Given this hierarchy, it is easy to tell a coherent story|
and indeed, to draw a convincing picture|about why we should get the representation
like(vincent,mia), and not anything else:

(1)

Vincent likes Mia (S)
like(vincent,mia)

Vincent (NP)
vincent

likes Mia (VP)
like(?,mia)

likes (TV)
like(?,?)

Mia (NP)
mia

Why is mia in the second argument slot of like? Because, when we combine a TV with
an NP to form a VP, we have to put the semantic representation associated with the NP
(in this case, mia) in the second argument slot of the VP's semantic representation (in
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this case, like(?,?)). Why does vincent have to go in the �rst argument slot? Because
this is the slot reserved for the semantic representations of NPs that we combine with VPs
to form an S. More generally, given that we have some reasonable syntactic story about
what the pieces of the sentences are, and which pieces combine with which other pieces, we
can try to use this information to explain how the various semantic contributions have to
be combined. In short, one reasonable explication of `systematicity' is that it amounts to
using the additional information provided by syntactic structure to spell out exactly how
the semantic contributions are to be glued together.

Our discussion has led us to one of the key concepts of contemporary semantic theory:
compositionality . Suppose we have some sort of theory of syntactic structure. It doesn't
matter too much what sort of theory it is, just so long as it is hierarchical in a way that
ultimately leads to the lexical items. (That is, our notion of syntactic structure should
allow us to classify the sentence into subparts, sub-subpart, and sub-sub-subparts, . . . ,
and so on|ultimately into the individual words making up the sentence.) Such structures
make it possible to tell an elegant story about where semantic representations come from.
Ultimately, semantic information ows from the lexicon, thus each lexical item is associated
with a representation. How is this information combined? By making use of the hierarchy
provided by the syntactic analysis. Suppose the syntax tells us that some kind of sentential
subpart (a VP, say) is decomposable into two sub-subparts (a TV and an NP, say). Then
our task is to describe how the semantic representation of the VP subpart is to be built
out of the representation of its two sub-subparts. If we succeed in doing this for all
the grammatical constructions covered by the syntax, we will have given a compositional
semantics for the language under discussion (or at least, for that fragment of the language
covered by our syntactic analysis).

Compositionality is a simple and natural concept that underlies most work in natural lan-
guage semantics and the semantics of programming languages. Nonetheless, in spite of
its simplicity, it raises a number of interesting issues. For example, is every `systematic'
semantics a compositional one? In Part II we discuss the standard top-down algorithm
for Discourse Representation Theory. This algorithm is a systematic approach to seman-
tic construction (under any reasonable interpretation of the word `systematic') but many
semanticists have argued that it is not truly compositional.

Syntax via De�nite Clause Grammars

So, is there a systematic way of translating simple sentences such as `Vincent likes Mia' and
`A woman snorts' into �rst-order logic? We don't yet have a method, but at least we now
have a plausible strategy for �nding one. We need to:

Task 1 Specify a reasonable syntax for the fragment of natural language of interest.

Task 2 Specify semantic representations for the lexical items.
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Task 3 Specify the translation compositionally. That is, we should specify the translation
of all expressions in terms of the translation of their parts, where `parts' refers to the
substructure given to us by the syntax.

Moreover, all three tasks need to be carried out in a way that leads naturally to computa-
tional implementation.

As this is a book on computational semantics, tasks 2 and 3 are where are our real interests
lie, and most of our energy will be devoted to them. But since compositional semantics
presupposes syntax, we need a way of handling task 1. What should we do?

We have opted for a particularly simple solution: in this book the syntactic analysis of a
sentence will be a tree whose non-leaf nodes represent complex syntactic categories (such
as S, NP and VP) and whose leaves represent lexical items (these are associated with basic
syntactic categories such as noun, transitive verb, determiner, proper name and intransitive
verb). The tree the reader has just seen is a typical example. This approach has an obvious
drawback (namely, the reader won't learn anything interesting about syntax) but it also
has an important advantage: we will be able to make use of De�nite Clause Grammars
(DCGs), the in-built Prolog mechanism for grammar speci�cation.

Here is a DCG for the fragment of English we shall use in our initial semantic construction
experiments. (This DCG, decorated with semantic construction code, can be found in
experiment1.pl and experiment2.pl. The reader unfamiliar with DCGs is advised to
consult Appendix D right away, as otherwise this chapter will shortly stop making much
sense.)

s --> np, vp. noun --> [woman].

np --> pn. noun --> [foot,massage].

np --> det, noun. vp --> iv.

pn --> [vincent]. vp --> tv, np.

pn --> [mia]. iv --> [walks].

det --> [a]. tv --> [loves].

det --> [every]. tv --> [likes].

This grammar tells us how to build certain kinds of sentences (s) out of noun phrases (np),
verb phrases (vp), proper names (pn), determiners (det), nouns (noun), intransitive verbs
(iv), and transitive verbs (tv), and gives us a tiny lexicon to play with. For example, the
grammar accepts the simple sentence

Vincent walks

because `Vincent' is declared as a proper name, and proper names are noun phrases accord-
ing to this grammar; `walks' is an intransitive verb, and hence a verb phrase; and sentences
can consist of a noun phrase followed by a verb phrase.
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But the real joy of DCGs is that they provide us with a with a lot more than a natural
notation for specifying grammars. Because they are part and parcel of Prolog, we can
actually compute with them. For example, by posing the query

s([mia,likes,a,foot,massage],[])

we can test whether `Mia likes a foot massage' is accepted by the grammar, and the query

s(X,[])

generates all grammatical sentences.

Exercise 2.1.1 How many sentences are accepted by this grammar? How many noun phrases?
How many verb phrases? Check your answer by generating the relevant items.

With a little e�ort, we can do a lot more. In particular, by making use of extra arguments
(again, see Appendix D if you're uncertain what this means) we can associate semantic
representations with lexical items very straightforwardly. The normal Prolog uni�cation
mechanism then gives us the basic tool needed to combine semantic representations, and
to pass them up towards sentence level. In short, working with DCGs both frees us from
having to implement parsers, and makes available a powerful mechanism for combining
representations, so we'll be able to devote our attention to semantic construction.

The semantic construction methods discussed in this book are compatible with a wide range
of syntactical theories. In essence, this book is about exploiting the recursive structure
of trees to build representations compositionally; where the trees actually come from is
relatively unimportant. We have have chosen to �ll in the syntactical `black box' using
DCGs|but a wide range of more sophisticated options is available and we urge our readers
to experiment.

2.2 Two Experiments

How can we systematically associate �rst-order formulas with the sentences produced by
our little grammar? Let's just plunge in and try, and see how far our knowledge of DCGs
and Prolog will take us.

Experiment 1

First the lexical items. We need to associate `Vincent' with the constant vincent, `Mia'
with the constant mia, `walks' with the unary relation symbol walk, and `loves' with
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the binary relation symbol love. The following piece of DCG code makes these associa-
tions. Note that the arity of walk and love are explicitly included as part of the Prolog
representation.

pn(vincent)--> [vincent].

pn(mia)--> [mia].

iv(snort(_))--> [snorts].

tv(love(_,_))--> [loves].

How do we build semantic representations for sentences? Let's �rst consider how to build
representations for quanti�er-free sentences such as `Mia loves Vincent'. The main problem
is to steer the constants into the correct slots of the relation symbol. (Remember, we want
`Vincent loves Mia' to be represented by love(vincent, mia), not love(mia,vincent).)
Here's a �rst (rather naive) attempt. Let's directly encode the idea that when we combine
a TV with an NP to form a VP, we have to put the semantic representation associated
with the NP in the second argument slot of the VP semantic representation, and that we
use the �rst argument slot for the semantic representations of NPs that we combine with
VPs to form Ss.

Recall that Prolog has a built in predicate arg/3 such that arg(N,P,I) is true if I is the
Nth argument of P. This is a useful tool for manipulating pieces of syntax, and with its
help we can cope with simple quanti�er free sentences rather easily. Here's the needed
extension of the DCG:

s(Sem)--> np(SemNP), vp(Sem),

{

arg(1,Sem,SemNP)

}.

np(Sem)--> pn(Sem).

vp(Sem)--> tv(Sem), np(SemNP),

{

arg(2,Sem,SemNP)

}.

vp(Sem)--> iv(Sem).

These clauses work by adding an extra argument to the DCG (here, the position �lled
by the variables Sem and SemNP) to percolate up the required semantic information using
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Prolog uni�cation. Note that while the second and the fourth clauses perform only this
percolation task, the �rst and third clauses, which deal with branching rules, have more
work to do: they use arg/3 to steer the arguments into the correct slots. This is done
by associating extra pieces of code with the DCG rules, namely arg(1,Sem,SemNP) and
arg(2,Sem,SemNP). (These are normal Prolog goals, and are added to the DCG rules in
curly brackets to make them distinguishable from the grammar symbols.) This program
captures, in a brutally direct way, the idea that the semantic contribution of the object
NP goes into the second argument slot of TVs, while the semantic contribution of subject
NPs belongs in the �rst argument slot.

It works. For example, if we pose the query:

?- s(Sem,[mia,snorts],[]).

we obtain the (correct) response:

Sem = snort(mia)

But this is far too easy|let's try to extend our fragment with the determiners `a' and
`every'. First, we need to extend the lexical entries for these words, and the entries for the
common nouns they combine with:

det(exists(_,_&_))--> [a].

det(forall(_,_>_))--> [every].

noun(woman(_))--> [woman].

noun(footmassage(_))--> [foot,massage].

NPs formed by combining a determiner with a noun are called quanti�ed noun phrases.

Next, we need to say how the semantic contributions of determiners and noun phrases
should be combined. We can do this by using arg/3 four times to get the instantiation of
the di�erent argument positions correct:

np(Sem)--> det(Sem), noun(SemNoun),

{

arg(1,SemNoun,X),

arg(1,Sem,X),

arg(2,Sem,Matrix),

arg(1,Matrix,SemNoun)

}.
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The key idea is that the representation associated with the NP will be the representation
associated with the determiner (note that the Sem variable is shared between np and det),
but with this representation eshed out with additional information from the noun. The
Prolog variable X is a name for the existentially quanti�ed variable the determiner intro-
duces into the semantic representation; the code arg(1,SemNoun,X) and arg(1,Sem,X)

uni�es the argument place of the noun with this variable. The code arg(2,Sem,Matrix)

simply says that the second argument of Sem will be the matrix of the NP semantic repre-
sentation, and arg(1,Matrix,SemNoun) then adds more detail: it says that the �rst slot
of the matrix will be �lled in by the semantic representation of the noun. So if we pose
the query

?- np(Sem,[a,woman],[]).

we obtain the response

Sem = exists(X,woman(X)&Y)

Note that this representation is an incomplete �rst-order formula. We don't yet have a full
�rst-order formula (the Prolog variable Y has yet to be instantiated) but we do know that
we are existentially quantifying over the set of women.

Given that such incomplete �rst-order formulas are the semantic representations associated
with quanti�ed NPs, it is fairly clear what must happen when we combine a quanti�ed NP
with a VP to form an S: the VP must provide the missing piece of information. (That is,
it must provide an instantiation for Y.) The following clause does this:

s(Sem)--> np(Sem), vp(SemVP),

{

arg(1,SemVP,X),

arg(1,Sem,X),

arg(2,Sem,Matrix),

arg(2,Matrix,SemVP)

}.

Unfortunately, while the underlying idea is essentially correct, things have just started
going badly wrong. Until now, we've simply been extending the rules of our original
DCG with semantic information|and we've already dealt with s --> np, vp. If we
add this second version of s --> np, vp (and it seems we need to) we are duplicating
syntactic information. This is uneconomical and inelegant. Worse, this second sentential
rule interacts in an unintended way with the rule

np(Sem)--> pn(Sem).
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As the reader should check, as well as assigning the correct semantic representation to `A
woman snorts', our DCG also assigns the splendidly useless string of symbols

snort(exist(X,woman(X)&Y))

But this isn't the end of our troubles. We already have a rule for forming VPs out of TVs
and NPs, but we will need a second rule to cope with quanti�ed NPs in object position,
namely:

vp(Sem)--> tv(SemTV), np(Sem),

{

arg(2,SemTV,X),

arg(1,Sem,X),

arg(2,Sem,Matrix),

arg(2,Matrix,SemTV)

}.

If we add this rule, we can assign correct representations to all the sentences in our frag-
ment. However we will also produce a lot of nonsense (for example, `A woman loves a

foot massage' is assigned four representations, three of which are just jumbles of symbols)
and we are being systematically forced into syntactically unmotivated duplication of rules.
This doesn't look promising. Let's try something else.

Exercise 2.2.1 The code for experiment 1 is in experiment1.pl. Generate the semantic repre-
sentations of the sentences and noun phrases yielded by the grammar.

Experiment 2

Although our �rst experiment was ultimately unsuccessful, it did teach us something use-
ful: to build representations, we need to work with incomplete �rst-order formulas, and
we need a way of manipulating the missing information. Consider the representations as-
sociated with determiners. In experiment 1 we associated `a' with exists( , & ). That
is, this determiner contributes the skeleton of a �rst-order formula whose �rst slot needs
to be instantiated with a variable, whose second slot needs to be �lled with the semantic
representation of a noun, and whose third slot needs to be �lled by the semantic represen-
tation of a VP. However in experiment 1 we didn't manipulate this missing information
directly. Instead we took a shortcut: we thought in terms of argument position so that
we could make use of arg/3. Let's avoid plausible looking short cuts. The idea of missing
information is evidently important, so let's take care to always associate it with an explicit
Prolog variable. Perhaps this direct approach will make semantic construction easier.
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Let's �rst apply this idea to the determiners. We shall need three extra arguments: one for
the bound variable, one for the contribution made by the noun, and one for the contribution
made by the VP. Incidentally, these last two contribution have a standard name: the
contribution made by the noun is called the restriction and the contribution made by the
VP is called the nuclear scope. We reect this terminology in our choice of variable names:

det(X,Restr,Scope,exists(X,Restr & Scope))--> [a].

det(X,Restr,Scope,forall(X,Restr > Scope))--> [every].

But the same idea applies to common nouns, intransitive verbs, and transitive verbs too.
For example, instead of associating `woman' with woman( ), we should state that the trans-
lation of `woman' is walk(y) for some particular choice of variable y|and we should ex-
plicitly keep track of which variable we choose. (That is, although the y appears free in
walk(y), we actually want to have some sort of hold on it.) Similarly, we want to associate
a transitive verb like `loves' with love(y,z) for some particular choice of variables y and z,
and again, we should keep track of the choices we made. So the following lexical entries
are called for:

noun(X,woman(X))--> [woman].

iv(Y,snort(Y))--> [snorts].

tv(Y,Z,love(Y,Z))--> [loves].

Given these changes, we need to rede�ne the rules for producing sentences and verb phrases.

s(Sem)--> np(X,SemVP,Sem), vp(X,SemVP).

vp(X,Sem)--> tv(X,Y,SemTV), np(Y,SemTV,Sem).

vp(X,Sem)--> iv(X,Sem).

The semantic construction rule associated with the sentential rule, for example, tells us
that Sem, the semantic representation of the sentence, is essentially going to be that of the
noun phrase (that's where the value of the Sem variable will trickle up from) but that, in
addition, the bound variable X used in Sem must be the same as the variable used in the
verb phrase semantic representation SemVP. Moreover, it tells us that SemVP will be used
to �ll in the information missing from the semantic representation of the noun phrase.

So far so good, but now we need a little trickery. Experiment 1 failed because there was
no obvious way of making use of the semantic representations supplied by quanti�ed noun
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phrases and proper names in a single sentential rule. Here we only have a single sentential
rule, so evidently the methods of experiment 2 avoid this problem. Here's how it's done:

np(X,Scope,Sem)--> det(X,Restr,Scope,Sem), noun(X,Restr).

np(SemPN,Sem,Sem)--> pn(SemPN).

Note that we have given all noun phrases|regardless of whether they are quantifying
phrases or proper names|the same arity in the grammar rules. (That is, there really is
only one np predicate in this grammar, not two predicates that happen to make use of the
same atom as their functor name.)

It should be clear how the �rst rule works. The skeleton of a quanti�ed noun phrase is
provided by the determiner. The restriction of this determiner is �lled by the noun. The
resultant noun phrase representation is thus a skeleton with two marked slots: X marks
the bound variable, while Scope marks the missing scope information. This Scope variable
will be instantiated by the verb phrase representation when the sentential rule is applied.

The second rule is trickier. The vital work is performed by the doubled Sem variable.
Roughly speaking, when we combine the noun phrase representations formed by this rule
with a verb phrase, the e�ect of this doubling is to `move the verb phrase representation
rightwards' so that it occupies the slot that will ultimately be used in forming the sentential
semantics. Intuitively, whereas the representation for sentences that have a quanti�ed noun
phrase as subject are essentially the subject's representation �lled out by the verb phrase
representation, the reverse is the case when we have a proper name as subject. When
that happens, the verb phrase is boss. The sentence representation is essentially the verb
phrase representation, and the role of the proper name is simply to obediently instantiate
the marked verb phrase slot. The rightwards shu�e performed by the doubled variables is
the Prolog mechanism which captures this role-reversal.

Our second experiment has fared far better than our �rst. It is clearly a good idea to
explicitly mark missing information; this gives us the control required to �ll it in and
maneuver it into place. Nonetheless, experiment 2 uses the idea clumsily. Much of the
work is done by the rules. These state how semantic information is to be combined, and
(as our NP rule for proper names shows) this may require rule-speci�c Prolog tricks such as
variable doubling. Moreover, it is hard to think about the resulting grammar in a modular
way. For example, when we explained why the NP rules took the form they do, we did
so by explaining what was eventually going to happen when the S rule was used. Now,
perhaps we weren't forced to do this|nonetheless, we �nd it diÆcult to give an intuitive
explanation of our rules on an individual basis.

This suggests we are missing something. Maybe a more disciplined approach to miss-
ing information would reduce|or even eliminate|the need for rule-speci�c combination
methods? Indeed, this is exactly happens if we make use of the lambda calculus.
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Exercise 2.2.2 Using either pen and paper or a tracer, compare the sequence of variable instan-
tiations this program performs when building representations for `Vincent snorts' and `A woman

snorts', and `Vincent loves Mia' and `Vincent loves a woman'.

2.3 The Lambda Calculus

For present purposes we shall view lambda calculus as a notational extension of �rst order
logic that allows us to bind variables using a new variable binding operator �. Occurrences
of variables bound by � should be thought of as placeholders for missing information:
they explicitly mark where we should substitute the various bits and pieces obtained in
the course of semantic construction. An operation called �-conversion performs the re-
quired substitutions. We suggest that the reader think of the lambda calculus as a special
programming language dedicated to a single task: gluing together the items needed to
build semantic representations. This glue language turns out to remarkably exible: it is
compatible with the underspeci�ed representations introduced in Chapter 3, and with the
Discourse Representation Structures studied in Part II.

The lambda operator marks missing information by binding variables. Here is a simple
lambda expression:

�x.man(x)

Here the pre�x �x: binds the occurrence of x in man(x). We sometimes say that the
pre�x �x: abstracts over the variable x. We call expressions with such pre�xes lambda
abstractions (or, more simply, abstractions). In our example, the binding of the free x
variable in man(x) explicitly indicates that man has an argument slot where we may
perform substitutions. More generally, the purpose of abstracting over variables is to mark
the slots where we want substitutions to be made.

Concatenation indicates that we wish to perform substitution. We're using a special symbol
\@" to indicate concatenation. Consider the following expression:

�x.man(x)@vincent.

This compound lambda expression consists of the abstraction �x.man(x) written imme-
diately to the left of the expression vincent, glued together by @ (we're using an in�x
notation for the @-operator). Such concatenations are called functional applications; the
left-hand expression is called the functor , and the right-hand expression the argument.
Such a concatenation is an instruction to throw away the �x: pre�x of the functor, and to
replace every occurrence of x that was bound by this pre�x by the argument. We call this
substitution process �-conversion (other common names include �-reduction and lambda-
conversion). Performing the �-conversion demanded in the previous example yields:
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man(vincent).

Abstraction, functional application, and �-conversion underly much of our subsequent
work. The business of specifying semantic representations for lexical items is essentially
going to boil down to devising lambda abstractions that specify the missing information,
while functional application coupled with �-conversion will be the engine used to combine
semantic representations compositionally.

The above example was rather simple, and in one way rather misleading. As our previous
experiments have made clear, to deal adequately with noun phrases and determiners (and
indeed, many other things) we need to mark more complex kinds of information than that
represented by individual variables. We shall use � for this task as well. For example, our
semantic representation of the noun phrase `a woman' will be:

�Q.9x(woman(x)^Q@x).

Here we are using the variable Q to indicate that some information is missing (namely, the
nuclear scope, to use the linguistic terminology mentioned earlier) and to show where this
information has to be plugged in when it is found (it will be the conjoined to woman(x)).
We'll use new variable symbols (typically, capital letters such as P, Q, X, and Y) for
variables which act as place holder for complex information, and we'll call these new
variables complex variables.

We are almost ready to examine some linguistic examples, but let's �rst clarify one point.
The lambda expressions �x.man(x), �y.man(y), and �z.man(z) are equivalent, as are the
expressions �Q.9x(woman(x)^Q@x) and �Y.9x(woman(x)^Y@x). All these expressions
are functors which when applied to an argument, replace the bound variable by the argu-
ment. No matter which argument A we choose, the result of applying any of the �rst three
expressions to A and then �-converting is man(A), and the result of applying either of the
last two expressions to A is 9x(woman(x)^A@x). In short, relabeling bound variables
yields lambda expressions which carry out exactly the same glueing task.

The process of relabeling bound variables is called �-conversion. If a lambda expression E
can be obtained from a lambda expression E 0 by �-conversion then we say that E and E 0
are �-equivalent. (Thus �x.man(x), �y.man(y), and �z.man(z) are all �-equivalent, as are
�Q.9x(woman(x)^Q@x) and �Y.9x(woman(x)^Y@x).) In what follows we often treat
�-equivalent expressions as if they were identical. For example, we will sometimes say that
the lexical entry for some word is a lambda expression E , but when we actually work out
some semantic construction, we might use an �-equivalent expression E 0 instead of E itself.
As �-bound variables are merely placeholders for substitution slots, this is clearly sensible.
But the reader needs to understand that it's not merely permissible to do this, it can be
vital to do so if �-conversion is to work as intended.

Suppose that the expression F in �V:F is a complex expression containing many � opera-
tors. Now, it could happen that when we apply a functor �V:F to an argument A, some
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occurrence of a variable that is is free in A becomes bound by a lambda operator when
we substitute it into F . We don't want this to happen. Such accidental bindings (as they
are usually called) defeat the purpose of working with the lambda calculus. The whole
point of developing the lambda calculus was to gain control over the process of performing
substitutions. We don't want to lose control by foolishly allowing unintended interactions.

Such interactions need never be a problem. We don't need to use �V:F as the functor;
any �-equivalent formula will do. By suitably relabeling the bound variables in �V:F
we can always obtain an �-equivalent functor that doesn't bind any of the variables that
occur free in A, and accidental binding is prevented. Thus, strictly speaking, it is not
merely functional application coupled with �-conversion that drives the process of semantic
construction in this book, but functional application and �-conversion coupled with (often
tacit) use of �-conversion.

That's all we need to know about the lambda calculus for now|though we will mention
that lambda calculus can be introduced from a di�erent, more mathematically oriented,
perspective. Now, the mathematical perspective is useful (we discuss it briey in the Notes
at the end of the chapter, and present it in depth in Appendix B) but for all its importance,
it is not the only legitimate perspective on lambda calculus. The computational perspective
we have adopted|lambda calculus as glue language|is equally important, and underpins
a great deal of work in computational semantics. So let's save the theoretical work for
later, and try putting our new tool to work. Here's a good place to start: does lambda
calculus solve the problem we started with? That is, does it get rid of the diÆculties we
encountered in experiments 1 and 2?

Let's see what's involved in building the semantic representation for `every boxer walks'
using lambdas. The �rst step is to assign lambda expressions to the di�erent basic syntactic
categories. We assign the determiner `every', the common noun `boxer', and the intransitive
verb `walks' the following lambda expressions:

`every': �P:�Q:8x(P@x!Q@x)

`boxer': �y:boxer(y)

`walks': �x:walk(x).

Before going further, pause a moment. These expressions should remind the reader of
something, namely the representations used in experiment 2. For example, in experiment
2 we gave the determiner `every' the representation

det(X,Restr,Scope,forall(X,Restr > Scope))

If we use the Prolog variable P instead of Restr, and Q instead of Scope this becomes
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det(X,P,Q,forall(X,P > Q))

which is clearly analogous to �P:�Q:8x(P@x!Q@x).

But there are also important di�erences. The experiment 2 representation is a Prolog-
speci�c encoding of missing information. In contrast, lambda expressions are programming
language independent (we could work with them in C++ or Lisp, for example). Moreover,
experiment 2 \solved" the problem of combining missing information on a rule-by-rule
basis. As will soon be clear, functional application and �-conversion provide a completely
general solution to this problem.

Let's return to `every boxer walks'. According to our grammar, a determiner and a common
noun can combine to form a noun phrase. Our semantic analysis couldn't be simpler:
we will associate the NP node with the functional application that has the determiner
representation as functor and the noun representation as argument.

every boxer (NP)
(�P:�Q:8x(P@x!Q@x))@(�y:boxer(y))

every (Det)
�P:�Q:8x(P@x!Q@x)

boxer (Noun)
�y:boxer(y)

Now, applications are instructions to carry out �-conversion, so let's do what is required.
(Note that as there are no free-occurrences of variables in the argument expression, there
is no risk of accidental variable capture, so we don't need to �-convert the functor.) Per-
forming the demanded substitution yields:

`every boxer': �Q:8x((�y:boxer(y))@x!Q@x)

But this expression contains a subexpression of the form (�y:boxer(y))@x. This is another
instruction to perform �-conversion, and when we do so we obtain:

`every boxer': �Q:8x(boxer(x)!Q@x)

We can't perform any more �-conversions, so lets carry on with the analysis of the sentence.
The following tree shows the �nal representation we obtain:
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every boxer walks (S)
8x(boxer(x)!walk(x))

every boxer (NP)
�Q:8x(boxer(x)!Q@x)

walks (VP)
�x:walk(x)

every (Det)
�P:�Q:8x(P@x!Q@x)

boxer (Noun)
�y:boxer(y)

Why is the S node associated with 8x(boxer(x)!walk(x))? It's certainly what we want,
but where does it come from?

In fact we obtain it by a procedure analogous to that just performed at the NP node. First,
we associate the S node with the application that has the NP representation just obtained
as functor, and the VP representation as argument:

`every boxer walks': (�Q:8x(boxer(x)!Q@x))@(�x:walk(x)).

Performing �-conversion yields:

`every boxer walks': 8x(boxer(x)! (�x:walk(x))@x).

We can then perform �-conversion on the subexpression (�x:walk(x))@x), and when we
do so we obtain the desired representation:

`every boxer walks': 8x(boxer(x)!walk(x)).

It is worth reecting on this example, for it shows that in two important respects semantic
construction is getting simpler. First, the process of combining two representations is now
uniform: we simply say which of the representations is the functor and which the argument,
whereupon combination is carried out by applying functor to argument and �-converting.
Second, more of the load of semantic analysis is now carried by the lexicon: it is here that
we use the lambda calculus to make the missing information stipulations.

Are there clouds on the horizon? For example, while the semantic representation of a
quantifying noun phrase such as `a woman' can be used as a functor, surely the semantic
representation of an NP like `Vincent' will have to be used as an argument? We avoided
this problem in experiment 2 by the variable doubling trick used in the NP rule for proper
names|but that was a Prolog speci�c approach, incompatible with the use of lambda
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calculus. Maybe|horrible thought!|we're going to be forced to duplicate syntactic rules
again, just as we did in experiment 1.

In fact, there's no problem at all. The lambda calculus o�ers a delightfully simple functorial
representation for proper names, as the following examples show:

`Mia': �P:P@mia

`Vincent': �P:P@vincent

These representations are abstractions, thus they can be used as functors. However note
what such functors do. They are essentially instructions to substitute their argument in
P, which amounts to applying their own arguments to themselves! Because the lambda
calculus o�ers us the means to specify such role-reversing functors, the specter of syntactic
rule duplication vanishes.

As an example of these new representations in action, let us build a representation for `Vin-
cent loves Mia'. We shall assume that TV semantic representations take their object NP's
semantic representation as argument, so we assign `loves' the following lambda expression:

�X:�z:(X@�x:love(z,x)).

And as in the previous example, the subject NP semantic representation takes the VP
semantic representations as argument, so we can build the following tree:

Vincent loves Mia (S)
love(vincent,mia)

Vincent (NP)
�P:P@vincent

loves Mia (VP)
�z:(love(z,mia))

loves (TV)
�X:�z:(X@�x:love(z,x))

Mia (NP)
�P:P@mia

Exercise 2.3.1 Work through the functional applications and �-conversions required to build
the VP and S representations. Make sure you understand the role-reversing idea used in the TV
semantic representation.
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Let's sum up what we have achieved. Our decision to move beyond the approach of
experiment 2 to the more disciplined approach of the lambda calculus was sensible. For a
start, we don't need to spend any more time thinking about how to combine two semantic
representations|functional application and �-conversion give us a general mechanism for
doing so. Moreover, much of the real work is now being done at the lexical level; indeed,
even the bothersome problem of �nding a decent way of handling NP representations
uniformly now has a simple lexical solution.

In fact, for the remainder of this book, the following version of the three tasks listed earlier
will underly our approach to semantic construction:

Task 1 Specify a DCG for the fragment of natural language of interest.

Task 2 Specify semantic representations for the lexical items with the help of the lambda
calculus.

Task 3 Specify the translation R0 of a syntactic item R whose parts are F and A with
the help of functional application and �-conversion. That is, specify which of the
subparts is to be thought of as functor (here it's F), which as argument (here it's
A) and then de�ne R0 to be F 0@A0, where F 0 is the translation of F and A0 is the
translation of A.

We must now show that the second and third tasks lend themselves naturally to compu-
tational implementation.

2.4 Implementing Lambda Calculus

Our decision to perform semantic construction with the aid of an abstract glue language
(namely, lambda calculus) has pleasant consequences for grammar writing, so we would
like to make the key combinatorial mechanisms (functional application and �-conversion),
available as black boxes to the grammar writer. From a grammar engineering perspective,
this is a sensible thing to do: when writing fragments we should be free to concentrate on
linguistic issues.

In this section we build the required black box. In fact we shall build two versions. First
we discuss a strikingly simple (but, alas, not fully correct) version which uses uni�cation
to simulate �-conversion. Then, simply by rede�ning one crucial predicate, we convert this
to a correct implementation.
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A Uni�cation-Based Implementation

By making `clever' use of Prolog variables, it is almost trivial to implement a black box for
performing functional application and �-conversion. And once such a black box is available,
we can decorate our little DCG with extremely natural semantic construction code and
start building representations. But as the scare quotes indicate, our �rst implementation
of �-conversion is not quite as clever as it seems, and we'll show where things go wrong
and why.

First, we have to decide how to represent lambda expressions in Prolog. Something as
simple as the following will do:

lambda(L,F)

Here L is intended to be either a Prolog variable or the Prolog representation of a lambda
expression, while F is either a �rst-order formula or the Prolog representation of a lambda
expression.

Second, we have to decide how to represent concatenation. Let's simply transplant our
@-notation to Prolog by de�ning @ as an in�x operator:

:- op(950,yfx,@).

That is, we shall introduce a new Prolog operator @ to explicitly mark where functional
application is to take place: the notation f @ a will mean apply function f to argument
a. We will build up our representations using these explicit markings, and delay carrying
out �-conversion until all the required information is to hand.

Let's see how to use this notation in DCGs. We'll deal with the rules �rst. Actually, there's
practically nothing that needs to said here. If we work with rules in the manner suggested
by (our new version of) task 3, all we need is the following:

s(NP@VP)--> np(NP), vp(VP).

np(PN)--> pn(PN).

np(Det@Noun)--> det(Det), noun(Noun).

vp(IV)--> iv(IV).

vp(TV@NP)--> tv(TV), np(NP).
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Note that the unary branching rules just percolate up their semantic representation (here
coded as Prolog variables NP, VP and so on), while the binary branching rules use @ to build
a semantic representations out of their component representations in the manner suggested
by task 3. Compared with the code in experiments 1 and 2, this is completely transparent:
we simply apply function to argument to get the desired result.

The real work is done at the lexical level. The lexical entries practically write themselves:

noun(lambda(X,footmassage(X)))--> [foot,massage].

noun(lambda(X,woman(X)))--> [woman].

iv(lambda(X,walk(X)))--> [walks].

And here's the code stating that �P.P@vincent is the translation of `Vincent', and
�P.P@mia the translation of `Mia':

pn(lambda(P,P@vincent))--> [vincent].

pn(lambda(P,P@mia))--> [mia].

Recall that the lambda expressions for `every' and `a' are �P.�Q.8x.(P@x!Q@x) and
�P.�Q.9x.(P@x^Q@x). We express these in Prolog as follows.

det(lambda(P,lambda(Q,forall(X,(P@X)>(Q@X)))))--> [every].

det(lambda(P,lambda(Q,exists(X,(P@X)&(Q@X)))))--> [a].

Now, this makes semantic construction during parsing extremely easy: we simply use @ to
record the required function/argument structure. Here is an example query:

?- s(Sem,[mia,snorts],[]).

Sem = lambda(P,P@mia)@lambda(X,snort(X))

But of course, we need to do more work after parsing, for we certainly want to reduce
these complicated lambda expressions into readable �rst-order formulas by carrying out
�-conversion. The following code does this:
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betaConvert(Var,Result):-

var(Var), !, Result=Var.

betaConvert(Functor @ Arg,Result):-

compound(Functor),

betaConvert(Functor,ConvertedFunctor),

apply(ConvertedFunctor,Arg,BetaConverted), !,

betaConvert(BetaConverted,Result).

betaConvert(Formula,Result):-

compose(Formula,Functor,Formulas),

betaConvertList(Formulas,ResultFormulas),

compose(Result,Functor,ResultFormulas).

The �rst clause of betaConvert/2 simply records the fact that variables cannot be further
reduced (the cut (!) prevents that in this case the other clauses are entered).

The second clause does the most important things: it checks whether the functor is a
complex term and, if this is the case, reduces it to a lambda expression (of course it may
already be a suitable lambda expression, but it could perfectly well be an application that
�rst had to be reduced). If that succeeds, it applies the converted functor to Arg using
apply/3. The result is reduced as well, as there can be an instruction to convert embedded
inside it.

The third and �nal clause breaks down formulas and predicates and reduces their arguments
or subformulas. This is done with the help of:

betaConvertList([],[]).

betaConvertList([Formula|Others],[Result|ResultOthers]):-

betaConvert(Formula,Result),

betaConvertList(Others,ResultOthers).

Now, everything we have done so far is perfectly correct|but we're now going to let
ourselves go (temporarily) astray. Only one task remains: we have to de�ne the apply/3
predicate, which actually carries out the �-conversion. How can we do this? With clever
use of Prolog uni�cation we can do so with a single clause:

apply(Functor,Argument,Result):-

Functor=lambda(Argument,Result).

The expression lambda(Argument,Result) is the functor, the variable Argument its ar-
gument, and Result is the result of the �-conversion. To see why it works, consider the
following example. Suppose we wanted to apply �x:walk(x) to vincent. We would do
this in Prolog by means of the following query:
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?- apply(lambda(X,walk(X)),vincent,Result).

X = vincent

Result = walk(vincent)

yes

Think about it. The de�nition of apply requires its �rst argument of the form lambda(Argument,Result),
and this is the case. As a result, Argument gets uni�ed with vincent, and Result with
walk(Argument), hence walk(vincent) as �nal result. In fact, the de�nition of apply/3
can even be slightly simpli�ed to:

apply(lambda(Argument,Result),Argument,Result).

To �nish o�, let's de�ne a driver predicate that calls the parser to analyze a sentence,
reduces the resulting lambda expression into a �rst-order formula, and directs the result
to the standard output:

parse:-

readLine(Sentence),

s(LambdaExpression,Sentence,[]),

betaConvert(LambdaExpression,Formula),

printRepresentation(Formula).

Exercise 2.4.1 [intermediate] Give the Prolog code for lexical entries of ditransitive verbs such
as `o�er' in `Vincent o�ers Mia a drink'.

Exercise 2.4.2 [intermediate] Find a suitable lambda expression for the lexical entry of the
determiner `no', and then give the corresponding Prolog code.

Exercise 2.4.3 [intermediate] Extend the DCG with a simple treatment of adjectives. Your
grammar should be able to assign formulas to expressions like `A pretty woman likes a tough

guy'. Hint: �rst add the rule for adjectives that combine with nouns to the DCG, then think of
how semantic representations for adjectives combine with representations for nouns, and �nally
implement the lexical entries for adjectives.

Exercise 2.4.4 [intermediate] Extend the DCG so that it covers negated sentences such as
`Vincent does not walk' or `It is not the case that Vincent walks'.

Exercise 2.4.5 [hard] This exercise is about Pereira & Shieber's trick to provide a simple seman-
tics for transitive verbs, i.e., lambda(X,lambda(Y,love(X,Y))) for the verb `love'. The second
part of the trick is to change the grammar rule that deals with transitive verbs:
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vp(lambda(X,NP@TV))--> tv(lambda(X,TV)), np(NP).

Explain why this works and discuss this particular treatment of transitive verbs.

Exercise 2.4.6 [easy] There is even a way to eliminate the @ instructions and make exclusive
use of lambda/2! For example, the grammar rule that makes sentences out of noun phrases and
verb phrases can be simpli�ed to:

s(S)--> np(lambda(VP,S)), vp(VP).

Eliminate all @ instructions from the DCG rules given above.

A Substitution-Based Implementation

Our uni�cation-based implementation of �-conversion (and in particular, the de�nition
apply/3) is strikingly simple. Unfortunately it is not fully correct, and it fails for reasons
directly relevant to semantic construction. We will go through an example to make the
problem clear, and then reimplement apply/3 properly.

So what's wrong? (It probably not obvious that there's anything wrong.) Well, our
previous implementation is unable to hand coordination correctly. Consider the sentence
`Vincent and Mia dance'. We already know what the lambda expressions are for `Vincent',
`Mia', and `dance'. Unsurprisingly, we represent `and' by the following lambda expression:

(2) �X:�Y:�P:(X@P^Y@P).

This is a sensible representation. If we apply it to the representations for `Mia' and `Vincent'
we get the following result:

(3) �P:((�Q:Q@vincent)@P^(�R:R@mia)@P).

Applying �-conversion twice yields:

(4) �P:(P@vincent^P@mia).

That is, one and the same lambda expression P is to be applied to both vincent and mia.
And this is exactly what we need. In particular, applying this expression to dance yields
the formula dance(vincent)^dance(mia), which is the representation we would like to
have.

So far so good. But now consider what happens when turn this into Prolog. First, the
lexical entry for the coordinator `and' will be as follows:
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coord(lambda(X,lambda(Y,lambda(P,(X@P) & (Y@P)))))--> [and].

Next, assume that we want to analyze `Vincent and Mia dance' and that in the process
of combining the lexical entries X uni�es with the semantic representation of `Vincent', Y
with the semantic representation of `Mia'. Further, assume that P gets instantiated with
lambda(X,dance(X)). Then the two apply/3 statements, which both use a copy of P, try
to force the occurrence of X to unify with both mia and vincent. As distinct atoms do
not unify, this fails.

Exercise 2.4.7 Try to cover verb phrase coordination cases like `Vincent walks and talks' in the
uni�cation-based approach. Does the uni�cation problem that appears in noun phrase coordina-
tion arise here as well? Give an explanation for your observation.

The lesson is clear. Using Prolog uni�cation to simulate �-conversion is a nice idea|but
ultimately inadequate. We need to rede�ne apply/3 so that it genuinely substitutes the
argument expression for all free occurrences in the scope of the lambda expression, and
keeps track of the bound and free variables in a formula.

In comsemLib.pl there is a version of the Sterling and Shapiro substitute/4 predicate.
This predicate takes a term, a variable, and a formula as its �rst three arguments, and
returns in its fourth argument the result of substituting the term for each free occurrence
of the variable in the formula. This is an important predicate (we shall use it again when
we implement a �rst-order theorem prover) so let's look at the way it's de�ned:

substitute(Term,Var,Exp,Result):-

Exp==Var, !, Result=Term.

substitute(_Term,_Var,Exp,Result):-

\+ compound(Exp), !, Result=Exp.

substitute(Term,Var,Formula,Result):-

compose(Formula,Functor,[Exp,F]),

member(Functor,[lambda,forall,exists]), !,

(

Exp==Var, !,

Result=Formula

;

substitute(Term,Var,F,R),

compose(Result,Functor,[Exp,R])

).

substitute(Term,Var,Formula,Result):-
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compose(Formula,Functor,ArgList),

substituteList(Term,Var,ArgList,ResultList),

compose(Result,Functor,ResultList).

The substituteList/4 predicate used in here recursively applies substitute/4 down the
length of the input list to produce the output list:

substituteList(_Term,_Var,[],[]).

substituteList(Term,Var,[Exp|Others],[Result|ResultOthers]):-

substitute(Term,Var,Exp,Result),

substituteList(Term,Var,Others,ResultOthers).

Here is an example that the functionality of this predicate.

?- substitute(A,B,love(C,B),Result).

Result = love(C,A)

yes

This is exactly what we require. We can we rede�ne apply/3 as follows:

apply(lambda(X,Formula),Argument,Result):-

substitute(Argument,X,Formula,Result).

And that solves the problem.

Exercise 2.4.8 Check the new grammar rules using �-conversion, especially on cases of noun
and verb phrase coordination.

Exercise 2.4.9 Note that we still use Prolog variables to represent �rst-order variables, although
this is not important for the application predicates as we could use basic atoms instead. Why is
it still advantageous? Hint: lexical entries.

Exercise 2.4.10 In Exercise 2.4.6 we saw how to dispense with @ in our uni�cation-based impl-
mentation. Can we eliminate @ in the substitution-based implementation?
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2.5 Grammar Engineering

The explicit notation for functional application and the implementation of �-conversion are
the basic tools we shall work with in this book, so it is time to de�ne a bigger grammar and
start exploring computational semantics; but let's try to observe some basic principles of
grammar engineering as we do so. That is, we should strive for a grammar that is modular
(each component should have a clear role to play and a clean interface with the other
components), extendible (it should be straightforward to enrich the grammar should the
need arise) and reusable (we should be able to reuse a signi�cant portion of the grammar,
even when we change the underlying representation language).

Grammar engineering principles have strongly inuenced the design of our grammars|and
not , we would like to stress, purely for pedagogic reasons. We will be experimenting with
a wide variety of semantic constructions techniques (for example, in the following chapter
we will consider four di�erent techniques for coping with scope ambiguities). Moreover,
in Part II we will switch from �rst-order logic to Discourse Representation Structures
as our underlying representation language. As we have learned (often the hard way)
incorporating these changes, and keeping track of what is going on, requires a disciplined
approach towards grammar design.

We have adopted a fairly simple three-level grammar architecture consisting of a collection
of semantically annotated rules, a lexicon, and a set of semantic macros. The rules are
DCG rules annotated with an extra slot which applies semantic functions to arguments
using the @ operator. The rules given below and their annotations will not change in
the course of the book; in particular, we will reuse them when we work with Discourse
Representation Theory in Part II. The lexicon lists information about words belonging to
most syntactic categories in an easily extractable form; again, this component will stay
�xed throughout the book. Finally, we have the crucial semantic macros. This is a level
at which we state what we have previously called `lexical entries'. It is here that we will
do most of our semantic work, and our modi�cations will largely be con�ned to this level.

The Rules

Here are the core DCG rules that we would like to use. These rules license a number
of semantically important constructions, such as proper names, determiners, pronouns,
relative clauses, the copula construction, and coordination. In addition, the �rst two rules
let us form discourses by stringing together sentences; we'll need these rules in Part II.

d--> s, d. noun--> noun, coord, noun.

d--> s. vp--> vp, coord, vp.

s--> np, vp. vp--> vbar(fin).

np--> np, coord, np. vp--> mod, vbar(inf).
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np--> det, nbar. vbar(I)--> vbar(I), coord, vbar(I).

np--> pn. vbar(I)--> tv(I), np.

np--> pro. vbar(I)--> iv(I).

nbar--> nbar, coord, nbar. vbar(fin)--> cop, np.

nbar--> noun. vbar(fin)--> cop, neg, np.

nbar--> noun, pp. pp--> prep, np.

nbar--> noun, rc. rc--> relpro, vp.

(Readers unfamiliar with syntax may be wondering what NBAR and VBAR are. Essen-
tially they are a level of phrase structure intermediate between the full phrasal level (NP
and VP respectively) and the lexical level (N and V). There is a variety of evidence for
the existence of this intermediate level and we refer the reader to any mainstream syntax
textbook for further discussion. We introduce this intermediate level because it will be the
source of some nice examples in Part II.)

However these are not quite the rules we shall actually use, for the following reason. The
coordination rules are left-recursive, hence the standard Prolog DCG interpreter will loop
when given this grammar. As we do want to give coordination examples, and as we don't
want to implement a parser that deals with left-recursive rules, we're simply going to adopt
the following simple �x which will make a limited form of coordination available to us. We'll
add a auxiliary set of categories named np2, np1, v2, v1, etc. These auxiliary categories
allow us to specify left-recursive rules to a certain depth of recursion. For example, the
rules which have something to say about NPs will be replaced by the following:

s--> np2, vp2.

np2--> np1.

np2--> np1, coord, np1.

np1--> det, n2.

np1--> pn.

np1--> pro.

Similarly, the rules controlling nouns will become:

n2--> n1.

n2--> n1, coord, n1.

n1--> noun.

n1--> noun, pp.

n1--> noun, rc.

This is a brutal way of dealing with the problem, but it enables us to generate the examples
we want without having to worry about left-recursion.
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One other shortcoming should be mentioned. We implemented a limited amount of inec-
tional morphology|all our examples are relentlessly third-person present-tense. This is a
shame (tense and its interaction with temporal reference is a particularly rich source of
semantic examples), nonetheless, we shall not be short of interesting things to do.

But for all its shortcomings, this small set of rules assigns tree structures to an interesting
range of English sentences or small discourses, including:

Mia knows every owner of a hash bar.

Vincent or Mia dances.

Every boxer that kills a criminal loves a woman.

Vincent does not love a boxer or criminal that snorts.

She does not love a boxer or criminal that snorts and dances.

A boxer snorts. He collapses. Mia is a woman. Vincent is not a boxer.

Let's turn to the semantic annotations. Here the news is extremely pleasant. For a start,
the required semantic annotations are utterly straightforward; they are simply the obvious
\apply the function to the argument statements" expressed with the help of @. Here, for
example, is how we semantically annotate s --> np2, vp2.:

s(NP@VP)--> np2(NP), vp2(VP).

That is, we simply apply the NP semantics to the VP semantics. None of the rules are
much more complex than this. The rules for coordination are the most complex, but even
these are straightforward as the following example shows:

n2((C@N1)@N2)--> n1(N1), coord(C), n1(N2).

The unary rules, of course, are even simpler for they merely pass the representation up to
the mother node. For example:

np1(NP)--> pn(NP).

Finally, we've got the lexical rules. These are rules that apply to terminal symbols, the
actual strings in the input of the parser, and need to call the lexicon to check if a string
belongs to the syntactic category searched for.

noun(Noun)-->

{

lexicon(noun,Sym,Phrase,_),

nounSem(Sym,Noun)

},

Phrase.

56



Blackburn & Bos Chapter 2: Lambda Calculus September 3, 1999

In this example for nouns, the semantic macro nounSem is used to construct the actual
semantic representation for a noun. Each lexical category is associated with such a macro,
and this enables us to abstract away from speci�c types of structures. So we have set
up the grammar rules in such a way that we are independent from the semantic theory
we want to work with, and this is an attractive property as we are going to change the
underlying semantic representations in the following chapters.

All these rules will work for us unchanged throughout the book. The reader can �nd a
complete list in the �le englishGrammar.pl. Furthermore, the �le mainLambda.pl, that
contains the uni�cation- and substitution-based approaches to the lambda calculus of this
chapter, already uses these rules in the way described here.

The Lexicon

Our lexicon lists information about the words belonging to most syntactic categories in a
form useful for the interface component that we shall shortly de�ne. The general format
of a lexical entry is

lexicon(Cat,Sem,Phrase,Misc)

where Cat is the syntactic category, Sem the semantic information introduced by the phrase
(normally a relation symbol or a constant, though sometimes we leave this �eld empty),
Phrase the string of words that span the phrase, and Misc miscellaneous information
depending on the type of entry. In particular, Misc lists gender information for nouns,
pronouns, and proper names (we are going to classify nouns as male, female or human, or
nonhuman, for this information will be important for pronoun resolution in Part II), and
inectional information for verbs.

Typical entries for intransitive verbs are:

lexicon(iv,collapse,[collapses],fin).

lexicon(iv,collapse,[collapse],inf).

lexicon(iv,dance,[dances],fin).

lexicon(iv,dance,[dance],inf).

Nouns, on the other hand, are listed in the following format:

lexicon(noun,boxer,[boxer],human).

lexicon(noun,bkburger,[big,kahuna,burger],nonhuman).

Typical entries for pronouns and determiners are as follows:
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lexicon(det,_,[every],uni).

lexicon(det,_,[a],indef).

lexicon(pro,_,[he],male).

lexicon(pro,_,[she],female).

Note that these entries contain no semantic information. This is because the semantic
contribution of pronouns and determiners is not simply a constant or predicate symbol, but
rather a relatively complex expression that is dependent on the underlying representation
language (quanti�ers are dealt with very di�erently in the DRT based work of Part II, for
example). Hence we shall specify the semantics of these categories in the semantic macros.

A small number of important words|in particular, copula and the verb phrase modi�er
construct `does not', are not listed in the lexicon at all. This is because they are not
associated with either a relation symbol or a constant and they are not marked for gender,
thus their lexicon entry would simply consist of a Phrase entry. The semantic macros are
the sole source of information about such words.

This way of setting up a lexicon o�ers natural expansion options. For example, if decided
to develop a grammar that dealt with inectional morphology (which we won't do so in
this book), it is just a matter of extending the general format of entries with one or more
�elds, and if we did this, it would be natural to list all words in the lexicon.

Refer to englishLexicon.pl for a complete listing of the lexicon.

Exercise 2.5.1 Find out how copula verbs are handled in the lexicon and grammar, and how the
semantic representation for sentences like `Mia is a boxer' and `Mia is not Vincent' are generated.

The Semantic Macros

We now come to the most important part of the grammar, the lexicon/rules interface.
Essentially, this component is where we state what we called semantic macros in the text.
As the introduction of apply/3 and conjoin/3 has reduced the process of combining
semantic representations to an elegant triviality, and as the only semantic information the
lexicon supplies is the relevant constant and relation symbols, the interface is where the
real semantic work will be done. Let's consider some examples of semantic macros right
away.

nounSem(Sym,lambda(X,Formula)):-

compose(Formula,Sym,[X]).

pnSem(Sym,lambda(P,P@Sym)).
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tvSem(Sym,lambda(K,lambda(Y,K@lambda(X,Formula)))):-

compose(Formula,Sym,[Y,X]).

The �rst macro, nounSem/2, builds a semantic representation for any noun given the pred-
icate symbol Sym, turning this into a formula lambda abstracted with respect to a single
variable (for example lambda(X,Formula)). The representation is built using compose/3

to incorporate it into a the required lambda expression. The semantic macro for proper
names (pnSem/2) is even simpler, and the one for transitive verbs (tvSem/2) is similar to
that of the macro for nouns, apart from handling two variables rather than just one.

As we've already mentioned, the interface also contains self-contained entries for the de-
terminers. Here they are:

detSem(uni,lambda(P1,lambda(P2,forall(X,(P1@X) > (P2@X))))).

detSem(indef,lambda(P1,lambda(P2,exists(X,(P1@X) & (P2@X))))).

These, of course, are just the old-style `lexical entries' we are used to.

From now on, we will always use the lexicon and (with the exceptions of a few pedagogic
explorations of other formats) the rules listed above too. To put it another way: from
now on the primary locus of change will be the semantic macros. For example, it is here
that we will develop treatments of quanti�er scope, pronoun resolution, presupposition
accommodation, and VP-ellipsis. For a complete listing of the macros we have just been
discussing, see semMacrosLambda.pl (page 222), but we shall see many more types of
semantic macros as we work our way through the book.
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Software Summary of Chapter 2

experiment1.pl The code of our �rst experiment in semantic construction for a

small fragment of English. (page 216)

experiment2.pl The second experiment in semantic construction. (page 218)

mainLambda.pl The main �le for the implementation of the lambda calculus. Con-

sults all necessary �les and contains the driver for the parser. You can either

choose to make use of the (simple but incorrect) uni�cation-based implemen-

tation of application, or use the subsitution based approach. (page 220)

betaConversion.pl The predicates that implement �-conversion. (page 221)

semMacrosLambda.pl The semantic macros for the lambda calculus. (page 222)

englishLexicon.pl Our standard English lexical entries. Contains entries for

nouns, proper names, intransitive and transitive verbs, prepositions, and pro-

nouns. (page 202)

englishGrammar.pl Our standard grammatical rules for a fragment of English.

Rules cover basic sentences, noun phrases, relative clauses and modi�cation

of prepositional phrases, verb phrases, and a limited form of coordination.

(page 207)

Notes

Compositionality is a simple and natural idea|and one capable of arousing an enormous
amount of passion and controversy. Traditionally attributed to Gottlob Frege (the formu-
lation \the meaning of the whole is a function of the meaning of its parts" is often called
Frege's principle) it received a precise mathematical formulation in the late 1960s. For
detailed and accessible overview of the compositionality concept, the reader should consult
Janssen 1997.

The idea of using the simply typed lambda calculus to specify the meanings of lexical
entries, and using functional application as the basic mechanism for combining represen-
tations, is due to Richard Montague. Indeed, what we have presented in this chapter is
simply a computational perspective on a very small part of Montague semantics.
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Montague's original papers are well worth reading (they are collected in Thomason 1974)
nonetheless they are dense and most readers will be better o� approaching Montague se-
mantics via either Dowty, Wall and Peters (1981) or volume 2 of Gamut (1991b). Both
contain good, careful, textbook level expositions of Montague's key ideas. A more de-
manding (and correspondingly more rewarding) exposition is due to Janssen (see Janssen
1986a and Janssen 1986b). These are well worth reading, but rather hard to get hold of.
If you see them, grab them. For a good overview of Montague's work, and an account of
the major directions in which his work has been developed, Partee 1997 is a must. This
account is rich in historic detail, and is an excellent starting point for deeper forays into
the semantic literature.

The mathematical and logical literature on the lambda calculus is huge. Here are some
of the more obvious points of entry. The bible of untyped lambda calculus is Barendregt
1984. Barendregt 1991 is a good starting point for material on typed systems. However
these are very technical accounts, perhaps best suited for occasional reference. For a more
approachable account of both typed and untyped systems, try Hindley and Seldin 1986.
Turner 1997 is fairly technical, but usefully broad, and notes applications in linguistics and
computer science. Finally, for logical work on the systems Montague himself used, and a
number of interesting variants, Gallin 1975 is indispensable.

The references given so far approach lambda calculus and its applications in natural lan-
guage semantics from a logical perspective. In this book we have tried to emphasize that
there is a very natural computational perspective too. Not only is the lambda calculus
a useful tool for gluing representations together, but the basic idea emerges, with seem-
ing inevitability, when one sits down and actually tries to do semantic construction in
Prolog|or at least, that is what we have tried to suggest by approaching lambda calcu-
lus via experiments 1 and 2. We hasten to add that this `seeming inevitability' is clear
only with the bene�t of hindsight. The links between the ideas of logic programming and
Montague semantics seem to have �rst been explicitly drawn in Pereira and Shieber 1987.

Lambda calculus is probably the mostly widely used tool for semantic construction, and it
is the tool of choice in this book|nonetheless, it is not the only tool available. Indeed, it
has a most interesting rival: the use of feature structures and feature structure uni�cation.
The reader who wants to go further in computational semantics really should be acquainted
with this approach. Gazdar and Mellish 1989 contains a good text book level introduction
to its use in building syntactic and semantic representations, and indeed, on its uses in
pragmatics too. Another readable paper on the topic is Moore 1989. This paper compares
the approach with the use of lambda calculus. More recently, linear logic has been proposed
as a suitable glue language for semantic construction; see Dalrymple et al. 1997.

Refer to classical DCG-grammar with semantic construction (Pereira?).
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Chapter 3

Underspeci�ed Representations

This chapter develops methods for dealing with an important semantic phenomenon: scope
ambiguities. Sentences with scope ambiguities are often semantically ambiguous (that is,
they have at least two non-equivalent �rst-order representations) but fail to exhibit any
syntactic ambiguity. As our approach to semantic construction is �rmly based on the idea
of using syntactic structure to guide semantic construction, we face an obvious problem
here: if there is no syntactic ambiguity, we will only be able to build one of the possible
representations. As scope ambiguities are very common, we need to develop ways of coping
with them right away.

We are going to investigate and implement four di�erent approaches to scope ambiguities:
Montague's original method, two storage based methods, and �nally a more recent ap-
proach based on the idea of underspeci�ed representations. Each approach is interesting in
its own right, and the underspeci�cation-based approach we shall eventually describe is a
powerful tool that we shall use throughout the book. But as well as developing practical
solutions to a pressing problem, this chapter also tells an important story. Computational
semanticists are adopting an increasingly abstract perspective on what representations are
and how they should be built. Once we have studied the evolutionary line leading from
Montague's method to contemporary underspeci�cation-based methods, we will be in a
better position to appreciate why.

3.1 Scope Ambiguities

Scope ambiguity is a common phenomenon and can arise from a wide variety of sources.
In this chapter we will mostly be concerned with quanti�er scope ambiguities. These are
ambiguities that arise in sentences containing more than one quantifying noun phrase; for
example, `Every boxer loves a woman'.

Now, the methods of the previous chapter allow us to assign a representation to this
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sentences as follows:

(1)

Every boxer loves a woman (S)
8x(boxer(x)! 9y(woman(y)^love(x,y)))

Every boxer (NP)
�P:8x(boxer(x)!P@x)

loves a woman (VP)
�z:9y(woman(y)^love(z,y))

loves (TV)
�X.�z.X@�x:love(z,x)

a woman (NP)
�Q:9y(woman(y)^Q@y)

The �rst-order formula we have constructed states that for each boxer there is a woman
that he loves; there might be di�erent women for di�erent boxers. However, `Every boxer

loves a woman' has a second meaning (or to use the linguistic terminology, a second reading)
that is captured by the following formula:

(2) 9y(woman(y) ^ 8x(boxer(x) ! love(x,y)))

This says that there is one woman who is loved by all boxers.

It is clear that these readings are somehow systematically related, and that this relation has
something to do with the relative scopes of the quanti�ers: both �rst-order representations
have the same components, but somehow the parts contributed by the two quantifying
noun phrases have been shu�ed around. In the �rst representation the existential quan-
ti�er contributed by `a woman' has ended up inside the scope of the universal quanti�er
contributed by `every boxer' and in the second representation the nesting is reversed. In
fact it is usual to say that in the �rst reading `every boxer' has scope over (or outscopes)
`a woman', while in reading (2) it is the other way around.

Unfortunately, these scoping possibilities are not reected syntactically: the only plausible
parse tree for this sentence is the one just shown. Thus while it makes good semantic
sense to say that in reading (2) `a woman' outscopes `every boxer', we can't point to any
syntactic structure that would explain why this scoping possibility exists. As each word
in the sentence is associated with a �xed lambda expression, and as semantic construction
is simply functional application guided by the parse tree, this means there is no way for
us to produce this second reading. This diÆculty clearly strikes at the very heart of our
semantic construction methodology. Moreover, scope ambiguities are extremely common,
so we urgently need a solution.
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In this chapter we examine in detail four increasingly sophisticated (and increasingly ab-
stract) approaches to the problem. The �rst of these, Montague's original method, intro-
duces some important ideas, but as it relies on the use of additional rules it isn't compatible
with the approach to grammar engineering adopted in this book. However by introducing
a more abstract form of representation|the store|we will be able to capture Montague's
key ideas. Stores were introduced by Robin Cooper and are arguably the earliest example
example of underspeci�ed representations. Nonetheless, stores are relatively concrete. By
simultaneously moving to more abstract underspeci�ed representations, and replacing the
essentially generative perspective underlying storage methods with a constraint based per-
spective, we arrive at hole semantics, the underspeci�ed representation we shall use in this
book. This will enable us to handle quanti�er scope ambiguities, and the scope ambiguities
created by constructs such as negation, in a uniform way.

Exercise 3.1.1 Some readers may be wondering whether scope ambiguities really are a genuine
problem at all. Consider `Every boxer loves a woman'. In a sense, representation (1) is suÆcient
to cover both readings of our example, since it is entailed by the other reading (2). Arguably,
that makes the stronger representation superuous: perhaps it is pragmatically inferred from the
weaker one with the help of contextual knowledge. So do we really need techniques for coping
with quanti�er ambiguity?

We do, as we want the reader to demonstrate here. First, �nd examples of quanti�er scope
ambiguities that give rise to logically independent readings (that is, neither implies the other).
Secondly, �nd an example where direct construction doesn't lead to the weakest reading (that is,
the reading entailed by the others). Feel free to use determiners such as `one', `many' and `most'
to construct your examples.

3.2 Montague's Approach

Montague semantics makes use of the direct method of constructing semantic represen-
tations for quanti�ed NPs studied in the previous chapter. However, motivated in part
by quanti�er scope ambiguities, Montague also introduced a rule of quanti�cation (often
called quanti�er raising) that allowed a more indirect approach. The syntactic idea in-
volved is very simple. Instead of directly combining syntactic entities with the quantifying
noun phrase we are interested in, we are permitted to choose an `indexed pronoun' and to
combine the syntactic entity with the indexed pronoun instead. Intuitively, such indexed
pronouns are `placeholders' for the quantifying noun phrase. When this placeholder has
moved high enough in the tree to give us the scoping we are interested in, we are permitted
to replace it by the quantifying NP of interest.

As an example, let's consider how to analyze `Every boxer loves a woman'. Here's the �rst
part of the tree we need:
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(3)

Every boxer loves her-3 (S)
8x(boxer(x)!love(x,z3))

Every boxer (NP)
�P:8x(boxer(x)!P@x)

loves her-3 (VP)
�y:love(y,z3)

loves (TV)
�X.�y.X@�x:love(y,x)

her-3 (NP)
�P:P@z3

Instead of combining `loves' with the quantifying term `a woman' we have combined it with
the placeholder pronoun `her-3'. This pronoun bears an `index', namely the numeral `3'.
The placeholder pronoun is associated with a `semantic placeholder', namely �P:P@z3. As
we shall see, it is the semantic placeholder that does most of the real work for us. Note that
the pronoun's index appears as subscript on the free variable in the semantic placeholder.
From a semantic perspective, choosing an indexed pronoun really amounts to opting to
work with the semantic placeholder (instead of the semantics of the quantifying NP) and
stipulating which free variable the semantic placeholder should contain.

Now, the key point the reader should note about this tree is how ordinary it is. True, it con-
tains a weird looking pronoun `her-3'|but, that aside, it's just the sort of structure we're
used to. For a start, the various elements are syntactically combined in the expected way.
Moreover semantic construction is also being performed completely standardly: the place-
holder pronoun has the semantics �P:P@z3|which is the standard pronoun semantics|
and (as the reader should check) the representations for `loves her-3' and `every boxer loves

her-3' are constructed using functional application just as we discussed in the previous
chapter. In short, we have `raised' both the syntactic and semantic placeholders high into
the tree, and we have done so in a completely orthodox way.

Now for the next step. We want to ensure that `a woman' outscopes `every boxer'. By
using the placeholder pronoun `her-3', we have delayed introducing `a woman' into the tree.
But `every boxer' is now �rmly in place, so if we replaced `her-3' by `a woman' we would
have the desired scoping relation. Predictably, there is a rule that lets us do this: given
a quantifying NP, and a sentence containing a placeholder pronoun, we are allowed to
construct a new sentence by substituting the quantifying NP for the placeholder. In short,
we are allowed to extend the previous tree as follows:
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(4)

Every boxer loves a woman (S)

a woman (NP)
�P:9y(woman(y)^P@y)

Every boxer loves her-3 (S,3)
8x(boxer(x)!love(x,z3))

But what's happening semantically? We know what formula we want to be assigned to
the top S node (namely, the formula 2) but how can we ensure it gets there? Let's think
the matter through.

We want `a woman' to take wide scope over `every boxer' semantically. Hence we should
use the semantic representation associated with `a woman' as the function. (To see this,
simply look at the form of its semantic representation. When we apply it to an argument
and lambda convert, we will be left with an existentially quanti�ed expression, which is
what we want.) But what should its argument be? There is only one reasonable choice.
It must be the representation associated with `every boxer loves her-3' lambda abstracted
with respect to z3:

(5) �z3:8x(boxer(x)!love(x,z3))

Why is this? Well, right at the bottom of the tree we made use of the semantic placeholder
�P.P@z3. When we raised this placeholder up the tree using functional application, we were
essentially `recording' what the semantic representation of `a woman' would have encoun-
tered if we had used it directly. (Remember, we did nothing unusual, either syntactically or
semantically, during the raising process.) The formula 8x(boxer(x)!love(x,z3)) is the
record of these encounters. When we are ready to `play back' this recorded information,
we lambda abstract with respect to z3 (thus indicating that this variable is the crucial one,
the one originally chosen) and feed the resulting expression as an argument to the semantic
representation of `a woman'. Lambda conversion will glue this record into its rightful place,
and, as the following tree shows, everything will work out just right:

(6)

Every boxer loves a woman (S)
9y(woman(y)^8x(boxer(x)!love(x,y)))

a woman (NP)
�P:9y(woman(y)^P@y)

Every boxer loves her-3 (S, 3)
�z3:8x(boxer(x)!love(x,z3))

That's it. Summing up, Montague's approach makes use of syntactic and semantic place-
holders so that we can place quantifying NPs in parse trees at exactly the level required
to obtain the desired scope relations. A neat piece of `lambda programming' (we call it
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Montague's trick) ensures that the semantic information recorded by the placeholder is
re-introduced into the semantic representation correctly.

Enough theory; can we write a Prolog program which integrates the previous chapter's
work on lambda-based semantic construction with quanti�er raising? Up to a point, we
can. Unfortunately, most of the work is going to have to take place in our DCG rules, and
the result is not particularly attractive from a grammar engineering perspective. Still, let's
go through it systematically; it's interesting, and we shall be able to re-use some ideas and
notation in our later work on storage.

We �rst add a new grammar rule for noun phrases that introduces the semantic represen-
tation of a pronoun (that is, we add a `placeholder rule'). The pronoun will be associated
with an index, and this index, together with the ordinary semantic representation of the
noun phrase, will be passed to the mother node of the syntactic tree. (We do this by
making use of additional arguments to the DCG rules.)

The following DCG rule implements these ideas. Det@Noun is the semantics of the quan-
tifying noun phrase, constructed in the usual way. The term lambda(P,P@I), where I is
the index, mimics the usual pronoun semantics (it's our semantic placeholder). The �rst
argument of np1 holds the list of raised quanti�ers, together with their associated indexes.
We call these elements indexed binding operators, and represent them as two-place terms
of the form bo(Sem,Index).

np1([bo(Det@Noun,I)],lambda(P,P@I))--> det(Det), n2(Noun).

Note that we have used a Prolog list to store the indexed binding operators. This is because
it makes it easy to introduce more indexes (if we have to) and straightforward to check
whether any indexes were introduced at all.

The other clauses for noun phrases are essentially the ones we had in our original imple-
mentation, but we have to add an additional argument (namely, an empty list) to make
them compatible with our new rule for quanti�er raising.

np1([],Det@Noun)--> det(Det), n2(Noun).

np1([],NP)--> pn(NP).

np1([],NP)--> pro(NP).

Needless to say, the other rules in our grammar fragment need to be rewritten to take our
extension into account. First we consider verb phrases. Intransitive verbs don't combine
with NPs, so we simply give them the empty list as additional argument. Transitive verbs
must pass on the list of raised quanti�ers (coded as Q) that they get from the noun phrase:
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v1([],I,V)--> iv(I,V).

v1(Q,I,TV@NP)--> tv(I,TV), np2(Q,NP).

We need to be able to replace the placeholder pronouns by the real quanti�ers. This hap-
pens at the sentential level, thus we need a rule saying that a sentence can be constructed
out of sentence with a raised quanti�er, by abstracting over the index, and applying the
semantics of the raised quanti�er to the resulting expression.

s([],NP@lambda(I,S))--> s([bo(NP,I)],S).

The standard rule for forming sentences remains unchanged, save we need (yet again) to
add an extra argument and pass through the raised quanti�ers.

s(Q,NP@VP)--> np2([],NP), vp2(Q,VP).

It is time to test our program (mainMontague.pl), using the parse/0 predicate:

?- parse.

> Every boxer loves a woman.

Readings:

1 exists(A,woman(A)&forall(B,boxer(B)>love(B,A)))

2 forall(A,boxer(A)>exists(B,woman(B)&love(A,B)))

yes

?-

It gives us exactly the two readings that we want.

What can we say about Montague's approach? It seems fair to say that while the idea of
using semantic placeholders regulated by Montague's trick is natural, the quanti�er raising
mechanism used to exploit these ideas isn't very appealing. For a start, we are placing
a heavy burden on the grammar rules. In principal, grammar rules are there to tell us
about syntactic structure|but now we're being forced to write additional rules that say
something about scope ambiguity. Moreover, as will be apparent to readers who worked
through our Prolog code, the obvious implementation simply isn't very attractive. All
that �ddling about with extra arguments|and just to cope with sentences containing a
transitive verb and two quantifying noun phrases in subject and object position! Extending
the program to deal with a wide range of scope ambiguity inducing constructions would
not be pleasant. So let us abandon quanti�er raising, and turn instead to storage methods.
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Exercise 3.2.1 Extend the quanti�er raising analysis to ditransitive verbs, and check how many
readings it gives for sentences like `A boxer gives every woman a foot massage'. Are these the
readings you would expect?

Exercise 3.2.2 [hard] The �le englishGrammarMontague.pl contains the revised DCG rules for
Montague quanti�er raising analysis. The rules for constructing complex noun phrases (such as
`a man that told every joke') don't deal with raising yet. Repair this.

3.3 Storage Methods

Storage methods are an elegant way of coping with quanti�er scope ambiguities: they
neatly decouple scope considerations from syntactic issues, making it unnecessary to add
new grammar rules. Moreover, both historically and pedagogically, they are the natural ap-
proach to explore next, for they draw on the key ideas of Montague's approach (in essence,
they exploit semantic placeholders and Montague's trick in a computationally more natural
way) and at the same time they anticipate key themes of modern underspeci�cation-based
methods.

Cooper Storage

Cooper storage is a technique developed by Robin Cooper for handling quanti�er scope
ambiguities. In contrast to the work of the previous section, semantic representations are
built directly, without adding to the basic grammar rules. The key idea is to associate
each node of a parse tree with a store, which contains a `core' semantic representation
together with the quanti�ers associated with nodes lower in the tree. After the sentence
is parsed, the store is used to generate scoped representations. The order in which the
stored quanti�ers are retrieved from the store and combined with the core representation
determines the di�erent scope assignments.

To put it another way, instead of simply associating nodes in parse trees with a single
lambda expression (as we have done until now), we are going to associate them with a
core semantic representation, together with the information required to turn this core into
the kinds of representation we are familiar with. Viewed from this perspective, stores are
simply a more abstract form of semantic representation|representations which encode,
compactly and without commitment, the various scope possibilities; in short, they are a
simple form of underspeci�ed representation.

Let's make these ideas precise. Formally, a store is an n-place sequence. We represent
stores using the angle brackets h and i. The �rst item of the sequence is the core semantic
representation; it's simply a lambda expression. (Incidentally, if we wanted to, we could
insist that we've been using stores all along: we need merely say that when we previously
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talked of assigning a lambda expression � to a node, we really meant that we assigned
the 1-place store h�i to a node.) Subsequent elements (if any) are pairs (�; i), where �
is the semantic representation of an NP (that is, another lambda expression) and i is an
index. An index is simply a label which picks out a free variable in the core semantic
representation. As we shall see, this index has the same purpose as the indexes we used
for Montague-style raised quanti�ers. We call pairs (�; i) indexed binding operators.

How do we use stores for semantic construction? Unsurprisingly, the story starts with
the quanti�ed noun phrases (that is, noun phrases formed with the help of a determiner).
Instead of simply passing on the store assigned to them, quanti�ed noun phrases are free
to `re-package' the information it contains before doing so. (Other sorts of NPs, such as
proper names, aren't allowed to do this.) More precisely, quanti�ed noun phrases are free
to make use of the following rule:

Storage (Cooper)
If the store h�; (�; j); : : : ; (� 0; k)i is a semantic representation for a quanti�ed
NP, then the store h�P.P@zi,(�; i); (�; j); : : : ; (� 0; k)i, where i is some unique
index, is also a representation for that NP.

The crucial thing to note is that the index associated with � is identical with the subscript
on the free variable in �P.P@zi. (After all, if we decide to store � away for later use, it's
sensible to keep track of what its argument is.)

In short, from now on when we encounter a quanti�ed NP we will be faced by a choice.
We can either pass on � (together with any previously stored information) straight on up
the tree, or we can decide to use �P.P@zi as the core representation, store the quanti�er
� on ice for later use (�rst taking care to record which variable it is associated with) and
pass on this new package. The reader should be experiencing a certain feeling of deja vu.
We're essentially using the pronoun representation �P.P@zi as a semantic placeholder, just
as we did in the previous section. Indeed, as will presently become clear, our shiny new
storage technology re-uses the key ideas of quanti�er storage in a fairly direct way.

Incidentally, the storage rule is not recursive. It o�ers a simple two way choice: either pass
on the ordinary representation (that is, the store h�; (�; j); : : : ; (� 0; k)i) or use the storage
rule to form h�P.P@zi; (�; i); (�; j); : : : ; (� 0; k)i and pass this new store on up instead.
We're not o�ered|and we don't want or need|the option of reapplying the storage rule
to this new store to form h�P.P@zm; (�P.P@zi; m); (�; i); (�; j); : : : ; (� 0; k)i. Intuitively,
we're o�ered a straight choice between keeping the lambda expression associated with the
quanti�ed NP in the active part of the memory (that is, in the �rst slot of the store) or
placing it, suitably indexed, in the freezer for later consumption.

It's time for an example. Let's analyze `Every boxer loves a woman' using Cooper storage.
Here's (part of) the relevant tree.
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(7)

Every boxer loves a woman (S)
hlove(z6,z7), (�P:8x(boxer(x)!P@x,6), (�P:9y(woman(y)^P@y),7)i

Every boxer (NP)
h�Q:Q@z6, (�P:8x(boxer(x)!P@x),6)i

loves a woman (VP)
h�u:love(u,z7), (�P:9y(woman(y)^P@y),7)i

loves (TV)
h�X:�u.X@�v:love(u,v)i

a woman (NP)
h�Q:Q@z7, (�P.9y(woman(y)^P@y),7)i

Note that the nodes for `a woman' and `Every boxer' are both associated with 2-place
stores. Why is this? Consider the node for `a woman'. We know from our previous work
that the lambda expression associated with `a woman' is �P.9y(woman(y)^P@y). In our
new representations-are-stores world view, this means that the 1-place store

h�P.9y(woman(y)^P@y)i

is a legitimate interpretation for the NP `a woman'. But remember|this is not our only
option. We are free to use the storage rule, and this is what we did when building the above
tree. We've picked a brand new free variable (namely z7), used the placeholder �Q.Q@z7
as the �rst item in the store, and `iced' �P.9y(woman(y)^P@y), �rst recording the fact
that z7 is the variable relevant to this expression. Essentially the same story could be told
for the NP `every boxer', save that there we chose the new free variable z6.

Once this has been grasped, the rest is easy. In particular, if a functor node F is associated
with a store hF 0; (�; j); : : : ; (� 0; k)i and its argument node A is associated with the store
hA0; (� 00; l); : : : ; (� 000; m)i, then store associated with the node R whose parts are F and A
is

hF 0@A0; (�; j); : : : ; (� 0; k); (� 00; l); : : : ; (� 000; m)i:
That is, the �rst slot of the store really is the active part: it's where the core representation
is built. If you examine the above tree, you'll see that the stores associated with `loves
a woman' and `every boxer loves a woman' were formed using this `functional application
in the �rst slot' method. Note that in both cases we've simpli�ed F 0@A0 using lambda
conversion.

But we're not yet �nished. We now have a sentence, and this sentence is associated with
an abstract unscoped representation (that is, a store), but of course, at the end of the day

72



Blackburn & Bos Chapter 3: Underspeci�ed Representations September 3, 1999

we really want to get our hands on some ordinary scoped �rst-order representations. How
do we do this?

This is is the task of retrieval, a rule which is applied to the stores associated with sentences.
Retrieval removes one of the indexed binding operators from the freezer, and combines it
with the core representation to form a new core representation. (If the freezer is empty,
then the store associated with the S node must already be a 1-place sequence, and thus we
already have the expression we are looking for.) It continues to do this until it has used up
all the indexed binding operators. The last core representation obtained in this way will
be the desired scoped semantic representation (we hope!).

What does the combination process involve? Suppose retrieval has removed a binding
operator indexed by i. It lambda abstracts the core semantic representation with respect
to the variable bearing the subscript i, and then functionally applies the newly retrieved
binding operator to the newly lambda-abstracted-over core representation. The result is
the new core representation, and it replaces the old core representation as the �rst item in
the store. More precisely:

Retrieval (Cooper)
Let �1 and �2 be (possibly empty) sequences of binding operators. If the store
h�; �1; (�; i); �2i is associated with an expression of category S, then the store
h�@�zi:�; �1; �2i is also associated with this expression.

Hey|we're simply performing Montague's trick with the aid of stores!

Let's return to our example and apply the retrieval rule to the store associated with the
S node. Now, this store contains two indexed binding operators. The retrieval rule allows
us to remove either of them and to combine it with the core representation. Suppose we
choose to �rst retrieve the quanti�er for `every boxer' (that is, the indexed binding operator
in the second slot of the store). Then the retrieval rule tells us that the following store
must be associated with the S node:

(8) h�P:8x(boxer(x)!P@x)@�z6:love(z6,z7), (�P:9y(woman(y)^P@y),7)i

Using lambda conversion, this simpli�es to:

(9) h8x(boxer(x)!love(x,z7)), (�P:9y(woman(y)^P@y),7)i

No more lambda conversions are possible, but there's still a quanti�er left in store. Re-
trieving it produces:

(10) h�P:9y(woman(y)^P@y)@�z7:8x(boxer(x)!love(x,z7))i

73



Blackburn & Bos Chapter 3: Underspeci�ed Representations September 3, 1999

The result is the reading where `a woman' outscopes `every boxer', as becomes clear if we
perform two more lambda conversions to obtain:

(11) h9y(woman(y)^8x(boxer(x)!love(x,y))i

How do we get the other reading? We simply retrieve the quanti�ers in the other order.
We suggest that the reader attempts the following exercise immediately.

Exercise 3.3.1 Show the steps involved in applying retrieval that yield the reading where `every
boxer' has scope over `a woman'.

Let's now implement Cooper storage in Prolog.

The �rst steps are pretty obvious: we'll represent stores as lists, and indexed binding
operators as terms of the form bo(Quant,Index), just as we did in the previous section.
Thus the following Prolog list represents a store:

[walk(X),bo(lambda(lambda(Y,F),forall(Y,boxer(Y) > F)),X)]

But now we need to think a little. The semantic representations we want to work with are
stores, not just plain lambda expressions. Moreover, we want to reuse our lexicon and rules,
and the idea of combining representations with the @ operator is hard-wired into our rules.
But we have said nothing about combining stores using @: do we face a problem here? No:
its fairly obvious that we simply need to `lift' our use of @ so that we can meaningfully
talk of combining stores with stores|and indeed, stores with quanti�ers|using @. As
stores are just lists of lambda expressions and binding operators, this shouldn't be too
diÆcult to do. But one matter deserves to be stressed: the results of these `lifted' uses of
@ should always be stores. This will guarantee that the sentence ends up being associated
with a store, and hence that store-retrieval can proceed as explained above. Let's de�ne a
predicate buildStore/2 that carries out these combinations for us:

buildStore(quant(Quant) @ Store,NewStore):-

buildStore(Store,[Arg|S]),

npStorage(Quant,[Arg|S],NewStore).

buildStore(Store1 @ Store2,[F@A|S]):-

buildStore(Store1,[F|S1]),

buildStore(Store2,[A|S2]),

append(S1,S2,S).

buildStore([Sem|Store],[Sem|Store]).
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This predicate has three clauses. Now, the second clause simply combines two stores using
@ in the obvious way (it makes use of the familiar fact that the �rst slot of the store really
is where the core representation is built) and the result is clearly a new store. The third
clause ends the recursion. So far so good|but what about the �rst clause, which lets us
combine a quanti�er and a store using @?

To understand what is going on here, let's examine the predicate npStorage/3 that the
�rst clause uses:

npStorage(Quant,[Arg|Store],[lambda(P,P@X),bo(Quant@Arg,X)|Store]).

That is, this predicate simply stores the quanti�er in the expected way. But then it is clear
that the �rst clause of buildStore/2 simply says that combining a quanti�er and a store
using @ simply amounts to storing that quanti�er|thus once again, our extended notion
of functional application yields a new store.

Two other remarks should to be made. First, storage should be a possibility only available
to quanti�ed noun phrases, and this explains the presence of the marker quant/1. This
marker (or feature) signals that the representation we have in our hands is of a genuine
quanti�er. Second, note that this version of buildStore/2 makes storage compulsory for
quanti�ers, not optional . This turns out not to be a good idea, and we shall eventually
modify our de�nition of buildStore/2 accordingly|but more on that topic later.

With buildStore/2 at our disposal, it now makes sense to talk of combining stores using
@, and moreover we know that the result will always be a new store. So we are ready to
de�ne the semantic macros. Here's the one for a universal determiner:

detSem(uni,quant(lambda(P,lambda(Q,forall(X,(P@X)>(Q@X)))))).

Apart from the quant-marker, there is nothing really new in this entry|indeed it looks
exactly like our previous semantic macros. As for the other categories, the only change we
make is that the representations we work with are stores, as the following macros show:

tvSem(Sym,[lambda(K,lambda(Y,K@lambda(X,Formula)))]):-

compose(Formula,Sym,[Y,X]).

pnSem(Sym,[lambda(P,P@Sym)]).

Thus we have all that we need to create stores: all that remains is to implement retrieval.

The Prolog predicate that copes with retrieval is sRetrieval/2. Its �rst argument is
the store, its second argument the derived scoped representation. If the store contains
just one element, then this is the scoped formula; the �rst clause deals with this case.
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Otherwise, it takes an element from the store using the predicate removeFromStore/3,
lambda abstracts Sem (the �rst item in the list) with respect to the retrieved variable, and
applies the retrieved quanti�er to it, yielding a new semantic representation that will be
�-converted later. Note that the sRetrieval predicate is recursive, thus it will eventually
reduce the store to a list containing just one item, namely a scoped representation.

sRetrieval([S],S).

sRetrieval([Sem|Store],S):-

removeFromStore(bo(Q,X),Store,NewStore),

sRetrieval([Q@lambda(X,Sem)|NewStore],S).

But why does this generate all the possible scoped representations? In fact, we obtain
all the possible readings thanks to removeFromStore/3. This predicate is de�ned in such
a way that, if there is more than one element in the store, it succeeds when it removes
any element at all from it. Therefore, sRetrieval produces (via the Prolog backtracking
mechanism) all the scoped representation possible.

removeFromStore(X,[X|T],T).

removeFromStore(X,[Y|T],[Y|R]):-

removeFromStore(X,T,R).

The driver is transparent: we use buildStore to build a store, sRetrieval to generate
the various representations, and then the familiar �-conversion predicate to simplify:

parse:-

readLine(Sentence),

s(Sem,Sentence,[]),

setof(Result,Store^Retrieved^(buildStore(Sem,Store),

sRetrieval(Store,Retrieved),

betaConvert(Retrieved,Result)),

SemSet),

printReadings(SemSet).

Again, it is time to test our program:

?- parse.

> Every boxer loves a woman.

Readings:

1 exists(A,woman(A)&forall(B,boxer(B)>love(B,A)))

2 forall(A,boxer(A)>exists(B,woman(B)&love(A,B)))
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Unsurprisingly, these are exactly the results we want.

Summing up, Cooper storage is a generalization of Montague's rule of quanti�cation that
makes use of abstract representations called stores. From the perspective of computational
semantics, it has a distinct advantage over Montague's approach: we don't need to to
make use of additional grammar rules. Indeed, when you get down to it, all we really
needed to do to implement Cooper storage was to de�ne what it meant to combine our
new representations using @ (this is what buildStore/2 did for us) and then provide two
additional predicates, npStorage and sRetrieval, which gave us the ability to manipulate
our new representations in ways that plain old functional application couldn't. Cooper
storage is indeed a natural and useful technique.

Exercise 3.3.2 How many scoped representations are retrieved for `every piercing that is done

with a needle is okay'? (Take `is done with' as a two place relation, and view `is okay' as a one
place predicate.) Are they all correct?

Exercise 3.3.3 What does the store (before retrieval) for `every piercing is done with a needle'
look like? And after retrieval?

Exercise 3.3.4 In the original discussion of Cooper storage the storage of quanti�ers was an
optional alternative to functional application. In our implementation, all quanti�ed NPs were
forced to use storage. Why is there no di�erence between the two strategies for the given fragment
of grammar. Can you think of natural language examples where it actually does di�er?

Keller Storage

Cooper storage allows us a great deal of freedom in retrieving information from the store.
We are allowed to retrieve quanti�ers in any order we like, and the only safety net provided
is the use of co-indexed variables and Montague's trick.

Is this really safe? We haven't spotted any problems so far|but then we've only discussed
one kind of scope ambiguity, namely those in sentences containing a transitive verb with
quantifying NPs in subject and object position. However there are lots of other syntactic
constructions that give rise to quanti�er scope ambiguities, for instance relative clauses
(12) and prepositional phrases in complex noun phrases (13):

(12) Every piercing that is done with a gun goes against the entire idea behind it.

(13) Mia knows every owner of a hash bar.

Both examples give rise to scope ambiguities. For example, in (13) there is a reading where
Mia knows all owners of (possibly di�erent) hash bars, and a reading where Mia knows
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all owners that own one and the same hash bar. Moreover, both examples contain nested
NPs. In the �rst example `a gun' is a sub-NP of `every piercing that is done with a gun',
while in the second, `a hash bar' is a sub-NP of `every owner of a hash bar'.

We've never had to deal with nested NPs before. Is Cooper storage delicate enough to cope
with them, and does it allow us to generate all possible readings? Let's examine example
(13) more closely and �nd out. This is the store:

hknow(mia,z2), (�P:8y(owner(y)^of(y,z1)!P@y),2), (�Q:9x(hashbar(x)^Q@x),1)i

Exercise 3.3.5 Verify this.

There are two ways to perform retrieval: by pulling the universal quanti�er o� the store
before the existential, or vice versa. Let's explore the �rst possibility. Pulling the universal
quanti�er o� the store yields (after lambda conversion):

(14) h8y(owner(y)^of(y,z1)!know(mia,y)), (�Q:9x(hashbar(x)^Q@x),1)i

Retrieving the existential quanti�er then yields (again, after lambda conversion):

(15) h9x(hashbar(x)^8y(owner(y)^of(y,x)!know(mia,y)))i

This states that there is a hash bar of which Mia knows every owner. This is one of the
readings we would like to have. So let's explore the other option. If we pull the existential
quanti�er from the S store �rst we obtain:

(16) h9x(hashbar(x)^know(mia,z2)), (�P:8y(owner(y)^of(y,z1)!P@y),2)i

Pulling the remaining quanti�er o� the store then yields:

(17) h8y(owner(y)^of(y,z1)! 9x(hashbar(x)^know(mia,y)))i

But this is not at all we wanted! Cooper storage has given us not a sentence, but a formula
containing the free variable z1. What is going wrong?

Essentially, the Cooper storage mechanism is ignoring the hierarchical structure of the NPs.
The sub-NP `a hash bar' contributes the free variable z1. However, this free variable does
not stay in the core representation: when the NP `every owner of a hash bar' is processed,
the variable z1 is moved out of the core representation and put on ice. Hence lambda
abstracting the core representation with respect to z1 isn't guaranteed to take into account
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the contribution that z1 makes|for z1 makes its contribution indirectly, via the stored
universal quanti�er. Everything is �ne if we retrieve this quanti�er �rst (since this has the
e�ect of `restoring' z1 to the core representation) but if we use the other retrieval option it
all goes horribly askew. Cooper storage doesn't impose enough discipline on storage and
retrieval, thus when it has to deal with nested NPs, it over-generates.

What are we to do? An easy solution would be to build a `free variable check' into the
retrieval process. That is, we might insist that we can only retrieve an indexed binding
operator if the variable matching the index occurs in the core representation.

But this isn't very principled; it deals with the symptoms, not the cause. The heart of
the problem is that Cooper storage rides roughshod over the hierarchical structure of NPs;
we should try to deal with this head on. (Incidentally, arguably there's also an empirical
problem: the free variable solution isn't adequate if one extends the grammar somewhat.
We won't discuss this here but refer the reader to the Notes.)

Here's an elegant solution due to Bill Keller: allow nested stores. That is, allow stores to
contain other stores. Intuitively, the nesting structure of the stores should automatically
track the nesting structure of NPs in the appropriate way. As an added bonus, nesting is
easier to implement than a free variable check.

Here's the new storage rule:

Storage (Keller)
If the (nested) store h�; �i is an interpretation for an NP, then the (nested)
store h�P:P@zi,(h�,�i,i)i, for some unique index i, is also an interpretation for
this NP.

To see how this new storage rule works, consider how we assemble the representation
associated with the complex noun phrase `every owner of a hash bar'.

every owner of a hash bar (NP)
h�P:P@z2, (h�P:8y(owner(y)^of(y,z1)!P@y), (h�Q:9x(hashbar(x)^Q@x)i,1)i,2)i

every (DET)
h�Q:�P:8y(Q@y!P@y)i

owner of a hash bar (NBAR)
h�u:owner(u)^of(u,z1), (h�Q:9x(hashbar(x)^Q@x)i,1)i

owner (N)
h�x:owner(x)i

of a hash bar (PP)
h�P:�u:P@u^of(u,z1), (h�Q:9x(hashbar(x)^Q@x)i,1)i
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As for the retrieval rule, it will now look like this.

Retrieval (Keller)
Let �, �1 and �2 be (possibly empty) sequences of binding operators. If the
(nested) store h�; �1; (h�; �i; i); �2i is an interpretation for an expression of cat-
egory S, then h�@�zi:�; �1; �; �2i is too.

The new retrieval rule ensures that any operators stored while processing � become acces-
sible for retrieval only after � itself has been retrieved. Nesting automatically overcomes
the problem of generating readings with free variables. To see how it works in practice,
let's return to our original example. The nested store associated with `Mia knows every

owner of a hash bar' is

hknow(mia,z2), (h�P:8y(owner(y)^of(y,z1)!P@y), (h�Q:9x(hashbar(x)^Q@x)i,1)i,2)i

There is only one way to perform retrieval: �rst pulling of the universal quanti�er, fol-
lowed by the existential quanti�er, resulting in (15). Since this is the only possibility, the
unwanted reading (17) is not generated.

But wait a minute: how do we get the reading where Mia knows all owners of possible
di�erent hash bars? In fact, this couldn't be easier. All we have to do is avoid storing the
sub-NP `a hash bar'. If we do this, we can produce the following tree:

(18)

every owner of a hash bar (NP)
h�P:P@z2, (h�P:8y(owner(y)^9x(hashbar(x)^of(z,x))!P@y)i,2)i

every (DET)
h�Q:�P:8x(Q@x!P@x)i

owner of a hash bar (NBAR)
h�z:owner(z)^9x(hashbar(x)^of(z,x))i

owner (N)
h�x:owner(x)i

of a hash bar (PP)
h�P:�z:P@z^9x(hashbar(x)^of(z,x))i

This leads to the following analysis for `Mia knows every owner of a hash bar':

(19) hknow(mia,z2),(h�P:8y(owner(y)^9x(hashbar(x)^of(y,x))!P@y)i,2)i

There is only one operator the store. Retrieving it yields the reading we want.

80



Blackburn & Bos Chapter 3: Underspeci�ed Representations September 3, 1999

(20) h8y(owner(y)^9x(hashbar(x)^of(y,x))!know(mia,y))i

So our earlier Prolog implementation of Cooper storage|which made storage compulsory|
really was linguistically naive. While making storage compulsory didn't have any malign
e�ects in the previous section, this was only because we were working with a very restricted
grammar fragment. As the previous example shows, as soon as we move to a richer frag-
ments in which nested NPs are possible, storage really does need to be optional to ensure
that all possible readings are generated.

A few rather trivial changes are all that's needed to turn our Cooper storage program into
a Keller storage program. Here's the new version of npStorage/3 we need. It's identical
to the previous version, save for the third argument, which now treats stores as lists of
lists:

npStorage(Quant,[Arg|Store],[lambda(P,P@X),bo([Quant@Arg|Store],X)]).

The only other change is in the �rst clause of removeFromStore/3, to enable it to deal
with lists of lists:

removeFromStore(bo(O,I),[bo([O|T1],I)|T2],T):-

append(T1,T2,T).

removeFromStore(X,[Y|T],[Y|R]):-

removeFromStore(X,T,R).

And that's it. The over-generation problem is solved. We'll never see unwanted free
variables again.

The last thing to do is thinking of a way to incorporate the optionality of the storage rule
into the Prolog program. Naturally, we will implement this by making use of the following
disjunctive rule.

buildStore(quant(Quant) @ Store,NewStore):-

buildStore(Store,[Arg|S]),

(

NewStore = [Quant@Arg|S]

;

npStorage(Quant,[Arg|S],NewStore)

).

Let's test our program (we'll use the parse/0 predicate of the Cooper implementation)
and see what happens:
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?- parse.

> Mia knows every owner of a hash bar.

Readings:

1 exists(A,hashbar(A)&forall(B,of(B,A)&owner(B)>know(mia,B)))

2 forall(A,exists(B,hashbar(B)&of(A,B))&owner(A)>know(mia,A))

Let's sum up what we have learned. First, the original version of Cooper storage doesn't
handle storage and retrieval in a suÆciently disciplined way, and this causes it to generate
spurious readings (in fact, nonsensical readings) when faced with nested NPs. The problem
can be elegantly cured by making use of nested stores, and implementing this idea requires
only trivial changes to our earlier Prolog code. Second, storage really must be optional.
If we are to generate all the required readings in examples involving nested NPs, we must
be free not to store the NPs encountered low down in the hierarchy. If these changes are
made, we have a exible tool for handling quanti�er scope ambiguities.

Exercise 3.3.6 Give the PL translations for the �ve readings of `a man likes every woman with a

�ve-dollar shake'. You might have noticed that the number of correct readings for this example is
less than the combinatorial possibilities of the quanti�ers that are involved. Naively, one would
expect to have 3! = 6 readings for this example. Why is one reading excluded? Try similar
examples on the program.

Nonetheless, storage methods have their limitations. For a start, they are not as expressive
as we might wish: although Keller storage predicts the �ve readings for

(21) One criminal knows every owner of a hash bar

it doesn't allow us to insist that `every owner' must out-scope `a hash bar', while at the
same time leaving the scope relation between subject and object noun phrase unspeci�ed.
To put it another way, storage is essentially a technique which enables us to represent
all possible meanings compactly; it doesn't allow us to express additional constraints on
possible readings, and this is precisely what most modern underspeci�ed representations
let us do.

Moreover, storage is a technique speci�cally designed to handle quanti�er scope ambigui-
ties. Unfortunately, many other constructs (for example, negation) also give rise to scope
ambiguities, and storage has nothing to say about these. Consider the sentence `Vincent
doesn't clean every car'. This has a reading where for each car it is not the case that Vincent
cleans it; and a second, possibly preferred, reading where there are some cars (but not all)
that Vincent doesn't clean. We would like an uniform approach to scope ambiguity, not
a separate mechanism for each construct|and this as another motive for turning to the
more abstract view o�ered by current work on underspeci�cation.
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3.4 Underspeci�cation

There has been a great deal of recent interest in the use of underspeci�ed representations to
cope with scope ambiguities; so much so that it often seems as if semantics has entered an
age of underspeci�cation. With the bene�t of hindsight, however, we can see that the idea
of underspeci�ed representations isn't really new. In our work on storage, for example, we
associated stores, not simply lambda expressions, with parse tree nodes; and as we have
already remarked, a store is in essence an underspeci�ed representation. What is new is
both the sophistication of the new generation of underspeci�ed representations (as we shall
see, they o�er us a great deal of exibility and expressive power), and, more importantly,
the way such representations are now regarded by semanticists.

In the past, storage style (and other `funny') representations seem to have been regarded
with some unease. They were certainly a useful tool, but they appeared to live in a concep-
tual no-man's-land|not really semantic representations, but not syntax either|that was
hard to classify. The key insight that underlies current approaches to underspeci�cation
is that it is both fruitful and principled to view representations more abstractly. That
is, it is becoming increasingly clear that the level of representations is richly structured,
that doing semantic construction elegantly demands deeper insight into this structure, and
that|far from being a sign of some fall from semantic grace|semanticists should learn to
play with representations in more re�ned ways.

In this book, we shall explore an approach to underspeci�cation called hole semantics.
We have chosen hole semantics because it is the approach we are most familiar with (the
method is due to Johan Bos), it illustrates many of the key ideas of current approaches
to underspeci�cation in an elegant and simple way, and we will be able to use it when
we switch to working with Discourse Representation Structures. Other approaches to
underspeci�cation are noted in the Notes at the end of the chapter.

Hole Semantics

Viewed from a distance, hole semantics shares a very obvious similarity with storage meth-
ods: at the end of the parsing stage, sentences won't be associated with a semantic rep-
resentation. Rather, they will be associated with abstract representations from which the
desired representation can be read o�. Viewed closer up, however, it is clear that hole
semantics adopts a far more radical perspective on representations than storage does.

Hole semantics is essentially a constraint-based approach to semantic representation. That
is, at the end of the parsing process the method delivers a set of constraints: any �rst-
order representation which ful�lls these constraints|which govern how the various bits
and pieces produced during the parsing process can be plugged together|is a permissible
semantic representation for the sentence. This contrasts sharply to the essentially genera-
tive approach o�ered by storage (Here's the store! Enumerate the readings like this!) and
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the source of much of the method's power.

Exactly what kinds constraints can we state? Answering this question is a two-step process.

1. We �rst need to unplug our underlying representation formalism (here, �rst-order
logic) by permitting formulas to be built which contain holes (essentially variables
over missing structure).

2. Then, with the help of such unplugged formulas, we can de�ne a simple constraint
language which governs the way semantic representations are plugged together .

(That is, we �rst break the underlying representation language down into convenient
chunks, and then we de�ne a simple constraint language governing how these chunks can be
assembled into bigger units. The resulting representations we call underspeci�ed semantic
representations, USRs for short.)

Let's take care of the �rst-step right away. We'll now de�ne what we mean by a PLU
formula (this stands for Predicate Logic Unplugged). In Part II of the book we'll unplug
the language of Discourse Representation Structures in a similar way.

Suppose we have chosen some vocabulary. (We'll assume that the vocabulary is function
free; this is purely for simplicity and has no bearing on the work that follows.) We must
then chose a countably in�nite set H of holes. This is simply any convenient set of new
symbols (that is, symbols distinct from those used to build the �rst-order formulas) which
we will usually write as h0, h1, h2, h3, . . . , and so on. The hole h0 will play a special role in
the work that follows|it's used to state constraints, but it won't be used in PLU formulas.
So let's give a name to the set containing just the ordinary holes (that is h1, h2, h3. . . . ,
and so on) for these are the ones that are relevant at this stage. We'll use H+ to denote
this set and call it the set of internal holes. Note that H = fh0g [H+.

Now, what are the PLU-terms over this signature and H+? Simply the ordinary �rst-order
terms over this signature: the holes don't play any role at this level. That is, the terms we
have at our disposal are simply the constants and variables.

Next, what are the atomic PLU-formulas? Again, simply the familiar ones; the holes don't
play any role here either:

If R is a relation symbol of arity n, and t1; :::; tn are terms, then R(t1; :::; tn) is
a PLU-formula.

Now we are ready for the de�nition of PLU-formulas:

1. All atomic PLU formulas are PLU formulas.

2. If h is an internal hole, then h is a PLU formula.
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3. If � and  are PLU formulas, then :�, (�!  ), ( _ �), ( ^ �) are PLU formulas.

4. If x is a variable, and � is a PLU formula, then 8x� and 9x� are PLU formulas.

5. Nothing else is a PLU formula.

This completes the �rst stage in the de�nition of our constraint language. Let's turn to
the second step. Our USRs (underspeci�ed semantic representations) will be built using
PLU-formulas, a special new symbol �, and a set of new symbols called labels which we
will write as l1, l2, l3, . . . , and so on. What kind of USRs can we form? Here's an example.
As we have already mentioned, sentences are going to be associated with a USR. Here's
the USR associated with `Every boxer loves a woman':

(22) <

8>>>>>>>><
>>>>>>>>:

l1
l2
l3
h0
h1
h2

9>>>>>>>>=
>>>>>>>>;

;

8><
>:

l1 : 8x(boxer(x)! h1)
l2 : 9y(woman(y)^h2)
l3 : love(x,y)

9>=
>; ;

8>>><
>>>:

l1 � h0
l2 � h0
l3 � h1
l3 � h2

9>>>=
>>>;
>

Everything the reader needs to know about constraints can be gleaned from this example.
USRs have three components. The left hand side is a set of labels and holes used in the
USR. The middle component consists of a set of of PLU-formulas preceded by a label. The
right hand side consists of a set of constraints of the form l � h, where l is a label and h
is a hole. Note that the special hole h0 occurs in the right-hand component of the USR.

But what does this USR mean? Essentially it tells us how we are permitted to plug together
the labeled formulas to build a �rst-order formula. The special hole h0 is a variable that
stands for the �rst-order formula that we will eventually build. This formula will be built
by plugging together three labeled PLU-formulas given in the middle component of the
USR. Plugging together simply means substituting one of these 3 PLU formulas in another.
(Incidentally, when we carry out such a substitution we only substitute the PLU formula,
not its label as well. The label is simply an identi�er that enables us to state the right hand
side constraints succinctly). Any plugging will do|as long as it satis�es the constraints
given on the right hand side. These constraints are essentially constraints on subformulas,
and are best thought of visually. Each arrow in the following diagram corresponds to a �
expression in an obvious way:
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h0

l1 :8x (boxer(x)! h1) l2 : 9y(woman(y)^ h2)

l3 : love(x,y)

The constraints are set up in such a way that the basic PLU formula love(x,y) is forced
to be out-scoped by the consequent of the universal quanti�er's scope, and the second
conjunct of the existential quanti�er's scope.

Now it's time to say a little more about resolving these ambiguous representations. The
holes underspecify scope, and in order to give us non-ambiguous interpretations, each hole
should be plugged with a formula in such a way that all the constraints are satis�ed. In
other words, we should be sure that each hole gets associated with some label. Obviously,
no label can be plugged into two di�erent holes at the same time. Therefore, a so-called
plugging is a one-to-one correspondence from holes to labels (i.e., a bijective function, with
the set of holes as domain and the set of labels as codomain). A plugging for a proper
USR is admissible if the instantiations of the holes with labels result in a representation
in which there is no contradiction spelled out by the constraints.

There are two pluggings, as is easy to verify:

h0 h1 h2

P1 l1 l2 l3

P2 l2 l3 l1

Plugging P1 interprets (22) as giving the universal quanti�er wide scope, out-scoping the
existential quanti�er. The corresponding formula in predicate logic is (23), which is true
in a model where all boxers love a woman, but not necessarily the same woman.

(23) 8x (boxer(x) ! 9y (woman(y) ^ love(x,y)))

Plugging P2 interprets (22) as the existential quanti�er out-scoping the universal quanti�er.
In a model where there is some woman that is loved by all boxers, this interpretation
denotes truth. A corresponding formula in predicate logic is (24).

(24) 9y (woman(y) ^ 8x (boxer(x) ! love(x,y)))
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The Plugging Algorithm

Before turning to the plugging algorithm we have to consider the design of Prolog rep-
resentations for our PLU-formulas. Labels and holes are represented as Prolog variables
(as with �rst-order variables, this gives us the practical advantage that any introduction
of a label or hole appears as a new occurrence). With this we are able to represent PLU
formulas. Further, we have leq(L,H) as the Prolog notation for the constraint L � H. And
�nally, labeled formulas are formed by putting together a label with a formula using the
Prolog inbuilt : operator.

A USR itself is represented as usr(D,L,C), where D is the set of labels and holes (the
Domain), L a list of labeled formulas, and C a list of constraints. Here is a sample repre-
sentation:

usr([L1,L2,L3,H0,H1,H2],

[L1:exists(X,H1&H2),L2:boxer(X),L3:collapse(Y)],

[leq(L1,H0),leq(L2,H1),leq(L3,H2),leq(L3,H0)])

This Prolog term is our representation in PLU for `A boxer collapses'. We won't pro-
vide predicates to check for properness of USRs|instead we supply a plugging algorithm
straightaway and assume that the USRs we work with are connected, have a unique top,
and are acyclic.

The heart of the plugging algorithm is centered around plugHole/4. Its �rst argument is
the hole to be plugged (normally we start with the top hole of the USR, and work recursively
through the representation until we've plugged all holes). The second argument are the
labeled formulas (coded as a di�erence list|used to keep track of which labeled formulas
are left for plugging and which are not), and the third argument is the list of constraints
imposed by the USR. Its last argument Scope is a list of formulas that, under the current
reading, outscope Formula.

plugHole(Formula,LFs1-LFs3,Constraints,Scoped):-

select(Label:Formula,LFs1,LFs2),

checkConstraints(Label,Constraints,[Formula|Scoped]),

variablesInTerm(Formula,[]-Arguments),

checkArguments(Arguments,LFs2-LFs3,Constraints,[Formula|Scoped]).

With select/3 (see comsemPredicates.pl) we pick a labeled formula to be plugged and
remove it from the list. This predicate is backtrackable|so if it turns out that we picked
one that violates the constraints we can pick another instead later. We add Formula to
the list of scoped formulas and check if no constraints are violated.

Then we continue plugging, by identifying the arguments of the newly plugged formula with
variablesInTerm/2. This predicate, de�ned in the library �le comsemPredicates.pl,
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takes a term and returns all its variables. The rest of the work is done with the help
of checkArguments/4. It traverses through the list of arguments, and according to the
type of argument (recall that these can be holes, labels, or ordinary �rst-order variables),
continues the plugging process.

The �rst clause of checkArguments/4 takes care of holes. We identify holes by imposing
a member-check on the constraints. Next this hole is plugged using plugHole/4, and the
remaining arguments are checked.

checkArguments([Arg|Rest],LFs1-LFs3,Constraints,Scoped):-

member(leq(_,Hole),Constraints),

Hole==Arg, !,

plugHole(Hole,LFs1-LFs2,Constraints,Scoped),

checkArguments(Rest,LFs2-LFs3,Constraints,Scoped).

Clause 2 cares about labels. In that case the corresponding labeled condition is removed
from the list of labeled formulas and its arguments are checked as there might be holes
among them.

checkArguments([Arg|Rest],LFs1-LFs4,Constraints,Scoped):-

select(Label:Formula,LFs1,LFs2),

Label==Arg, !,

Formula=Arg,

variablesInTerm(Formula,[]-Arguments),

checkArguments(Arguments,LFs2-LFs3,Constraints,Scoped),

checkArguments(Rest,LFs3-LFs4,Constraints,Scoped).

The third clause carries on the recursion if the argument is neither a hole nor a label, hence
a �rst-order variable, which we don't need to bother about (note that the two clauses above
use the cut preventing to enter this third clause).

checkArguments([_|Rest],LFs1-LFs2,Constraints,Scoped):-

checkArguments(Rest,LFs1-LFs2,Constraints,Scoped).

Finally, there is a clause that ends the recursion:

checkArguments([],LFs-LFs,_,_).

A typical Prolog call to start the algorithm is ?- plugHole(Top,LFs-[],Cons,[]), where
Top is the hole that out-scopes all other formulas, and LFs-[] ensures that all labeled-
formulas are `used' for building the fully speci�ed formula, and moreover, prevents us from
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getting entangled in cyclic structures. If this goal succeeds, Top uni�es with the resolved
formula.

The constraints are checked each time after a hole is plugged. This is done with the help
of checkConstraints/3. Its �rst argument is the label of the formula that is plugged,
its second argument is the list of constraints, and its third argument the list of scoped
formulas. In fact, it is just matter of working through the �-constraints and for each
leq(L,H), where the plugged label is identical with L, checking whether H is part of the
scoped formulas.

checkConstraints(_,[],_).

checkConstraints(Label,[leq(L,H)|Constraints],Scoped):-

Label==L, !,

member(Formula,Scoped), Formula==H,

checkConstraints(Label,Constraints,Scoped).

checkConstraints(Label,[_|Constraints],Scoped):-

checkConstraints(Label,Constraints,Scoped).

Note that we use the cut after identifying a relevant constraint. So if a constraint is
violated, we force Prolog to backtrack and try a di�erent plugging. And this is all there is
to it.

Before putting the plugging algorithm into action, we will show how to build underspeci�ed
representations using our standard lexicon and grammar rules.

Building Underspeci�ed Representations

Building USRs is done with the tools we're already familiar way: using lambdas and �-
conversion. For USRs, we are going to introduce lambdas for holes and labels as well.
Further, we need a merge-operation for USRs, that combines two USRs to one big USR.

The way we construct USRs is basically an extension to our normal systematic way of
constructing representations. To keep track of the holes and labels, we will decorate each
USR-representation with two additional lambdas: the `top hole', and the `main label'. The
top hole is the hole that closes the current scope domain. The main label is the label within
the current scope domain that is out-scoped by all elements within its scope domain. Ab-
stracting away from these two concepts, it is straightforward to combine USRs (incidentally,
macro de�nitions might get complicated|drawing a picture often eases matters).

Let's introduce the semantic macro for a determiner:

detSem(uni,lambda(P,lambda(Q,lambda(H,lambda(L,

merge(merge(usr([F,R,S],
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[F:forall(X,R>S)],

[leq(F,H),leq(L,S)]),P@X@H@R),Q@X@H@L)))))).

The two additional lambdas for H and L close the scope domain of `every'. The quanti�er
itself gets label F with restriction Restr and nuclear scope Scope. Constraint leq(F,H)
ensures that the quanti�er is out-scoped by the top of the scope domain, and leq(L,Scope)

says that its verbal argument is in its scope. The applications P@X@H@Restr and Q@X@H@L

are crucial|these associate the restriction label of the quanti�er with the label of the noun
representation, and the top and hole label of the verb phrase argument.

Proper names or pronouns, on the other hand do not introduce holes, and therefore need
not to bother about leq-constraints. A new top hole H and main label L are introduced
and applied to its argument P.

pnSem(Sym,lambda(P,lambda(H,lambda(L,P@Sym@H@L)))).

Verbs introduce the `top' hole and a leq-constraint between itself and the top. This is
of importance for sentences where no quanti�ers (or other scope-introducing elements)
appear, as it establishes a clean link from the top element to the main label, that of the
verb.

ivSem(Sym,lambda(X,lambda(H,lambda(L,usr([],[L:F],[leq(L,H)]))))):-

compose(F,Sym,[X]).

Underspeci�cation allows us to be very exible. We can use one and the same technique
for both quanti�ers and negation. Here is the semantic macro for verb negation:

modSem(neg,lambda(P,lambda(X,lambda(H,lambda(L,

merge(usr([N,S],[N:(~S)],[leq(N,H),leq(L,S)]),P@X@H@L)))))).

There is one thing left we haven't paid any attention to yet. It is combining smaller USRs
to bigger ones, by carrying out the stipulated merge/2 operations in the USR. Actually,
this is not a big deal, and done as follows, using append/3 from the library �le.

mergeUSR(usr(D,L,C),usr(D,L,C)).

mergeUSR(merge(U1,U2),usr(D3,L3,C3)):-

mergeUSR(U1,usr(D1,L1,C1)),

mergeUSR(U2,usr(D2,L2,C2)),

append(D1,D2,D3),

append(L1,L2,L3),

append(C1,C2,C3).
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As usual we implement a driver that grasps all the important predicates together. This
one combines the plugging algorithm and the construction of USRs, displays the USR on
the current output device as well as all the readings it has.

parse:-

readLine(Sentence),

d(Sem,Sentence,[]),

betaConvert(merge(usr([Top,Main],[],[]),Sem@Top@Main),Reduced),

mergeUSR(Reduced,usr(D,L,C)),

printRepresentation(usr(D,L,C)),

findall(Top,plugHole(Top,L-[],C,[]),Readings),

printReadings(Readings).

Here is an example session:

?- parse.

> Every woman does not snort.

usr([A,B,C,D,E,F,G],

[C:forall(H,D>E),D:woman(H),F:(~G),B:snort(H)],

[leq(C,A),leq(B,E),leq(F,A),leq(B,G),leq(B,A)])

Readings:

1 forall(A,woman(A)> ~snort(A))

2 ~forall(A,woman(A)>snort(A))

Evaluating Underspeci�cation

So far we have formalized semantic underspeci�ed representations and are able to deal
with (quanti�er) scope ambiguities. But how does this proposal relate to earlier accounts
of scope ambiguities? Are there any bene�ts in using the new streamlined underspeci�ed
representation rather than stick to the old fashioned storage methods? The basic answer is
that underspeci�cation languages are more powerful: they exhibit far more descriptive po-
tential than storage methods. To make this statement more clear, let's consider a concrete
example sentence including three quanti�ers:

(25) One criminal knows every owner of a hash bar.

With the tools developed in this chapter it is perfectly possible to represent the relative
scopes of the three quanti�ers fully underspeci�ed. Moreover, it is possible to partially
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specify relative scopes. For some (linguistic) reason, one might wish to express that `one
criminal' out-scopes `every owner' and `a hash bar', but that the relative scopes of the latter
two quantifying constructs does not matter. We need not add new machinery to our
formalism: we can use the �-constraint to state such requirements.

How do other approaches to quanti�er scope fare with such requirements? Storage tech-
niques (Cooper 1983; Keller 1988), to begin with, are not able to express such constraints.
A store is a sequence of the core semantic representation and a list of the binding opera-
tors (the quanti�ers) which scope is not �xed yet. In the process of constructing a store,
quanti�ed noun phrases can either enter the store or combine with the core semantic repre-
sentation (and form a new core semantic representation, by means of in-situ quanti�cation).
At the end of the parse, the di�erent ways in which the quanti�ers are retrieved from the
store and combined with the core semantic representation result in di�erent readings (the
last quanti�er which is pulled o� the store gets widest scope). Hence, to give a quanti�er
obligatory wide scope, the only way to pursue is to put it on the store, while performing
in-situ application for the remaining quanti�ers. But this presumes that the scope order
of the remaining quanti�ers is �xed!

'
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Software Summary of Chapter 3

mainMontague.pl A simple implementation of Montague's approach to quanti�-

cation. (page 223)

englishGrammarMontague.pl The revised grammar rules for Montague's quanti-

�er raising. (page 224)

mainCooperStorage.pl Implementation of Cooper Storage. De�nes storage of

noun phrases and retrieval of the store. (page 226)

mainKellerStorage.pl Implementation of Nested Storage (Keller). De�nes stor-

age of noun phrases and retrieval of the store. (page 228)

semMacrosStorage.pl Contains the semantic macros for Cooper and Keller stor-

age. (page 230)

pluggingAlgorithm.pl The plugging algorithm for hole semantics. (page 231)

mainPLU.pl Implementation of predicate logic unplugged. (page 233)

semMacrosPLU.pl Contains the semantic macros for predicate logic unplugged.

(page 234)

mergeUSR.pl Merging underspeci�ed semantic representations. (page 236)
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Notes

More about quanti�er scoping in general, and Montague's approach to quanti�cation in
particular, can be found in Dowty, Wall, and Peters 1981 or volume 2 of Gamut 1991b.
Cooper storage was �rst used in Cooper 1975; a more re�ned version is presented in
Cooper 1983. Nested Cooper storage is due to Keller (1988). This very readable paper
introduces Cooper storage, explains where the problems lie, gives an example (involving
an interaction between scope and anaphoric pronouns) which suggests that a simple check
for free variables during retrieval isn't an adequate solution, and then introduces nested
Cooper storage.

There are other approaches to quanti�er scope ambiguity the reader should be aware of.
Hobbs and Shieber 1987 provide an alternative to Cooper storage that overcomes some of
the problems mentioned in this chapter. An improved version of their algorithm has been
developed by Lewin (1990).

As we mentioned in the text, stores (and nested stores) are essentially a more abstract
form of semantic representation|representations which encode multiple possibilities, with-
out committing us to any particular choice. Viewed in this light, stores are ancestors of
the current crop of underspeci�cation formalisms, representation languages speci�cally de-
signed to cope with ambiguity by avoiding overcommitment.

One of the �rst underspeci�ed semantic representations were underspeci�ed discourse rep-
resentation structures (UDRSs) proposed by Reyle (1993). In fact, hole semantics can be
seen as a generalization of this idea, not stuck to DRSs but compatible to all kinds of logi-
cal structures. Hole semantics is also applied in the machine translation system Verbmobil
(Bos et al. 1996; Bos et al. 1998).

Probably the best way for the reader to �nd out more about the area of underspeci�cation
is to consult the recent collection edited by Van Deemter and Peters (Van Deemter and
Peters 1996).
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Chapter 4

Propositional Inference

In this chapter we turn to the second major theme of the book, namely:

How can we use the logical representations of natural language expressions to
automate the process of drawing inferences?

Recall from Chapter 1 that a valid formula is a formula that cannot be falsi�ed in any
model, and that a valid argument (or valid inference) is an argument such that whenever
all the premisses are true in some model, the conclusion is true in that model also. These
concepts are the fundamental ones underlying the idea of logical inference, and so we need a
way of getting to grips with them computationally. But there is a problem. Both concepts
are semantic: that is, they are de�ned in terms of models. Moreover, they use models
in a very strong way: their de�nitions refer to the class of all models. Now, the class of
all models is a very large and abstract entity. Certainly we cannot put all models in the
computer (there are in�nitely many of them, most of which are in�nite) and check whether
an argument is valid by checking its premisses and conclusions in them all. So, if we want
programs that perform logical inference, we will have to look for another approach.

Fortunately, alternatives are available. The branch of logic called proof theory studies
syntactically de�ned inference methods. That is, proof theorists are interested in inference
methods which only make use of the syntactic structure of sentences; models play no role.
Of course, proof theoretic methods must always be justi�able in semantic terms. That is,
if someone asks why some proposed syntactic proof method really is a way of performing
genuine logical inference|not just some bizarre way of manipulating logical symbols|it
must be possible to show that the method is faithful to the fundamental semantic concepts
of validity. Nonetheless, using proof-theoretic methods requires no appeal to semantic
concepts; only syntactic manipulation of formulas is required. Since we are interested in
automating inference, it is clearly sensible to try and make use of such techniques, for
syntax is pleasantly concrete|it's something that a computer can easily get to grips with.
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Proof theorists have studied many di�erent proof methods. Among the better known
ones are axiomatic systems, natural deduction systems, resolution-based systems, sequent
calculi, and the method we shall discuss here: tableaux systems. The various proof methods
were developed for di�erent purposes, and have di�erent strengths and weaknesses. For
example, axiomatic systems are excellent if one wants to study provability at an abstract
level, but awful to actually use. Natural deduction systems, on the other hand, are nice
and easy for people to use (as their name suggests, they try to capture something of what is
involved when a human being goes about proving something), but, precisely because they
demand human insight, are not the best choice for automated theorem proving. Resolution,
on the other hand, has proved to be the key method for automated theorem proving (Prolog
is based on it), but it is a `machine oriented' rather than a `human oriented' approach.
We have chosen to work with tableaux systems because they o�er the following blend of
advantages:

1. Tableaux are a very intuitive proof method. The tableaux method is certainly syntac-
tic, nonetheless it based on utterly transparent semantic intuitions|indeed, tableaux
are often called semantic tableaux . They are certainly a `human oriented' approach
to inference.

2. Although intuitively natural, the process of �nding a tableaux proof does not depend
on human insight. Certainly human insight can streamline the process of performing
tableaux inferences; nonetheless, the basic mechanism is suitable for machine imple-
mentation. Indeed, tableaux proof systems are relatively simple to implement, and,
resolution aside, are one of the more popular automated theorem proving methods.

3. The tableaux method can be adapted to many di�erent logics, such as higher-order
and non-classical logics. The basic ideas are relatively robust, and the reader who
masters them in the case of �rst-order logic has actually mastered ideas of far wider
applicability.

4. Tableaux systems are more than just theorem provers: they can also be regarded as
model building tools. (This is another reason why they are sometimes called semantic
tableaux.) For some applications this additional ability is useful.

In this chapter we are going to develop the tableaux method for propositional languages.
Recall from Chapter 1 that propositional languages are essentially a user-friendly notation
for the quanti�er-free fragment of �rst order languages. It will turn out that this is a
very important fragment to examine, for in the next chapter we shall see how to eÆciently
reduce the tableaux method for a full �rst-order language to the tableaux method for its
propositional fragment.
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4.1 Propositional Tableaux

The key intuition underlying the tableaux proof technique revolves around the following
semantic question:

Suppose we are given a formula, and one of the truth values True or False.
Is it possible to �nd a model in which the given formula has the given truth
value?

The tableaux method is essentially a syntactic way of answering this question. More
precisely, a tableaux proof is a systematic check, making use of only syntactic concepts,
which lets us know whether or not it is possible to build a model in which some given
formula is true or false.

Suppose that we had such a systematic check at our disposal. (We soon will have.) Why
would it be useful? First, note that it would give us a way to test formulas for validity:
`valid' means `true in all models', so a formula is valid if and only if it is not possible to
falsify it in any model. Hence, a formula � would be valid i� the systematic method told
us that there was no way to build a model that falsi�ed �.

Second, note that such a method would also give us a way of performing logical inference.
For suppose we are given �1; : : : ; �n are premisses, and we wish to judge whether the
argument to the conclusion  is valid or not. That is, we wish to know whether or not

�1; : : : ; �n j=  :

Now, by the Deduction Theorem (discussed in Chapter 1), this argument is valid precisely
when

j= �1 ^ � � � ^ �n !  ;

that is, when �1 ^ � � � ^ �n !  is a valid formula. In short, the problem of deciding
whether arguments are valid is reducible to the problem of deciding whether formulas are
valid. So, given a method of determining whether a formula is valid, we can use it for
judging the validity of arguments as well.

Thus such a systematic check for the existence of satisfying or falsifying models would
certainly be worth having, and this is exactly what tableaux systems give us. But what
is a tableaux system, and how do they systematically check for the existence of suitable
models? In the remainder of this section we informally introduce the key ideas involved.
We do this by presenting three examples of tableaux proofs, taking care to point out the
underlying semantic intuitions. In the following section we will make our discussion more
precise.

Consider the formula p _ :p. This is a validity|we certainly can't falsify it|but what
would a systematic search for a falsi�cation looks like? Now, we've already seen one answer
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to this question|simply �ll out its truth table! But this answer isn't very appealing. For
a start, it's not an answer we can generalise to �rst-order languages. Moreover, while
a truth table is easy to �ll out for p _ :p, the truth table for a formula containing 8
di�erent propositional variables contains 256 lines, while the table for a formula containing
20 variables contains 220 lines, which is too large for comfort. So we won't bother with
truth tables|instead, we'll develop a number of tableaux expansion rules. These rules
tell us how to make complex formulas true (or false) by breaking them down into their
component formulas and giving the components the appropriate truth value. Let's see
what sort of rules are needed, and how to use them, by constructing a tableaux proof of
p _ :p.
We want to try and falsify p_:p, so let's introduce a piece of notation to express this goal.
Writing F�, where � is any formula, will mean that we want to make � false. Similarly,
writing T� will mean that we want to make � true. (T and F are called signs, and a
formula preceded by a sign is called a signed formula.) Thus, as we are going to try to
falsify p _ :p, our initial goal is:

F (p _ :p):
This rather trivial looking object is our �rst example of a tableau. Actually, when writing
out tableaux by hand, it is handy to include a little extra book-keeping information, such
as line numbers. So, in practice we'd tend to write the above tableau as:

1 F (p _ :p)

How do we proceed? Essentially we use the tableaux expansion rules to smash the signed
formula into smaller and smaller pieces until we reach the atomic level. So, what expansion
rule should we apply here? Obviously we need a rule that tells us how to falsify a disjunc-
tion. The required rule is clear: to make a disjunction false, falsify both disjuncts. So,
applying this rule|let's call it F_|we expand our one line tableau to a three line tableau
as follows:

1 F (p _ :p) p
2 Fp 1; F_
3 F:p 1; F_

Here, lines 2 and 3 are the extra information we have deduced by applying the F_ rule.
The third column contains more book-keeping information: the

p
symbol in line 1 records

the fact that we've applied the appropriate rule to line 1, while the annotations `1; F_' in
lines 2 and 3 record the fact that these lines were obtained from line 1 using rule F_.

What next? In fact, there's only one more thing we can do. We've already applied a
rule to line 1, so we've �nished with that. Furthermore, line 2 tells us something about
atomic information (namely that we need to make p false). This is simply a blunt fact, not
something that can be further analysed. Thus only line 3 o�ers us the possibility of further
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progress; it tells us that we need to falsify the negation of p. So, we need an expansion
rule that tells us how to do this. Again, the required rule is clear: to make the negation
of a formula false, make the formula itself true. So, applying this rule|call it F:|we can
expand our three line tableau to a four line tableau as follows:

1 F (p _ :p) p
2 Fp 1; F_
3 F:p 1; F_;

p
4 Tp 3; F::

Note that we have marked line 3 with a
p

(thus recording that the applicable rule has
been applied) and have indicated that line 4 was obtained from line 3 using F:.

There are two important observations that must be made about this tableau. First, it is
rule saturated . That is, we cannot expand it any more. Either we've already applied the
applicable rule (lines 1 and 3), or the line contains instructions about what to do with
atomic information (lines 2 and 4). Second, the tableau is closed . That is, it contains
contradictory instructions. The tableau tells us that if we want to falsify p _ :p, we have
to make p false (line 2) and p true (line 4). As this is impossible, and as it should be pretty
clear that the above tableau really does indicate all possible ways falsifying p _ :p, we
conclude that this formula is valid. This closed tableau is called a tableaux proof of p_:p.
The previous example is a perfectly good tableaux proof, but it's also just about the
simplest one the reader is ever likely to see. So let's consider a slightly more demanding
task: testing :(q ^ r)! (:q _ :r) for validity.
Just as in the previous example, our initial goal is to try and falsify the given formula.
Thus our initial tableau is:

1 F:(q ^ r)! (:q _ :r)

We need to falsify an implication, so we need an expansion rule that tells us how to do this.
Again, the required rule is clear: to falsify an implication, make the antecedent true and
the consequent false. Applying this rule|let's call it F!|yields the following tableau:

1 F:(q ^ r)! (:q _ :r) p
2 T:(q ^ r) 1; F!
3 F (:q _ :r) 1; F!

Now, line 3 demands that we falsify a disjunction. We've already met the required expan-
sion rule, namely F_. Applying it to line 3 yields:
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1 F:(q ^ r)! (:q _ :r) p
2 T:(q ^ r) 1; F!
3 F (:q _ :r) 1; F!;

p
4 F:q 3; F_
5 F:r 3; F_

Now at this point the alert reader should be saying \Hold on a minute! Why are we free
to apply this rule to line 3? Sure, the rule �ts|but look at line 2. There's a formula there
that we need to make true. Don't we need to take care of that �rst?"

A sensible question, but the answer is: no, we don't . One of the pleasant things about
tableaux is that we are free to apply applicable rules in any order we like. Yes, we could
have applied the relevant rule to line 2 at this point, had we wanted to|but we're equally
free to apply a rule to line 3, just as we did above. Tableaux rules just tell us what we're
permitted to do to expand a tableau; we're not forced to apply expansion rules in any
particular order.

So let's move on. Note that both lines 4 and 5 ask us to falsify a negated formula. Again,
we have already met the relevant rule, namely F:. Applying it �rst to line 4, and then to
line 5 (a completely arbitrary ordering choice) yields:

1 F:(q ^ r)! (:q _ :r) p
2 T:(q ^ r) 1; F!
3 F (:q _ :r) 1; F!;

p
4 F:q 3; F_;

p
5 F:r 3; F_;

p
6 Tq 4; F:
7 Tr 5; F:

Let's now deal with line 2. (In fact, there is nothing else we can do.) We need to make a
negation true. The required rule is clear: to make the negation of a formula true, make
the formula itself false. So, applying this rule|call it T:|we can expand our tableau to
obtain:

1 F:(q ^ r)! (:q _ :r) p
2 T:(q ^ r) 1; F!;

p
3 F (:q _ :r) 1; F!;

p
4 F:q 3; F_;

p
5 F:r 3; F_;

p
6 Tq 4; F:
7 Tr 5; F:
8 F (q ^ r) 2; T:
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Now we have to deal with line 8, which asks us to falsify a conjunction. Doing so leads us to
the �rst real complication in the story we have been telling. The point is this: there's not
just one way of making a conjunction false, there's two. Making either conjunct false will
falsify the whole formula. As tableaux are meant to be systematic searchs for falsi�cations,
we're going to have to examine both possibilities. Thus the relevant expansion rule|call
it F^|is going to yield two alternative ways of expanding the tableau, and we're going to
have to keep track of both.

F^ is our �rst example of a disjunctive (or branching) expansion rule; we'll encounter more
such rules in the following section. Because of such rules, tableaux won't generally consist
of a single straight line down the page (that is, they're no longer going to consist of a single
branch, to use the oÆcial terminology). Rather, they will be tree-like structures, possibly
containing many branches. In the present case, what we get after applying F^ is:

1 F:(q ^ r)! (:q ^ :r) p
2 T:(q ^ r) 1; F!;

p
3 F (:q ^ :r) 1; F!;

p
4 F:q 3; F_;

p
5 F:r 3; F_;

p
6 Tq 4; F:
7 Tr 5; F:
8 F (q ^ r) 2; T:;

p

9 Fq 8; F^ 10 Fr 8; F^

That is, we have recorded two distinct possibilities: we must either falsify q, or falsify r.

But let's return to our tableaux proof. What do we do next? Actually, we've �nished:
our two-branch tableau is rule-saturated, as the reader can easily check. So, after all that,
is :(q ^ r) ! (:q ^ :r) a validity or not? Yes, it is. This is because the rule-saturated
tableau we produced is closed , which means that all the branches it contains are closed.
To see this, note that the left-hand branch is closed because it contains the contradictory
instructions Fq (at line 9) and Tq (at line 6); whereas the right-hand branch is closed
because it contains Fr (at line 9) and Tr (at line 7). This closed tableau is a tableaux
proof of :(q ^ r)! (:q ^ :r).
Let's consider a �nal example to illustrate what happens if the formula we are working
with is not a validity. Now, the formula (p ^ q) ! (r _ s) is certainly not valid; what
happens when we try and falsify it using the tableaux method?

As usual, the �rst step simply states our goal, namely :

1 F (p ^ q)! (r _ s)

101



Blackburn & Bos Chapter 4: Propositional Inference September 3, 1999

As we need to falsify an implication, the relevant expansion rule is F!:

1 F (p ^ q)! (r _ s) p
2 T (p ^ q) 1; F!
3 F (r _ q) 1; F!

Now line 2 requires us to make a conjunction true. The expansion rule T^ required is clear:
we must make both conjuncts true. Applying T^ yields:

1 F (p ^ q)! (r _ s) p
2 T (p ^ q) 1; F!;

p
3 F (r _ q) 1; F!
4 Tp 2; T^
5 Tq 2; T^

Now let's deal with line 3. The relevant rule is F_. Applying it yields:

1 F (p ^ q)! (r _ s) p
2 T (p ^ q) 1; F!;

p
3 F (r _ q) 1; F!;

p
4 Tp 2; T^
5 Tq 2; T^
6 Fr 3; F_
7 Fs 3; F_

But now the expansion process halts. This tableau is rule-saturated: we've applied the
relevant rules to line 1{3, while lines 4{7 simply stipulate what has to be done with atomic
information. But note that there is crucial di�erence between this tableau and the previous
rule-saturated tableaux we have seen: the single branch in this tableau is not closed, it's
open. That is, it does not contain contradictory instructions. In fact, it gives us very
sensible instructions indeed: lines 4{7 tell us to make p true, q true, r false, and s false.
As the reader can easily check, doing this falsi�es (p ^ q) ! (r _ s), thus this formula is
not a validity.

More generally, a rule-saturated tableau is called open i� it contains at least one open
branch. If we obtain an open tableau when we try to falsify some formula, this means that
the formula is not a validity. Moreover, just as in the previous example, every open branch
on the open tableau actually contains an explicit `falsi�cation recipe' for the formula: we
falsify it by assigning truth values to the atomic symbols in the the way the open branch
stipulates. To put it another way, open branches of rule-saturated tableaux tell us to build
a model that falsi�es the formula we started with.

The reader should now have a fairly clear grasp of the main ideas and intuitions underlying
tableaux proofs, so let's now discuss the method more systematically. We begin by listing
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the 8 main expansion rules, and classifying them into three types: unary rules, conjunctive
rules, and disjunctive rules. This classi�cation isn't vital, but it will help us keep the
implementation neat.

For each Boolean connective B, we have two tableaux rules, TB and FB. TB tells us how
to make a formula with B as its main connective true, while FB tells us how to make it
false. The rules for negation, T: and F:, are the simplest:

T:� F:�
F� T�

These rules should be read from top to bottom. Given the examples discussed in the
previous section, their meaning should be reasonably clear. In each rule, the signed formula
above the horizontal line is the input to the rule, and the signed formula below it is the
output. For example, T: takes as input signed formulas of the form T:�, and returns as
output signed formulas of the form F�. Similarly, F: takes as input signed formulas of
the form F:� and returns as output signed formulas of the form T�. In what follows, we
shall call these two rules our unary rules. This is simply shorthand for the fact that both
rules return a single formula as output.

The rules for the binary connectives ^, _ and ! are rather more interesting. Here are T^
and F^, F_ and T_, and F! and T!, respectively:

T (� ^  ) F (� ^  )
T� F� F 
T 

F (� _  ) T (� _  )
F� T� T 
F 

F (�!  ) T (�!  )

T� F� T 
F 

Again, all six rule should be read from top to bottom, the top being the input to the rule,
the bottom the output. We shall call the three rules in the left-hand column (that is, T^,
F_, and F!) conjunctive rules. The three rules on the right-hand side (that is, F^, T_,
and T!) are called disjunctive rules. Note that each of ^, _ and ! gives rise to a pair of
rules, one of which is conjunctive, the other disjunctive. Both conjunctive and disjunctive
rules return two formulas as output|however, as we have already seen, they di�er in the
e�ect they have on tableaux. In particular, use of a disjunctive rule splits the branches
of the tableaux containing the input formula into distinct branches, each of which records
one of the two alternative output formula.
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In the discussion that follows, we'll assume that we only have these 8 rules at our disposal.
However, the reader should be aware that it is very straightforward to give expansion rules
for other connectives, though such rules won't always �t into our three way classi�cation.
For example, it can can be useful to have the expansion rules for $ at our disposal. Here
are the required rules:

T (�$  ) F (�$  )

T� F� T� F�
T F F T 

Note that for this connective we don't obtain a neat pair of rules, one of which is conjunc-
tive, the other disjunctive, as we did for ^, _ and !. Moreover, though both rules are
`disjunctive' in the sense that both force us to split tableaux branches, these rules yield 4
output formulas, 2 for each possible branch. The exercises below ask the reader to develop
expansion rules for some other connectives.

Now that we know what our expansion rules are, let's make our previous discussion of
tableaux and tableaux proofs a little more rigorous.

A (propositional) tableau is simply a tree, each of whose nodes is a signed (propositional)
formula. A branch of a tableau is simply a branch of such a tree|that is, a collection of
nodes (that is, signed formula) that contains exactly one leaf node together with all the
nodes which dominate it.

An initial tableau|that is, the kind of tableau with which we start the tableaux expansion
process|is a tableau that has only a single branch. The reader may be slightly surprised
by this de�nition. Isn't it too general? Why don't we simply de�ne an initial tableau to
be a tableau consisting of a single signed formula of the form F�? Actually we could use
this more speci�c de�nition|but, as we shall later see, the slightly more general de�nition
given is rather useful.

We carry out the tableau expansion process as follows. Given a tableau, try to �nd a node
in it that (a) isn't a signed atomic formula, and (b) to which we haven't already applied an
expansion rule. Let's call such nodes unexpanded nodes. If there are no unexpanded nodes,
we can't do anything: we have a rule-saturated tableau and are �nished. So suppose there
is at least one unexpanded node. This node has the form S�, where S is either T or F ,
and � is a propositional formula. Moreover, as � is not atomic, it has a main connective
B, where B is one of the connectives :, ^, _, or !. We can then `read o�' the required
rule: we have to apply rule SB.

What happens when we apply a rule to a node? That depends on whether the rule is
unary, disjunctive, or conjunctive. If the rule is unary, we extend every branch containing
the input node by adding on the output formula of the rule as the new leaf node. If the
rule is conjunctive, we extend every branch containing the input node by adding on, again
at the leaf node, both output formula of the rule. Finally, if the rule is disjunctive, we
extend every branch containing the input node to two distinct branches, one containing

104



Blackburn & Bos Chapter 4: Propositional Inference September 3, 1999

each of two choices of output formulas. Again, both the required additions are carried out
at the leaf node of the original branches.

The basic idea of tableau expansion should be clear form the examples we discussed earlier,
but there is one point worth emphasizing. A signed formula may belong to several branches.
(For example, the root node belongs to every branch of a tableau.) When we perform
an expansion, we have to extend every branch on which the input formula lies in the
appropriate way. For example, consider the following tree:

�

� T (� _  )

�

� �

If we expand the indicated node T (� _  ), we obtain:

�

� T (� _  )

�

� �

T� T T� T 

The tableau expansion process starts when we are given an initial tableau. We apply rules
to the initial tableau, and then to the tableaux obtained by earlier rule applications, and
so on, until it is not possible to apply any more rules. As we discussed earlier, we can
apply the rules in any order we like. The tableau expansion process stops when it is not
possible to apply any more rules, that is, when we obtain a rule-saturated tableau. Here
an important question looms: is the expansion process always guaranteed to stop? Yes, it
is. We will point out why later in the chapter|but it would be a good idea for the reader
to try �guring this out now unaided.

We are now almost ready to say what a tableau proof is. First, a branch of a tableau is
closed if it contains both T� and F�, where � is some formula. A branch that is not closed
is called open. A tableaux is closed if every branch it contains is closed, and open if it
contains at least one open branch. Now for the key de�nition:

A formula � is tableaux-provable (or, more simply: provable) if and only if
it is possible to expand the initial tableau consisting of a single node F� to a
closed tableau. We use the notation ` � to indicate that � is provable.
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And that's the (propositional) tableaux method. To conclude our discussion, two remarks.

First, note that the tableaux method really is a purely syntactic method. This should be
clear. If we want to test whether � is provable we have to start with the initial tableau F�,
and then try and expand it to a closed tableau. The entire expansion process is governed
by syntactic ideas. For example, when we expand a node, by simply looking at its sign
and main connective we know which rule to apply. Moreover, closure is a purely syntactic
concept: it simply amounts to looking for items of the form T� and F� on some branch.
Of course, as our presentation has tried to emphasize, the tableaux method is driven by
clear semantic ideas. Nonetheless, using the method doesn't require any semantic insight
at all. Even if we didn't know what the signs T and F were meant to stand for|or indeed,
what :, ^, _, and ! were meant to represent|we would still have a well de�ned way
of manipulating logical formulas. It would probably be an exaggeration to claim that we
could train a monkey to carry out tableaux proofs, but as we shall see below, we can
certainly implement them in Prolog rather easily.

The second point concerns our de�nition of initial tableaux. Why did we opt for the
general de�nition, rather simply stating that initial tableau always have the form F�?
Simply because, as we shall now see, by using di�erent initial tableau we can use tableaux
for di�erent purposes.

First, we can use tableaux to directly test whether arguments are valid. For example,
suppose we wanted to test

�1; : : : ; �n j=  ;

for validity. Now, as we pointed out earlier, by the Deduction Theorem this is equivalent
to testing whether �1 ^ � � � ^�n !  is a valid formula, thus we could simply try using the
tableaux method to falsify this formula. But there is a more direct way. An argument is
valid if and only if whenever all the premisses are true, the conclusion is true also. Hence,
to test whether the above argument is valid, we could form the initial tableau:

T�1
:
:
:

T�n
F 

That is, we simply use the tableau method to see whether it is possible to make all the
premisses true and the conclusion false. If we can't do this|that is, if we obtain a closed
tableau|the argument is valid.

But we can do more with tableaux than simply testing whether formulas and arguments
are valid: we can use them as a tool for telling us how to build models. To give a very
trivial example, suppose we wanted to know exactly how to make the formula :p^ (r _ q)
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true. The tableau method will tell us how to do this. As our initial tableau we take:

T:p ^ (r _ q):
That is, we are simply asking: \How do we make this formula true?" To get an answer,
all we have to do is carry out the expansion process in the usual way:

1 T:p ^ (r _ q) p
2 T:p 1; T^;

p
3 T (r _ q) 1; T^;

p
4 Fp 2; T:;

p

5 Tr 3; T_ 6 Tq 3; T_

This tableaux is rule-saturated and contains two open branches. The left hand branch tells
us that one way to make the input formula true is to make p false and r true, while the
right hand branch tells us that there is also another way to achieve this, namely by making
p false and q true.

Exercise 4.1.1 Show that the following formula's are all provable:

1. ::p! p

2. ((p! q)! p) ! p

3. (:p! :q)! (q ! p)

4. p$ (p ^ (q _ p))

5. (p _ (q ^ r)) $ ((p _ q) ^ (p _ r))

Exercise 4.1.2 The connectives nand and nor are de�ned by the following truth tables:

p q p nand q p nor q

True True False False

True False True False

False True True False

False False True True

Give the tableaux expansion rules for both connectives.

Exercise 4.1.3 There are two ways of using tableaux to show that an argument is valid: the
indirect method that appeals to the Deduction Theorem, and the direct method just discussed.
Explain why both methods give rise to the same result.
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4.2 Implementing Propositional Tableaux

We shall represent tableaux in Prolog as lists containing lists of signed formulas. Signed
formulas are represented as normal Prolog terms with functors f and t of arity 1. For
example, the following is the Prolog representation of a tableau:

[[f(p > q)]].

This represents the tableau with just one branch, namely a branch containing the single
signed formula F (p! q).

Here's a second example:

[[t(p & q), f(p & r)]].

Again, this represents a tableau with just one branch. This time, however, the branch
contains two signed formulas, namely T (p ^ q) and F (p ^ q).
The Prolog implementation of propositional tableaux consists of a small collection of pred-
icates which manipulate such lists in accordance with the tableaux expansion rules. For
example, the list just given contains t(p & q). Now, to make a conjunction true, we use
expansion rule T^, which in this case tells us to add Tp and Tq to the given branch. It
is easy to mimic the required expansion in Prolog: all we have to do is de�ne a predicate
which when given the previous list as input, returns the following one as output:

[[t(p), t(q), f(p & r)]].

Note two things. First, as expected, the output list contains t(p) and t(q). Second, it
does not contain t(p & q). Why is this? Because once the relevant expansion rule has
been applied to some formula, that formula is no longer relevant and can be removed. That
is, removal of signed formulas from lists is the Prolog analog of the

p
marking we used in

our handwritten proofs.

Note that our new list contains f(p & r), thus we can process it even further. Now, the
rule for falsifying a conjunction is F^, a disjunctive rule. How are disjunctive expansions
to be handled in Prolog? Again, the basic idea is very simple. To handle F^, for example,
we need simply de�ne a predicate which when given the previous list as input, return the
following one as output:

[[t(p), t(q), f(p)], [t(p), t(q), f(r)]]

Note that this list contains two lists. It is thus the Prolog representation of a tableau
containing two branches, namely the tableau with the signed formulas Tp, Tq and Fp on
one (closed) branch, and the formulas Tp, Tq and Fr on the other.
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Note that this approach to disjunctive rules di�ers from our handwritten approach. Our
Prolog code make two copies of the branch, one for each of the two disjunctive possibilities.
This is somewhat heavy handed|but it makes the code easy to understand. On the other
hand, when writing out proofs by hand we want to cut down the writing needed as much
as possible|hence our use of tree-like structures in which the information common to
two branches is shared. Of course, by taking trees as the fundamental data structure, it is
possible to implement this kind of structure sharing in Prolog, and doing so is an extremely
valuable exercise.

Summing up, our Prolog implementation is based round the representation of tableaux
as lists containing lists of signed formulas. Each list of signed formula corresponds to a
branch. We carry out expansions by manipulating these lists of signed formulas in the
appropriate way. In particular, conjunctive (and unary) expansions will be carried out by
taking the list representation of a branch, removing the relevant conjunctive (or unary)
signed formula, and adding its component(s) to the list. Disjunctive expansions are carried
out in much the same way, save that the process returns two lists, one containing each of
the two possible components. Incidentally, the program given below does not handle the
$ connective; a good way of testing your understanding of the code is modify it so that
it does.

Let's go systematically through the program. The outermost predicate is called saturate.
This takes a single argument, a tableau, which it recursively attempts to rule-saturate
with the help of the expand predicate. Note that base clause of saturate calls the closed
predicate, which tests whether the input tableau is closed. By making this test here, we
ensure that once a closed tableau is found, no further attempt is made to apply expansion
rules.

saturate(Tableau):-

closed(Tableau).

saturate(OldTableau):-

expand(OldTableau,NewTableau),

saturate(NewTableau).

The closed predicate is recursively de�ned in the expected way. To ground the recursion,
the empty list is de�ned to be closed. A tableau containing branches can then be tested for
closure by recursively peeling o� its branches and checking for occurrences of both t(X)

and f(X) for some formula X.

closed([]).

closed([Branch|Rest]):-

member(t(X),Branch),
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member(f(X),Branch),

closed(Rest).

The expand/2 predicate is a high level `organisational' predicate: it simply works its way
recursively through all the branches in the input tableau, looking for branches to which one
of the predicates unaryExpansion, conjunctiveExpansion, or disjunctiveExpansion

apply. The fourth, recursive clause of expand/2 takes the next branch of the tableau if no
more expansions can be carried out to the current branch.

expand([Branch|Tableau],[NewBranch|Tableau]):-

unaryExpansion(Branch,NewBranch).

expand([Branch|Tableau],[NewBranch|Tableau]):-

conjunctiveExpansion(Branch,NewBranch).

expand([Branch|Tableau],[NewBranch1,NewBranch2|Tableau]):-

disjunctiveExpansion(Branch,NewBranch1,NewBranch2).

expand([Branch|Rest],[Branch|Newrest]):-

expand(Rest,Newrest).

The expansion predicates do the real work. Both the predicates unaryExpansion and
conjunctiveExpansion have two arguments, namely an `input branch', and an `output
branch', while disjunctiveExpansion takes three arguments, an input branch and two
output branches. All three predicates look for the occurrence of the appropriate type
of signed formula (namely unary, conjunctive, and disjunctive respectively) as the
�rst item in the input branch, use the library predicate removeFirst/3 to remove that
occurrence, and then build the required new branch (or branches, in the case of disjunctive
formulas) out of the component (or components) of the signed formula.

unaryExpansion(Branch,[Component|Temp]):-

unary(SignedFormula,Component),

removeFirst(SignedFormula,Branch,Temp).

conjunctiveExpansion(Branch,[Comp1,Comp2|Temp]):-

conjunctive(SignedFormula,Comp1,Comp2),

removeFirst(SignedFormula,Branch,Temp).

disjunctiveExpansion(Branch,[Comp1|Temp],[Comp2|Temp]):-

disjunctive(SignedFormula,Comp1,Comp2),

removeFirst(SignedFormula,Branch,Temp).
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Thus, it only remains to de�ne what conjunctive, disjunctive, and unary signed formula
are:

conjunctive(t(X & Y),t(X),t(Y)).

conjunctive(f(X v Y),f(X),f(Y)).

conjunctive(f(X > Y),t(X),f(Y)).

disjunctive(f(X & Y),f(X),f(Y)).

disjunctive(t(X v Y),t(X),t(Y)).

disjunctive(t(X > Y),f(X),t(Y)).

unary(t(~X),f(X)).

unary(f(~X),t(X)).

And that's that. Of course, using saturate directly is a little clumsy, and it is preferable
to call it in a slightly more user-friendly way. For example, we can de�ne a predicate
valid/1:

valid(F):-

saturate([[f(F)]]).

The reader should experiment with this program, and attempt at least the �rst two of the
following exercises.

Exercise 4.2.1 Modify the code so that it handles the nand and nor connectives de�ned above.

Exercise 4.2.2 Modify the code so that it handles the $ connective.

Exercise 4.2.3 [hard] Reimplement propositional tableaux in a way that is more faithful to our
hand-written tree based approach. That is, �nd a nice way of representing trees so that we don't
need to duplicate branches when using disjunctive rules.

Exercise 4.2.4 Experiment with di�erent strategies in the tableaux program, by changing the
order of the expansion rules.

Exercise 4.2.5 [project] Add a pretty print predicate to our implementation of propositional
tableaux, that shows the branches and the proof steps in a readable way. Test your printer on:
(a! :(b ^ c)) ! ((a! :b) ^ (a! :c)).
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4.3 Equality Constraints

4.4 Theoretical Remarks

To conclude our discussion, we shall discuss four concepts that every reader should have at
least a nodding acquaintance with: soundness, completeness, termination and eÆciency .
We won't pursue these topics in depth, nor will we prove any technical results. Rather,
our aim is simply to give a clear account of what the concepts are, and how they relate to
tableaux systems; for further details, the reader is advised to follow up the references cited
in the Notes. Along the way, we shall clarify some points that may be bothering readers.

First of all, the tableaux system presented in this chapter is a sound and complete proof
system for propositional inference. What does this mean?

As we remarked at the start of the chapter, although a syntactic proof method only uses
syntactic information, it has to be justi�able in semantic terms. That is, when someone
proposes some new proof method, we need guarantees that the proposal is semantically
sensible.

The most fundamental property we demand of a proof system is that it be sound. Sound-
ness is a essentially a `no garbage' demand: if the proof system proves some formula, then
that formula must be valid. Sound proof systems are thus semantically justi�able in a very
strong sense: they will never prove formulas which are falsi�able.

Our tableaux system is sound. That is, for any propositional formula �,

if ` � then j= �:

So tableaux proofs will never lead us astray|but this shouldn't really come as a surprise.
After all, we developed our tableaux expansion rules by thinking in overtly semantic terms.
For example, we asked \How do we go about making a conjunction true?" and gave the
(obviously sensible) answer \By making both conjuncts true". Indeed, all our expansion
rules reect the semantic de�nitions of the connectives in an obvious way, so it is hardly
surprising that they are `semantically safe'. And in fact, one proves the soundness of the
tableaux method simply by thinking a little more systematically about the consequences
of the `semantic safety' of the expansion rules. We won't spell the details out here, but
they are not particularly diÆcult and we suggest that mathematically inclined readers try
to pin down the required argument precisely.

What about completeness? This is a much stronger (and more interesting) demand: a
complete proof system is one which is capable of proving all valid formula. That is, if � is
any valid formula whatsoever, then it must be possible to give a proof of �.

Our tableaux system is complete. That is, for any propositional formula �,

If j= � then ` �:
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Intuitively, no validity lies beyond the reach of the tableaux proof method: if a formula
� is valid, then it is possible to expand the initial tableau F� to a closed tableau.1 Note
that because the tableaux method is both sound and complete we have that:

` � i� j= �:

That is, we have a perfect match between the syntactic concept of tableaux-provability
and the semantic concept of validity.

Proving that the tableaux method is complete is a non-trivial exercise which lies beyond
the scope of this book; readers interested in the details should consult one of the references
cited in the Notes. However, it is worth knowing that the key step of the completeness
proof is to prove the following:

If it is possible to expand an initial tableau F� to an open rule-saturated tableau,
then one can falsify � by giving the atomic symbols the truth values stipulated
on any of the open branches of such a tableau.

This is worth knowing, because it allows us to dispel an issue that may be worrying some
readers: how do we know that a formula isn't provable?

The problem is this. We de�ned ` � to mean that it is possible to extend the initial
tableaux F� to a closed tableaux. Now, by changing the order we apply expansion rules, it
may be possible to expand the initial tableau F� to many di�erent rule-saturated tableau.
This is worrying: perhaps some of these tableaux are open and others are closed! So,
if we expand F� and obtain an open rule-saturated tableau, this doesn't seem to tell us
much. Perhaps some other expansion would have led to a closed tableaux. Perhaps|what
a horrible thought!|we have to check all possible tableaux expansions before we can safely
conclude that � isn't provable.

In fact, we don't need to worry. For suppose some expansion of F� leads to an open rule-
saturated tableau. Then, by the property just noted, it is possible to falsify �. It follows
that no other expansion of F� can possibly lead to a closed rule-saturated tableaux. To see
this, note that if there was such a closed rule-saturated tableau, this would mean that �
was provable. By soundness, this would mean that � was valid|but this would contradict
the fact that we can falsify �. In short, as soon as we succeed in expanding F� to an open
rule-saturated tableau, it is safe to conclude that � is not provable.

Soundness and completeness are not the only desirable properties of proof systems. If one
is interested in implementation, one wants to know something about a system's computa-
tional properties. For example, is the method guaranteed to terminate (or halt or stop) on
all possible input formula? And how eÆcient is the method anyway?

1Incidentally, it is easy to give examples of tableaux systems that are sound but not complete|simply
throw away expansion rules! For example, if we discard the rule F

:
, we still have a sound tableaux system,

but we don't have enough power left to prove all validities, as we can no longer have all the rules we need
for coping with negated formulas.
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The expansion process used by our propositional tableaux is guaranteed to halt on all pos-
sible input. To see why, note that every tableaux expansion rule takes a signed formula and
returns a �nite number of signed formulas (in fact, no rule returns more than four signed
formula). Moreover, crucially, each of the formula returned contains fewer connectives than
the input formula. Thus, as we never have to apply a rule to the same formula twice, after
every expansion the collection of unexpanded formulas remains �nite, and moreover, any
new unexpanded formulas we obtain as a result of rule applications are simpler . Thus|no
matter which sequence of expansions we choose to make|we will achieve rule-saturation
after a �nite number of steps. Termination is thus guaranteed. Making this argument
really tight requires a little care, but the basic idea should be clear.

Are tableaux an eÆcient method of doing propositional inference? The honest answer is:
nobody knows. In fact nobody knows if there is any proof method which can prove all valid
formulas eÆciently. Let's discuss this a little further.

For many formulas, tableaux fare better than other methods. To give an obvious example,
suppose we tested the validity of the following formula using truth tables:

(q ! (r _ (p ^ :t! ::s))) _ :(q ! (r _ (p ^ :t! ::s))):

The required truth table has 32 rows, which takes quite some time to �ll out. The tableaux
method, on the other hand, gets this example right in a single step. More generally, the
tableaux method is obviously a fairly sensible, and by using a little common-sense when
forming tableau (for example, applying as many conjunctive expansion rules as possible
before applying disjunctive expansion rules) it is possible to give fairly concise proofs of
typical validities.

Unfortunately, not all validities are `typical'. It is possible to show that there are an
in�nite number of formulas which create terrible problems for the tableau method: any
closed tableau formed by starting with one of these formulas contains a huge number of
nodes. Finding such validities isn't easy. Devising them requires careful thought about
which kind of formulas require heavy use of disjunctive rules. However, such validities are
out there, thus although the tableau method looks better than the truth table method, the
bottom line is that it is subject to the same kind of combinatorial explosions.

Now|as far as anybody knows|this isn't because tableaux is a poor proof method. In
fact, nearly all the well known proof methods (such as resolution, natural deduction, and
so on) have been shown to be subject to similar combinatorial explosions. There simply is
no known proof method for propositional languages that avoids combinatorial explosion.
In fact, it is widely conjectured that no such proof method exists. For further discussion
of this point, consult the references cited in the Notes.

Let us sum up what we have learned in this section. As a proof method, the tableaux
system introduced in this chapter is as well-behaved as one could reasonably hope for. It is
semantically sensible, and moreover, strong enough to prove all valid formulas. Moreover, it
is guaranteed to terminate on all possible input. On `typical' formulas it seems reasonably
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eÆcient|though the reader should be aware that there are (in�nitely many) formulas
which, if given as input, will give rise to tableaux that are too big to be practicably
computed.'

&

$

%

Software Summary of Chapter 4

propTabl.pl The �le that contains all the predicates for the implementation of

our theorem prover. (page 237)

Notes

Proof theory is a rich and fascinating subject. The reader can gain a good overview of
various proof systems, and how they relate to each other, by consulting Sundholm 1983.
Both signed and unsigned tableaux systems are discussed.

For tableaux systems, the classic source is Smullyan 1995; our discussion of signed tableaux
is based on Smullyan's treatment. Good treatments of signed tableaux may be found in
Fitting 1996 and Bell and Machover 1977. The reader interested in �nding out how to
prove the tableaux method complete will �nd all that is needed in these three books.
Our implementation of propositional tableaux was inuenced by the implementation of
unsigned tableaux given in Fitting (1996). The reader will �nd it instructive to compare
the two implementations. (Apart from anything else, it's a good idea to �nd out about
what unsigned tableaux are and how they work.)

The analysis of the complexity of proof methods is an active �eld of research. Perhaps
the best starting point is Urquhart 1995. This contains a good discussion of why the
tableau method sometimes leads to combinatorial explosion. Another interesting (and
very readable) paper is D'Agostino 1992, which shows that in certain cases the tableaux
method performs worse than the truth table method.

Finally, although it takes us far from the concerns of the present book, it is worth noting
that proof theory arguably has far deeper connections with natural language semantics
than our discussion might suggest. There is an important tradition which claims that
meaning shouldn't be explained in terms of truth conditions, but in terms of assertability
conditions. (Roughly speaking, on this view the meaning of an utterance is the reason we
have for holding it, not the situations in which it is true.) Semanticists in this tradition
tend to regard proofs as the primary semantic objects. At �rst sight this may appear to
be a rather strange view, but it has a lot to recommend it. A good introduction to this
line of thought is Sundholm 1986. Moreover, as Ranta (1994) demonstrates, the approach
is of relevance to computational semantics.
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Chapter 5

First-Order Inference

In this chapter we extend our tableaux system to �rst-order languages. As promised, we do
so by reducing �rst-order formulas to propositional ones. The resulting system is natural
and easy for human beings to use. Unfortunately, as a candidate for automation it's awful:
it makes use of an in�nite space of possible substitutions that requires human insight to
navigate.

So we rethink our strategy. Roughly speaking, we decide to delay the problem of �nding
good substitutions. Our plan is to use free variables to build up a set of constraints on
substitutions, and then to hand over the problem of solving the constraints to a uni�cation
component. We discuss uni�cation in detail, consider how to combine uni�cation with
the tableaux proof method, and implement a �rst-order theorem prover. We conclude
with a discussion of the problems facing �rst-order theorem provers (and in particular, the
problems raised by equality) and discuss alternative approaches.

5.1 First-Order Tableaux

We now extend the signed tableaux proof method to �rst-order languages. Conceptually,
the extension is very simple. Our new tableaux rules will allow us get rid of quanti�ers
by substituting suitable terms for bound variables. In e�ect, they let us reduce �rst-order
formulas to propositional ones.

What kinds of rules enable us to do this? Let's consider two examples. Suppose a tableau
contains the signed formula T8xkiller(x), and suppose we are working with a �rst-order
language containing the constants jules and butch and a 1-place function symbol fa-
ther. Then it should be legitimate to extend the tableau by adding on any of the following
signed formulas: Tkiller(jules), Tkiller(butch), and

Tkiller(father(father(father(jules))).
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(After all, if everyone is a killer, every term picks out a killer.) More generally, given any
universal formula pre�xed by the sign T , we should be free to throw away the universal
quanti�er, substitute any term for the newly freed variable in the matrix, pre�x the result
by T , and extend the tableau with the result.

Analogous tableaux extensions should be legitimate when we are told that an existen-
tial sentence is false. For example, suppose a tableau contains F9xshoot(jules,x).
Then it should be legitimate to deduce that F shoot(jules,father(jules)), and that
F shoot(jules,butch), and so on. (After all, if it's false that Jules shoots someone, then
its false that Jules shoots any person we care to name.)

Such examples lead us to formulate the following two tableaux rules, T8 and F9:

T8x� F9x�
T�(�) F�(�)

Here �(�) denotes the result of replacing the variable bound by the quanti�er by some
closed term � . (Recall that a closed term is a term that does not contain any variables.)
We call these two rules universal rules.

While both these rules are sound, and clearly trade on the semantic intuitions underlying
the tableaux method, they di�er from the propositional tableaux rules in important re-
spects. First, each rule licenses as many tableaux extensions as there are closed terms in
the language. In particular, if there are in�nitely many closed terms in the language, each
rule licenses in�nitely many ways of extending a tableau. Second, in general we will have
to apply a universal rule more than once to a particular occurrence of a signed formula.
Here's a simple example. We shall show that

8xdie(x)! die(mia) ^ die(zed)

is a theorem.

1 F (8xdie(x)! die(mia) ^ die(zed))
2 T8xdie(x) 1; F!
3 F (die(mia) ^ die(zed)) 1; F!
4 Tdie(mia) 2; T8
5 Tdie(zed) 2; T8

6 Fdie(mia) 3; F^ 7 Fdie(zed) 3; F^

Note the way we had to apply T8 twice to line 2: once to get Tdie(mia), and once to get
Tdie(zed). Thus we have lost one of the pleasant properties of propositional tableaux: it
is no longer true that we are through with an occurrence of a signed formula once we've
applied a rule to it.
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Let's turn to to the next issue. What sort of tableaux rules are needed to deal with
signed formulas of the form T9x� or F8x�? This is a more subtle matter. Suppose a
tableau contains the signed formula T9xkiller(x). It is not legitimate on the basis of
this information to deduce that Tkiller(jules), or that Tkiller(butch), or indeed to
deduce that Tkiller(closed-term) for any closed term of the language we are working
with. Someone is a killer|but we don't know who. So how are we to eliminate the
quanti�er?

Actually, the solution is straightforward: we invent a brand new name for the entity whose
existence is asserted, and eliminate the quanti�er by substituting this new name. Such
brand new names are called parameters, and by using parameters we can deal with true
existential statements, and false universal ones too. For example, if a tableau contains
T9xkiller(x), we give this killer (whoever he or she is) a new name (that is, we choose
a new parameter, say c) and extend the tableau by asserting Tkiller(c). Similarly, given
the signed formula F8xreligious(x), we christen the unbeliever (whoever he or she is)
with a new name (say c8) and extend the tableau by asserting Freligious(c8).

Let's make these ideas precise. Suppose we are working in a �rst order language over some
vocabulary V. Let PAR be a (countably in�nite) set of new constant symbols, that is,
constant symbols that don't belong to V. We'll call these new constant symbols parameters,
and reserve the symbols c, c1, c2, . . . , and so on, for them. From now on, when we want
to do tableaux proofs, we won't work in our original language (that is, the language built
over the vocabulary V). Rather we'll work in the �rst-order language whose vocabulary
consists of all the original vocabulary V, and in addition, all the new constant symbols in
PAR.

Given these ideas, it's easy to de�ne the rules F8 and T9:

F8x� T9x�
F�(c) T�(c)

Here �(c) denotes the result of substituting a parameter c that we haven't used so far in the
tableau proof , for the newly freed variable in the matrix. We call these two rules existential
rules.

Two points about these rules must be grasped. First, when we use the existential rules,
it is absolutely vital that we substitute parameters that haven't been used so far in
the tableau construction. To see why, suppose a tableau contains both T9xkiller(x)
and T9xreligious(x). Suppose we �rst apply T9 to T9xkiller(x) using the parame-
ter c5 (which, let us suppose, hasn't been previously used) to name the killer. That is,
we extend the tableau with Tkiller(c5). Now, if at some later stage we apply T9 to
T9xreligious(x), it would be outrageous to re-use the parameter c5. If we did this (that
is, if we `deduced' that Treligious(c5)) we would in e�ect be claiming that there is a
single individual (namely the one named by c5) who is both a killer and religious. This
simply doesn't follow from the given information. All we know is that there is at least one
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killer, and at least one religious person. They may well be di�erent people, hence we need
to assign each of them a fresh new name. In short, once we've used an existential rule
to replace a quanti�er by a parameter, that parameter becomes `old', and cannot later be
re-used.

There is a second important point that the reader should note: the de�nition of the ex-
istential rules has consequences for the universal rules. When carrying out �rst-order
tableaux proofs we no longer work in the original �rst-order language, but in the origi-
nal language enriched with an in�nite collection PAR of new constants. Now, constant
symbols|including parameters|are closed terms, so we should be free to substitute pa-
rameters when we use a universal rule. (In fact, its crucial that we be able to do this, as
the following example will make clear.) But this means that we will always have in�nitely
many choices when it comes to using a universal rule, even if the original language had no
constants or function symbols at all.

Let's have a look at another example. We will show that

9x8yshoot(x,y) ! 8y9xshoot(x,y)

is a theorem. (This is a rather pretty example. It's simple, but puts all four quanti�er
rules to work.)

1 F (9x8yshoot(x,y) ! 8y9xshoot(x,y))
2 T9x8yshoot(x,y) 1; F!
3 F8y9xshoot(x,y) 1; F!
4 T8yshoot(c1; y) 2; T9
5 F9xshoot(x; c2) 3; F8
6 T shoot(c1; c2) 4; T8
7 F shoot(c1; c2) 5; F9

The key point to notice about this proof is the way the existential and universal rules
interact. In particular, note the way we used the existential rules to introduce the new
parameters (c1 in line 4 and c2 in line 5) and then used the universal rules to make further
use of these symbols. It should be clear from this example that it is vital that the universal
rules have access to the parameters.

How eÆcient is this tableaux system? This is a question we must answer in two ways.

The �rst (and most fundamental) thing the reader should know is the following: the �rst-
order tableaux system does not give rise to an algorithm for determining which �rst-order
formulas are valid. An algorithm is a recipe which, when given an instance of a problem to
solve, halts after a �nite number of steps with the correct answer. There is no algorithm
at all for determining the validity of arbitrary �rst-order formulas. That is, �rst-order
validity is undecidable. It is certainly possible to implement syntactic proof systems (for
example, tableaux systems) and we shall do in this chapter, but no implementation of any
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system is guaranteed to terminate on all possible input. Incidentally, the tableaux system
just described is (sound and) complete. That is, if a formula � is valid, then it is possible
to construct a (�nite) closed tableaux that has F� as its root node. Thus the proof system
just described is a genuine syntactic analysis of the semantic concept of �rst-order validity,
and indeed a rather natural one. However this analysis does not yield an algorithm for
determining which �rst-order formulas are valid, for no such algorithm exists.

As there is no general computational solution to the problem, it is meaningless to speak
of eÆciency in an absolute sense, so let's restate the question in a more realistic way.
Many �rst-order theorem provers are useful practical tools. Proof search won't always
terminate, but they work well on wide ranges of input, and can be used as components of
larger systems quite satisfactorily. So the question we should next pose is: how good is
the tableaux system just described as a practical basis for automated �rst-order theorem
proving? This question has a clear answer: it's terrible. Although our tableaux system is
conceptually simple, it's a computational nightmare.

The heart of the problem lies with the universal rules. They o�er us an in�nite menu of
substitutable terms. If T8x� belong to a tableau, then we are free to extend it by �rst
adding �(c1) then �(c2) then �(c3), . . . , and so. (We could have done this in the previous
tableau, for example, starting at line 4.) Most such extensions will be completely pointless.
In the examples given above, it was intuitively clear which substitutions were sensible; we
used our sense of what was relevant to guide our choice of substitutions. Unfortunately,
computers lack our intuitions. If we want a reasonably practical implementation, we need
to �nd a method choosing substitutions that doesn't depend on human insight.

Here's what we shall do. First, we'll change the universal rules slightly: we'll never sub-
stitute closed terms, we'll always substitute free variables instead. In a sense, we are not
going to make a real choice of substitutions at all|we are going to use free variables as
`dummies' that will enable us to delay making this decision. In this way, we will gradually
build up a whole system of `substitution equations', a set of constraints on variable values
that contain a great deal of information about the terms in the tableau we are building.
Crucially, there is an algorithm for solving such constraint sets, the famous uni�cation
algorithm. We will use uni�cation to look for solutions to the constraints that lead to
branch closure.

That's our strategy in outline. An awful lot of detail remains to be �lled in. For a start,
blending uni�cation with tableaux is going to force us to rethink the existential rules, and
there are many other details that will require careful attention. Nonetheless, uni�cation is
the key to further progress, so let's examine this concept in some detail.
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5.2 Uni�cation and Free Variable Tableaux

Uni�cation is the process of carrying out substitutions on two terms so that they become
identical. The reader who has made it this far will certainly have a informal idea of what
substitutions are, and indeed, since we are working with Prolog, a good working knowledge
of what uni�cation involves in practice. However the Prolog version of uni�cation is not
suitable for theorem proving purposes. Given two terms, Prolog does not make the occurs
check, rather it just rushes ahead and tries to unify them. This is �ne (and certainly
eÆcient) if the terms are uni�able, but it can lead to non-terminating computations if
they are not. So we will need to think cerefully about uni�cation and how to implement
it. Once we have done this, we will need to think about how to integrate uni�cation into
tableaux theorem proving. All in all, we have a lot of work to do, so lets get to start right
away.

Uni�cation

Suppose we have chosen the �rst-order language we are going to work with. Then a
substitution is a function that maps the set of variables to the terms of this language. We
use the notation x� (rather than �(x)) to denote the value of x under the substitution �.

We are most interested in �nite substitutions. These are substitutions which only assign
new terms to a �nite number of variables; the rest they leave alone. That is, if � is a �nite
substitution, then for all but a �nite number of variables, x� = x.

The simplest �nite substitution is the one which does not assign new terms to any of the
variables. This substitution is called the identity substitution, and we denote it by fg. We
also have a special notation for other �nite substitutions, namely:

fx1=�1; : : : ; xn=�ng:
Here x1, . . . , xn are distinct variables, �1, . . . , �n are terms, and �i 6= xi for any i from 1 to
n. The notation xi=�i means that the variable xi is mapped to �i.

As we have de�ned them, substitutions only act on variables. In this section we will be
exploring the e�ect of of substitutions on arbitrary terms. Here's a recursive de�nition of
this concept.

Substitutions on Terms. Let � be a substitution and � a term. Then:

1. If � is a variable x, then �� = x�;

2. If � is a constant, then �� = � ;

3. If � has the form f(�1; : : : ; �n), then [f(�1; : : : ; �n)]� = f(�1�; : : : ; �n�). (Here f is an
n-place function symbol.)
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Actually, we need to extend the substitution concept even further, for in the following
section we will want to apply substitutions to formulas, and indeed, to entire tableaux. So
let's de�ne these concepts right away. First a piece of notation. If � is a substitution, then
by �x we mean the substitution that is exactly like � except that x�x = x. We can now
recursively de�ne ��, the result of applying the substitution � to the formula �.

Substitutions on formulas.

1. If R(�1; : : : ; �n) is an atomic formula, then [R(�1; : : : ; �n)]� is R(�1�; : : : ; �n�). (Here
R is an n-place relation symbol.);

2. [:�]� is :[��];
3. [� ^  ]�, [� _  ]�, and [� !  ]�, are [��] ^ [ �], [��] _ [ �], and [��] ! [ �]

respectively;

4. [8x�]� is 8x[��x], and [9x�]� is 9x[��x].

Substitutions on signed tableaux. If � is a substitution and T is a signed tableau,
then T � is the signed tableau obtained by replacing every signed formula of the form T�
in T by T [��], and every signed formula of the form F� in T by F [��].

With these de�nitions out of the way, let us return to our main task: understanding
uni�cation.

Because substitutions are functions we can compose them in the usual way. That is, if �1
and �2 are substitutions, then we can de�ne a new substitution �1�2, which we call the
composition of �1 and �2. For every variable x, we de�ne x(�1�2) to be (x�1)�2. That is,
�1�2 �rst carries out the substitution �1 and then carries out the substitution �2.

There is one more concept we need to discuss before we can de�ne uni�cation. Let's
approach it via an example. Suppose we want to make the terms f(c,y,w) and f(x,y,g(z))
identical (where c is a constant, w, x, y, and z are variables, f is a 3-place function symbol,
and g is a 1-place function symbol). Let �1 be the substitution fx=c;w=g(z)g. Applying
�1 to these terms has the desired result, for f(c,y,w))�1 = f(x,y,g(z))�1 = f(c,y,g(z)).

But there are other ways of making these terms identical. For example, let �2 be the �nite
substitution fx=c;w=g(z); y=h(u; x)g. Applying �2 to either term yields f(c,h(u,x),g(z)).
Nonetheless, clearly �1 is a more general solution to the problem: �2 does too much work.
For suppose we apply �1 to some term. Then, if we want to (or need to) we are always
free to later give y the value h(u,x). To do so we need simply apply the substitution
fy=h(u; x)g), and this two step process gives us the same e�ect we would have achieved by
directly applying �2. But of course, we might not want to take this further step. (Perhaps
mapping y to h(u,x) is incompatible with other substitutions we need to make.) If we use
�2 to solve the problem, we are overcommitting ourselves.

123



Blackburn & Bos Chapter 5: First-Order Inference September 3, 1999

Such considerations motivate the following de�nition. A substitution �1 is said to be more
general than a substitution �2 if and only if there is some substitution � such that �2 = �1�.
That is, �1 is more general than �2 if we can get the e�ect of �2 by �rst carrying out �1
and then making a further substitution �. Thus, reverting to our motivating example,
fx=c;w=g(z)g is more general than fx=c;w=g(z); y=h(u; x)g because there is a substitution
� (namely fy=h(u; x)g) such that fx=c;w=g(z); y=h(u; x)g = fx=c;w=g(z)g�.
Incidentally, note that under this (standard) de�nition of `more general than', each sub-
stitution � is more general than itself. This is because we can get the e�ect of � by �rst
carrying out � and then carrying out the identity substitution fg. Thus the `more general
than' relation is reexive. It is also transitive. That is, if �1 is more general than �2, and
�2 is more general than �3, then �1 is more general that �3. The reader may like to try
proving this.

We are ready for the key de�nition.

Uni�cation. Let �1 and �2 be terms. A substitution is a uni�er for �1 and �2 if and only
if �1� = �2�. Terms �1 and �2 are said to be uni�able if and only if they have a uni�er. A
substitution � is a most general uni�er (or mgu) for two terms if and only if it is uni�er
for these terms, and is more general than any other uni�er.

Now we know what uni�cation is|but what is involved in computing uni�ers? Ideally,
what we want is an algorithm which will take as input two terms and determine whether
or not they are uni�able. If the terms are uni�able, it should return their uni�er as output.
If they are not uni�able, it should halt and tell us so.

Such algorithms exist. Let's consider one of the more straightforward ones in some detail.

To appreciate what this algorithm does, we really need to think of terms as trees. For
example, consider the term f(h(x),g(y,x,w)). Its parse tree|that is, the tree showing how
it is built up out of sub-terms|looks like this:

f

h g

x y x w

When are two terms di�erent? For our purposes, the following answer is the most useful:
two terms are di�erent if and only if their parse trees contain at least one disagreement
pair. What's a disagreement pair? Here's an example.
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f f

h g h g

x y x w x y x k

u v

Disagreement Pair

Intuitively, the pair of terms (w; k(u; v)) is a disagreement pair for these terms because
they are distinct terms that occupy `corresponding places' in the two parse-trees. What
is meant by `corresponding places'? Simply the nodes that one reaches by following the
same sequence of transitions from the root in the two trees. For example, if we follow the
transition sequence hsecond daughter, third daughteri from the root of the �rst tree we
arrive at the node labeled w, and if we follow the same transition sequence in the second
tree we arrive at the node labeled k.

Disagreement pairs make terms di�erent, thus uni�cation algorithms should try to elim-
inate disagreement pairs. When are disagreement pairs eliminable, and how can they be
eliminated?

First, suppose that two terms �1 and �2 are di�erent because there a disagreement pair
(d1; d2) such that neither d1 nor d2 is a variable. Then there is nothing we can do. No
substitution can help us out. The terms �1 and �2 are not uni�able.

Now for the tricky question. Suppose that one of these terms (d1 say) is a variable. Are
the two terms uni�able? The answer is `yes', provided that the variable d1 does not occur
in d2. Think about it. Suppose d1 is a variable, say x, and that x doesn't occur in d2.
Then we can eliminate this disagreement pair very easily: we simply need to replace x by
d2 (That is, we need simply perform the substitution fx=d2g.) To give a concrete example,
the disagreement pair (w; k(u; v)) shown above is of this form. We eliminate it by replacing
w by k(u,v).

On the other hand, if d1 is a variable (say x) and x does occur in d2, then uni�cation is
impossible. For example, suppose that d2 is f(x). Then, no matter what value we choose
for x, we will never render these two terms identical|we'll always have that extra function
symbol f to reckon with.

Let's make these observations a little more systematic. Suppose we have found a disagree-
ment pair (d1; d2) We will call this pair a simple disagreement pair if and only if at least
one of the terms d1 or d2 is a variable that does not occur in the other. (It could happen,
of course, that both d1 and d2 are variables that don't occur in the other|for example
if d1 = x and d2 = y: That's �ne. As long as there's at least one we're happy.) Simple
disagreement pairs are the ones we can repair. We do so by carrying out what we shall call
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the relevant repair. If d1 is a variable that does not occur in d2, then the relevant repair
is the substitution fd1=d2g. If d2 is a variable that does not occur in d1, then the relevant
repair is the substitution fd2=d1g. If both d1 and d2 are variables that don't occur in the
other, then there are two substitutions that will repair the problem, namely fd1=d2g and
fd2=d1g. We'll arbitrarily stipulate that in such cases the relevant repair is fd1=d2g.
On the other hand, if the disagreement pair we have found is not simple, there's nothing
we can do. Either we have that neither d1 nor d2 is a variable, or one of them is a variable
that occurs in the other term.

We now know which disagreement pairs are eliminable, and how to carry out the elimina-
tion. And this means, we are only one small step away from an algorithm for solving the
uni�cation problem. To unify two terms, simply try and eliminate all the disagreement
pairs! This idea immediately suggests the following non-deterministic algorithm:

input terms �1 and �2

let � := fg
while �1� 6= �2�

choose a disagreement pair (d1; d2) for �1�, �2�

if (d1; d2) is not simple then

write �1 and �2 are not uni�able and HALT

else

let � := � [ �, where � is the relevant repair
endif

endwhile

This is a genuine computational solution of the uni�cation problem. No matter which two
terms it is given as input, it will halt after �nitely many steps. When it halts, it will either
have told us that the terms are not uni�able (and if it says this, it's right!) or it will have
found out how to build the mgu of the two terms. These claims are not obvious; they
require proof. The reader interested in �nding out more should consult the references cited
in the Notes.

In fact, the algorithm has one additional property: the mgus it produces are idempotent .
That is, if � is an mgu produced by this algorithm, then �� = �. Why on earth is such an
abstract looking property interesting? The answer is: idempotent mgus provide us with
an easy way of solving the simultaneous uni�cation problem, and actually this problem will
be important when working with tableaux.
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We will be using uni�cation to try and close tableaux branches. That is, we will look for
branches containing pairs of atomic formula T (R(�1; : : : ; �n)) and F (R(�

0
1; : : : ; �

0
n)). If we

can �nd a substitution � that makes �1 identical to �
0
1, and . . . , �n identical to � 0n, then by

applying � we obtain a branch containing contradictory formula, that is, a closed branch.
Thus we need to solve the problem of �nding a single substitution that makes n pairs of
terms identical; this is called the simultaneous uni�cation problem.

Now, this problem may look harder than the ordinary uni�cation problem, but actually
it's not. It can be solved as follows. To �nd a substitution that identi�es n pairs of terms,
�rst �nd an idempotent mgu �1 for �1 and �

0
1. We can do this using the above algorithm.

Next, �nd an idempotent mgu �2 for �2�1 and �
0
2�1. Again we can do this using the above

algorithm. Next, �nd an idempotent mgu �3 for �3�1�2 and �
0
3�1�2 . . . . In fact, all we need

to do is keep `chaining together' the solutions to each individual pair. The substitution
� = �1�2 : : : �n�1�n that is obtained in this way is a simultaneous mgu for the n pairs of
terms. For this `chaining together' method to work, the substitutions constructed at each
step must be idempotent, and as the above algorithm yields idempotent mgus, it really
does deliver everything we shall need for tableaux theorem proving.

The basic concepts should now be clear, so let's turn to a more practical issue: how can we
use Prolog to unify terms? Now, we could approach this problem from scratch. However
(as the reader is undoubtedly aware) one of the main mechanisms underlying Prolog is a
form of uni�cation. Perhaps we can use Prolog's in-built uni�cation mechanism directly,
or adapt it straightforwardly, to perform the term uni�cations we require? This certainly
seems a sensible choice of strategy. Let's see what it involves.

The way Prolog performs uni�cation is reasonably close to the above algorithm. There are
two main di�erences. First, the algorithm given above is non-deterministic, whereas Pro-
log's in-built mechanism for unifying terms is deterministic. Clearly this is not a di�erence
that need concern us. The second di�erence, however, is important. In the interests of
eÆciency, Prolog does not bother making the `occurs check'. That is, given a disagreement
pair (d1; d2), one of which is a variable, Prolog does not check whether this variables occurs
in the other term, but will go straight ahead and attempt to carry out what it thinks the
required repair is. This leads it to attempt to unify terms that aren't uni�able, and thus
to stack overows and other undesirable behaviour.

Now, we are interested in using uni�cation as part of a �rst-order theorem prover. We
really need to know whether or not two terms are uni�able, and we certainly don't want
Prolog to mess things up with its `Hey, just go for it!' behaviour. Can Prolog be tamed?
That is, can we make use of its in-built uni�cation mechanism, but modify it so that makes
an occurs check? The answer is `yes'. The following code, adapted from Chapter 10 of
Sterling and Shapiro (Sterling and Shapiro 1986), does precisely this.

The main predicate unify uses the in-built uni�cation predicate = to carry out the required
uni�cations, but carefully inserts an occurs check (via the notOccursIn/2 predicate) where
required.
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unify(X,Y):-

var(X), var(Y), X=Y.

unify(X,Y):-

var(X), nonvar(Y), notOccursIn(X,Y), X=Y.

unify(X,Y):-

var(Y), nonvar(X), notOccursIn(Y,X), X=Y.

unify(X,Y):-

nonvar(X), nonvar(Y), atomic(X), atomic(Y), X=Y.

unify(X,Y):-

nonvar(X), nonvar(Y), compound(X), compound(Y), termUnify(X,Y).

So how is notOccursIn/2 to be de�ned? Well, if the term is a variable, then the key idea
is to make use of the in-built Prolog metalogical predicate \== (Recall that query X \== Y

succeeds if and only if X and Y are not identical.) This is coded in the �rst clause. The
second clause handles the case where the term is atomic (we don't have to do anything
else in such a case), and the third clause takes case of the case where the term is complex.

notOccursIn(X,Term):-

var(Term), X \== Term.

notOccursIn(_,Term):-

nonvar(Term), atomic(Term).

notOccursIn(X,Term):-

nonvar(Term), compound(Term),

functor(Term,_,Arity), notOccursInComplexTerm(Arity,X,Term).

The notOccursInComplexTerm predicate recursively checks whether the variable X does not
occur in either of the arguments of the complex term Term, making use of the notOccursIn
predicate as you would have expected.

notOccursInComplexTerm(N,X,Y):-

N > 0, arg(N,Y,Arg), notOccursIn(X,Arg),

M is N - 1, notOccursInComplexTerm(M,X,Y).

notOccursInComplexTerm(0,_,_).

128



Blackburn & Bos Chapter 5: First-Order Inference September 3, 1999

All that remains is to de�ne the predicates which were used in the de�nition of unify/2.
The predicate termUnify/2 �rst checks if the terms have the same functor symbols and
arity, and then uses unifyArgs/3 to unify their arguments.

termUnify(X,Y):-

functor(X,Functor,Arity), functor(Y,Functor,Arity),

unifyArgs(Arity,X,Y).

unifyArgs(N,X,Y):-

N > 0, M is N - 1,

arg(N,X,ArgX), arg(N,Y,ArgY),

unify(ArgX,ArgY), unifyArgs(M,X,Y).

unifyArgs(0,_,_).

Free variable Tableaux

Let's see how we can use uni�cation to de�ne a more computationally realistic signed
tableaux proof system.

As we discussed earlier, the problem with our �rst attempt at a �rst-order tableaux system
lay with the universal rules. Because they o�ered us too many ways of making substitutions
(in fact, in�nitely many) human insight was required to �nd proofs. By substituting free
variables, and gradually building up a system of constraints which we will solve using
uni�cation, we hope to bypass the need for human insight. Let's work through this idea
in detail, and see where it leads. As a �rst step, here are our new universal rules:

T8x� F9x�
T�(v) F�(v)

Here �(v) denotes the result of replacing all instances of the variable that the quanti�er
bound by a new variable v that does not occur bound anywhere in the tableau. (This
restriction is simply to prevent any `accidental bindings' taking place. In fact, every time
we apply these rules, we're going to substitute a previously unused variable.)

So far so good|but a moment's thought will convince the reader that our new strategy
could lead to serious problems with the existential rules. Recall that the basic idea behind
the existential rules was to invent a brand new name for the entity asserted to exist (we
called these new names `parameters') and to eliminate the quanti�er by substituting these
parameters. Uni�cation threatens to undercut this strategy completely: the substitutions
it makes may undo all our careful choices of new names! In short, we seem to be in a
dilemma. The use of free variables in the universal rules is essentially a `delaying' device;
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we don't want to make a real choices of what to substitute, we want uni�cation to sort
it all out for us. But if we delay in this way, how can we guarantee that uni�cation will
respect the `new names' concept that is crucial to the existential rules?

A very clever|and very simple|idea allows us a way round this problem. We are going
to substitute structured terms when we use the existential rules; the term structure itself
will ensure that uni�cation cannot spoil anything. To be more precise, we are to use what
are known as Skolem terms. Without further ado, here are the new existential rules:

F8x� T9x�
F�(s(x1; : : : ; xn)) T�(s(x1; : : : ; xn))

Here s is a new Skolem function symbol , and x1, . . . , xn are all the free variables in �. (If
there are no free variables, s is a new Skolem constant .) What does this mean, and why
does it work?

The basic idea is a straightforward generalisation of what we did earlier with parameters.
Once again, instead of working with the �rst-order language built over the original vo-
cabulary V, we are going to choose a set of new symbols SKO consisting of a countably
in�nite set of Skolem constants (these are essentially the same as our earlier parameters)
and for every natural number n a countably in�nite set of Skolem function symbols of arity
n. When carrying out tableaux proofs, we won't work in the original �rst-order language,
but �rst-order language whose vocabulary consists of all the original vocabulary V plus all
the new symbols in SKO.

The symbols in SKO enable us to manufacture new names. Crucially, however, because we
now have Skolem function symbols at our disposal, we can do something that we couldn't
do with parameters: we can `build in newness' in a way that will survive the uni�cation
operation! Look at the term the existential rules demands we substitute: s(x1; : : : ; xn),
where x1, . . . , xn are all the free variables in �. Now recall our discussion of the occurs
check. Quite simply, s(x1; : : : ; xn) cannot unify with any of x1, . . . , xn. Our new `Skolem
structured' term really will be new.

\Oh really?" the skeptical reader will demand. \The basic idea is clear, but the restriction
simply isn't strong enough! When we used parameters, we had to pick a parameter that
was brand new to the entire tableau. But look: the above rule only ensures that the new
structured name won't unify with any of the free variables in � itself! We should really
insist that the new instantiated name be s(x1; : : : ; xn), where x1, . . . , xn are all the free
variables in the entire tableau!"

This is an intelligent observation. Our skeptical reader is certainly thinking about the rule
in the right way. The suggestion is sensible: instantiations certainly could be carried out
that way. Nonetheless, we don't have to (and for this we should be grateful, since it means
we can substitute smaller Skolem terms). The simpler rule stated above is sound. This
is not obvious, and for a proof (and further discussion) of this matter the reader should
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consult the sources cited in the Notes.1

We now have the new quanti�er rules we need. Only one task remains: bringing uni�cation
into play.

We want uni�cation to be the `intelligence' guiding the proof search. We're going to use
our quanti�er rules essentially `blindly': we're simply going to build up a set of constraints
and hope that uni�cation can do something useful with them. In particular, we hope that
uni�cation will be able to close branches for us. How could it do this for us? Let's consider
an example. We shall redo our proof of

9x8yshoot(x,y) ! 8y9xshoot(x,y)

using our new quanti�er rules and uni�cation. Here are the �rst 7 steps of the construction.

1 F (9x8yshoot(x,y) ! 8y9xshoot(x,y))
2 T9x8yshoot(x,y) 1; F!
3 F8y9xshoot(x,y) 1; F!
4 T8yshoot(s1; y) 2; T9
5 F9xshoot(x; s2) 3; F8
6 T shoot(s1; v1) 4; T8
7 F shoot(v2; s2) 5; F9

The �rst 5 lines are essentially identical with the previous version, save that we have used
the Skolem constants s1 and s2 (rather than the parameters c1 and c2) in lines 4 and
5. (Note that we don't need to use Skolem functions as neither formula contains free
variables.) The real di�erence occurs in lines 6 and 7. In both lines we have `blindly'
instantiated in new variables, namely v1 and v2. So we don't (yet) have closure.

But closure is easy to get. Consider the substitution fv1=s2; v2=s1g. If we apply this to the
tableau (recall that we de�ned the concept of applying a substitution to a tableau in the
previous section) we get the following tableau:

1 F (9x8yshoot(x,y) ! 8y9xshoot(x,y))
2 T9x8yshoot(x,y) 1; F!
3 F8y9xshoot(x,y) 1; F!
4 T8yshoot(s1; y) 2; T9
5 F9xshoot(x; s2) 3; F8
6 T shoot(s1; s2) 4; T8
7 F shoot(s1; s2) 5; F9

This tableau is closed.
1Readers with some background in logic should try proving it themselves. Once you've been alerted

to the fact that the simpler rule is sound, it's not that diÆcult to work out why. (Like so many things in
logic and computer science, it's spotting the simpli�cation in the �rst place that's tricky.)
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This example motivates the addition of the following Atomic MGU Closure Rule:

Suppose that T is a tableau formed from some initial tableau I, and that some
branch of T contains a pair of atomic formulas of the form T (R(�1; : : : ; �n)) and
F (R(� 01; : : : ; �

0
n)). Then T � is also a tableau formed from the initial tableau I,

where � is a simultaneous mgu of �1 and �
0
1, . . . , and �n and � 0n.

This rule is rather di�erent from the other rules we've seen: it's not an extension rule,
rather it's a transformation rule. It tells us that if we have tableau formed from an initial
set I, and we transform it by applying a substitution having certain properties, we obtain
another tableau for the same initial set.

The basic idea guiding the choice of transformation should be clear: we want to apply
substitutions that could lead to branch closure. One point, however, may be puzzling.
Obviously we are interested in pairs of formulas of the form T� and F�, but why have we
restricted our attention to atomic formulas? The answer is: simplicity . In fact we could
have formulated a more general rule, but if we did so we would have to state it carefully (we
would need to avoid `accidental capture' of variables) and checking for accidental capture
would be computationally expensive. By restricting our attention to atomic formulas we
avoid these diÆculties.

And that's our free variable tableaux proof system. Frankly, it's not nearly as nice as
our previous system if one wants to prove things by hand|playing with Skolem functions
swiftly get unwieldy, and thinking in terms of uni�cation is cumbersome. But it wasn't
designed with the needs of humans in mind, it was designed for automation. And, as we
shall now see, for this purpose it is really rather good.

5.3 Implementing Free Variable Tableaux

We shall now present an implementation of the free variable signed tableaux proof system.
The implementation is an extension of the propositional tableaux implementation|but it
can't be described as a straightforward extension. While the basic ideas underlying signed
free variable tableaux make it possible to devise practical implementations, there is more
detail to take care of than in the propositional case. Moreover, the fact remains that �rst-
order logic is undecidable, so the implementation has to defuse the (very real) threat of
non-terminating tableaux constructions, and this requires a little care.

Our implementation draws on the Fitting (Fitting 1996) implementation of free variable un-
signed propositional tableaux. Roughly speaking, we take our signed propositional tableaux
implementation as the starting point, and extend it to a �rst-order system by adopting
many of Fitting's design choices. For further information, see the Notes.
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Before examining the main body of the code, let's take a quick look at the main supporting
routines we shall use. Obviously we need predicates to handle substitution. The workhorse
is the substitute predicate (supplied in comsemPredicates.pl), which we examined in
Section 2.4. Recall that the substitute/4 predicate takes a term, a variable, and a formula
as its �rst three arguments, and returns in its fourth argument the result of substituting
the term for each free occurrence of the variable in the formula. With it predicate at our
disposal, it is straightforward to de�ne what we mean by instances of quanti�ed formulas:

instance(t(forall(X,F)),Term,t(NewF)):-

substitute(Term,X,F,NewF).

instance(f(exists(X,F)),Term,f(NewF)):-

substitute(Term,X,F,NewF).

instance(t(exists(X,F)),Term,t(NewF)):-

substitute(Term,X,F,NewF).

instance(f(forall(X,F)),Term,f(NewF)):-

substitute(Term,X,F,NewF).

To handle the existential rule correctly, we need to be able generate new Skolem function
symbols on demand. The following predicate does this. (The predicates it calls may be
found in comsemPredicates.pl.)

skolemFunction(VarList,SkolemTerm) :-

newFunctionCounter(N),

compose(SkolemTerm,fun,[N|VarList]).

We shall also need to know what free variables a formula contains. We associate this
information explicitly with each formula. The following predicate does this.

notatedFormula(n(Free,Formula),Free,Formula).

We are now ready to discuss the main code. As in the propositional case, the outermost
predicate is called saturate. This recursively attempts to rule-saturate the input tableau
with the aid of the expand predicate. Moreover, as in the propositional case, the base
clause of saturate tests for closure via a predicate called closed.

But there is an important di�erence. The �rst-order version saturate has a second ar-
gument, a number called Qdepth (which can be read as `quanti�cation depth'). This
number is the maximum number of times that we are allowed to apply universal rules in
the course of constructing a tableau. This is the mechanism which wards o� the threat of
non-terminating tableaux constructions.
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saturate(Tableau,_):-

closed(Tableau).

saturate(OldTableau,Qdepth):-

expand(OldTableau,Qdepth,NewTableau,NewQdepth),!,

saturate(NewTableau,NewQdepth).

The closed/1 predicate tests for branch closure using uni�cation. It attempts to �nd a
pair of signed formulas of the form t(X) and f(X), and then uses the unify predicate
discussed in the previous section to test for branch closure.

closed([]).

closed([Branch|Rest]):-

member(NotatedOne,Branch),

notatedFormula(NotatedOne,_,t(X)),

member(NotatedTwo,Branch),

notatedFormula(NotatedTwo,_,f(Y)),

unify(X,Y),

closed(Rest).

Like its propositional cousin, the expand/4 predicate is a high level organisational predicate
which works its way recursively through the branches of the input tableau, and tries to
apply the various kinds of expansion. Its two extra arguments keep track of the input and
output quanti�cation depths. Quanti�cation depth is una�ected by all expansions save
universal expansions. Each universal expansion `uses up' one of our predetermined quota
of expansions and thus decrease the quanti�cation depth by 1.

In addition, expand/4 performs a more interesting task. Note the use of append (in the
clause handling universal expansions) to glue the new branch back onto the end of the
tableau. Why do this? Essentially, it's an attempt to ensure that our predetermined quota
of universal expansions are `spread around fairly'. It would be rather silly to use up our
entire quota on a single branch. By using append to `rotate' the branches on the tableau,
we ensure that every branch receives its fair share of universal expansions.

expand([Branch|Tableau],QD,[NewBranch|Tableau],QD):-

unaryExpansion(Branch,NewBranch).

expand([Branch|Tableau],QD,[NewBranch|Tableau],QD):-

conjunctiveExpansion(Branch,NewBranch).

expand([Branch|Tableau],QD,[NewBranch|Tableau],QD):-

134



Blackburn & Bos Chapter 5: First-Order Inference September 3, 1999

existentialExpansion(Branch,NewBranch).

expand([Branch|Tableau],OldQD,NewTableau,NewQD):-

universalExpansion(Branch,OldQD,NewBranch,NewQD),

append(Tableau,[NewBranch],NewTableau).

expand([Branch|Tableau],QD,[NewBranch1,NewBranch2|Tableau],QD):-

disjunctiveExpansion(Branch,NewBranch1,NewBranch2).

expand([Branch|Rest],OldQD,[Branch|Newrest],NewQD):-

expand(Rest,OldQD,Newrest,NewQD).

Now for the predicates that actually carry out the expansions. The expansion predicates for
unary, conjunctive, and disjunctive formulas are essentially the same as in the propositional
case. The only di�erence is that we have to translate a notated formula into a signed
formula to calculate its components, and then translate the components back again into
notated components.

unaryExpansion(Branch,[NotatedComponent|Temp]) :-

unary(SignedFormula,Component),

notatedFormula(NotatedFormula,Free,SignedFormula),

removeFirst(NotatedFormula,Branch,Temp),

notatedFormula(NotatedComponent,Free,Component).

conjunctiveExpansion(Branch,[NotatedComp1,NotatedComp2|Temp]):-

conjunctive(SignedFormula,Comp1,Comp2),

notatedFormula(NotatedFormula,Free,SignedFormula),

removeFirst(NotatedFormula,Branch,Temp),

notatedFormula(NotatedComp1,Free,Comp1),

notatedFormula(NotatedComp2,Free,Comp2).

disjunctiveExpansion(Branch,[NotComp1|Temp],[NotComp2|Temp]):-

disjunctive(SignedFormula,Comp1,Comp2),

notatedFormula(NotatedFormula,Free,SignedFormula),

removeFirst(NotatedFormula,Branch,Temp),

notatedFormula(NotComp1,Free,Comp1),

notatedFormula(NotComp2,Free,Comp2).

The most interesting are existentialExpansion/2 and universalExpansion/4. Note the
use of skolemFunction/2 to instantiate a new Skolem term in existentialExpansion.
In universalExpansion/4, note that quanti�cation depth is decremented, a new variable
V is `blindly' instantiated, and then|on the very last line|note the way append is used
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to replace the universal formula we have been working with back on end the branch. Why
do this? Well, we need to replace the formula because (as we have already discussed) we
will often have to re-use universal formulas. But then it makes very good sense to replace
the formula at the end of the branch. If we leave it where it is, we run the risk of using up
our entire quota of universal rule applications on this one formula. It is far more sensible
to ensure fairness by `rotating' the universal formulas on the branch, much as we rotated
the branches of the tableau earlier.

existentialExpansion(Branch,[NotatedInstance|Temp]):-

notatedFormula(NotatedFormula,Free,SignedFormula),

existential(SignedFormula),

removeFirst(NotatedFormula,Branch,Temp),

skolemFunction(Free,Term),

instance(SignedFormula,Term,Instance),

notatedFormula(NotatedInstance,Free,Instance).

universalExpansion(Branch,OldQD,NewBranch,NewQD):-

OldQD > 0, NewQD is OldQD - 1,

member(NotatedFormula,Branch),

notatedFormula(NotatedFormula,Free,SignedFormula),

universal(SignedFormula),

removeFirst(NotatedFormula,Branch,Temp),

instance(SignedFormula,V,Instance),

notatedFormula(NotatedInstance,[V|Free],Instance),

append([NotatedInstance|Temp],[NotatedFormula],NewBranch).

There is one tricky point in the de�nition of the universal expansion predicate: the use of
member/2 in the very �rst lines of it. At �rst sight this line of code seems superuous (note
that we don't have it in the other expansion predicates). However, if we leave out the call
to member/2, universal/1 will pick the �rst of the two universal formulas format, adds
it component to the beginning of the branch, and puts the universal formula back at the
end of the branch (via removeFirst and append). In a case where there are two di�erent
universal formulas on a branch, one of them will never be touched, and the Q-depth will
be wasted on the other. Adding member at the beginning of the clause overcomes this
problem.

Now it only remains to spell out what kinds of signed formula we are working with.

conjunctive(t(X & Y),t(X),t(Y)).

conjunctive(f(X v Y),f(X),f(Y)).

conjunctive(f(X > Y),t(X),f(Y)).
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disjunctive(f(X & Y),f(X),f(Y)).

disjunctive(t(X v Y),t(X),t(Y)).

disjunctive(t(X > Y),f(X),t(Y)).

unary(t(~X),f(X)).

unary(f(~X),t(X)).

universal(t(forall(_,_))).

universal(f(exists(_,_))).

existential(t(exists(_,_))).

existential(f(forall(_,_))).

As with the propositional implementation, it's nice to have a driver that translates the
formula into a notated, signed formula, and calls the saturate predicate. We call this
predicate valid/2, as in our implementation for propositional tableaux. Its second addi-
tional argument is the value of Q-depth.

valid(X,Qdepth):-

notatedFormula(NotatedFormula,[],f(X)),

saturate([[NotatedFormula]],Qdepth).

We conclude with a warning. Remember that this program can only construct those
tableaux which require fewer applications of the universal rules than the user-imposed
Qdepth limit. Thus if checking a formula with valid/2 fails, this most emphatically does
not mean \Not a �rst-order tableau theorem"! The formula in question may well be a
tableaux theorem|perhaps we just set Qdepth to too small a value for a proof to be found.
(Incidentally, while trying this program out on the kinds of formula found in introductory
logic books, we usually had Qdepth set to 25.) On the other hand, if the program tells us
that � is a �rst-order tableaux theorem, this is not open to question. If a closed tableau
has been formed from the initial tableau F�, then � is provable, and that's that.

Exercise 5.3.1 Add a pretty print predicate to our implementation of �rst-order tableaux, that
shows the branches and the proof steps in a readable way.

5.4 O�-the-shelf Inference Tools

To be provided....
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Software Summary of Chapter 5

freeVarTabl.pl The �le that contains the code for free variable tableaux, using

a number of ideas from Melvin Fitting's implementation for �rst-order logic.

(page 240)

callTheoremProver.pl The Prolog-interface to the theorem prover Otter.

(page 245)

callModelBuilder.pl The Prolog-interface to the model builder Mace.

(page 246)

fol2otter.pl Translates a formula in Otter syntax to standard output. (page 247)

Notes

The human-oriented tableaux system presented at the start of the chapter is a typical �rst-
order signed tableaux system; essentially identical systems may be found in Smullyan 1995
and Sundholm 1983, and Bell and Machover 1977, Fitting 1996, Smullyan 1995, Sundholm
1983 discuss it's unsigned counterpart. Incidentally, we really meant what we said in the
text. If you want to do tableaux proofs by hand, use this system; its free-variable cousin
wasn't designed for people but for computers.

Uni�cation and the uni�cation algorithm were introduced in Robinson 1965 for the pur-
poses of automated theorem proving. The algorithm discussed in the text is essentially
Robinson's original. The literature uni�cation is now huge, and a wide variety of uni�cation
algorithms have been investigated. We suggest that the reader who wants to know more
try Fitting 1996 or Apt 1995. Fitting's discussion is very clear, and should be accessible to
most readers of this book. Apt's discussion is more advanced, but still very approachable.
He gives a nice account of idempotent substitutions, and analyses three uni�cation algo-
rithms, including the non-deterministic Robinson algorithm presented here. This is also a
good source for further pointers to the literature.

The free variable proof system presented in the text is a signed version of the unsigned free
variable tableaux system presented in Fitting 1996, and the reader interested in learning
more about the soundness and completeness of the system is advised to start there (perhaps
using Smullyan as a backup). Any skeptical readers still worried by the soundness of the
existential rule should consult H�ahnle and Schmitt (1994). A useful general source is
Gallier (1986). This is a detailed introduction to the theory of �rst-order theorem proving
that covers tableaux, uni�cation and much else besides.

To extend our propositional implementation to �rst-order logic, we have by and large
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followed the Fitting (1996) strategy for unsigned tableaux. In particular, our use of Qdepth,
and the subsequent decision to use append to `rotate' branches of tableaux, and universal
signed formulas on branches, follows Fitting. (Incidentally, this technique has a name.
We are essentially treating both tableaux and branches as priority queues. The idea of
doing this in tableaux proofs dates back to Smullyan (1995)). The implementation of
skolemFunction is taken from Fitting, and the notatedFormula predicate is Fitting's
notation and fmla predicates rolled into one.
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Chapter 6

Putting It All Together

We now have some answers to the two questions with which these notes began.

1. We can build �rst-order representations in a compositional way for simple natural
language expressions. (Moreover, we are able to do in a way that takes scope ambi-
guities into account.)

2. We have automated the process of performing reasoning with (equality free) �rst-order
representations.

Along the way, we've developed a number of useful tools. Now it's time to have a little fun
and bring the various bits and pieces together. As we shall see, by `plugging together' our
lambda calculus, quanti�er storage, model checking and theorem proving programs we are
able to de�ne simple question handling and argumentation predicates. All that's involved
is some minor extensions to our DCGs, and a few simple driver de�nitions.

6.1 Natural Language Questions

From Chapter 2 we know how to compositionally build semantic representations for simple
expressions of English, and from Chapter 1 we know how to evaluate �rst-order formulas
in well-named models. Now, well-named models are just (rather primitive) databases. Let
us extend our grammar coverage so that we can pose simple natural language database
queries to them.

First we introduce some new syntactic categories: q for questions, and wh for wh-phrases.
Second, we de�ne a DCG rule that makes a question out of a wh-phrase and a verb phrase:

q(WH@VP)--> wh(WH), vp2(VP).
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(Note that this rule is the essentially the same as the rule that makes sentences out of noun
phrases and verb phrases.) The third step is to add the rules for the wh-phrases:

wh(lambda(P,lambda(X,P@X)))--> [who].

wh(lambda(P,lambda(X,(N@X) & (P@X))))--> [which], n2(N).

With these entries we can handle questions like `Who is a customer?' or `Which robber loves

Honey Bunny?'. The semantic representations that are derived for questions are lambda
expressions, for example:

?- q(Sem,[who,is,a,customer],[]).

Sem = lambda(X,customer(X))

The �nal step is to write a driver that translates a question into a lambda expression, feeds
it to an example model, and returns the answer. (The example models we use here are
those of Chapter 1.) The driver can be coded as follows:

query(Example):-

readLine(Question),

q(Q,Question,[]),

betaConvert(Q,lambda(Answer,Sem)),

evaluate(Sem,Example),

write(Answer), nl, fail.

With readLine/1 Prolog waits for the user to enter a question. The user's input is given
to the DCG, which returns the representation for the question entered. After conversion,
we require the semantic representation being of the form lambda(Answer,Sem), that is, a
question.

Now, the way we designed the treatment of questions, Sem will contain a free occurrence of
the variable Answer. Feeding the formula Sem to the evaluation predicate, after making it
a sentence, generates all possible (and correct) assignments for Answer, as we have learned
from Chapter 1.

Here is an example query, evaluated to example model 1:

?- query(1).

> Who loves Honey Bunny?

pumpkin
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In model 1, only Pumpkin loves Honey Bunny. Our driver tries to �nd other instantiations
for answers, but it|correctly|fails. So, all it displays is the answer pumpkin.

We could extend the driver, and let it ask again for a question, by adding a second clause
for query/1. After all, the �rst clause will always fail (due to the usage of fail in it).

query(Example):-

query(Example).

Now we have changed our driver in a \never ending conversation"! Here is a snapshot of
an example session:

?- query(1).

> Who loves Honey Bunny?

pumpkin

> Who does not love Honey Bunny?

mia

vincent

honey_bunny

> Which robber loves Honey Bunny?

pumpkin

> Which robber does not love Honey Bunny?

honey_bunny

>

Recall the vocabulary and the content of example model 1, and note the way negated
questions are answered. Handling negated questions in this correct way is due to our
revised model checker of Chapter 1.

Exercise 6.1.1 [intermediate] Extend the grammar fragment and the driver predicate in such a
way that yes-no questions are covered as well.

Exercise 6.1.2 [hard] Reimplement wh-questions by using the gap-threading technique to pass
on the variable of the WH-phrase down the syntax tree, as required in `Who did Vincent kill?'
(For gap-threading, consult Pereira & Shieber.)
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6.2 Natural Language Argumentation

We might want to let the computer decide whether a natural language argument is valid.
(A natural language argument is a sequence of sentences, the last of which is called the
conclusion, the rest, premises.) Here, for example, is a simple two premise natural language
argument:

(1)
Vincent knows every boxer.

Butch is a boxer.

Vincent knows Butch.

This argument is valid . If the premises are true, then the conclusion is true too.

Now, we already have the basic tool needed to test arguments for validity, namely our
�rst-order tableaux theorem prover. What we need to add is a driver which hands the
theorem prover a list of formulas instead of just a single formula. The theorem prover will
then attempt to make the premises true and the conclusion false. If it can't do this|that
is, if it terminates with a closed tableau|then the argument is valid.

Let's implement a predicate which does this. We'll call it validArgument/2, and it will
feed the theorem prover with a list of formulas, where the �rst formula of the list is the
conclusion, and the rest of the list are premises. We will also need a predicate premises/3
that turns a list of formulas in a list of signed, notated formulas.

validArgument([Conclusion|Premises],Qdepth):-

notatedFormula(NotatedConclusion,[],f(Conclusion)),

premises(Premises,[],NotatedPremises),

saturate([[NotatedConclusion|NotatedPremises]],Qdepth).

premises([],N,N).

premises([P|Premises],SoFar,NotatedPremises):-

notatedFormula(NotatedP,[],t(P)),

premises(Premises,[NotatedP|SoFar],NotatedPremises).

The only thing missing is a driver that takes a natural language argument, gives the
sentences in the argument to a DCG that builds �rst order representations, and then
feeds the representations to validArgument. But this is easily done by a predicate called
argument/0:

argument:-

enterPremises(Premises),

enterConclusion(Conclusion),
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(

validArgument([Conclusion|Premises],10),

nl,write('This is a valid argument!'),nl,!

;

nl,write('Not a valid argument...'),nl

).

When starting this predicate, the user is asked to enter some premises, and a conclusion,
which are then passed through as argument of validArgument/2 (we allow 10 applica-
tions of the universal rules). If a proof is found, this predicate prompts \This is a valid
argument!", otherwise it prints \Not a valid argument...".

Entering the premises is done with the help of the following (recursive) predicate:

enterPremises(Premises):-

nl, write('Enter premises (or Return to continue):'),

readLine(Input),

(

Input=[],!,

Premises=[]

;

d(SemPremise,Input,[]),

betaConvert(SemPremise,ConvertedPremise),

enterPremises(Others),

Premises=[ConvertedPremise|Others]

).

This predicate|recursively|asks the user to enter premises and translates them into �rst-
order logic, and returns a list of formulas. The recursion �nishes if the user enters and
empty sentence.

A similar predicate does this job for entering the conclusion:

enterConclusion(Conclusion):-

nl, write('Enter conclusion:'),

readLine(Input),

d(SemConclusion,Input,[]),

betaConvert(SemConclusion,Conclusion).

Time for a test session to see if this all works.
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?- argument.

Enter premises (or Return to continue):

> Butch is a boxer.

Enter premises (or Return to continue):

> Vincent knows every boxer.

Enter premises (or Return to continue):

>

Enter conclusion:

> Vincent knows a boxer.

This is a valid argument!

Equally well, we can try and see if the whole thing works for arguments that are not valid.
The following, for instance, is not a valid argument.

(2)
If Mia snorts, then Vincent smokes.

Vincent smokes.

Mia snorts.

So let's try:

?- argument.

Enter premises (or Return to continue):

> If Mia snorts, then Vincent smokes.

Enter premises (or Return to continue):

> Vincent smokes.

Enter premises (or Return to continue):

>

Enter conclusion:

> Mia snorts.

Not a valid argument...

Now Prolog gives the appropriate response after entering the third sentence, as expected.
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Argumentation with Scope Ambiguities

Let's have a look at the following argument:

(3)
A woman loves every man.

Every boxer is a man.

A woman loves every boxer.

Is this a valid argument? The answer is: sometime yes, sometimes no. The premises are
ambiguous, so it depends on which reading we give them. It is a valid argument if the �rst
premise is understood as: there is a woman such that she loves every man. (That is, the
reading where `a woman' out-scopes `every man'.)

But, this is not the reading that mainLambda.pl gives us. And trying this example on our
driver for natural language argumentation will generate an \invalid" as response. It would
be nice to be able to test whether a natural language argument is valid under some reading
of the premises. Obviously our program from Chapter 2 won't help us here, since it can't
cope with scope ambiguities. However, if we consult mainCooperStorage.pl instead, we
get both readings for the �rst premise:

?- s(Sem,[every,man,is,loved,by,a,woman],[]).

Sem = exists(Y,woman(Y)&forall(X,man(X)>love(Y,X))) ;

Sem = forall(X,man(X)>exists(Y,woman(Y)&love(Y,X))) ;

no

The �rst one is the reading we are interested in, the second isn't. So now we are able, in
principle, to test arguments with scope ambiguities, and show, using our tools, that this
argument has a valid reading.

Exercise 6.2.1 Revise the argument/1 driver in such a way that it handles scope ambigui-
ties. Incorporate one of the programs from Chapter 3 (Cooper Storage, Keller Storage, or Hole
Semantics).

6.3 Building Ontologies

Although we have discussed in detail how to build meaning representations for natural lan-
guage expressions out of the representations of the words they consist of, so far we haven't
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paid any attention to the meaning of the words themselves. For example, we simply as-
sumed that the meaning of `boxer' was adequately represented by the symbol boxer. Even
worse, we left `�ve dollar shake' unanalyzed and represented it by five dollar shake. In
short, we have said nothing about lexical semantics.

Lexical semantics is a fascinating (and diÆcult) subject, and one we won't be able to
explore in detail in this book. Nonetheless, it is worth knowing that it is possible to
say something useful about word meaning by thinking about the relationships that hold
between words. To illustrate this, we will present a simple treatment of nouns. We will
describe the �ne structure of entities (that is, the things nouns denote) by designing an
ontology of concepts. The work involved is essentially classi�cation. That is, we are going
to divide the concepts that make up the world into di�erent classes. Some of these classes
will be disjoint. (For example, we could decide that male and female entities are disjoint.)
On the other hand, some classes will inherit properties of other classes. (For example, we
could classify the noun `man' as male. As male is disjoint from female, we could then infer
that `man' inherits the property of being disjoint from female.)

These two relations|disjointness and inheritance|are closely interconnected. Here is a
tree structure of four nouns (`organism', `plant', `animal', and `human') that shows why and
how.

organism

plant animal human

These are the kind of tree-structures that we will use to classify nouns, so it is important
to know how to interpret them. First, all daughters of a mother node are disjoint. So, the
tree above states that `plant', `animal', and `human' are pairwise disjoint concepts. That
is, according to this partial picture of the world, nothing can be a plant and an animal,
nothing can be an animal and a human, and nothing can be a plant and a human. This
classi�cation (which is based on that used in the lexical database WordNet) seems to make
sense. Of course one could quibble with the terminology|a biologist would insist that
humans are animals|but for many purposes it is clearly a sensible classi�cation.

The second kind of information this pictures gives us concerns inheritance. All the daughter
nodes inherit information from the mother nodes. According to the tree above, every `plant'
is an `organism', every `animal' is an `organism', and every `human' is an `organism'. Or to
use the standard linguistic terminology for these relationships, `organism' is a hypernym of
`animal', and `animal' is a hyponym of `organism'. These relationships are not transitive.
That is, while `object' is a hypernym of `food', and `food' is a hypernym of `beverage', the
linguist would not say that `object' was a hypernym of `beverage'. In grpahical terms, to
move to the hypernym we take one step up the tree to the mother mode, and to move to
a hyponym we move one step down to a daughter.
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That's the basic idea. Let's apply it on a bigger scale, by classifying all the nouns in our
lexicon. That is, we shall draw a tree ontology that covers all of the nouns in our lexicon.
Now, obviously there are many ways to carry out this task, and it is also highly likely
that if two di�erent people classi�ed the same set of nouns, they'd each come up with a
di�erent ontology, for everyone has a slightly di�erent conception of the world. Is this a
serious obstacle? For our purposes, no. We simply want to illustrate how important it is to
provide some (consistent) picture of the world, and how to put this picture to work. But
of course, if you want to adapt the tools provided in this book to some particular domain
you will almost certainly want to extend the ontology provided below in various ways.

The classi�cation of nouns that we will adopt is based on that provided by the lexical
database WordNet. Here is the top structure of our ontology:

abstraction act entity

object organism

food artifact plant animal human

beverage edible building drug instrumentality male female

weaponry medium device container vehicle

At the top of this structure we have `abstraction' (a general concept formed by extracting
common features from speci�c examples), `act' (things that people do) and `entity' (any
concretely existing object). (You might want to argue that any `abstraction' is a concretely
existing entity. Fine: if you feel this way, change the tree so that `abstraction' becomes
a daughter of `entity'.) Then `entity' is divided into `object' (any non-living entity) and
`organism' (a living entity). The remaining classi�cations should be fairly self-explanatory.

This is the top structure of our ontology. And now, taking this tree as our point of
departure, let's try to �nd our way through the world of nouns. That is, let's go through
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our lexicon and relate each of the nouns to one of these nodes. Sometimes this is easy.
For example, `episode' and `joke' are abstractions, `foot massage' and `piercing' are acts, a
`�ve dollar shake' is a beverage, and so on. Moreover, the framework outlined so far does
enable us to deal with homonyms (words that have multiple unconnected meanings), as
the reader is now asked to show.

Exercise 6.3.1 [easy] Think of a way to put homonyms (words that have multiple unconnected
meanings) in the ontology of nouns. For instance, according to WordNet, `boxer' could be someone
who �ghts with his �sts for sport, a worker who packs things into containers, or a breed of
stocky medium-sized short-haired dog with a brindled coat and square-jawed muzzle developed
in Germany.

But what about nouns like `boss', `boxer', `owner', or `criminal'? These should de�nitely be
classi�ed as human, but they can't be classi�ed as simply as male or female: they can be
either. However if we extend the tree for `human' using the ideas introduced so far, the
only possibility is:

human

male female boss boxer criminal owner

This is clearly wrong. It states that boxers are disjoint from bosses, and that owners are
disjoint from male and female | in short, precisely what we need to avoid. What are we to
do? A simple solution (and the one we shall adopt) is to add yet another kind of relation
to the ontology tree: one that includes inheritance, but excludes disjointness. We will use
dotted lines for this kind of relation. Applying this idea gives us the following tree:

human

male female boss boxer criminal owner

Using this extension, it is reasonably straightforward to classify all the nouns in our little
lexicon. And, as we shall see, this information will bu useful in at least two ways: First, we
will use it as background knowledge for general �rst-order inference tasks (we shall do so
by translating the inheritance and disjointness relations into �rst-order formulas). Second,
it will be the basic source for determining sortal conicts, a simple form of inference we
can encode directly in Prolog.

But before turning to inference, let's turn to a more pressing question: how shall we
represent the ontology? Actually, there's an even better question: where shall we store
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the ontology? And, since we want to state the relations between words, what could be
a better place to choose than the the lexicon (after all, this was speci�cally designed to
contain information about words)? So let's agree to code the ontology tree in our lexicon.
Here's how we shall do this:

lexicon(noun,car,[car],[vehicle]).

lexicon(noun,chainsaw,[chainsaw],[device]).

lexicon(noun,criminal,[criminal],human).

lexicon(noun,customer,[customer],human).

lexicon(noun,drug,[drug],[artifact]).

lexicon(noun,entity,[entity],[top]).

lexicon(noun,episode,[episode],abstraction).

lexicon(noun,female,[female],[human]).

For each noun in the lexicon, we �ll the last slot with its hypernym noun. With the
exception of top, all the hypernyms are part of the lexicon, too. Words that encode their
hypernyms in square brackets (such as car and chainsaw above) are disjoint with respect to
other words with the same hypernym (that is, square brackets encode the solid lines in the
tree). On the other hand, words that don't do this (such as criminal and customer) are
not required to be disjoint from other words with the same hypernym (that is, hypernyms
listed without square brackets indicate that the dotted line relationship introduced in the
previous tree diagram holds.

An important remark. As we've already remarked, the hypernym relation is not transitive.
These relations are not transitive. That is, while `object' is a hypernym of `food', and
`food' is a hypernym of `beverage', `object' is not a hypernym of `beverage'. Nonetheless,
it is certainly true that anything that is a beverage is an object, and when performing
inference we will be interested in drawing such conclusions, and this means that we will
need to chain our our way through the hypernym relation. But this leads to a practical
point: if we have been careless, and speci�ed the hypernym relation wrongly, we may get
silly answers when we carry out such chaining. In particular we need to take care that
there are no words w, v1, v2, . . . , vn in our lexicon such that w is a hypernym of v1, v1 is
a hypernym of v2, . . . , and vn is a hypernym of w. It would be useful to have a Prolog
utility that checks that our ontological speci�cations don't contains cycles, and the next
exercise asks the reader to provide one.

Exercise 6.3.2 Write a checker that browses through the lexicon, checking that it is never
possible to cycle back to a word by moving along the hypernym relation for nouns.

Once we've stored our ontology in the lexicon, we want to use the information it contains
to perform inference. Actually, we're going to do so in two distinct ways: by compiling the
ontology into �rst-order formulas (so that we can use general �rst-order inference methods)
and by using more restricted (but more eÆcient) Prolog-based inference.

151



Blackburn & Bos Chapter 6: Putting It All Together September 3, 1999

Let's �rst see how to compile ontologies into �rst-order formulas. If P is a mother of Q,
then we can infer that for all things that are Q, they also are P. And if Q and R have the
same mother P, and both relationships are shown with a solid line, then we infer that no
thing that is Q, is R. So, from the following tree

P

Q R S T

we can derive the formulas: 8x(Q(x) ! P(x)), 8x(R(x) ! P(x)), 8x(S(x) ! P(x)),
8x(T(x) ! P(x)), and also 8x(Q(x) ! :R(x)).

Exercise 6.3.3 Do we need, in addition to the formulas above, also the formula 8x(R(x) !
:Q(x))? Why or why not?

In Prolog, this translation is implemented as follows:

generateOntology(Formulas):-

generateIsa(I0),

generateDisjoint(I0-I1,I2),

isa2fol(I1,[]-F),

isa2fol(I2,F-Formulas).

With the help of the Prolog built-in setof predicate, we collect all the inheritance relations
in terms of the form isa(Hypo,Hyper).

generateIsa(I):-

setof(isa(Hypo,Hyper),Words^lexicon(noun,Hypo,Words,Hyper),I).

On the basis of this list, we calculate a list of disjoint(A,B) terms, and update the list of
isa/2 relations, by removing the square brackets from the hypernym (we don't need these
anymore).

generateDisjoint([]-[],[]).

generateDisjoint([isa(A,[Hyper])|L1]-[isa(A,Hyper)|L2],I3):-!,

findall(disjoint(A,B),member(isa(B,[Hyper]),L1),I1),

generateDisjoint(L1-L2,I2),

append(I1,I2,I3).

generateDisjoint([isa(A,Hyper)|L1]-[isa(A,Hyper)|L2],I):-

generateDisjoint(L1-L2,I).
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These lists contain the inheritance information (isa/2) and the disjointness relations (by
disjoint/2). Now the translation into �rst-order representations is straightforward:

isa2fol([],A-A):- !.

isa2fol([isa(S1,[S2])|L],A1-[forall(X,F1 > F2)|A2]):- !,

compose(F1,S1,[X]),

compose(F2,S2,[X]),

isa2fol(L,A1-A2).

isa2fol([isa(S1,S2)|L],A1-[forall(X,F1 > F2)|A2]):-

compose(F1,S1,[X]),

compose(F2,S2,[X]),

isa2fol(L,A1-A2).

isa2fol([disjoint(S1,S2)|L],A1-[forall(X,F1 > ~ F2)|A2]):-

compose(F1,S1,[X]),

compose(F2,S2,[X]),

isa2fol(L,A1-A2).

Running this predicate gives us a list of terms that look like:

?- generateOntology(O).

O = [forall(A,abstraction(A)>top(A)),

forall(B,act(B)>top(B)),

forall(C,animal(C)>organism(C)),

forall(D,artifact(D)>object(D)),

forall(E,beverage(E)>food(E)),

forall(F,bkburger(F)>edible(F)),

forall(G,boss(G)>human(G)),.....]

This compilation opens the door to using general �rst-order inference techniques.

But sometimes we will want to use the ontology to perform inference directly in Prolog;
while less general, this can be far more eÆcient. For instance, we would like to test whether
something can be both a `radio' and a `gun', or both an `artifact' and `suitcase'. We do this
by the predicate consistent/2.

consistent(X,Y):-

generateIsa(I),

generateDisjoint(I-Isa,Disjoint),

\+ inconsistent(X,Y,Isa,Disjoint).
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We shall say that two items from our ontology are consistent if we can't prove that they
are inconsistent. So when are two items inconsistent? First of all, if they are disjoint:

inconsistent(X,Y,_,Disjoint):-

member(disjoint(X,Y),Disjoint).

inconsistent(X,Y,_,Disjoint):-

member(disjoint(Y,X),Disjoint).

Second, they are inconsistent if by chaining up the tree from the �rst item, we can �nd a
a hypernym that is inconsistent with the other item.

inconsistent(X,Y,Isa,Disjoint):-

member(isa(X,Z),Isa),

inconsistent(Z,Y,Isa,Disjoint).

inconsistent(X,Y,Isa,Disjoint):-

member(isa(Y,Z),Isa),

inconsistent(X,Z,Isa,Disjoint).

Now we can test this predicate with queries such as:

?- consistent(female,boss).

yes

?- consistent(male,radio).

no

Exercise 6.3.4 Our Prolog implementation of the consistent/2 predicate is rather ineÆcient.
Every time this predicate is put to work, it traverses through the entire lexicon to build up the
set of isa/2 and disjoint/2 terms. But as the lexicon is quite likely to be static during parsing
or semantic analysis, the same work is done for every call on consistent/2. Change this, by
declaring isa/2 and disjoint/2 as dynamic predicates, that are asserted to Prolog's database
at initialization of the module.

Exercise 6.3.5 [project] Use the ontology for nouns above and add sortal constraints to the
semantics of verbs, such that `Mia drinks a restaurant' is rejected, but `Mia drinks a �ve dollar

shake' is accepted.
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6.4 Logical Redundancies

There are many important issues to do with quanti�er scoping which we have ignored. One
such issue has to do with logical redundancies: our algorithm will generate two logically
equivalent readings for `Every boxer loves every woman', or for `A man saw a woman'.

Exercise 6.4.1 [project] Write an algorithm that, after generating all the scoped representations
with storage or hole semantics, checks whether these are logically equivalent. Use either our �rst-
order tableaux program, or an \o�-the-shelf" theorem prover to carry out the reasoning tasks.

Further, as we mentioned in Chapter 3, simply generating all possible permutations of
quanti�er scope is naive|ideally, we want world knowledge to �lter out some of the possi-
bilities. But if can think of a portion of world knowledge coded as �rst-order formulas, that
are relevant to this problem, then we can use automated reasoning to perform the required
�ltration. For example, given a sentence with the noun phrase `a �st of every boxer', our
`generate all possibility' methods will happily generate readings in which a �st is shared by
several boxers, which is biologically implausible. Another example is the sentence `Every
car has a radio', in which the reading where all the cars in the domain share the same radio
is quite unlikely.

Exercise 6.4.2 [project] Design a �rst-order theory (a set of formulas that put further con-
straints on the objects in our domain), that eliminate unwanted readings that are produced by
scoping algorithms. Use either our �rst-order tableaux program, or an \o�-the-shelf" theorem
prover to carry out the reasoning tasks.

'

&
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Software Summary of Chapter 6

nlQuestions.pl Simple example that shows how to combine model checking and

semantic construction to get a system for natural language queries. (page 249)

nlArgumentation.pl Combines the theorem prover with a natural language in-

terface to handle natural language argumentation. (page 251)

semOntology Predicates for working with the semantic ontology (page 253)
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Notes

Wordnets

WordNet is a lexical database for English nouns, verbs, adjectives, and adverbs (Miller
1995). What WordNet makes a winner is that is has a huge coverage, and that all its
sources are electronically available, in di�erent kinds of frameworks (including Prolog).
Probably the best introduction to WordNet is the recently published book (Fellbaum 1998).
If you can't get hold on this book, read for an introduction the \Five papers on WordNet"
(available on the Web), which explains the basic philosophy behind WordNet, and the
structure and organization of its components.

Eliminating logically equivalent readings

Removing non-redundant scopings is not only interesting, it also reduces processing time.
Nevertheless, relatively little work is done on eliminating logically equivalent readings.
Veste describes an algorithm that generates non-redundant quanti�er scopings (Vestre
1991), without appealing to any kind of automated reasoning. A more general strategy
is approached by Gabsdil and Striegnitz (1999), who use o�-the-shelf inference engines
to eliminate equivalent reading generated by a standard scoping algorithm, such as those
provided in Chapter 3.
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Afterword: Where To From Here?

To be supplied...
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Appendix A

Propositional Languages

The quanti�er-free fragment of any �rst-order language (as the terminology suggests) sim-
ply consists of all formulas of the language that contain no occurrences of the symbols 9
or 8. For example, robber(pumpkin), customer(mia), customer(y), and

customer(y) ! love(vincent,y)

are all quanti�er-free formulas. On the other hand,

8y[customer(y) ! love(vincent,y)]

isn't, as it contains an occurrence of the quanti�er 8.
The key thing to note about quanti�er-free formulas is the following. Suppose we are
given a model M (of appropriate vocabulary) and an assignment g in M. Now, normally
we need to work with two semantic notions: satisfaction for arbitrary formulas and truth
for sentences. However, when working with quanti�er-free formulas, there are no bound
variables to complicate matters, so this distinction is unnecessary. In fact, when working
with a quanti�er-free fragment, we may as well view each variable x as a constant inter-
preted by g(x). If we do this, then every quanti�er-free formula is either true or false inM
with respect to g. Moreover, it is obvious how to calculate the semantic value of complex
sentences: conjunctions will be true if and only if both conjuncts are true, disjunctions will
be true if and only if at least one disjunct is true, a negated formula will be true if and
only if the formula itself is not true, and so on. (In short, we basically need to make the
truth table calculations, which the reader is probably familiar with.)

This means we can simplify our notation somewhat. Because we don't have quanti�ers, the
internal structure of atomic formulas is irrelevant, for we're never going to bind any free
variables they may contain. All that is important is whether the atomic symbols are true
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or false, and how they are joined together using Boolean operators. For example, while
it may be mnemonically helpful to choose propositional symbols such as customer(x) or
love(vincent,mia), we lose nothing if we replace them by simpler symbols such as p and
q. Following this line of thought leads us to de�ne propositional languages. To specify a
propositional language, we �rst say which symbols we are going to start with. (A fairly
standard choice is p, q, r, s, t, and so on, often decorated with superscripts and subscripts:
for example, p00, r000, or q2.) The chosen symbols are called proposition symbols, or atomic
sentences. Complex sentences are built up using the standard Boolean connectives (for
example, :, ^, _ and !) in the obvious way, and the truth values of complex sentences
are calculated using the familiar truth table rules.

In short, propositional languages are essentially a simple notation for representing the
quanti�er-free formulas of �rst-order languages. When we devise inference mechanisms for
�rst order logic in Chapters 4 and 5, it turns out to be sensible to �rst investigate inference
methods for the quanti�er free fragment (we do this in Chapter 4), and only then turn to
the problem for the full �rst order language (the task of Chapter 5). Thus in Chapter 4,
we make use of the simpler propositional notation just de�ned.

164



Appendix B

Type Theory

But What Does It All Mean?

We have given an informal, computationally oriented, introduction to the lambda calculus
and its applications in semantic construction. We adopted a rather procedural perspective,
encouraging the reader to think of the lambda calculus as a programming language|
indeed, as the sort of language that emerges when one tries to generalize straightforward
logic programming approaches to semantic construction (such as that of experiment 2).

However our account hasn't discussed one interesting issue: what do lambda expressions
actually mean? Hopefully the reader now has a pretty �rm grasp of what one can do with
lambda expressions|but is one forced to think of lambda expressions purely procedurally?
As we are associating lambda expressions with expressions of natural language, it would
be nice if we could give them some kind of model theoretic interpretation.

Actually, there's something even more basic we haven't done: we haven't been precise about
what counts as a �-expression! Moreover|as the industrious reader may already have
observed|if one takes an `anything goes' attitude, it is possible to form some pretty wild
(and indeed, wildly pretty) expressions. For example, consider the following expression:

�x.(x@x)@x

Is this a legitimate lambda expression? Suppose we functionally apply this expression to
itself (after all, nothing we have said rules out self-application). That is:

(�x.(x@x)@x)@(�x.(x@x)@x)

If we now apply �-conversion we get:
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((�x.(x@x)@x)@(�x.(x@x)@x))@(�x.(x@x)@x)

But note this is just the functional application followed by an additional occurrence of
�x.(x@x)@x! Obviously we can going on applying �-conversion as often as we like, pro-
ducing ever longer expressions as we do so. Now, this is very interesting|but is it the sort
of thing we had in mind when we decided to use the lambda calculus?

In this appendix, we shall briey discuss some of these issues. The main points we wish
to make are that there are di�erent version of the lambda calculus, useful for di�erent
purposes, and that both major variants of the lambda calculus can be given model theoretic
interpretations in terms of functions and arguments. The reader interested in learning more
is encouraged to follow up the references given in the Notes of Chapter 2.

The lambda calculus comes in two main varieties: the untyped lambda calculus, and the
typed lambda calculus. Both can be regarded as programming languages, but they are very
di�erent.

The untyped lambda calculus adopts an `anything goes' attitude to functional application.
For example, �x.(x@x)@x is a perfectly reasonable expression in untyped lambda calculus,
and it is �ne to apply it to itself as we did above. The untyped lambda calculus is relevant
to the study of natural language (explaining various natural language phenomena seems to
demand some form of self-application). Moreover, it is relevant to functional programming
(the core of the programming language Lisp is essentially the untyped lambda calculus).
Finally, it does have a model-theoretic semantics, indeed a very beautiful one. As one
one might suspect, this semantics interprets abstractions as certain kinds of functions.
The primary diÆculty is to �nd suitable collections of functions in which the idea of self
application can be captured. (In standard set theory, functions can't apply to themselves,
so constructing function spaces with the structure necessary to model self application is a
non-trivial exercise.) There are a variety of solutions to this problem, some of which are
very elegant indeed.

There are many kinds of typed lambda calculi. The one we shall discuss is called the simply
typed lambda calculus.

Natural language semanticists generally make use of some version of the simply typed
lambda calculus. The key feature of the simply typed lambda calculus is that it adopts
a very restrictive approach to functional application. \If it doesnt't �t, don't force it",
and typed systems have exacting notions about what �ts. Let's discuss the idea of simple
typing in a little more detail.

To build the kinds of representations we have been making use of in simply typed lambda
calculus, we would proceed as follows. First we would specify the set of types. There
would be in�nitely many of these, namely (1) the type e of individuals, (2) the type t of
truth values, and (3) for any types �1 and �2, the function type h�1; �2i. Second, we would
specify our logical language. This would contain all the familiar �rst order symbols, but in
addition it would contain an in�nite collection of variables of each type (the ordinary �rst
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order variables, which range over individuals, would now be thought of as the set of type
e variables) together with the � operator.

In the typed lambda calculus, every expression receives a unique type. The key clauses
that ensures this are the de�nitions of abstraction and functional application. First, if
E is a lambda expression of type �2, and v a variable of type �1 then �v.E is a lambda
expression of type h�1; �2i. In short, it matters which type of variable we abstract over.
Abstracting with respect to di�erent types of variables results in abstractions with di�erent
types. Second, if E is a lambda expression of type h�1; �2i, and E 0 is a lambda expression of
type �1 then we are permitted to functionally apply E to E 0. If we do this, the application
has type �2. In short, we are only allowed to perform functional application when the types
E and E 0 �t together correctly, and only then. The intuition is that the types tell us what
the domain and range of each expression is, and if these don't match, application is not
permitted. Note, moreover, that the type of the application is determined by the types of
E and E 0. In e�ect, we have imposed a very strict type discipline on our formalism. The
typed lambda calculus is a programming language, but when we use it we have to abide
by very strict guidelines.

This has a number of consequences. For a start, self-application is impossible. (To use E as
a functor, it must have a function type, say h�1; �2i. But then its arguments must have type
�1. So E can't be one of its own arguments.) Moreover, it is very straightforward to give
a semantics to such systems. Given any model M, the denotation De of type e expressions
are the elements of the model, the permitted denotations Dt of the type t expressions
are True and False, and the permitted denotations Dh�1;�2i of type h�1; �2i expressions
are functions whose domain is D�1 and whose range is D�2 . In short, expressions of the
simply typed lambda calculus are interpreted using a straightforward, inductively de�ned,
function hierarchy.

Which particular functions are actually used? Consider �x.man(x), where x is an ordinary
�rst order variable. Now, man(x) is a formula, something that can be True or False, so
this has type t. As was already mentioned, �rst-order variables are viewed as type e vari-
ables, hence it follows that the abstraction �x.man(x) has type he; ti. That is, it must be
interpreted by a function from the set of individuals to the set of truth values. But which
one? In fact, it would be interpreted by the function which, when given an individual from
the domain of quanti�cation as argument, returns True if that individual is a man, and
False otherwise. To put it another way, it is interpreted using the function which exactly
characterizes the subset of the model consisting of all men. But this subset is precisely the
subset that the standard �rst-order semantics uses to interpret man. In short, the `func-
tional interpretation' of lambda expressions is set up so that, via the mechanism of such
characteristic functions, it meshes perfectly with the ordinary �rst order interpretation.

By building over this base in a fairly straightforward way, the interpretation can be ex-
tended to cover all lambda expressions. For example, the expression

�P.9x(woman(x)^P@x)
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would be interpreted as a function which when given the type of function that P denotes
as argument (and P denotes type he; ti functions, like the characteristic function of man)
returns a type t value (that is, either True or False). Admittedly, thinking in terms
of functions that take other functions as arguments and return functions as values can
get pretty tedious, but the basic idea is straightforward, and for applications in natural
language semantics, only a very small part of the function hierarchy tends to be used.

In short, throughout this book we have been talking about the lambda calculus as a mecha-
nism for marking `missing information', and we have exploited the mechanisms of functional
application and �-conversion as a way of moving such missing information to where we
want it. But in fact there is nothing at all mysterious about this `missing information'
metaphor. It is possible to give precise mathematical models of missing information in
terms of functions and arguments. An abstraction is interpreted as a function, and the
`missing information' is simply the argument we will later supply it with. Indeed, a variety
of models are possible, depending on whether one wants to work with typed or untyped
versions of the lambda calculus.

Exercise B.0.1 Does our implementation of �-conversion allow self-application?

Exercise B.0.2 What happens when you functionally apply the formula �x.x@x to itself?
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Theorem Provers and Model Builders

Automated reasoning has seen an enormous increase of performance of (especially �rst-
order) inference engines and model builders. This appendix is a guide to a number of
useful reasoning engines for computational semantics.

Theorem Provers

� Bliksem
Resolution based theorem prover for �rst order logic with equality (Hans de Nivelle).
Almost as fast as the speed of light.

URL: http://turing.wins.uva.nl/~mdr/ACLG/Provers/Bliksem/bliksem.html

� Spass
First-order theorem prover (Christoph Weidenbach et al.)
Winner at the CASC-15 in the divisions FOF and SAT.

URL: http://spass.mpi-sb.mpg.de/.

� fdpll:
Or, if you prefer, the \First-Order Davis-Putnam-Loveland-Logeman" theorem prover
(Peter Baumgartner). Good at satis�able problems.

URL: http://www.uni-koblenz.de/~peter/FDPLL/

� Otter
The `classical' theorem prover by W. McCune.

URL: http://www-unix.mcs.anl.gov/AR/otter/
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Model Builders

� Mace
Short for \Model and Counter-Examples". Mace is a Model builder for �rst-order
logic with equality (McCune). Got the �rst price at CASC-16 in division SAT (work-
ing in tandem with Otter).

URL: http://www-unix.mcs.anl.gov/AR/mace/

� Satchmo
Satchmo is a model generator for �rst-order theories, implemented in Prolog.

URL: http://www.pms.informatik.uni-muenchen.de/software/

� Kimba
Kimba is an Higher-Order Model Generator, a deduction system for abductive or
circumscriptive reasoning within linguistic applications (Karsten Konrad).

URL: http://www.ags.uni-sb.de/~konrad/kimba.html

Systems

� MathWeb
This system for automated theorem proving connects a wide-range of mathematical
services by a common, mathematical software bus (Franke and Kohlhase 1999).

URL: http://www.ags.uni-sb.de/~omega/www/mathweb.html
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Prolog in a Nutshell

What is Prolog?

Prolog is one of the most important programming languages in Computational Linguistics
and Arti�cial Intelligence. Two key features distinguish Prolog from other programming
languages: its declarative nature, and its extensive use of uni�cation. Ideally, in Prolog
we simply state the nature of the problem, and let the Prolog uni�cation-driven inference
engine search for a solution.

The Basics

There are actually only three basic constructs in Prolog: facts, rules, and queries. A set of
facts and rules | that is, a knowledge base | is all a Prolog program consists of. Facts are
used to state things that are unconditionally true of the domain of interest. For example,
we can state that Mia and Jody are women by putting the facts

woman(mia).

woman(jody).

in our knowledge base. Rules relate facts by logical implications. We can add to our
knowledge base the conditional information that Mia plays air-guitar if she listens to
music as follows:

playsAirGuitar(mia):-

listensToMusic(mia).
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The :- should be read as \if", or \is implied by". The part on the left hand side of the :-
is called the head of the rule, the part on the right hand side the body. (Incidentally, note
that we can view a fact as a rule with an empty body. That is, we can think of facts as
`conditionals that don't have any antecedent conditions'.) The facts and rules contained
in a knowledge base are called clauses. The collection of all clauses in a knowledge base
that have the same head is called a predicate.

Posing queries makes the Prolog inference engine try to deduce a positive answer from the
information contained in the knowledge base. There are two basic circumstances under
which Prolog can return a positive answer. The �rst, and simplest, is when the question
posed is one of the facts listed in the knowledge base. The second is when Prolog can
deduce the positive answer by using the deduction rule called modus ponens. That is, if
head :- body and body are both in the knowledge base, then Prolog can deduce that head
is true.

Let's consider an example. We can ask Prolog whether Mia is a woman by posing the
query

?- woman(mia).

and Prolog will answer \yes", since this is a fact in the knowledge base. However, if we
ask whether Mia plays air-guitar by posing the query

?- playsAirGuitar(mia).

its answer is \no". First, this fact is not recorded in the knowledge base. Second, it cannot
infer that Mia plays air-guitar as there is nothing in the knowledge base stating that Mia
is listening to music (thus Prolog assumes that this is false) and hence we cannot make use
of the only rule we have in our knowledge base. On the other hand, if the knowledge base
had contained the additional fact

listensToMusic(mia).

then Prolog would have responded \yes", since it could then have deduced by modus
ponens that Mia plays air-guitar.

Jumping ahead slightly, there are two things that make Prolog so powerful. The �rst is that
it is capable of `chaining together' uses of modus ponens. The second is that Prolog has
a powerful mechanism (described later) called uni�cation, which lets it handle variables.
This combination of chained modus ponens and sophisticated variable handling enables it
to draw far more interesting inferences than our rather trivial examples might suggest.

The comma , expresses logical conjunction in Prolog. We can change the rule above by
adding another condition to its body:
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playsAirGuitar(mia):-

listensToMusic(mia),

happy(mia).

Now the rule reads: Mia plays air-guitar if she listens to music, and if she is happy. We
can also express disjunction in Prolog. Let's change the rule to:

playsAirGuitar(mia):-

listensToMusic(mia);

happy(mia).

The ; should be read as or, so here we have a rule stating that Mia plays air-guitar if she
listens to music, or if she is happy.

However there is another (much more commonly used) way of expressing disjunctive con-
ditions: we simply list a number of clauses that have the same head. For example, the
following two rules mean exactly the same as the previous rule:

playsAirGuitar(mia):-

listensToMusic(mia).

playsAirGuitar(mia):-

happy(mia).

In fact, disjunctions are almost always expressed using such multiple rules; extensive use
of semicolon makes Prolog code pretty hard to read.

Syntax

What exactly are the syntactic entities such as woman(jody) and playsAirGuitar(mia)

that we use to build facts, rules, and queries? They are called terms, and there are three
kinds of terms in Prolog: atoms, variables, and complex terms. An atom is a sequence of
characters starting with a lowercase character. A variable is also a sequence of characters,
but it must start with an uppercase character or an underscore. So mia and airGuitar

are atoms, while X, Mayonnaise, and mayonnaise are variables.

Complex terms are build out of a functor and a sequence of arguments. The arguments
are put in ordinary brackets, separated by commas, and placed after the functor. The
functor must be an atom. That is, variables cannot be used as functors. On the other
hand, arguments can be any kind of term. For example

hide(X,father(butch))
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is a complex term. Its functor is hide, and it has two arguments: the variable X, and the
complex term father(butch).

The number of arguments that a complex term has is called its arity . For instance,
woman(mia) is a complex term with arity 1, while loves(vincent,mia) is a complex
term with arity 2.

Arity is important to Prolog. Prolog would be quite happy for us to use two pred-
icates with the same functor but with a di�erent number of arguments (for example,
love(vincent,mia), and love(vincent,marcellus,mia)) in the same program. How-
ever, if we insisted on doing this, Prolog would treat the two place love and the three
place love as completely di�erent predicates.

When we need to talk about predicates and how we intend to use them (for example, in
documentation) it is usual to use a suÆx / followed by a number to indicate the predicate's
arity. For example, if we were talking about the playsAirGuitar predicate we would
write it as playsAirGuitar/1 to indicate that it takes one argument. We make use of this
convention in the book.

Uni�cation

Variables allow us to make general statements in Prolog. For example, to declare that
every woman likes a foot massage, we add the following rules to the database:

likeFootMassage(X):-

woman(X).

It can be read as: X likes a foot massage, if X is a woman. The nice thing about variables
is that they have no �xed values. They can be instantiated with a value by the process of
uni�cation. If we pose the query

?- likeFootMassage(mia).

the variable X is uni�ed with the atom mia, and Prolog tries to prove that woman(mia) can
be inferred from the knowledge base. Two terms are uni�able if they are the same atoms,
or if one of them is a variable, or if they are both complex terms with the same functor
name and arity, and all corresponding arguments unify. Uni�cation makes terms identical.
It is the heart of the engine that drives Prolog.

Prolog has a built-in operator for uni�cation: the =. By querying the goal

?- X = butch.

the variable X gets uni�ed with the atom butch and the goal succeeds.
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Recursion

Predicates can be de�ned recursively. Roughly speaking, a predicate is recursively de�ned
if one or more rules in its de�nition refers to itself. Here's an example:

moreExpensive(X,Y):-

costsaLittleMore(X,Y).

moreExpensive(X,Y):-

costsaLittleMore(X,Z),

moreExpensive(Z,Y).

The de�nition of the moreExpensive/2 predicate is fairly typical of the way recursive
predicates are de�ned in Prolog. Clearly, moreExpensive/2 is (at least partially) de�ned
in terms of itself, as the more moreExpensive functor occurs on both the left and right
hand sides of the second rule. Note, however, that there is an `escape' from this circularity.
This is provided by the costsaLittleMore predicate, which occurs in both the �rst and
second rules. (Signi�cantly, the right hand side of the �rst rule makes no mention of
moreExpensive.)

Let's see how Prolog makes use of such de�nitions. Suppose we had the following facts in
our knowledge base:

costsaLittleMore(royaleWithCheese,bigKahunaBurger).

costsaLittleMore(fiveDollarShake,royaleWithCheese).

If we pose the query

?- moreExpensive(fiveDollarShake,bigKahunaBurger).

then Prolog goes to work as follows. First, it tries to make use of the �rst rule listed
concerning moreExpensive. This tells it that X is more expensive than Y if X costs a
little more than Y , but as the knowledge base doesn't contain the information that a �ve
dollar shake costs a little more than a big kahuna burger, this is no help. So, Prolog
tries to make use of the second rule. By unifying X with fiveDollarShake and Y with
bigKahunaBurger it obtains the following goal:

?- costsaLittleMore(fiveDollarShake,Z),

moreExpensive(Z,bigKahunaBurger).

Prolog deduces moreExpensive(fiveDollarShake,bigKahunaBurger) if it can �nd a value
for Z such that, �rstly,
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?- costsaLittleMore(fiveDollarShake,Z).

is deducible, and secondly,

?- moreExpensive(Z,bigKahunaBurger).

is deducible too. But there is such a value for Z: royaleWithCheese. It is immediate that

?- costsaLittleMore(fiveDollarShake,royaleWithCheese).

will succeed, for this fact is listed in the knowledge base. Deducing

?- moreExpensive(royaleWithCheese,bigKahunaBurger).

is almost as simple, for the �rst clause of moreExpensive/2 reduces this goal to deducing

?- costsaLittleMore(royaleWithCheese,bigKahunBurger).

and this is a fact listed in the knowledge base.

There is one very important thing you should bear in mind when working with recursion:
a recursive predicate should always have at least two clauses: a non-recursive one (the
clause that stops the recursion at some point, otherwise Prolog would never be able to
�nish a proof!), and one that contains the recursion. In our example, the �rst clause of
more expensive/2 is the non-recursive clause, and the second clause contains the recursion.
(Note that the order of these two clauses in the knowledge base is not important!)

Lists

Lists are recursive data structures in Prolog. The recursive de�nition of a list runs as
follows. First, the empty list is a list. Second, a complex term is a list if it consists of two
items, the �rst of which is a term (often refered to as �rst), and the second of which is a
list (often referred to as rest or the rest list).

Square brackets indicate lists. The empty list is written as []. The list operator | separates
the �rst item of a list from the rest list. For example, here is a list with three items:

[butch|[pumpkin|[marsellus|[]]]]
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When working with lists, Prolog always makes use of such recursive �rst/rest representa-
tions, and for some purposes it is important to know this. Mercifully, however, Prolog also
o�ers a more readable form of list representation. The same list can be declared as:

[butch,pumpkin,marsellus]

Prolog will quite happily accept lists in this more palatable notation as input, and moreover,
it does its best to uses this notation for its output.

Note that the items in a list need not only be atoms: they can be any Prolog term, including
lists. For example

[vincent,[honey_bunny,pumpkin],[marsellus,mia]]

is a perfectly good list.

Since lists are recursive data structures, most of the predicates that work on lists, are
de�ned using recursive predicates. The simplest example is the member/2 predicate, which
is given in the program library.

Operators

Many newcomers to Prolog �nd the word operator rather misleading, for Prolog's operator's
don't actually operate on anything, or indeed do anything at all. They are simply a
notational device that Prolog o�ers to represent complex terms in a more readable fashion.

For example, suppose that we want to use not as the functor expressing sentence negation,
and and as the functor expressing sentence conjunction. Then the term representing Butch

boxes and Vincent doesn't dance would be:

and(butch_boxes,not(vincent_dances)).

It would be nicer if we could use the more familiar notation in which the conjunction
symbol stands between the two sentences it conjoins. That is, we would prefer the following
representation:

butch_boxes and not vincent_dances

The following operator de�nitions let us do precisely this.
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:- op(30,yfx,and).

:- op(20,fy,not).

The and is declared as an in�x operator by yfx with precedence value of 30. The y

represents an argument (in this case the left argument of &) whose precedence is lower or
equal of the operator. The x represents an argument (the right argument of and) whose
precedence value must be strictly lower than that of the operator (30, in this case). The
not is de�ned as a pre�x operator with precedence 20, and an argument that should have
a precedence value lower or equal to 20.

More generally, Prolog allows us to de�ne our own in�x, pre�x and post�x operators.
Operator names must be atoms. When we declare a new operator, we also have to state
its precedence and those of its arguments (in order for Prolog to disambiguate expressions
with more than one operator).

A very important �nal remark about operators: Prolog is featured with a set of special
prede�ned operators, that have a meaning. Among these is the = for uni�cation as we saw
before and \+ for negation as we will see later. Other prede�ned operators we use in the
programs of this book are the in�x operators == and \==. The goal X == Y succeeds if
X and Y are identical terms (That is, the should have the same structure, even variables
should have the same name | uni�cation plays no role here!). On the other hand, \==
checks whether its argument are not identical.

Arithmetic

Prolog contains some built-in operators for handling integer arithmetic. These include *,
/ +, - (for multiplication, division, addition, and subtraction, respectively) and >, < for
comparing numbers.

These symbols, however, are just ordinary Prolog operators. That is, they are just a
user friendly notation for writing arithmetic expressions: they don't carry out the actual
arithmetic. For example, posing the query

?- X = 1 + 1.

uni�es the variable X with the complex term 1 + 1, not with 2, which, for people unused
to Prolog's little ways, tends to come as a bit of a surprise.

If we want to carry out the actual arithmetic involved, we have to explicitly force evaluation
by making use of the very special inbuilt `operator' is/2. This calls an inbuilt mechanism
which carries out the arithmetic evaluation of its second argument, and then uni�es the
result with its �rst argument.
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?- X is 1 + 1.

X = 2

yes

Negation

There is no explicit negation in Prolog. Something is regarded as false if it cannot be
proved. This is the so-called closed world assumption of Prolog.

Prolog does have an inbuilt mechanism for \negation as failure". That is, we can ask it
whether something cannot be proved by using the built-in pre�x operator \+. The goal
?- \+ man(jules) succeeds if and only if the goal ?- man(jules) fails.

Variables in negated goals are not instantiated. Therefore, the following two goals are not
fully equivalent.

?- likeFootMassage(Who)

Who = mia

yes

?- \+ \+ likeFootMassage(Who)

yes

Backtracking and the Cut

When Prolog tries to prove a goal, the structure underlying it attempts can be reagarded
as a tree: a tree with branches that lead (or do not lead) to possible proofs. The Prolog
inference engine essentially searches for a branch that makes the main goal true. Of course
it may, and usually does, �nd itself in a branch that does not lead to a proof (that is, a
branch that fails). Then Prolog automatically backtracks to the previous node in the tree
and tries another (the next) branch. (If there is no previous node, this means that the goal
is not provable, and Prolog tells us \no".)

Backtracking can be forced by the user by entering a semicolon after Prolog gives a solution.
This allows us to try generating more than one solution to a query. For example (reverting
to our original knowledge base) we can demand that Prolog �nds all the women as follows:

?- woman(Who).

Who = mia;

Who = jody;

no
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There are two ways to inuence Prolog's search strategy: using the cut to suppres back-
tracking, or changing the order of the clauses in the database.

The cut (written !, it is a built-in Prolog predicate with arity 0) removes certain branches
from the proof tree. If a cut is put in a clause, and Prolog encounters it during a proof, it
removes all the clauses of the same predicate that are listed further down in the knowledge
base, and moreover, removes all alternative solutions to conjuncts to the left of the cut in
its clause.

The order of clauses play a role in Prolog's search strategy, since Prolog works on the
database in a sequential way, and subgoals are proved from left to right in the search tree.
(Sometimes the order even drastically determines the outcome of a proof.)

Built-in Predicates

There is a set of built-in predicates available in Prolog. We briey discuss the ones that
we use in our programs. It should be noted though, that it depends on the Prolog version
that you use, which predicates are built-in.

First we have the ones for controlling output. The predicate write/1 displays a term to
the current output device, and nl/0 creates a new line.

Then there is whole family of predicates that are used for term manipulation. With these
you can break complex terms into pieces or build new ones. The predicate functor(T,F,A)
succeeds if F is the functor of term T with arity A. And arg(N,T,A) is true if A is the Nth
argument of T. In some case we prefer to make use of the so-called \univ" predicate,
weirdly written as \=..", that transforms a complex term into a list consisting of the
functor followed by its arguments. For instance:

?- love(pumpkin,honey_bunny) =.. List.

List = [love,pumpkin,honey_bunny]

yes

For checking the types of terms: nonvar(X) is true if X is instantiated, var(X) is true if X
is not instantiated. The predicate simple/1 succeeds if its argument is either an atom or
a variable, and compound/1 if its argument is a complex term.

With assert/1 and retract/1 it is possible to change the knowledge base while executing
a goal. The former asserts a clause to the database, the latter removes it. Many versions
of Prolog require a dynamic declaration of those predicates that are modi�ed by other
predicates, as we do with the counter for the skolem index in the library �le.

Finally, there is some prede�ned stu� that gives controll over backtracking. The very rude
fail/0 predicate causes Prolog to backtrack (this is used to generate more solutions). With
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bagof/3 it is possible to generate all solutions of a speci�c goal, and put the instantiations
of a certain variable (or complex term with variables) in a list. E.g., the goal

?- bagof(Who,woman(Who),Answer).

Answer = [mia,jody].

yes

tries to satis�es the goal in the second argument of bagof, and for each solution it puts
the value of its �rst argument (Who) in its third argument, the list Answer. The predicate
setof/3 functions similarly, but it removes duplicate answers.

Di�erence Lists

A di�erence list List1-List2 is a way of using two lists (namely, List1 and List2) to
represent one single list (namely, the di�erence of the two lists).

For example, the three element list [pumpkin,butch,jimmy] can be represented as the
following di�erence list:

[pumpkin,butch,jimmy,lance]-[lance]

or as the following one:

[pumpkin,butch,jimmy]-[]

Indeed, there are in�nitely many di�erence list representations of [pumpkin,butch,jimmy].
In all of them, the �rst list in the di�erence list representation consists of the list we are
interested in (namely [pumpkin,butch,jimmy]) followed by some suÆx, while the second
list is that suÆx. So a di�erence list is simply a pair of list structures, the second of which
is a suÆx from the other. We follow the usual convention of using the built-in operator -
to group the two list together. (However, note that we don't have to do this: any other
operator would do.)

Let's go a step further. Suppose we take the suÆx to be a variable. Then any other
di�erence-list encoding of [pumpkin,butch,jimmy] is an instance of the following most
general di�erence list .

[pumpkin,butch,jimmy|X]-X
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In practice, we will use the term di�erence list to mean the most general di�erence list.
The empty list is represented by the di�erence list X-X.

Why on earth should anyone want to represent lists as di�erence lists? There is a simple
answer: eÆciency. In particular, when we use the di�erence list representation, Prolog can
perform concatenation of lists must faster. For example, the usual append/3 for normal
lists is a recursively de�ned predicate that can be ineÆcient for large lists. (This is because
Prolog must recursively work its way down the entire collection of �rst/rest pairs.) On the
other hand, when we make use of di�erence lists append/3 can be de�ned as follows.

append(X-Y,Y-Z,X-Z).

Consider how this works. Suppose we want to append [pumpkin,butch] to [jody,lance].
Then we make the following query:

?- append([pumpkin,butch|E]-E,[jody,lance|F]-F,A-B).

This causes A to unify with [pumpkin,butch|E], E with [jody,lance|F], and B with F.
As a result, A-B uni�es with [pumpkin,butch,jody,lance|B]-B, which is a di�erence list
of the four items pumpkin, butch, jody, and lance.

The reader who works through this example will see that what makes di�erence list repre-
sentations so eÆcient is that the suÆx variable gives us direct access to the end of the list.
In the conventional �rst/rest representation we have to work our way recursively down
towards the end of the list. Di�erence list representations avoid this overhead. We have
to pay a price for this gain in eÆciency (di�erence list representation is less transparent)
but in many circumstances this is a price worth paying.

De�nite Clause Grammars

De�nite clause grammars (DCGs) are the in built Prolog mechanism for de�ning grammars.
Actually, they are really a sytactically sugared way of working with certain di�erence lists.
With DCGs you can kill two birds with one stone: if you de�ne the grammar rules you'll
get the parser for free!

Here is a DCG for a very small fragment of english grammar. We have de�ned syntactic
categories s, np, vp, det, noun, and tv, standing for sentence, noun phrase, verb phrase,
determiner, common noun, and transitive verb. These are also called the non-terminal

symbols. Every rule in the DCG has a non-terminal symbol on its left hand side.

s --> np, vp.
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np --> det, noun.

np --> [mia].

det --> [a].

noun --> [man].

noun --> [five,dollar,shake].

vp --> tv, np.

vp --> [drinks].

tv --> [loves].

On the right hand side of the rules, you'll either �nd one or more non-terminal symbols,
or a terminal symbol. The terminal symbols are the lexical entries, the actual words of the
language of our interest.

Now, what do these rules mean? They are very intuitive indeed. The rule s --> np,

vp says that a syntactic category called s, consists of an np, followed by a vp. Similarly,
according to this DCG, the category noun is either the string man, or the sequence of strings
five dollar shake (represented in lists). And so on.

This DCG covers sentences like Mia loves a �ve dollar shake, A man drinks, but not: A

woman loves or Mia drinks a one dollar shake.

To parse sentences, we can pose a query like:

?- s([mia,loves,a,five,dollar,shake],[]).

This goal is satis�ed if the sequence of words in the �rst argument belongs to s. There is
only one rule for s in our DCG. It says that an s can be replaced by an np followed by a
vp. That is, we have to take some items of the input list that form a noun phrase, in such
a way that the rest of the items on the list form a verb phrase. Since there is the rule

np --> [mia].

in the knowledge base we now have to proof whether

?- vp([loves,a,five,dollar,shake],[]).

which is provable indeed (we leave this is an exercise to the reader). And this is basically
how parsing with DCGs takes place on the surface level. However, Prolog doesn't use our
DCG rules directly for the purpose of parsing. The DCG is translated internally into the
following clauses:
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s(A,B) :- np(A,C), vp(C,B).

np(A,B) :- det(A,C), noun(C,B).

np([mia|B],B).

det([a|B],B).

noun([man|B],B).

noun([five,dollar,shake|B],B).

vp(A,B) :- tv(A,C), np(C,B).

vp([drinks|B],B).

tv([loves|B],B).

The alert reader will notice that these clauses look surprisingly familiar. In fact, they are
the direct encodings of di�erence lists (in the facts, for example noun([man|B],B)) and
the appending of two di�erence lists (in the rules, for instance

s(A,B) :- np(A,C), vp(C,B).

can be read as: s is a di�erence list A-B if we can prove that is the result of appending
di�erence list A-C to C-B).

Since, as we just noticed, DCG rules are normal Prolog clauses, it is perfectly allowed to
add arguments to the rules. Some useful stu� we can add to our grammar is information
on agreement. Suppose we want to include noun phrases like all boxers in our grammar by
adding entries for all and boxers:

det --> [all].

noun --> [boxers].

Be careful though! Adding these clauses make it possible to parse Mia loves all boxers, but
also non-grammatical All man drinks or A boxers loves all woman. Clearly, our grammar
lacks information about agreement. However, this information can be added very easily
to the rules. Let's do it for the determiners and nouns �rst (and why not add some extra
entries at the same time):

det(plural) --> [all].

det(singular) --> [a].

noun(singular) --> [boxer].

noun(plural) --> [boxers].

noun(singular) --> [man].

noun(plural) --> [men].

noun(singular) --> [five,dollar,shake].

noun(plural) --> [five,dollar,shakes].
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Since det and noun have an extra argument now, all the rules that have these symbols
at their right hand side (this is the np --> det, noun. rule in our current grammar)
should get an extra argument as well. As can be seen from the entries above, the value
of this argument is either singular or plural. Since we want the determiner to have the
same agreement as the noun when they are combined to a noun phrase, we could write the
following code:

np --> det(singular), noun(singular).

np --> det(plural), noun(plural).

But there is much more elegant way of encoding this. We can bring in a variable that,
during parsing, gets instantiated with the agreement value of the determiner and noun,
and collapse the above rules into one:

np --> det(Agr), noun(Agr).

Nevertheless, from the examples given earlier, we also want to add agreement features to
noun phrases and verb phrases. We won't do explain this step by step | the principle
should be clear now | but list the entire rewritten grammar including agreement, and
extended with some new entries, below.

s --> np(Agr), vp(Agr).

np(Agr) --> det(Agr), noun(Agr).

np(singular) --> [mia].

det(plural) --> [all].

det(singular) --> [a].

noun(singular) --> [boxer].

noun(plural) --> [boxers].

noun(singular) --> [man].

noun(plural) --> [men].

noun(singular) --> [five,dollar,shake].

noun(plural) --> [five,dollar,shakes].

vp(Agr) --> tv(Agr), np(_).

vp(singular) --> [drinks].

vp(plural) --> [drink].

tv(singular) --> [loves].

tv(plural) --> [love].

Now look at our grammar. From an aesthetic point of view, there certainly is some space
for improvement! Everything is mixed up: the rules and the lexical entries together form
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one chaotic DCG. Consider what these grammar would look like if we extend its coverage
to a more serious fragment of english!

One way to bring in some organisation in the grammar, is to make a physical distinction
between the lexicon and the grammar rules. The lexicon might be designed as follows:

lexicon(np,singular,mia).

lexicon(det,plural,all).

lexicon(det,singular,a).

lexicon(noun,singular,boxer).

lexicon(noun,plural,boxers).

lexicon(noun,singular,man).

lexicon(noun,plural,men).

lexicon(vp,singular,drinks).

lexicon(vp,plural,drink).

lexicon(tv,singular,loves).

lexicon(tv,plural,love).

That is, normal Prolog facts of the form lexicon/3, with the �rst argument stating the
syntactic category, the second argument the agreement value, and the third the word itself.
The only thing left to do is to make a connection between this lexicon and the grammar
rules. DCGs have a neat way to do this, normal Prolog goals can be included in the rules
included in curly brackets. This is the result:

s --> np(Agr), vp(Agr).

np(Agr) --> [X], {lexicon(np,Agr,X)}.

np(Agr) --> det(Agr), noun(Agr).

det(Agr) --> [X], {lexicon(det,Agr,X)}.

vp(Agr) --> tv(Agr), np(_).

vp(Agr) --> [X], {lexicon(vp,Agr,X)}.

tv(Agr) --> [X], {lexicon(tv,Agr,X)}.

Notes

In this appendix we summarized the basic concepts of Prolog. We hope it will be a handy
reference, however it is not intended as a substitute for good introduction to Prolog. The
reader who wants to learn about computational semantics, but who knows no Prolog, is
strongly advised to put this book aside for a while and study one of the many excellent
Prolog texts currently available. We particularly recommend the following ones. For a
succinct, no-frills overview, try Clocksin and Mellish (Clocksin and Mellish 1987). For a
leisurely, in-depth introduction to programming in Prolog, try Bratko (Bratko 1990). For
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a more theoretically oriented introduction, try Sterling and Shapiro (Sterling and Shapiro
1986). Finally, for an introduction specially geared towards computational linguistics, try
Pereira and Shieber (Pereira and Shieber 1987).
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Appendix E

Listing of Programs

This appendix includes the full program listings that are developed in this book. Most
predicates are decorated with a short documentation, using the following notational con-
ventions for its required argument instantiations:

:Arg Argument Arg should be instantiated to a term denoting a goal

+Arg Argument Arg should be instantiated

-Arg Argument Arg should not be instantiated

?Arg Argument Arg may or may not be instantiated

Since Prolog's birth in the beginning of the seventies, a number of Prolog dialects emerged,
and not all agree on a syntax or the in-built predicates. The programs in this book
follow the conventions of \Standard Prolog", the ISO international standard on Prolog
(Deransart, Ed-Dbali, and Cervoni 1996), as close as possible. The following predicates
are assumed to be built-in in your version of Prolog (such as for example Quintus or Sicstus
Prolog):

All solutions

bagof/3

findall/3

Arithmetic comparison

> (arithmetic greater than)
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< (arithmetic less than)

Arithmetic evaluation

is/2 (evaluate expression)

Atomic term processing

atom chars/2 (conversion of atoms to character codes and vice versa)

Character input

get0/1

Clause creation and destruction

asserta/1 (clause creation)

retract/1 (clause destruction)

File consultation

[FilejFiles ] (consult list of �les)

List operation

length/2 ] (determine length of a list)

Logic and control

,/2 (conjunction)

;/2 (disjunction)

!/0 (cut)

fail/0

true/0

\+ (not provable)
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Operator de�nition

op/3 (extending operator table)

Term comparison

==/2 (term identical)

Term creation and decomposition

arg/3

functor/3

=../2 (the \univ")

Term uni�cation

= (unify)

Type testing

atom/1

atomic/1

compound/1

nonvar/1

var/1

Term output

write/1

nl/0

The following is a practical overview of the programs in this appendix. We start with the
library �les consulted by most of the other programs, and then give a chapter by chapter
break-down description of the �les.
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All the �les at one glance

File Name Chapter Page
comsemPredicates.pl Chapter 1-12 p. 194
comsemOperators.pl Chapter 1-12 p. 193
readLine.pl Chapter 2-3, 6, 8-12 p. 200
englishLexicon.pl Chapter 2-3, 6, 8-12 p. 202
englishGrammar.pl Chapter 2-3, 6, 8-12 p. 207
modelChecker.pl Chapter 1, 6 p. 209
modelChecker2.pl Chapter 1, 6 p. 211
exampleModels.pl Chapter 1, 6, 7 p. 214
experiment1.pl Chapter 2 p. 216
experiment2.pl Chapter 2 p. 218
mainLambda.pl Chapter 2 p. 220
semMacrosLambda.pl Chapter 2 p. 222
betaConversion.pl Chapter 2-3, 8 p. 221
mainMontague.pl Chapter 3 p. 223
englishGrammarMontague.pl Chapter 3 p. 224
mainCooperStorage.pl Chapter 3 p. 226
mainKellerStorage.pl Chapter 3 p. 228
semMacrosStorage.pl Chapter 3 p. 230
pluggingAlgorithm.pl Chapter 3, 8 p. 231
mainPLU.pl Chapter 3 p. 233
semMacrosPLU.pl Chapter 3 p. 234
mergeUSR.pl Chapter 3, 8, 12 p. 236
propTabl.pl Chapter 4 p. 237
freeVarTabl.pl Chapter 5 p. 240
callTheoremProver.pl Chapter 5 p. 245
callModelBuilder.pl Chapter 5 p. 246
fol2otter.pl Chapter 5 p. 247
nlQuestions.pl Chapter 6 p. 249
nlArgumentation.pl Chapter 6 p. 251
SemOntology.pl Chapter 6 p. 253
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/*************************************************************************

name: comsemOperators.pl
version: May 25, 1999

description: Operator definitions
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(comsemOperators,[]).

/*========================================================================
Operator Definitions

========================================================================*/

:- op(950,yfx,@). % application
:- op(900,yfx,'<>'). % bin impl
:- op(900,yfx,>). % implication
:- op(850,yfx,v). % disjunction
:- op(800,yfx,&). % conjunction
:- op(750, fy,~). % negation
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/*************************************************************************

name: comsemPredicates.pl
version: November 8, 1997

description: Set of Prolog predicates
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(comsemPredicates,
[member/2,
select/3,
append/3,
simpleTerms/1,
compose/3,
unify/2,
removeFirst/3,
substitute/4,
variablesInTerm/2,
newFunctionCounter/1,
printReadings/1,
printRepresentation/1]).

/*========================================================================

List Manipulation
-----------------

member(?Element,?List)
Element occurs in List.

select(?X,+OldList,?NewList).
X is removed from OldList, resultin in NewList.

append(?List1,?List2,?List3)
List3 is the concatenation of List1 and List2.

allExactMember(?Elements,?List)
Elements all occur in List (no unification, exact match).

removeAll(?Item,?List,?Newlist)
Newlist is the result of removing all occurrences of Item from List.

removeFirst(?Item,?List,?Newlist)
Newlist is the result of removing the first occurrence of Item from
List. Fails when Item is not member of List.

========================================================================*/

member(X,[X| ]).

194



Blackburn & Bos Appendix September 3, 1999

member(X,[ |Tail]):-
member(X, Tail).

select(X,[X|L],L).
select(X,[Y|L1],[Y|L2]):-

select(X,L1,L2).

append([],List,List).
append([X|Tail1],List,[X|Tail2]):-

append(Tail1,List,Tail2).

allExactMember([], ).
allExactMember([X|R],L):-

memberOfList(Y,L),
X==Y,
allExactMember(R,L).

removeAll( ,[],[]).
removeAll(X,[X|Tail],Newtail):-

removeAll(X,Tail,Newtail).
removeAll(X,[Head|Tail],[Head|Newtail]):-

X \== Head,
removeAll(X,Tail,Newtail).

removeFirst(X,[X|Tail],Tail) :- !.
removeFirst(X,[Head|Tail],[Head|NewTail]):-

removeFirst(X,Tail,NewTail).

/*========================================================================

Term Manipulation
-----------------

simpleTerms(?List)
List is a list of elements that are currently uninstantiated or
instantiated to an atom or number. Uses built-in Quintus/Sicstus
predicate simple/1.

compose(?Term,+Symbol,+ArgList)
compose(+Term,?Symbol,?ArgList)

Composes a complex Term with functor Symbol and arguments ArgList.
Uses the Prolog built-in =.. predicate.

variablesInTerm(+Term,?InList-?OutList)
Adds all occurrences of variables in Term (arbitrarily deeply
nested to the difference list InList-OutList.

========================================================================*/

simpleTerms([]).
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simpleTerms([X|Rest]):-
simple(X), simpleTerms(Rest).

compose(Term,Symbol,ArgList):-
Term =.. [Symbol|ArgList].

variablesInTerm(Term,Var1-Var2):-
compose(Term, ,Args),
countVar(Args,Var1-Var2).

countVar([],Var-Var).
countVar([X|Rest],Var1-Var2):-

var(X),!,
countVar(Rest,[X|Var1]-Var2).

countVar([X|Rest],Var1-Var3):-
variablesInTerm(X,Var1-Var2),
countVar(Rest,Var2-Var3).

/*========================================================================

Unification Predicates
----------------------

unify(Term1,Term2)
Unify Term1 with Term2 including occurs check. Adapted from
"The Art of Prolog" by Sterling & Shapiro, MIT Press 1986, page 152.

notOccursIn(X,Term)
Succeeds if variable X does not occur in Term.

notOccursInComplexTerm(N,X,Term)
Succeeds if variable X does not occur in complex Term with arity N

termUnify(Term1,Term2)
Unify the complex terms Term1 and Term2.

========================================================================*/

unify(X,Y):-
var(X), var(Y), X=Y.

unify(X,Y):-
var(X), nonvar(Y), notOccursIn(X,Y), X=Y.

unify(X,Y):-
var(Y), nonvar(X), notOccursIn(Y,X), X=Y.

unify(X,Y):-
nonvar(X), nonvar(Y), atomic(X), atomic(Y), X=Y.

unify(X,Y):-
nonvar(X), nonvar(Y), compound(X), compound(Y), termUnify(X,Y).
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notOccursIn(X,Term):-
var(Term), X \== Term.

notOccursIn( ,Term):-
nonvar(Term), atomic(Term).

notOccursIn(X,Term):-
nonvar(Term), compound(Term),
functor(Term, ,Arity), notOccursInComplexTerm(Arity,X,Term).

notOccursInComplexTerm(N,X,Y):-
N > 0, arg(N,Y,Arg), notOccursIn(X,Arg),
M is N - 1, notOccursInComplexTerm(M,X,Y).

notOccursInComplexTerm(0, , ).

termUnify(X,Y):-
functor(X,Functor,Arity), functor(Y,Functor,Arity),
unifyArgs(Arity,X,Y).

unifyArgs(N,X,Y):-
N > 0, M is N - 1,
arg(N,X,ArgX), arg(N,Y,ArgY),
unify(ArgX,ArgY), unifyArgs(M,X,Y).

unifyArgs(0, , ).

/*========================================================================

Substitution Predicates
-----------------------

substitute(?Term,?Variable,+Exp,-Result)
Result is the result of substituting occurrences of Term for each
free occurrence of Variable in Exp.

========================================================================*/

substitute(Term,Var,Exp,Result):-
Exp==Var, !, Result=Term.

substitute( Term, Var,Exp,Result):-
\+ compound(Exp), !, Result=Exp.

substitute(Term,Var,Formula,Result):-
compose(Formula,Functor,[Exp,F]),
member(Functor,[lambda,forall,exists]), !,
(
Exp==Var, !,
Result=Formula
;
substitute(Term,Var,F,R),
compose(Result,Functor,[Exp,R])
).

substitute(Term,Var,Formula,Result):-
compose(Formula,Functor,ArgList),

197



Blackburn & Bos Appendix September 3, 1999

substituteList(Term,Var,ArgList,ResultList),
compose(Result,Functor,ResultList).

substituteList( Term, Var,[],[]).
substituteList(Term,Var,[Exp|Others],[Result|ResultOthers]):-

substitute(Term,Var,Exp,Result),
substituteList(Term,Var,Others,ResultOthers).

/*========================================================================

Skolem Function Counter
-----------------------

funtionCounter(?N)
N is the current Skolem function index. Declared as dynamic,
and set to value 1.

newFunctionCounter(?N)
Unifies N with the current Skolem function index, and increases
value of the counter.

========================================================================*/

:- dynamic(functionCounter/1).

functionCounter(1).

newFunctionCounter(N):-
functionCounter(N), M is N+1,
retract(functionCounter(N)),
asserta(functionCounter(M)).

/*========================================================================

Pretty Print Predicates
-----------------------

========================================================================*/

printRepresentation(Rep):-
nl, \+ \+ (numbervars(Rep,0, ), write(Rep)), nl.

printReadings(Readings):-
nl, write('Readings: '), nl, printReading(Readings,0).

printReading([],N):-
nl, (N=0, write('no readings'); true), nl.

printReading([Reading|OtherReadings],M):-
N is M + 1, write(N), tab(1),
\+ \+ (numbervars(Reading,0, ), write(Reading)), nl,
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printReading(OtherReadings,N).
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/*************************************************************************

name: readLine.pl
version: March 31, 1998

description: Converting input line to list of atoms, suitable for
DCG input.

authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(readLine,[readLine/1]).

/*========================================================================

Read Predicates
---------------

readLine(-WordList)
Outputs a prompt, reads a sequence of characters from the standard
input and converts this to WordList, a list of strings. Punctuation
is stripped.

readWords(-WordList)
Reads in a sequence of characters, until a return is registered,
and converts this to WordList a list of strings.

readWord(+Char,-Chars,?State)
Read a word coded as Chars (a list of ascii values), starting
with with ascii value Char, and determine the State of input
(`ended' = end of line, `notended' = not end of line).
Blanks and full stops split words, a return ends a line.

checkWords(+OldWordList,-NewWordList)
Check if all words are unquoted atoms, if not convert them
into atoms.

convertWord(+OldWord,-NewWord)
OldWord and NewWord are words represented as lists of ascii values.
Converts upper into lower case characters, and eliminates
non-alphabetic characters.

========================================================================*/

readLine(WordList):-
nl, write('> '),
readWords(Words),
checkWords(Words,WordList).

readWords([Word|Rest]):-
get0(Char),
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readWord(Char,Chars,State),
atom chars(Word,Chars),
readRest(Rest,State).

readRest([],ended).
readRest(Rest,notended):-

readWords(Rest).

readWord(32,[],notended):-!. %%% blank
readWord(46,[],notended):-!. %%% full stop
readWord(10,[],ended):-!. %%% return
readWord(Code,[Code|Rest],State):-

get0(Char),
readWord(Char,Rest,State).

checkWords([],[]):- !.
checkWords([''|Rest1],Rest2):-

checkWords(Rest1,Rest2).
checkWords([Atom|Rest1],[Atom2|Rest2]):-

atom chars(Atom,Word1),
convertWord(Word1,Word2),
atom chars(Atom2,Word2),
checkWords(Rest1,Rest2).

convertWord([],[]):- !.
convertWord([Capital|Rest1],[Small|Rest2]):-

Capital > 64, Capital < 91, !,
Small is Capital + 32,
convertWord(Rest1,Rest2).

convertWord([Weird|Rest1],Rest2):-
(Weird < 97; Weird > 122), !,
convertWord(Rest1,Rest2).

convertWord([Char|Rest1],[Char|Rest2]):-
convertWord(Rest1,Rest2).
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/*************************************************************************

name: englishLexicon.pl
version: November 12, 1997; March 9, 1999.

description: Lexical entries for a small coverage of English
authors: Patrick Blackburn & Johan Bos

This file contains the lexical entries for a small fragment of
English. Entries have the form lexicon(Cat,Sym,Phrase,Misc), where
Cat is the syntactic category, Sym the predicate symbol introduced
by the phrase, Phrase a list of the words that form the phrase, and
Misc miscellaneous information depending on the the type of entry.

*************************************************************************/

/*========================================================================
Determiners: lexicon(det, ,Words,Type)

========================================================================*/

lexicon(det, ,[every],uni).
lexicon(det, ,[a],indef).
lexicon(det, ,[the],def).
lexicon(det, ,[one],card(1)).
lexicon(det, ,[another],alt).
lexicon(det, ,[his],poss(male)).
lexicon(det, ,[her],poss(female)).
lexicon(det, ,[its],poss(nonhuman)).

/*========================================================================
Nouns: lexicon(noun,Symbol,Words,{[],[Hypernym],Hypernym})

========================================================================*/

lexicon(noun,abstraction,[abstraction],[top]).
lexicon(noun,act,[act],[top]).
lexicon(noun,animal,[animal],[organism]).
lexicon(noun,artifact,[artifact],[object]).
lexicon(noun,beverage,[beverage],[food]).
lexicon(noun,building,[building],[artifact]).
lexicon(noun,container,[container],[instrumentality]).
lexicon(noun,cup,[cup],[container]).
lexicon(noun,device,[device],[instrumentality]).
lexicon(noun,edible,[edible,food],[food]).
lexicon(noun,bkburger,[big,kahuna,burger],[edible]).
lexicon(noun,boxer,[boxer],human).
lexicon(noun,boss,[boss],human).
lexicon(noun,car,[car],[vehicle]).
lexicon(noun,chainsaw,[chainsaw],[device]).
lexicon(noun,criminal,[criminal],human).
lexicon(noun,customer,[customer],human).
lexicon(noun,drug,[drug],[artifact]).
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lexicon(noun,entity,[entity],[top]).
lexicon(noun,episode,[episode],abstraction).
lexicon(noun,female,[female],[human]).
lexicon(noun,fdshake,[five,dollar,shake],[beverage]).
lexicon(noun,food,[food],[object]).
lexicon(noun,footmassage,[foot,massage],[act]).
lexicon(noun,gimp,[gimp],human).
lexicon(noun,glass,[glass],[container]).
lexicon(noun,gun,[gun],[weaponry]).
lexicon(noun,hammer,[hammer],[device]).
lexicon(noun,hashbar,[hash,bar],[building]).
lexicon(noun,human,[human],[organism]).
lexicon(noun,husband,[husband],male).
lexicon(noun,instrumentality,[instrumentality],artifact).
lexicon(noun,joke,[joke],abstraction).
lexicon(noun,man,[man],male).
lexicon(noun,male,[male],[human]).
lexicon(noun,medium,[medium],[instrumentality]).
lexicon(noun,needle,[needle],[device]).
lexicon(noun,object,[object],[entity]).
lexicon(noun,organism,[organism],[entity]).
lexicon(noun,owner,[owner],human).
lexicon(noun,piercing,[piercing],[act]).
lexicon(noun,plant,[plant],[organism]).
lexicon(noun,qpwc,[quarter,pounder,with,cheese],[edible]).
lexicon(noun,radio,[radio],[medium]).
lexicon(noun,restaurant,[restaurant],[building]).
lexicon(noun,robber,[robber],human).
lexicon(noun,suitcase,[suitcase],[container]).
lexicon(noun,shotgun,[shotgun],[weaponry]).
lexicon(noun,sword,[sword],[weaponry]).
lexicon(noun,vehicle,[vehicle],[instrumentality]).
lexicon(noun,weaponry,[weaponry],[instrumentality]).
lexicon(noun,woman,[woman],female).

/*========================================================================
Proper Names: lexicon(pn,Symbol,Words,{male,female})

========================================================================*/

lexicon(pn,butch,[butch],male).
lexicon(pn,honey bunny,[honey,bunny],male).
lexicon(pn,jimmy,[jimmy],male).
lexicon(pn,jody,[jody],female).
lexicon(pn,jules,[jules],male).
lexicon(pn,lance,[lance],male).
lexicon(pn,marsellus,[marsellus],male).
lexicon(pn,marsellus,[marsellus,wallace],male).
lexicon(pn,marvin,[marvin],male).
lexicon(pn,mia,[mia],female).
lexicon(pn,mia,[mia,wallace],female).
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lexicon(pn,pumpkin,[pumpkin],male).
lexicon(pn,thewolf,[the,wolf],male).
lexicon(pn,vincent,[vincent],male).
lexicon(pn,vincent,[vincent,vega],male).

/*========================================================================
Intransitive Verbs: lexicon(iv,Symbol,Words,{fin,inf})

========================================================================*/

lexicon(iv,collapse,[collapses],fin).
lexicon(iv,collapse,[collapse],inf).
lexicon(iv,dance,[dances],fin).
lexicon(iv,dance,[dance],inf).
lexicon(iv,die,[dies],fin).
lexicon(iv,die,[die],inf).
lexicon(iv,growl,[growls],fin).
lexicon(iv,growl,[growl],inf).
lexicon(iv,okay,[is,okay],fin).
lexicon(iv,outoftown,[is,out,of,town],fin).
lexicon(iv,married,[is,married],fin).
lexicon(iv,playairguitar,[plays,air,guitar],fin).
lexicon(iv,playairguitar,[play,air,guitar],inf).
lexicon(iv,smoke,[smokes],fin).
lexicon(iv,smoke,[smoke],inf).
lexicon(iv,snort,[snorts],fin).
lexicon(iv,snort,[snort],inf).
lexicon(iv,shriek,[shrieks],fin).
lexicon(iv,shriek,[shriek],inf).
lexicon(iv,walk,[walks],fin).
lexicon(iv,walk,[walk],inf).

/*========================================================================
Transitive Verbs: lexicon(tv,Symbol,Words,{fin,inf})

========================================================================*/

lexicon(tv,clean,[cleans],fin).
lexicon(tv,clean,[clean],inf).
lexicon(tv,drink,[drinks],fin).
lexicon(tv,drink,[drink],inf).
lexicon(tv,date,[dates],fin).
lexicon(tv,date,[date],inf).
lexicon(tv,discard,[discards],fin).
lexicon(tv,discard,[discard],inf).
lexicon(tv,eat,[eats],fin).
lexicon(tv,eat,[eat],inf).
lexicon(tv,enjoy,[enjoys],fin).
lexicon(tv,enjoy,[enjoy],inf).
lexicon(tv,hate,[hates],fin).
lexicon(tv,hate,[hate],inf).
lexicon(tv,have,[has],fin).
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lexicon(tv,have,[have],inf).
lexicon(tv,donewith,[is,done,with],fin).
lexicon(tv,kill,[kills],fin).
lexicon(tv,kill,[kill],inf).
lexicon(tv,know,[knows],fin).
lexicon(tv,know,[know],inf).
lexicon(tv,like,[likes],fin).
lexicon(tv,like,[like],inf).
lexicon(tv,love,[loves],fin).
lexicon(tv,love,[love],inf).
lexicon(tv,pickup,[picks,up],fin).
lexicon(tv,pickup,[pick,up],inf).
lexicon(tv,shoot,[shot],fin).
lexicon(tv,shoot,[shoot],inf).
lexicon(tv,tell,[told],fin).
lexicon(tv,tell,[tell],inf).
lexicon(tv,worksfor,[works,for],fin).
lexicon(tv,worksfor,[work,for],inf).

/*========================================================================
Copula

========================================================================*/

lexicon(cop,'=',[is],fin).

/*========================================================================
Prepositions: lexicon(prep,Symbol,Words, )

========================================================================*/

lexicon(prep,in,[in], ).
lexicon(prep,of,[of], ).
lexicon(prep,with,[with], ).

/*========================================================================
Pronouns: lexicon(pro,Sym,Words,{refl,nonrefl})

========================================================================*/

lexicon(pro,male,[he],nonrefl).
lexicon(pro,female,[she],nonrefl).
lexicon(pro,nonhuman,[it],nonrefl).
lexicon(pro,male,[him],nonrefl).
lexicon(pro,female,[her],nonrefl).
lexicon(pro,male,[himself],refl).
lexicon(pro,female,[herself],refl).
lexicon(pro,nonhuman,[itself],refl).

/*========================================================================
Relative Pronouns: lexicon(relpro, ,Words, )

========================================================================*/
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lexicon(relpro, ,[who], ).
lexicon(relpro, ,[that], ).

/*========================================================================
Coordinations: lexicon(coord, ,Words,{conj,disj})

========================================================================*/

lexicon(coord, ,[and],conj).
lexicon(coord, ,[or],disj).

/*========================================================================
Discontinious Coordinations: lexicon(dcoord,W1,W2,{conj,cond,disj})

========================================================================*/

lexicon(dcoord,[if],[then],cond).
lexicon(dcoord,[if],[],cond).
lexicon(dcoord,[either],[or],disj).
lexicon(dcoord,[],[or],disj).
lexicon(dcoord,[],[and],conj).
lexicon(dcoord,[],[],conj).

/*========================================================================
Modifiers: lexicon(mod, ,Words,Type)

========================================================================*/

lexicon(mod, ,[does,not],neg).
lexicon(mod, ,[did,not],neg).
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/*************************************************************************

name: englishGrammar.pl
version: November 12, 1997

description: Grammar rules for a small coverage of English
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

/*========================================================================
Grammar Rules

========================================================================*/

d(S) --> s(S).
d((C@S1)@S2)--> dcoord(D,C), s(S1), D, d(S2).

s(NP@VP)--> np2(NP), vp2(VP).

np2(NP)--> np1(NP).
np2((C@NP1)@NP2)--> np1(NP1), coord(C), np1(NP2).

np1(Det@Noun)--> det(Det), n2(Noun).
np1(NP)--> pn(NP).
np1(NP)--> pro(NP).

n2(N)--> n1(N).
n2((C@N1)@N2)--> n1(N1), coord(C), n1(N2).

n1(N)--> noun(N).
n1(PP@N)--> noun(N), pp(PP).
n1(RC@N)--> noun(N), rc(RC).

vp2(VP)--> vp1(VP).
vp2((C@VP1)@VP2)--> vp1(VP1), coord(C), vp1(VP2).

vp1(Mod@VP)--> mod(Mod), v2(inf,VP).
vp1(VP)--> v2(fin,VP).

v2(fin,Cop@NP)--> cop(Cop), np2(NP).
v2(fin,Neg@(Cop@NP))--> cop(Cop), neg(Neg), np2(NP).

v2(I,V)--> v1(I,V).
v2(I,(C@V1)@V2)--> v1(I,V1), coord(C), v1(I,V2).

v1(I,V)--> iv(I,V).
v1(I,TV@NP)--> tv(I,TV), np2(NP).

pp(Prep@NP)--> prep(Prep), np2(NP).

rc(RP@VP)--> relpro(RP), vp2(VP).
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iv(I,IV)--> {lexicon(iv,Sym,Word,I),ivSem(Sym,IV)}, Word.

tv(I,TV)--> {lexicon(tv,Sym,Word,I),tvSem(Sym,TV)}, Word.

cop(Cop)--> {lexicon(cop,Sym,Word, ),tvSem(Sym,Cop)}, Word.

det(Det)--> {lexicon(det, ,Word,Type),detSem(Type,Det)}, Word.

pn(PN)--> {lexicon(pn,Sym,Word,G),pnSem(Sym,G,PN)}, Word.

pro(Pro)--> {lexicon(pro,Gender,Word,Type),proSem(Gender,Type,Pro)}, Word.

noun(N)--> {lexicon(noun,Sym,Word, ),nounSem(Sym,N)}, Word.

relpro(RP)--> {lexicon(relpro, ,Word, ),relproSem(RP)}, Word.

prep(Prep)--> {lexicon(prep,Sym,Word, ),prepSem(Sym,Prep)}, Word.

mod(Mod)--> {lexicon(mod, ,Word,Type),modSem(Type,Mod)}, Word.

neg(Neg)--> [not], {modSem(neg,Neg)}.

coord(C)--> {lexicon(coord, ,Word,Type), coordSem(Type,C)}, Word.

dcoord(D,C)--> {lexicon(dcoord,Word,D,Type), dcoordSem(Type,C)}, Word.
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/*************************************************************************

name: modelChecker.pl (Chapter 1)
version: June 19, 1997; March 9, 1999.

description: A model checker for first-order logic.
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(modelChecker,[evaluate/2]).

:- use module(comsemOperators),
use module(comsemPredicates,[member/2]),
use module(exampleModels,[constant/1,example/2]).

/*========================================================================
Evaluate a formula in a model

========================================================================*/

evaluate(Formula,Example):-
example(Example,Model),
satisfy(Formula,Model).

/*========================================================================
Semantic Evaluation

========================================================================*/

satisfy(exists(X,Formula),Model):-
constant(X),
satisfy(Formula,Model).

satisfy(forall(X,Formula),Model):-
satisfy(~ exists(X,~ Formula),Model).

satisfy(Formula1 & Formula2,Model):-
satisfy(Formula1,Model),
satisfy(Formula2,Model).

satisfy(Formula1 v Formula2,Model):-
satisfy(Formula1,Model);
satisfy(Formula2,Model).

satisfy(Formula1 > Formula2,Model):-
satisfy(Formula2,Model);
\+ satisfy(Formula1,Model).

satisfy(~ Formula,Model):-
\+ satisfy(Formula,Model).

satisfy(Formula,Model):-
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member(Formula,Model).
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/*************************************************************************

name: modelChecker2.pl (Chapter 1)
version: November 3, 1998

description: Extention of modelChecker.pl
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(modelChecker,[evaluate/2]).

:- use module(comsemOperators),
use module(comsemPredicates,[member/2,compose/3]),
use module(exampleModels,[constant/1,relation/2,example/2]).

/*========================================================================
Evaluate a formula in a model

========================================================================*/

evaluate(Formula,Example):-
sentence([],Formula),
example(Example,Model),
satisfy(Formula,Model).

evaluate(Formula, Example):-
\+ sentence([],Formula),
nl,write('Not a wff over the given vocabulary.'),
nl,write('Cannot be evaluated.'),nl.

/*========================================================================
Check if a formula is a sentence conform the vocabulary

========================================================================*/

sentence( ,Var):-
var(Var), !, fail.

sentence(Bound,forall(X,Formula)):-
var(X),
sentence([X|Bound],Formula).

sentence(Bound,exists(X,Formula)):-
var(X),
sentence([X|Bound],Formula).

sentence(Bound,Formula1 > Formula2):-
sentence(Bound,Formula1),
sentence(Bound,Formula2).

sentence(Bound,Formula1 & Formula2):-
sentence(Bound,Formula1),
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sentence(Bound,Formula2).

sentence(Bound,Formula1 v Formula2):-
sentence(Bound,Formula1),
sentence(Bound,Formula2).

sentence(Bound,~ Formula):-
sentence(Bound,Formula).

sentence(Bound,Formula):-
compose(Formula,Symbol,Arguments),
length(Arguments,Arity),
relation(Symbol,Arity),
goodArguments(Bound,Arguments).

/*========================================================================
Check arguments (must be either constants or bound variables)

========================================================================*/

goodArguments( Bound,[]).
goodArguments(Bound,[Arg|Others]):-

member(Var,Bound),
Var==Arg, !,
goodArguments(Bound,Others).

goodArguments(Bound,[Arg|Others]):-
constant(Arg),
goodArguments(Bound,Others).

/*========================================================================
Semantic Evaluation

========================================================================*/

satisfy(exists(X,Formula),Model):-
\+ \+ (constant(X), satisfy(Formula,Model)).

satisfy(forall(X,Formula),Model):-
satisfy(~ exists(X,~ Formula),Model).

satisfy(Formula1 & Formula2,Model):-
satisfy(Formula1,Model),
satisfy(Formula2,Model).

satisfy(Formula1 v Formula2,Model):-
satisfy(Formula1,Model);
satisfy(Formula2,Model).

satisfy(Formula1 > Formula2,Model):-
satisfy(Formula2,Model);
\+ satisfy(Formula1,Model).
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satisfy(~ Formula,Model):-
\+ satisfy(Formula,Model).

satisfy(Formula,Model):-
member(Formula,Model).
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/*************************************************************************

name: exampleModels.pl (Chapter 1)
version: March 9, 1999

description: Some example models defined over a vocabulary
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(exampleModels,[constant/1,relation/2,example/2]).

/*========================================================================
Vocabulary

========================================================================*/

relation(love,2).
relation(hate,2).
relation(tell,2).
relation(episode,2).
relation(in,2).
relation(customer,1).
relation(robber,1).
relation(joke,1).
relation(woman,1).
relation(man,1).

constant(mia).
constant(vincent).
constant(honey bunny).
constant(pumpkin).
constant(jules).
constant(jody).
constant(j1).
constant(j2).
constant(e15).
constant(e13).

/*========================================================================
Example Models

========================================================================*/

example(1,[customer(mia),customer(vincent),
robber(pumpkin),robber(honey bunny),
love(pumpkin,honey bunny)]).

example(2,[customer(mia),
robber(pumpkin),robber(honey bunny),
love(pumpkin,honey bunny)]).
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example(3,[customer(mia),customer(vincent),
robber(pumpkin),robber(honey bunny),
love(pumpkin,honey bunny),love(mia,vincent)]).

example(4,[woman(mia),
man(vincent),man(jules),
joke(j1),joke(j2),
in(j1,e15),
episode(e13),episode(e15),
tell(mia,j1)]).

example(5,[woman(mia),woman(jody),
man(vincent),man(jules),
joke(j1),joke(j2),
in(j1,e15),in(j1,e13),
episode(e13),episode(e15),
tell(mia,j1),tell(jody,j2)]).
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/*************************************************************************

name: experiment1.pl (Chapter 2)
version: July 1, 1997

description: This is the code of the first experiment
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- use module(comsemOperators).

/*========================================================================
Syntax-Semantics Rules

========================================================================*/

s(Sem)--> np(Sem), vp(SemVP),
{
arg(1,SemVP,X),
arg(1,Sem,X),
arg(2,Sem,Matrix),
arg(2,Matrix,SemVP)
}.

s(Sem)--> np(SemNP), vp(Sem),
{
arg(1,Sem,SemNP)
}.

np(Sem)--> pn(Sem).

np(Sem)--> det(Sem), noun(SemNoun),
{
arg(1,SemNoun,X),
arg(1,Sem,X),
arg(2,Sem,Matrix),
arg(1,Matrix,SemNoun)
}.

vp(Sem)--> iv(Sem).

vp(Sem)--> tv(SemTV), np(Sem),
{
arg(2,SemTV,X),
arg(1,Sem,X),
arg(2,Sem,Matrix),
arg(2,Matrix,SemTV)
}.

vp(Sem)--> tv(Sem), np(SemNP),
{
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arg(2,Sem,SemNP)
}.

/*========================================================================
Proper Names

========================================================================*/

pn(vincent)--> [vincent].

pn(mia)--> [mia].

/*========================================================================
Transitive Verbs

========================================================================*/

tv(love( , ))--> [loves].

/*========================================================================
Intransitive Verbs

========================================================================*/

iv(snort( ))--> [snorts].

/*========================================================================
Determiners

========================================================================*/

det(exists( , & ))--> [a].

det(forall( , > ))--> [every].

/*========================================================================
Nouns

========================================================================*/

noun(woman( ))--> [woman].

noun(footmassage( ))--> [foot,massage].
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/*************************************************************************

name: experiment2.pl (Chapter 2)
version: July 2, 1997

description: This is the code of the second experiment
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- use module(comsemOperators).

/*========================================================================
Syntax-semantics rules

========================================================================*/

s(Sem)--> np(X,SemVP,Sem), vp(X,SemVP).

np(X,Scope,Sem)--> det(X,Restr,Scope,Sem), noun(X,Restr).

np(SemPN,Sem,Sem)--> pn(SemPN).

vp(X,Sem)--> iv(X,Sem).

vp(X,Sem)--> tv(X,Y,SemTV), np(Y,SemTV,Sem).

/*========================================================================
Proper Names

========================================================================*/

pn(vincent)--> [vincent].

pn(mia)--> [mia].

/*========================================================================
Transitive Verbs

========================================================================*/

tv(Y,Z,love(Y,Z))--> [loves].

/*========================================================================
Intransitive Verbs

========================================================================*/

iv(Y,snort(Y))--> [snorts].

/*========================================================================
Determiners

========================================================================*/

det(X,Restr,Scope,exists(X,Restr & Scope))--> [a].
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det(X,Restr,Scope,forall(X,Restr > Scope))--> [every].

/*========================================================================
Nouns

========================================================================*/

noun(X,woman(X))--> [woman].

noun(X,footmassage(X))--> [foot,massage].
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/*************************************************************************

name: mainLambda.pl (Chapter 2)
version: May 15, 1997

description: Semantic Construction with Beta Conversion
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(mainLambda,[parse/0]).

:- use module(readLine,[readLine/1]),
use module(comsemOperators),
use module(comsemPredicates,[printRepresentation/1,compose/3]),
use module(betaConversion,[betaConvert/2]).

:- [englishGrammar], [englishLexicon], [semMacrosLambda].

/*========================================================================
Driver Predicate

========================================================================*/

parse:-
readLine(Sentence),
s(Formula,Sentence,[]),
betaConvert(Formula,Converted),
printRepresentation(Converted).
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/*************************************************************************

name: betaConversion.pl (Chapter 2)
version: March 11, 1998

description: Implementation of Beta-Conversion
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(betaConversion,[betaConvert/2]).

:- use module(comsemOperators),
use module(comsemPredicates,[compose/3,substitute/4]).

/*========================================================================
Beta-Conversion

========================================================================*/

betaConvert(Var,Result):-
var(Var), !, Result=Var.

betaConvert(Functor @ Arg,Result):-
compound(Functor),
betaConvert(Functor,ConvertedFunctor),
apply(ConvertedFunctor,Arg,BetaConverted), !,
betaConvert(BetaConverted,Result).

betaConvert(Formula,Result):-
compose(Formula,Functor,Formulas),
betaConvertList(Formulas,ResultFormulas),
compose(Result,Functor,ResultFormulas).

betaConvertList([],[]).
betaConvertList([Formula|Others],[Result|ResultOthers]):-

betaConvert(Formula,Result),
betaConvertList(Others,ResultOthers).

/*========================================================================
Application (Unification-Based)

========================================================================*/

%apply(lambda(Argument,Result),Argument,Result).

/*========================================================================
Application (Substitution-Based)

========================================================================*/

apply(lambda(X,Formula),Argument,Result):-
substitute(Argument,X,Formula,Result).
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/*************************************************************************

name: semMacrosLambda.pl (Chapter 2)
version: March 10, 1999

description: Semantic Macros for the Lambda Calculus
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

/*========================================================================
Semantic Macros

========================================================================*/

detSem(uni,lambda(P,lambda(Q,forall(X,(P@X)>(Q@X))))).

detSem(indef,lambda(P,lambda(Q,exists(X,(P@X)&(Q@X))))).

nounSem(Sym,lambda(X,Formula)):-
compose(Formula,Sym,[X]).

pnSem(Sym, Gender,lambda(P,P@Sym)).

proSem( Gender, Type,lambda(P,P@ )).

ivSem(Sym,lambda(X,Formula)):-
compose(Formula,Sym,[X]).

tvSem(Sym,lambda(K,lambda(Y,K @ lambda(X,Formula)))):-
compose(Formula,Sym,[Y,X]).

relproSem(lambda(P,lambda(Q,lambda(X,(P@X)&(Q@X))))).

prepSem(Sym,lambda(K,lambda(P,lambda(Y,(K@lambda(X,F)) & (P@Y))))):-
compose(F,Sym,[Y,X]).

modSem(neg,lambda(P,lambda(X,~(P@X)))).

coordSem(conj,lambda(X,lambda(Y,lambda(P,(X@P) & (Y@P))))).
coordSem(disj,lambda(X,lambda(Y,lambda(P,(X@P) v (Y@P))))).

dcoordSem(cond,lambda(X,lambda(Y,X > Y))).
dcoordSem(conj,lambda(X,lambda(Y,X & Y))).
dcoordSem(disj,lambda(X,lambda(Y,X v Y))).
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/*************************************************************************

name: mainMontague.pl (Chapter 3)
version: May 25, 1999

description: Montague's Rule of Quantification
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(mainMontague,[parse/0]).

:- use module(comsemOperators),
use module(readLine,[readLine/1]),
use module(comsemPredicates,[printReadings/1,compose/3]),
use module(betaConversion,[betaConvert/2]).

:- [englishGrammarMontague], [englishLexicon], [semMacrosLambda].

/*========================================================================
Driver Predicate

========================================================================*/

parse:-
readLine(Sentence),
findall(Sem2,(s([],Sem1,Sentence,[]),betaConvert(Sem1,Sem2)),Readings),
printReadings(Readings).
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/*************************************************************************

name: englishGrammarMontague.pl (Chapter 3)
version: May 25, 1999

description: Grammar rules for Montague quantifier raising
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

/*========================================================================
Grammar Rules

========================================================================*/

d(S) --> s([],S).
d((C@S1)@S2)--> dcoord(D,C), s([],S1), D, d(S2).

s([],NP@lambda(I,S))--> s([bo(NP,I)],S).

s(Q,NP@VP)--> np2([],NP), vp2(Q,VP).

np2(Q,NP)--> np1(Q,NP).

np1([],Det@Noun)--> det(Det), n2(Noun).
np1([bo(Det@Noun,I)],lambda(P,P@I))--> det(Det), n2(Noun).
np1([],NP)--> pn(NP).
np1([],NP)--> pro(NP).

n2(N)--> n1(N).
n2((C@N1)@N2)--> n1(N1), coord(C), n1(N2).

n1(N)--> noun(N).
n1(PP@N)--> noun(N), pp(PP).
n1(RC@N)--> noun(N), rc(RC).

vp2(Q,VP)--> vp1(Q,VP).

vp1(Q,Mod@VP)--> mod(Mod), v2(Q,inf,VP).
vp1(Q,VP)--> v2(Q,fin,VP).

v2(Q,fin,Cop@NP)--> cop(Cop), np2(Q,NP).
v2(Q,fin,Neg@(Cop@NP))--> cop(Cop), neg(Neg), np2(Q,NP).

v2(Q,I,V)--> v1(Q,I,V).

v1([],I,V)--> iv(I,V).
v1(Q,I,TV@NP)--> tv(I,TV), np2(Q,NP).

pp(Prep@NP)--> prep(Prep), np2([],NP).

rc(RP@VP)--> relpro(RP), vp2([],VP).
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iv(I,IV)--> {lexicon(iv,Sym,Word,I),ivSem(Sym,IV)}, Word.

tv(I,TV)--> {lexicon(tv,Sym,Word,I),tvSem(Sym,TV)}, Word.

cop(TV)--> {lexicon(cop,Sym,Word, ),tvSem(Sym,TV)}, Word.

det(Det)--> {lexicon(det, ,Word,Type),detSem(Type,Det)}, Word.

pn(PN)--> {lexicon(pn,Sym,Word,Gender),pnSem(Sym,Gender,PN)}, Word.

pro(Pro)--> {lexicon(pro,Gender,Word,Type),proSem(Gender,Type,Pro)}, Word.

noun(N)--> {lexicon(noun,Sym,Word, ),nounSem(Sym,N)}, Word.

relpro(RP)--> {lexicon(relpro, ,Word, ),relproSem(RP)}, Word.

prep(Prep)--> {lexicon(prep,Sym,Word, ),prepSem(Sym,Prep)}, Word.

mod(Mod)--> {lexicon(mod, ,Word,Type),modSem(Type,Mod)}, Word.

neg(Neg)--> [not], {modSem(neg,Neg)}.

coord(C)--> {lexicon(coord, ,Word,Type), coordSem(Type,C)}, Word.

dcoord(D,C)--> {lexicon(dcoord,Word,D,Type), dcoordSem(Type,C)}, Word.

225



Blackburn & Bos Appendix September 3, 1999

/*************************************************************************

name: mainCooperStorage.pl (Chapter 3)
version: November 14, 1997

description: Cooper Storage Implementation
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(mainCooperStorage,[parse/0]).

:- use module(readLine,[readLine/1]),
use module(comsemOperators),
use module(comsemPredicates,[printReadings/1,compose/3,append/3]),
use module(betaConversion,[betaConvert/2]).

:- [englishGrammar], [englishLexicon], [semMacrosStorage].

/*========================================================================
Driver Predicate

========================================================================*/

parse:-
readLine(Sentence),
s(Sem,Sentence,[]),
setof(Result,Store^Retrieved^(buildStore(Sem,Store),

sRetrieval(Store,Retrieved),
betaConvert(Retrieved,Result)),

SemSet),
printReadings(SemSet).

/*========================================================================
Quantifier Storage

========================================================================*/

npStorage(Quant,[Arg|Store],[lambda(P,P@X),bo(Quant@Arg,X)|Store]).

/*========================================================================
Quantifier Retrieval

========================================================================*/

sRetrieval([S],S).

sRetrieval([Sem|Store],S):-
removeFromStore(bo(Q,X),Store,NewStore),
sRetrieval([Q@lambda(X,Sem)|NewStore],S).

removeFromStore(X,[X|T],T).

removeFromStore(X,[Y|T],[Y|R]):-
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removeFromStore(X,T,R).

/*========================================================================
Store Constructing

========================================================================*/

buildStore(quant(Quant) @ Store,NewStore):-
buildStore(Store,[Arg|S]),
npStorage(Quant,[Arg|S],NewStore).

buildStore([Sem|Store],[Sem|Store]).

buildStore(Store1 @ Store2,[F@A|S]):-
buildStore(Store1,[F|S1]),
buildStore(Store2,[A|S2]),
append(S1,S2,S).
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/*************************************************************************

name: mainKellerStorage.pl (Chapter 3)
version: November 14, 1997

description: Keller Storage Implementation
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(mainKellerStorage,[parse/0]).

:- use module(readLine,[readLine/1]),
use module(comsemOperators),
use module(comsemPredicates,[printReadings/1,compose/3,append/3]),
use module(betaConversion,[betaConvert/2]).

:- [englishGrammar], [englishLexicon], [semMacrosStorage].

/*========================================================================
Driver Predicate

========================================================================*/

parse:-
readLine(Sentence),
s(Sem,Sentence,[]),
setof(Result,Store^Retrieved^(buildStore(Sem,Store),

sRetrieval(Store,Retrieved),
betaConvert(Retrieved,Result)),

SemSet),
printReadings(SemSet).

/*========================================================================
Quantifier Storage

========================================================================*/

npStorage(Quant,[Arg|Store],[lambda(P,P@X),bo([Quant@Arg|Store],X)]).

/*========================================================================
Quantifier Retrieval

========================================================================*/

sRetrieval([S],S).

sRetrieval([Sem|Store],S):-
removeFromStore(bo(Q,X),Store,NewStore),
sRetrieval([Q@lambda(X,Sem)|NewStore],S).

removeFromStore(bo(O,I),[bo([O|T1],I)|T2],T):-
append(T1,T2,T).
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removeFromStore(X,[Y|T],[Y|R]):-
removeFromStore(X,T,R).

/*========================================================================
Store Constructing

========================================================================*/

buildStore(quant(Quant) @ Store,NewStore):-
buildStore(Store,[Arg|S]),
(
NewStore = [Quant@Arg|S]
;
npStorage(Quant,[Arg|S],NewStore)
).

buildStore([Sem|Store],[Sem|Store]).

buildStore(Store1 @ Store2,[F@A|S]):-
buildStore(Store1,[F|S1]),
buildStore(Store2,[A|S2]),
append(S1,S2,S).
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/*************************************************************************

name: semMacrosStorage.pl (Chapter 3)
version: May 25, 1999

description: Semantic Macros for Storage
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

/*========================================================================
Semantic Macros

========================================================================*/

detSem(uni,quant(lambda(P,lambda(Q,forall(X,(P@X)>(Q@X)))))).

detSem(indef,quant(lambda(P,lambda(Q,exists(X,(P@X)&(Q@X)))))).

nounSem(Sym,[lambda(X,Formula)]):-
compose(Formula,Sym,[X]).

pnSem(Sym, Gender,[lambda(P,P@Sym)]).

proSem( Gender, Type,[lambda(P,P@ )]).

ivSem(Sym,[lambda(X,Formula)]):-
compose(Formula,Sym,[X]).

tvSem(Sym,[lambda(K,lambda(Y,K@lambda(X,Formula)))]):-
compose(Formula,Sym,[Y,X]).

relproSem([lambda(P,lambda(Q,lambda(X,(P@X)&(Q@X))))]).

prepSem(Sym,[lambda(K,lambda(P,lambda(Y,(K@lambda(X,F))&(P@Y))))]):-
compose(F,Sym,[Y,X]).

modSem(neg,[lambda(P,lambda(X,~(P@X)))]).

coordSem(conj,[lambda(X,lambda(Y,lambda(P,(X@P) & (Y@P))))]).
coordSem(disj,[lambda(X,lambda(Y,lambda(P,(X@P) v (Y@P))))]).

dcoordSem(cond,lambda(X,lambda(Y,X > Y))).
dcoordSem(conj,lambda(X,lambda(Y,X & Y))).
dcoordSem(disj,lambda(X,lambda(Y,X v Y))).
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/*************************************************************************

name: pluggingAlgorithm.pl (Chapter 3)
version: June 4, 1998

description: Plugging Algorithm
author: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(pluggingAlgorithm,[plugHole/4]).

:- use module(comsemPredicates,[member/2,select/3,variablesInTerm/2]).

/*========================================================================
Plugging Predicates

========================================================================*/

plugHole(Formula,LFs1-LFs3,Constraints,Scoped):-
select(Label:Formula,LFs1,LFs2),
checkConstraints(Label,Constraints,[Formula|Scoped]),
variablesInTerm(Formula,[]-Arguments),
checkArguments(Arguments,LFs2-LFs3,Constraints,[Formula|Scoped]).

checkArguments([],LFs-LFs, , ).

checkArguments([Arg|Rest],LFs1-LFs3,Constraints,Scoped):-
member(leq( ,Hole),Constraints),
Hole==Arg, !,
plugHole(Hole,LFs1-LFs2,Constraints,Scoped),
checkArguments(Rest,LFs2-LFs3,Constraints,Scoped).

checkArguments([Arg|Rest],LFs1-LFs4,Constraints,Scoped):-
select(Label:Formula,LFs1,LFs2),
Label==Arg, !,
Formula=Arg,
variablesInTerm(Formula,[]-Arguments),
checkArguments(Arguments,LFs2-LFs3,Constraints,Scoped),
checkArguments(Rest,LFs3-LFs4,Constraints,Scoped).

checkArguments([ |Rest],LFs1-LFs2,Constraints,Scoped):-
checkArguments(Rest,LFs1-LFs2,Constraints,Scoped).

/*========================================================================
Constraint Checking

========================================================================*/

checkConstraints( ,[], ).

checkConstraints(Label,[leq(L,H)|Constraints],Scoped):-
Label==L, !,
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member(Formula,Scoped), Formula==H,
checkConstraints(Label,Constraints,Scoped).

checkConstraints(Label,[ |Constraints],Scoped):-
checkConstraints(Label,Constraints,Scoped).
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/*************************************************************************

name: mainPLU.pl (Chapter 3)
version: Jan 31, 1998

description: Predicate Logic Unplugged
author: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(mainPLU,[parse/0]).

:- use module(readLine,[readLine/1]),
use module(comsemOperators),
use module(betaConversion,[betaConvert/2]),
use module(pluggingAlgorithm,[plugHole/4]),
use module(mergeUSR,[mergeUSR/2]),
use module(comsemPredicates,[append/3,printRepresentation/1,

printReadings/1,compose/3]).

:- [englishGrammar], [englishLexicon], [semMacrosPLU].

/*========================================================================
Driver Predicate

========================================================================*/

parse:-
readLine(Sentence),
d(Sem,Sentence,[]),
betaConvert(merge(usr([Top,Main],[],[]),Sem@Top@Main),Reduced),
mergeUSR(Reduced,usr(D,L,C)),
printRepresentation(usr(D,L,C)),
findall(Top,plugHole(Top,L-[],C,[]),Readings),
printReadings(Readings).
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/*************************************************************************

name: semMacrosPLU.pl (Chapter 3)
version: May 26, 1999

description: Semantic Macros for Predicate Logic Unplugged
author: Patrick Blackburn & Johan Bos

*************************************************************************/

/*========================================================================
Semantic Macros

========================================================================*/

detSem(uni,lambda(P,lambda(Q,lambda(H,lambda(L,
merge(merge(usr([F,R,S],

[F:forall(X,R>S)],
[leq(F,H),leq(L,S)]),P@X@H@R),Q@X@H@L)))))).

detSem(indef,lambda(P,lambda(Q,lambda(H,lambda(L,
merge(merge(usr([E,R,S],

[E:exists(X,R&S)],
[leq(E,H),leq(L,S)]),P@X@H@R),Q@X@H@L)))))).

nounSem(Sym,lambda(X,lambda( ,lambda(L,usr([],[L:Formula],[]))))):-
compose(Formula,Sym,[X]).

pnSem(Sym, Gender,lambda(P,lambda(H,lambda(L,P@Sym@H@L)))).

proSem( Gender, Type,lambda(P,lambda(H,lambda(L,P@ @H@L)))).

ivSem(Sym,lambda(X,lambda(H,lambda(L,usr([],[L:F],[leq(L,H)]))))):-
compose(F,Sym,[X]).

tvSem(Sym,lambda(K,lambda(Y,K@lambda(X,lambda(H,lambda(L,
usr([],[L:Formula],[leq(L,H)]))))))):-

compose(Formula,Sym,[Y,X]).

relproSem(lambda(P,lambda(Q,lambda(X,lambda(H,lambda(L,
merge(usr([L2,L3,H1],

[L:(L3&H1)],
[leq(L2,H1)]),

merge(P@X@H@L2,Q@X@H@L3)))))))).

prepSem(Sym,lambda(K,lambda(P,lambda(Y,lambda(H,lambda(L3,
merge(K@lambda(X,lambda(H,lambda(L1,
usr([L2,H1],

[L3:(L2&H1),L1:Formula],
[leq(L1,H1)]))))@H@L1,P@Y@H@L2))))))):-

compose(Formula,Sym,[Y,X]).
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modSem(neg,lambda(P,lambda(X,lambda(H,lambda(L,
merge(usr([N,S],[N:(~S)],[leq(N,H),leq(L,S)]),P@X@H@L)))))).

coordSem(conj,lambda(X,lambda(Y,lambda(P,lambda(H,lambda(L,
merge(usr([L1,L2],[L:(L1&L2)],[leq(L,H)]),

merge(X@P@H@L1,Y@P@H@L2)))))))).

coordSem(disj,lambda(X,lambda(Y,lambda(P,lambda(H,lambda(L,
merge(usr([L1,L2],[L:(L1 v L2)],[leq(L,H)]),

merge(X@P@H@L1,Y@P@H@L2)))))))).

dcoordSem(cond,lambda(C1,lambda(C2,lambda(H,lambda(L,
merge(usr([H1,H2],[L:(H1 > H2)],[leq(L,H)]),

merge(C1@H1@ ,C2@H2@ ))))))).

dcoordSem(conj,lambda(C1,lambda(C2,lambda(H,lambda(L,
merge(usr([H1,H2],[L:(H1 & H2)],[leq(L,H)]),

merge(C1@H1@ ,C2@H2@ ))))))).

dcoordSem(disj,lambda(C1,lambda(C2,lambda(H,lambda(L,
merge(usr([H1,H2],[L:(H1 v H2)],[leq(L,H)]),

merge(C1@H1@ ,C2@H2@ ))))))).
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/*************************************************************************

name: mergeUSR.pl (Chapter 3)
version: June 18, 1999

description: Definition of the merge for USRs
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(mergeUSR,[mergeUSR/2]).

:- use module(comsemPredicates,[append/3]).

/*========================================================================
Merge for Underspecified Semantic Representations

========================================================================*/

mergeUSR(usr(D,L,C),usr(D,L,C)).

mergeUSR(merge(U1,U2),usr(D3,L3,C3)):-
mergeUSR(U1,usr(D1,L1,C1)),
mergeUSR(U2,usr(D2,L2,C2)),
append(D1,D2,D3),
append(L1,L2,L3),
append(C1,C2,C3).
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/*************************************************************************

name: propTabl.pl (Chapter 4)
version: Dec 3, 1998

description: Propositional Tableaux Program
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(propTabl,[valid/1,saturate/1]).

:- use module(comsemOperators),
use module(comsemPredicates,[member/2,removeFirst/3]).

/*========================================================================

General Tableau Predicates
--------------------------

saturate(+Tableau)
Expand Tableau until it is closed.

closed(+Tableau)
Every branch of Tableau contains a contradiction.

valid(+Formula)
Try to create a closed tableau expansion for f(Formula).

========================================================================*/

saturate(Tableau):-
closed(Tableau).

saturate(OldTableau):-
expand(OldTableau,NewTableau),
saturate(NewTableau).

closed([]).

closed([Branch|Rest]):-
member(t(X),Branch),
member(f(X),Branch),
closed(Rest).

valid(F):-
saturate([[f(F)]]).

/*========================================================================

Tableau Expansion Predicates
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----------------------------

expand(+Oldtableau,-Newtableau)
Newtableaux is the result of applying a tableaux expansion
rule to Oldtableaux.

unaryExpansion(+Branch,-NewBranch)
Take Branch as input, and return NewBranches if a tableau rule
allows unary expansion.

conjunctiveExpansion(+Branch,-NewBranch)
Take Branch as input, and return the NewBranch if a tableau rule
allows conjunctive expansion.

disjunctiveExpansion(+Branch,-NewBranch1,-NewBranch2)
Take Branch as input, and return the NewNranch1 and NewBranch2
if a tableau rule allows disjunctive expansion.

========================================================================*/

expand([Branch|Tableau],[NewBranch|Tableau]):-
unaryExpansion(Branch,NewBranch).

expand([Branch|Tableau],[NewBranch|Tableau]):-
conjunctiveExpansion(Branch,NewBranch).

expand([Branch|Tableau],[NewBranch1,NewBranch2|Tableau]):-
disjunctiveExpansion(Branch,NewBranch1,NewBranch2).

expand([Branch|Rest],[Branch|Newrest]):-
expand(Rest,Newrest).

unaryExpansion(Branch,[Component|Temp]) :-
unary(SignedFormula,Component),
removeFirst(SignedFormula,Branch,Temp).

conjunctiveExpansion(Branch,[Comp1,Comp2|Temp]):-
conjunctive(SignedFormula,Comp1,Comp2),
removeFirst(SignedFormula,Branch,Temp).

disjunctiveExpansion(Branch,[Comp1|Temp],[Comp2|Temp]):-
disjunctive(SignedFormula,Comp1,Comp2),
removeFirst(SignedFormula,Branch,Temp).

/*========================================================================

Formula Identification
----------------------

conjunctive(?F,?Comp1,?Comp2)
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F is a conjunctive signed formula with components Comp1 and Comp2.

disjunctive(?F,?Comp1,?Comp2)
F is a disjunctive signed formula with components Comp1 and Comp2.

unary(?F,?Comp)
F is a signed formula with component Comp.

========================================================================*/

conjunctive(t(X & Y),t(X),t(Y)).
conjunctive(f(X v Y),f(X),f(Y)).
conjunctive(f(X > Y),t(X),f(Y)).

disjunctive(f(X & Y),f(X),f(Y)).
disjunctive(t(X v Y),t(X),t(Y)).
disjunctive(t(X > Y),f(X),t(Y)).

unary(t(~X),f(X)).
unary(f(~X),t(X)).
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/*************************************************************************

name: freeVarTabl.pl (Chapter 5)
version: Dec 10, 1998

description: Free Variable Semantic Tableaux
Uses a number of ideas from Melvin Fitting's
implementation of an unsigned tableaux theorem prover
for first-order logic, in "First-Order Logic and
Automated Theorem Proving", Second Edition (1996),
Graduate Texts in Computer Science, Springer.
For more details, see the Notes to Chapter 5.

authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(freeVarTabl,[valid/2,saturate/2,notatedFormula/3]).

:- use module(comsemOperators),
use module(comsemPredicates,[member/2,removeFirst/3,unify/2,append/3,

compose/3,newFunctionCounter/1,
substitute/4]).

/*========================================================================

General Tableaux Predicates
---------------------------

saturate(+Tableau,+Qdepth)
Expand Tableau until it is closed, allowing Qdepth
applications of the universal rule.

closed(+Tableau)
Every branch of Tableau can be made to contain a contradiction,
after a suitable free variable substitution.

skolemFunction(+VarList,-SkoTerm)
VarList is a list of free variables, and SkoTerm is a previously
unused Skolem function symbol fun(N) applied to those free variables.

valid(+X,+Qdepth)
Try to create a tableau expansion for f(X) that is closed allowing
Qdepth applications of the universal rule.

notatedFormula(Notated,Free,SignedFormula)
Notated is a notated formula, Free its associated free variable
list, and SignedFormula the signed formula part.

========================================================================*/

saturate(Tableau, Q):-
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closed(Tableau).

saturate(OldTableau,Qdepth):-
expand(OldTableau,Qdepth,NewTableau,NewQdepth),!,
saturate(NewTableau,NewQdepth).

closed([]).
closed([Branch|Rest]):-

member(NotatedOne,Branch),
notatedFormula(NotatedOne, ,t(X)),
member(NotatedTwo,Branch),
notatedFormula(NotatedTwo, ,f(Y)),
unify(X,Y),
closed(Rest).

skolemFunction(VarList,SkolemTerm) :-
newFunctionCounter(N),
compose(SkolemTerm,fun,[N|VarList]).

valid(X,Qdepth):-
notatedFormula(NotatedFormula,[],f(X)),
saturate([[NotatedFormula]],Qdepth).

notatedFormula(n(Free,Formula),Free,Formula).

/*========================================================================

Tableaux Expansion Predicates
---------------------------

expand(+Oldtableau,+OldQdepth,-Newtableau,-NewQdepth)
Newtableaux with Q-depth NewQdepth is the result of applying
a tableaux expansion rule to Oldtableaux with a Q-depth of OldQdepth.

unaryExpansion(+Branch,-NewBranch)
Take Branch as input, and return NewBranches if a tableau rule
allows unary expansion.

conjunctiveExpansion(+Branch,-NewBranch)
Take Branch as input, and return the NewBranch if a tableau rule
allows conjunctive expansion.

disjunctiveExpansion(+Branch,-NewBranch1,-NewBranch2)
Take Branch as input, and return the NewNranch1 and NewBranch2
if a tableau rule allows disjunctive expansion.

existentialExpansion(+Branch,-NewBranch)
Take Branch as input, and return the NewBranch if a tableau rule
allows existential expansion.
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universalExpansion(+Branch,+OldQDepth,-NewBranch,-NewQDepth)
Take Branch and OldQD as input, and return the NewBranch and
NewQDepthif a tableau rule allow universal expansion.

========================================================================*/

expand([Branch|Tableau],QD,[NewBranch|Tableau],QD):-
unaryExpansion(Branch,NewBranch).

expand([Branch|Tableau],QD,[NewBranch|Tableau],QD):-
conjunctiveExpansion(Branch,NewBranch).

expand([Branch|Tableau],QD,[NewBranch|Tableau],QD):-
existentialExpansion(Branch,NewBranch).

expand([Branch|Tableau],QD,[NewBranch1,NewBranch2|Tableau],QD):-
disjunctiveExpansion(Branch,NewBranch1,NewBranch2).

expand([Branch|Tableau],OldQD,NewTableau,NewQD):-
universalExpansion(Branch,OldQD,NewBranch,NewQD),
append(Tableau,[NewBranch],NewTableau).

expand([Branch|Rest],OldQD,[Branch|Newrest],NewQD):-
expand(Rest,OldQD,Newrest,NewQD).

unaryExpansion(Branch,[NotatedComponent|Temp]) :-
unary(SignedFormula,Component),
notatedFormula(NotatedFormula,Free,SignedFormula),
removeFirst(NotatedFormula,Branch,Temp),
notatedFormula(NotatedComponent,Free,Component).

conjunctiveExpansion(Branch,[NotatedComp1,NotatedComp2|Temp]):-
conjunctive(SignedFormula,Comp1,Comp2),
notatedFormula(NotatedFormula,Free,SignedFormula),
removeFirst(NotatedFormula,Branch,Temp),
notatedFormula(NotatedComp1,Free,Comp1),
notatedFormula(NotatedComp2,Free,Comp2).

disjunctiveExpansion(Branch,[NotComp1|Temp],[NotComp2|Temp]):-
disjunctive(SignedFormula,Comp1,Comp2),
notatedFormula(NotatedFormula,Free,SignedFormula),
removeFirst(NotatedFormula,Branch,Temp),
notatedFormula(NotComp1,Free,Comp1),
notatedFormula(NotComp2,Free,Comp2).

existentialExpansion(Branch,[NotatedInstance|Temp]):-
notatedFormula(NotatedFormula,Free,SignedFormula),
existential(SignedFormula),
removeFirst(NotatedFormula,Branch,Temp),
skolemFunction(Free,Term),
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instance(SignedFormula,Term,Instance),
notatedFormula(NotatedInstance,Free,Instance).

universalExpansion(Branch,OldQD,NewBranch,NewQD):-
OldQD > 0, NewQD is OldQD - 1,
member(NotatedFormula,Branch),
notatedFormula(NotatedFormula,Free,SignedFormula),
universal(SignedFormula),
removeFirst(NotatedFormula,Branch,Temp),
instance(SignedFormula,V,Instance),
notatedFormula(NotatedInstance,[V|Free],Instance),
append([NotatedInstance|Temp],[NotatedFormula],NewBranch).

/*========================================================================

Formula Identification
----------------------

conjunctive(?F,?Comp1,?Comp2)
F is a conjunctive signed formula with components Comp1 and Comp2

disjunctive(?F,?Comp1,?Comp2)
F is a disjunctive signed formula with components Comp1 and Comp2

unary(?F,?Comp)
F is a signed formula with component Comp

universal(?F)
F is a universal formula.

existential(?F)
F is an existential formula.

instance(F,Term,Ins)
F is a signed quantified formula, and Ins is the result of
removing the quantifier and replacing all free occurrences of
the quantified variable by occurrences of Term.

========================================================================*/

conjunctive(t(X & Y),t(X),t(Y)).
conjunctive(f(X v Y),f(X),f(Y)).
conjunctive(f(X > Y),t(X),f(Y)).

disjunctive(f(X & Y),f(X),f(Y)).
disjunctive(t(X v Y),t(X),t(Y)).
disjunctive(t(X > Y),f(X),t(Y)).

unary(t(~X),f(X)).
unary(f(~X),t(X)).
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universal(t(forall( , ))).
universal(f(exists( , ))).

existential(t(exists( , ))).
existential(f(forall( , ))).

instance(t(forall(X,F)),Term,t(NewF)):-
substitute(Term,X,F,NewF).

instance(f(exists(X,F)),Term,f(NewF)):-
substitute(Term,X,F,NewF).

instance(t(exists(X,F)),Term,t(NewF)):-
substitute(Term,X,F,NewF).

instance(f(forall(X,F)),Term,f(NewF)):-
substitute(Term,X,F,NewF).
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/*************************************************************************

name: callTheoremProver.pl (Chapter 5)
version: June 18, 1998

description: Prolog Interface to Otter (Sicstus required)
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(callTheoremProver,[callTheoremProver/3]).

:- use module(library(system)),
use module(fol2otter,[fol2otter/2]).

/*========================================================================
Calls to Theorem Prover (Otter)

========================================================================*/

callTheoremProver(Axioms,Formula,Proof):-
fol2otter(Axioms,Formula),
shell('./otter < temp.in > temp.out 2> /dev/null',X),
(X=26368,Proof=yes,!;X=26624,Proof=no).
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/*************************************************************************

name: callModelBuilder.pl (Chapter 5)
version: September 3, 1999

description: Prolog Interface to Mace (Sicstus required)
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(callModelBuilder,[callModelBuider/4]).

:- use module(library(system)),
use module(comsemPredicates,[append/3]),
use module(fol2otter,[fol2otter/2]).

/*========================================================================
Calls to Model Generator (Mace)

Changed in MACE (generate.c):
#define MAX SYMBOLS 100 number of functors (was 50)

========================================================================*/

callModelBuilder(Axioms,Formula,DomainSize,Model):-
fol2otter(Axioms,Formula),
name('./mace -n',C1),
name(DomainSize,C2),
append(C1,C2,C3),
name(' -p -t2 -m1 < temp.in > temp.out 2> /dev/null',C4),
append(C3,C4,C5),
name(Shell,C5),
shell(Shell,X),
% this is not correct. It always returns 0!
(X=0,Model=1,!;write(X),Model=0).
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/*************************************************************************

name: fol2otter.pl (Chapter 11)
version: June 18, 1998

description: Translates a formula in otter syntax to standard output
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(fol2otter,[fol2otter/2]).

:- use module(comsemOperators).

/*========================================================================
Translates formula to otter syntax in file 'temp.in'

========================================================================*/

fol2otter(Axioms,Formula):-
tell('temp.in'),
format('set(auto).~n~n',[]),
format('clear(print proofs).~n~n',[]),
format('set(prolog style variables).~n~n',[]),
format('formula list(usable).~n~n~n',[]),
printOtterList(Axioms),
printOtterFormula(Formula),
format('~nend of list.~n',[]),
told.

/*========================================================================
Print a list of Otter formulas

========================================================================*/

printOtterList([]).
printOtterList([X|L]):-

printOtterFormula(X),
printOtterList(L).

/*========================================================================
Print an Otter formula

========================================================================*/

printOtterFormula(F):-
\+ \+ (numbervars(F,0, ), printOtter(F,5)),
format('.~n',[]).

printOtter(exists(X,Formula),Tab):-
write('(exists '),write(X),write(' '),!,
printOtter(Formula,Tab),write(')').

printOtter(forall(X,Formula),Tab):-
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write('(all '),write(X),write(' '),!,
printOtter(Formula,Tab),write(')').

printOtter(Phi & Psi,Tab):-
write('('),!,
printOtter(Phi,Tab),
write(' & '), nl, tab(Tab),
NewTab is Tab + 5,
printOtter(Psi,NewTab), write(')').

printOtter(Phi v Psi,Tab):-
write('('),!,
printOtter(Phi,Tab), write(' | '),
printOtter(Psi,Tab), write(')').

printOtter(Phi <> Psi,Tab):-
write('('),!,
printOtter(Phi,Tab), write(' <-> '),
printOtter(Psi,Tab), write(')').

printOtter(Phi > Psi,Tab):-
write('('),!,
printOtter(Phi,Tab), write(' -> '),
printOtter(Psi,Tab), write(')').

printOtter(~ Phi,Tab):-
write('-('),!,
printOtter(Phi,Tab), write(')').

printOtter(Phi, ):-
write(Phi).
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/*************************************************************************

name: nlQuestions.pl (Chapter 6)
version: Dec 16, 1998

description: Combining the model checker and the lambda calculus
to answer simple natural language questions.

authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(nlQuestions,[query/1,q/3]).

:- use module(modelChecker2,[evaluate/2]),
use module(readLine,[readLine/1]),
use module(comsemOperators),
use module(comsemPredicates,[compose/3]),
use module(betaConversion,[betaConvert/2]).

:- [englishGrammar], [englishLexicon], [semMacrosLambda].

/*========================================================================

Driver Predicate
----------------

query(?Example)
Tries to translate the user's input Question, into a lambda
expression, and evaluate the Sem-part of it in the model named Example.
Prints all the answers for which the formula can be evaluated, and
then asks again for a new question.

========================================================================*/

query(Example):-
readLine(Question),
q(Q,Question,[]),
betaConvert(Q,lambda(Answer,Sem)),
evaluate(Sem,Example),
write(Answer), nl, fail.

query(Example):-
query(Example).

/*========================================================================
Grammar rules for Wh-Questions

========================================================================*/

q(WH@VP)--> wh(WH), vp2(VP).

249



Blackburn & Bos Appendix September 3, 1999

wh(lambda(P,lambda(X,P@X)))--> [who].

wh(lambda(P,lambda(X,(N@X) & (P@X))))--> [which], n2(N).
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/*************************************************************************

name: nlArgumentation.pl (Chapter 6)
version: December 16, 1998

description: Natural Language Argumentation
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(nlArgumentation,[argument/0]).

:- use module(freeVarTabl,[notatedFormula/3,saturate/2]),
use module(readLine,[readLine/1]),
use module(comsemOperators),
use module(comsemPredicates,[compose/3]),
use module(betaConversion,[betaConvert/2]).

:- [englishGrammar], [englishLexicon], [semMacrosLambda].

/*========================================================================
Interface to the free variable tableaux

========================================================================*/

validArgument([Conclusion|Premises],Qdepth):-
notatedFormula(NotatedConclusion,[],f(Conclusion)),
premises(Premises,[],NotatedPremises),
saturate([[NotatedConclusion|NotatedPremises]],Qdepth).

/*========================================================================
Auxiliary predicate to translate premises

========================================================================*/

premises([],N,N).
premises([P|Premises],SoFar,NotatedPremises):-

notatedFormula(NotatedP,[],t(P)),
premises(Premises,[NotatedP|SoFar],NotatedPremises).

/*========================================================================
The driver predicate

========================================================================*/

argument:-
enterPremises(Premises),
enterConclusion(Conclusion),
(

validArgument([Conclusion|Premises],10),
nl,write('This is a valid argument!'),nl,!

;
nl,write('Not a valid argument...'),nl
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).

/*========================================================================
Predicate for entering the premises

========================================================================*/

enterPremises(Premises):-
nl, write('Enter premises (or Return to continue):'),
readLine(Input),
(

Input=[],!,
Premises=[]

;
d(SemPremise,Input,[]),
betaConvert(SemPremise,ConvertedPremise),
enterPremises(Others),
Premises=[ConvertedPremise|Others]

).

/*========================================================================
Predicate for entering the conclusion

========================================================================*/

enterConclusion(Conclusion):-
nl, write('Enter conclusion:'),
readLine(Input),
d(SemConclusion,Input,[]),
betaConvert(SemConclusion,Conclusion).
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/*************************************************************************

name: semOntology.pl (Chapter 6)
version: July 10, 1999

description: Predicates for working with the semantic ontology
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(semOntology,[generateOntology/1,consistent/2]).

:- use module(comsemPredicates,[member/2,append/3,compose/3]),
use module(comsemOperators).

:- [englishLexicon].

/*========================================================================
Generating Ontology in First-Order Formulas

========================================================================*/

generateOntology(Formulas):-
generateIsa(I0),
generateDisjoint(I0-I1,I2),
isa2fol(I1,[]-F),
isa2fol(I2,F-Formulas).

/*========================================================================
Generating isa/2 relations

========================================================================*/

generateIsa(I):-
setof(isa(Hypo,Hyper),Words^lexicon(noun,Hypo,Words,Hyper),I).

/*========================================================================
Generating disjoint/2 relations (on the basis of isa/2)

========================================================================*/

generateDisjoint([]-[],[]).

generateDisjoint([isa(A,[Hyper])|L1]-[isa(A,Hyper)|L2],I3):-!,
findall(disjoint(A,B),member(isa(B,[Hyper]),L1),I1),
generateDisjoint(L1-L2,I2),
append(I1,I2,I3).

generateDisjoint([isa(A,Hyper)|L1]-[isa(A,Hyper)|L2],I):-
generateDisjoint(L1-L2,I).

/*========================================================================
Translating ISA-relations to first-order formulas
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========================================================================*/

isa2fol([],A-A):- !.

isa2fol([isa(S1,[S2])|L],A1-[forall(X,F1 > F2)|A2]):- !,
compose(F1,S1,[X]),
compose(F2,S2,[X]),
isa2fol(L,A1-A2).

isa2fol([isa(S1,S2)|L],A1-[forall(X,F1 > F2)|A2]):-
compose(F1,S1,[X]),
compose(F2,S2,[X]),
isa2fol(L,A1-A2).

isa2fol([disjoint(S1,S2)|L],A1-[forall(X,F1 > ~ F2)|A2]):-
compose(F1,S1,[X]),
compose(F2,S2,[X]),
isa2fol(L,A1-A2).

/*========================================================================
Consistency Check

========================================================================*/

consistent(X,Y):-
generateIsa(I),
generateDisjoint(I-Isa,Disjoint),
\+ inconsistent(X,Y,Isa,[disjoint(human,nonhuman)|Disjoint]).

inconsistent(X,Y, ,Disjoint):-
member(disjoint(X,Y),Disjoint).

inconsistent(X,Y, ,Disjoint):-
member(disjoint(Y,X),Disjoint).

inconsistent(X,Y,Isa,Disjoint):-
member(isa(X,Z),Isa),
inconsistent(Z,Y,Isa,Disjoint).

inconsistent(X,Y,Isa,Disjoint):-
member(isa(Y,Z),Isa),
inconsistent(X,Z,Isa,Disjoint).
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Preface

In Volume II we change our underlying logical representation formalism: instead of using
�rst-order representations we will use Discourse Representation Structures (DRSs). DRSs
are the representations used in Discourse Representation Theory (DRT), one of the most
inuential (and certainly one of the most interesting) current approaches to the semantics
of natural language. In spite of this change, we will be able to reuse the grammars and tools
developed in Volume I without diÆculty. We then investigate some interesting semantic
phenomena, namely pronoun resolution and presupposition projection, and integrate|at
least partially|our work on inference with our work on semantic construction. Chapter
by chapter, Volume II looks like this:

Chapter 1. Discourse Representation Theory. This chapter introduces
DRT and prepares the way for our later computational work. We discuss the
notion of context change potential, de�ne DRS languages, discuss accessibility
and the standard DRS construction algorithm, give two (equivalent) semantics
for DRS languages, and show how to translate DRSs into �rst-order logic. We
then implement a simple model checker, and a DRS to �rst-order logic compiler.

Chapter 2. Building Discourse Representations. We �rst examine three
distinct techniques for constructing the DRSs. First, we discuss threading, an
elegant and eÆcient approach that is essentially the standard DRS construction
algorithm viewed declaratively. Second, we show how straightforward it is
to transplant the lambda calculus technology developed in Volume I to the
setting of DRT; we call the resulting blend �-DRT. Third, we integrate DRS
construction with underspeci�cation. Finally, we discuss the merging of DRSs.

Chapter 3. Pronoun Resolution. Here we turn to a key topic for DRT:
pronoun resolution. We develop a Prolog program which determines which
antecedent NPs are accessible, and performs pronoun resolution on the basis
of this information. We will then extend this program to deal with reexive
pronouns. Finally, we use a focusing algorithm to get|in case ambiguities
arise|a preferred reading.
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Chapter 4. Presupposition Resolution. What exactly are presupposi-
tions, and how can we solve the projection problem for presupposition? In this
chapter we discuss and implement an elegant DRT-based approach to these
problems due to Rob van der Sandt. This approach treats presuppositions as
anaphors which may be accommodated, o�ering a novel perspective on pre-
supposition projection. In this chapter we show how the pronoun resolution
techniques introduced in Chapter 3 can be extended to handle presupposition
accommodation.

Chapter 5. Acceptability Constraints. The algorithms we have supplied
for dealing with pronouns and presupposition are genuinely over-generating.
But on the basis of a simple maxims of conversations, such as consistency and
informativity, some of them can be ruled out. In this chapter we show how to
do this.

Chapter 6. Putting It All Together. Here we combine the techniques we
have acquired in this book. We'll try to put together a system that integrates
our techniques for dealing with scope, anaphora, and presupposition. We show
that hole semantics developed in Volume I adapts straightforwardly to DRT,
thus giving us a mechanism for coping with scope ambiguitiesin DRT.

Each chapter concludes with two sections: Software Summary lists the programs developed
in the chapter, and Notes lists references the reader may �nd helpful, and discusses more
advanced topics.

This book developed out of material for a course on Computational Semantics we regularly
o�er at the Department of Computational Linguistics, University of the Saarland. We also
taught a preliminary version (essentially the material that now makes up Volume I) as
an introductory course at ESSLLI'97, the European Summer School in Logic, Language
and Information held at Aix-en-Provence, France in August 1997. When designing these
courses, we found no single source which contained all the material we wanted to present.
At that time, the only notes solely devoted to computational semantics we knew of were
Cooper et al. 1993. These notes, which we recommend to our readers, were developed at
the University of Edinburgh, and are probably the �rst systematic introduction to modern
computational semantics. Like the present book they are Prolog based, and cover some of
the same ground using interestingly di�erent tools and techniques. However we wanted to
teach the subject in a way that emphasized such ideas as inference, underspeci�cation, and
architectural issues. This led us to a �rst version of the book, which was heavily inuenced
by Pereira and Shieber 1987 for semantic construction, Fitting 1996 and Smullyan 1995 for
tableaux systems, and Kamp and Reyle 1993 for DRT. Since then, the project has taken
on a life of its own, and grown in a variety of (often unexpected) directions. Both the
code and the text has been extensively rewritten and we are now (we hope!) in the �nal
stretch of producing the kind of introduction to computational semantics that we wanted
all along.
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Chapter 1

Discourse Representation Theory

In Part I we used �rst-order formulas as our underlying representations; in Part II we switch
to Discourse Representation Structures (DRSs), the representations used in Discourse Rep-
resentation Theory (DRT). DRSs will enable us to encode the information contained in
multi-sentence discourses, and to do so in a way that yields a natural treatment of such
phenomena as anaphoric pronouns and presuppositions. As we shall see, DRT is compati-
ble with a wide range of implementation strategies, and we will be able to reuse much of
our work from Part I with little or no fuss.

This chapter introduces the basic ideas of DRT. The �rst section gives a swift overview
of DRT that encourages the reader to think of DRSs (or boxes) as pictures. We show
that it is useful to view discourse comprehension as a process of constructing a picture of
the changing context, de�ne DRS languages, informally sketch the embedding semantics,
introduce the concept of accessibility , and discuss the standard construction algorithm.
The remaining sections then explore semantics of DRS languages in more detail, both
theoretically and computationally. First, we present two alternative interpretations of
DRS languages: the embedding semantics, which emphasizes the intuition that DRSs
are pictures, and dynamic semantics, which emphasizes the view that DRSs are context-
transforming programs. We then examine the relationship between �rst-order languages
and DRS languages. We conclude the chapter with two simple Prolog implementations:
a model checker for DRSs, and a DRS to �rst-order logic compiler. By the end of the
chapter it will be clear that DRT o�ers an entire architecture for thinking about semantics,
an architecture that blends formal, empirical, and computational ideas in a exible and
suggestive way.
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1.1 An Overview of DRT

In this section we introduce a number of key concepts of DRT. Much of our discussion
revolves around the representation language DRT employs, a language based on box-like
structures called DRSs. We will be making heavy use of DRSs in subsequent chapters, for
many di�erent purposes, so it is important that the reader has a good grasp of what they
are and why they are so useful. The present section is largely based around the following
intuition:

DRSs are Pictures.

That is, here we shall present DRT from a representational perspective, encouraging the
reader to view DRSs as something like mental models constructed during the process of
discourse comprehension. This isn't the only way of thinking about DRSs; there is also a
natural dynamic perspective which insists that

DRSs are Programs.

This perspective will be introduced in the following section.

DRT and Context Change Potential

Imagine some agent|perhaps a little robot|about to receive an important message in
natural language. Unless the message is very simple, a sequence of several natural language
sentence will be required, and we immediately enter into a fascinating new area: discourse.

In this book we adopt a very simple model of discourse: discourses will simply be sequences
of natural language sentences. (Of course, we certainly don't assume the converse: not every
sequence of natural language sentences counts as a genuine discourse.) And the question
that interests us is: how can we represent the meaning of a discourse? This is diÆcult
to answer, but one negative observation can be made immediately: whatever the meaning
of a discourse is, it isn't simply the conjunction of the �rst-order representations of its
individual sentences. To see this, let's assume that our little robot is programmed to build
�rst-order representations using the kind of tools developed in Part I. Now consider the
following discourse:

`Mia is a woman. She loves Vincent'.

Our robot correctly parses the �rst sentence and obtains the representation woman(mia).
Then along comes the second sentence, and with it one of the most obvious problems of
discourse representation: how to cope with pronouns. Now, as we mentioned in Chapter ??,
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in certain respects free variables are like pronouns, thus a �rst attempt at representation
might be love(x;vincent), and we certainly could build this using the kinds of techniques
developed in Part I. However the meaning of the (�rst two items of) this discourse is not
correctly captured by the following conjunction:

woman(mia) ^ love(x;vincent):

This representation misses the obvious fact that the pronoun `she' `refers back' to Mia. To
use the linguistic terminology, `she' is an anaphoric pronoun that needs to be resolved ; we
need to link it to a suitable discourse antecedent which will tell us what this pronoun is
meant to refer to.

What are we to do? Well, perhaps we could could simply bite the bullet and say that
this free-variable-containing conjunction really is the underlying representation, and that
pronoun resolution is essentially a post-processing (or transformational) step that converts
this crude, unresolved, formula into the �nal representation. That is, perhaps we should
simply form the above conjunction and then �nd a strategy for converting it into

woman(mia) ^ love(mia;vincent):

This strategy is just about plausible for simple discourses like the previous one, but it soon
collapses. Consider instead the following discourse:

`A woman snorts. She collapses'.

Our naive �rst-order approach would build the following representation:

9z(woman(z) ^ snort(z)) ^ collapse(x):

Again, this representation contains a free variable x, so our post-processing will need to do
something about this. The obvious strategy is to try converting it into

9z(woman(z) ^ snort(z) ^ collapse(z)):

This at least gets the truth conditions right|but there are two problems. For a start,
our post-processing step is beginning to look rather complex: sometimes it has to to
substitute a constant (such as mia) for a free variable, while sometimes it has to play
around with quanti�er scopes. It isn't particularly plausible that transforming �rst-order
representations in this way is compatible with the demands of good grammar engineering.
As we saw in Chapter ?? (where we developed the lambda calculus after realizing that naive
computational approaches to noun phrase representations led to trouble) and Chapter ??
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(where we examined a number of increasingly sophisticated approaches to quanti�er scope)
the key to good grammar engineering is to start with the right representation. The two
(extremely simply) discourses we have examined make it clear that merging the information
contained in successive utterances is a complex process, one that seems to involves both
quanti�er scope and free variable manipulation|and that's simply to allow us to cope with
anaphoric pronouns! Once (say) presuppositions have been added to the brew, it becomes
obvious that we need to adopt a more disciplined approach to representing and merging
the information delivered in the course of a discourse. First order languages simply weren't
designed with these kinds of issues in mind.

But there's a second problem: neither the alleged underlying representation

9z(woman(z) ^ snort(z)) ^ collapse(x)

nor the �nal resolved representation

9z(woman(z) ^ snort(z) ^ collapse(z))

corresponds well with our intuitions about the way the second discourse actually works.
Intuitively, the sentence `A woman snorts' sets the agenda. It paints a simple picture: we
are talking about a woman, a woman who snorts, and presumably the subsequent discourse
will tell us more about her (perhaps it will give her a name). The sentence `She collapses'
then goes on to exploit this: the `she' in a very real sense refers to the woman we're talking
about.

These are strong intuitions, and �rst-order representations simply don't get to grips with
them. The �rst-order representation of `A woman snorts' is 9z(woman(z) ^ snort(z)).
This is truth-conditionally adequate|that is, it captures the fact that the sentence asserts
that a woman exists and that she snorts|but it gives us no grip on the fact that a woman
has|somehow or other|been made contextually relevant. That is, although the �rst-
order representation handles the truth-conditional dimension of meaning well, something
is missing.

This missing aspect of meaning is often called Context Change Potential (CCP). When
we utter a `A woman snorts' we don't simply make a claim about the world, we also
change the context in which subsequent utterances will be interpreted. If we are to make
headway in computing discourse representations, we need to take account of the context
change potential of sentences right from the start. That is, instead of starting with naive
representations and hoping to post-process the contextual e�ects back in, we need to build
more sophisticated representations which mirror context change potential in a natural way.
Of course, we want these more sophisticated representations to get the truth conditions
right as well|but, intuitively, it should not be too diÆcult to ensure this. It certainly
seems far more sensible to try making truth conditional omelettes out of sophisticated eggs
rather than �rst making the omelette and then trying get the eggs back!
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Summing up, we would like a semantic architecture that enables us to build representations
that naturally mirror CCP, but which also allows us easy access to the truth-conditional
dimension of meaning. And in fact, this is precisely what Discourse Representation Theory
o�ers. For our �rst encounter with the world of DRT, let's consider how a DRT-based robot
would handle the previous discourse.

As soon as it realized that a new discourse had started, our robot would open a DRS, or
box. To keep things simple, let's assume the robot is programmed to open the empty box ,
that is, the box containing no prior information:

In contrast, to the �rst-order robot, designed to operate on a \sentence-by-sentence �rst-
order representations + post-processing" approach, the DRT robot, right from the start, is
programmed to take an inter-sentential perspective on the discourse: it will progressively
expand this empty box with information from the entire discourse. From the DRT per-
spective, discourse processing is all about carefully �lling this initial box, observing various
constraints while doing so. Moreover, the box �lling process is highly intuitive: it builds
a sort of picture (or perhaps, a mental model) of the incoming information. This picture
records how the initial context (represented by the empty box) is changed in the course of
the discourse.

When the `A woman snorts' arrives, the robot parses it, and uses the parse tree to guide the
way it expands the empty DRS. (We'll explain how the parse tree guides DRS construction
when we discuss the standard construction algorithm; for the time being we'll ignore the
underlying details.) The result of this process is the following DRS:

x

woman(x)
snort(x)

The x in the top compartment of this box is a discourse referent. The expressions
woman(x) and snort(x) in the bottom compartment are conditions. The discourse refer-
ent x is placed in the top compartment by the NP `a woman'; in fact, the primary function
of NPs in DRT is to introduce new discourse referents. The conditions woman(x) and
snort(x) were placed in the bottom compartment by the NP `a woman' and the VP `snorts'
respectively. The reader should think of the top half of this DRS as the domain of a little
model (the discourse model, if you like) and the discourse referents that sit there as entities
we introduce to help us record the way the context changes as the information streams in;
they are potentially salient objects, available for later anaphoric reference. The conditions
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in the bottom half of the picture record what we learn about these entities and their inter-
relationships as the discourse proceeds. The following metaphor is quite useful: think of
the discourse referents as pegs, and the conditions as coats we hang on these pegs as best
we can.

But to return to our example: what happens when our robot then receives the sentence
`She snorts'? The robot parses it and does three things. First, it adds a new discourse
referent (y, say) to the top part of the DRS; it does this because `she' is an NP, and
the primary function of NPs is to introduce new discourse referents. Second, it adds the
condition collapse(y); it is the VP that contributes this condition. Thirdly, and most
interestingly, it adds a further condition, x=y. That is, after the second sentence has been
processed, we have the following DRS:

A woman snorts. She collapses.

x y

woman(x)
snort(x)
collapse(y)
y=x

(1)

It should be intuitively clear that the condition y=x is doing something very sensible: it
identi�es the collapsing entity with the snorting woman introduced in the �rst sentence,
thus correctly resolving the pronoun `she'. But why did the robot do this? Well, `she'
is not only an NP, it is a pronoun. Let us assume our robot is programmed to treat all
pronouns as anaphoric. In DRT, anaphoric pronouns are handled as followed: the discourse
referent introduced by the pronoun must be identi�ed with an accessible discourse referent.
Accessibility is a key concept in DRT and we'll be working with it a lot in this book|but
for now it's enough to say that there is only one other discourse referent in our example
DRS (namely x), and as a matter of fact x is accessible (we'll see why later), thus in this
example the robot is forced to add the condition x=y. In short, our robot resolves pronouns
by exploiting the picture of the context it has built.

The idea of building pictures of the changing context by introducing discourse referents and
stating constraints on them is fundamental to DRT. For example, had the �rst sentence
been `Mia snorts', the robot would have built the following DRS:

x

x=mia
snort(x)

That is, the DRT perspective is that this sentence introduces a new discourse referent
(namely x) and simultaneously records that this new `peg' has to be identi�ed with the
entity named Mia. If you compare this example with the previous one, you will see that
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DRT handles proper names and existentially quanti�ed NPs in essentially the same way:
both introduce a discourse referent which is then constrained by adding conditions. More-
over, note that there is an even closer parallelism between the treatment of anaphoric
pronouns and proper names: both introduce new discourse referents, and both constrain
them equationally (that is, using the equality symbol).

Summing up, DRT o�ers a natural architecture for thinking about the way information is
accumulated in the course of discourse processing: essentially it allows us to draw pictures
of the changing context. DRSs distinguish two types of information: information about
which discourse entities we have at our disposal (recorded in the top compartment of DRSs)
and information about the properties these entities have and the way they are interrelated
(recorded in the bottom). As we have already seen, such pictures give us a natural way of
thinking about anaphoric dependencies|but the DRT perspective turns out to be useful
for a lot more besides: because it focuses on modeling how the context is transformed
as the discourse proceeds, DRT is a good framework for thinking about many devices in
natural language (such as presupposition, ellipsis, tense, and temporal reference) which
give natural language discourses their rich intersentential structure. Switching to DRSs
as the basic building blocks of our semantic representations will enable us to take some
important �rst steps in discourse processing.

DRS Languages

We have just given our �rst examples of DRSs, and encouraged the reader to think of
them as pictures|but clearly the simple DRSs we have seen so far can't cope with such
obvious features of natural language as universal quanti�cation and negation. How are we
to deal with these? In fact, there are entire languages of DRSs: DRSs can be combined
using various connectives and thus nested one inside another; these nested pictures o�er
us all representational power we would expect. So before going any further, let's be precise
about the facilities DRS languages o�er us.

Discourse Representation Structure languages (or DRS languages, or box languages) share
many of the ingredients of �rst-order languages. Like �rst-order languages, they are built
over vocabularies (see Chapter ??). Like �rst-order languages, they contain the symbols :,
_, ! (though they normally don't contain ^), and like �rst-order languages with equality,
they contain a special symbol =. In addition, DRS languages contain the symbols x, y, z,
and so on, though these are called discourse referents, not variables. Nonetheless, there are
important di�erences. Most importantly, DRS languages don't contain the symbols 8 or 9.
Instead, they approach quanti�cation via the idea of Discourse Representation Structures
(DRSs) or boxes.

DRSs are pairs consisting of a �nite set of discourse referents and a �nite set of conditions.
Some of these conditions are primitive|these are the only kind of conditions we have seen
so far|but it is also possible to build complex conditions; these are built out of boxes using
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the connectives :, _, and ). As boxes may contain complex conditions, and as complex
conditions are themselves de�ned in terms of boxes, boxes and conditions must be de�ned
by mutual induction; let us give this crucial de�nition right away.

Suppose we have chosen some vocabulary of interest. We assume that the vocabulary
contains no function symbols (this is simply because we won't be needing function sym-
bols in what follows; it's easy to add them if they're wanted), thus a term � is either a
constant (if the vocabulary contains constants, which for natural language applications it
normally would) or a discourse referent. We then build DRSs and conditions over our
chosen vocabulary as follows:

1. If x1, . . . , xn are discourse referents (here n � 0) and 1, . . . , m (here m � 0) are
conditions then

x1, . . . , xn

1
.
.
.
m

is a DRS.

2. If R is a relation symbol of arity n, and �1,...,�n are terms, then R(�1,...,�n) is a
condition.

3. If �1 and �2 are terms then �1 = �2 is a condition.

4. If B is a DRS, then :B is a condition.

5. If B1 and B2 are DRSs, then B1_B2 is a condition.

6. If B1 and B2 are DRSs, then B1 )B2 is a condition.

7. Nothing else is a DRS or a condition.

Clause 1 speci�es that a DRS is a structure consisting of two components. The top compo-
nent (which may be empty) consists of a set of discourse referents; we call this component
the universe. The bottom component (which may also be empty) consists of a set of
conditions. The DRS
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(that is, the DRS with the empty universe that contains no conditions) is called the empty
DRS , or the empty box .

Conditions licensed by clauses 2 and 3 are called primitive conditions; they are obvious
analogs of �rst-order atomic formulas, and we have already seen examples of them. Condi-
tions licensed by clauses 4, 5 and 6 are called complex conditions. As the reader probably
suspects, : handles negative information and _ handles disjunctive information. The )
construct handles both conditional and universally quanti�ed information. Note that any
DRS will have an outermost box (we call this the main DRS ) and may in addition have
a number of sub-DRSs; these sub-DRSs (if any) are the DRSs used to build complex
conditions.

The de�nition of DRS languages may well have raised more questions than it answers;
there's no denying that|at least at �rst glance|its two-dimensional box-based format is
somewhat unusual. However, as will become increasingly apparent, DRS languages are
extremely natural. For a start, the intuition that DRSs are pictures is a robust one; it
extends in a natural way to DRSs containing complex conditions, and gives us a good way of
de�ning the semantics of DRSs. Furthermore, the way boxes are nested one inside another
gives rise to a geometrical notion called accessibility , and this will play an important role
in later work.

Boxes as Pictures

When is a DRS satis�ed? Given that a DRS is supposed to be a picture, it seems natural
to say that a DRS is satis�ed in a model if and only if it is an accurate image of the
information recorded inside the model. For example, the DRS

x y

woman(x)
boxer(y)
admire(x,y)

should be satis�ed with respect to a model if and only if it is possible to associate the
discourse referents x and y with a pair of entities in the model such that the �rst entity is
a woman, the second is a boxer, and the �rst stands in the admires relation to the second.
If we can associate the discourse referents with such a pair of entities, it is as if the little
picture the DRS gives us is \embedded" inside the (possibly very large) model, and it is
natural to regard such a picture as satis�ed.

In fact, the idea of associating discourse referents with model-theoretic entities, thereby
embedding DRS in models, is the cornerstone of the embedding semantics we shall develop
in detail in the following section. But the reader may be skeptical. For sure, thinking in
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terms of pictures is a natural way of viewing boxes that contain only basic conditions|but
does it help us with the semantics of complex conditions?

Actually, it does. Roughly speaking, a negated DRS will be satis�ed if it is not possible to
�nd the picture the DRS gives us embedded inside the model, and a pair of DRSs joined
by a disjunction symbol will be satis�ed if at least one of these pictures can be found
embedded inside the model. But what about conditions of the form B1 ) B2? This is
nice: such conditions will be satis�ed if every way of embedding the antecedent picture B1

gives rise to an embedding of the consequent picture B2. For example, the DRS

y

woman(y)
)

x

boxer(x)
love(y,x)

which captures the narrow scope reading of the sentence `Every woman loves a boxer', will
be satis�ed if no matter what entity we choose to associate with the discourse referent y
(for example, let's suppose we choose an entity w), we will always be able associate x with
an entity (let's call it b) such that w loves b. In short, no matter which entities we use to
embed the antecedent picture, we will be able to embed the consequent picture too.

Thus DRS languages can be given a semantics that is faithful to the pictorial intuitions
we have been emphasizing, and this is one good reason for being interested in them. But
there is another: box syntax gives rise to the important notion of accessibility.

Accessibility

Our little DRT robot resolved the anaphoric pronoun `she' by adding an equality condition
to the picture it was building. Equality conditions are the mechanism used in DRT to
resolve anaphors, and their use is subject to an interesting constraint: if y is the discourse
referent introduced by a pronoun, and x is a previously introduced discourse referent, then
we are only allowed to add the condition y=x if x is in the universe of a DRS that is
accessible from the DRS whose universe contains y. This accessibility constraint not only
grounds many of DRT's empirical claims about anaphora, it will also play an important
role in our later discussion of presupposition.

What is accessibility? Actually, it's a simple geometric concept, de�ned in terms of the
way DRSs are nested one inside another. Here's the de�nition. DRS B1 is accessible from
DRS B2 when B1 equals B2 or when B1 subordinates B2. The subordinates relation is
de�ned as follows: B1 subordinates B2 if and only if
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1. B1 immediately subordinates B2; or

2. There is some DRS B such that B1 subordinates B and B subordinates B2.

That is, the subordinates relation is the transitive closure of the immediately subordinates
relation. So to complete the de�nition we need only stipulate how immediate subordination
is de�ned. We say: B1 immediately subordinates B2 if and only if

1. B1 contains a condition of the form :B2; or

2. B1 contains a condition of the form B2 _ B or B _ B2, for some DRS B; or

3. B1 contains a condition of the form B2 ) B, for some DRS B; or

4. B1 ) B2 is a condition in some DRS B.

Exercise 1.1.1 Draw the con�gurations of DRSs listed in the de�nition of immediate subordi-
nation. Suppose that B is a DRS and that Bs is a sub-DRS of B (that is, Bs is nested, perhaps
very deeply, somewhere inside B). Prove that B accessible to Bs.

Now, the previous de�nition tells us what it means for one DRS to be accessible from
another|but we really want accessibility to be a relation between occurrences of discourse
referents in universes. However it is now straightforward to de�ne this concept: we say
that an occurrence of a discourse referent (say x) in the universe of some box (say B1) is
accessible from an occurrence of a discourse referent (say y) in the universe of some box
(say B2) if and only if B1 is accessible from B2. And given this concept we can now state
the accessibility constraint on pronoun resolution more precisely:

Suppose a pronoun has introduced a new discourse referent (say y) into the
universe of a DRS B2. Then we are only free to add the condition y=x to the
condition set of B2 if some occurrence of x in some universe is accessible from
the occurrence of y in the universe of B2.

This can be simpli�ed. When using DRSs to analyze natural language, we usually end up
working with DRSs in which each discourse referent occurs in exactly one universe. When
this is the case we don't need to bother talking about occurrences of discourse referents in
universes|in e�ect we can identify a discourse referent with unique universe it occurs in,
and simply talk of one discourse referent being accessible from another. This enables us to
restate the accessibility constraint as follows:

Suppose a pronoun has introduced a new discourse referent (say y) into the
universe of some DRS B. Then we are only free to add the condition y=x to
the condition set of B if x is accessible from y.
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We'll usually talk about accessibility in this simpler way in what follows.

Let's see some examples of the accessibility constraint at work. First, it enables DRT to
correctly predict that an anaphoric link is permitted between `she' and `a woman' in the
�rst little discourse that follows, but not in the second:

A woman snorts. She collapses.

x y

woman(x)
snort(x)
collapse(y)
y=x

(2)

Here we are free to add the constraint y=x, for the (unique) occurrences of x and y belong
to the same universe, and thus x is accessible to y. On the other hand, consider the
following two sentence sequence and its (only partially completed) DRS representation:

Every woman snorts. ? She collapses.

y

x

woman(x)
)

snort(x)
collapse(y)
y=?

(3)

In this example there is no accessible discourse referent for y|the only candidate is x,
and x is not accessible from y. Hence we cannot complete the representation, and thus
(correctly) predict that the pronoun `she' does not have an anaphoric interpretation. Here
are some other examples for which DRT correctly predicts felicity or infelicity on the basis
of accessibility arguments:

(4) Mia ordered a �ve dollar shake. Vincent tasted it.

(5) Mia didn't order a �ve dollar shake. � Vincent tasted it.

(6) Butch stole a chopper. It belonged to Zed.

(7) Butch stole a chopper or a motor cycle. ? It belonged to Zed.

(8) Butch stole a chopper or a motor cycle. � The chopper belonged to Zed.
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Exercise 1.1.2 Use accessibility arguments to explain why anaphoric reference is or is not pos-
sible in these examples.

To conclude this discussion, let's consider how DRT represents the infamous \donkey sen-
tences"; for example, `If a man eats a big Kahuna burger, he enjoys it'. (Donkey sentences
are so-called because the standard examples are `If a farmer owns a donkey, he beats it' and
`Every farmer who owns a donkey beats it'.)

Why are such sentences considered diÆcult? Because it is not clear how the required se-
mantic representations can be built compositionally using the traditional tools of Montague
grammar (roughly speaking, the �-based approach to semantic construction introduced in
Chapter ??). Now, it's no problem �nding a �rst-order formula which captures the truth
conditions of this sentence; the following formula clearly gets it right:

8x8y[man(x)^big kahuna burger(y)^eat(x,y)!enjoy(x,y)].

But how can we build this representation? For a start, how have the existential NPs `a
man' and `a big Kahuna burger' given rise to the universal quanti�ers 8x and 8y? And how
did these two quanti�ers come to take wide scope over the ) contributed by the `If. . . '
that glues the antecedent and consequent sentences together? If you attempt to build
�rst-order representations using the methods of Chapter ??, it's quite likely that you'll
wind up generating:

9x[man(x)^9y[big kahuna burger(y)^eat(x,y)]!enjoy(x,y)].

Exercise 1.1.3 Under the standard semantics of �rst-order logic, this `representation' does not
correctly capture the meaning of the sentence. Explain why.

In DRT this sentence would be represented as follows:

x y

man(x)
big kahuna burger (y)
eat(x,y)

)

v w

enjoy(v,w)
v=x
w=y

This looks more promising. For a start, note that outermost level of structure is a box
containing a condition of the form K1 ) K2, which clearly mirrors the fact that this
sentence is a conditional. Moreover, note that the e�ect of each of the existential NPs
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in the antecedent (that is, `a man' and `a big Kahuna burger') is to contribute a discourse
referent (namely x and y) just as they are supposed to. Further, the pronouns `he' and
`it' in the consequent do this too (they introduce v and w), and the linkage between the
pronouns and their antecedents is neatly captured by the two equalities. Moreover, this
representation really does capture the meaning of the donkey sentence: it should be clear
that this DRS will be satis�ed if and only if whenever we �nd a little picture in which a
man is eating a big Kahuna burger, we can extend this to a picture in which that same man
is enjoying that same Kahuna burger. Furthermore, we will soon have a DRS to �rst-order
logic compiler at out disposal, and this compiler will translate the above DRS to:

8x8y[man(x)^big k burger(y)^eat(x,y)! 9v9w(enjoy(v,w)^v=x^w=y)],

which is easily seen to be equivalent to the earlier �rst-order representation.

So the only question that remains to be answered is: can this DRS be built systematically?
The answer is \yes"|indeed, from the DRT perspective there really isn't anything par-
ticularly special about donkey sentences at all; they are handled using exactly the same
construction methods that handle other sentence types. So the really important question
is not \How do we handle donkey sentences in DRT?" but \How do we set about building
DRSs at all?". The following chapter is entirely devoted to this question, but it's high time
we had a �rst glimpse of the issues involved.

The Standard Construction Algorithm

In this section we'll show, step-by-step, how the DRS corresponding to the discourse `A
woman snorts. She collapses' can be constructed using a simple top-down strategy. This
strategy, which we call the standard construction algorithm, is the account of DRS con-
struction the reader is most likely to meet in other presentations of DRT.

First we start feeding information from the initial sentence into a box:

Step 1:

S

NP VP

Det N IV

a woman snorts

We proceed is follows: we are going to work our way around the tree in a top-down, left-
to-right fashion, adding discourse referents as we go. So �rst we work down from the S
node to the NP node. We then peek inside the NP: what sort of NP is it? In fact, it's an
inde�nite noun phrase; inde�nites introduce a new discourse referent into the upper part
of the box, so we introduce the discourse referent x:
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Step 2:
x

S

NP VP

Det N IV

a woman snorts

What conditions attach to this discourse referent? To �nd out, we move around the NP
subtree to the N node. We �nd the word `woman', thus we constrain x by putting the
condition woman(x) in the lower part of the box (Step 3).

Step 3:
x
woman(x)

S

NP VP

Det N IV

a woman snorts

We've now explored the entire NP subtree; there's nothing left to do here. So it's time to
move back up to S and then down into the VP subtree. Here we encounter the verb phrase
that consists of the intransitive verb `snorts'. The standard algorithm has kept track of
the fact that we've basically moved from the subject position of the tree to the predicate
position, so it instructs us to view as a further constraint on x. Accordingly we add the
condition snort(x) to the DRS:

Step 4:
x
woman(x)
snort(x)

S

NP VP

Det N IV

a woman snorts

This is the DRS for the �rst sentence of discourse (2). Let's continue straight on with the
second sentence. As with the �rst sentence, we will explore its parse tree in a top-down,
left-to-right fashion. Crucially, the standard construction algorithm insists that we add all
the information we obtain from the second sentence straight into the DRS we have already
built using the �rst sentence (after all, the main DRS is meant to be a picture of the entire
discourse). This will make it very easy to perform the required anaphora resolution.

Step 5:

x
woman(x)
snort(x)

S

NP VP

Pro IV

she collapses
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Again we work our way down from S, to NP, and then peek to see what kind of NP we are
dealing with. It's a pronoun, so this means we must introduces a new discourse referent (we
have chosen y) and a condition of the form y=?, where the question mark will be identi�ed
with an accessible, earlier introduced, discourse referent. (Actually, the standard algorithm
insists on a further constraint: the discourse referent we use must not only be accessible,
it must also be suitable|but we'll defer our discussion of suitability till Chapter 9.) There
is only one accessible discourse referent available, namely the discourse referent x, which
was introduced by `a woman', so we are forced to build the following DRS:

Step 6:

x y
woman(x)
snort(x)
y=x

S

NP VP

Pro IV

she collapses

This �nishes the NP subtree. We then work our way round to the VP subtree and handle
it in essentially the same way as did in the �rst sentence, so this is the �nal DRS we obtain:

Step 7:

x y
woman(x)
snort(x)
y=x
collapse(y)

S

NP VP

Pro IV

she collapses

This DRS captures the truth conditions of the discourse appropriately. Two entities are
introduced, x and y, where x possesses the properties of being a woman and snorting, and
y the property of collapsing, and these two entities are identi�ed, just as the the anaphoric
link between the pronoun `she' and `a woman' would lead us to expect.

The standard construction algorithm is simple and easy to understand. But a worrying
thought may have occurred to some readers: is this is the only way we have of constructing
DRSs? If so, then DRT isn't very computationally promising. The heart of computational
semantics is developing exible semantic construction strategies; we simply can't a�ord to
get locked into a top-down (or indeed, any other) strait-jacket.

In fact, there's no problem: DRT turns out to be compatible with a wide range of im-
plementation strategies. Nor is the standard construction algorithm a dead end: on the
contrary, appropriately viewed it provides the basis for an eÆcient approach to DRS con-
struction known as threading. These issues will be explored in detail in the following
chapter.
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1.2 Interpreting DRSs

It's time to be precise about the interpretation of DRSs. There are two popular ways of
doing this: one is to use embedding semantics, which we have already briey discussed,
the other is to use dynamic semantics. These interpretations are equivalent|at least for
the `core' language of DRT we are discussing here|but both are worth getting to know,
for each emphasizes di�erent intuitions about what DRSs are.

Embedding Semantics

Suppose we are working with some DRS language, and thatM = (D;F ) is a model for that
language (that is, the language and the model have the same vocabulary). An embedding
is a partial function from the set of discourse referents to D, the domain of M. Note that
as they are partial functions, embeddings need not associate all discourse referents with
elements of the model. Indeed there is a special embedding, the empty embedding , which
does not associate any discourse referents with elements of the model.

Suppose i and j are embeddings in some model M. We say that j extends i if and only
if whenever i(x) is de�ned for some discourse referent x, then j(x) is de�ned too, and
j(x) = i(x). In set-theoretic terms this simply means that viewed as sets of ordered pairs,
i � j. It is also useful to think of this concept in information-oriented terms: intuitively,
j extends i means that j contains at least as much information as i. Note that every
embedding extends itself, and that every embedding extends the empty embedding (think
of the empty embedding as carrying no information).

We can now say what it means for an i embedding to satisfy a DRS B in a model M:

M; i j=

x1,. . . ,xn

K1

.

.

.
Km

i�
there is an embedding j such that j extends i; and
j(x1); : : : ; j(xn) are all de�ned, and
j satis�es conditions K1; : : : ;Km in M:

This de�nition captures the intuition of \�nding the picture inside the model" in a fairly
obvious way: it demands that the embedding i matches discourse referents with elements of
the model in such a way that all the conditions in the DRS are satis�ed. (Note, incidentally,
that this clause explains why we don't need an explicit conjunction symbol ^ in DRT; any
conditions listed in the same DRS are, in e�ect, conjoined.) There is only one complication:
why do we shift from the original embedding i to an extended embedding j? Because some
of the conditions listed in the DRS we are interpreting (let's call it B) may be complex,
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and the DRSs these complex conditions are formed from may contain discourse referents
that do not belong to the universe of the original DRS; we need to be able to successfully
extend embedding i to cover all the discourse referents introduced in sub-DRSs.

Now for the next step: we need to say what it means for a model M and an embedding i
to satisfy a condition K. For basic conditions, this is straightforward. First, for any term
� , by the interpretation of � with respect to M and i we mean F (�) if � is a constant,
and i(�) if � is a discourse referent; we denote the interpretation of � by I iF (�). Note that
as embeddings are partial, i(�) may be unde�ned; if this is the case we say that I iF (�) is
unde�ned too. We can now state what it means for basic condition to be satis�ed:

M; i j= R(�1; � � � ; �n) i� I iF (�1); : : : ; I
i
F (�n) are all de�ned, and

(I iF (�1); � � � ; I
i
F (�n)) 2 F (R)

M; i j= �1 = �2 i� I iF (�1) and I
i
F (�2) are de�ned, and

I iF (�1) = I iF (�2)

Note that neither of these clauses makes use of the idea of extending embeddings: to
interpret basic conditions we simply compare condition and model in the obvious way.

Now for the complex conditions. Let us say that an embedding j extends an embedding
i on a box B if the arguments j is de�ned on are precisely the arguments i is de�ned
on together with the discourse referents in the universe of B. Using this terminology we
de�ne:

M; i j= :B i� for all j such that j extends i on B;
it is not the case that M; j j= B

M; i j= B1 _B2 i� there is an j such that j extends i on B1; and
M; j j= B1; or
there is an k such that k extends i on B2; and
M; k j= B2

M; i j= B1 ) B2 i� for all j such that j extends i on B1 and
M; j j= B1;

there is a k such that k extends j on B2 and
M; k j= B2

That is, a negative condition is satis�ed precisely when we have painted ourselves into a
corner: no matter how we extend the embedding i on the box in question|note that this
may include doing nothing at all to i, since every embedding extends itself|we simply
can't embed the DRS behind the negation symbol. Similarly, a disjunctive condition is
satis�ed precisely if it is possible to extend i so that at least one of the disjoined DRSs is
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embedded. Finally, a conditional condition is satis�ed if every successful embedding of the
antecedent leads to a successful embedding of the consequent, just as we discussed earlier.

We are almost there. We now know what it means for a DRS to be satis�ed in a model
with respect to a given assignment function|but what does it mean simply to say that a
DRS is satis�ed in a model? The following:

A DRS B is embedding satis�ed in a model M if and only if there is an
embedding i such that M; i j= B:

And that's the embedding semantics. As we promised, it makes precise the intuition that
DRSs are pictures in a very direct way. Nonetheless some readers may have detected
a second idea emerging in the above discussion. Many of the key de�nitions|including
the one for boxes|made use of the idea of extending an embedding. There is something
very procedural about this idea: indeed extending an embedding i to an embedding j

sounds very like \adding information by performing a computation". In fact, the dynamic
semantics we shall now de�ne has its roots in this observation.

Exercise 1.2.1 Both the ) symbol and the _ symbol are eliminable from languages of DRSs.
That is, we can throw away both the) and _ from the language of DRSs without losing expressive
power for we can express both types of condition using boxes and negative conditions. Prove this
with the help of the embedding semantics. (We return to the eliminability of ) and _, from a
somewhat di�erent perspective, when we discuss the relationship of DRS languages and �rst-order
languages; see in particular Exercise 1.3.5.)

Dynamic Semantics

The embedding semantics explains what it means for a picture to be veri�ed. But al-
though this tells us something about the notion of context change potential|after all,
these pictures are pictures of changing context|it is based on an essentially static intu-
ition. Dynamic semantics foregrounds the idea of change: it insists that DRSs are programs
that modify context, and that only conditions should be viewed statically.

What kind of mathematical object could we use to model contexts? The traditional answer
given in dynamic semantics is: total embeddings. Suppose we have �xed some (function
symbol free) signature, and suppose that M = (D;F ) is a model of this signature. A total
embedding in M is a (total) function from the set of all discourse referents to D.

A moment's thought shows this is a reasonable notion of context. Given that our task
is to explain the kind of context change potential that brings objects into salience and
enables anaphoric links to be established, contexts are essentially objects that link discourse
referents with model theoretic entities|and this is precisely what total embeddings are.
In fact we've met this idea before. In Chapter 1 we noted that an assignment of values to
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variables could be viewed as a context; but of course, `discourse referent' is simply DRT
terminology for `variable', hence a total embedding is nothing but an assignment function.

There is one point which may be bothering some readers: do we really need to work with
total embeddings? The answer is, \No, we don't"; but doing so simpli�es the technicalities,
and it is pleasant to have an interpretation for DRS languages that makes use of exactly
the same semantic machinery|models and assignment functions|as �rst order languages.

So how does the the dynamic put this machinery to work? First, it draws a distinction
between the semantics of conditions and the semantics of DRSs. Conditions are regarded
as tests and treated statically: M; g j= K will mean that K (a test) is satis�ed in a model
M (a situation) under a total embedding g (a context). Conceptually and notationally this
is like the treatment of satisfaction in �rst-order logic; tests don't change contexts|their
semantics is static. The dynamics comes in the treatment of DRSs: we are going to think
of DRSs as non-deterministic programs which act on contexts to produce new contexts.
That is, we will de�ne what it means for a DRS B (a program) to be satis�ed in a model
M (a situation) with respect to a pair of total embeddings g and h, (the input context
and the output context); this is written M; g; h j= B. Thus dynamic semantics will blend
four ideas: programs, tests, situations, and contexts. Incidentally, blends is the key word
here. Much of the interest of dynamic semantics lies in the harmonious way it combines a
dynamic analysis of context change with traditional static ideas.

So let's turn to the key de�nition. The following piece of notation will be helpful. If g
and h are total embeddings on the same model we shall write g[x1, . . . , xn]h to indicate
that g di�ers from h, if at all, only in the values it assigns to the discourse referents x1,
. . . , xn. (Note that this is just an n-place version of the idea of variant assignments used
in the de�nition of �rst-order satisfaction in Chapter ??.) As before, we'll let IgF (�n), the
denotation of � be F (�) if � is a constant, and g(�) if � is a discourse referent. We can
now de�ne the static and dynamic notions we need by mutual indication:
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M; g j= R(�1; � � � ; �n) i� (IgF (�1); � � � ; I
g
F (�n)) 2 F (R)

M; g j= �1 = �n i� I
g
F (�1) = I

g
F (�n)

M; g j= :B i� for all h; it is not the case that M; g; h j= B

M; g j= B1 _B2 i� there is an h such that
M; g; h j= B1 or M; g; h j= B2

M; g j= B1 ) B2 i� for all f such that M; g; f j= B1

there is an h such that M; f; h j= B2

M; g; h j=

x1,. . . ,xn

K1

.

.

.
Km

i�
g[x1; : : : ; xn]h and
M; h j= K1 & � � �& M; h j= Km

The �rst two clauses simply say that basic conditions are satis�ed in a situation M given
contextual information g precisely when the interpretations of the discourse reference guar-
antees that we get the answer \Yes" to these tests.

The third clause says that a condition :B is satis�ed in situationM in context g precisely
when the program B cannot be successfully executed when g is used as the input context.
(Note the ip-op, characteristic of DRS languages, from conditions to programs.) That is,
when we run program B on input g, there is no state h that is output by this computation.
In the fourth clause we again see the same ip-op: a disjunctive condition is satis�ed
precisely when at least one of its component programs can be executed on the input context
g, producing a context h as output. (That is, at least one of the component programs is
capable of transforming the input context in a satisfactory way.)

The clause for implicational conditions says that an implication is satis�ed in situation M
in context g precisely when every possible output f of this computation can be successfully
acted on by the consequent program B2 to produce output context. As a well known slogan
puts it: every successful execution of the antecedent leads to a successful execution of the
consequent. To appreciate the force of this de�nition the reader must recall that as we are
thinking of DRSs as non-deterministic programs, a DRS may be able to modify the input
context in various ways. This de�nition demands that no matter which context the DRS
gives back, it must always be possible to execute the consequent program on it.

The last clause is the key one: it tells us what these programs actually do, and why they
are non-deterministic. Given an input context g, a DRS must try to �nd interpretations
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for the discourse referents in its universe so that all its conditions are satis�ed. That is,
boxes are programs that update the links between discourse referents and the world. Note
that such programs are intrinsically non-deterministic: after all, there may be many ways
of updating these links that result in all conditions being satis�ed.

One task remains: de�ning what it means for a DRS to be satis�ed in a model.

A DRS B is dynamically satis�ed in a model M with respect to assignment f
if there is an assignment f 0 such that M; f; f 0 j=B.

And that's dynamic semantics. It should be quite clear that embedding semantics and
dynamic semantics are closely linked|indeed they are essentially two di�erent perspectives
on the same set of ideas. The best way to get to grips with the way these two interpretations
�t together technically is to attempt the following exercise right away.

Exercise 1.2.2 Show that any DRS B can be dynamically satis�ed in a model M if and only if
it can be embedding satis�ed in model M.

1.3 DRT and First-Order Logic

In spite of their di�erences, DRT and �rst-order logic are obviously related. Given any
vocabulary without function symbols, we can use it to build either a DRS language or
a �rst-order language. Moreover, both languages will interpreted on exactly the same
models. Thus it is natural to try to relate DRS and �rst-order languages via satisfaction
preserving translations. Such translations essentially tell us how to compile one language
down into the other in a sensible way.

As we shall now show, any DRS language and its corresponding �rst-order language are
intertranslatable: either can be compiled down into the other, and the translations involved
are straightforward and eÆcient.

From DRT to First-Order Logic

We �rst show how to translate DRSs into formulas of �rst-order logic with equality. Sup-
pose we are working with a vocabulary that contains no function symbols. We shall de�ne
a translation function fo which takes any DRS built over this vocabulary and maps it to
a formula of the �rst-order language (with equality) built over the same vocabulary. This
function works by recursively mapping the DRSs and conditions that make up the input
DRS to �rst-order formulas. It is easy to understand and (as we shall see in the following
section) easy to implement in Prolog.
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First we need to know how to translate boxes. Here is the general translation schema:

(

x1, . . . , xn

1
.
.
.
m

)fo = 9x1 � � � 9xn((1)
fo ^ � � � ^ (m)

fo)

That is, this clause maps the discourse referents in the universe of the box to existentially
quanti�ed variables, and then recursively translates the conditions. The basic idea should
be clear, but to avoid misunderstanding it is worth spelling out what this schema means
in the following special cases. First, if there is only one condition 1 in the condition set,
then the translation is 9x1 � � � 9xn(1)

fo. Second, if there are no conditions in the condition
set, then the translation is 9x1 � � � 9xn> (recall that > stands for true). Third, if the DRS
we are translating has an empty universe, then the translation is (1)

fo ^ � � � ^ (m)
fo. It

follows from these conventions that the translation of the empty DRS is >.

Now for the conditions. The treatment of the basic conditions couldn't be simpler; they
simply map to themselves-viewed-as-�rst-order-atomic-formulas:

(R(x1; : : : ; xn))
fo = R(x1; : : : ; xn)

(�1 = �2)
fo = �1 = �2

Moreover, complex conditions formed using : and _ are also straightforwardly handled;
we simply push the translation function in over the connective, leaving the connective
unchanged:

(:B)fo = :(B)fo

(B1 _ B2)
fo = (B1)

fo _ (B2)
fo

Now for complex conditions formed using ). Here's the general schema:

(

x1, . . . , xn

1
.
.
.
m

) B)fo = 8x1 � � � 8xn(((1)
fo ^ � � � ^ (m)

fo)! (B)fo)

This clause clearly captures the idea that every possible embedding of the antecedent DRS
should lead to a embedding of the conclusion. However, as with the translation of boxes,
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it is a good idea to be explicit about what this schema means in the following special
cases. First, if there is only one condition 1 in the condition set of the antecedent, then
the translation is 8x1 � � � 8xn((1)

fo ! (B)fo). Second, if there are no conditions in the
condition set of the antecedent, then the translation is 8x1 � � � 8xn(> ! (B)fo), which is
logically equivalent to 8x1 � � � 8xn(B)

fo. Third, when the antecedent DRS has an empty
universe, the translation is (1)

fo ^ � � � ^ (m)
fo ! Bfo. It follows from these conventions

that if the antecedent DRS is the empty DRS, we obtain > ! (B)fo, which is logically
equivalent to (B)fo, as the translation.

This translation is not only semantically sensible, it is also eÆcient : the number of symbols
in the �rst-order formula it returns as output is of the same order of magnitude as the
number of symbols in the DRS. This means that we have an easy way of turning DRT
inference problems into �rst-order inference problems, a possibility we shall exploit heavily
in later chapters.

Exercise 1.3.1 Use fo to translate the DRS representing if a man eats a big Kahuna burger, he

enjoys it into �rst-order logic with equality.

Exercise 1.3.2 We claimed that fo was a satisfaction preserving translation. Show that this
claim can be made precise in two ways. Let B be a DRS. First, show that B is dynamically

satis�ed in a model M if and only if M j= (B)fo. Second, show that B is embedding satis�ed in

M if and only if M j= (B)fo.

From First-Order Logic to DRT

We now go in the reverse direction: we shall show how given any vocabulary at all (even
one containing function symbols) we can map �rst-order formulas over this vocabulary
to a DRS built over the same vocabulary (minus the function symbols) in a satisfaction
preserving way. We shall present a lean version of the translation; that is, one that does
not operate directly on all �rst-order connectives. The exercises below ask the reader to
fatten it up, and also show why lean can be useful.

The translation requires a preprocessing stage, which performs three functions. First, it
rewrites the formula to an equivalent formula that contains no function symbols. (We saw
how to do this in Exercise ??.) Having done this, it rewrites this function-free formula to an
equivalent formula that contains only the connectives :, _ and 9. (Again this is possible;
see Exercise ??.) Finally, the resulting formula is rewritten to an equivalent formula in
which distinct occurrences of 9 bind distinct variables, an easy (but important) step. We
are only going to translate the formulas that are output by this three-step preprocessing
stage.

Given a preprocessed �rst-order formula �, how do we translate it? First we form the
following structure:
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(�)dr

That is, we take an empty box, and put the expression (�)dr in the compartment reserved
for conditions. The superscripted dr is our translation function, and we shall simply keep
recursively applying this function; as we do so we will �ll the box with conditions and
discourse referents until we �nish building the DRS we require.

So, what does dr let us do? Obviously we need to specify a translation step for each kind of
�rst-order formula we could encounter, and as � has been preprocessed this means atomic
formulas, conjunctions, negations, and existential quanti�cations. Let's go through these
possibilities in turn, starting with the atomic formulas.

Suppose we see a box of the following form somewhere in the DRS we are building (it may
be the main box itself, or a sub-box):

Discourse Referents

Conditions
(�1 = �2)

dr

Conditions

(The notation is meant to emphasize that the important thing is that we see a box con-
taining (�1 = �2)

dr: it doesn't matter if this box contains other conditions, either before or
after the (�1 = �2)

dr, and it doesn't matter which|if any|discourse referents this box has
in its universe.) If we �nd such a box, it should be clear how to handle it: we simply drop
the brackets. Doing so yields a legitimate DRS condition and gives us the following box:

Discourse Referents

Conditions
�1 = �2
Conditions

In a similar fashion, if we see a box containing the expression (R(x1; : : : ; xn))
dr, then we

simplify this to R(x1; : : : ; xn) and carry on.

So what happens if we see a box containing a conjunction that needs to be translated?
That is, what do we do if we �nd something of the following form:

Discourse Referents

Conditions
(� ^  )dr

Conditions
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Fairly obviously, we simply break this expression in two, forming the following box:

Discourse Referents

Conditions
(�)dr

( )dr

Conditions

So let's consider the clause for negation, which is rather more interesting. Suppose we �nd
a box of the following form:

Discourse Referents

Conditions
(:�)dr

Conditions

This triggers sub-DRS construction|we form a negative condition by opening up a negated
DRS:

Discourse Referents

Conditions

:
(�)dr

Conditions

Finally, suppose we encounter an existentially quanti�ed expression that needs translating:

Discourse Referents

Conditions
(9x�)dr

Conditions

We simply add the variable x to the universe of the DRS and form:

x, Discourse Referents

Conditions
(�)dr

Conditions
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Note that this step exploits our preprocessing: we know that each quanti�er bind a unique
variable, so, given the inductive nature of our construction, x is guaranteed to be distinct
from any of the discourse referents already in this box's universe.

And that's the translation process|we simply start at the top and carry out this simpli�-
cation process until we bottom out in the atomic formulas; it easy to show that this process
terminates yielding a legitimate DRS. Note that this translation is non-deterministic: we
are allowed to simplify in any order we like, wherever we see an appropriate con�guration.
It should also be clear that this translation is just begging to be implemented in Prolog,
and after we have discussed how to represent DRS in Prolog we shall get the reader to do
this (see Exercise1.4.4).

Between them, fo and dr unambiguously show that|regarded simply as tools for talking
about models|DRS languages and �rst-order languages are expressively equivalent. This
strongly underlines the point made at the start of the chapter: the move to DRT does
not reect dissatisfaction with �rst-order logic as a tool for representing truth conditions.
First-order logic is excellent at this task (it's not called classical logic for nothing) and
DRS languages add nothing on this level. Rather, the gains from DRS languages reect a
completely di�erent set of ideas. Although they o�er the same model-theoretic expressivity
as �rst order languages, they package this expressivity di�erently. As both embedding and
dynamic semantics in their di�erent ways show, this repackaging allows us to model the
idea of context change potential in a straightforward and natural way. DRS languages and
�rst-order languages don't di�er in what they say about models; they di�er in what they
teach us about context.

Exercise 1.3.3 Preprocess 8x(woman(x)! snort(x)) and use dr to translate it into a DRS.

Exercise 1.3.4 As the previous exercise shows, a lean translation has its unpleasant aspects:
it requires us to eliminate symbols before we can use it. Fatten dr up by adding clauses that
operate directly on _, !, and 8 formulas, and then retranslate 8x(woman(x)! snort(x)).

Exercise 1.3.5 But lean translations can be useful. For example, using the fact that fo and dr

are both satisfaction preserving, it is easy to show that the symbols _ and ) can be eliminated
from DRS languages without losing expressivity. Indeed we can even pull out explicit paraphrases
of _ and ) conditions. Why is this? [Hint: suppose a DRS B contains occurrences of ) or _.
What do you get if you �rst apply fo and then apply dr to the result?]

1.4 DRT in Prolog

The architecture that is o�ered by DRT is gradually coming into focus|but so far our
discussion has been purely theoretical. What does DRT look like from the perspective of
computational semantics? The remainder of this book is essentially an extended answer to

27



Blackburn & Bos Chapter 1: Discourse Representation Theory September 3, 1999

this question; in the present section we lay the computational foundations for the chapters
that follow.

We shall do two things. First, we de�ne a simple model checker for DRS languages. This
will enable us to �x our basic Prolog conventions for DRT, and gives us an interesting new
perspective on the semantics of DRSs. Following this, we implement the translation of
DRT into �rst-order logic given in Section 1.3. This simple program opens the door to the
the world of �rst-order inference techniques, and underpins much of our later work.

A Simple Model Checker

We want to de�ne a model checker for DRSs. As we know from Chapter 1, where we
de�ned a model checker for �rst-order logic, there are four things on our to-do list. We
have to: (1) decide how to represent vocabularies in Prolog, (2) decide how to represent
models, (3) decide how to represent DRSs, and (4) specify the model checker for DRSs.
The good news is that we can reuse the vocabularies and model representations that we
introduced in Chapter 1, so let's forget (1) and (2) and turn straight to (3): �xing a Prolog
notation for boxes.

We will represent DRSs in Prolog as terms of the form drs(D,C), where D is a list of terms
representing the discourse referents, and C is a list of other terms representing the DRS
conditions. To represent complex conditions we use the same operator de�nitions as for
�rst-order logic (but note that we are not going to use the operator for conjunction, since
we don't need it in DRT).

Let's consider an example. The DRS for `Every gimp shrieks' is:

x

gimp(x)
)

shriek(x)

And in Prolog we represent this DRS as:

drs([],[drs([X],[gimp(X)]) > drs([],[shriek(X)])]).

Our choice of representation is actually rather arbitrary. For a start, we didn't have to
use drs as the functor name|pretty much anything else would have done. Moreover,
we could have devised a glossy operator notation for DRSs had we wanted. Basically,
we chose this aspect of our representation because it is simple and fairly readable, but
nothing much hangs on it. Note, however, that discourse referents are represented as Prolog
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variables. That is, we have made the same choice here that we made when deciding how to
represent �rst-order variables. As we have already discussed, this choice has a number of
advantages (in particular, we won't have to worry about �-conversion, for Prolog handles
that automatically) but it can be dangerous if used carelessly.

Exercise 1.4.1 What are the Prolog representations of the DRSs for (1) `Vincent does not die',
(2) `Vincent dances and Mia dances', (3) `Vincent cleans the back seat or Jules cleans the back seat',
and (4) `If Butch wins, Marsellus loses'?

We now turn to task (4): de�ning a simple model checker for DRSs. We do so in the spirit
of Chapter 1, where we �rst de�ned a (rather naive) satisfy/2 predicate that succeeded
if its �rst argument, a formula of �rst-order logic, could be satis�ed in the model speci�ed
by the second argument.

Now, DRSs and conditions are mutually recursive constructs. Unsurprisingly, this is re-
ected in the implementation of our model checker: we will specify a predicate satisfyDrs
that succeeds if a DRS can be satis�ed in a model, and a predicate satisfyCondition

that succeeds if a DRS-condition can be satis�ed in a model. These predicates will be
mutually recursive. Here is the code for satisfyDrs:

satisfyDrs(drs(Dom,C),Model):-

assignReferents(Dom),

satisfyConditions(C,Model).

assignReferents([]).

assignReferents([Referent|Others]):-

constant(Referent),

assignReferents(Others).

Using the predicate assignReferents/1, satisfyDrs/2 assigns elements of the model
(which are speci�ed as constants in our vocabulary) to the discourse referents of the DRS.
The next step involves checking the conditions of this DRS, and this is done with the help
of satisfyConditions/2.

So how do we de�ne satisfyConditions/2? Obviously we will need a recursive clause
that works us through the condition list, and this is straightforward to de�ne:

satisfyConditions([],_).

satisfyConditions([Condition|Others],Model):-

satisfyCondition(Condition,Model),

satisfyConditions(Others,Model).
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So it remains to specify what satisfyConditions/2 does to individual conditions. Let's
�rst consider negative and disjunctive conditions. In fact, nothing much needs to be said
here; we can deal with them simply by using Prolog negation (negation as failure) and
Prolog disjunction respectively:

satisfyCondition(~ Drs,Model):- \+ satisfyDrs(Drs,Model).

satisfyCondition(Drs1 v Drs2,Model):-

(

satisfyDrs(Drs1,Model)

;

satisfyDrs(Drs2,Model)

).

The clause for ) is more interesting; here's how we'll do it:

satisfyCondition(Drs1 > Drs2,Model):-

(

satisfyDrs(Drs1,Model),

\+ satisfyDrs(Drs2,Model),

!,

fail

;

true

).

What's going on here? Well, from a computational perspective, the following: this clause
tries to satisfy the antecedent DRS (that is, Drs1), and, at the same time, tries to prove
that the consequent DRS (that is, Drs2) cannot be evaluated. If this is the case, the
implication as a whole cannot be satis�ed, and we use the cut-fail combination to inform
Prolog of this. Now, using backtracking, Prolog will try out every possible assignment
of constants of the domain to the discourse referents of the antecedent DRS; if it does
not succeed in showing that the consequent DRS cannot be satis�ed, then we land in the
second disjunct of the clause, where the built-in Prolog predicate true tells us that the
implication as a whole can be satis�ed.

But there's a more abstract perspective on this code. As we asked the reader to show in
Exercises 1.2.1 and 1.3.5,) conditions can be eliminated without loss of expressive power.
In fact, a con�guration of the form
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y1,. . . ,yn

K1
...
Kn

) B

is equivalent to a con�guration of the form

:

y1,. . . ,yn

K1
...
Kn

:B

A moment's thought reveals that the code above exploits this equivalence.

We come at last to the basic conditions. Note that identity conditions are simply checked
by trying to unify them|this only succeeds if X and Y are identi�ed with the same constants
out of the model's domain.

satisfyCondition(X=Y,_Model):-

X=Y.

satisfyCondition(BasicCond,Model):-

memberOfList(BasicCond,Model).

It only remains to wrap this all up in a driver. We'll do this in the way we did in Chapter ??;
we'll de�ne a driver that, given a DRS, picks an example model and tries to satisfy it:

evaluate(Drs,Example):-

example(Example,Model),

satisfyDrs(Drs,Model).

And now for the $64,000 question: what have we actually implemented? Clearly we've
implemented some kind of DRS model-checker|but is it an implementation of embedding
semantics or of dynamic semantics?
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It's impossible to decide|it's both. Read declaratively, the code seems a fairly direct
implementation of embedding semantics. Of course, we have to make allowances for the
fact that we're working with lists and not sets|nonetheless, the basic correspondence is
clear. On the other hand, if you think of what the Prolog interpreter is actually doing
with this code, one is drawn to dynamic semantics; that is, read procedurally, this code
seems more like an implementation of dynamic semantics. In short, simply expressing
the basic semantic ideas of DRT in Prolog blurs the distinction between the dynamic
and embedding semantics, which emphasizes how easy it is to view DRS languages either
statically or dynamically.

In our view, this is just the way it should be. DRT supports a rich and productive interplay
of intuitions. Simple though it is, our little model checker underlines the fundamental unity
of some of its key supporting ideas.

Exercise 1.4.2 Explain why, in the clause for checking identity of two discourse referents,
there is no need to use information from the model, as supplied by the second argument of
satisfyCondition/2.

Exercise 1.4.3 As we know from Chapter 1, using Prolog uni�cation in combination with nega-
tion as failure can have nasty consequences. Test how the DRS model checker fares with respect
the problems we noted for the naive �rst-order logic model checker developed in Chapter 1. De-
�ne a re�ned version of the DRS-evaluation predicate that deals with these problems, reusing as
much Prolog code as possible.

Compiling DRSs into First-Order Logic

In this section we de�ne a simple Prolog predicate called drs2fol which takes a DRS and
produces an equivalent �rst-order formula; this predicate is a straightforward implementa-
tion of the translation function fo discussed in Section 1.3.

Let's �rst consider how to translate boxes. Recall that fo does this as follows:

(

x1, . . . , xn

1
.
.
.
m

)fo = 9x1 � � � 9xn((1)
fo ^ � � � ^ (m)

fo)

Given our list-based Prolog representation of DRSs, the following is a natural implemen-
tation:
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drs2fol(drs([],[Cond]),Formula):- cond2fol(Cond,Formula).

drs2fol(drs([],[Cond1,Cond2|Conds]),Formula1 & Formula2):-

cond2fol(Cond1,Formula1),

drs2fol(drs([],[Cond2|Conds]),Formula2).

drs2fol(drs([X|Referents],Conds),exists(X,Formula)):-

drs2fol(drs(Referents,Conds),Formula).

That is, we work through the list of discourse referents, recursively pumping out the ex-
istential quanti�ers we need; the third clause does this. In addition, we work our way
through the condition list, recursively conjoining their translations as we do so; the second
clause does this. Of course, as DRSs and conditions are mutually inductive concepts, the
second clauses need to call on a predicate cond2fol which tells us how to translate condi-
tions to �rst-order formulas; we will de�ne this predicate shortly. The �rst clause grounds
this process with a call to cond2fol.

So our next task is is to specify what cond2fol does. The clauses for disjunctive and
negative conditions are transparent implementations of what fo does in these cases:

cond2fol(~ Drs, ~ Formula):-

drs2fol(Drs,Formula).

cond2fol(Drs1 v Drs2, Formula1 v Formula2):-

drs2fol(Drs1,Formula1),

drs2fol(Drs2,Formula2).

But now we must deal with ) conditions. Recall that fo handles these as follows:

(

x1, . . . , xn

1
.
.
.
m

) B)fo = 8x1 � � � 8xn(((1)
fo ^ � � � ^ (m)

fo)! (B)fo)

We implement this by working recursively through the discourse referent list, pumping out
the universally quanti�ed formulas we need, and then placing the implication in place:

cond2fol(drs([],Conds) > Drs2, Formula1 > Formula2):-

drs2fol(drs([],Conds),Formula1),

drs2fol(Drs2,Formula2).
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cond2fol(drs([X|Referents],Conds) > Drs2, forall(X,Formula)):-

cond2fol(drs(Referents,Conds) > Drs2,Formula).

Only one task remains: we need to say how basic conditions are translated. This is the
clause on which the entire mutual induction rests, and it is de�ned as follows:

cond2fol(BasicCondition,AtomicFormula):-

BasicCondition =.. [_Predicate|[FirstArg|OtherArgs]],

simpleTerms([FirstArg|OtherArgs]),

AtomicFormula=BasicCondition.

That is, when we reach the bottom level, we check that what we have found is really a
basic condition; if it is, we have the atomic �rst-order formula we need.

And that's it. Very simple, and as we shall see, very useful. We now have a bridge between
the world of DRT and the world of �rst-order inference methods, and we shall make heavy
use of it in Chapter 6.

Exercise 1.4.4 Implement the translation dr discussed in Section 1.3 that maps �rst-order ex-
pressions to DRSs. Don't just implement the lean version: add clauses to handle _, ) and 8
directly (see Exercise 1.3.4).

Exercise 1.4.5 Is drs2fol/2 reversible? It clearly isn't. Check the predicate on all input modes,
and report cases where it fails to give the right result.

'

&

$

%

Software Summary of Chapter 1

modelDRT.pl Contains the predicate that evaluate a DRS with respect to a �rst-

order model. (page 173)

drs2fol.pl The translation from DRSs to �rst-order formulas. (page 175)

Notes

DRT was originally developed by Kamp (1984) and Heim (1982) (who called it \File
Change Semantics"). DRT is blessed with an excellent textbook, namely Kamp and Reyle
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1993. The book patiently describes the underlying ideas and formal details of the theory,
and applies it to a wide range of natural language phenomena. The standard construction
algorithm is developed in detail and DRS are interpreted via the embedding semantics;
the reader who wants to �nd out more about DRT is advised to start here. Another text-
book level account well worth looking at is given in the second volume of Gamut (Gamut
1991). This account is more critical of DRT, and develops an alternative called Dynamic
Predicate Logic (DPL); this interprets the standard syntax of �rst-order using a variant
of the dynamic semantics discussed in the text. However the box-based syntax of DRT
is now widely accepted as standard notation in linguistics and computational linguistics,
and dynamic semantics seems to be increasingly viewed as an alternative interpretation of
DRSs. The translation fo of DRSs into �rst-order logic with equality given in the text was
taken from Kamp and Reyle (Kamp and Reyle 1993). It's probably the best known trans-
lation, but there are others; Muskens (Muskens 1996), for example, gives an interesting
alternative. For a more advanced discussion of DRT, try Van Eijck and Kamp 1997.
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Chapter 2

Building Discourse Representations

We now know what DRT is, and have developed some simple Prolog programs for working
with DRS languages. But how are we to construct the DRSs that correspond to sentences,
or indeed, entire discourses? This chapter explores the issue in detail, and the basic message
that emerges is straightforward:

DRT is a highly exible theory, compatible with a wide range of semantic con-
struction strategies.

We begin by exploring three alternative approaches to building discourse representations.
First, we introduce a technique called DRS-threading . This technique, which can be viewed
as a declarative approach to the standard algorithm, is elegant, eÆcient, and highly in-
structive. However, our initial implementation of threading is open to the same sort of
diÆculties we encountered in Experiment 2 in Chapter ??. So we abandon threading and
turn to a second technique, the lambda-based methods developed in Part I. As we shall see,
the techniques and tools developed in our earlier work adapt straightforwardly to DRT; we
will be able to reuse the rules in englishGrammar.pl, and the required interface is very
simple.

We then change gears. Basic semantic construction is all very well, but how are we to
handle quanti�er scope ambiguities? As we shall show, the hole semantics approach to
underspeci�cation (Chapter ??) adapts easily DRS languages, and implementing it requires
only routine adaptations of our earlier code.

2.1 DRS-Threading

Threading is an interesting technique for building DRSs. For a start, as it is based on the
use of di�erence structures, threading is extremely eÆcient. Di�erence structure program-
ming uses the di�erence between incomplete data structures to represent partial results of
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a computation; the classic Prolog example is the use of di�erence lists to combine lists eÆ-
ciently. As we have chosen to represent DRSs in Prolog as a pair of lists, and as we want to
combine the small DRSs associated with lexical entries into a big DRS that represents the
entire discourse, it seems sensible to experiment with di�erence structures. But there is an
even more compelling reason for thinking about DRS construction in terms of threading:
it is enlightening and instructive to do so. Threading embodies a clear and remarkably
simple idea|an idea that will enable to peel away the inessential top-down paraphernalia
of the standard DRS construction algorithm and reveal the elegant declarative core that
lies at it heart. Moreover it gives us (yet another) computational perspective on the idea
of context change potential.

When we introduced the standard construction algorithm in Section 1.1, we did so with the
help of a series of diagrams showing a parse tree, a DRS, and an arrows linking them. We
explained how we moved around the tree in a top-down left-to-right direction, gathering
the semantic contributions of the various constituents and packing them into a DRS. Let's
change this picture slightly. Think of the parse tree as a rigid structure, perhaps made
of wire. Think of the DRS as a little plastic bubble which we can freely slide round this
rigid tree (rather like the beads on an abacus, or a children's game). At the start of a
`calculation' or `game' we place the DRS representing the prior discourse at the top of this
tree and then slide it smoothly from node to node, taking care to slide it over every single
node in the tree. When the DRS slides over a node (or to put it another way, when a node
is threaded through the DRS) the node places its semantic contribution inside the DRS.

Here's an example. What happens when we move the DRS over a node labeled by an
intransitive verb, say `dances'? Now, the contribution of an intransitive verb to the overall
DRS is just a basic condition; it doesn't introduce a discourse referent. So when the DRS
threads its way around a node labeled by `dances', the following occurs:

in . . . out

. . .

.

.

.

dances (IV)

. . .

.

.

.
dance(x)

Note that the domain of the outgoing DRS is equal to the domain of the ingoing DRS, and
that the condition set of the outgoing DRS consists of the conditions of the ingoing DRS
plus the basic condition introduced by the verb. It is clear that the node has simply made
the expected semantic contribution as it was threaded through the DRS.
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As far as the basic idea of threading is concerned, there really is not a lot more to say than
is suggested by this diagram. All the work in this section is directly based on the intuition
of a DRS sliding its way round a parse tree, collecting the semantic contributions as it
goes, and we shall simply work out the consequences of this idea for the various syntactic
categories. But then, why is this new picture important? After all, sliding a DRS around a
tree sounds every bit as procedural as the original presentation of the standard construction
algorithm!

However we really have taken an important step forward, for threading focuses attention
on what is truly important: at every node there is an ingoing DRS, an outgoing DRS,
and the di�erence between the ingoing and outgoing DRS is exactly the information that
is contributed by the syntactic category. To put it another way: threading is really about
thinking in terms of pairs of DRSs, for these give us `before-and-after' pictures of the
various stages of semantic construction.

And now for the payo�. If we think in terms of ingoing and outgoing DRSs, the procedural
aspects of the standard construction algorithm simply melt away. We are left with its
declarative core, and this can be expressed using simple Prolog constraints. To see how,
let's return to our `dances' example.

We shall associate each category of the syntactic analysis with a complex Prolog term
DrsIn-DrsOut, representing the ingoing and outgoing DRSs. So, to capture the e�ect of
the previous diagram, the lexical entry for the intransitive verb `dances' must be:

iv(X,DrsIn-DrsOut)-->

{

DrsIn=drs(Dom,Conds),

DrsOut=drs(Dom,[dance(X)|Conds])

},

[dances].

The most important point to observe is two uni�cation equations: these constraints con-
stitute the declarative core of the previous diagram. However the reader should also note
that we are keeping track of the discourse referent X used as the argument of dance. This
is clearly sensible, but note that we have done so by adding it as an extra argument to the
grammar rule and letting the DCG take care of it. Recall that this is essentially the strat-
egy we adopted in Experiment 2 of Chapter ??, and given the outcome of that experiment,
our �rst hint that trouble is brewing; but let's not worry about it for now. Finally, note
that the code can be simpli�ed by replacing DrsIn and DrsOut by the terms they have to
unify with:

iv(X,drs(Dom,Conds)-drs(Dom,[dance(X)|Conds]))-->

[dances].
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Lets now give a threading analysis of the sentence `Mia dances'. First, we need to add a
lexical entry for the proper name `Mia'. Proper names introduce both a discourse referent
and a condition. The following diagram shows what happens when a node labeled by `Mia'
is threaded through a DRS:

. . .

in Mia (NP) out

. . .

.

.

.

Mia (PN)

. . . x

.

.

.
x=mia

The following Prolog code turns this picture into a simple constraint (once again, note
that we've also added an extra DCG argument, Experiment 2 style, to keep track of the
discourse referent):

pn(X,drs(Dom,Conds)-drs([X|Dom],[X=mia|Conds]))-->

[mia].

That's the situation in the lexicon. So let's now see what happens as the DRS representing
the previous discourse slides its way around the parse tree for `Mia dances' (in the following
diagram we assume that this initial DRS is empty):

in Mia dances (S) out

Mia (NP) dances (VP)

x

x=mia
dance(x)

Mia (PN)
x

x=mia
dances (IV)
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There are two unary branching rules in this example (NP ! PN and VP ! IV), and
they are easy to handle in Prolog|they simply pass on the pair of DRSs, since no new
information is added. That is, the ingoing DRS of the daughter category is the ingoing
DRS of the mother, and the outgoing DRS of the mother category is the outgoing DRS of
its daughter:

np(X,DrsIn-DrsOut)-->

pn(X,DrsIn-DrsOut).

vp(X,DrsIn-DrsOut)-->

iv(X,DrsIn-DrsOut).

For the binary branching rule S ! NP VP, the following serves our needs:

s(DrsIn-DrsOut)-->

np(X,DrsIn-Drs),

vp(X,Drs-DrsOut).

Here two points need to be made here. First, note that the outgoing DRS of the NP
node (that is, Drs) uni�es with the ingoing DRS of the VP node, the ingoing DRS of
the sentence is the ingoing node of the NP, and the outgoing DRS of the sentence is the
outgoing DRS of the VP. These constraints ensure that the information is packed into the
DRS correctly|in e�ect, they perform the same function as the processing insisted on in
the standard construction algorithm, but abstract away from its (unnecessarily restrictive)
procedural stipulations. Second, note that the extra arguments percolated upwards by the
noun phrase and verb phrase are uni�ed; this ensures the correct bindings of the discourse
referent with its conditions, very much in the spirit of Experiment 2 of Chapter ??.

And that completes our threading analysis of `Mia dances'. But this is a very simple
sentence; how does DRS-threading extend to sentences containing determiners such as
`every'. Let's give a threading analysis of `Every gimp runs'.

The semantic information associated with the the determiner `every' is a complex structure:
an implicational condition consisting of two DRSs. This is shown in the analysis for the
noun phrase `every gimp' (we assume that the ingoing DRS is empty):
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in every gimp (NP) out

every (DET)
x

gimp (N)
x

gimp(x)

� ) �

x

gimp(x)
) �

The outgoing DRS for `every' is the ingoing one to which implicational condition (that is,
an arrow linking two sub-DRSs) has been added. We don't yet know what the contents
of these sub-DRSs are, so we represent each of them with a black hole �. Actually, we
do know a little more: this implication is a universal quanti�cation, hence the antecedent
black hole must contain a discourse referent x; this is indicated by the third threading
arrow. How is the condition set of the antecedent to be �lled? By the contribution of the
noun (`gimp' in this example), as fourth threading arrow indicates. In short, once we've
threaded every node in the noun phrase through the initial DRS, we will have successfully
�lled in the antecedent black hole and now are ready to pass on the resulting incomplete
DRS (incomplete because the consequent is still just a black hole) to the rest of the sentence
for further threading. But before going any further, let's express this noun phrase analysis
in Prolog. First, the lexical entry for `every':

det(X,DrsIn-DrsOut,RestrIn-RestrOut,ScopeIn-ScopeOut)-->

[every],

{

DrsIn = drs(Dom,Conds),

DrsOut = drs(Dom,[RestrOut > ScopeOut|Conds]),

RestrIn = drs([X],[]),

ScopeIn = drs([],[])

}.

Note that we have added two DRS-threading pairs: RestrIn-RestrOut, which builds the
DRS for the restriction (the �rst �), and ScopeIn-ScopeOut which builds the DRS for
the nuclear scope (the second �). The outgoing DRS equals the ingoing DRS plus a new
implicational condition. A new box RestrIn is opened in which information about the
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restriction can be placed, and a new discourse referent is placed in it. Similarly, a new box
ScopeIn is provided for the nuclear scope, but no information can be placed in this box
by `every'.

Now for the DCG rule that combines a determiner and a noun to form an NP:

np(X,DrsIn-DrsOut,ScopeIn-ScopeOut)-->

det(X,DrsIn-DrsOut,RestrIn-RestrOut,ScopeIn-ScopeOut),

noun(X,RestrIn-RestrOut).

Quite simply, the noun �lls in the restriction information, just as we saw in the previous
diagram. Note that that this rule can be simpli�ed without a�ecting the way it works:

np(X,Drs,Scope)-->

det(X,Drs,Restr,Scope),

noun(X,Restr).

Here Drs stands for the DRS-pair corresponding to the the overall DRS, Restr for the
DRS-pair that �lls the �rst hole (the restriction of the quanti�er), and Scope for the DRS-
pair that �lls the second hole, the nuclear scope of the quanti�er. Now this is nice|but
observe that trouble is on its way. In particular, note that whereas in this rule np has
three arguments, in the earlier proper name rule used to analyze `Mia dances' it only had
two arguments. In short, we are starting to run into the same sort of unpleasantness we
encountered in Experiment 2: the need to adapt all our rules to a common format. We will
do this shortly (for the small collection of rules we're working with here, it's not diÆcult)
but clearly our DCG-based handling of missing information is raising problems that will
require further attention.

Exercise 2.1.1 [Easy] Simplify the DCG rules that deal with determiners and nouns by intro-
ducing the discourse referent in the rule for nouns, instead of the rule for determiners.

Exercise 2.1.2 [Intermediate] Draw a picture that illustrates how to give a threading analysis
the noun phrase `a gimp'. Using this picture as a guide, give a DCG rule for the determiner `a'.

Lets return to our analysis of `Every gimp runs'. We now have an analysis for `Every gimp',
but this contains a black hole marking the missing nuclear scope information. How do we
�ll it? The verb phrase takes care of this, as the following analysis shows:
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in every gimp runs (S) out

every gimp (NP) runs (VP)
run(x)

x

gimp(x)
) �

x

gimp(x)
)

run(x)

That is, we start threading the VP with an empty DRS and substitute the result for the
black hole in the consequent of the implicational condition introduced by `every'. (Inciden-
tally, note that the rule for `every' already states that threading for the scope commences
with the empty DRS, for it contains the constraint ScopeIn = drs([],[]).)

Now the basic idea is clear, but once again Experiment 2 strikes, and to get it working
properly we have to revise the DCG rule for sentences (given in our earlier analysis of `Mia
dances') as follows:

s(DrsIn-DrsOut)-->

np(X,DrsIn-DrsOut,ScopeIn-ScopeOut),

vp(X,ScopeIn-ScopeOut).

Putting this in a more readable format we get:

s(Drs)-->

np(X,Drs,Scope),

vp(X,Scope).

This completes our threading analysis of `Every gimp runs', and all important the ingredients
of DRS-threading have now been discussed. To �nish o�, we'll extend our DCG with some
new grammar rules (including the required reformulation of the rule for proper names), see
how to make use of the lexicon de�ned in Chapter ??, and de�ne a simple driver. First,
the rules:
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d(DrsIn-DrsOut)-->

s(DrsIn-Drs),

d(Drs-DrsOut).

d(Drs-Drs)-->

[].

vp(X,DrsIn-DrsOut)-->

tv(X,Y,Scope),

np(Y,DrsIn-DrsOut,Scope).

np(X,DrsIn-DrsOut,Drs-DrsOut)-->

pn(X,DrsIn-Drs).

The �rst two rules allows us to make small discourses by sequencing sentences (we have
introduced a new category D for `discourse'). We also give a DCG rule for combining
a transitive verb and a noun phrase to form a verb phrase. Finally, as promised, we
have given a revised version of the DCG rule for NP ! PN so that we have one uniform
treatment of noun phrases within the grammar. This new rule may be a little puzzling,
and the reader is asked to study it in the following exercise.

Exercise 2.1.3 [Intermediate] Using either pen and paper or a tracer, compare the sequence of
variable instantiations this program performs when building representations for `Mia dances' and
`A gimp dances'. Compare the new rule given for proper names with the corresponding rule of
Experiment 2 in Chapter ??. Make sure you understand how the use of variable doubling in the
earlier chapter relates to the code given above.

It is straightforward to make use of the the English lexicon de�ned in Chapter ?? with the
threading DCG, For example, the entry for a transitive verb is simply:

tv(X,Y,drs(Dom,Conds)-drs(Dom,[Cond|Conds]))-->

{

lexicon(tv,Sym,Phrase),

compose(Cond,Sym,[Y,X])

},

Phrase.

It remains to design a driver predicate that feeds the DCG with an ingoing DRS and
returns the outgoing DRS. We shall simply give it the empty DRS, but we could just as
easily give it the DRS produced by previously analyzed discourse.
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parse:-

readLine(Discourse),

d(drs([],[])-Drs,Discourse,[]),

printRepresentation(Drs).

For instance, suppose we want to build the DRS for the discourse that contains of the
sentence `Vincent snorts' followed by `A woman collapses'.

?- parse.

> Vincent snorts. A woman collapses.

drs([A,B],[collapse(A),woman(A),snort(B),B=vincent])

Note that the lists are built from right to left; that is, the most recent information comes
�rst in the list.

And that's DRS threading. What can we say about it at a more general level?

Threading clearly has a lot going for it. For a start, the way it arises as declarative abstrac-
tion from the standard construction algorithm is instructive. Moreover, it is suggestive in
other ways: it mirrors the idea that the meaning of an utterance lies in its context change
potential in way that is reminiscent of dynamic semantics. Recall that dynamic semantics
interprets DRSs with respect to pairs of embeddings, an input embedding and an output
embedding|but whereas dynamic semantics exploit the use of input/output pairs to de-
�ne an alternative semantics, threading uses the same idea to place constraints of semantic
construction. The reader will �nd it instructive to re-examine our presentation of dynamic
semantics in the light of the work of the present section.

But now for the bad side. Our approach to DRS-threading faces two problems. Actually,
the �rst of these, which concerns our treatment of proper names, is more interesting than
problematic. As we de�ned DRS-threading, proper names add a discourse referent and
condition to the ingoing DRS. But the ingoing DRS need not be the main DRS: it could
easily be a sub-DRS (for example, the consequent DRS of an implicational DRS) and
this gives rise to an an unwanted result. The discourse referent of a proper name and its
condition should oat to the top of the DRS, but in our presentation of threading they
may stay down at a lower level. This, however, is not a serious problem.

Exercise 2.1.4 [Intermediate] Change the program in such a way that proper names are oated
to the top DRS. Hint: use a second DRS pair.

But there is a problem with our work that is potentially far more damaging. Quite simply,
all the problems associated with the Experiment 2|the problems which motivated our
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introduction of the lambda calculus|are back in force and as annoying as ever. Although
we solved the problems for the present (very simple) grammar, the solution is clearly Prolog
speci�c and rather ad-hoc. Thus an obvious question faces us. Is it possible to work with
variables in DRT in more disciplined, less Prolog oriented way?

2.2 Building DRSs with Lambdas

In Chapter 2 we took �rst-order logic as our basic representation language, and allowed
ourselves to mark missing information with the help of the �-operator. This enabled us
to give a compositional semantics to sentences containing quanti�ed NPs, and opened the
door to more sophisticated ideas, such as the use of nested Cooper storage in Chapter 3.
Let's explore a parallel strategy here: we will build up sentence representations with the
help of the lambda calculus, but will use � to mark information missing from DRSs rather
than �rst-order formulas. We often call this combination as �-DRT, and we shall see, it
enables us to reuse the tools and techniques developed in Part I.

In order to make this approach work, we are going to have to enrich the box languages
with a new construct: the merge operation �. This combines two DRSs by taking the
union of the two universes and the two lists of conditions. For example,

x

boxer(x)
lose(x)

�

y

die(y)
y=x

=

x y

boxer(x)
lose(x)
die(y)
y=x

There are two reasons for adding the merge. The �rst is simply that it makes explicit
something we have been doing implicitly all along. In particular, note that whenever we
use the standard construction algorithm (or indeed, the threading implementation of the
previous section) we take care to add the semantic contribution of the latest sentence to
the DRS associated with the discourse so far|after all, that's one of the key ideas of DRT.
The merge gives us some natural terminology and notation for talking about this idea.
Indeed, it lets us break it down this process into slightly smaller steps, for we can now say
that the semantic representation for a discourse is obtained by building a (completely new)
DRS for the incoming sentence and then merging this new DRS with the DRS associated
with the discourse so far. The second reason is deeper: when used in combination with �,
the merge is precisely the operation on DRS we need to state lexical entries clearly and
concisely. We shall shortly see why.

What sort of �-DRSs (as we usually call them) should be assigned to lexical items? Let's
consider some examples. Nouns are associated with the following kind of representation:
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`boxer': �y.
boxer(y)

`woman': �y.
woman(y)

That is, just as with our earlier work with �rst-order representations, we are using lambdas
as a tool to explicitly mark missing information|a tool that has nothing to do with the
peculiarities of Prolog, and DCGs, or indeed an other language. In the examples just given,
the bound occurrences of y indicate that nouns are associated with DRS|but DRSs that
need to be supplied with a term, in the indicated position, to become a full DRS.

The lexical entries for the determiners `a' and `every' are more interesting. In particular,
they require us to use both lambdas and the merge:

`a': �P.�Q.
z

� P@z � Q@z

`every': �P.�Q. z
� P@z ) Q@z

These are clearly analogous to the lexical entries given for these determiner given in Chap-
ter ??. For example, we there assigned the following representation to `every':

`every': �P:�Q:8z(P@z!Q@z)

In both representations, the abstracted variable P marks the missing restriction informa-
tion, while Q marks the missing nuclear scope. Moreover, the quanti�cational force of the

�-DRS representation is obtained by using a combination of
z

and), in a fashion that

is clearly analogous to the use of 8z and ! in the other. Note that � is useful because it
lets us state which DRS need to be glued together in the course of semantic construction.

Finally, let's consider the lexical entries for intransitive and transitive verbs:

`dances': �y.
dance(y)
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`loves': �X.�y.X@�x.
love(y,x)

Again, the reader should compare these entries with their analogs in Chapter ??.

It's time to put these entries to work. As a sample, here's how we build a DRS for `Every
woman dances':

every woman dances (S)

z

woman(z)
)

dance(z)

every woman (NP)

�Q.
z

woman(z)
)Q@z

dances (IV)

�y.
dance(y)

every (DET)

�P.�Q.
z

� P@z ) Q@z

woman (NOUN)

�y.
woman(y)

Note that the fundamental mechanism that drives this construction is the one we are
familiar with from Chapter ??: the lambda calculus plugs things together in the expected
way. Note, however, that merge plays an important supporting role. For example, the �-
DRS associated with `every woman' in the above tree is formed from the �-DRSs associated
with `every' and `woman' by a lambda conversion (using the bound variable P), followed
by another lambda conversion (using the bound variable z), followed by a merge.

Exercise 2.2.1 [Easy] Write out the steps involved in obtaining the �-DRS associated with
`every woman' in the above tree.

Exercise 2.2.2 [Easy] Build the DRS representing `A woman snorts' using the lexical represen-
tations given above.
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Exercise 2.2.3 [Intermediate] State the needed lexical representations, and then build the DRS
representation of the donkey sentence `If a boxer loses, he dies'.

Exercise 2.2.4 [Easy] Suppose that we tried to avoid using the merge by giving `a' the following
lexical entry instead of the one given above:

`a': �P.�Q.

x

P@x
Q@x

This won't work. Why?

In short, the main ideas underlying semantic �-DRT are those we are familiar with from
Part I. Moreover, as we shall now see, implementing �-DRT in Prolog is rather easy|
indeed the only part of the implementation that requires thought is how to handle the
merge. Just about everything else is a matter of reusing the tools developed in Part I.

Let's start with the really good news: the grammar requires no work whatsoever. A mo-
ments thought shows why. Our grammar is a DCG which uses our predicates for functional
application to manipulate the representations handed up by the lexical entries. It doesn't
much matter to this DCG whether these representations are �rst-order formulas mixed with
lambdas, or DRSs mixed with lambdas. In short, as we claimed in Chapter ??, lambda-
based construction methods make good sense from a grammar engineering perspective.

So what do we actually have to do? Just two things: de�ne the macros for the lexical
entries, and wrap everything up in a new driver. Let's start with thinking about the
semantic macros. It follows from our earlier discussion that they will look like this:

nounSem(Sym,lambda(X,drs([],[Cond]))):-

compose(Cond,Sym,[X]).

ivSem(Sym,lambda(X,drs([],[Cond]))):-

compose(Cond,Sym,[X]).

modSem(neg,lambda(P,lambda(X,drs([],[~(P@X)])))).

But now we have more work to do. Up till now we have not had to use the merge. But
what are we to do with merges which cannot be conjured away like this, as is the case for
the merges in the lexical entry for the determiner `a'? One option would be to make use
of append/3 in the semantic macro for determiners, but this doesn't work. Suppose that
we use the Prolog variables P and Q for the �-DRSs for the `N' and the `VP' part, and
introduce X as the new discourse referent `a' generates. Then we need to merge the DRSs
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that result from, say P@X and Q@X. But from Prolog's point of view, these are not DRSs
(for Prolog DRSs are of the form drs/2).

So we need to think of something else. We shall explore a more straightforward alter-
native. We shall decide on a Prolog notation for the merge of two DRSs, build Prolog
representations which contain such explicit merge markings, and then de�ne a predicate
which carries out the (explicitly marked) merges required. That is, we are going to adopt
the same strategy we used to implement the substitution based approach to � conversion.

Suppose B1 and B2 are DRSs. We can represent the merge of these DRSs as merge(B1,B2).
Then the revised macro for inde�nite determiners looks like:

detSem(indef,lambda(P,lambda(Q,merge(merge(drs([X],[]),P@X),Q@X)))).

What happens when we query a DCG containing such entries? Here's the output that we
get for a simple sentence with two inde�nite noun phrases:

?- s(S,[a,boxer,eats,a,big,kahuna,burger],[]), betaConvert(S,B).

B = merge(drs([X],[boxer(X)]),

merge(drs([Y],[big_kahuna_burger(Y)]),drs([],[eat(X,Y)])))

That is, we obtain the merge of a DRS with a DRS that is itself the result of another
merge. Now this is correct, but not very readable, so let's write a predicate mergeDrs/2

that will actually carry out the stipulated merges. Note that as DRSs can be used to build
complex DRSs, merges can also appear in complex conditions of DRSs, thus we need the
following recursive predicate:

mergeDrs(drs(D,C1),drs(D,C2)):-

mergeDrs(C1,C2).

mergeDrs(merge(B1,B2),drs(D3,C3)):-

mergeDrs(B1,drs(D1,C1)),

mergeDrs(B2,drs(D2,C2)),

append(D1,D2,D3),

append(C1,C2,C3).

mergeDrs([B1 > B2|C1],[B3 > B4|C2]):- !,

mergeDrs(B1,B3), mergeDrs(B2,B4), mergeDrs(C1,C2).

mergeDrs([B1 v B2|C1],[B3 v B4|C2]):- !,

mergeDrs(B1,B3), mergeDrs(B2,B4), mergeDrs(C1,C2).
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mergeDrs([~ B1|C1],[~ B2|C2]):- !,

mergeDrs(B1,B2), mergeDrs(C1,C2).

mergeDrs([C|C1],[C|C2]):-

mergeDrs(C1,C2).

mergeDrs([],[]).

With the help of this predicate, we can pursue the following strategy: we �rst parse a
sentence or discourse. This gives us a DRS with explicit merge statements. We then use
mergeDRS to arrive at simpler DRSs containing no merge statements.

We can now de�ne a driver that parses the discourse and returns the associated DRS for it.
By incorporating a call to mergeDrs, we ensure that our DRSs are presented to us nicely
simpli�ed:

parse:-

readLine(Discourse),

d(MergeDrs,Discourse,[]),

betaConvert(MergeDrs,ReducedDrs),

mergeDrs(ReducedDrs,Drs),

printRepresentation(Drs).

For example:

?- parse.

> Every boxer growls

drs([],[drs([A],[boxer(A)])>drs([],[growl(A)])])

And that's all there is to it. The exercises at the end of the section extend this work in
various directions.

What can we say of a more general nature concerning �-DRT? Clearly the approach is
natural. For a start, it imitates the Montagovian approach to semantic construction, and
extends it to discourse in a very straightforward way; the merge plays a key role here, giving
us an operation which can be explicitly invoked to de�ne the required DRSs. Moreover,
the fact that we can reuse so much of our earlier work is a powerful testimony both to the
robustness of Montague's original methods, and to the naturalness of the ideas underlying
DRT.
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Exercise 2.2.5 [Intermediate] Extend program lambdaDRT.pl with a treatment of the deter-
miner `no'. (Try to handle sentences like `No boxer retires'.)

Exercise 2.2.6 [Intermediate] Extend the program to handle adjectives. (Try to handle sen-
tences like `A rich boxer retires'.)

Exercise 2.2.7 [Intermediate] Extend the program with ditransitive verbs (for example, `give').

Exercise 2.2.8 [Project] Rework the programs given in this section so that they are based on
the use of di�erence lists.

2.3 Underspeci�ed DRSs

Until now we have been concerned with how to use syntactic structure to guide DRS
construction. But as we know from Chapter 3, this is only the start of the story, for we
also need a way to cope with scope ambiguities. What are we to do here?

In fact both the storage and underspeci�cation methods developed in Chapter 3 extend
straightforwardly to �-DRT. As far as storage methods are concerned, this is probably
clear: from a computational perspective storage methods, essentially required us to work
with a rather simple list-based extension of our normal semantic representation. Making
these ideas work for DRS-based representations involves no really new ideas, and we ask
the reader to explore this option in Exercise 2.3.2. But what about underspeci�ed rep-
resentations based on hole semantics? In fact, as we shall now show, most of the work
has already been done: the underlying ideas transfer straightforwardly, we can reuse the
plugging algorithm introduced in Chapter 3, and we can reuse the lexicon and rules for
our fragment of English introduced in Chapter 2.

Combining hole semantics with DRS involves two actions: we �rst need to unplug our
DRS-language, by permitting DRSs to be built which contain holes. Then, we make use
of the simple constraint language de�ned in Chapter 3 that governs the way how the DRS-
chunks can be plugged together . Let's work though a simple example, `every boxer loves a
woman', to show what's involved.

Unplugging the DRS representation for this sentence yields the following chunks, labeled
l1, l2, and l3:

l1:
x

boxer(x)
) h1

l2:
y

woman(y)
�h2 l3:

love(x,y)
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Adding the constraints l3 � h1, l3 � h2 ensures that the main verb is out-scoped by the
DRSs introduced by the NPs, and l1 � h0, l2 � h0 enclose all the chunks within the scope
domain h0. Note that we arrive at the essentially the same underspeci�ed representations
as in Chapter ??, but instead of dealing with �rst-order formula's, we now deal with DRSs.

h0

l1 :
x

boxer(x)
) h1

l2:
y

woman(y)
�h2

l3 :
love(x,y)

And resolving these underspeci�ed DRS-representations is not di�erent from resolving
underspeci�ed �rst-order representations either. Again, the holes underspecify scope, and
in order to give us non-ambiguous interpretations, each hole should be plugged with a DRS
in such a way that all the constraints are satis�ed. In other words, a plugging for a USR
is admissible if the instantiations of the holes with labels result in a DRS in which satisfy
the constraints. To return to our example, here we have two pluggings:

h0 h1 h2

P1 l1 l2 l3

P2 l2 l3 l1

Plugging P1 interprets the USR as giving the universally quantifying NP wide scope, out-
scoping the inde�nite NP. The corresponding DRS is:

x

boxer(x)
)

y

woman(y)
love(x,y)

Plugging P2 yields the other reading, where the inde�nite NP has wide scope. Here is the
corresponding DRS:
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y

woman(y)
x

boxer(x)
)

love(x,y)

That's the idea|so how do we implement it? As in Chapter ??, a USR is represented
in Prolog as usr(D,L,C), where D is a list of holes and labels of the USR, L a list of the
labeled DRSs, and C a list of constraints. Here is an example:

usr([A,C,E,G,I,J,D,H],

[A:drs([],[merge(drs([B],[]),C)>D]),

C:drs([],[boxer(B)]),

E:merge(merge(drs([F],[]),G),H),

G:drs([],[woman(F)]),

I:drs([],[love(B,F)])],

[leq(A,J),leq(I,D),leq(E,J),leq(I,H),leq(I,J)])

As remarked earlier, we can reuse the plugging algorithm introduced in Chapter 3. More-
over, we can reuse the lexicon and rules for our fragment of English introduced in Chapter 2.
In fact, all that's left to do is de�ning the lexical macros and the basic semantic operations.

Let's go through a few examples of macro de�nitions. They should be essentially familiar
to the reader. Here, for example, are the de�nitions for nouns, proper names, and verbs.

nounSem(Sym,lambda(X,lambda(_,lambda(L,usr([],[L:drs([],[Cond])],[]))))):-

compose(Cond,Sym,[X]).

pnSem(Sym,_,lambda(P,lambda(H,lambda(M,

merge(usr([],[M:merge(drs([X],[X=Sym]),L)],[leq(M,H)]),P@X@H@L))))).

ivSem(Sym,lambda(X,lambda(_,lambda(L,usr([],[L:drs([],[Cond])],[]))))):-

compose(Cond,Sym,[X]).

tvSem(Sym,lambda(K,lambda(Y,K@lambda(X,lambda(_,lambda(L,

usr([],[L:drs([],[Cond])],[]))))))):-

compose(Cond,Sym,[Y,X]).

Nouns and proper names introduce one labeled DRS, and impose no constraints. Verbs,
on the other hand, introduce a labeled DRS together with a �-constraint that sets down
the scope domain by leq(L,H): both H and L are lambda arguments, eventually used by
other scope introducing elements of the sentence.
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Determiners function add two constraints to the USR, one that states that the main verb
(labeled L) should be out-scoped by its nuclear scope, and one that ensures that its box
stays within the actual scope domain, imposed by H:

detSem(uni,lambda(P,lambda(Q,lambda(H,lambda(L,

merge(merge(usr([F,R,S],

[F:drs([],[merge(drs([X],[]),R)>S])],

[leq(F,H),leq(L,S)]),P@X@H@R),Q@X@H@L)))))).

And here is the macro for verb negation. From the kind of constraints it introduces, it is
very similar to the de�nitions of determiners.

modSem(neg,lambda(P,lambda(X,lambda(H,lambda(L,

merge(usr([N,S],

[N:drs([],[~S])],

[leq(N,H),leq(L,S)]),

P@X@H@L)))))).

By putting together a driver predicate, we combine our underspeci�ed DRSs with the
plugging algorithm. Here it is:

parse:-

readLine(Sentence),

d(Sem,Sentence,[]),

betaConvert(merge(usr([Top,Main],[],[]),Sem@Top@Main),Reduced),

mergeUSR(Reduced,usr(D,L,C)),

printRepresentation(usr(D,L,C)),

findall(Drs,(plugHole(Top,L-[],C,[]),mergeDrs(Top,Drs)),DRSs),

printReadings(DRSs).

When calling this predicate, Prolog asks the user to type in a sentence, and then gives
this sentence to the grammar, which returns a USR. This USR then is �-converted, the
stipulated merges are carried out, and all possible pluggings are computed. Here is an
example session:

?- parse.

> Every boxer or criminal knows a woman.

usr([A:drs([],[merge(drs([B],[]),C)>D]),

C:drs([],[E v F]),

E:drs([],[boxer(B)]),

F:drs([],[criminal(B)]),

G:merge(merge(drs([H],[]),I),J),
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I:drs([],[woman(H)]),

K:drs([],[know(B,H)])],

[leq(A,L),leq(K,D),leq(C,L),leq(G,L),leq(K,J),leq(K,L)])

Readings:

1 drs([],[drs([A],[drs([],[boxer(A)])v drs([],[criminal(A)])])>drs([B],[woman(B),know(A,B)])])

2 drs([A],[woman(A),drs([B],[drs([],[boxer(B)])v drs([],[criminal(B)])])>drs([],[know(B,A)])])

Exercise 2.3.1 [hard] Running the program on coordinated NPs sometimes brings problems.
Find out which cases do this, explain why, and propose a solution.

Exercise 2.3.2 [easy] Implement both Cooper storage and Keller storage for �-DRT. Reuse as
much code from Chapter 3 as possible.

Exercise 2.3.3 Discuss the possibilities to integrate an account for scope ambiguities (Storage
or Hole Semantics) in the threading approach to DRS-construction.

2.4 Merging into Darkness?

This section will be devoted solely to the problems involved by merging DRSs (and indeed,
underspeci�ed DRSs). So far we took for granted that we can carry out any merge-
instruction without problems. But we didn't pay attention to special occasions. What
would we do, for instance, if we're ought to merge two DRSs that both contain an occur-
rence of the same discoure referent? Like for example:

(1)

x

woman(x)
walk(x)

�

x

woman(x)
talk(x)

If we take our initial de�nition of Section 8.2, which says that we have to take the unions
of the discourse referents and the conditions, we'll get the following DRS:

(2)

x

woman(x)
walk(x)
talk(x)

The two discourse referents, because we gave them the same name, collapsed into one!
Before thinking whether this would be a correct way of dealing with such cases, we should
answer the following question: Is it possible that we, in the course of DRS construction,
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arrive at such expressions? If we can answer this question negatively, we don't need to
bother about it (because we're basically interested in the computational aspects of DRS-
construction, and less in its theoretical considerations).

Interestingly enough, such cases appear. A classic example is coordination: `A woman
walks and a woman talks' gives exactly the initial representation (1) above. But is the
reduced DRS in (2), that describes that there is a woman that walks and talks, the �nal
representation we would like to have? Clearly not! So there is something dramatically
wrong with our merge-operation, that needs to be �xed.

Exercise 2.4.1 Think of other examples in natural language (non-coordination) where this prob-
lem appears.

More to be added...'

&

$

%

Software Summary of Chapter 2

threadingDRT.pl Implementation of the Johnson & Klein's threading technique

for constructing discourse representation structures. (page 177)

mainLambdaDRT.pl Building DRSs with lambdas. (page 180)

semMacrosLambdaDRT.pl The semantic macros for lambda-DRT. (page 181)

mergeDRT.pl The predicates for the DRS-merge. (page 182)

mainDRTU.pl Main program for DRT Unplugged. (page 183)

semMacrosDRTU.pl Semantic macros for DRTU. (page 184)

Notes

The idea of DRS threading was �rst introduced by Johnson & Klein (1986). This ele-
gant paper remains one of the best discussions the semantic construction in DRT and we
strongly recommend it to our readers. Threading is combined with lambdas in Johnson
and Kay (Johnson and Kay 1990); this paper addresses a number of important grammar
engineerinng issues for computational semantics|required reading.

There are a number of \Box + �" systems. The earliest we know of is due to Frey, who
proposes an implementation of DRS construction based on the f-structures of Lexical Func-
tional Grammar (Frey 1985; Wada and Asher 1986). This bottom-up approach speci�es
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partial DRSs for lexical entries in much the same spirit as we do with lambdas, and in-
cludes a modest treatment of quanti�er scope ambiguities. More recent approaches include
�-DRT (Bos et al. 1994; Kohlhase et al. 1996) and the system of Asher (1993); moreover,
Dynamic Montague Grammar (Groenendijk and Stokhof 1990) has much in common with
these systems. Most Box + � systems make use of some kind of merge operator; an ex-
plicit merge operation seems to have been �rst introduced into DRT by Zeevat (1989). The
theoretical aspects of Box + � systems have been increasingly explored in recent years;
Muskens (Muskens 1996) is probably the best starting point for readers interested in this
topic. This (very readable) paper shows how to construct Box + � system in standard
type theory.

Combining boxes with lambdas has proved a good approach to de�ning and implementing
compositional semantics for large scale grammars. For example, �-DRT is used as a seman-
tic representation formalism for Verbmobil, a large spoken-language machine-translation
system (see Bos et al. 1994 for an account of this application).
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Chapter 3

Pronoun Resolution

Pronoun resolution is an extremely lively and fascinating area and it has drawn strong
interests from arti�cial intelligence, computational, and theoretical linguistics. In this
chapter we will investigate and combine di�erent approaches to pronoun resolution, by
extending our Prolog programs for working with DRSs from Chapter 8. We will look at
both linguistic and AI-oriented procedures for pronoun resolution.

3.1 The Nature of Pronouns

A lot of factors come together in processing pronouns. In Chapter 7 we already demon-
strated how the geometrical structure of DRSs constrains the resolution of pronouns. We
will certainly make use of this observation in our implementation of pronoun resolution,
but it is overwhelmingly wrong to think that only the structure of discourse, as we canned
them in DRSs, will determine the correct antecedent for a pronoun. Discourse structure
undoubtly plays an important part in pronoun resolution, but goes far beyond the simple
structures we assigned to discourses so far.

In fact, there is a lot more to pronoun resolution than the structure of discourse. Obviously,
syntactic and semantic agreement play a role, depending on the natural language that
we want to analyze (even closely related language as Dutch, German and English show
signi�cant di�erences in behavior). But also the way human beings communicate a�ects
resolution: normally people talk about one thing at a time. World knowledge is important
too, which requires, eventually, to integrate some kind of inference component in our
algorithm for pronoun resolution. (We will do this in Chapter 11.)

Pronouns are, by their nature, context-sensitive expressions, and the way they appear
syntactically (in some language they are simply left out|this phenomena is known as pro-
drop or zero anaphora) and operate semantically varies in a number of ways. We won't
treat all of this kinds, this goes far behind our purposes|instead we will concentrate
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on, admittingly, the most simplest cases of pronouns, the third person singular personal
pronouns `he/him', `she/her', and `it', and their reexive forms `himself', `herself', and `itself'.

We will only consider their anaphoric use (pronouns that relate back to other objects in
the discourse so far processed), as opposed to their deictic use (relating to objects in a
situation, for instance by pointing at something), or cataphoric use (when pronouns refer
to items not yet mentioned in the text, as in `After he won the match, Butch left town.').
Neither will we discuss nor implement pleonastic use of pronouns as in `It's about nine
o'clock in the morning'.

As we have already mentioned in the introductory chapter to DRT, a discourse referent
can play the role of antecedent for an anaphor only if it is accessible. Recall that DRT
predicts that in the following examples anaphoric links are allowed.

(1) A woman snorts. She collapses.

(2) Mia ordered a �ve dollar shake. Vincent tasted it.

However, by changing the examples slightly, trying to establish anaphoric links results in
weird or even unacceptable discourses.

(3) Every woman snorts. She collapses.
�

(4) Mia didn't order a �ve dollar shake. Vincent tasted it.
�

Universally quanti�ed noun phrase, such as `every woman', and inde�nite noun phrases in
the scope of negation, introduce their discourse referent in a subordinated DRS, and are
hence not accessible as antecedents for pronouns in following sentences.

But the structure of DRSs is, although a very important one, by no reason the only
constraint on pronoun resolution. There is a number of other constraints. An obvious one
is grammatical agreement: in English, pronouns come with a gender and number feature
and can only refer to antecedents that carry the same features values. Consider

(5) Mia ordered a �ve dollar shake. It tasted delicious.

where the pronoun it can only refer to the �ve dollar shake, although there is in principal
another discourse referent available: the one introduced by the proper name Mia. But
since this is a name for a female entity, one would normally uses the correct pronoun she
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to refer her. This sound obvious, but languages behave quite di�erently with respect to
gender agreement.

Pronouns notoriously introduce ambiguity. Often there is more than one interpretation
possible.

(6) Butch threw a TV at the window. It broke.

Our program will eventually generate loads of readings (too many to deal with in an
eÆcient natural language processing system). Some of these are more likely than others,
so one way of dealing with it is adding preferences to the readings.

World knowledge might help us in some cases to select an antecedent. So, in (7) the
pronoun it is likely to refer to a vase introduced in the �rst sentence (and not to the
linguistically equally well the wall).

(7) Butch threw a vase at the wall. It broke.

Selectional constraints play a role here. The pronoun in it broke can only refer to breakable
things. Here is another example that illustrates this.

(8) Butch walks into his modest kitchen. He opens the refrigerator.
He takes out a milk and drinks it.

This might sound intuitively correct, matters are however, far more complicated. Consider
for example `drinking a cup of co�ee'. Here, the cup is the argument of drinking, but
selectional constraints would erroneously rule out this, as strictly spoken, only beverages
can be drinken.

It should be clear that incorporating world knowledge is far more diÆcult than integrating
pure linguistic constraints in the resolution component. We will therefore concentrate on
purely linguistic constraints �rst.

Exercise 3.1.1 If you're not a native speaker of English, �nd out how pronouns are used in your
mother tongue, and compare it with the use of pronouns in English.

3.2 Implementing Pronoun Resolution in DRT

This section discusses a basic implementation of pronoun resolution in DRT. We will focus
on the linguistic sources to constrain resolution. As noted above, we take into account the
geometrical structure of DRSs. Further, we will use gender as sortal information to rule
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out some anaphoric links. Normally, in English, `he' refers to male, `she' to female, and
`it' to non-human entities (there are clear exceptions to this rule, but we won't deal with
these in our implementation). Recall the grammar rule for handling pronouns we have:

pro(Pro)-->

{

lexicon(pro,Gender,Phrase,Type),

proSem(Gender,Type,Pro)

},

Phrase.

This rule declares Phrase a pronoun (i.e., being a member of the syntactic category `Pro')
if it is listed in the lexicon as such, and associates the gender information (male, female, or
non-human) and type information (reexive or non-reexive) with it. Further, the semantic
macro proSem/3 generates the semantics according to this gender and type information.
(We'll de�ne this predicate shortly below.)

The lexicon entries are divided into non-reexive and reexive pronouns:

lexicon(pro,male,[he],nonrefl).

lexicon(pro,female,[she],nonrefl).

lexicon(pro,nonhuman,[it],nonrefl).

lexicon(pro,male,[him],nonrefl).

lexicon(pro,female,[her],nonrefl).

lexicon(pro,male,[himself],refl).

lexicon(pro,female,[herself],refl).

lexicon(pro,nonhuman,[itself],refl).

This is how pronouns are integrated in our fragment of English grammar. But we face
a practical problem when resolving pronouns. As they are introduced in the lexicon, we
don't have access to the context and cannot determine their antecedents. How are we to
cope with this?

Our strategy will be the following: we will `mark' the discourse referents that are introduced
by pronouns, and postpone unifying them with candidate antecedents (for example, when
we have parsed the entire discourse). So let's extend our Prolog DRS language with the
notation

alfa(X,Type,Gender,Drs)

where X is the (still unknown) value of an antecedent discourse referent, Type either
refl (reexive) or nonrefl (non-reexive), and Gender, either male(X), female(X), or
nonhuman(X). The Drs in this notation, is the DRS in which the pronoun is used.
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We'll call such a term an �-DRS. For example, she snorts is represented by the following
�-DRS:

alfa(Y,nonrefl,female(Y),drs([],[snorts(Y)]))

or in our familiar boxed notation:

�y
snort(y)

Now this should remind the reader of something|namely, the use of the lambda predicate!
In fact, we are really just re-applying the strategy that grounded our earlier work on �rst
order representations: we are carefully marking the `missing information' which later need
to be �lled in. Here, of course, the missing information is of a rather special type (namely
anaphoric information) so we mark it with a special new alfa (for `anaphoric') binder
rather than with lambda. The semantic macro that generates the �-DRS is:

proSem(Gender,Type,lambda(P,alfa(X,Type,Cond,P@X))):-

compose(Cond,Gender,[X]).

Before we start thinking about how to implement anaphora resolution, let's try out the
parser on the discourse `A woman snorts. She collapses.' by posing the following Prolog
query:

?- d(B,[a,woman,snorts,she,collapses],[]).

B = merge(

merge(

merge(

drs([A],[]),

drs([],[woman(A),female(A)])

),

drs([],[snort(A)])

),

alfa(B,nonrefl,female(B),drs([],[collapse(B)]))

)

In box-notation this Prolog-expression is translated as:
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((
a

� woman(a)
female(a)

)�
snort(a)

)��b
collapse(b)

There are some DRSs in the output that still have to be merged, and there is also an
�-DRS introduced by the pronoun she. To arrive at a pure DRS (a DRS that contains
no merges or �-expressions) we need to carry out procedures that resolve these two kinds
of expressions. Note that it is sensible to �rst resolve the pronouns before performing the
merge, as otherwise we would have to revise the mergeDrs/2 predicate (it is not speci�ed
for �-expressions). However, it turns out that it is most eÆcient to combine the two
resolution procedures into one predicate, because for both of them we have to traverse the
entire structure of the DRS; combining pronoun resolution with merge reduction kills two
birds with one stone.

So let's de�ne a predicate resolveDrs/1 that will do this for us. Recall that a discourse
referent of a DRS B1 is accessible from DRS B2 when B1 subordinates B2, or when B1 equals
B2. (For the de�nition of subordination, see Chapter 7.) The predicate resolveDrs/1

encodes this concept of accessibility in a fairly transparent way.

The predicate resolveDrs/1 works with di�erence lists of stacks of DRSs. The input list
is a stack of DRSs, of which the �rst item is the DRS currently under examination, and the
other all subordinating it. (That means, if we work on a DRS which is the consequent of a
conditional, the main DRS and the DRS of the antecedent are on this list.) The output list
is a copy of the input list, but with the merges and instructions to resolve pronouns carried
out. So, eventually (if resolveDrs/1 succeeds), the output list will contain ordinary DRSs.
Here are the three and only clauses that de�ne it:

resolveDrs([merge(B1,B2)|A1]-[drs(D,C)|A3]):-

resolveDrs([B1|A1]-A2),

resolveDrs([B2|A2]-[drs(D2,C2),drs(D1,C1)|A3]),

append(D1,D2,D),

append(C1,C2,C).

resolveDrs([alfa(Referent,Type,Gender,B1)|A1]-A2):-

potentialAntecedent(A1,Referent,Gender),

resolveDrs([B1|A1]-A2).

resolveDrs([drs(D1,C1)|A1]-A2):-

resolveConds(C1,[drs(D1,[])|A1]-A2).

The �rst clause handles the merge by resolving its argument DRSs (after all, they can
contain merges or �-DRSs), and then concatening the lists of discourse referents and con-
ditions. Note that B1 is put on the stack before resolving B2, so the discourse referents of
B1 will become automatically accessible for B2.
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The second clause carries out pronoun resolution. It takes a DRS from the accessible DRSs
hold in list A1, and tries to �nd a uni�cation of the �-bound variable and an accessible
discourse referent with the help of the following predicates:

potentialAntecedent(A,X,Gender):-

member(drs(Dom,Conds),A),

member(X,Dom),

compose(Gender,Symbol1,_),

\+ (

member(Cond,Conds),

compose(Cond,Symbol2,[Y]),

Y==X,

\+ consistent(Symbol1,Symbol2)

).

The predicate potentialAntecedent/3 succeeds only if there is an accessible discourse
referent (here this is X, a discourse referent of one of the DRSs on the stack A), such that
the gender information is not inconsistent with the conditions imposed on discourse referent
X. By backtracking on the member/2 goals, it could �nd more potential candidates. Note
that we make use of consistent/2, a predicate that we de�ned in Chapter 6.

The third and last clause of resolveDrs/1 deals with ordinary DRSs, and uses another
predicate resolveConds/2 that works through the DRS-conditions:

resolveConds([~B1|Conds],A1-A3):-

resolveDrs([B1|A1]-[B2,drs(D,C)|A2]),

resolveConds(Conds,[drs(D,[~B2|C])|A2]-A3).

resolveConds([B1 > B2|Conds],A1-A4):-

resolveDrs([B1|A1]-A2),

resolveDrs([B2|A2]-[B4,B3,drs(D,C)|A3]),

resolveConds(Conds,[drs(D,[B3 > B4|C])|A3]-A4).

resolveConds([B1 v B2|Conds],A1-A4):-

resolveDrs([B1|A1]-[B3|A2]),

resolveDrs([B2|A2]-[B4,drs(D,C)|A3]),

resolveConds(Conds,[drs(D,[B3 v B4|C])|A3]-A4).

resolveConds([Cond|Conds],[drs(D,C)|A1]-A2):-

compose(Cond,_Symbol,Arguments),

simpleTerms(Arguments),

resolveConds(Conds,[drs(D,[Cond|C])|A1]-A2).
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resolveConds([],A-A).

The clauses of resolveConds/2 work recursively through the DRS-conditions, by placing
sub-DRSs on the stack of DRSs and calling back to resolveDrs/1.

So, what left to do is de�ning a driver predicate that ties together the parser, lambda-DRT,
and our pronoun resolution module:

parse:-

readLine(Discourse),

d(MergeDrs,Discourse,[]),

betaConvert(MergeDrs,Drs),

resolveDrs([Drs]-[ResolvedDrs]),

printRepresentation(ResolvedDrs).

After consulting the complete program (mainPronounsDRT.pl) we test it as follows:

?- parse.

> A woman snorts. She collapses.

drs([A],[collapse(A),snort(A),female(A),woman(A)])

In short, we now have a simple implementation of pronoun resolution in DRT. We will
shortly see that our implementation has a number of problems. Before coming to that, the
reader is asked to do the following exercises.

Exercise 3.2.1 [easy] Imagine this program processing `If a man eats a big kahuna burger, he

enjoys it.'. How many readings do you think it will generate? Why? And how many readings will
the program give for `Vincent knows Butch. He likes him.'?

Exercise 3.2.2 [hard] The current implementation of resolveDrs/1 makes use of append/3.
Explain why this is not eÆcient and make the program more eÆcient by using di�erence lists to
concatenate lists.

A Problem

Pronouns are resolved on the basis of its gender information. A discourse referent is consid-
ered a proper candidate antecedent for a pronoun if its sortal information (as presented in
the ontology of nouns, Chapter 6) is not inconsistent with the gender information speci�ed
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for the pronoun. To perform this test, we use the consistent/2 predicate developed in
Chapter 6.

This works well for male and female pronouns. But it doesn't work for nonhuman pronouns
for a simple reason: the sort nonhuman is not part of our ontology. So, in the current
setting, there are no sortal constraint on the pronoun `it'. Can't we just add nonhuman
to our ontology of nouns? This is diÆcult? What would it be? We know what it is not
(human), but it can be a plant, an animal, an artifact, an abstraction, and so on.

Actually, the only thing we want to say about the sort nonhuman is that is disjoint from
human. We can't state this in the lexicon directly (at least not in the way we designed
the lexicon). The trick to incorporate disjointness information is to directly code in the
predicate consistent/2:

consistent(X,Y):-

generateIsa(I),

generateDisjoint(I-Isa,Disjoint),

\+ inconsistent(X,Y,Isa,[disjoint(human,nonhuman)|Disjoint]).

This works. Now the neuter pronouns only match with nonhuman objects. There is
another|related|problem. We'll solve this in Chapter 10, but the reader is asked to get
aware of this problem by trying the following exercise.

Exercise 3.2.3 [easy] Try the program (mainPronounsDRT.pl) on the discourse `A boxer growls.

She collapses. He dies.', and explain what is wrong with the analysis our program gives for it.
Revise the semantic macro proSem/3 to do away with this problem.

3.3 Adding Reexive Pronouns

Another unavoidable requirement in pronoun resolution is to cope with the di�erence
in anaphoric behavior between reexive and non-reexive pronouns. Reexive pronouns
appearing in object NP position of a verb phrase can only be anaphorically linked to the
subject NP of this verb phrase:

(9) Vincent goes to the toilet, and Jules enjoys himself.

�

Non-reexive pronouns show a complementary behavior to reexive pronouns: they cannot

refer to their subject! The following examples make this fact clear:
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(10) Vincent enters the restaurant, and Jules watches him.
�

In sum, pronouns obey rules of binding, and we will incorporate these constraints in our
resolution algorithm. We will make use of the fact that a non-reexive pronoun and its
antecedent may not occur in the same simplex sentence, and that a reexive pronoun
and its antecedent should do so. We appeal to this linguistic rule of thumb purely on a
\semantic representational" basis: non-reexive pronouns with discourse referent x cannot
be identi�ed with a discourse referent y if both appear in a condition P(x,y) introduced by
the transitive verb. In contrast, reexive pronouns require such a condition for a suitable
antecedent.

We will re�ne our Prolog program with a treatment of reexive pronouns, by appealing
to an extra test in our resolution algorithm. This test is implemented by the predicate
properBinding/3). Here is the revised clause for the predicate resolveDrs that integrates
this new predicate:

resolveDrs([alfa(Referent,Type,Gender,B1)|A1]-A2):-

potentialAntecedent(A1,Referent,Gender),

properBinding(Type,Referent,B1),

resolveDrs([B1|A1]-A2).

What does properBinding/3 do? If the pronoun is of reexive type, it succeeds if the bind-
ing constraints for reexives are not violated. (This is carried out by reflexiveBinding/2).

properBinding(Type,X,Drs):-

Type=refl,

reflexiveBinding(X,Drs).

If, on the other hand, a pronoun is non-reexive, we try to proof if the constraints for
reexive pronouns are not violated (by using the same predicate reflexiveBinding/2),
and if this is the case, use the !, fail Prolog combination to let properBinding fail.
Otherwise, it will succeed.

properBinding(Type,X,Drs):-

\+ Type=refl,

(

reflexiveBinding(X,Drs),

!, fail

;

true

).
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In the case of a reexive binding constraints, we would like to �nd a basic condition in
which the two discourse referents corresponding to the subject and object (the reexive
pronoun) of the transitive verb appear. If we �nd such a condition we stop, otherwise we
continue by recursing through the list of other conditions of the DRS.

reflexiveBinding(X,[Basic|Conds]):- !,

(

compose(Basic,_Sym,[Subj,Obj]),

Subj==Obj,

X==Obj, !

;

reflexiveBinding(X,Conds)

).

If we don't �nd such a condition, then the test fails (so we we're not allowed to use a
reexive pronoun here). There are two ways in which it could fail: when �nishing checking
all the DRS-conditions, or when the argument DRS of the relexive pronoun is another
�-DRS, a merge, or a negation. (In the second case the reexive pronoun is surely not in
object position, so we fail here too). Here is the code:

reflexiveBinding(_,[]):- fail.

reflexiveBinding(_,alfa(_,_,_,_)):- fail.

reflexiveBinding(_,merge(_,_)):- fail.

reflexiveBinding(_,~_):- !, fail.

reflexiveBinding(X,drs(_,Conds)):-

reflexiveBinding(X,Conds).

This completes our way of dealing with reexive pronouns. In principle, it works for most
of the examples you will encounter in texts. But it also has it shortcomings. We only
discussed the interaction of reexive pronouns in transitive verbs, but we didn't deal with
the ditransitive verb. Extending our analysis of reexive pronouns to ditransitive verbs is
not too hard, and is left as an exercise to the reader.

Exercise 3.3.1 [easy] Extend the program to handle reexive pronouns appearing as arguments
of ditransitive verbs, as in `Vincent walks to the bar and pours himself a drink' and `Vincent has

given himself a little pep talk'.

Nor did we consider cases where reexive pronouns appear with nouns. Reexive pronouns
are �ne to use in combination with nouns that express information, such as `story', `episode',
`movie', `picture', `image', and so on. Here is an example that shows this behavior:

(11) Mia hates every episode about herself.
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Our analysis of reexive pronouns incorrectly rejects this sentence. Notice that for these
cases, a use of a non-reexive pronoun seems to be permitted too.

Exercise 3.3.2 [hard] Examine the example above and similar ones, explain why our program
deals with them incorrectly, and sketch a solution that overcomes this problem.

3.4 The Focusing Algorithm

So far we have implemented a pronoun resolution algorithm that does its work under
the supervision of syntactic and semantic constraints. This won't be enough in serious
discourse analysis, though. Each new sentence in a discourse introduced new entities in
the discourse that can be picked up by pronouns used later in the text. For this simple
reason, the constraints that our resolution algorithm appeals to cannot avoid the problem
of producing an explosion of potential readings. This leads us to one obvious choice to deal
with this: adding preferences to some of the solutions we produce.

How are we going to do this? Various proposals are available (see also the Notes at the end
of this chapter for a brief overview). We choose to extend our pronoun resolution program
with the focusing algorithm (due to Candy Sidner). The task of the focusing algorithm is
to predict an antecedent for a pronoun. The syntactic or semantic constraints we already
have con�rm or reject this choice.

What is focusing and focus? Given a discourse or a dialogue, the speaker or speakers
talk about something, one thing at a time. The element or object of discourse on which
the attention of the speakers is centered is called the focus. The focus is one of the very
important threads that makes a series of sentences a coherent piece of text, i.e., a discourse.
Focusing is the process of keeping track (and updating) the focus of the discourse.

What has focusing to do with pronoun resolution? Well, speakers who talk in several
sentences about one focus, do not re-introduce the focus in its full syntactic form in each
sentence. Instead they use pronouns (or other anaphoric expressions) under the assumption
that the focus is part of the shared knowledge of the participants in the conversation.

We will distinguish two kinds of foci in a discourse: the discourse focus, and the actor
focus. Here is an example that shows the use of discourse focus:

(12) The Captain pulls a gold wrist watch out of his pocket. This watch was �rst purchased
by Butch's great-granddaddy. It was bought during the First World War in a little
general store in Knoxville, Tennessee.

The three sentences of this discourse give information about the focused element: the gold
watch. It is introduced with an inde�nite noun phrase in the �rst sentence, and referred
to by `this watch' and `it' in the succeeding sentences. Note that there also noun phrases
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introduced in the text that were not referred to in succeeding sentences (the Captain, his
pocket, Butch's great-granddaddy), and further notice that each new sentence makes a
reference to the discourse focus.

In addition to the discourse focus, focusing must take into account the actors of the dis-
course. We will call this the actor focus. Pronouns in agent position tend to refer to the
actor focus, whereas pronouns in other position mostly co-refer with the discourse focus.
Sometimes the actor focus can become the discourse focus when no other candidate is
available, but under normal circumstances it plays a subordinated role in focusing.

The actor focus is needed besides the discourse focus because the focus of the discourse is
often distinguished from the actor, and both can be referred to with pronouns. Here is an
example that illustrates this:

(13) Jules grabs the burger. He takes a bite of it.

Here the discourse focus is assigned to the burger, the actor focus is Jules. The occurrence
of `he' refers to Jules, the pronoun `it' to the burger.

The �nal thing to mention on focusing is that focus can shift from one object to another
in the course of a text or dialogue. The following example shows how the discourse focus
changes from the hammer to the chainsaw (the actor focus remains assigned to Butch):

(14) Butch picks up a big destructive-looking hammer, then discards it: not destructive
enough. He picks up a chainsaw, thinks about it for a moment, then puts it back.

The last two occurrences of `it' both refer to the chainsaw, not to the (yet out of focus)
hammer.

Both the discourse and actor focus are ordinary discourse referents, but we have to dis-
tinguish them from the other referents to signify their special status. We'll do this by
adding a new structure to the DRSs we have worked with so far. Ordinary DRSs consists
of a set of discourse referents D and a set of conditions C, and are represented in Prolog
as drs(D,C). From now on we will also consider Focus-DRSs, that consists of the familiar
set of discourse referents, the actor focus AF (a stack of discourse referents), the discourse
focus DF (a stack of discourse referents), and the familiar set of DRS-conditions. In Prolog
we will code Focus-DRSs as drs(D,AF,DF,C), where both the actor and discourse focus
are lists of discourse referents.

We will transfer this newly structured DRSs also to our familiar box-notation. So the
Focus-DRS for `Butch picks up a hammer. He discards it.' is
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x y

x

y

x=butch
hammer(y)
pick-up(x,y)
discard(x,y)

where x is the actor focus (Butch), and y the discourse focus (the hammer picked up by
Butch). Of course, in a progressing discourse, there can be more of these labels, as the
focus of attention can shift. Continuing this discourse with `He picks up a chainsaw' triggers
a shift of the discourse focus.

x y z

x

z y

x=butch
hammer(y)
pick-up(x,y)
discard(x,y)
pick-up(x,z)
chainsaw(z)

The discourse focus now has two elements on its stack. But note that z is the �rst element
of the stack, representing the current discourse focus.

Note that Focus-DRSs can play a role on the subordinated level as well. For example, the
conditional `If a customer eats a big Kahuna burger, he likes it.' leads to the construction of
the following Focus-DRS:
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x y

x

y

customer(x)
big-kahuna-burger(y)
eat(x,y)

)

like(x,y)

This is the basic idea of focusing|we will get a more detailed understanding while integrat-
ing the focusing algorithm directly into our DRT-implementation for pronoun resolution.
This algorithm consists of three procedural steps:

1. choose foci based on the �rst sentence of the discourse

2. use foci to resolve pronouns

3. update the foci on the basis of the current DRS

Step 1 guesses the foci on the basis of syntactic and semantic structure of the �rst sentence.
Step 2 involves an extension to the resolution algorithm we have so far|we will give
preference to potential antecedents that are in focus. Step 3 retains or resets the focus,
using the information how pronouns got resolved. The focus will be moved to another
discourse referent if the discourse referent previously in focus is not referred to in the
current sentence.

The choose the foci, we will make an initial prediction based on simple heuristics. These,
we call it the expected foci, will either be con�rmed or rejected by step 3 of the algorithm.
We might be wrong in choosing an expected discourse focus (there might be more than
one choice), but still the prediction helps us to rank the readings on preference.

Step 1: Choosing Foci

Let's �rst have a closer look at step 1. How do we identify foci? For the actor focus, this
turns out to be rather simple: it is the agent of the sentence if there is one (when the agent
of the next sentence is a pronoun, the actor focus is usually the antecedent).

This idea is implemented straightforwardly as follows (we will discuss the predicate role/3
below):
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expectedActorFocus(drs(Dom,Conds),Focus):-

member(Focus,Dom),

role(agent,Focus,Conds).

Determining the discourse focus is somehow more problematic. It boils down to character-
izing what is talked about in a discourse. Language seems to have di�erent phenomena for
marking focus, deviating strongly from language to language. In English, there-insertion,
clefts, and the prosodic structure of the sentence indicate what the sentence is about.
Further, usage of grammatical roles give a clue.

The modest fragment of English that we cover does not include clefts or there-insertion
constructions (actually, clefts are rarely used in the beginning of a discourse). So we will
assign the focus solely on the basis of semantic categories of the verb. Often, the discourse
focus is the thematic role of the verb, and the actor focus the agent. Here is an example:

(15) A hand lays an envelope full of money on the table in front of Butch. Butch picks it up.

The �rst sentence introduces four discourse referents that are candidates for discourse
and actor focus. The hand is proposed as actor focus, but not retained, as there is no
reference to it in the follow-up sentence. The discourse focus is the envelope with money,
because that's what Butch picks up. (Note that world knowledge would not exclude that
the pronoun `it' refers to the table. But this is not the preferred antecedent, as predicted
by the focusing theory.) Copular sentences form an exception to this rule, they take their
subject as discourse focus.

Translated into Prolog this gives us:

expectedDiscourseFocus(drs(Dom,Conds),Focus):-

member(Focus,Dom),

role(theme,Focus,Conds).

The thematic roles are determined by traversing through the DRS looking for a condition
that matches the properties for a discourse referent for being in agent or theme position.
Here are the clauses of role/3 that deal with Focus-DRSs and DRSs:

role(Role,X,drs(_,_,_,Conds)):-

role(Role,X,Conds).

role(Role,X,drs(_,Conds)):-

role(Role,X,Conds).

role(Role,X,merge(B1,B2)):-
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role(Role,X,B1);

role(Role,X,B2).

role(Role,X,alfa(_,_,_,B)):-

role(Role,X,B).

And here are the conditions that deal with the DRS-conditions:

role(Role,X,[~ B|_]):-

role(Role,X,B).

role(Role,X,[B1 > B2|_]):-

role(Role,X,B1);

role(Role,X,B2).

role(Role,X,[B1 v B2|_]):-

role(Role,X,B1);

role(Role,X,B2).

role(Role,X,[_|Conds]):-

role(Role,X,Conds).

role(agent,X,[C|_]):-

agent(X,C).

role(theme,X,[C|_]):-

theme(X,C).

We use a simple rule of thumb for determining the agent role of a discourse referent: if it
is the subject of a transitive verb. Therefore, in our Prolog code that implements this rule,
we appeal to our lexicon:

agent(Focus,Cond):-

compose(Cond,Sym,[Subject,_]),

Focus==Subject,

lexicon(tv,Sym,_,inf).

Similarly, we implement thematic positions, as either being the subject of an intransitive
verb, the object of a transitive verb, or the subject of a copular sentence. This is coded as
follows:
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theme(Focus,Cond):-

compose(Cond,Sym,[Subject]),

Focus==Subject,

lexicon(iv,Sym,_,inf).

theme(Focus,Cond):-

compose(Cond,Sym,[_,Object]),

Focus==Object,

lexicon(tv,Sym,_,inf).

theme(Focus,Cond):-

compose(Cond,'=',[Subject,Object]),

var(Object),

Focus==Subject.

Exercise 3.4.1 Extend theme/2 by adding clauses for ditransitive verbs.

Step 2: Pronoun Resolution using Focus

The focus information is used to resolve pronouns as formulated by the following two rules:

If the pronoun appears in a sentence thematic relation other than agent, choose
the discourse focus as antecedent.

If the pronoun appears in agent position, choose the actor focus as antecedent.

These rules apply only if other constraints do not rule out these choices. Here is the
implementation of the �rst rule (pronoun appearing in agent-position):

resolveDrs([alfa(X,Type,Gender,B1)|A1]-A2,R1-[Type:X|R2]):-

role(agent,X,B1), !,

(

currentActorFocus(A1,AF),

potentialAntecedent(A1,X,Gender),

X == AF,

properBinding(Type,X,B1)

;

currentDiscourseFocus(A1,DF),

potentialAntecedent(A1,X,Gender),

X == DF,
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properBinding(Type,X,B1)

;

potentialAntecedent(A1,X,Gender),

properBinding(Type,X,B1)

),

resolveDrs([B1|A1]-A2,R1-R2).

The order of the three disjuncts mirror the preferences in a clear way: �rst try to actor
focus, then the discourse focus, and then any other discourse referent.

The implementation of the second rule (the pronoun is not in agent position) is set up in
a similar way, but with the preference order changed:

resolveDrs([alfa(X,Type,Gender,B1)|A1]-A2,R1-[Type:X|R2]):-

(

currentDiscourseFocus(A1,DF),

potentialAntecedent(A1,X,Gender),

X == DF,

properBinding(Type,X,B1)

;

currentActorFocus(A1,AF),

potentialAntecedent(A1,X,Gender),

X == AF,

properBinding(Type,X,B1)

;

potentialAntecedent(A1,X,Gender),

properBinding(Type,X,B1)

),

resolveDrs([B1|A1]-A2,R1-R2).

The predicates that de�ne the current actor and discourse focus are speci�ed as follows:

currentDiscourseFocus(DRSs,Focus):-

member(drs(_,_,[Focus|_],_),DRSs), !.

currentActorFocus(DRSs,Focus):-

member(drs(_,[Focus|_],_,_),DRSs), !.

What these predicates do is �nd a DRS on the stack that have a non-empty focus. The
cut prevents backtracking after succeeding in �nding a focus.
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Step 3: Updating the Focus

After each analysis of a sentence, the focus information needs to be updated. This applies
also to sentence-internally, for example in conditional sentences. For updating the focus we
will use the predicates expectedActorFocus and expectedDiscourseFocus for an initial
sentence of a discourse; otherwise we use the information of how the pronouns in the current
sentence are resolved. Recall from Step 2 that we represent the resolution information as
a list with terms Alfa-Type:Antecedent.

The body of the focusing update function can be designed as follows. First update the
actor focus, and then the discourse focus.

updateFocus(Anaphora,DRSs1,Updated):-

updateActorFocus(DRSs1,DRSs2),

updateDiscourseFocus(Anaphora,DRSs2,Updated).

The actor focus is updated by taking the expected actor focus (if there is one).

updateActorFocus([drs(D,AF,DF,C)|A],Updated):-

expectedActorFocus(drs(D,C),Focus), !,

addActorFocus(Focus,[drs(D,AF,DF,C)|A],Updated).

updateActorFocus(DRSs,DRSs).

addActorFocus(Focus,DRSs,Updated):-

(

currentActorFocus(DRSs,Current),

Current==Focus, !,

Updated=DRSs

;

DRSs=[drs(D,AF,DF,C)|A],

Updated=[drs(D,[Focus|AF],DF,C)|A]

).

This is how the discourse focus gets updated. If there is a previous discourse focus and
there is an anaphor binding it, then the focus stays like it was. If there is no previous
discourse focus, then the current focus is the expected discourse focus. In all other cases,
we leave it as it is.

updateDiscourseFocus(Anaphora,DRSs,Updated):-

currentDiscourseFocus(DRSs,Current),

member(_:A,Anaphora), A==Current, !,
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Updated=DRSs.

updateDiscourseFocus(_Anaphora,[drs(D,AF,DF,C)|A],Updated):-

expectedDiscourseFocus(drs(D,C),Focus), !,

addDiscourseFocus(Focus,[drs(D,AF,DF,C)|A],Updated).

updateDiscourseFocus(_,DRSs,DRSs).

addDiscourseFocus(Focus,DRSs,Updated):-

(

currentDiscourseFocus(DRSs,Current),

Current==Focus, !,

Updated=DRSs

;

DRSs=[drs(D,AF,DF,C)|A],

Updated=[drs(D,AF,[Focus|DF],C)|A]

).

Here is how the focus updating predicates are integrated into our resolution algorithm (for
a merge of DRSs, for Focus-DRSs, and ordinary DRSs):

resolveDrs([merge(B1,B2)|A1]-[drs(D,AF,DF,C)|A5],R1-R3):-

resolveDrs([B1|A1]-A2,R1-R2),

updateFocus(R2,A2,A3),

resolveDrs([B2|A3]-A4,R2-R3),

updateFocus(R3,A4,[drs(D1,AF1,DF1,C1),drs(D2,AF2,DF2,C2)|A5]),

append(D1,D2,D),

append(AF1,AF2,AF),

append(DF1,DF2,DF),

append(C1,C2,C).

resolveDrs([drs(D,AF,DF,C)|A1]-A3,R1-R2):-

resolveConds(C,[drs(D,AF,DF,[])|A1]-A2,R1-R2),

updateFocus(R2,A2,A3).

resolveDrs([drs(D,C)|A1]-A3,R1-R2):-

resolveConds(C,[drs(D,[],[],[])|A1]-A2,R1-R2),

updateFocus(R2,A2,A3).

Resolving DRS-conditions is exactly like that in the basic pronoun resolution algorithm,
except for conditionals. Here we also need to introduce a focus update. Because in a `if
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S1 then S2' sentence, pronouns appearing in the second sentence (S2) will be resolved also
depending on the information of sentence (S1).

resolveConds([B1 > B2|Conds],A1-A5,R1-R4):-

resolveDrs([B1|A1]-A2,R1-R2),

updateFocus(R2,A2,A3),

resolveDrs([B2|A3]-[B4,B3,drs(D,AF,DF,C)|A4],R2-R3),

resolveConds(Conds,[drs(D,AF,DF,[B3 > B4|C])|A4]-A5,R3-R4).

Finally, we provide a driver predicate that makes it easy to experiment with our focusing
algorithm. After each sentence it analyses, it prints the DRS, after which the user can
extend the discourse with a new sentence.

parse:-

parse(drs([],[])).

parse(Old):-

readLine(Discourse),

d(SDrs,Discourse,[]),

betaConvert(SDrs,Drs),

resolveDrs([merge(Old,Drs)]-A,[]-Anaphora),

updateFocus(Anaphora,A,[New]),

printRepresentation(New), !,

parse(New).

Exercise 3.4.2 [easy] Try the program with the following example: `Butch picks up a hammer.

He discards it. He picks up a chainsaw, and he likes it.' Explain the focus shifts.

Exercise 3.4.3 [hard] Write a driver that generates all readings, ordered on preference. Assign
scores to the readings, according to the focus rules.

'
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%

Software Summary of Chapter 3

mainPronounsDRT.pl The basic implementation of pronoun resoluition for DRSs.

(page 186)

bindingDRT.pl Predicates that check binding of pronouns in DRT. (page 188)

mainFocusDRT.pl The focus algorithm. (page 190)
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Notes

The binding behavior of pronouns (coreference within a sentence) is discussed in the lin-
guistic literature in great detail, starting with Chomsky's Binding Theory (Chomsky 1988).
A rich source of information on this topic is provided in Reinhart's work (Reinhart 1983).
For more inspiration on (especially reexive) pronouns the reader is encouraged to check
out the �rst two chapters of Fauconnier's book on Mental Spaces (Fauconnier 1985).

Pronoun resolution procedures that go beyond the sentence level are widely available in
the �eld of Arti�cial Intelligence. Pioneers in de�ning heuristics for pronoun resolution
are Terry `the blocks world' Winograd (Winograd 1972) and Eugene Charniak. Charniak's
dissertation (Charniak 1972) includes a proposal for pronoun resolution included syntactic
(gender, number) as well as semantic properties. He was the �rst that made aware the
need of common-sense knowledge reasoning to determine antecedents of pronouns. See also
(Charniak and Wilks 1976; Charniak and McDermott 1985).

Hobbs presents a syntactic and semantic approach to pronoun resolution (Hobbs 1986).
The syntactic approach o�ers what he called the `naive' algorithm, which traverse the parse
tree to determine potential antecedents, thereby using constraints known from transfor-
mational grammar to deal with reexive pronouns and cataphora. Within the semantic
approach he proposes di�erent strategies using inference to determine antecedents. This
paper also give a modest but useful overview of the problems that appear with pronoun
resolution.

Wada and Asher included in their DRS construction implementation a module that takes
care of pronoun resolution (Wada and Asher 1986). Our basic implementation borrows a lot
from this work as it: (1) marks pronouns in the DRS by a special condition; (2) associates
discourse referents with gender and number information stored in a tree structure that
parallels the subordination relation of a DRS; (3) resolves this tree by �nding the closest
antecedent that matches gender and number; and (4) uses additional constraints (e.g., the
reexive/non-reexive distinction).

The focusing algorithm as presented here is originally due to Candy Sidner (Sidner 1986).
Some of the ideas in this paper|that appeared in the late seventies|are strikingly similar
to the principles underlying DRT: using an intermediate level of representation, where
what Sidner calls speci�ers play a similar role as the discourse referents in DRSs. Sidner
motivates the rules in her focusing algorithm by a number of examples, and also discusses
the role of plural pronouns in focusing, and that of the demonstrative pronouns `this' and
`that'. The implementation that we gave here is a slight variant of Sidner's model. We
deal with sentence-internal discourse structure (which Sidner doesn't), but, on the other
hand, simpli�ed the set of update rules.

The focus model is a precurser of what is called the centering approach to pronoun res-
olution. Centering elaborates on the basic idea of focusing. This approach distinguishes
forward looking centers (i.e., in the DRT-terminology, a set of available discourse referents,
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ordered on grammatical relations or other criteria) and the backward looking center (the
highest ranked forward looking center of the previous utterance, to which a pronoun or
other anaphoric expressions in the current utterance refers to). Useful pointers are (Grosz,
Joshi, and Weinstein 1995) and (Kehler 1997). Beaver (unpublished) proposes a model
that integrates centering within a formal update semantics framework.

Focus information, as we plainly added it to the evolving DRS of a text, adds another
dimension to the structure of the discourse. A more elaborate model of discourse structure
can be found in the classical paper of Grosz and Sidner (Grosz and Sidner 1986), or a
formalized `boxed' version, in Asher's Segmented DRT (Asher 1993).

Pronouns are a motley crew of context-sensitive expressions. We've only dealt with third
person singular pronouns, and didn't consider other uses of anaphoric expressions, such as
impersonal use of pronouns, plural anaphora, or pronouns that refer to abstract entities
such as eventualities or propositions. A recommended DRT-based introduction to plural
anaphora is Chapter 4 of (Kamp and Reyle 1993). The undoubtedly best overview of
propositional and event-type anaphora, as well as the related phenomenon known as verb
phrase ellipsis, is (Asher 1993), also presented in DRT.
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Chapter 4

Presupposition Resolution

In this chapter we are going to deal with a stubborn obstacle to the computational analysis
of discourse: presuppositions. Roughly speaking, presuppositions are pieces of information
that are taken for granted in a context. In this chapter we will learn what the typical
problems associated with presuppositions are, and how to deal with them in Discourse
Representation Theory.

Presupposition is a huge topic. It has been discussed in detail by both the philosophical
and linguistic communities, and we won't be able to cover the wide variety of analyses
such discussions have inspired. In fact, we shall concentrate exclusively on the DRT based
approach of Rob van der Sandt. There are a number of reasons for this choice. Empiri-
cally, it is one of the most successful approaches to the problems posed by presuppositions
(for example, the projection problem introduced below). Conceptually the theory is also
extremely natural: it is simple, allows the important notion of accommodation to be mod-
eled very directly, and links presupposition and anaphora in a suggestive way. All in all,
Van der Sandt's account both draws on and illuminates the intuitions about discourse
processing that DRT embodies. Finally, the approach is interesting from a computational
perspective: it demands an extension of our earlier implementation of pronoun resolution,
and access to inference methods.

4.1 Introducing Presuppositions

In the previous chapter we worked with elements of natural language that were obviously
context dependent, namely pronouns. Pronoun interpretation can only be determined with
help of the previous discourse, and we gave a DRT-based account of anaphora resolution.
But there is another natural language phenomenon, possibly related to pronoun use, that
behaves in a similar way. Consider the following example sentences, uttered out of the
blue:
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(1) The couple that won the dance contest was pleased.

(2) Jody loves her husband.

(3) Vincent regrets that Mia is married.

There is something interesting about these examples: they force us to take something for
granted if we want to accept them as natural contributions to a discourse or conversation.
For (1), we need to suppose that there actually is a couple that won the dance contest, for
(2) that Jody has a husband, and for (3) that Mia is married.

Moreover, given a context containing contrary information, these sentences do not make
sense at all. For example, the following sequences are unacceptable:

(4) Jody has no husband. ? Jody loves her husband.

(5) Mia is not married. ? Vincent regrets that Mia is married.

Furthermore, whatever we are dealing with here, it behaves completely di�erently from
ordinary entailment. Not only does `Jody loves her husband' take it for granted that Jody
has a husband, but so does its negation `Jody does not love her husband'; note that

(6) Jody has no husband. ? Jody does not love her husband.

is just as bad as (4). Whatever this phenomenon is, it seems to follow its own set of laws.

In fact we are dealing with presupposition, and this is a very common natural language
phenomenon that any analysis of discourse has to cope with. The sentence `Jody loves her
husband' presupposes that Jody is married, as does `Jody does not love her husband'. Any
context in which Jody is not married is inappropriate for accepting either the sentence
`Jody loves her husband' or its negation.

Is there a systematic way to compute the presuppositions of a sentence? To answer this
question we need to investigate how presuppositions come to life. It turns out that, in most
cases, they are lexically triggered. (At least this is the case for English, certain prosodic
or syntactic structures can also introduce presuppositions, though we won't deal with such
triggers in this book.) In (1), the de�nite article `the' is the source of the presupposition
(the reader might verify that by changing `the' into `a'), in (2) it is the possessive `her', and
in (3) the verb `regret'. Such lexical items are called presupposition triggers: once they are
used, they introduce a presupposition, thereby putting extra constraints on the context.

At �rst glance this problem seems easy to deal with. Surely it is just a matter of going
through our lexicon, marking all presupposition triggers and the presupposition they in-
duce, and then when analyzing a sentence, checking if all presuppositions triggered by the
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complete sentence are ful�lled by the discourse. And in fact, this is a good way of thinking
of it, and we will handle presupposition triggers along these lines in this chapter. However,
matters will not always be so simple. There are three issues we need to pay attention to:
the binding problem, the projection problem, and accommodation. All three issues are well
known in the (vast) literature on presuppositions.

Let's �rst turn to the binding problem. An example like

A boxer nearly escaped from his apartment.

should clarify what is at stake here. The trigger `his' induces the presupposition that
someone has an apartment. But it does not presuppose that just anyone has an apartment,
nor that some boxer or other owns an apartment. No, it is the boxer we are actually talking
about who has an apartment. That is, the existentially quanti�ed NP ties together two
types of information|ordinary factual information, and presuppositional information. As
these two types of information obey di�erent laws (recall the way presuppositions survive
negation) it is no trivial matter to tie them together, and many otherwise interesting
accounts of presupposition have been shipwrecked on precisely this rock. However, as we
shall soon see, Van der Sandt's DRT-based account handles it rather elegantly. Because
DRT was designed right from the start to deal with integrating information, the binding
problem simply won't be an issue.

The projection problem has to do with complex sentences. We have already seen that

Mia's husband is out of town.

is a sentence presupposing that Mia has a husband. But if we use this sentence to build
the more complex

If Mia has a husband, then her husband is out of town.

then the result does not presuppose that she has a husband. Neither does

If Mia is married, then her husband is out of town.

although

If Mia dates Vincent, then her husband is out of town.
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clearly does. The moral is clear. In complex sentences we need to be careful when dealing
with presupposition triggers, as sometimes subparts of complex sentence carry presuppo-
sitions which are \neutralized" in the main sentence. A natural solution to this problem
would seem to be to take linguistic context into account, and this is also what we are going
to do, again within the framework of DRT.

Finally a few words on accommodation. This can be thought of as a way of obtaining a
robust and realistic treatment of presupposition. Analyzing

Vincent informed his boss.

yields the elementary presupposition that Vincent has a boss. If the discourse built up
so far is incompatible with Vincent having a boss (maybe he is a free-lancer), then we
could just say: \Hey, what are you telling me, Vincent has no boss", and not accept
this contribution to the discourse. But what if we don't have a clue whether Vincent
has a boss or not? There are two obvious ways to proceed here: the simplistic way is
simply to refuse to accept the utterance because its accompanying presuppositions are not
supported by the context. This might seem adequate, but it isn't what we would typically
do in such a situation|instead we would try to add the presupposition to the context. The
addition process is called accommodation, and it is best viewed as a repair strategy. We
are trying to build up a picture of a particular situation, but it turns out that (somehow
or other) we seem have missed some piece of information. OK|let's try and incorporate
this information the best we can and carry on. This is an inherently robust and realistic
way of dealing with presuppositions and it is the option we shall explore in this book.

4.2 Dealing with Presupposition in DRT

We are now going to show how to deal with these three problems in DRT using a method
due to Rob van der Sandt. In his view, presuppositions are essentially extremely rich
pronouns. Like ordinary pronouns, they make use of the notion of accessibility in the way
we are familiar with. But presuppositions are rich in a way that pronouns aren't: they
have descriptive content. Thus presuppositions can't simply introduce discourse referents,
so what do they do? Here's Van der Sandt's answer: presuppositions introduce new DRSs.

This is a strikingly simple and promising answer. DRSs are pictures of the evolving dis-
course; what better way to incorporate presuppositional information than by adding a
new picture? The key word here is incorporate. Simply by placing the DRS yielded by a
presupposition into a larger DRS we locate it in a web of discourse referents regulated by
accessibility constraints. That is, by proceeding in this way we automatically contextualize
presuppositional information. It seems plausible that this is a good way of coping with the
binding, projection, and accommodation problems, and this in fact is the way things turn
out. Let's turn to the details.
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To begin with, we have to carry out two tasks:

1. select presupposition triggers in the lexicon; and

2. indicate what they presuppose.

Task 1 appeals to our empirical knowledge of presupposition. For our fragment of English,
we classify the de�nite article, possessive constructions, and proper names as presuppo-
sition triggers. For task 2 we extend the core DRS language with an � operator. The
� operator takes two normal DRSs as arguments forming a new special kind of DRS; it
is simply a marker (or if you prefer, a semantic feature) that indicates that one DRS is
presupposed information for the other. So, we will write B1 �i B2 to say that B1 is pre-
supposed information for B2, or put di�erently, B2 presupposed B1. We use the index i to
express that it is the principal discourse referent that is anaphoric, as there could be more
discourse referents in the presupposed DRS (this is the discourse referent for which we will
try to �nd an antecedent). We will call B1 the �-DRS (this is the \anaphoric" DRS for
which we have to resolve), B2 is a DRS that remains at its place after resolution.

Exercise 4.2.1 Find natural language examples where there are more discourse referents in the
�-DRS (the DRS that contains presupposed information).

Once we've dealt with the lexicon, what's the next step? Well, using our familiar DRS
construction technology, we build a DRS for the sentence. If the sentence contains presup-
position triggers, the DRS we output will generally contain �-DRSs. Here's the DRS we
obtain for `The woman collapses':

x

woman(x)
�x

collapse(x)

The best way to view this DRS is as an ordinary DRS, but an ordinary DRS marked as
being unresolved with respect to presuppositions. (Another way to look at this is to say
that it is a kind of underspeci�ed DRS; we'll see why later.) What are we going to do with
this DRS?

First we merge this new DRS with the DRS that represents the discourse so far; this
merging process takes place while the presuppositions are still unresolved. For example,
suppose that the previous utterance was `A woman snorts'. Then after merging we obtain:

y

woman(y)
snort(y)

� (
x

woman(x)
�x

collapse(x)
)
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Only after merging of the previous DRS with the new DRS we attempt to resolve the
presuppositions. We recursively travel through this new merged DRS and, for each �-
marked DRS we encounter, we try to �nd a suitable `anchor' to resolve to. That is, we try
to match the context of the �-DRS with that of superordinated DRSs. Intuitively this is a
natural thing to do; after all, presupposed information is supposed to be available in the
previous context.

Let's see how this works. In our example, we only have one presupposition trigger with
�-DRS:

x

woman(x)

To resolve �-DRS, there is only one superordinated DRS (with the candidate antecedent
discourse referent y) for resolution.

y

woman(y)
snort(y)

First we identify the discourse referents x and y by adding the condition x=y to the �-DRS:

y

woman(y)
snort(y)

� (

x

woman(x)
x=y

�x

collapse(x)
)

Then we move the information of the �-DRSs to the superordinated DRS:

y

woman(y)
snort(y)

� (

x

woman(x)
x=y

�x

collapse(x)
)

Finally we replace the operator �x by a merge-instruction and arrive at:

y x

woman(y)
snort(y)
woman(x)
x=y

� ( �
collapse(x)

)
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This is a DRS that contains two instructions for merging. We can reduced it to:

y x

woman(y)
snort(y)
collapse(y)
woman(x)
x=y

But note that we had have could carry out the identi�cation of x and y explicitly (by
uni�cation) and compute the following, equivalent DRS:

y

woman(y)
snort(y)
collapse(y)

In the other examples we will discuss, and also in our Prolog-implementation of presuppo-
sition resolution, we will perform this uni�cation operation instead of adding an equality
condition to the DRS, as this will lead to much simpler DRSs.

In short, we have successfully dealt with the presupposition induced by the de�nite ar-
ticle `the' by identifying the discourse referent x it introduced with the woman-denoting
discourse referent in the preceding context.

That's the basic idea, but things don't always go this smoothly. Sometimes we can't
�nd the presupposed information in the preceding context. (Maybe, we missed a bit of
a conversation; and anyway, people typically make di�erent assumptions about what the
assumed context actually is.) To deal with such cases we make use of accommodation: if
we can't link our elementary presuppositions to a suitable element in the context, we don't
give up. Instead we simply add the required background information.

Here's an example. Consider the sentence `If Mia dates Vincent, then her husband is out of
town'. Concentrating only on the trigger `her husband', we get:

x y

x=mia
y=vincent

date(x,y)
) (

z

husband(z)
of(z,x)

�z

out-of-town(z)
)
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Assuming this is the �rst DRS we have to process (that is, that the DRS built up so far
is still empty), there is no candidate DRS for matching the presupposed information that
Mia has a husband, which is coded by the following DRS:

z

husband(z)
of(z,x)

In such cases our robust way of dealing with discourse comes into action: we accommodate
the presupposed information. Accommodation is similar to resolution. The big di�erence
is that we don't identify discourse referents of the �-DRS with a superordinated DRS. For
the rest, accommodation is exactly the same as resolution, and we move the �-DRS to a
superordinated DRS:

x y

x=mia
y=vincent

date(x,y)
) (

z

husband(z)
of(z,x)

�z

out-of-town(z)
)

As we moved to the presupposed information to the outermost DRS, we will call this global
accommodation. After replacing the �-operator by � and carrying out the merges we get
the following, �nal, DRS:

x y z

x=mia
y=vincent

date(x,y)
)

out-of-town(z)
husband(z)
of(z,x)

So far so good: our \try to match the presupposed information, and if that fails, accommo-
date it at the global DRS" strategy has survived its �rst test. But we were lucky with our
example; consider instead `If Mia is married, then her husband is out of town'. Does this pre-
suppose that Mia has a husband? No, it doesn't|but applying our global accommodation
strategy yields:
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x y z

x=mia

married(x)
)

out-of-town(z)
husband(z)
of(z,x)

The content of this DRS is paraphrased as

(7) Mia has a husband. If she is married, then he is out of town.

which is a spectacularly wrong result, as it asserts that Mia is married.

But wait on|who said we needed to perform accommodation in the outermost DRS? For
sure, all discourse referents in the universe of outermost DRS are accessible|but one of the
most pleasant aspects of DRT is that it shows how pictures can be nested one inside the
other, and tells us which discourse referents are available at arbitrary levels of nesting. Why
not pursue a more exible attitude towards accommodation and allow accommodation at
other DRS levels as well? There is certainly no technical barrier to doing this, and arguably
it is the natural option to explore: bluntly insisting that all information has to be added
globally doesn't seem to reect the myriad possibilities o�ered by natural language.

Let's see how this more exible strategy can help us with our previous example. In fact it
licenses accommodation on a non-global, intermediate, level:

x

x=mia

married(x) ) (

z

husband(z)
of(z,x)

�z

out-of-town(z)
)

This gives us (again, after replacing the �-operator by a merge) the following reading:
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x

x=mia
z

married(x)
husband(z)
of(z,x)

)
out-of-town(z)

Here the presupposed information is accommodated in the left-hand-side DRS of the con-
ditional. This is the reading we would like to get: it doesn't demand the existence of a
husband for Mia.

Indeed, in this example, there is another possibility for accommodation. It is called local
accommodation, and sketched as follows:

x

x=mia

married(x)
) (

z

husband(z)
of(z,x)

�z

out-of-town(z)
)

Local accommodation is actually not performing any move operation. The presupposed
information just stays where it originated. After replacing �z by a merge we get:

x

x=mia

married(x)
)

z

husband(z)
of(z,x)
out-of-town(z)

That's the basic idea|but there are two further points that need to be mentioned. First,
it's clear that we can't perform accommodation arbitrarily; we've already seen what hap-
pens when we try to inappropriately accommodate at the global level. Rather, just like
ordinary pronoun resolution, accommodation is subject to a variety of acceptability con-
straints. We will briey discuss the required constraints shortly; Chapter 11 is largely
devoted to implementing them. Second, accommodation is a non-deterministic process.
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That is, we are free to accommodate where we like, so long as we don't violate an ac-
ceptability constraint. Note that this has linguistic consequences: we are predicting that
presupposition is an additional source of ambiguity. Incidentally, this is why we claimed
earlier that �-DRSs could be viewed as underspeci�ed representations: essentially � o�ers
a compact encoding of accommodation possibilities.

Summing up, both here and in Chapter 11, we are working with the following non-
deterministic algorithm:

1. Generate a DRS for the input sentence with the tools of Chapter 2, with all elemen-
tary presuppositions given as an �-DRS.

2. Merge this DRS with the DRS of the discourse so far processed.

3. Traverse the DRS, and on encountering an �-DRS try to

(a) link the presupposed information to an accessible antecedent (partial match);

(b) if that fails, accommodate the information to a superordinated level of discourse.

4. Remove those DRS from the set of potential readings that violate the acceptability
constraints.

What sort of constraints do we appeal to at Step 4? Just like pronoun resolution, accom-
modation is subject to two kinds of constraints. The �rst is essentially syntactic, or formal
(that is, like the accessibility constraint on pronoun resolution it simply imposes a well-
formedness condition on the resulting DRSs|only simple syntactic checking is required to
check whether it is ful�lled). This constraint is called the free variable check . The following
example shows what this involves; it also shows the kinds of ambiguities predicted by the
Van der Sandtian approach to presupposition.

Consider the sentence `Every woman likes her husband'. There are three candidate accom-
modation strategies: local, intermediate, and global. Here are the DRS these options
yield:

local intermediate global

x

woman(x)
)

z

husband(z)
of(z,x)
like(x,z)

x z

woman(x)
husband(z)
of(z,x)

)
like(x,z)

z

husband(z)
of(z,x)
x

woman(x)
)

z

like(x,z)

In fact, both the local and the intermediate are acceptable: neither violates an acceptability
constraint.

Exercise 4.2.2 Spell out the readings given by local and intermediate accommodation.
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But now consider the DRS obtained by global accommodation. Clearly it is rather strange;
one of the conditions (namely, of(z,x)) ascribes a property to a discourse referent (namely,
x) that does not occur in the universe. So to speak, x is a free discourse referent, and in
fact if we used the translation function fo to compile this DRS into a �rst-order formula,
we would obtain not a sentence but a formula in which the variable x occurred free. The
free variable constraint simply rules out such DRSs.

Exercise 4.2.3 Although we can appeal to fo to de�ne what we mean by a `free discourse
referent', we certainly don't need to do this. Give a direct de�nition of this concept.

But what are the other acceptability constraints? Here matters get a lot more interesting
(and a lot more diÆcult) for these constraints require us to perform inference, and a great
deal of inference at that. Let's briey note the two most obvious constraints we should
observe.

First, we need to obey the consistency constraint; obviously it would be foolish to accom-
modate information in such a way that the resulting DRS was inconsistent. Note, however,
that we can't test for inconsistency simply by inspecting the DRS; we have to do some
real work. Second, we should obey the informativity constraint. It would be redundant
to accommodate information in such a way that the resulting DRS actually followed from
the DRS we started with. That is, we should only carry out accommodation if it results in
something genuinely new. Once again, however, it requires inference to determine whether
or not this constraint is obeyed. Actually, Van der Sandt requires local versions of con-
sistency and informativity as well, and like the constraints just mentioned, these require
inference to determine whether or not they are ful�lled. We shall discuss these constraints
further in Chapter 11.

Here's our plan. In the remainder of this chapter we implement the basic architecture
described above. That is, we shall learn how to generate candidate DRSs (as we shall
see, this part of the process is closely related to the basic pronoun resolution method
implemented in the previous chapter) but we won't perform the �ltering demanded by the
acceptability check. In Chapter 11 we shall add the required checks. We will do so by using
drs2fol, our DRS to �rst-order logic compiler, and then exploiting standard �rst-order
inference techniques.

4.3 Presupposition Resolution in Prolog

Implementing accommodation has two main steps. First we must take care of the lexicon:
we need to say exactly what sort of presuppositions the various entries trigger. Secondly
we need to think about how the actual accommodation process is to be performed.
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Extending Lexical Macros

All presupposition triggers in our fragment of English introduce an �-condition. We shall
use a prolog term

alfa(X,Type,ADrs,Drs),

where ADrs is the �-DRSs, and Drs its scope. (So, we altered the representations for pro-
nouns of the previous chapter into one where all we did is replacing the gender information
by the �-DRS. In fact, we will use this notation for pronouns as well.) Here is the semantic
macro for the determiner `the':

detSem(def,lambda(P,lambda(Q,alfa(X,def,merge(drs([X],[]),P@X),Q@X)))).

That is, the scope of the presupposition operator � is restricted to the `noun part' of the
de�nite article. Compare this with the rule for the determiner `a':

detSem(indef,lambda(P,lambda(Q,merge(merge(drs([X],[]),P@X),Q@X)))).

Proper names are also viewed as presupposition triggers. This give us an important practi-
cal advantage: we don't need an additional device that moves the discourse referents to the
outermost DRS, thereby allowing accessibility for later pronouns: global accommodation
deals with this automatically. So here is the revised macro for proper names:

pnSem(Sym,Gender,lambda(P,alfa(X,name,drs([X],[X=Sym,Cond]),P@X))):-

compose(Cond,Gender,[X]).

Since linking is part of our presupposition resolution mechanism, pronouns are dealt with
in the same spirit. So pronouns also add an �, with a DRS that only has a discourse
referent and no conditions.

proSem(Gender,Type,lambda(P,alfa(X,Type,drs([X],[Cond]),P@X))):-

compose(Cond,Gender,[X]).

Possessives like `her X' and `his X' are analyzed as `the X of her' and `the X of him'.
Syntactically, they are determiners. Here is the semantic macro; note that this is a rather
complex entry, for we have nested �'s.

detSem(poss(Gender),lambda(P,lambda(Q,

alfa(X,nonrefl,drs([X],[Cond]),

alfa(Y,nonrefl,merge(drs([Y],[of(Y,X)]),P@Y),Q@X))))):-

compose(Cond,Gender,[X]).
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With one exception, these are the presupposition triggers we deal with in our grammar
fragment of English. The remaining one is left as as an exercise for the reader.

Exercise 4.3.1 Fill in the the interface de�nition for the determiner `another'. (It is already in
the lexicon). What kind of presupposition does it trigger?

Exercise 4.3.2 Adjectives like `old' and `new' are under one reading presupposition triggers.
Spell out the presuppositions for these kind of triggers and specify their lexical entries.

Implementing Linking and Accommodation

The initial output of our parser is a DRS with �-DRSs just like our implementation for
pronoun resolution. This will be the input to the predicate projectDrs/1, that performs
the linking and accommodation operations and �nally returns a normal DRS.

Notably, projectDrs/1 works along the same DRT-principles as resolveDrs/1 from the
previous chapter. (The reader who doesn't know about this predicate, is advised to learn
about from the previous chapter, before proceeding). As its closely related resolveDrs/1,
projectDrs/1 works with stacks of DRSs. The three clauses of projectDrs/1 resemble
those of resolveDrs/1:

projectDrs([merge(B1,B2)|A1]-[drs(D3,C3)|A3]):-

projectDrs([B1|A1]-A2),

projectDrs([B2|A2]-[drs(D1,C1),drs(D2,C2)|A3]),

append(D1,D2,D3),

append(C1,C2,C3).

projectDrs([alfa(X,Type,B1,B3)|A1]-A5):-

projectDrs([B1|A1]-[B2|A2]),

resolveAlfa(X,B2,A2-A3),

projectDrs([B3|A3]-A4),

addBindingInfo(X,Type,A4-A5).

projectDrs([drs(D1,C1)|A1]-A2):-

projectConds(C1,[drs(D1,[])|A1]-A2).

But there is more to it. We want to modify the stack more drastically, for we want to allow
accommodation. This comes to play in the clauses that deal with the DRS-conditions, for
which we introduce the predicate projectConds/2 (indeed, as you might have expected,
this predicate mirrors resolveConds/2 of the previous chapter).

Accommodation is allowed at subordinated levels of discourse, and at the global level. But
not inside nested merges. So we have to be careful when to apply accommodation, and
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avoid spurious accommodation. To manage accommodation, we introduce a special object
on the stack, coded as pre(Pres), that is a place holder for an accommodation site. Here,
Pres is a list of presuppositions (naturally coded as DRSs) that are accommodated at this
site (at the beginning, this is the empty list). As we will see later, resolveAlfa will �ll
this slot.

The clauses of projectConds/2 make clear where these accommodation sites are intro-
duced. The clause for negation, for instance, puts an empty site pre([]) on the stack,
which is �lled with locally accommodated presuppositions pre(Pres) after processing the
negated box, which are then, �nally, accommodated to the negated box itself by use of
accommodate/2. (We will come to this predicate shortly.)

projectConds([~B1|Conds],A1-A3):-

projectDrs([B1,pre([])|A1]-[B2,pre(Pres),drs(D,C)|A2]),

accommodate(Pres,B2-B3),

projectConds(Conds,[drs(D,[~B3|C])|A2]-A3).

projectConds([B1 > B2|Conds],A1-A4):-

projectDrs([B1,pre([])|A1]-A2),

projectDrs([B2,pre([])|A2]-[B4,pre(P2),B3,pre(P1),drs(D,C)|A3]),

accommodate(P1,B3-B5),

accommodate(P2,B4-B6),

projectConds(Conds,[drs(D,[B5 > B6|C])|A3]-A4).

projectConds([B1 v B2|Conds],A1-A4):-

projectDrs([B1,pre([])|A1]-[B3,pre(P1)|A2]),

projectDrs([B2,pre([])|A2]-[B4,pre(P2),drs(D,C)|A3]),

accommodate(P1,B3-B5),

accommodate(P2,B4-B6),

projectConds(Conds,[drs(D,[B5 v B6|C])|A3]-A4).

projectConds([Basic|Conds],[drs(D,C)|A1]-A2):-

compose(Basic,_Symbol,Arguments),

simpleTerms(Arguments),

projectConds(Conds,[drs(D,[Basic|C])|A1]-A2).

projectConds([],A-A).

Gathering all accommodated presuppositions on accommodation sites is very useful indeed.
It is a means to compute the presuppositions for each sub-DRS. After the gathering is
done, the presuppositions are added to the actual DRS they belong to with the help of
accommodate/2. There is nothing special to this predicate: it recursively cycles through
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the list of accommodated DRSs and adds them to the actual DRS, by straightforward use
of append/3.

accommodate([],B-B).

accommodate([drs(D1,C1)|Presups],drs(D2,C2)-B):-

append(D1,D2,D3),

append(C1,C2,C3),

accommodate(Presups,drs(D3,C3)-B).

This is how, basically, the implementation for presupposition projection is arranged. But
we haven't explained how the actual resolving and accommodation takes place. It is the
predicate resolveAlfa/4 that carries out this task. (It is part of the clause of projectDrs
that handles �-DRSs).

The �rst two clause of resolveAlfa deal with linking (partially matching) the �-DRS with
one of the DRS on the stack. (Here we use matchDrs/5, which we explain in a minute.)
By the recursive nature of this predicate, partial matching is allowed with any of the DRSs
on the stack by use of backtracking.

resolveAlfa(X,AlfaDrs,[drs(D,C)|Others]-[New|Others]):-

matchDrs(X,AlfaDrs,drs(D,C),New).

resolveAlfa(X,AlfaDrs,[AnteDrs|Others]-[AnteDrs|NewOthers]):-

resolveAlfa(X,AlfaDrs,Others-NewOthers).

But not only linking is possible. Accommodation is allowed on the sites on the stack
marked by the term pre/1. This is straightforward too, as the argument of pre/1 is a list
of DRSs, and we can use the list operator and simply add the �-DRS to the accommodation
site. Again, with the recursive set-up of this predicate, all possible accommodation sites
are given a chance under backtracking.

resolveAlfa(_,AlfaDrs,[pre(A)|Others]-[pre([AlfaDrs|A])|Others]).

resolveAlfa(X,Alfa,[pre(A1)|Others]-[pre([New|A2])|Others]):-

select(Drs,A1,A2),

matchDrs(X,Alfa,Drs,New).

Finally, we have to code the partial match of DRSs. The predicate matchDrs/5 matches
two DRSs yielding a new one, by unifying the anaphoric referent X with one of the discourse
referents of the antecedent DRS (so, it will fail if the domain of this DRS is empty), and
then take the union of the discourse referents and DRS-conditions to form the new resolved
DRS.
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matchDrs(X,drs(D1,C1),drs(D2,C2),drs(D3,C3)):-

member(X,D2),

mergeLists(D1,D2,D3),

mergeLists(C1,C2,C3),

consistentConditions(X,Conds).

This is done with the help of mergeLists/3. It works very much like append/3, but it
prevents that multiple occurences of items will turn up in the resulting list. This is how it
is coded:

mergeLists([],L,L).

mergeLists([X|R],L1,L2):-

member(Y,L1),

X==Y, !,

mergeLists(R,L1,L2).

mergeLists([X|R],L1,[X|L2]):-

mergeLists(R,L1,L2).

Matching of two DRSs only succeeds if the resulting DRS is internally consistent. We'll
use the consistent predicate from Chapter 6 for a �rst check (for complex cases, we have
to rely on deep automated reasoning|see Chapter 11). A DRS is consistent with respect
to a discourse referent x, if it is not the case that we can �nd two conditions on x that are
not consistent. Here is the implementation in Prolog:

consistentConditions(X,Conds):-

\+ (

member(Cond1,Conds),

member(Cond2,Conds), \+ Cond1=Cond2,

compose(Cond1,Symbol1,[Y]), Y==X,

compose(Cond2,Symbol2,[Z]), Z==X,

\+ consistent(Symbol1,Symbol2)

).

And this �nishes our basic implementation of Van der Sandt's algorithm. Of course we
follow our computational tradition and design a driver predicate that allows easy input
and provides us with readable output. The following driver computes all readings that our
implementation generates (using the built-in Prolog predicate findall/3):

parse:-
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readLine(Discourse),

d(Drs1,Discourse,[]),

betaConvert(Drs1,Drs2),

findall(Drs4,(

projectDrs([Drs2,pre([])]-[Drs3,pre(P)]),

accommodate(P,Drs3-Drs4),

checkBinding(Drs4)

),

Readings),

printReadings(Readings).

Let's see how our implementation works for simple discourses. Here is an example of
a simple de�nite. Two readings are generated, one caused by accommodation, and one
caused by linking.

?- parse.

> A woman smokes. The woman collapses.

Readings:

1 drs([A],[collapse(A),smoke(A),woman(A)])

2 drs([A,B],[woman(A),collapse(A),smoke(B),woman(B)])

Experimenting with this basic implementation will probably surprise you. Even for simple
examples, the program will produce a high number of readings. Here is an example that
has only two anaphoric expressions (the proper name `Vincent' and the pronoun `it') but
produces four readings|our implementation seems to over-generate readings:

?- parse.

> Vincent eats a big kahuna burger. Every criminal likes it.

Readings:
1 drs([A,B],[male(A),A=vincent,drs([C],[criminal(C)])>drs([D],[nonhuman(D),like(C,D)]),eat(A,B),bkburger(B)])
2 drs([A,B],[male(A),A=vincent,drs([C,D],[nonhuman(C),criminal(D)])>drs([],[like(D,C)]),eat(A,B),bkburger(B)])
3 drs([A,B],[male(A),A=vincent,drs([C],[criminal(C)])>drs([],[like(C,B)]),nonhuman(B),eat(A,B),bkburger(B)])
4 drs([A,B,C],[male(A),A=vincent,nonhuman(B),drs([D],[criminal(D)])>drs([],[like(D,B)]),eat(A,C),bkburger(C)])

Exercise 4.3.3 Inspect the readings above and explain why they are generated by our imple-
mentation of Van der Sandt's algorithm.

Note that the problem is not purely one of producing too many readings, but one of
producing readings which are unequally acceptable, although not impossible to rule out at
all. We will attack this problem in the next session, by using a series of linguistic heuristics
to judge the readings.

Exercise 4.3.4 Change the program in such a way that it doesn't support intermediate accom-
modation (for example, accommodation in the antecedent DRS of an implicational condition).
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Free Variable Trapping

Nested presuppositions can have free variables in their �-DRS, which can potentially es-
cape from their orgininal binder when accommodated on a more global level. One of the
notorious examples of this branch of problems is the solutions we generate for `Every boxer
enjoys his big kahuna burger'. The presupposition trigger `his big kahuna burger' gives rise
to local, intermediate, and global accommodation. Under global accommodation, a free
variable will appear in the main DRS. In fact, this reading is not available at all.

This is serious problem, and we have to deal with it in a satisfactory way. But note that
this problem is not entirely new, we discussed it in the description of Van der Sandt's
algorithm, and proposed the free variable check as a solution.

Exercise 4.3.5 Add a free variable check on the generated solutions and test the modi�ed pro-
grams on examples like `every boxer likes his wife'.

4.4 Optimizing the Algorithm

The current implementation of Van der Sandt's algorithm faces the problem that it gener-
ates a high number of readings, of which some are more likely to appear than others, but
this is not stated in the output.

This comes from being too tolerant with regard to linking and accommodation. Given a
presupposition or anaphor, we are equally happy with accommodation or linking. Simi-
larly, we have equal opnion whether it is resolved locally or globally. We just don't care.
But this is not the intuitive way of dealing with it. Linking, for instance, is preferred to
accommodation. And global accommodation is preferable to local accommdation. More-
over, these heuristics depend on the kind of trigger we deal with: proper names behave
quite di�erently from pronouns or de�nite descriptions in this respect.

Let's have a look how the di�erent anaphoric constructs behave, and what kind of heuristic
we could attach to it.

Proper Names

Proper names are|just like any other presuppostion trigger|allowed to accommodate
anywhere. But this is far too loosely formulated. Local or intermediate accommodation
is not something one would expect for proper names (unlike other de�nites descriptions),
and neither is linking on a non-global accommodation (although it is not to be totally
excluded). A simple way of dealing with this is to give global accommodation and linking
a much higher preference to local operations.
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Exercise 4.4.1 Try to think of examples in English where proper names accommodate or link
at a non-local level of discourse structure.

Related to this problem, is the fact that, at least for proper names, accommodate should
only be an option if linking is impossible. Otherwise, for a discourse `Vincent knows Butch.
Butch is a boxer.', there will be a reading where there are two Butches, each having a dif-
ferent discourse referent. Again, this is not impossible, but it certainly is the less preferred
option.

Pronouns

Pronouns have less accommodation power than proper names. On subordinate levels ac-
commodation is perhaps totally impossible (well, try to think of an example), and on the
global level it is possible (you might have missed part of the text or conversation) but it is
certainly less preferred than linking.

Exercise 4.4.2 Discuss in what cases one would perhaps allow global or local accommodation
of pronouns.

De�nite Descriptions

These easily tend to accommodate, also on non-global levels. But of course, linking, if
possible, is to be preferred to accommodation.

Adding Scores

What we are going to do is to attach to each reading a judgement. This judgement is a
score between 0 and 1, the higher the score, the more preferred this reading is.

Intuitively, the score says something about the processing costs involved for a reading. The
ideal score of 1 means that there no diÆculties whatsoever to process the sentence under
this reading. The extreme low score of 0, on the contrary, means that is is impossible to
process the sentence under this reading.

So what we do is simple and straightforward: we extend the implementation of presuppo-
sition projection with one extra parameter: the score. At the beginning it gets assigned
the value 1, and as we proceed our analysis, it will get updated by the di�erent operations
we have to perform. Accommodation will change the score in a negative way, but linking,
since it is preferred to accommodation, in a less negative way.

We will use the notation ScoreIn-ScoreOut in the predicates, where ScoreIn is the score
before the predicate is proved, and ScoreOut is the new value of the score if the proof was
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succesful. All the clauses for projectDrs and projectConds get this extra argument. For
instance:

projectDrs([alfa(X,Type,B1,B3)|A1]-A5,S1-S4):-

projectDrs([B1|A1]-[B2|A2],S1-S2),

resolveAlfa(X,Type,B2,A2-A3,S2-S3),

projectDrs([B3|A3]-A4,S3-S4),

addBindingInfo(X,Type,A4-A5).

The value of the score is changed when we resolve the �-DRS, because that's exactly the
point what kind of anaphoric construct we deal with, where it is resolved, and how it is
resolved. All these factors play a role for determining the new score.

Here is how the scores are changed. Basically, it is done by multiplying the old score with
a factor (ranging from 0 to 1), and assigning the result to the new score. (Note that this
ensures that the resulting value will never outrange the scope 0-1.)

resolveAlfa(X,Type,AlfaDrs,[drs(D,C)|Others]-[New|Others],S1-S2):-

global(Others),

matchDrs(X,AlfaDrs,drs(D,C),New),

(Type=refl, S2 = S1;

Type=nonrefl, S2 = S1;

Type=def, S2 = S1;

Type=name, S2 = S1).

resolveAlfa(X,Type,AlfaDrs,[drs(D,C)|Others]-[New|Others],S1-S2):-

nonglobal(Others),

matchDrs(X,AlfaDrs,drs(D,C),New),

(Type=refl, S2 is S1 * 1;

Type=nonrefl, S2 is S1 * 1;

Type=def, S2 is S1 * 0.5;

Type=name, S2 is S1 * 0.2).

resolveAlfa(_,Type,Alfa,[pre(A)]-[pre([Alfa|A])],S1-S2):-

global([pre(A)]),

(Type=nonrefl, S2 is S1 * 0.5;

Type=def, S2 is S1 * 0.9;

Type=name, S2 is S1 * 0.9).

resolveAlfa(_,Type,Alfa,[pre(A)|Others]-[pre([Alfa|A])|Others],S1-S2):-

nonglobal([pre(A)|Others]),

(Type=nonrefl, S2 is S1 * 0.1;

Type=def, S2 is S1 * 0.7;

Type=name, S2 is S1 * 0.2).
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resolveAlfa(X,Type,Alfa,[pre(A1)|Others]-[pre([New|A2])|Others],S1-S2):-

global([pre(A1)|Others]),

deleteFromList(Drs,A1,A2),

matchDrs(X,Alfa,Drs,New),

(Type=refl, S2 = S1;

Type=nonrefl, S2 = S1;

Type=def, S2 = S1;

Type=name, S2 = S1).

resolveAlfa(X,Type,Alfa,[pre(A1)|Others]-[pre([New|A2])|Others],S1-S2):-

nonglobal([pre(A1)|Others]),

deleteFromList(Drs,A1,A2),

matchDrs(X,Alfa,Drs,New),

(Type=refl, S2 is S1 * 1;

Type=nonrefl, S2 is S1 * 1;

Type=def, S2 is S1 * 0.5;

Type=name, S2 is S1 * 0.2).

Our revised predicate resolveAlfa is now turned into a tuner for presupposition projec-
tion. If you don't like the value, just take a screwdriver and change them what you think
is more accurate (maybe you want to add more anaphoric types).

To distinguish between global and local accommodation, resolveAlfa has more clauses
than its predecessor. It uses two auxiliary predicates to determine the level of DRS given
the current situation of the stack. The global level of DRS is a situation where the stack
contains exactly one pre/1 term (and this is the last item on the stack). This is coded by
global/1:

global([pre(_)]).

global([drs(_,_)|Stack]):- global(Stack).

The stack determines a non-global level of discourse if there at least two occurrences of
pre/1 on it. This is coded by nonglobal/1:

nonglobal([pre(_),drs(_,_)|_]).

nonglobal([drs(_,_)|Stack]):- nonglobal(Stack).

The driver has to be adapted too. All we do is add the calculated score to the generated
readings.

parse:-
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readLine(Discourse),

d(Drs1,Discourse,[]),

betaConvert(Drs1,Drs2),

findall((Score:Drs4),(

projectDrs([Drs2,pre([])]-[Drs3,pre(P)],1-Score),

accommodate(P,Drs3-Drs4),

checkBinding(Drs4)

),

Readings),

printReadings(Readings).

Here is the same example as we run with our �rst implementation, but now the scores are
made visible:

?- parse.

> A woman smokes. The woman collapses.

Readings:

1 1:drs([A],[collapse(A),smoke(A),woman(A)])

2 0.9:drs([A,B],[woman(A),collapse(A),smoke(B),woman(B)])

Our implementation with scores gives a perfect score of 1 to the reading where `the woman'
is linked to the discourse referent introduced by `a woman', and a score of 0.9 to the reading
where `the woman' accommodates a discourse referent. How nice!

Now for the other example:

?- parse.

> Vincent eats a big kahuna burger. Every criminal enjoys it.

Readings:
1 0.9:drs([A,B],[male(A),A=vincent,drs([C],[criminal(C)])>drs([],[enjoy(C,B)]),nonhuman(B),eat(A,B),bkburger(B)])
2 0.45:drs([A,B,C],[male(A),A=vincent,nonhuman(B),drs([D],[criminal(D)])>drs([],[enjoy(D,B)]),eat(A,C),bkburger(C)])

Exercise 4.4.3 Compare the readings for `Vincent eats a big kahuna burger. Every criminal enjoys

it.' with the ones that we got with our �rst version of presupposition resolution. Which readings
are suppressed and why

Exercise 4.4.4 [easy] Change the program such that it allows local accommodation of proper
names.
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Software Summary of Chapter 4

mainPresupDRT.pl Implementation of Van der Sandt's presupposition resolution

algorithm for DRSs. (page 196)

mainPresupScoreDRT.pl Implementation of Van der Sandt's presupposition reso-

lution algorithm for DRSs, with score computation for each generated reading.

(page 200)

resolvePresup.pl Implementation of Van der Sandt's presupposition resolution

algorithm for DRSs. (page 197)

resolvePresupScore.pl Implementation of Van der Sandt's presupposition reso-

lution algorithm for DRSs, with score computation for each generated reading.

(page 201)

matchDRT.pl Code for partial matching of DRSs. (page 199)

semMacrosPresupDRT.pl De�nitions of the semantic macros for the presupposi-

tion projection programs. (page 204)

Notes

By far the most important reference for the work of this chapter is Van der Sandt's classic
paper: (Van der Sandt 1992). This contains a wealth of examples, and locates the approach,
both intellectually and historically, in the complex terrain of presupposition theory. For
a recent overview of this terrain from a rather di�erent perspective, see David Beaver's
survey article: (Beaver 1997).

Van der Sandt attributes the term accommodation for presupposition to Lewis (Lewis
1979). Accommodation is a hot topic in presupposition theory. Although most tend
to agree with global and local forms of accommodation, intermediate accommodation is
heavily disputed.
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Chapter 5

Acceptability Constraints

This chapter is devoted to implementing the acceptability constraints imposed by Van der
Sandt on presupposition resolution and accommodation. We begin by explaining how to
implement the consistency and informativity constraints. We then describe and implement
the local versions of these constraints that Van der Sandt also imposes.

In essence this chapter revolves around a single theme: integrating semantic construction
and inference. As we shall show, it is possible to develop an interesting interactive discourse
system by hooking together a theorem prover (here we use the widely available Otter
system) with the semantic construction tools we have been developing in this book.

5.1 Maxims of Conversation

Humans communicate successfully on the basis of a simple conversational principle: cooper-
ation between speaker and hearer. Normally, speakers do not give less or more information
than is appropriate, they don't say something they believe is false or already known. Two
very general maxims which we plan to implement in our DRS-toolkit are:

1. each contribution to the discourse should be consistent with it, and

2. each contribution should introduce new information.

The �rst maxim, `be consistent!', is an obvious constraint on discourse contributions. One
should not contradict oneself. Obeying this rule, the following discourse are unacceptable:

Mia is a man. Mia is a woman.
Jody is married. Jody does not have a husband.
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Incidentally, note that the inconsistency of these discourses is not a fact of pure logic; it
depends on additional information, namely that men are not women, that women are not
men, that Jody is a woman, and that married women have husbands.

The second maxim, `be informative!', is a constraint on the newness of information. Every
contribution to the discourse should introduce new information. This too is quite natural.
Discourses that violate this principle are:

Jody is a boxer. Jody is a boxer.
Mia is a married. She has a husband.

Again, note that while the �rst inference is purely logical, the second inference hinges on
our knowledge that Mia is a woman, and that married women have husbands.

It is important to realize that these maxims are not always obeyed by humans. (Obviously,
liars do not.) They are, however, the default setting in which humans analyze utterances.
Violation of consistency appears when somebody corrects himself/herself, as for instance
in:

Jody is a boxer. No, Jody is not a boxer.

The informativity constraint (which, perhaps, has less priority than consistency) can be
violated as well, and assertions may well be part of the established conversation. Utterances
may be repeated for emphasis:

Jody is not a boxer, she is not a boxer.

Consistency and informativity are two of the acceptability constraints Van der Sandt im-
poses on accommodation, and we are going to build these constraints into a small interac-
tive discourse system. The system is set up as follows. The user can build up a discourse
by inputting a sentence to the system. Using the DCG-parser and the DRS-construction
program, we build a DRS for this sentence, and integrate it with the DRS from the previ-
ous contribution. Presuppositions will be handled as in Chapter 10, but now we're going
to use a theorem prover to check which accommodation possibilities obey the maxims.

5.2 Choosing a Theorem Prover

Which theorem prover are we are going to use? For a start, standard theorem provers are
not able to process DRSs directly, so we need to translate DRSs to �rst-order logic. But we
know from Chapter 7 that this is no big deal: we have a compiler, drs2fol which handles
this eÆciently.
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Can we use our theorem prover from Chapter 5? Mostly, yes|but not always. DRS
languages translate to �rst-order logic with equality . Our theorem prover cannot deal with
equality, so we have to look for something di�erent.

Exercise 5.2.1 [hard] Actually, for the grammar fragment under consideration, most equality
conditions in DRSs can be compiled away in the translation to �rst-order logic. Write a predicate
that does this.

Exercise 5.2.2 [easy] Think of examples that invoke equality conditions that cannot be compiled
out.

Fortunately, there are a number of freely available provers that handle equality. One of the
most widely available is Otter, and we will use Otter here for our theorem proving work.

We'll hook up Otter to our Prolog-programs by de�ning an interface predicate called
callTheoremProver/3. (This is done on the basis of a Unix platform, so you might want
to rede�ne this interface if you're using another operating system.) The interface works
as follows: with fol2otter/2 the axioms and formulas are written to the �le temp.in in
Otter-syntax. (We won't discuss this little translator. It simply translates our �rst-order
notation to the notation Otter expects and is a straightforward piece of code.) Then, using
the Sicstus in-built predicate shell/2, we start Otter, supplying it with the input �le, and
let it output temp.out. The second argument of shell/2 returns the state of the process.
For some mysterious reasons, this state variable returns the value 26386 if Otter found a
proof, and 26624 when it didn't succeed in �nding a proof, and that's why we'll implement
the interface like this:

callTheoremProver(Axioms,Formula,Proof):-

fol2otter(Axioms,Formula),

shell('./otter < temp.in > temp.out',X),

(X=26368,Proof=yes;X=26624,Proof=no).

Checking for consistency boils down to translating the DRS to �rst-order logic|call this
formula �|and then checking that � is consistent. For the theorem proving case this
means we need to �nd out whether :� is valid: if it is, then � is inconsistent, and if it is
not, then � is consistent. For the model building case this involves �nding out whether �
is satis�able: if it is not, then � is inconsistent. This is summarized in the following table:

Now, Otter is a refutation based theorem prover, which means that we have to give it the
negation of what we are trying to prove, thus we have to give it ::�, or equivalently �,
as input.

How do we test for informativity? Well, if the new DRS follows from the DRS of the
previous discourse, then the new DRS does not encode new information. Given Bnew
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Table 5.1: Consistency checking for theorem provers and model builders

� n :� valid ? invalid

satis�able { consistent consistent

? inconsistent ? consistent

not satis�able inconsistent inconsistent {

encoding the new information, and Bold the information contributed so far, we translate a
DRS with solely the condition Bold)Bnew to �rst-order logic, say to a formula �. If � is a
theorem or not satis�able, we have no new information. Or for a complete picture of this
setting, consult Table 5.2:

Table 5.2: Informativity checking for theorem provers and model builders

:� n � valid ? invalid

satis�able { informative informative

? not informative ? informative

not satis�able not informative not informative {

One other thing needs to be done. We are not interested merely in what can be proved
without supporting assumptions. Quite the contrary: we are interested in what can be
proved given background knowledge (for example, that married woman have husbands, that
Mia is a woman, and so on). Using backgroundKnowledge(Drs), an interface to certain
facts of the world coded in �rst-order formulas the following code for our consistency check
takes such knowledge into account.

consistent(NewDrs):-

backgroundKnowledge(Chi),

drs2fol(NewDrs,Phi),

callTheoremProver(Chi,Phi,Proof),

(Proof=yes, !, fail; true).

There is a similar predicate for informativity. Here, too, we need to take background
knowledge into account. So the actual coding for the check on informativity is as follows:
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informative(drs([],[]),_):-!.

informative(OldDrs,NewDrs):-

backgroundKnowledge(Chi),

drs2fol(OldDrs,Phi),

drs2fol(NewDrs,Psi),

callTheoremProver(Chi,~(Phi > Psi),Proof),

(Proof=yes, !, fail; true).

What about background knowledge? For a start, we use the information our ontology of
noun objects gives us (see Chapter 6). When we discuss the local constraints, we'll extend
the background knowledge with facts that are not covered by the ontology information (for
instance, that married women have husbands).

backgroundKnowledge(Formulas):-

generateOntology(Formulas).

Summing up, we now have predicates which take ordinary DRSs as input and tell us
whether the acceptability constraints are violated or not. So now we're ready to com-
bine our DRS-construction tools with our inference-tools, and integrate them into a small
interactive system.

5.3 Chatting with Curt

The best way to show how the acceptability constraints work is to implement them in a
small interactive program. We'll develop such a program that accepts utterances of the user
and comments on them according to the maxims of conversation|we'll call this system
Curt. While Curt is short for \Clever use of reasoning tools", it really owes its name to
the brief (and indeed, rather rude) replies it gives.

Two (mutually recursive) predicates implement Curt: curtInput and curtOutput. The
user's input is handled by curtInput/1:

curtInput(Readings):-

readLine(Input),

curtOutput(Input,Readings).

By readLine/1 the user's input is read, and passed on (together with the current list
of readings, represented as DRSs) to curtOutput. The predicate curtOutput/2 checks
the input and accordingly gives an appropriate response. If Curt �nds a parse, it checks
whether the readings it obtained are consistent (otherwise it objects), and informative
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(otherwise it will say so). The readings that remain are passed on to curtInput/1, and
the user can enter a new sentence, which will be integrated into the DRS encoding the
previous utterances.

curtOutput(Input,Readings):-

d(MergeDrs,Input,[]),!,

betaConvert(MergeDrs,ReducedDrs),

getReadings(ReducedDrs,Readings,PotentialReadings),

consistentReadings(PotentialReadings,ConsistentReadings),

(

ConsistentReadings=[],

curtSays('No! I do not believe that!'),!,

curtInput(Readings)

;

informativeReadings(ConsistentReadings,InformativeReadings),

(

InformativeReadings=[],

curtSays('Yes, I knew that!'),!,

curtInput(Readings)

;

curtSays('Ok.'),

curtInput(InformativeReadings)

)

).

The DRSs of the input sentence are computed with the help of the predicate getReadings.
This predicate uses the module for presupposition projection (Chapter 10) to deal with
pronouns and presuppositions.

getReadings(ProtoDrs,Readings,PotentialReadings):-

findall((OldDrs,NewDrs),

(

member(OldDrs,Readings),

projectDrs([merge(OldDrs,ProtoDrs),pre([])]-[Drs,pre(P)]),

accommodate(P,Drs-NewDrs)

),

PotentialReadings).

What if our parser fails to produce a result? The next clause implements Curt's behaviour
for cases where it is not able to analyse the user's input.

curtOutput(_,Readings):-
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curtSays('What?'),

curtInput(Readings).

In addition, we have some meta-commands to steer Curt. The input `bye' ends the conver-
sation, `new' clears the DRSs and starts a new chat, and `drs' displays the current readings
in DRS format.

curtOutput([bye],_):- !,

curtSays('Bye bye!').

curtOutput([new],_):- !,

curt.

curtOutput([drs],Readings):- !,

printReadings(Readings),

curtInput(Readings).

Finally, there is a driver predicate that starts a chat-session with Curt:

curt:-

curtInput([drs([],[])]).

Her is an example session. (The input of the user is preceded by a >, the rest is output of
the system.)

?- curt.

> Marsellus loves Butch and Mia.

Ok.

> Mia is a boxer.

Ok.

> Butch is a boxer.

Ok.

> Marsellus loves one boxer.

No! I do not believe that!

>
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Is Otter a useful prover for this application? It's pretty good|indeed it's light years ahead
of the simple theorem prover we �rst experimented with. In particular, when something
is a theorem it's very good at �nding a proof. However when something is not a theorem,
it may run into problems. The reader is asked to do the following exercise to experience
this.

Exercise 5.3.1 Consider the sequence `Marsellus loves a boxer' followed by `Marsellus loves one

boxer'. Is this is a consistent and informative discourse? Try the program on the input sequence
and �nd out which formula Otter tries to proof.

One line of experiment has been to simply substitute other theorem provers for Otter. This
alone has lead to interesting results, but there is another line of development that deserves
much more thorough exploration, namely the use of model builders to �lter out non-
theorems. It is true that, when all is said and done, �rst-order inference is an undecidable
problem|nontheless, our experiments so far indicate that with a decent theorem prover
to pin down the theorems, and a model builder to weed out the non-theorems, a striking
amount can be done very speedily.

5.4 Adding Local Constraints

Van der Sandt's algorithm for presupposition projection actually uses the two maxims given
above together with the the following extensions: superordinated DRSs should neither
imply a subordinated DRS, nor a negated subordinated DRS. This constraint rules out the
reading where the presupposition that Mia has a husband is globally accommodated:

If Mia is married then her husband is out of town.

This is because the fact that Mia has a husband follows from our background knowledge
that she is a woman and is married. We will extend our discourse system to deal with this.
To apply the local constraints to a certain DRS B, we have to calculate ordered pairs of
DRSs, where each pairs contains super- and subordinated DRSs of B. But what exactly
these pairs of super-sub DRSs, and how are they computed? The best way to show the
idea is giving an example. Assume we have the following DRS with sub-DRSs A, B, and
C, structured as follows:

: A
B)C

Then the pairs of super-sub DRSs are:
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1. (
B)C

, A)

2. (
: A

, B)

3. (
: A

� B, C)

This is coded in Prolog using superSubDrs/3. The �rst argument is the DRS that is
traversed, the second argument the superordinated, and the last argument the subordinated
DRS. Note that the superordinated DRS is represented as a di�erence list|this is done
while conditions that contain the sub-DRS are removed from the superordinated DRS.

superSubDrs(drs(D,[Sub > _|C]),Drs-Super,Sub):-

mergeDrs(merge(Drs,drs(D,C)),Super).

superSubDrs(drs(D,[B > Sub|C]),Drs-Super,Sub):-

mergeDrs(merge(merge(drs(D,C),B),Drs),Super).

superSubDrs(drs(D,[B1 > B2|C]),Drs-Super,Sub):-

superSubDrs(B2,merge(Drs,merge(merge(drs(D,C),B1),B2))-Super,Sub).

superSubDrs(drs(D,[Sub v _|C]),Drs-Super,Sub):-

mergeDrs(merge(Drs,drs(D,C)),Super).

superSubDrs(drs(D,[_ v Sub|C]),Drs-Super,Sub):-

mergeDrs(merge(Drs,drs(D,C)),Super).

superSubDrs(drs(D,[B v _|C]),Drs-Super,Sub):-

superSubDrs(B,merge(Drs,merge(drs(D,C),B))-Super,Sub).

superSubDrs(drs(D,[_ v B|C]),Drs-Super,Sub):-

superSubDrs(B,merge(Drs,merge(drs(D,C),B))-Super,Sub).

superSubDrs(drs(D,[~ Sub|C]),Drs-Super,Sub):-

mergeDrs(merge(Drs,drs(D,C)),Super).

superSubDrs(drs(D,[~ B|C]),Drs-Super,Sub):-

superSubDrs(B,merge(Drs,merge(drs(D,C),B))-Super,Sub).

superSubDrs(drs(D,[Cond|C]),Drs-Super,Sub):-

superSubDrs(drs([],C),Drs-B,Sub),

mergeDrs(merge(drs(D,[Cond]),B),Super).

We'll use this new predicate superSubDrs to traverse through the DRS and compute pairs
of super- and subordinated DRSs in our de�nition of the predicates for the local constraints.
Here is the predicate for local informativity:

localInformative(Drs):-
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findall((Super,Sub),superSubDrs(Drs,drs([],[])-Super,Sub),List),

allLocalInformative(List).

allLocalInformative([]).

allLocalInformative([(Super,Sub)|Others]):-

backgroundKnowledge(Chi),

drs2fol(drs([],[Super>Sub]),Phi),

callTheoremProver(Chi,~Phi,Proof),

(Proof=yes, !, fail; allLocalInformative(Others)).

Similarly, we can code local consistency:

localConsistent(Drs):-

findall((Super,Sub),superSubDrs(Drs,drs([],[])-Super,Sub),List),

allLocalConsistent(List).

allLocalConsistent([]).

allLocalConsistent([(Super,Sub)|Others]):-

backgroundKnowledge(Chi),

drs2fol(drs([],[Super>drs([],[~Sub])]),Phi),

callTheoremProver(Chi,~Phi,Proof),

(Proof=yes, !, fail; allLocalConsistent(Others)).

How do we integrate our appeal to the local constraints in Curt? We'll uses these as a �lter
on the readings, and only apply them to readings that are consistent and informative. The
local constraints are less important than their global versions. This is how we integrate it
in the predicate curtOutput/2:

curtOutput(Input,Readings):-

d(MergeDrs,Input,[]),!,

betaConvert(MergeDrs,ReducedDrs),

getReadings(ReducedDrs,Readings,PotentialReadings),

consistentReadings(PotentialReadings,ConsistentReadings),

(

ConsistentReadings=[],

curtSays('No! I do not believe that!'),!,

curtInput(Readings)

;

informativeReadings(ConsistentReadings,InformativeReadings),

(

InformativeReadings=[],

curtSays('Yes, I knew that!'),!,

curtInput(Readings)

;

118



Blackburn & Bos Chapter 5: Acceptability Constraints September 3, 1999

curtSays('Ok.'),

localInformativeReadings(InformativeReadings,LocalInformative),

localConsistentReadings(LocalInformative,LocalConsistent),

(

LocalConsistent=[], !,

SelectedReadings=InformativeReadings

;

SelectedReadings=LocalConsistent

),

curtInput(SelectedReadings)

)

).

Exercise 5.4.1 Change this predicate in the following way. Only accept readings that do not
violate (global) consistency and (global) informativity, and from these, select those with the least

number of violations of the local constraints. (This strategy for applying the local constraints is
due to David Beaver).

Background knowledge is encoded in �rst-order formulas. Of course, we want to extend
the knowledge derived from the lexicon (Chapter 6) with common-sense facts of the world,
such as married persons (if they are female) have husbands, and so on. Here is the new
encoding of background knowledge.

backgroundKnowledge(Formulas):-

knowledge(Formulas1),

generateOntology(Formulas2),

append(Formulas1,Formulas2,Formulas).

knowledge([

forall(X,forall(Y,have(X,Y)>of(Y,X))),

forall(X,forall(Y,of(Y,X)>have(X,Y))),

forall(X,female(X)&married(X)>exists(Y,husband(Y)&have(X,Y))),

forall(X,forall(Y,husband(Y)&have(X,Y)>married(X)&female(X)))

]).

Exercise 5.4.2 Try Curt on examples `If Mia is married then her husband is out of town' and `Either
Vincent does not have a car, or he cleans his car', and see how Curt handles the presupposition
triggers `her husband' and `his car'.
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Software Summary of Chapter 5

curt.pl The main predicates that build the framework of our interactive discourse

system. (page 206)

acceptabilityConstraints.pl The implementation of consistency, informativ-

ity, and the local constraints. (page 209)

callTheoremProver.pl The Prolog-interface to the theorem prover Otter.

(page 213)

fol2otter.pl Translates a formula in Otter syntax to standard output. (page 215)

Notes

The automatic deduction system Otter (McCune and Padmanabhan 1996) that we put
together with our Prolog programs (we used version 3.0.5) is freely available on the World
Wide Web, via:

http://www-c.mcs.anl.gov/home/mccune/ar/otter/

The DORIS system is an extended version of Curt (Blackburn, Bos, Kohlhase, and de Niv-
elle 1999). DORIS uses the MathWeb society of inference engines (currently, it uses the
theorem provers Spass and Bliksem) for its reasoning tasks (Franke and Kohlhase 1999).
Using the internet to communicate the inference problems and their answers, the theorem
provers work on the problems in parallel running of di�erent machines.
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Chapter 6

Putting It All Together

6.1 Combining Scope and Presupposition

Exercise 6.1.1 Add the scores.

6.2 Adding Focus

Exercise 6.2.1 Use a theorem prover to sort the readings generated by the presupposition pro-
jection program.

'

&

$

%

Software Summary of Chapter 6

mainPresupDRTU.pl DRTU combined with presupposition resolution. (page 217)

semMacrosPresupDRTU.pl Semantic macros for DRTU and presupposition reso-

lution. (page 218)
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Notes

We won't give the reader any references here|indeed we're going swap roles and ask for
some help. We would like to obtain references for programs that work more or less like
the ones sketched in this chapter. That is, we're interested in hearing about examples
of programs that `plug together' parsers, theorem provers, and so on. All help greatly
appreciated!
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Appendix A

Propositional Languages

The quanti�er-free fragment of any �rst-order language (as the terminology suggests) sim-
ply consists of all formulas of the language that contain no occurrences of the symbols 9
or 8. For example, robber(pumpkin), customer(mia), customer(y), and

customer(y) ! love(vincent,y)

are all quanti�er-free formulas. On the other hand,

8y[customer(y) ! love(vincent,y)]

isn't, as it contains an occurrence of the quanti�er 8.

The key thing to note about quanti�er-free formulas is the following. Suppose we are
given a model M (of appropriate vocabulary) and an assignment g in M. Now, normally
we need to work with two semantic notions: satisfaction for arbitrary formulas and truth
for sentences. However, when working with quanti�er-free formulas, there are no bound
variables to complicate matters, so this distinction is unnecessary. In fact, when working
with a quanti�er-free fragment, we may as well view each variable x as a constant inter-
preted by g(x). If we do this, then every quanti�er-free formula is either true or false inM
with respect to g. Moreover, it is obvious how to calculate the semantic value of complex
sentences: conjunctions will be true if and only if both conjuncts are true, disjunctions will
be true if and only if at least one disjunct is true, a negated formula will be true if and
only if the formula itself is not true, and so on. (In short, we basically need to make the
truth table calculations, which the reader is probably familiar with.)

This means we can simplify our notation somewhat. Because we don't have quanti�ers, the
internal structure of atomic formulas is irrelevant, for we're never going to bind any free
variables they may contain. All that is important is whether the atomic symbols are true
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or false, and how they are joined together using Boolean operators. For example, while
it may be mnemonically helpful to choose propositional symbols such as customer(x) or
love(vincent,mia), we lose nothing if we replace them by simpler symbols such as p and
q. Following this line of thought leads us to de�ne propositional languages. To specify a
propositional language, we �rst say which symbols we are going to start with. (A fairly
standard choice is p, q, r, s, t, and so on, often decorated with superscripts and subscripts:
for example, p00, r000, or q2.) The chosen symbols are called proposition symbols, or atomic
sentences. Complex sentences are built up using the standard Boolean connectives (for
example, :, ^, _ and !) in the obvious way, and the truth values of complex sentences
are calculated using the familiar truth table rules.

In short, propositional languages are essentially a simple notation for representing the
quanti�er-free formulas of �rst-order languages. When we devise inference mechanisms for
�rst order logic in Chapters 4 and 5, it turns out to be sensible to �rst investigate inference
methods for the quanti�er free fragment (we do this in Chapter 4), and only then turn to
the problem for the full �rst order language (the task of Chapter 5). Thus in Chapter 4,
we make use of the simpler propositional notation just de�ned.
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Type Theory

But What Does It All Mean?

We have given an informal, computationally oriented, introduction to the lambda calculus
and its applications in semantic construction. We adopted a rather procedural perspective,
encouraging the reader to think of the lambda calculus as a programming language|
indeed, as the sort of language that emerges when one tries to generalize straightforward
logic programming approaches to semantic construction (such as that of experiment 2).

However our account hasn't discussed one interesting issue: what do lambda expressions
actually mean? Hopefully the reader now has a pretty �rm grasp of what one can do with
lambda expressions|but is one forced to think of lambda expressions purely procedurally?
As we are associating lambda expressions with expressions of natural language, it would
be nice if we could give them some kind of model theoretic interpretation.

Actually, there's something even more basic we haven't done: we haven't been precise about
what counts as a �-expression! Moreover|as the industrious reader may already have
observed|if one takes an `anything goes' attitude, it is possible to form some pretty wild
(and indeed, wildly pretty) expressions. For example, consider the following expression:

�x.(x@x)@x

Is this a legitimate lambda expression? Suppose we functionally apply this expression to
itself (after all, nothing we have said rules out self-application). That is:

(�x.(x@x)@x)@(�x.(x@x)@x)

If we now apply �-conversion we get:
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((�x.(x@x)@x)@(�x.(x@x)@x))@(�x.(x@x)@x)

But note this is just the functional application followed by an additional occurrence of
�x.(x@x)@x! Obviously we can going on applying �-conversion as often as we like, pro-
ducing ever longer expressions as we do so. Now, this is very interesting|but is it the sort
of thing we had in mind when we decided to use the lambda calculus?

In this appendix, we shall briey discuss some of these issues. The main points we wish
to make are that there are di�erent version of the lambda calculus, useful for di�erent
purposes, and that both major variants of the lambda calculus can be given model theoretic
interpretations in terms of functions and arguments. The reader interested in learning more
is encouraged to follow up the references given in the Notes of Chapter 2.

The lambda calculus comes in two main varieties: the untyped lambda calculus, and the
typed lambda calculus. Both can be regarded as programming languages, but they are very
di�erent.

The untyped lambda calculus adopts an `anything goes' attitude to functional application.
For example, �x.(x@x)@x is a perfectly reasonable expression in untyped lambda calculus,
and it is �ne to apply it to itself as we did above. The untyped lambda calculus is relevant
to the study of natural language (explaining various natural language phenomena seems to
demand some form of self-application). Moreover, it is relevant to functional programming
(the core of the programming language Lisp is essentially the untyped lambda calculus).
Finally, it does have a model-theoretic semantics, indeed a very beautiful one. As one
one might suspect, this semantics interprets abstractions as certain kinds of functions.
The primary diÆculty is to �nd suitable collections of functions in which the idea of self
application can be captured. (In standard set theory, functions can't apply to themselves,
so constructing function spaces with the structure necessary to model self application is a
non-trivial exercise.) There are a variety of solutions to this problem, some of which are
very elegant indeed.

There are many kinds of typed lambda calculi. The one we shall discuss is called the simply
typed lambda calculus.

Natural language semanticists generally make use of some version of the simply typed
lambda calculus. The key feature of the simply typed lambda calculus is that it adopts
a very restrictive approach to functional application. \If it doesnt't �t, don't force it",
and typed systems have exacting notions about what �ts. Let's discuss the idea of simple
typing in a little more detail.

To build the kinds of representations we have been making use of in simply typed lambda
calculus, we would proceed as follows. First we would specify the set of types. There
would be in�nitely many of these, namely (1) the type e of individuals, (2) the type t of
truth values, and (3) for any types �1 and �2, the function type h�1; �2i. Second, we would
specify our logical language. This would contain all the familiar �rst order symbols, but in
addition it would contain an in�nite collection of variables of each type (the ordinary �rst
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order variables, which range over individuals, would now be thought of as the set of type
e variables) together with the � operator.

In the typed lambda calculus, every expression receives a unique type. The key clauses
that ensures this are the de�nitions of abstraction and functional application. First, if
E is a lambda expression of type �2, and v a variable of type �1 then �v.E is a lambda
expression of type h�1; �2i. In short, it matters which type of variable we abstract over.
Abstracting with respect to di�erent types of variables results in abstractions with di�erent
types. Second, if E is a lambda expression of type h�1; �2i, and E

0 is a lambda expression of
type �1 then we are permitted to functionally apply E to E 0. If we do this, the application
has type �2. In short, we are only allowed to perform functional application when the types
E and E 0 �t together correctly, and only then. The intuition is that the types tell us what
the domain and range of each expression is, and if these don't match, application is not
permitted. Note, moreover, that the type of the application is determined by the types of
E and E 0. In e�ect, we have imposed a very strict type discipline on our formalism. The
typed lambda calculus is a programming language, but when we use it we have to abide
by very strict guidelines.

This has a number of consequences. For a start, self-application is impossible. (To use E as
a functor, it must have a function type, say h�1; �2i. But then its arguments must have type
�1. So E can't be one of its own arguments.) Moreover, it is very straightforward to give
a semantics to such systems. Given any model M, the denotation De of type e expressions
are the elements of the model, the permitted denotations Dt of the type t expressions
are True and False, and the permitted denotations Dh�1;�2i of type h�1; �2i expressions
are functions whose domain is D�1 and whose range is D�2 . In short, expressions of the
simply typed lambda calculus are interpreted using a straightforward, inductively de�ned,
function hierarchy.

Which particular functions are actually used? Consider �x.man(x), where x is an ordinary
�rst order variable. Now, man(x) is a formula, something that can be True or False, so
this has type t. As was already mentioned, �rst-order variables are viewed as type e vari-
ables, hence it follows that the abstraction �x.man(x) has type he; ti. That is, it must be
interpreted by a function from the set of individuals to the set of truth values. But which
one? In fact, it would be interpreted by the function which, when given an individual from
the domain of quanti�cation as argument, returns True if that individual is a man, and
False otherwise. To put it another way, it is interpreted using the function which exactly
characterizes the subset of the model consisting of all men. But this subset is precisely the
subset that the standard �rst-order semantics uses to interpret man. In short, the `func-
tional interpretation' of lambda expressions is set up so that, via the mechanism of such
characteristic functions, it meshes perfectly with the ordinary �rst order interpretation.

By building over this base in a fairly straightforward way, the interpretation can be ex-
tended to cover all lambda expressions. For example, the expression

�P.9x(woman(x)^P@x)
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would be interpreted as a function which when given the type of function that P denotes
as argument (and P denotes type he; ti functions, like the characteristic function of man)
returns a type t value (that is, either True or False). Admittedly, thinking in terms
of functions that take other functions as arguments and return functions as values can
get pretty tedious, but the basic idea is straightforward, and for applications in natural
language semantics, only a very small part of the function hierarchy tends to be used.

In short, throughout this book we have been talking about the lambda calculus as a mecha-
nism for marking `missing information', and we have exploited the mechanisms of functional
application and �-conversion as a way of moving such missing information to where we
want it. But in fact there is nothing at all mysterious about this `missing information'
metaphor. It is possible to give precise mathematical models of missing information in
terms of functions and arguments. An abstraction is interpreted as a function, and the
`missing information' is simply the argument we will later supply it with. Indeed, a variety
of models are possible, depending on whether one wants to work with typed or untyped
versions of the lambda calculus.

Exercise B.0.1 Does our implementation of �-conversion allow self-application?

Exercise B.0.2 What happens when you functionally apply the formula �x.x@x to itself?
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Appendix C

Theorem Provers and Model Builders

Automated reasoning has seen an enormous increase of performance of (especially �rst-
order) inference engines and model builders. This appendix is a guide to a number of
useful reasoning engines for computational semantics.

Theorem Provers

� Bliksem
Resolution based theorem prover for �rst order logic with equality (Hans de Nivelle).
Almost as fast as the speed of light.

URL: http://turing.wins.uva.nl/~mdr/ACLG/Provers/Bliksem/bliksem.html

� Spass
First-order theorem prover (Christoph Weidenbach et al.)
Winner at the CASC-15 in the divisions FOF and SAT.

URL: http://spass.mpi-sb.mpg.de/.

� fdpll:
Or, if you prefer, the \First-Order Davis-Putnam-Loveland-Logeman" theorem prover
(Peter Baumgartner). Good at satis�able problems.

URL: http://www.uni-koblenz.de/~peter/FDPLL/

� Otter
The `classical' theorem prover by W. McCune.

URL: http://www-unix.mcs.anl.gov/AR/otter/
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Model Builders

� Mace
Short for \Model and Counter-Examples". Mace is a Model builder for �rst-order
logic with equality (McCune). Got the �rst price at CASC-16 in division SAT (work-
ing in tandem with Otter).

URL: http://www-unix.mcs.anl.gov/AR/mace/

� Satchmo
Satchmo is a model generator for �rst-order theories, implemented in Prolog.

URL: http://www.pms.informatik.uni-muenchen.de/software/

� Kimba
Kimba is an Higher-Order Model Generator, a deduction system for abductive or
circumscriptive reasoning within linguistic applications (Karsten Konrad).

URL: http://www.ags.uni-sb.de/~konrad/kimba.html

Systems

� MathWeb
This system for automated theorem proving connects a wide-range of mathematical
services by a common, mathematical software bus (Franke and Kohlhase 1999).

URL: http://www.ags.uni-sb.de/~omega/www/mathweb.html
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Appendix D

Prolog in a Nutshell

What is Prolog?

Prolog is one of the most important programming languages in Computational Linguistics
and Arti�cial Intelligence. Two key features distinguish Prolog from other programming
languages: its declarative nature, and its extensive use of uni�cation. Ideally, in Prolog
we simply state the nature of the problem, and let the Prolog uni�cation-driven inference
engine search for a solution.

The Basics

There are actually only three basic constructs in Prolog: facts, rules, and queries. A set of
facts and rules | that is, a knowledge base | is all a Prolog program consists of. Facts are
used to state things that are unconditionally true of the domain of interest. For example,
we can state that Mia and Jody are women by putting the facts

woman(mia).

woman(jody).

in our knowledge base. Rules relate facts by logical implications. We can add to our
knowledge base the conditional information that Mia plays air-guitar if she listens to
music as follows:

playsAirGuitar(mia):-

listensToMusic(mia).
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The :- should be read as \if", or \is implied by". The part on the left hand side of the :-
is called the head of the rule, the part on the right hand side the body. (Incidentally, note
that we can view a fact as a rule with an empty body. That is, we can think of facts as
`conditionals that don't have any antecedent conditions'.) The facts and rules contained
in a knowledge base are called clauses. The collection of all clauses in a knowledge base
that have the same head is called a predicate.

Posing queries makes the Prolog inference engine try to deduce a positive answer from the
information contained in the knowledge base. There are two basic circumstances under
which Prolog can return a positive answer. The �rst, and simplest, is when the question
posed is one of the facts listed in the knowledge base. The second is when Prolog can
deduce the positive answer by using the deduction rule called modus ponens. That is, if
head :- body and body are both in the knowledge base, then Prolog can deduce that head
is true.

Let's consider an example. We can ask Prolog whether Mia is a woman by posing the
query

?- woman(mia).

and Prolog will answer \yes", since this is a fact in the knowledge base. However, if we
ask whether Mia plays air-guitar by posing the query

?- playsAirGuitar(mia).

its answer is \no". First, this fact is not recorded in the knowledge base. Second, it cannot
infer that Mia plays air-guitar as there is nothing in the knowledge base stating that Mia
is listening to music (thus Prolog assumes that this is false) and hence we cannot make use
of the only rule we have in our knowledge base. On the other hand, if the knowledge base
had contained the additional fact

listensToMusic(mia).

then Prolog would have responded \yes", since it could then have deduced by modus
ponens that Mia plays air-guitar.

Jumping ahead slightly, there are two things that make Prolog so powerful. The �rst is that
it is capable of `chaining together' uses of modus ponens. The second is that Prolog has
a powerful mechanism (described later) called uni�cation, which lets it handle variables.
This combination of chained modus ponens and sophisticated variable handling enables it
to draw far more interesting inferences than our rather trivial examples might suggest.

The comma , expresses logical conjunction in Prolog. We can change the rule above by
adding another condition to its body:
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playsAirGuitar(mia):-

listensToMusic(mia),

happy(mia).

Now the rule reads: Mia plays air-guitar if she listens to music, and if she is happy. We
can also express disjunction in Prolog. Let's change the rule to:

playsAirGuitar(mia):-

listensToMusic(mia);

happy(mia).

The ; should be read as or, so here we have a rule stating that Mia plays air-guitar if she
listens to music, or if she is happy.

However there is another (much more commonly used) way of expressing disjunctive con-
ditions: we simply list a number of clauses that have the same head. For example, the
following two rules mean exactly the same as the previous rule:

playsAirGuitar(mia):-

listensToMusic(mia).

playsAirGuitar(mia):-

happy(mia).

In fact, disjunctions are almost always expressed using such multiple rules; extensive use
of semicolon makes Prolog code pretty hard to read.

Syntax

What exactly are the syntactic entities such as woman(jody) and playsAirGuitar(mia)

that we use to build facts, rules, and queries? They are called terms, and there are three
kinds of terms in Prolog: atoms, variables, and complex terms. An atom is a sequence of
characters starting with a lowercase character. A variable is also a sequence of characters,
but it must start with an uppercase character or an underscore. So mia and airGuitar

are atoms, while X, Mayonnaise, and mayonnaise are variables.

Complex terms are build out of a functor and a sequence of arguments. The arguments
are put in ordinary brackets, separated by commas, and placed after the functor. The
functor must be an atom. That is, variables cannot be used as functors. On the other
hand, arguments can be any kind of term. For example

hide(X,father(butch))
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is a complex term. Its functor is hide, and it has two arguments: the variable X, and the
complex term father(butch).

The number of arguments that a complex term has is called its arity . For instance,
woman(mia) is a complex term with arity 1, while loves(vincent,mia) is a complex
term with arity 2.

Arity is important to Prolog. Prolog would be quite happy for us to use two pred-
icates with the same functor but with a di�erent number of arguments (for example,
love(vincent,mia), and love(vincent,marcellus,mia)) in the same program. How-
ever, if we insisted on doing this, Prolog would treat the two place love and the three
place love as completely di�erent predicates.

When we need to talk about predicates and how we intend to use them (for example, in
documentation) it is usual to use a suÆx / followed by a number to indicate the predicate's
arity. For example, if we were talking about the playsAirGuitar predicate we would
write it as playsAirGuitar/1 to indicate that it takes one argument. We make use of this
convention in the book.

Uni�cation

Variables allow us to make general statements in Prolog. For example, to declare that
every woman likes a foot massage, we add the following rules to the database:

likeFootMassage(X):-

woman(X).

It can be read as: X likes a foot massage, if X is a woman. The nice thing about variables
is that they have no �xed values. They can be instantiated with a value by the process of
uni�cation. If we pose the query

?- likeFootMassage(mia).

the variable X is uni�ed with the atom mia, and Prolog tries to prove that woman(mia) can
be inferred from the knowledge base. Two terms are uni�able if they are the same atoms,
or if one of them is a variable, or if they are both complex terms with the same functor
name and arity, and all corresponding arguments unify. Uni�cation makes terms identical.
It is the heart of the engine that drives Prolog.

Prolog has a built-in operator for uni�cation: the =. By querying the goal

?- X = butch.

the variable X gets uni�ed with the atom butch and the goal succeeds.
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Recursion

Predicates can be de�ned recursively. Roughly speaking, a predicate is recursively de�ned
if one or more rules in its de�nition refers to itself. Here's an example:

moreExpensive(X,Y):-

costsaLittleMore(X,Y).

moreExpensive(X,Y):-

costsaLittleMore(X,Z),

moreExpensive(Z,Y).

The de�nition of the moreExpensive/2 predicate is fairly typical of the way recursive
predicates are de�ned in Prolog. Clearly, moreExpensive/2 is (at least partially) de�ned
in terms of itself, as the more moreExpensive functor occurs on both the left and right
hand sides of the second rule. Note, however, that there is an `escape' from this circularity.
This is provided by the costsaLittleMore predicate, which occurs in both the �rst and
second rules. (Signi�cantly, the right hand side of the �rst rule makes no mention of
moreExpensive.)

Let's see how Prolog makes use of such de�nitions. Suppose we had the following facts in
our knowledge base:

costsaLittleMore(royaleWithCheese,bigKahunaBurger).

costsaLittleMore(fiveDollarShake,royaleWithCheese).

If we pose the query

?- moreExpensive(fiveDollarShake,bigKahunaBurger).

then Prolog goes to work as follows. First, it tries to make use of the �rst rule listed
concerning moreExpensive. This tells it that X is more expensive than Y if X costs a
little more than Y , but as the knowledge base doesn't contain the information that a �ve
dollar shake costs a little more than a big kahuna burger, this is no help. So, Prolog
tries to make use of the second rule. By unifying X with fiveDollarShake and Y with
bigKahunaBurger it obtains the following goal:

?- costsaLittleMore(fiveDollarShake,Z),

moreExpensive(Z,bigKahunaBurger).

Prolog deduces moreExpensive(fiveDollarShake,bigKahunaBurger) if it can �nd a value
for Z such that, �rstly,
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?- costsaLittleMore(fiveDollarShake,Z).

is deducible, and secondly,

?- moreExpensive(Z,bigKahunaBurger).

is deducible too. But there is such a value for Z: royaleWithCheese. It is immediate that

?- costsaLittleMore(fiveDollarShake,royaleWithCheese).

will succeed, for this fact is listed in the knowledge base. Deducing

?- moreExpensive(royaleWithCheese,bigKahunaBurger).

is almost as simple, for the �rst clause of moreExpensive/2 reduces this goal to deducing

?- costsaLittleMore(royaleWithCheese,bigKahunBurger).

and this is a fact listed in the knowledge base.

There is one very important thing you should bear in mind when working with recursion:
a recursive predicate should always have at least two clauses: a non-recursive one (the
clause that stops the recursion at some point, otherwise Prolog would never be able to
�nish a proof!), and one that contains the recursion. In our example, the �rst clause of
more expensive/2 is the non-recursive clause, and the second clause contains the recursion.
(Note that the order of these two clauses in the knowledge base is not important!)

Lists

Lists are recursive data structures in Prolog. The recursive de�nition of a list runs as
follows. First, the empty list is a list. Second, a complex term is a list if it consists of two
items, the �rst of which is a term (often refered to as �rst), and the second of which is a
list (often referred to as rest or the rest list).

Square brackets indicate lists. The empty list is written as []. The list operator | separates
the �rst item of a list from the rest list. For example, here is a list with three items:

[butch|[pumpkin|[marsellus|[]]]]

140



Blackburn & Bos Appendix September 3, 1999

When working with lists, Prolog always makes use of such recursive �rst/rest representa-
tions, and for some purposes it is important to know this. Mercifully, however, Prolog also
o�ers a more readable form of list representation. The same list can be declared as:

[butch,pumpkin,marsellus]

Prolog will quite happily accept lists in this more palatable notation as input, and moreover,
it does its best to uses this notation for its output.

Note that the items in a list need not only be atoms: they can be any Prolog term, including
lists. For example

[vincent,[honey_bunny,pumpkin],[marsellus,mia]]

is a perfectly good list.

Since lists are recursive data structures, most of the predicates that work on lists, are
de�ned using recursive predicates. The simplest example is the member/2 predicate, which
is given in the program library.

Operators

Many newcomers to Prolog �nd the word operator rather misleading, for Prolog's operator's
don't actually operate on anything, or indeed do anything at all. They are simply a
notational device that Prolog o�ers to represent complex terms in a more readable fashion.

For example, suppose that we want to use not as the functor expressing sentence negation,
and and as the functor expressing sentence conjunction. Then the term representing Butch
boxes and Vincent doesn't dance would be:

and(butch_boxes,not(vincent_dances)).

It would be nicer if we could use the more familiar notation in which the conjunction
symbol stands between the two sentences it conjoins. That is, we would prefer the following
representation:

butch_boxes and not vincent_dances

The following operator de�nitions let us do precisely this.
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:- op(30,yfx,and).

:- op(20,fy,not).

The and is declared as an in�x operator by yfx with precedence value of 30. The y

represents an argument (in this case the left argument of &) whose precedence is lower or
equal of the operator. The x represents an argument (the right argument of and) whose
precedence value must be strictly lower than that of the operator (30, in this case). The
not is de�ned as a pre�x operator with precedence 20, and an argument that should have
a precedence value lower or equal to 20.

More generally, Prolog allows us to de�ne our own in�x, pre�x and post�x operators.
Operator names must be atoms. When we declare a new operator, we also have to state
its precedence and those of its arguments (in order for Prolog to disambiguate expressions
with more than one operator).

A very important �nal remark about operators: Prolog is featured with a set of special
prede�ned operators, that have a meaning. Among these is the = for uni�cation as we saw
before and \+ for negation as we will see later. Other prede�ned operators we use in the
programs of this book are the in�x operators == and \==. The goal X == Y succeeds if
X and Y are identical terms (That is, the should have the same structure, even variables
should have the same name | uni�cation plays no role here!). On the other hand, \==
checks whether its argument are not identical.

Arithmetic

Prolog contains some built-in operators for handling integer arithmetic. These include *,
/ +, - (for multiplication, division, addition, and subtraction, respectively) and >, < for
comparing numbers.

These symbols, however, are just ordinary Prolog operators. That is, they are just a
user friendly notation for writing arithmetic expressions: they don't carry out the actual
arithmetic. For example, posing the query

?- X = 1 + 1.

uni�es the variable X with the complex term 1 + 1, not with 2, which, for people unused
to Prolog's little ways, tends to come as a bit of a surprise.

If we want to carry out the actual arithmetic involved, we have to explicitly force evaluation
by making use of the very special inbuilt `operator' is/2. This calls an inbuilt mechanism
which carries out the arithmetic evaluation of its second argument, and then uni�es the
result with its �rst argument.
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?- X is 1 + 1.

X = 2

yes

Negation

There is no explicit negation in Prolog. Something is regarded as false if it cannot be
proved. This is the so-called closed world assumption of Prolog.

Prolog does have an inbuilt mechanism for \negation as failure". That is, we can ask it
whether something cannot be proved by using the built-in pre�x operator \+. The goal
?- \+ man(jules) succeeds if and only if the goal ?- man(jules) fails.

Variables in negated goals are not instantiated. Therefore, the following two goals are not
fully equivalent.

?- likeFootMassage(Who)

Who = mia

yes

?- \+ \+ likeFootMassage(Who)

yes

Backtracking and the Cut

When Prolog tries to prove a goal, the structure underlying it attempts can be reagarded
as a tree: a tree with branches that lead (or do not lead) to possible proofs. The Prolog
inference engine essentially searches for a branch that makes the main goal true. Of course
it may, and usually does, �nd itself in a branch that does not lead to a proof (that is, a
branch that fails). Then Prolog automatically backtracks to the previous node in the tree
and tries another (the next) branch. (If there is no previous node, this means that the goal
is not provable, and Prolog tells us \no".)

Backtracking can be forced by the user by entering a semicolon after Prolog gives a solution.
This allows us to try generating more than one solution to a query. For example (reverting
to our original knowledge base) we can demand that Prolog �nds all the women as follows:

?- woman(Who).

Who = mia;

Who = jody;

no
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There are two ways to inuence Prolog's search strategy: using the cut to suppres back-
tracking, or changing the order of the clauses in the database.

The cut (written !, it is a built-in Prolog predicate with arity 0) removes certain branches
from the proof tree. If a cut is put in a clause, and Prolog encounters it during a proof, it
removes all the clauses of the same predicate that are listed further down in the knowledge
base, and moreover, removes all alternative solutions to conjuncts to the left of the cut in
its clause.

The order of clauses play a role in Prolog's search strategy, since Prolog works on the
database in a sequential way, and subgoals are proved from left to right in the search tree.
(Sometimes the order even drastically determines the outcome of a proof.)

Built-in Predicates

There is a set of built-in predicates available in Prolog. We briey discuss the ones that
we use in our programs. It should be noted though, that it depends on the Prolog version
that you use, which predicates are built-in.

First we have the ones for controlling output. The predicate write/1 displays a term to
the current output device, and nl/0 creates a new line.

Then there is whole family of predicates that are used for term manipulation. With these
you can break complex terms into pieces or build new ones. The predicate functor(T,F,A)
succeeds if F is the functor of term T with arity A. And arg(N,T,A) is true if A is the Nth
argument of T. In some case we prefer to make use of the so-called \univ" predicate,
weirdly written as \=..", that transforms a complex term into a list consisting of the
functor followed by its arguments. For instance:

?- love(pumpkin,honey_bunny) =.. List.

List = [love,pumpkin,honey_bunny]

yes

For checking the types of terms: nonvar(X) is true if X is instantiated, var(X) is true if X
is not instantiated. The predicate simple/1 succeeds if its argument is either an atom or
a variable, and compound/1 if its argument is a complex term.

With assert/1 and retract/1 it is possible to change the knowledge base while executing
a goal. The former asserts a clause to the database, the latter removes it. Many versions
of Prolog require a dynamic declaration of those predicates that are modi�ed by other
predicates, as we do with the counter for the skolem index in the library �le.

Finally, there is some prede�ned stu� that gives controll over backtracking. The very rude
fail/0 predicate causes Prolog to backtrack (this is used to generate more solutions). With
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bagof/3 it is possible to generate all solutions of a speci�c goal, and put the instantiations
of a certain variable (or complex term with variables) in a list. E.g., the goal

?- bagof(Who,woman(Who),Answer).

Answer = [mia,jody].

yes

tries to satis�es the goal in the second argument of bagof, and for each solution it puts
the value of its �rst argument (Who) in its third argument, the list Answer. The predicate
setof/3 functions similarly, but it removes duplicate answers.

Di�erence Lists

A di�erence list List1-List2 is a way of using two lists (namely, List1 and List2) to
represent one single list (namely, the di�erence of the two lists).

For example, the three element list [pumpkin,butch,jimmy] can be represented as the
following di�erence list:

[pumpkin,butch,jimmy,lance]-[lance]

or as the following one:

[pumpkin,butch,jimmy]-[]

Indeed, there are in�nitely many di�erence list representations of [pumpkin,butch,jimmy].
In all of them, the �rst list in the di�erence list representation consists of the list we are
interested in (namely [pumpkin,butch,jimmy]) followed by some suÆx, while the second
list is that suÆx. So a di�erence list is simply a pair of list structures, the second of which
is a suÆx from the other. We follow the usual convention of using the built-in operator -
to group the two list together. (However, note that we don't have to do this: any other
operator would do.)

Let's go a step further. Suppose we take the suÆx to be a variable. Then any other
di�erence-list encoding of [pumpkin,butch,jimmy] is an instance of the following most
general di�erence list .

[pumpkin,butch,jimmy|X]-X
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In practice, we will use the term di�erence list to mean the most general di�erence list.
The empty list is represented by the di�erence list X-X.

Why on earth should anyone want to represent lists as di�erence lists? There is a simple
answer: eÆciency. In particular, when we use the di�erence list representation, Prolog can
perform concatenation of lists must faster. For example, the usual append/3 for normal
lists is a recursively de�ned predicate that can be ineÆcient for large lists. (This is because
Prolog must recursively work its way down the entire collection of �rst/rest pairs.) On the
other hand, when we make use of di�erence lists append/3 can be de�ned as follows.

append(X-Y,Y-Z,X-Z).

Consider how this works. Suppose we want to append [pumpkin,butch] to [jody,lance].
Then we make the following query:

?- append([pumpkin,butch|E]-E,[jody,lance|F]-F,A-B).

This causes A to unify with [pumpkin,butch|E], E with [jody,lance|F], and B with F.
As a result, A-B uni�es with [pumpkin,butch,jody,lance|B]-B, which is a di�erence list
of the four items pumpkin, butch, jody, and lance.

The reader who works through this example will see that what makes di�erence list repre-
sentations so eÆcient is that the suÆx variable gives us direct access to the end of the list.
In the conventional �rst/rest representation we have to work our way recursively down
towards the end of the list. Di�erence list representations avoid this overhead. We have
to pay a price for this gain in eÆciency (di�erence list representation is less transparent)
but in many circumstances this is a price worth paying.

De�nite Clause Grammars

De�nite clause grammars (DCGs) are the in built Prolog mechanism for de�ning grammars.
Actually, they are really a sytactically sugared way of working with certain di�erence lists.
With DCGs you can kill two birds with one stone: if you de�ne the grammar rules you'll
get the parser for free!

Here is a DCG for a very small fragment of english grammar. We have de�ned syntactic
categories s, np, vp, det, noun, and tv, standing for sentence, noun phrase, verb phrase,
determiner, common noun, and transitive verb. These are also called the non-terminal

symbols. Every rule in the DCG has a non-terminal symbol on its left hand side.

s --> np, vp.
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np --> det, noun.

np --> [mia].

det --> [a].

noun --> [man].

noun --> [five,dollar,shake].

vp --> tv, np.

vp --> [drinks].

tv --> [loves].

On the right hand side of the rules, you'll either �nd one or more non-terminal symbols,
or a terminal symbol. The terminal symbols are the lexical entries, the actual words of the
language of our interest.

Now, what do these rules mean? They are very intuitive indeed. The rule s --> np,

vp says that a syntactic category called s, consists of an np, followed by a vp. Similarly,
according to this DCG, the category noun is either the string man, or the sequence of strings
five dollar shake (represented in lists). And so on.

This DCG covers sentences like Mia loves a �ve dollar shake, A man drinks, but not: A
woman loves or Mia drinks a one dollar shake.

To parse sentences, we can pose a query like:

?- s([mia,loves,a,five,dollar,shake],[]).

This goal is satis�ed if the sequence of words in the �rst argument belongs to s. There is
only one rule for s in our DCG. It says that an s can be replaced by an np followed by a
vp. That is, we have to take some items of the input list that form a noun phrase, in such
a way that the rest of the items on the list form a verb phrase. Since there is the rule

np --> [mia].

in the knowledge base we now have to proof whether

?- vp([loves,a,five,dollar,shake],[]).

which is provable indeed (we leave this is an exercise to the reader). And this is basically
how parsing with DCGs takes place on the surface level. However, Prolog doesn't use our
DCG rules directly for the purpose of parsing. The DCG is translated internally into the
following clauses:
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s(A,B) :- np(A,C), vp(C,B).

np(A,B) :- det(A,C), noun(C,B).

np([mia|B],B).

det([a|B],B).

noun([man|B],B).

noun([five,dollar,shake|B],B).

vp(A,B) :- tv(A,C), np(C,B).

vp([drinks|B],B).

tv([loves|B],B).

The alert reader will notice that these clauses look surprisingly familiar. In fact, they are
the direct encodings of di�erence lists (in the facts, for example noun([man|B],B)) and
the appending of two di�erence lists (in the rules, for instance

s(A,B) :- np(A,C), vp(C,B).

can be read as: s is a di�erence list A-B if we can prove that is the result of appending
di�erence list A-C to C-B).

Since, as we just noticed, DCG rules are normal Prolog clauses, it is perfectly allowed to
add arguments to the rules. Some useful stu� we can add to our grammar is information
on agreement. Suppose we want to include noun phrases like all boxers in our grammar by
adding entries for all and boxers:

det --> [all].

noun --> [boxers].

Be careful though! Adding these clauses make it possible to parse Mia loves all boxers, but
also non-grammatical All man drinks or A boxers loves all woman. Clearly, our grammar
lacks information about agreement. However, this information can be added very easily
to the rules. Let's do it for the determiners and nouns �rst (and why not add some extra
entries at the same time):

det(plural) --> [all].

det(singular) --> [a].

noun(singular) --> [boxer].

noun(plural) --> [boxers].

noun(singular) --> [man].

noun(plural) --> [men].

noun(singular) --> [five,dollar,shake].

noun(plural) --> [five,dollar,shakes].
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Since det and noun have an extra argument now, all the rules that have these symbols
at their right hand side (this is the np --> det, noun. rule in our current grammar)
should get an extra argument as well. As can be seen from the entries above, the value
of this argument is either singular or plural. Since we want the determiner to have the
same agreement as the noun when they are combined to a noun phrase, we could write the
following code:

np --> det(singular), noun(singular).

np --> det(plural), noun(plural).

But there is much more elegant way of encoding this. We can bring in a variable that,
during parsing, gets instantiated with the agreement value of the determiner and noun,
and collapse the above rules into one:

np --> det(Agr), noun(Agr).

Nevertheless, from the examples given earlier, we also want to add agreement features to
noun phrases and verb phrases. We won't do explain this step by step | the principle
should be clear now | but list the entire rewritten grammar including agreement, and
extended with some new entries, below.

s --> np(Agr), vp(Agr).

np(Agr) --> det(Agr), noun(Agr).

np(singular) --> [mia].

det(plural) --> [all].

det(singular) --> [a].

noun(singular) --> [boxer].

noun(plural) --> [boxers].

noun(singular) --> [man].

noun(plural) --> [men].

noun(singular) --> [five,dollar,shake].

noun(plural) --> [five,dollar,shakes].

vp(Agr) --> tv(Agr), np(_).

vp(singular) --> [drinks].

vp(plural) --> [drink].

tv(singular) --> [loves].

tv(plural) --> [love].

Now look at our grammar. From an aesthetic point of view, there certainly is some space
for improvement! Everything is mixed up: the rules and the lexical entries together form
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one chaotic DCG. Consider what these grammar would look like if we extend its coverage
to a more serious fragment of english!

One way to bring in some organisation in the grammar, is to make a physical distinction
between the lexicon and the grammar rules. The lexicon might be designed as follows:

lexicon(np,singular,mia).

lexicon(det,plural,all).

lexicon(det,singular,a).

lexicon(noun,singular,boxer).

lexicon(noun,plural,boxers).

lexicon(noun,singular,man).

lexicon(noun,plural,men).

lexicon(vp,singular,drinks).

lexicon(vp,plural,drink).

lexicon(tv,singular,loves).

lexicon(tv,plural,love).

That is, normal Prolog facts of the form lexicon/3, with the �rst argument stating the
syntactic category, the second argument the agreement value, and the third the word itself.
The only thing left to do is to make a connection between this lexicon and the grammar
rules. DCGs have a neat way to do this, normal Prolog goals can be included in the rules
included in curly brackets. This is the result:

s --> np(Agr), vp(Agr).

np(Agr) --> [X], {lexicon(np,Agr,X)}.

np(Agr) --> det(Agr), noun(Agr).

det(Agr) --> [X], {lexicon(det,Agr,X)}.

vp(Agr) --> tv(Agr), np(_).

vp(Agr) --> [X], {lexicon(vp,Agr,X)}.

tv(Agr) --> [X], {lexicon(tv,Agr,X)}.

Notes

In this appendix we summarized the basic concepts of Prolog. We hope it will be a handy
reference, however it is not intended as a substitute for good introduction to Prolog. The
reader who wants to learn about computational semantics, but who knows no Prolog, is
strongly advised to put this book aside for a while and study one of the many excellent
Prolog texts currently available. We particularly recommend the following ones. For a
succinct, no-frills overview, try Clocksin and Mellish (Clocksin and Mellish 1987). For a
leisurely, in-depth introduction to programming in Prolog, try Bratko (Bratko 1990). For
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a more theoretically oriented introduction, try Sterling and Shapiro (Sterling and Shapiro
1986). Finally, for an introduction specially geared towards computational linguistics, try
Pereira and Shieber (Pereira and Shieber 1987).
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Appendix E

Listing of Programs

This appendix includes the full program listings that are developed in this book. Most
predicates are decorated with a short documentation, using the following notational con-
ventions for its required argument instantiations:

:Arg Argument Arg should be instantiated to a term denoting a goal

+Arg Argument Arg should be instantiated

-Arg Argument Arg should not be instantiated

?Arg Argument Arg may or may not be instantiated

Since Prolog's birth in the beginning of the seventies, a number of Prolog dialects emerged,
and not all agree on a syntax or the in-built predicates. The programs in this book
follow the conventions of \Standard Prolog", the ISO international standard on Prolog
(Deransart, Ed-Dbali, and Cervoni 1996), as close as possible. The following predicates
are assumed to be built-in in your version of Prolog (such as for example Quintus or Sicstus
Prolog):

All solutions

bagof/3

findall/3

Arithmetic comparison

> (arithmetic greater than)
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< (arithmetic less than)

Arithmetic evaluation

is/2 (evaluate expression)

Atomic term processing

atom chars/2 (conversion of atoms to character codes and vice versa)

Character input

get0/1

Clause creation and destruction

asserta/1 (clause creation)

retract/1 (clause destruction)

File consultation

[FilejFiles ] (consult list of �les)

List operation

length/2 ] (determine length of a list)

Logic and control

,/2 (conjunction)

;/2 (disjunction)

!/0 (cut)

fail/0

true/0

\+ (not provable)
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Operator de�nition

op/3 (extending operator table)

Term comparison

==/2 (term identical)

Term creation and decomposition

arg/3

functor/3

=../2 (the \univ")

Term uni�cation

= (unify)

Type testing

atom/1

atomic/1

compound/1

nonvar/1

var/1

Term output

write/1

nl/0

The following is a practical overview of the programs in this appendix. We start with the
library �les consulted by most of the other programs, and then give a chapter by chapter
break-down description of the �les.
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All the �les at one glance

File Name Chapter Page
modelDRT.pl Chapter 1 p. 173
drs2fol.pl Chapter 1 p. 175
threadingDRT.pl Chapter 2 p. 177
mainLambdaDRT.pl Chapter 2 p. 180
semMacrosLambdaDRT.pl Chapter 2 p. 181
mergeDRT.pl Chapter 2 p. 182
mainDRTU.pl Chapter 2 p. 183
semMacrosDRTU.pl Chapter 2 p. 184
mainPronounsDRT.pl Chapter 3 p. 186
bindingDRT.pl Chapter 3 p. 188
mainFocusDRT.pl Chapter 3 p. 190
matchDRT.pl Chapter 4 p. 199
mainPresupDRT.pl Chapter 4 p. 196
resolvePresup.pl Chapter 4 p. 197
semMacrosPresupDRT.pl Chapter 4 p. 204
mainPresupScoreDRT.pl Chapter 4 p. 200
resolvePresupScore.pl Chapter 4 p. 201
curt.pl Chapter 5 p. 206
acceptabilityConstraints.pl Chapter 5 p. 209
callTheoremProver.pl Chapter 5 p. 213
callModelBuilder.pl Chapter 5 p. 214
fol2otter.pl Chapter 5 p. 215
mainPresupDRTU.pl Chapter 6 p. 217
semMacrosPresupDRTU.pl Chapter 6 p. 218
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/*************************************************************************

name: comsemOperators.pl
version: May 25, 1999

description: Operator definitions
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(comsemOperators,[]).

/*========================================================================
Operator Definitions

========================================================================*/

:- op(950,yfx,@). % application
:- op(900,yfx,'<>'). % bin impl
:- op(900,yfx,>). % implication
:- op(850,yfx,v). % disjunction
:- op(800,yfx,&). % conjunction
:- op(750, fy,~). % negation

157



Blackburn & Bos Appendix September 3, 1999

/*************************************************************************

name: comsemPredicates.pl
version: November 8, 1997

description: Set of Prolog predicates
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(comsemPredicates,
[member/2,
select/3,
append/3,
simpleTerms/1,
compose/3,
unify/2,
removeFirst/3,
substitute/4,
variablesInTerm/2,
newFunctionCounter/1,
printReadings/1,
printRepresentation/1]).

/*========================================================================

List Manipulation
-----------------

member(?Element,?List)
Element occurs in List.

select(?X,+OldList,?NewList).
X is removed from OldList, resultin in NewList.

append(?List1,?List2,?List3)
List3 is the concatenation of List1 and List2.

allExactMember(?Elements,?List)
Elements all occur in List (no unification, exact match).

removeAll(?Item,?List,?Newlist)
Newlist is the result of removing all occurrences of Item from List.

removeFirst(?Item,?List,?Newlist)
Newlist is the result of removing the first occurrence of Item from
List. Fails when Item is not member of List.

========================================================================*/

member(X,[X| ]).
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member(X,[ |Tail]):-
member(X, Tail).

select(X,[X|L],L).
select(X,[Y|L1],[Y|L2]):-

select(X,L1,L2).

append([],List,List).
append([X|Tail1],List,[X|Tail2]):-

append(Tail1,List,Tail2).

allExactMember([], ).
allExactMember([X|R],L):-

memberOfList(Y,L),
X==Y,
allExactMember(R,L).

removeAll( ,[],[]).
removeAll(X,[X|Tail],Newtail):-

removeAll(X,Tail,Newtail).
removeAll(X,[Head|Tail],[Head|Newtail]):-

X \== Head,
removeAll(X,Tail,Newtail).

removeFirst(X,[X|Tail],Tail) :- !.
removeFirst(X,[Head|Tail],[Head|NewTail]):-

removeFirst(X,Tail,NewTail).

/*========================================================================

Term Manipulation
-----------------

simpleTerms(?List)
List is a list of elements that are currently uninstantiated or
instantiated to an atom or number. Uses built-in Quintus/Sicstus
predicate simple/1.

compose(?Term,+Symbol,+ArgList)
compose(+Term,?Symbol,?ArgList)

Composes a complex Term with functor Symbol and arguments ArgList.
Uses the Prolog built-in =.. predicate.

variablesInTerm(+Term,?InList-?OutList)
Adds all occurrences of variables in Term (arbitrarily deeply
nested to the difference list InList-OutList.

========================================================================*/

simpleTerms([]).
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simpleTerms([X|Rest]):-
simple(X), simpleTerms(Rest).

compose(Term,Symbol,ArgList):-
Term =.. [Symbol|ArgList].

variablesInTerm(Term,Var1-Var2):-
compose(Term, ,Args),
countVar(Args,Var1-Var2).

countVar([],Var-Var).
countVar([X|Rest],Var1-Var2):-

var(X),!,
countVar(Rest,[X|Var1]-Var2).

countVar([X|Rest],Var1-Var3):-
variablesInTerm(X,Var1-Var2),
countVar(Rest,Var2-Var3).

/*========================================================================

Unification Predicates
----------------------

unify(Term1,Term2)
Unify Term1 with Term2 including occurs check. Adapted from
"The Art of Prolog" by Sterling & Shapiro, MIT Press 1986, page 152.

notOccursIn(X,Term)
Succeeds if variable X does not occur in Term.

notOccursInComplexTerm(N,X,Term)
Succeeds if variable X does not occur in complex Term with arity N

termUnify(Term1,Term2)
Unify the complex terms Term1 and Term2.

========================================================================*/

unify(X,Y):-
var(X), var(Y), X=Y.

unify(X,Y):-
var(X), nonvar(Y), notOccursIn(X,Y), X=Y.

unify(X,Y):-
var(Y), nonvar(X), notOccursIn(Y,X), X=Y.

unify(X,Y):-
nonvar(X), nonvar(Y), atomic(X), atomic(Y), X=Y.

unify(X,Y):-
nonvar(X), nonvar(Y), compound(X), compound(Y), termUnify(X,Y).
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notOccursIn(X,Term):-
var(Term), X \== Term.

notOccursIn( ,Term):-
nonvar(Term), atomic(Term).

notOccursIn(X,Term):-
nonvar(Term), compound(Term),
functor(Term, ,Arity), notOccursInComplexTerm(Arity,X,Term).

notOccursInComplexTerm(N,X,Y):-
N > 0, arg(N,Y,Arg), notOccursIn(X,Arg),
M is N - 1, notOccursInComplexTerm(M,X,Y).

notOccursInComplexTerm(0, , ).

termUnify(X,Y):-
functor(X,Functor,Arity), functor(Y,Functor,Arity),
unifyArgs(Arity,X,Y).

unifyArgs(N,X,Y):-
N > 0, M is N - 1,
arg(N,X,ArgX), arg(N,Y,ArgY),
unify(ArgX,ArgY), unifyArgs(M,X,Y).

unifyArgs(0, , ).

/*========================================================================

Substitution Predicates
-----------------------

substitute(?Term,?Variable,+Exp,-Result)
Result is the result of substituting occurrences of Term for each
free occurrence of Variable in Exp.

========================================================================*/

substitute(Term,Var,Exp,Result):-
Exp==Var, !, Result=Term.

substitute( Term, Var,Exp,Result):-
\+ compound(Exp), !, Result=Exp.

substitute(Term,Var,Formula,Result):-
compose(Formula,Functor,[Exp,F]),
member(Functor,[lambda,forall,exists]), !,
(
Exp==Var, !,
Result=Formula
;
substitute(Term,Var,F,R),
compose(Result,Functor,[Exp,R])
).

substitute(Term,Var,Formula,Result):-
compose(Formula,Functor,ArgList),
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substituteList(Term,Var,ArgList,ResultList),
compose(Result,Functor,ResultList).

substituteList( Term, Var,[],[]).
substituteList(Term,Var,[Exp|Others],[Result|ResultOthers]):-

substitute(Term,Var,Exp,Result),
substituteList(Term,Var,Others,ResultOthers).

/*========================================================================

Skolem Function Counter
-----------------------

funtionCounter(?N)
N is the current Skolem function index. Declared as dynamic,
and set to value 1.

newFunctionCounter(?N)
Unifies N with the current Skolem function index, and increases
value of the counter.

========================================================================*/

:- dynamic(functionCounter/1).

functionCounter(1).

newFunctionCounter(N):-
functionCounter(N), M is N+1,
retract(functionCounter(N)),
asserta(functionCounter(M)).

/*========================================================================

Pretty Print Predicates
-----------------------

========================================================================*/

printRepresentation(Rep):-
nl, \+ \+ (numbervars(Rep,0, ), write(Rep)), nl.

printReadings(Readings):-
nl, write('Readings: '), nl, printReading(Readings,0).

printReading([],N):-
nl, (N=0, write('no readings'); true), nl.

printReading([Reading|OtherReadings],M):-
N is M + 1, write(N), tab(1),
\+ \+ (numbervars(Reading,0, ), write(Reading)), nl,
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printReading(OtherReadings,N).
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/*************************************************************************

name: readLine.pl
version: March 31, 1998

description: Converting input line to list of atoms, suitable for
DCG input.

authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(readLine,[readLine/1]).

/*========================================================================

Read Predicates
---------------

readLine(-WordList)
Outputs a prompt, reads a sequence of characters from the standard
input and converts this to WordList, a list of strings. Punctuation
is stripped.

readWords(-WordList)
Reads in a sequence of characters, until a return is registered,
and converts this to WordList a list of strings.

readWord(+Char,-Chars,?State)
Read a word coded as Chars (a list of ascii values), starting
with with ascii value Char, and determine the State of input
(`ended' = end of line, `notended' = not end of line).
Blanks and full stops split words, a return ends a line.

checkWords(+OldWordList,-NewWordList)
Check if all words are unquoted atoms, if not convert them
into atoms.

convertWord(+OldWord,-NewWord)
OldWord and NewWord are words represented as lists of ascii values.
Converts upper into lower case characters, and eliminates
non-alphabetic characters.

========================================================================*/

readLine(WordList):-
nl, write('> '),
readWords(Words),
checkWords(Words,WordList).

readWords([Word|Rest]):-
get0(Char),
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readWord(Char,Chars,State),
atom chars(Word,Chars),
readRest(Rest,State).

readRest([],ended).
readRest(Rest,notended):-

readWords(Rest).

readWord(32,[],notended):-!. %%% blank
readWord(46,[],notended):-!. %%% full stop
readWord(10,[],ended):-!. %%% return
readWord(Code,[Code|Rest],State):-

get0(Char),
readWord(Char,Rest,State).

checkWords([],[]):- !.
checkWords([''|Rest1],Rest2):-

checkWords(Rest1,Rest2).
checkWords([Atom|Rest1],[Atom2|Rest2]):-

atom chars(Atom,Word1),
convertWord(Word1,Word2),
atom chars(Atom2,Word2),
checkWords(Rest1,Rest2).

convertWord([],[]):- !.
convertWord([Capital|Rest1],[Small|Rest2]):-

Capital > 64, Capital < 91, !,
Small is Capital + 32,
convertWord(Rest1,Rest2).

convertWord([Weird|Rest1],Rest2):-
(Weird < 97; Weird > 122), !,
convertWord(Rest1,Rest2).

convertWord([Char|Rest1],[Char|Rest2]):-
convertWord(Rest1,Rest2).
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/*************************************************************************

name: englishLexicon.pl
version: November 12, 1997; March 9, 1999.

description: Lexical entries for a small coverage of English
authors: Patrick Blackburn & Johan Bos

This file contains the lexical entries for a small fragment of
English. Entries have the form lexicon(Cat,Sym,Phrase,Misc), where
Cat is the syntactic category, Sym the predicate symbol introduced
by the phrase, Phrase a list of the words that form the phrase, and
Misc miscellaneous information depending on the the type of entry.

*************************************************************************/

/*========================================================================
Determiners: lexicon(det, ,Words,Type)

========================================================================*/

lexicon(det, ,[every],uni).
lexicon(det, ,[a],indef).
lexicon(det, ,[the],def).
lexicon(det, ,[one],card(1)).
lexicon(det, ,[another],alt).
lexicon(det, ,[his],poss(male)).
lexicon(det, ,[her],poss(female)).
lexicon(det, ,[its],poss(nonhuman)).

/*========================================================================
Nouns: lexicon(noun,Symbol,Words,{[],[Hypernym],Hypernym})

========================================================================*/

lexicon(noun,abstraction,[abstraction],[top]).
lexicon(noun,act,[act],[top]).
lexicon(noun,animal,[animal],[organism]).
lexicon(noun,artifact,[artifact],[object]).
lexicon(noun,beverage,[beverage],[food]).
lexicon(noun,building,[building],[artifact]).
lexicon(noun,container,[container],[instrumentality]).
lexicon(noun,cup,[cup],[container]).
lexicon(noun,device,[device],[instrumentality]).
lexicon(noun,edible,[edible,food],[food]).
lexicon(noun,bkburger,[big,kahuna,burger],[edible]).
lexicon(noun,boxer,[boxer],human).
lexicon(noun,boss,[boss],human).
lexicon(noun,car,[car],[vehicle]).
lexicon(noun,chainsaw,[chainsaw],[device]).
lexicon(noun,criminal,[criminal],human).
lexicon(noun,customer,[customer],human).
lexicon(noun,drug,[drug],[artifact]).
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lexicon(noun,entity,[entity],[top]).
lexicon(noun,episode,[episode],abstraction).
lexicon(noun,female,[female],[human]).
lexicon(noun,fdshake,[five,dollar,shake],[beverage]).
lexicon(noun,food,[food],[object]).
lexicon(noun,footmassage,[foot,massage],[act]).
lexicon(noun,gimp,[gimp],human).
lexicon(noun,glass,[glass],[container]).
lexicon(noun,gun,[gun],[weaponry]).
lexicon(noun,hammer,[hammer],[device]).
lexicon(noun,hashbar,[hash,bar],[building]).
lexicon(noun,human,[human],[organism]).
lexicon(noun,husband,[husband],male).
lexicon(noun,instrumentality,[instrumentality],artifact).
lexicon(noun,joke,[joke],abstraction).
lexicon(noun,man,[man],male).
lexicon(noun,male,[male],[human]).
lexicon(noun,medium,[medium],[instrumentality]).
lexicon(noun,needle,[needle],[device]).
lexicon(noun,object,[object],[entity]).
lexicon(noun,organism,[organism],[entity]).
lexicon(noun,owner,[owner],human).
lexicon(noun,piercing,[piercing],[act]).
lexicon(noun,plant,[plant],[organism]).
lexicon(noun,qpwc,[quarter,pounder,with,cheese],[edible]).
lexicon(noun,radio,[radio],[medium]).
lexicon(noun,restaurant,[restaurant],[building]).
lexicon(noun,robber,[robber],human).
lexicon(noun,suitcase,[suitcase],[container]).
lexicon(noun,shotgun,[shotgun],[weaponry]).
lexicon(noun,sword,[sword],[weaponry]).
lexicon(noun,vehicle,[vehicle],[instrumentality]).
lexicon(noun,weaponry,[weaponry],[instrumentality]).
lexicon(noun,woman,[woman],female).

/*========================================================================
Proper Names: lexicon(pn,Symbol,Words,{male,female})

========================================================================*/

lexicon(pn,butch,[butch],male).
lexicon(pn,honey bunny,[honey,bunny],male).
lexicon(pn,jimmy,[jimmy],male).
lexicon(pn,jody,[jody],female).
lexicon(pn,jules,[jules],male).
lexicon(pn,lance,[lance],male).
lexicon(pn,marsellus,[marsellus],male).
lexicon(pn,marsellus,[marsellus,wallace],male).
lexicon(pn,marvin,[marvin],male).
lexicon(pn,mia,[mia],female).
lexicon(pn,mia,[mia,wallace],female).
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lexicon(pn,pumpkin,[pumpkin],male).
lexicon(pn,thewolf,[the,wolf],male).
lexicon(pn,vincent,[vincent],male).
lexicon(pn,vincent,[vincent,vega],male).

/*========================================================================
Intransitive Verbs: lexicon(iv,Symbol,Words,{fin,inf})

========================================================================*/

lexicon(iv,collapse,[collapses],fin).
lexicon(iv,collapse,[collapse],inf).
lexicon(iv,dance,[dances],fin).
lexicon(iv,dance,[dance],inf).
lexicon(iv,die,[dies],fin).
lexicon(iv,die,[die],inf).
lexicon(iv,growl,[growls],fin).
lexicon(iv,growl,[growl],inf).
lexicon(iv,okay,[is,okay],fin).
lexicon(iv,outoftown,[is,out,of,town],fin).
lexicon(iv,married,[is,married],fin).
lexicon(iv,playairguitar,[plays,air,guitar],fin).
lexicon(iv,playairguitar,[play,air,guitar],inf).
lexicon(iv,smoke,[smokes],fin).
lexicon(iv,smoke,[smoke],inf).
lexicon(iv,snort,[snorts],fin).
lexicon(iv,snort,[snort],inf).
lexicon(iv,shriek,[shrieks],fin).
lexicon(iv,shriek,[shriek],inf).
lexicon(iv,walk,[walks],fin).
lexicon(iv,walk,[walk],inf).

/*========================================================================
Transitive Verbs: lexicon(tv,Symbol,Words,{fin,inf})

========================================================================*/

lexicon(tv,clean,[cleans],fin).
lexicon(tv,clean,[clean],inf).
lexicon(tv,drink,[drinks],fin).
lexicon(tv,drink,[drink],inf).
lexicon(tv,date,[dates],fin).
lexicon(tv,date,[date],inf).
lexicon(tv,discard,[discards],fin).
lexicon(tv,discard,[discard],inf).
lexicon(tv,eat,[eats],fin).
lexicon(tv,eat,[eat],inf).
lexicon(tv,enjoy,[enjoys],fin).
lexicon(tv,enjoy,[enjoy],inf).
lexicon(tv,hate,[hates],fin).
lexicon(tv,hate,[hate],inf).
lexicon(tv,have,[has],fin).
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lexicon(tv,have,[have],inf).
lexicon(tv,donewith,[is,done,with],fin).
lexicon(tv,kill,[kills],fin).
lexicon(tv,kill,[kill],inf).
lexicon(tv,know,[knows],fin).
lexicon(tv,know,[know],inf).
lexicon(tv,like,[likes],fin).
lexicon(tv,like,[like],inf).
lexicon(tv,love,[loves],fin).
lexicon(tv,love,[love],inf).
lexicon(tv,pickup,[picks,up],fin).
lexicon(tv,pickup,[pick,up],inf).
lexicon(tv,shoot,[shot],fin).
lexicon(tv,shoot,[shoot],inf).
lexicon(tv,tell,[told],fin).
lexicon(tv,tell,[tell],inf).
lexicon(tv,worksfor,[works,for],fin).
lexicon(tv,worksfor,[work,for],inf).

/*========================================================================
Copula

========================================================================*/

lexicon(cop,'=',[is],fin).

/*========================================================================
Prepositions: lexicon(prep,Symbol,Words, )

========================================================================*/

lexicon(prep,in,[in], ).
lexicon(prep,of,[of], ).
lexicon(prep,with,[with], ).

/*========================================================================
Pronouns: lexicon(pro,Sym,Words,{refl,nonrefl})

========================================================================*/

lexicon(pro,male,[he],nonrefl).
lexicon(pro,female,[she],nonrefl).
lexicon(pro,nonhuman,[it],nonrefl).
lexicon(pro,male,[him],nonrefl).
lexicon(pro,female,[her],nonrefl).
lexicon(pro,male,[himself],refl).
lexicon(pro,female,[herself],refl).
lexicon(pro,nonhuman,[itself],refl).

/*========================================================================
Relative Pronouns: lexicon(relpro, ,Words, )

========================================================================*/
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lexicon(relpro, ,[who], ).
lexicon(relpro, ,[that], ).

/*========================================================================
Coordinations: lexicon(coord, ,Words,{conj,disj})

========================================================================*/

lexicon(coord, ,[and],conj).
lexicon(coord, ,[or],disj).

/*========================================================================
Discontinious Coordinations: lexicon(dcoord,W1,W2,{conj,cond,disj})

========================================================================*/

lexicon(dcoord,[if],[then],cond).
lexicon(dcoord,[if],[],cond).
lexicon(dcoord,[either],[or],disj).
lexicon(dcoord,[],[or],disj).
lexicon(dcoord,[],[and],conj).
lexicon(dcoord,[],[],conj).

/*========================================================================
Modifiers: lexicon(mod, ,Words,Type)

========================================================================*/

lexicon(mod, ,[does,not],neg).
lexicon(mod, ,[did,not],neg).
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/*************************************************************************

name: englishGrammar.pl
version: November 12, 1997

description: Grammar rules for a small coverage of English
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

/*========================================================================
Grammar Rules

========================================================================*/

d(S) --> s(S).
d((C@S1)@S2)--> dcoord(D,C), s(S1), D, d(S2).

s(NP@VP)--> np2(NP), vp2(VP).

np2(NP)--> np1(NP).
np2((C@NP1)@NP2)--> np1(NP1), coord(C), np1(NP2).

np1(Det@Noun)--> det(Det), n2(Noun).
np1(NP)--> pn(NP).
np1(NP)--> pro(NP).

n2(N)--> n1(N).
n2((C@N1)@N2)--> n1(N1), coord(C), n1(N2).

n1(N)--> noun(N).
n1(PP@N)--> noun(N), pp(PP).
n1(RC@N)--> noun(N), rc(RC).

vp2(VP)--> vp1(VP).
vp2((C@VP1)@VP2)--> vp1(VP1), coord(C), vp1(VP2).

vp1(Mod@VP)--> mod(Mod), v2(inf,VP).
vp1(VP)--> v2(fin,VP).

v2(fin,Cop@NP)--> cop(Cop), np2(NP).
v2(fin,Neg@(Cop@NP))--> cop(Cop), neg(Neg), np2(NP).

v2(I,V)--> v1(I,V).
v2(I,(C@V1)@V2)--> v1(I,V1), coord(C), v1(I,V2).

v1(I,V)--> iv(I,V).
v1(I,TV@NP)--> tv(I,TV), np2(NP).

pp(Prep@NP)--> prep(Prep), np2(NP).

rc(RP@VP)--> relpro(RP), vp2(VP).
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iv(I,IV)--> {lexicon(iv,Sym,Word,I),ivSem(Sym,IV)}, Word.

tv(I,TV)--> {lexicon(tv,Sym,Word,I),tvSem(Sym,TV)}, Word.

cop(Cop)--> {lexicon(cop,Sym,Word, ),tvSem(Sym,Cop)}, Word.

det(Det)--> {lexicon(det, ,Word,Type),detSem(Type,Det)}, Word.

pn(PN)--> {lexicon(pn,Sym,Word,G),pnSem(Sym,G,PN)}, Word.

pro(Pro)--> {lexicon(pro,Gender,Word,Type),proSem(Gender,Type,Pro)}, Word.

noun(N)--> {lexicon(noun,Sym,Word, ),nounSem(Sym,N)}, Word.

relpro(RP)--> {lexicon(relpro, ,Word, ),relproSem(RP)}, Word.

prep(Prep)--> {lexicon(prep,Sym,Word, ),prepSem(Sym,Prep)}, Word.

mod(Mod)--> {lexicon(mod, ,Word,Type),modSem(Type,Mod)}, Word.

neg(Neg)--> [not], {modSem(neg,Neg)}.

coord(C)--> {lexicon(coord, ,Word,Type), coordSem(Type,C)}, Word.

dcoord(D,C)--> {lexicon(dcoord,Word,D,Type), dcoordSem(Type,C)}, Word.
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/*************************************************************************

name: modelDRT.pl (Chapter 7)
version: July 24, 1997

description: Model Evaluation for DRSs
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(modelDRT,[evaluate/2]).

:- use module(comsemOperators),
use module(comsemPredicates,[member/2]),
use module(exampleModels,[constant/1,example/2]).

/*========================================================================
Semantic Interpretation

========================================================================*/

satisfyDrs(drs(Dom,C),Model):-
assignReferents(Dom),
satisfyConditions(C,Model).

assignReferents([]).
assignReferents([Referent|Others]):-

constant(Referent),
assignReferents(Others).

satisfyConditions([], ).
satisfyConditions([Condition|Others],Model):-

satisfyCondition(Condition,Model),
satisfyConditions(Others,Model).

satisfyCondition(~ Drs,Model):-
\+ satisfyDrs(Drs,Model).

satisfyCondition(Drs1 > Drs2,Model):-
(
satisfyDrs(Drs1,Model),
\+ satisfyDrs(Drs2,Model),
!,
fail
;
true
).

satisfyCondition(Drs1 v Drs2,Model):-
(
satisfyDrs(Drs1,Model)
;
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satisfyDrs(Drs2,Model)
).

satisfyCondition(X=Y, Model):-
X=Y.

satisfyCondition(BasicCond,Model):-
member(BasicCond,Model).

/*========================================================================
Evaluation

========================================================================*/

evaluate(Drs,Example):-
example(Example,Model),
satisfyDrs(Drs,Model).
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/*************************************************************************

name: drs2fol.pl (Chapter 7)
version: June 8, 1998

description: From DRSs to First-Order Logic
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(drs2fol,[drs2fol/2]).

:- use module(comsemOperators),
use module(comsemPredicates,[compose/3,simpleTerms/1]).

/*========================================================================

Translation Predicates
----------------------

drs2fol(+Drs,?F)
converts DRS to formula F. DRS is a term drs(Dom,Cond), where
Dom is a list of discourse referents, and Cond is a non empty
list of DRS-conditions.

========================================================================*/

drs2fol(drs([],[Cond]),Formula):-
cond2fol(Cond,Formula).

drs2fol(drs([],[Cond1,Cond2|Conds]),Formula1 & Formula2):-
cond2fol(Cond1,Formula1),
drs2fol(drs([],[Cond2|Conds]),Formula2).

drs2fol(drs([X|Referents],Conds),exists(X,Formula)):-
drs2fol(drs(Referents,Conds),Formula).

cond2fol(~ Drs, ~ Formula):-
drs2fol(Drs,Formula).

cond2fol(Drs1 v Drs2, Formula1 v Formula2):-
drs2fol(Drs1,Formula1),
drs2fol(Drs2,Formula2).

cond2fol(drs([],Conds) > Drs2, Formula1 > Formula2):-
drs2fol(drs([],Conds),Formula1),
drs2fol(Drs2,Formula2).

cond2fol(drs([X|Referents],Conds) > Drs2, forall(X,Formula)):-
cond2fol(drs(Referents,Conds) > Drs2,Formula).
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cond2fol(BasicCondition,AtomicFormula):-
AtomicFormula=BasicCondition,
compose(BasicCondition, Symbol,Arguments),
simpleTerms(Arguments).
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/*************************************************************************

name: threadingDRT.pl (Chapter 8)
version: June 8, 1998

description: DRS-threading (Johnson & Klein 1986)
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(threadingDRT,[parse/0]).

:- use module(readLine,[readLine/1]),
use module(comsemOperators),
use module(comsemPredicates,[printRepresentation/1,compose/3]).

:- [englishLexicon].

/*========================================================================
Driver Predicate

========================================================================*/

parse:-
readLine(Discourse),
d(drs([],[])-Drs,Discourse,[]),
printRepresentation(Drs).

/*========================================================================
Grammar Rules

========================================================================*/

d(DrsIn-DrsOut)-->
s(DrsIn-Drs),
d(Drs-DrsOut).

d(Drs-Drs)-->
[].

s(DrsIn-DrsOut)-->
np(X,DrsIn-DrsOut,Scope),
vp(X,Scope).

np(X,Sem,Scope)-->
det(X,Sem,Restr,Scope),
noun(X,Restr).

np(X,DrsIn-DrsOut,Drs-DrsOut)-->
pn(X,DrsIn-Drs).

vp(X,DrsIn-DrsOut)-->
iv(X,DrsIn-DrsOut).
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vp(X,DrsIn-DrsOut)-->
tv(X,Y,Scope),
np(Y,DrsIn-DrsOut,Scope).

/*========================================================================
Determiners

========================================================================*/

det(X,DrsIn-DrsOut,RestrIn-RestrOut,ScopeIn-ScopeOut)-->
{
lexicon(det, ,Phrase,indef),
DrsIn = drs(Dom,Conds),
DrsOut = ScopeOut,
RestrIn = drs([X|Dom],Conds),
RestrOut = ScopeIn
},
Phrase.

det(X,DrsIn-DrsOut,RestrIn-RestrOut,ScopeIn-ScopeOut)-->
{
lexicon(det, ,Phrase,uni),
DrsIn = drs(Dom,Conds),
DrsOut = drs(Dom,[RestrOut > ScopeOut|Conds]),
RestrIn = drs([X],[]),
ScopeIn = drs([],[])
},
Phrase.

/*========================================================================
Common Nouns

========================================================================*/

noun(X,drs(Dom,Conds)-drs(Dom,[Cond|Conds])) -->
{
lexicon(noun,Sym,Phrase, Type),
compose(Cond,Sym,[X])
},
Phrase.

/*========================================================================
Proper Names

========================================================================*/

pn(X,drs(Dom,Conds)-drs([X|Dom],[X=Sym|Conds]))-->
{
lexicon(pn,Sym,Phrase, Gender)

},
Phrase.

/*========================================================================
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Intransitive Verbs
========================================================================*/

iv(X,drs(Dom,Conds)-drs(Dom,[Cond|Conds]))-->
{
lexicon(iv,Sym,Phrase, ),
compose(Cond,Sym,[X])
},
Phrase.

/*========================================================================
Transitive Verbs

========================================================================*/

tv(X,Y,drs(Dom,Conds)-drs(Dom,[Cond|Conds]))-->
{
lexicon(tv,Sym,Phrase, ),
compose(Cond,Sym,[Y,X])
},
Phrase.
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/*************************************************************************

name: mainLambdaDRT.pl (Chapter 8)
version: March 22, 1999

description: Semantic Construction with Beta Conversion for DRT
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(mainLambdaDRT,[parse/0]).

:- use module(readLine,[readLine/1]),
use module(comsemOperators),
use module(comsemPredicates,[printRepresentation/1,compose/3]),
use module(betaConversion,[betaConvert/2]),
use module(mergeDRT,[mergeDrs/2]).

:- [englishGrammar], [englishLexicon], [semMacrosLambdaDRT].

/*========================================================================
Driver Predicate

========================================================================*/

parse:-
readLine(Discourse),
statistics(walltime, ),
d(MergeDrs,Discourse,[]),
betaConvert(MergeDrs,ReducedDrs),
mergeDrs(ReducedDrs,Drs),
statistics(walltime,[ ,Time]),
nl, write(Time),
printRepresentation(Drs).
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/*************************************************************************

name: semMacroslambdaDRT.pl (Chapter 8)
version: June 9, 1998

description: Compositional DRS construction for a fragment of English
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

/*========================================================================
Semantic Macros

========================================================================*/

detSem(uni,lambda(P,lambda(Q,drs([],[merge(drs([X],[]),P@X)>(Q@X)])))).
detSem(indef,lambda(P,lambda(Q,merge(merge(drs([X],[]),P@X),Q@X)))).

nounSem(Sym,lambda(X,drs([],[Cond]))):-
compose(Cond,Sym,[X]).

pnSem(Sym,Gender,lambda(P,merge(drs([X],[Cond,X=Sym]),P@X))):-
compose(Cond,Gender,[X]).

proSem(Gender,Type,lambda(P,alfa(X,Type,Cond,P@X))):-
compose(Cond,Gender,[X]).

ivSem(Sym,lambda(X,drs([],[Cond]))):-
compose(Cond,Sym,[X]).

tvSem(Sym,lambda(K,lambda(Y,K @ lambda(X,drs([],[Cond]))))):-
compose(Cond,Sym,[Y,X]).

relproSem(lambda(P1,lambda(P2,lambda(X,merge(P1@X,P2@X))))).

prepSem(Sym,lambda(K,lambda(P,lambda(Y,Drs)))):-
Drs=merge(K@lambda(X,drs([],[Cond])),P@Y),
compose(Cond,Sym,[Y,X]).

modSem(neg,lambda(P,lambda(X,drs([],[~(P @ X)])))).

coordSem(conj,lambda(X,lambda(Y,lambda(P,merge(X@P,Y@P))))).
coordSem(disj,lambda(X,lambda(Y,lambda(P,drs([],[(X@P) v (Y@P)]))))).

dcoordSem(cond,lambda(X,lambda(Y,drs([],[X > Y])))).
dcoordSem(conj,lambda(X,lambda(Y,merge(X,Y)))).
dcoordSem(disj,lambda(X,lambda(Y,drs([],[X v Y])))).
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/*************************************************************************

name: mergeDRT.pl (Chapter 8)
version: June 9, 1998

description: Definition of the merge for DRSs
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(mergeDRT,[mergeDrs/2]).

:- use module(comsemOperators),
use module(comsemPredicates,[append/3]).

/*========================================================================
DRS-merge

========================================================================*/

mergeDrs(drs(D,C1),drs(D,C2)):-
mergeDrs(C1,C2).

mergeDrs(merge(B1,B2),drs(D3,C3)):-
mergeDrs(B1,drs(D1,C1)), mergeDrs(B2,drs(D2,C2)),
append(D1,D2,D3), append(C1,C2,C3).

mergeDrs([B1 > B2|C1],[B3 > B4|C2]):- !,
mergeDrs(B1,B3), mergeDrs(B2,B4), mergeDrs(C1,C2).

mergeDrs([B1 v B2|C1],[B3 v B4|C2]):- !,
mergeDrs(B1,B3), mergeDrs(B2,B4), mergeDrs(C1,C2).

mergeDrs([~ B1|C1],[~ B2|C2]):- !,
mergeDrs(B1,B2), mergeDrs(C1,C2).

mergeDrs([C|C1],[C|C2]):-
mergeDrs(C1,C2).

mergeDrs([],[]).
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/*************************************************************************

name: mainDRTU.pl (Chapter 8)
version: May 28, 1998

description: Plugging Stuff for Underspecified DRSs
author: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(mainDRTU,[parse/0]).

:- use module(readLine,[readLine/1]),
use module(comsemOperators),
use module(betaConversion,[betaConvert/2]),
use module(pluggingAlgorithm,[plugHole/4]),
use module(mergeDRT,[mergeDrs/2]),
use module(mergeUSR,[mergeUSR/2]),
use module(comsemPredicates,[append/3,printRepresentation/1,

printReadings/1,compose/3]).

:- [englishGrammar], [englishLexicon], [semMacrosDRTU].

/*========================================================================
Driver Predicate

========================================================================*/

parse:-
readLine(Sentence),
d(Sem,Sentence,[]),
betaConvert(merge(usr([Top,Main],[],[]),Sem@Top@Main),Reduced),
mergeUSR(Reduced,usr(D,L,C)),
printRepresentation(usr(D,L,C)),
findall(Drs,(plugHole(Top,L-[],C,[]),mergeDrs(Top,Drs)),DRSs),
printReadings(DRSs).
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/*************************************************************************

name: semMacrosDRTU.pl (Chapter 8)
version: May 28, 1998

description: Semantic Macros for DRT Unplugged
author: Patrick Blackburn & Johan Bos

*************************************************************************/

/*========================================================================
Semantic Macros

========================================================================*/

detSem(uni,lambda(P,lambda(Q,lambda(H,lambda(L,
merge(merge(usr([F,R,S],

[F:drs([],[merge(drs([X],[]),R)>S])],
[leq(F,H),leq(L,S)]),P@X@H@R),Q@X@H@L)))))).

detSem(indef,lambda(P,lambda(Q,lambda(H,lambda(L,
merge(merge(usr([E,R,S],

[E:merge(merge(drs([X],[]),R),S)],
[leq(E,H),leq(L,S)]),P@X@H@R),Q@X@H@L)))))).

nounSem(Sym,lambda(X,lambda( ,lambda(L,usr([],[L:drs([],[Cond])],[]))))):-
compose(Cond,Sym,[X]).

pnSem(Sym, ,lambda(P,lambda(H,lambda(M,
merge(usr([L],[M:merge(drs([X],[X=Sym]),L)],[leq(M,H)]),

P@X@H@L))))).

proSem( , ,lambda(P,lambda(H,lambda(M,
merge(usr([L],[M:merge(drs([X],[]),L)],[leq(M,H)]),

P@X@H@L))))).

ivSem(Sym,lambda(X,lambda( ,lambda(L,
usr([],[L:drs([],[Cond])],[]))))):-

compose(Cond,Sym,[X]).

tvSem(Sym,lambda(K,lambda(Y,K@lambda(X,lambda( ,lambda(L,
usr([],[L:drs([],[Cond])],[]))))))):-

compose(Cond,Sym,[Y,X]).

relproSem(lambda(P,lambda(Q,lambda(X,lambda(H,lambda(L,
merge(usr([L2,L3,H1] ,

[L:merge(L3,H1)],
[leq(L2,H1)]),

merge(P@X@H@L2,Q@X@H@L3)))))))).

prepSem(Sym,lambda(K,lambda(P,lambda(Y,lambda(H,lambda(L3,
merge(K@lambda(X,lambda(H,lambda(L1,
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usr([L2,H1],
[L3:merge(L2,H1),L1:drs([],[Cond])],
[leq(L1,H1)]))))@H@L1,P@Y@H@L2))))))):-

compose(Cond,Sym,[Y,X]).

modSem(neg,lambda(P,lambda(X,lambda(H,lambda(L,
merge(usr([N,S],[N:drs([],[~S])],[leq(N,H),leq(L,S)]),

P@X@H@L)))))).

coordSem(conj,lambda(X,lambda(Y,lambda(P,lambda(H,lambda(L,
merge(usr([L1,L2],[L:merge(L1,L2)],[leq(L,H)]),

merge(X@P@H@L1,Y@P@H@L2)))))))).

coordSem(disj,lambda(X,lambda(Y,lambda(P,lambda(H,lambda(L,
merge(usr([L1,L2],[L:drs([],[L1 v L2])],[leq(L,H)]),

merge(X@P@H@L1,Y@P@H@L2)))))))).

dcoordSem(cond,lambda(C1,lambda(C2,lambda(H,lambda(L,
merge(usr([H1,H2],[L:drs([],[H1 > H2])],[leq(L,H)]),

merge(C1@H1@ ,C2@H2@ ))))))).

dcoordSem(conj,lambda(C1,lambda(C2,lambda(H,lambda(L,
merge(usr([H1,H2],[L:merge(H1,H2)],[leq(L,H)]),

merge(C1@H1@ ,C2@H2@ ))))))).

dcoordSem(disj,lambda(C1,lambda(C2,lambda(H,lambda(L,
merge(usr([H1,H2],[L:drs([],[H1 v H2])],[leq(L,H)]),

merge(C1@H1@ ,C2@H2@ ))))))).
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/**********************************************************************

name: mainPronounsDRT.pl (Chapter 9)
version: Feb 3, 1999

description: Pronoun Resolution
authors: Patrick Blackburn & Johan Bos

**********************************************************************/

:- module(mainPronounsDRT,[parse/0,resolveDrs/1]).

:- use module(readLine,[readLine/1]),
use module(comsemOperators),
use module(comsemPredicates,[printRepresentation/1,simpleTerms/1,

compose/3,append/3,member/2]),
use module(betaConversion,[betaConvert/2]),
use module(bindingDRT,[potentialAntecedent/3,properBinding/3]).

:- [englishGrammar], [englishLexicon], [semMacrosLambdaDRT].

/*========================================================================
Driver Predicate

========================================================================*/

parse:-
readLine(Discourse),
d(MergeDrs,Discourse,[]),
betaConvert(MergeDrs,Drs),
resolveDrs([Drs]-[ResolvedDrs]),
printRepresentation(ResolvedDrs).

/*=====================================================================
Pronoun Resolution

=====================================================================*/

resolveDrs([merge(B1,B2)|A1]-[drs(D,C)|A3]):-
resolveDrs([B1|A1]-A2),
resolveDrs([B2|A2]-[drs(D1,C1),drs(D2,C2)|A3]),
append(D1,D2,D),
append(C1,C2,C).

resolveDrs([alfa(Referent,Type,Gender,B1)|A1]-A2):-
potentialAntecedent(A1,Referent,Gender),
properBinding(Type,Referent,B1),
resolveDrs([B1|A1]-A2).

resolveDrs([drs(D1,C1)|A1]-A2):-
resolveConds(C1,[drs(D1,[])|A1]-A2).

resolveConds([~B1|Conds],A1-A3):-
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resolveDrs([B1|A1]-[B2,drs(D,C)|A2]),
resolveConds(Conds,[drs(D,[~B2|C])|A2]-A3).

resolveConds([B1 > B2|Conds],A1-A4):-
resolveDrs([B1|A1]-A2),
resolveDrs([B2|A2]-[B4,B3,drs(D,C)|A3]),
resolveConds(Conds,[drs(D,[B3 > B4|C])|A3]-A4).

resolveConds([B1 v B2|Conds],A1-A4):-
resolveDrs([B1|A1]-[B3|A2]),
resolveDrs([B2|A2]-[B4,drs(D,C)|A3]),
resolveConds(Conds,[drs(D,[B3 v B4|C])|A3]-A4).

resolveConds([Basic|Conds],[drs(D,C)|A1]-A2):-
compose(Basic, Symbol,Arguments),
simpleTerms(Arguments),
resolveConds(Conds,[drs(D,[Basic|C])|A1]-A2).

resolveConds([],A-A).
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/**********************************************************************

name: bindingDRT.pl (Chapter 9)
version: Feb 3, 1999

description: Check Binding Constraints
authors: Patrick Blackburn & Johan Bos

**********************************************************************/

:- module(bindingDRT,[potentialAntecedent/3,
properBinding/3]).

:- use module(comsemOperators),
use module(semOntology,[consistent/2]),
use module(comsemPredicates,[compose/3,member/2]).

/*=====================================================================
Potential Antecedent (Ordinary DRSs)

=====================================================================*/

potentialAntecedent(A,X,Gender):-
member(drs(Dom,Conds),A),
member(X,Dom),
compose(Gender,Symbol1, ),
\+ (

member(Cond,Conds),
compose(Cond,Symbol2,[Y]),
Y==X,
\+ consistent(Symbol1,Symbol2)

).

/*=====================================================================
Potential Antecedent (Focus DRSs)

=====================================================================*/

potentialAntecedent(A,X,Gender):-
member(drs(Dom, , ,Conds),A),
member(X,Dom),
compose(Gender,Symbol1, ),
\+ (

member(Cond,Conds),
compose(Cond,Symbol2,[Y]),
Y==X,
\+ consistent(Symbol1,Symbol2)

).

/*=====================================================================
Check Binding violation.
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=====================================================================*/

properBinding(Type,X,Drs):-
Type=refl,
reflexiveBinding(X,Drs).

properBinding(Type,X,Drs):-
\+ Type=refl,
(

reflexiveBinding(X,Drs),
!, fail

;
true

).

reflexiveBinding( ,[]):- fail.
reflexiveBinding( ,alfa( , , , )):- fail.
reflexiveBinding( ,merge( , )):- fail.
reflexiveBinding( ,~ ):- !, fail.
reflexiveBinding(X,drs( ,Conds)):-

reflexiveBinding(X,Conds).

reflexiveBinding(X,[Basic|Conds]):- !,
(

compose(Basic, Sym,[Subj,Obj]),
Subj==Obj,
X==Obj, !

;
reflexiveBinding(X,Conds)

).
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/**********************************************************************

name: mainFocusDRT.pl (Chapter 9)
version: Feb 3, 1999

description: Pronoun Resolution with the Focusing Algorithm
authors: Patrick Blackburn & Johan Bos

**********************************************************************/

:- module(mainFocusDRT,[parse/0,resolveDrs/2]).

:- use module(readLine,[readLine/1]),
use module(comsemOperators),
use module(comsemPredicates,[printRepresentation/1,simpleTerms/1,

compose/3,append/3,member/2]),
use module(betaConversion,[betaConvert/2]),
use module(bindingDRT,[potentialAntecedent/3,properBinding/3]).

:- [englishGrammar], [englishLexicon], [semMacrosLambdaDRT].

/*========================================================================
Driver Predicate

========================================================================*/

parse:-
parse(drs([],[],[],[])).

parse(Old):-
readLine(Discourse),
d(SDrs,Discourse,[]),
betaConvert(SDrs,Drs),
resolveDrs([merge(Old,Drs)]-A,[]-Anaphora),
updateFocus(Anaphora,A,[New]),
printRepresentation(New), !,
parse(New).

/*=====================================================================
Pronoun Resolution: DRSs

=====================================================================*/

resolveDrs([merge(B1,B2)|A1]-[drs(D,AF,DF,C)|A5],R1-R3):-
resolveDrs([B1|A1]-A2,R1-R2),
updateFocus(R2,A2,A3),
resolveDrs([B2|A3]-A4,R2-R3),
updateFocus(R3,A4,[drs(D1,AF1,DF1,C1),drs(D2,AF2,DF2,C2)|A5]),
append(D1,D2,D),
append(AF1,AF2,AF),
append(DF1,DF2,DF),
append(C1,C2,C).
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resolveDrs([drs(D,AF,DF,C)|A1]-A3,R1-R2):-
resolveConds(C,[drs(D,AF,DF,[])|A1]-A2,R1-R2),
updateFocus(R2,A2,A3).

resolveDrs([drs(D,C)|A1]-A3,R1-R2):-
resolveConds(C,[drs(D,[],[],[])|A1]-A2,R1-R2),
updateFocus(R2,A2,A3).

/*=====================================================================
Pronoun Resolution: if pronoun appears as agent, then choose the
actor focus as preferred antecedent

=====================================================================*/

resolveDrs([alfa(X,Type,Gender,B1)|A1]-A2,R1-[Type:X|R2]):-
role(agent,X,B1), !,
(
currentActorFocus(A1,AF),
potentialAntecedent(A1,X,Gender),
X == AF,
properBinding(Type,X,B1)
;
currentDiscourseFocus(A1,DF),
potentialAntecedent(A1,X,Gender),
X == DF,
properBinding(Type,X,B1)
;
potentialAntecedent(A1,X,Gender),
properBinding(Type,X,B1)
),
resolveDrs([B1|A1]-A2,R1-R2).

/*=====================================================================
Pronoun Resolution: if pronoun appears as non-agent, then choose
the discourse focus as preferred antecedent

=====================================================================*/

resolveDrs([alfa(X,Type,Gender,B1)|A1]-A2,R1-[Type:X|R2]):-
(
currentDiscourseFocus(A1,DF),
potentialAntecedent(A1,X,Gender),
X == DF,
properBinding(Type,X,B1)
;
currentActorFocus(A1,AF),
potentialAntecedent(A1,X,Gender),
X == AF,
properBinding(Type,X,B1)
;
potentialAntecedent(A1,X,Gender),
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properBinding(Type,X,B1)
),
resolveDrs([B1|A1]-A2,R1-R2).

/*=====================================================================
Pronoun Resolution: DRS-conditions

=====================================================================*/

resolveConds([~B1|Conds],A1-A3,R1-R3):-
resolveDrs([B1|A1]-[B2,drs(D,AF,DF,C)|A2],R1-R2),
resolveConds(Conds,[drs(D,AF,DF,[~B2|C])|A2]-A3,R2-R3).

resolveConds([B1 > B2|Conds],A1-A5,R1-R4):-
resolveDrs([B1|A1]-A2,R1-R2),
updateFocus(R2,A2,A3),
resolveDrs([B2|A3]-[B4,B3,drs(D,AF,DF,C)|A4],R2-R3),
resolveConds(Conds,[drs(D,AF,DF,[B3 > B4|C])|A4]-A5,R3-R4).

resolveConds([B1 v B2|Conds],A1-A4,R1-R4):-
resolveDrs([B1|A1]-[B3|A2],R1-R2),
resolveDrs([B2|A2]-[B4,drs(D,AF,DF,C)|A3],R2-R3),
resolveConds(Conds,[drs(D,AF,DF,[B3 v B4|C])|A3]-A4,R3-R4).

resolveConds([Basic|Conds],[drs(D,AF,DF,C)|A1]-A2,R1-R2):-
compose(Basic, Symbol,Arguments),
simpleTerms(Arguments),
resolveConds(Conds,[drs(D,AF,DF,[Basic|C])|A1]-A2,R1-R2).

resolveConds([],A-A,R-R).

/*=====================================================================
Focus Update

=====================================================================*/

updateFocus(Anaphora,DRSs1,Updated):-
updateActorFocus(DRSs1,DRSs2),
updateDiscourseFocus(Anaphora,DRSs2,Updated).

/*=====================================================================
Update Actor Focus

=====================================================================*/

updateActorFocus([drs(D,AF,DF,C)|A],Updated):-
expectedActorFocus(drs(D,C),Focus), !,
addActorFocus(Focus,[drs(D,AF,DF,C)|A],Updated).

updateActorFocus(DRSs,DRSs).
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/*=====================================================================
Update Discourse Focus

=====================================================================*/

updateDiscourseFocus(Anaphora,DRSs,Updated):-
currentDiscourseFocus(DRSs,Current),
member( :A,Anaphora), A==Current, !,
Updated=DRSs.

updateDiscourseFocus( Anaphora,[drs(D,AF,DF,C)|A],Updated):-
expectedDiscourseFocus(drs(D,C),Focus), !,
addDiscourseFocus(Focus,[drs(D,AF,DF,C)|A],Updated).

updateDiscourseFocus( ,DRSs,DRSs).

/*=====================================================================
Add new focus to DRS

=====================================================================*/

addActorFocus(Focus,DRSs,Updated):-
(

currentActorFocus(DRSs,Current),
Current==Focus, !,
Updated=DRSs

;
DRSs=[drs(D,AF,DF,C)|A],
Updated=[drs(D,[Focus|AF],DF,C)|A]

).

addDiscourseFocus(Focus,DRSs,Updated):-
(

currentDiscourseFocus(DRSs,Current),
Current==Focus, !,
Updated=DRSs

;
DRSs=[drs(D,AF,DF,C)|A],
Updated=[drs(D,AF,[Focus|DF],C)|A]

).

/*=====================================================================
Current Foci

=====================================================================*/

currentDiscourseFocus(DRSs,Focus):-
member(drs( , ,[Focus| ], ),DRSs), !.

currentActorFocus(DRSs,Focus):-
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member(drs( ,[Focus| ], , ),DRSs), !.

/*=====================================================================
Expected Focus

=====================================================================*/

expectedActorFocus(drs(Dom,Conds),Focus):-
member(Focus,Dom),
role(agent,Focus,Conds).

expectedDiscourseFocus(drs(Dom,Conds),Focus):-
member(Focus,Dom),
role(theme,Focus,Conds).

/*=====================================================================
Thematic Roles

=====================================================================*/

role(Role,X,drs( , , ,Conds)):-
role(Role,X,Conds).

role(Role,X,drs( ,Conds)):-
role(Role,X,Conds).

role(Role,X,merge(B1,B2)):-
role(Role,X,B1);
role(Role,X,B2).

role(Role,X,alfa( , , ,B)):-
role(Role,X,B).

role(Role,X,[~ B| ]):-
role(Role,X,B).

role(Role,X,[B1 > B2| ]):-
role(Role,X,B1);
role(Role,X,B2).

role(Role,X,[B1 v B2| ]):-
role(Role,X,B1);
role(Role,X,B2).

role(Role,X,[ |Conds]):-
role(Role,X,Conds).

role(agent,X,[C| ]):-
agent(X,C).

role(theme,X,[C| ]):-
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theme(X,C).

/*=====================================================================
Agent Position

=====================================================================*/

agent(X,C):-
compose(C,Sym,[Y, ]),
X==Y,
lexicon(tv,Sym, ,inf).

/*=====================================================================
Theme Position

=====================================================================*/

theme(X,C):-
compose(C,Sym,[Y]),
X==Y,
lexicon(iv,Sym, ,inf).

theme(X,C):-
compose(C,Sym,[ ,Y]),
X==Y,
lexicon(tv,Sym, ,inf).

theme(X,C):-
compose(C,'=',[Y,Z]),
var(Z),
X==Y.
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/**********************************************************************

name: mainPresupDRT.pl
version: May 5, 1998

description: Presupposition Projection
authors: Patrick Blackburn & Johan Bos

**********************************************************************/

:- module(mainPresupDRT,[parse/0,projectDrs/1]).

:- use module(readLine,[readLine/1]),
use module(comsemOperators),
use module(comsemPredicates,[printReadings/1,compose/3]),
use module(betaConversion,[betaConvert/2]),
use module(resolvePresup,[projectDrs/1,accommodate/2]).

:- [englishGrammar], [englishLexicon], [semMacrosPresupDRT].

/*========================================================================
Driver Predicate

========================================================================*/

parse:-
readLine(Discourse),
d(Drs1,Discourse,[]),
betaConvert(Drs1,Drs2),
findall(Drs4,(

projectDrs([Drs2,pre([])]-[Drs3,pre(P)]),
accommodate(P,Drs3-Drs4)

),
Readings),

printReadings(Readings).
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/**********************************************************************

name: resolvePresup.pl
version: May 5, 1998

description: Presupposition Resolution
authors: Patrick Blackburn & Johan Bos

**********************************************************************/

:- module(resolvePresup,[projectDrs/1,accommodate/2]).

:- use module(comsemOperators),
use module(comsemPredicates,[simpleTerms/1,compose/3,

append/3,select/3]),
use module(bindingDRT,[properBinding/3]),
use module(matchDRT,[matchDrs/4]).

/*=====================================================================
Presupposition Projection for DRSs

=====================================================================*/

projectDrs([merge(B1,B2)|A1]-[drs(D3,C3)|A3]):-
projectDrs([B1|A1]-A2),
projectDrs([B2|A2]-[drs(D1,C1),drs(D2,C2)|A3]),
append(D1,D2,D3),
append(C1,C2,C3).

projectDrs([alfa(X,Type,B1,B3)|A1]-A4):-
projectDrs([B1|A1]-[B2|A2]),
resolveAlfa(X,B2,A2-A3),
properBinding(Type,X,B3),
projectDrs([B3|A3]-A4).

projectDrs([drs(D1,C1)|A1]-A2):-
projectConds(C1,[drs(D1,[])|A1]-A2).

/*=====================================================================
Presupposition Projection for DRS-Conditions

=====================================================================*/

projectConds([~B1|Conds],A1-A3):-
projectDrs([B1,pre([])|A1]-[B2,pre(Pres),drs(D,C)|A2]),
accommodate(Pres,B2-B3),
projectConds(Conds,[drs(D,[~B3|C])|A2]-A3).

projectConds([B1 > B2|Conds],A1-A4):-
projectDrs([B1,pre([])|A1]-A2),
projectDrs([B2,pre([])|A2]-[B4,pre(P2),B3,pre(P1),drs(D,C)|A3]),
accommodate(P1,B3-B5),
accommodate(P2,B4-B6),
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projectConds(Conds,[drs(D,[B5 > B6|C])|A3]-A4).

projectConds([B1 v B2|Conds],A1-A4):-
projectDrs([B1,pre([])|A1]-[B3,pre(P1)|A2]),
projectDrs([B2,pre([])|A2]-[B4,pre(P2),drs(D,C)|A3]),
accommodate(P1,B3-B5),
accommodate(P2,B4-B6),
projectConds(Conds,[drs(D,[B5 v B6|C])|A3]-A4).

projectConds([Basic|Conds],[drs(D,C)|A1]-A2):-
compose(Basic, Symbol,Arguments),
simpleTerms(Arguments),
projectConds(Conds,[drs(D,[Basic|C])|A1]-A2).

projectConds([],A-A).

/*========================================================================
Resolving Alfa-DRSs

========================================================================*/

resolveAlfa(X,AlfaDrs,[drs(D,C)|Others]-[New|Others]):-
matchDrs(X,AlfaDrs,drs(D,C),New).

resolveAlfa( ,AlfaDrs,[pre(A)|Others]-[pre([AlfaDrs|A])|Others]).

resolveAlfa(X,Alfa,[pre(A1)|Others]-[pre([New|A2])|Others]):-
select(Drs,A1,A2),
matchDrs(X,Alfa,Drs,New).

resolveAlfa(X,AlfaDrs,[AnteDrs|Others]-[AnteDrs|NewOthers]):-
resolveAlfa(X,AlfaDrs,Others-NewOthers).

/*=====================================================================
Accommodation

=====================================================================*/

accommodate([],B-B).

accommodate([drs(D1,C1)|Presups],drs(D2,C2)-B):-
append(D1,D2,D3),
append(C1,C2,C3),
accommodate(Presups,drs(D3,C3)-B).
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/*************************************************************************

name: matchDRT.pl
version: Feb 15, 1999

description: Matching for DRSs, including consistency check
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(matchDRT,[matchDrs/4]).

:- use module(comsemPredicates,[member/2,compose/3]),
use module(semOntology,[consistent/2]).

/*========================================================================
Partial Match

========================================================================*/

matchDrs(X,drs(D1,C1),drs(D2,C2),drs(D3,C3)):-
member(X,D2),
mergeLists(D1,D2,D3),
mergeLists(C1,C2,C3),
consistentConditions(X,C3).

consistentConditions(X,Conds):-
\+ (

member(Cond1,Conds),
member(Cond2,Conds), \+ Cond1=Cond2,
compose(Cond1,Symbol1,[Y]), Y==X,
compose(Cond2,Symbol2,[Z]), Z==X,
\+ consistent(Symbol1,Symbol2)

).

/*========================================================================
Merging of Lists

========================================================================*/

mergeLists([],L,L).

mergeLists([X|R],L1,L2):-
member(Y,L1),
X==Y, !,
mergeLists(R,L1,L2).

mergeLists([X|R],L1,[X|L2]):-
mergeLists(R,L1,L2).
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/**********************************************************************

name: mainPresupScoreDRT.pl
version: Feb 6, 1999

description: Presupposition Resolution with Score Calculation
authors: Patrick Blackburn & Johan Bos

**********************************************************************/

:- module(mainPresupScoreDRT,[parse/0,projectDrs/1]).

:- use module(readLine,[readLine/1]),
use module(comsemOperators),
use module(comsemPredicates,[printReadings/1,compose/3]),
use module(betaConversion,[betaConvert/2]),
use module(resolvePresupScore,[projectDrs/2,accommodate/2]).

:- [englishGrammar], [englishLexicon], [semMacrosPresupDRT].

/*========================================================================
Driver Predicate

========================================================================*/

parse:-
readLine(Discourse),
d(Drs1,Discourse,[]),
betaConvert(Drs1,Drs2),
findall((Score:Drs4),(

projectDrs([Drs2,pre([])]-[Drs3,pre(P)],1-Score),
accommodate(P,Drs3-Drs4)

),
Readings),

printReadings(Readings).
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/**********************************************************************

name: resolvePresupScore.pl
version: Feb 6, 1999

description: Presupposition Projection with Score Calculation
authors: Patrick Blackburn & Johan Bos

**********************************************************************/

:- module(resolvePresupScore,[projectDrs/2,accommodate/2]).

:- use module(comsemOperators),
use module(comsemPredicates,[simpleTerms/1,compose/3,

append/3,select/3]),
use module(bindingDRT,[properBinding/3]),
use module(matchDRT,[matchDrs/4]).

/*=====================================================================
Presupposition Projection for DRSs

=====================================================================*/

projectDrs([merge(B1,B2)|A1]-[drs(D3,C3)|A3],S1-S3):-
projectDrs([B1|A1]-A2,S1-S2),
projectDrs([B2|A2]-[drs(D1,C1),drs(D2,C2)|A3],S2-S3),
append(D1,D2,D3),
append(C1,C2,C3).

projectDrs([alfa(X,Type,B1,B3)|A1]-A4,S1-S4):-
projectDrs([B1|A1]-[B2|A2],S1-S2),
resolveAlfa(X,Type,B2,A2-A3,S2-S3),
properBinding(Type,X,B3),
projectDrs([B3|A3]-A4,S3-S4).

projectDrs([drs(D1,C1)|A1]-A2,S1-S2):-
projectConds(C1,[drs(D1,[])|A1]-A2,S1-S2).

/*=====================================================================
Presupposition Projection for DRS-Conditions

=====================================================================*/

projectConds([~B1|Conds],A1-A3,S1-S3):-
projectDrs([B1,pre([])|A1]-[B2,pre(Pres),drs(D,C)|A2],S1-S2),
accommodate(Pres,B2-B3),
projectConds(Conds,[drs(D,[~B3|C])|A2]-A3,S2-S3).

projectConds([B1 > B2|Conds],A1-A4,S1-S4):-
projectDrs([B1,pre([])|A1]-A2,S1-S2),
projectDrs([B2,pre([])|A2]-[B4,pre(P2),B3,pre(P1),drs(D,C)|A3],S2-S3),
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accommodate(P1,B3-B5),
accommodate(P2,B4-B6),
projectConds(Conds,[drs(D,[B5 > B6|C])|A3]-A4,S3-S4).

projectConds([B1 v B2|Conds],A1-A4,S1-S4):-
projectDrs([B1,pre([])|A1]-[B3,pre(P1)|A2],S1-S2),
projectDrs([B2,pre([])|A2]-[B4,pre(P2),drs(D,C)|A3],S2-S3),
accommodate(P1,B3-B5),
accommodate(P2,B4-B6),
projectConds(Conds,[drs(D,[B5 v B6|C])|A3]-A4,S3-S4).

projectConds([Basic|Conds],[drs(D,C)|A1]-A2,S1-S2):-
compose(Basic, Symbol,Arguments),
simpleTerms(Arguments),
projectConds(Conds,[drs(D,[Basic|C])|A1]-A2,S1-S2).

projectConds([],A-A,S-S).

/*========================================================================
Resolving Alfa-DRSs

========================================================================*/

resolveAlfa(X,Type,AlfaDrs,[drs(D,C)|Others]-[New|Others],S1-S2):-
global(Others),
matchDrs(X,AlfaDrs,drs(D,C),New),
(Type=refl, S2 = S1;
Type=nonrefl, S2 = S1;
Type=def, S2 = S1;
Type=name, S2 = S1).

resolveAlfa(X,Type,AlfaDrs,[drs(D,C)|Others]-[New|Others],S1-S2):-
nonglobal(Others),
matchDrs(X,AlfaDrs,drs(D,C),New),
(Type=refl, S2 is S1 * 1;
Type=nonrefl, S2 is S1 * 1;
Type=def, S2 is S1 * 0.5;
Type=name, S2 is S1 * 0.2).

resolveAlfa( ,Type,Alfa,[pre(A)]-[pre([Alfa|A])],S1-S2):-
global([pre(A)]),
(Type=nonrefl, S2 is S1 * 0.5;
Type=def, S2 is S1 * 0.9;
Type=name, S2 is S1 * 0.9).

resolveAlfa( ,Type,Alfa,[pre(A)|Others]-[pre([Alfa|A])|Others],S1-S2):-
nonglobal([pre(A)|Others]),
(
%Type=nonrefl, S2 is S1 * 0.1;
Type=def, S2 is S1 * 0.7;
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Type=name, S2 is S1 * 0.2).

resolveAlfa(X,Type,Alfa,[pre(A1)|Others]-[pre([New|A2])|Others],S1-S2):-
global([pre(A1)|Others]),
select(Drs,A1,A2),
matchDrs(X,Alfa,Drs,New),
(Type=refl, S2 = S1;
Type=nonrefl, S2 = S1;
Type=def, S2 = S1;
Type=name, S2 = S1).

resolveAlfa(X,Type,Alfa,[pre(A1)|Others]-[pre([New|A2])|Others],S1-S2):-
nonglobal([pre(A1)|Others]),
select(Drs,A1,A2),
matchDrs(X,Alfa,Drs,New),
(Type=refl, S2 is S1 * 1;
Type=nonrefl, S2 is S1 * 1;
Type=def, S2 is S1 * 0.5;
Type=name, S2 is S1 * 0.2).

resolveAlfa(X,Type,AlfaDrs,[AnteDrs|Others]-[AnteDrs|NewOthers],S1-S2):-
resolveAlfa(X,Type,AlfaDrs,Others-NewOthers,S1-S2).

/*========================================================================
Global or non-global position with respect to stack

========================================================================*/

global([pre( )]).
global([drs( , )|Stack]):- global(Stack).

nonglobal([pre( ),drs( , )| ]).
nonglobal([drs( , )|Stack]):- nonglobal(Stack).

/*=====================================================================
Accommodation

=====================================================================*/

accommodate([],B-B).

accommodate([drs(D1,C1)|Presups],drs(D2,C2)-B):-
append(D1,D2,D3),
append(C1,C2,C3),
accommodate(Presups,drs(D3,C3)-B).
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/**********************************************************************

name: semMacrosPresupDRT.pl
version: May 5, 1998

description: Semantic Macros for Presupposition Projection in DRT
authors: Patrick Blackburn & Johan Bos

**********************************************************************/

/*========================================================================
Semantic Macros

========================================================================*/

detSem(uni,lambda(P,lambda(Q,drs([],[merge(drs([X],[]),P@X)>(Q@X)])))).

detSem(indef,lambda(P,lambda(Q,merge(merge(drs([X],[]),P@X),Q@X)))).

detSem(def,lambda(P,lambda(Q,alfa(X,def,merge(drs([X],[]),P@X),Q@X)))).

detSem(card(1),lambda(P,lambda(Q,
merge(drs([X],[merge(drs([Y],[]),merge(P@Y,Q@Y))>drs([],[X=Y])]),

merge(P@X,Q@X))))).

detSem(poss(Gender),lambda(P,lambda(Q,
alfa(Y,def,alfa(X,nonrefl,drs([X],[Basic]),

merge(drs([Y],[of(Y,X)]),P@Y)),Q@Y)))):-
compose(Basic,Gender,[X]).

nounSem(Sym,lambda(X,drs([],[Cond]))):-
compose(Cond,Sym,[X]).

pnSem(Sym,Gender,lambda(P,alfa(X,name,drs([X],[X=Sym,Cond]),P@X))):-
compose(Cond,Gender,[X]).

proSem(Gender,Type,lambda(P,alfa(X,Type,drs([X],[Cond]),P@X))):-
compose(Cond,Gender,[X]).

ivSem(Sym,lambda(X,drs([],[Cond]))):-
compose(Cond,Sym,[X]).

tvSem(Sym,lambda(K,lambda(Y,K @ lambda(X,drs([],[Cond]))))):-
compose(Cond,Sym,[Y,X]).

relproSem(lambda(P,lambda(Q,lambda(X,merge(P@X,Q@X))))).

prepSem(Sym,lambda(K,lambda(P,lambda(Y,Drs)))):-
Drs=merge(K@lambda(X,drs([],[Cond])),P@Y),
compose(Cond,Sym,[Y,X]).

modSem(neg,lambda(P,lambda(X,drs([],[~(P @ X)])))).
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coordSem(conj,lambda(X,lambda(Y,lambda(P,merge(X@P,Y@P))))).
coordSem(disj,lambda(X,lambda(Y,lambda(P,drs([],[(X@P) v (Y@P)]))))).

dcoordSem(cond,lambda(X,lambda(Y,drs([],[X > Y])))).
dcoordSem(conj,lambda(X,lambda(Y,merge(X,Y)))).
dcoordSem(disj,lambda(X,lambda(Y,drs([],[X v Y])))).
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/*************************************************************************

name: curt.pl (Chapter 11)
version: June 18, 1998

description: User-System discourse interaction
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(curt,[curt/0]).

:- use module(readLine,[readLine/1]),
use module(comsemOperators),
use module(comsemPredicates,[printReadings/1,member/2,compose/3]),
use module(betaConversion,[betaConvert/2]),
use module(resolvePresup,[projectDrs/1,accommodate/2]),
use module(acceptabilityConstraints,[consistentReadings/2,

informativeReadings/2,
localConsistentReadings/2,
localInformativeReadings/2]).

:- [englishGrammar], [englishLexicon], [semMacrosPresupDRT].

/*========================================================================
Start Curt

========================================================================*/

curt:-
curtInput([drs([],[])]).

/*========================================================================
System requests user

========================================================================*/

curtInput(Readings):-
readLine(Input),
curtOutput(Input,Readings).

/*========================================================================
Systems responds to user

========================================================================*/

curtOutput([],Readings):- !,
curtSays('Want to tell me something?'),
curtInput(Readings).

curtOutput([bye], ):- !,
curtSays('Bye bye!').
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curtOutput([new], ):- !,
curt.

curtOutput([help],Readings):- !,
nl, write('bye - no more talking'),
nl, write('drs - prints current readings in DRS-format'),
nl, write('new - starts a new discourse'), nl,
curtInput(Readings).

curtOutput([drs],Readings):- !,
printReadings(Readings),
curtInput(Readings).

curtOutput(Input,Readings):-
d(MergeDrs,Input,[]),!,
betaConvert(MergeDrs,ReducedDrs),
getReadings(ReducedDrs,Readings,PotentialReadings),
consistentReadings(PotentialReadings,ConsistentReadings),
(

ConsistentReadings=[],
curtSays('No! I do not believe that!'),!,
curtInput(Readings)

;
informativeReadings(ConsistentReadings,InformativeReadings),
(

InformativeReadings=[],
curtSays('Yes, I knew that!'),!,
curtInput(Readings)

;
curtSays('Ok.'),
localInformativeReadings(InformativeReadings,LocalInformative),
localConsistentReadings(LocalInformative,LocalConsistent),
(

LocalConsistent=[], !,
SelectedReadings=InformativeReadings

;
SelectedReadings=LocalConsistent

),
curtInput(SelectedReadings)

)
).

curtOutput( ,Readings):-
curtSays('What?'),
curtInput(Readings).

/*========================================================================
Compute all readings

========================================================================*/
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getReadings(ProtoDrs,Readings,PotentialReadings):-
findall((OldDrs,NewDrs),

(
member(OldDrs,Readings),
projectDrs([merge(OldDrs,ProtoDrs),pre([])]-[Drs,pre(P)]),
accommodate(P,Drs-NewDrs)
),
PotentialReadings).

/*========================================================================
Curt's output

========================================================================*/

curtSays(X):- nl, write(X), nl.
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/*************************************************************************

name: acceptabilityConstraints.pl (Chapter 11)
version: June 18, 1998

description: Consistency and Informativity
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(acceptabilityConstraints,[consistentReadings/2,
informativeReadings/2,
localConsistentReadings/2,
localInformativeReadings/2]).

:- use module(drs2fol,[drs2fol/2]),
use module(comsemOperators),
use module(comsemPredicates,[append/3]),
use module(mergeDRT,[mergeDrs/2]),
use module(callTheoremProver,[callTheoremProver/3,

callModelBuilder/4]),
use module(semOntology,[generateOntology/1]).

/*========================================================================
Select Readings

========================================================================*/

informativeReadings([],[]).
informativeReadings([(DrsSoFar,Drs)|Potential],[Drs|Selected]):-

informative(DrsSoFar,Drs), !,
informativeReadings(Potential,Selected).

informativeReadings([ |Potential],Selected):-
informativeReadings(Potential,Selected).

consistentReadings([],[]).
consistentReadings([(Old,Drs)|Potential],[(Old,Drs)|Selected]):-

consistent(Drs), !,
consistentReadings(Potential,Selected).

consistentReadings([ |Potential],Selected):-
consistentReadings(Potential,Selected).

localConsistentReadings([],[]).
localConsistentReadings([Drs|Potential],[Drs|Selected]):-

localConsistent(Drs), !,
localConsistentReadings(Potential,Selected).

localConsistentReadings([ |Potential],Selected):-
localConsistentReadings(Potential,Selected).

localInformativeReadings([],[]).
localInformativeReadings([Drs|Potential],[Drs|Selected]):-

localInformative(Drs), !,
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localInformativeReadings(Potential,Selected).
localInformativeReadings([ |Potential],Selected):-

localInformativeReadings(Potential,Selected).

/*========================================================================
Informativity

========================================================================*/

informative(drs([],[]), ):-!.
informative(OldDrs,NewDrs):-

backgroundKnowledge(Chi),
drs2fol(OldDrs,Phi),
drs2fol(NewDrs,Psi),
callTheoremProver(Chi,~(Phi > Psi),Proof),
(Proof=yes, !, fail; true).

/*========================================================================
Consistency

========================================================================*/

consistent(NewDrs):-
domainSize(NewDrs,Size),
backgroundKnowledge(Chi),
drs2fol(NewDrs,Phi),
(

callModelBuilder(Chi,Phi,Size,Model),
Model=1,!

;
callTheoremProver(Chi,Phi,Proof),
(

Proof=yes, !, fail
;

true
)

).

/*========================================================================
Local Informativity

========================================================================*/

localInformative(Drs):-
findall((Super,Sub),superSubDrs(Drs,drs([],[])-Super,Sub),List),
allLocalInformative(List).

allLocalInformative([]).
allLocalInformative([(Super,Sub)|Others]):-

backgroundKnowledge(Chi),
drs2fol(drs([],[Super>Sub]),Phi),
callTheoremProver(Chi,~Phi,Proof),
(Proof=yes, !, fail; allLocalInformative(Others)).
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/*========================================================================
Local Consistency

========================================================================*/

localConsistent(Drs):-
findall((Super,Sub),superSubDrs(Drs,drs([],[])-Super,Sub),List),
allLocalConsistent(List).

allLocalConsistent([]).
allLocalConsistent([(Super,Sub)|Others]):-

backgroundKnowledge(Chi),
drs2fol(drs([],[Super>drs([],[~Sub])]),Phi),
callTheoremProver(Chi,~Phi,Proof),
(Proof=yes, !, fail; allLocalConsistent(Others)).

/*========================================================================
Background Knowledge

========================================================================*/

backgroundKnowledge(Formulas):-
knowledge(Formulas1),
generateOntology(Formulas2),
append(Formulas1,Formulas2,Formulas).

knowledge([
forall(X,forall(Y,have(X,Y)>of(Y,X))),
forall(X,forall(Y,of(Y,X)>have(X,Y))),
forall(X,female(X)&married(X)>exists(Y,husband(Y)&have(X,Y))),
forall(X,forall(Y,husband(Y)&have(X,Y)>married(X)&female(X)))
]).

/*========================================================================
Domain Size

========================================================================*/

domainSize(drs(Dom, ),Size):-
(
Dom=[],
Size=1,!
;
length(Dom,Size)
).

/*========================================================================
Compute super- and subordinated DRSs

========================================================================*/

superSubDrs(drs(D,[Sub > |C]),Drs-Super,Sub):-
mergeDrs(merge(Drs,drs(D,C)),Super).
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superSubDrs(drs(D,[B > Sub|C]),Drs-Super,Sub):-
mergeDrs(merge(merge(drs(D,C),B),Drs),Super).

superSubDrs(drs(D,[B1 > B2|C]),Drs-Super,Sub):-
superSubDrs(B2,merge(Drs,merge(merge(drs(D,C),B1),B2))-Super,Sub).

superSubDrs(drs(D,[Sub v |C]),Drs-Super,Sub):-
mergeDrs(merge(Drs,drs(D,C)),Super).

superSubDrs(drs(D,[ v Sub|C]),Drs-Super,Sub):-
mergeDrs(merge(Drs,drs(D,C)),Super).

superSubDrs(drs(D,[B v |C]),Drs-Super,Sub):-
superSubDrs(B,merge(Drs,merge(drs(D,C),B))-Super,Sub).

superSubDrs(drs(D,[ v B|C]),Drs-Super,Sub):-
superSubDrs(B,merge(Drs,merge(drs(D,C),B))-Super,Sub).

superSubDrs(drs(D,[~ Sub|C]),Drs-Super,Sub):-
mergeDrs(merge(Drs,drs(D,C)),Super).

superSubDrs(drs(D,[~ B|C]),Drs-Super,Sub):-
superSubDrs(B,merge(Drs,merge(drs(D,C),B))-Super,Sub).

superSubDrs(drs(D,[Cond|C]),Drs-Super,Sub):-
superSubDrs(drs([],C),Drs-B,Sub),
mergeDrs(merge(drs(D,[Cond]),B),Super).
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/*************************************************************************

name: callTheoremProver.pl (Chapter 5)
version: June 18, 1998

description: Prolog Interface to Otter (Sicstus required)
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(callTheoremProver,[callTheoremProver/3]).

:- use module(library(system)),
use module(fol2otter,[fol2otter/2]).

/*========================================================================
Calls to Theorem Prover (Otter)

========================================================================*/

callTheoremProver(Axioms,Formula,Proof):-
fol2otter(Axioms,Formula),
shell('./otter < temp.in > temp.out 2> /dev/null',X),
(X=26368,Proof=yes,!;X=26624,Proof=no).
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/*************************************************************************

name: callModelBuilder.pl (Chapter 5)
version: September 3, 1999

description: Prolog Interface to Mace (Sicstus required)
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(callModelBuilder,[callModelBuider/4]).

:- use module(library(system)),
use module(comsemPredicates,[append/3]),
use module(fol2otter,[fol2otter/2]).

/*========================================================================
Calls to Model Generator (Mace)

Changed in MACE (generate.c):
#define MAX SYMBOLS 100 number of functors (was 50)

========================================================================*/

callModelBuilder(Axioms,Formula,DomainSize,Model):-
fol2otter(Axioms,Formula),
name('./mace -n',C1),
name(DomainSize,C2),
append(C1,C2,C3),
name(' -p -t2 -m1 < temp.in > temp.out 2> /dev/null',C4),
append(C3,C4,C5),
name(Shell,C5),
shell(Shell,X),
% this is not correct. It always returns 0!
(X=0,Model=1,!;write(X),Model=0).
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/*************************************************************************

name: fol2otter.pl (Chapter 11)
version: June 18, 1998

description: Translates a formula in otter syntax to standard output
authors: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(fol2otter,[fol2otter/2]).

:- use module(comsemOperators).

/*========================================================================
Translates formula to otter syntax in file 'temp.in'

========================================================================*/

fol2otter(Axioms,Formula):-
tell('temp.in'),
format('set(auto).~n~n',[]),
format('clear(print proofs).~n~n',[]),
format('set(prolog style variables).~n~n',[]),
format('formula list(usable).~n~n~n',[]),
printOtterList(Axioms),
printOtterFormula(Formula),
format('~nend of list.~n',[]),
told.

/*========================================================================
Print a list of Otter formulas

========================================================================*/

printOtterList([]).
printOtterList([X|L]):-

printOtterFormula(X),
printOtterList(L).

/*========================================================================
Print an Otter formula

========================================================================*/

printOtterFormula(F):-
\+ \+ (numbervars(F,0, ), printOtter(F,5)),
format('.~n',[]).

printOtter(exists(X,Formula),Tab):-
write('(exists '),write(X),write(' '),!,
printOtter(Formula,Tab),write(')').

printOtter(forall(X,Formula),Tab):-
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write('(all '),write(X),write(' '),!,
printOtter(Formula,Tab),write(')').

printOtter(Phi & Psi,Tab):-
write('('),!,
printOtter(Phi,Tab),
write(' & '), nl, tab(Tab),
NewTab is Tab + 5,
printOtter(Psi,NewTab), write(')').

printOtter(Phi v Psi,Tab):-
write('('),!,
printOtter(Phi,Tab), write(' | '),
printOtter(Psi,Tab), write(')').

printOtter(Phi <> Psi,Tab):-
write('('),!,
printOtter(Phi,Tab), write(' <-> '),
printOtter(Psi,Tab), write(')').

printOtter(Phi > Psi,Tab):-
write('('),!,
printOtter(Phi,Tab), write(' -> '),
printOtter(Psi,Tab), write(')').

printOtter(~ Phi,Tab):-
write('-('),!,
printOtter(Phi,Tab), write(')').

printOtter(Phi, ):-
write(Phi).
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/*************************************************************************

name: mainPresupDRTU.pl (Chapter 12)
version: May 28, 1998

description: Combining DRTU with presupposition resolution
author: Patrick Blackburn & Johan Bos

*************************************************************************/

:- module(mainPresupDRTU,[parse/0]).

:- use module(readLine,[readLine/1]),
use module(comsemOperators),
use module(comsemPredicates,[printRepresentation/1,

printReadings/1,compose/3]),
use module(betaConversion,[betaConvert/2]),
use module(pluggingAlgorithm,[plugHole/4]),
use module(mergeDRT,[mergeDrs/2]),
use module(mergeUSR,[mergeUSR/2]),
use module(resolvePresup,[projectDrs/1,accommodate/2]).

:- [englishGrammar], [englishLexicon], [semMacrosPresupDRTU].

/*========================================================================
Driver Predicate

========================================================================*/

parse:-
readLine(Discourse),
d(Sem,Discourse,[]),
betaConvert(merge(usr([Top,Main],[],[]),Sem@Top@Main),Reduced),
mergeUSR(Reduced,usr(D,L,C)),
printRepresentation(usr(D,L,C)),
findall(Drs,

(
plugHole(Top,L-[],C,[]),
projectDrs([Top,pre([])]-[PresupDrs,pre(P)]),
accommodate(P,PresupDrs-Drs)
),

Readings),
printReadings(Readings).
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/*************************************************************************

name: semMacrosPresupDRTU.pl (Chapter 12)
version: June 18, 1999

description: Semantic Macros for DRTU with Presupposition Resolution
author: Patrick Blackburn & Johan Bos

*************************************************************************/

/*========================================================================
Semantic Macros

========================================================================*/

detSem(uni,lambda(P,lambda(Q,lambda(H,lambda(L,
merge(merge(usr([F,R,S],

[F:drs([],[merge(drs([X],[]),R)>S])],
[leq(F,H),leq(L,S)]),P@X@H@R),Q@X@H@L)))))).

detSem(indef,lambda(P,lambda(Q,lambda(H,lambda(L,
merge(merge(usr([E,R,S],

[E:merge(merge(drs([X],[]),R),S)],
[leq(E,H),leq(L,S)]),P@X@H@R),Q@X@H@L)))))).

detSem(def,lambda(P,lambda(Q,lambda(H,lambda(L,
merge(merge(usr([R,S],

[L:alfa(X,def,merge(drs([X],[]),R),S)],
[leq(L,H)]),P@X@H@R),Q@X@H@S)))))).

detSem(poss(Gender),lambda(P,lambda(Q,lambda(H,lambda(L,
merge(merge(usr([R,S],

[L:alfa(X,def,alfa(Y,nonrefl,drs([Y],[Cond]),
merge(drs([X],[of(X,Y)]),R)),S)],

[leq(L,H)]),P@X@H@R),Q@X@H@S)))))):-
compose(Cond,Gender,[Y]).

nounSem(Sym,lambda(X,lambda( ,lambda(L,usr([],[L:drs([],[Cond])],[]))))):-
compose(Cond,Sym,[X]).

pnSem(Sym,Gender,lambda(P,lambda(H,lambda(L,
merge(usr([S],

[L:alfa(X,name,drs([X],[X=Sym,Cond]),S)],
[leq(L,H)]),

P@X@H@S))))):-
compose(Cond,Gender,[X]).

proSem(Gender,Type,lambda(P,lambda(H,lambda(L,
merge(usr([S],

[L:alfa(X,Type,drs([X],[Cond]),S)],
[leq(L,H)]),

P@X@H@S))))):-

218



Blackburn & Bos Appendix September 3, 1999

compose(Cond,Gender,[X]).

ivSem(Sym,lambda(X,lambda( ,lambda(L,
usr([],[L:drs([],[Cond])],[]))))):-

compose(Cond,Sym,[X]).

tvSem(Sym,lambda(K,lambda(Y,K@lambda(X,lambda( ,lambda(L,
usr([],[L:drs([],[Cond])],[]))))))):-

compose(Cond,Sym,[Y,X]).

relproSem(lambda(P,lambda(Q,lambda(X,lambda(H,lambda(L,
merge(usr([L2,L3,H1] ,

[L:merge(L3,H1)],
[leq(L2,H1)]),

merge(P@X@H@L2,Q@X@H@L3)))))))).

prepSem(Sym,lambda(K,lambda(P,lambda(Y,lambda(H,lambda(L3,
merge(K@lambda(X,lambda(H,lambda(L1,

usr([L2,H1],
[L3:merge(L2,H1),L1:drs([],[Cond])],
[leq(L1,H1)]))))@H@L1,P@Y@H@L2))))))):-

compose(Cond,Sym,[Y,X]).

modSem(neg,lambda(P,lambda(X,lambda(H,lambda(L,
merge(usr([N,S],[N:drs([],[~S])],[leq(N,H),leq(L,S)]),

P@X@H@L)))))).

coordSem(conj,lambda(X,lambda(Y,lambda(P,lambda(H,lambda(L,
merge(usr([L1,L2],[L:merge(L1,L2)],[leq(L,H)]),

merge(X@P@H@L1,Y@P@H@L2)))))))).

coordSem(disj,lambda(X,lambda(Y,lambda(P,lambda(H,lambda(L,
merge(usr([L1,L2],[L:drs([],[L1 v L2])],[leq(L,H)]),

merge(X@P@H@L1,Y@P@H@L2)))))))).

dcoordSem(cond,lambda(C1,lambda(C2,lambda(H,lambda(L,
merge(usr([H1,H2],[L:drs([],[H1 > H2])],[leq(L,H)]),

merge(C1@H1@ ,C2@H2@ ))))))).

dcoordSem(conj,lambda(C1,lambda(C2,lambda(H,lambda(L,
merge(usr([H1,H2],[L:merge(H1,H2)],[leq(L,H)]),

merge(C1@H1@ ,C2@H2@ ))))))).

dcoordSem(disj,lambda(C1,lambda(C2,lambda(H,lambda(L,
merge(usr([H1,H2],[L:drs([],[H1 v H2])],[leq(L,H)]),

merge(C1@H1@ ,C2@H2@ ))))))).
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