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Abstract Temporal aggregation is an important operationical evaluation on real-world and synthetic data shows that
in temporal databases, and different variants thereof hav@TA considerably reduces the size of the aggregation result
been proposed. In this paper we introduce a novel temporgkt introducing only small errors. The greedy algorithmes ar
aggregation operator, termed parsimonious temporal aggrecalable for large data sets and introduce less error than ot
gation (PTA), which overcomes major limitations of exigtin approximation techniques.

approaches. PTA takes the result of instant temporal aggr
gation (ITA) of sizen, which might be up to twice as large
as the argument relation, and merges similar tuples until
given error €) or size €) bound is reached. The new opera-
tor is data-adaptive and allows the user to control the tradel Introduction

off between the result size and the error introduced by merg-

ing. For the precise evaluation of PTA queries, we proposg 1 problem Description
two dynamic programming based algorithms for size- and

error-bounded queries, respectively, with a worst-case-co Temporal data are abundant in almost every sector. Whether
plexity that is quadratic im. We present two optimizations it s financial, medical, or sensor data, we often associate a
that take advantage of temporal gaps and different aggreggmestamp or a validity interval with each record. Temporal
tion groups and achieve a linear runtime in experiments Wiﬂaggregaﬂon is used to summarize large sets of such data by
real-world data. For the quick computation of an approxi-aggregating specific attribute values over all tuples tbét h
mate PTA answer, we propose an efficient greedy mergingt a time point or a time interval. As such, temporal aggre-
strategy with a precision that is upper boundedXlogn).  gation is very important in temporal databases. It has been
We present two algorithms that implement this strategy an@reviously studied in various flavors, most importantly, as
begin to merge as ITA tuples are produced. They requirghstant and span temporal aggregation.
O(nlog(c+ B)) time andO(c+ B) space, wherg is the size In instant temporal aggregation (ITA) [4,15,18,26,27,
of a read-ahead buffer and is typically very small. An empir-30], the aggregate value at a time instaistcomputed from

the set of all tuples whose timestamp containResult tu-
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from 2000 to 2005. For each of these intervals a result tu- Fig. 1(d) shows the result of the following PTA query:
ple is produced by aggregating over all argument tuples thdFor each project, what is the average monthly salary,
overlap with such an interval. Therefore, the result size ofvhere the result size shall not exceed 4 tuplesTtie re-
STA is predictable, yet it may fail to provide good sum- sult is obtained by applying three merging steps on the ITA
maries of the data since the aggregation intervals do net comesult in Fig. 1(c) such that the introduced error is minimal
sider the distribution of the input data. For instances; ands, are merged into the PTA result tuple
In this paper we introduce parsimonious temporal agz, where the average salary nfis computed by averaging
gregation (PTA) that overcomes major limitations and com+the salaries o§; ands, over each month, i.e., 800 for two
bines the best features of instant and span temporal aggreonths and 600 for one month, yielding the value .333
gation. By approximating ITA, it computes compact aggre-Tuples separated by temporal gaps (esgands;) or be-
gation summaries that reflect the most significant changdsnging to different aggregation groups (e s.andss) can-
in the data over time. If the user specifies the desired renot be merged. Different from the other two operators, PTA
sult size, PTA minimizes the approximation error. Alterna-reveals significant changes in the aggregation values.
tively, the user can specify a maximal error bound, and PTA
minimizes the number of result tuples. Conceptually, PTA
operates in two steps: (1) compute the ITA result of the in- 3 contributions
put relation and (2) reduce the ITA result by merging simi-
lar and temporally adjacent tuples until a user-specifieél si \we introduce and formally define a novel temporal aggre-
or error bound is satisfied. Tuples are adjacent if they begation operator, termed parsimonious temporal aggregatio
long to the same aggregation group and are not separat@giTa), that overcomes major limitations and combines the
by a temporal gap. PTA inherits the data-adaptive approachest features of previous temporal aggregation operators.
of ITA and the control over the result size of STA. PTA is Tyo variants of PTA are provided. Size-bounded PTA al-
useful for such applications as data visualization or gimil  |gws the specification of a maximal result size,while
ity search for classification and clustering, where the finegrror-nounded PTA allows the specification of a maximal
grained result of ITA is too large to handle and, instead, &rror thresholds.
concise overview of the data at hand is necessary. Second, we propose two dynamic programming based
algorithms,PTA. and PT A, for the precise evaluation of
size-bounded and error-bounded PTA queries, respectively
1.2 Example The two algorithms requir®(n’cp) time andO(n?) space
in the worst case, whereis the ITA result size¢ is the PTA
As a running example throughout the paper we use the re@esult size, ang is the number of aggregate functions. We
lation proj in Fig. 1(a), which records information about present two optimizations that take advantage of temporal
project assignments: an employ&ar(p), the project he/she gaps and aggregation groups, yielding almost linear rgnnin
works for (Proj), the monthly salarySal), and the time pe- times on real-world datasets.
riod (in months) during which the assignment is effective  Third, for a quick evaluation over potentially huge data
(T). Forinstance, tuple; states that John works on project A sets, we propose an efficient greedy merging strategy that
and has a monthly salary of 800 in the time peribdl]. In  computes an approximation of the PTA result with a pre-
the graphical illustration timestamps are drawn as hotidon cision that is upper-bounded (logn). We present two
lines. algorithms,gPT A andgPTA;, for size- and error-bounded
Consider the following STA query¥or each project, queries, respectively, that implement this strategy ayiutliy
what is the average monthly salary in each trimesteiiis  integrate the computation of ITA and the merging step. That
query explicitly partitions the time line into trimesteis{ is, the merging process needs not to wait for the completion
dependent of the distribution of the data) over which the reef the ITA result, but starts with the merging as ITA result
sults are reported for each project. The result is shown ituples are produced. The algorithms rurCfnlog(c+ f3))
Fig. 1(b). time andO(c+ ) space, where+ 3 < n; we show exper-
Fig. 1(c) shows the result of the corresponding ITAimentally thatg is typically very small.
query: “For each project, what is the average monthly Finally, we conduct extensive experiments using real-
salary?”. Here the average salary is determined for eaclwvorld and synthetic data. The results show that PTA
month and project, followed by a coalescing of value-achieves a significant reduction of the ITA result, introduc
equivalent tuples over consecutive time points. The resulihg only a small error. The greedy algorithms are scalable
size exceeds the size of the input relation, though some ador large data sets, and they introduce significantly less er
jacent tuples have quite similar aggregate values,®.gnd  than other state of the art time series and temporal approxi-
Ss. mation methods.
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(d) PTA Result of Size 4

Fig. 1 Theproj relation and different temporal aggregation queries to cdenfhe average monthly salary per project.

1.4 Organization tuples that hold in a window “around’. While ITA and
MWTA report the most detailed result, the main drawback
The rest of the paper is organized as follows. In Section 2s that the result size might become up to twice as large as
we discuss related work. After presenting some preliminaryhe input size.
concepts in Section 3, we introduce and formally define the Span temporal aggregation (STA) [23] allows users to
PTA operator in Section 4. In Section 5 we describe the dygontrol the result size by partitioning the time line inttein
namic programming based evaluation algorithms, followeqa|s that are specified in the query. For each such interval, a
by the greedy evaluation strategy and algorithms in Secresult tuple is computed over all argument tuples that over-
tion 6. Section 7 reports the experimental results. Finallyjap with that interval. STA does not consider the distribu-
Section 8 draws conclusions and outlines future work. tion of the data, and most approaches consider only regular
time spans expressed in terms of granularities, e.g., years

2 Related Work months. ] )
Vega Lopez et al. [27] formalize temporal aggregation
2.1 Temporal Aggregation in a uniform framework that enables the comparison of the

different temporal aggregation variants. Similarly, theltin
Various forms of temporal aggregation have been studied ilimensional temporal aggregation operator [4] generslize
the past. They differ mainly in how the time line is parti- previous temporal aggregation operators towards more flex-
tioned. Instant temporal aggregation (ITA) [15,18,27] op-ibility for the specification of aggregation groups.
erates at the smallest granularity of time instants. Fohneac  The approximation of temporal aggregation is a rela-
time instantt, the aggregate functions are computed ovetively new topic [9,10,25]. Tao et al. [25] were the first to
all tuples that hold at. Identical aggregate results at con- introduce an approximate temporal aggregation technique,
secutive time instants are coalesced into tuples over maxwhich leverages span temporal aggregation and, for a given
mal time intervals. Moving-window (or cumulative) tempo- time interval, finds an approximate aggregation result from
ral aggregation (MWTA) [19, 23, 30] extends ITA and com- tuples that overlap with that interval. The approach uses
putes for each time instartt, the aggregate values over all off-the-shelf B- and R-trees to compute the aggregation re-



sult in linear space and logarithmic time with respect to thdution. Coefficients that allow to reconstruct finer represe
size of the database. Since the proposed technique apprdeations from coarser resolutions are stored at each level. A
imates span temporal aggregation, where the user specifisgep function constructed from tleemost influential coef-
the aggregation intervals, it is not data-adaptive and @@ann ficients approximates the original time series. DWT might
be used to reveal significant changes in the data. Moreovdnreak apart constant-valued segments, which leads tothighe
only error-bounded approximation for tekemandcountag-  approximation errors. Moreover, since the size of the in-
gregation functions is possible. put data has to be a power of two, the data often need
In our previous work [9,10] we introduce parsimoniousto be padded, which influences the approximation result.
temporal aggregation as an approximation of ITA. In thisin Fig. 2(b) an example of a DWT approximation using
paper we extend it in various directions. First, in addition10 wavelet coefficients is shown using solid lines. Observe
to size-bounded PTA that reduces an ITA relation to a usetthe fluctuation of values at the right-hand side because of
specified size, we define error-bounded PTA that minimizepadding.
the result size under a maximal error threshold Specified by Contrary to wavelets, discrete Fourier transform (DFT)
the user. We provide new query evaluation algorithms fof16] approximates the input time series with a continuous
error-bounded PTA, and we report the results of additionajunction. An example of a DFT approximation using 10 co-
experiments, including the comparison of PTA with variousefficients is shown in Fig. 2(c). DFT cannot be directly em-
time series approximation techniques. ployed to evaluate PTA queries as we require the output of
Berberich et al. [2] introduce an approximate temporalpTA to be a step function with a user-specified number of
coalescing (ATC) technique to reduce the size of a temporadlegments and constant aggregation values throughout each
inverted file index. The index is represented as a temporaglegment. Keogh and Kasetty [12] have shown that the dif-
relation, where each record contains a document referencyrence in terms of approximation error between DWT and
a term, its index value, and a validity interval. ATC readspFT is typically small. In this work we show that the ap-
sorted and temporally adjacent tuples that share the sanigoximation quality ogPT A algorithm is much better than
document/term pair and merges them if the introduced lothat of DWT.
cal error does not exceed a user-specified threshold. Though ~ai and Ng [6] suggest to use Chebyshev polynomials

the aim is different, ATC can be used to merge ITA resulty, represent and index time series data for similarity searc
tuples. Experiments show that the total error of ATC is Upgjmilarly to DFT, the signal restored from Chebyshev coef-
to an order of magnitude higher than that of PTA and variejcients, see example in Fig. 2(d), is a continuous function.

significantly depending on the dataset. Such a behavior i§oyever, instead of total approximation error it minimizes
not surprising since ATC makes merging decisions based ofye maximum deviation from the true value. The authors ar-
local information only. The performance gain of ATC With g6 that this property is desired in similarity search and de

respect to our greedy algorithms is negligible. fine a distance for Chebyshev coefficients that lowerbounds
the Euclidean distance for the original time series. They
2.2 Time Series Approximation show that a small number of coefficients, up to 25, is enough

to construct an index that allows very efficient search. Com-

An ITA result can be considered as a time series if no tempaPuting more coefficients may not be practical as the compu-
ral gaps and aggregation groups are present, and hence tii@ion time depends linearly on their number. In this work
series approximation techniques can be applied to obtain &#Hr @im is to minimize the total error of approximation in-
PTA approximation. The need to visualize, mine, and indexstead of maximum deviation, nevertheless, we compare the
abundant amounts of time series data has motivated extefime series restored from Chebyshev coefficients to corre-
sive research on their approximate representation [118,7, spondinggPTA: approximations having the same number
16,17,20,22,31]. Lin et al. [17] provide an excellent clas-of intervals. We show thagPTA: provides a significantly
sification of different representation techniques. In Big)  better approximation.
we plot an ITA result over a small excerpt of the Incum-  Piecewise aggregate approximation (PAA) for time se-
bents data set that we use for the experimental evaluatiates has been introduced by Keogh and Pazzani [14] and,
(cf. Sec. 7). With only one aggregate value and no aggregaoncurrently, by Yi and Faloutsos [31] where it is termed
tion groups and temporal gaps it can be considered as a tinB2gmented means. A time series is divided msezgments
series. Figures 2(b-h) depict different approximate regme  of equal length, and for each segment the average value is
tations of this ITA result. Dotted lines show the ITA result, computed. It is shown that PAA and DWT produce the same
while solid lines represent the approximated values. result under thé_, norm whenc and the length of the in-
Discrete wavelet transform (DWT) [1] with Haar put are powers of 2. Like DWT, this approach is not data-
wavelets recursively averages neighbouring values, yieldadaptive. An example of a PAA approximation using 10 in-
ing a representation of the data at various levels of resdervals is shown in Fig. 2(e).



— ity norm is used as error measure. Consequently, the global
H approximation error is maintained under a given threshold
e —t by keeping local errors under the same threshold. However,
(a) Time series data the infinity norm is not appropriate for PTA, and we use the
| Euclidean norm as suggested by Jagadish et al. [11]. Ad-
%MHH' ditionally, our approach allows the user to specify either a
S global size or a global error bound.
(b) DWT, error 290 Chakrabarti et al. [7] leverage PAA and DWT and in-
troduce adaptive piecewise constant approximation (APCA)
w for time series. The authors suggest to infer approximation
’ ' segments from the underlying data to increase the approxi-
(¢) DFT, error 669 mation accuracy. The proposed algorithm starts by decom-

""""" posing the input into DWT coefficients. Only tlemost
significant coefficients are used to reconstruct the time se-
ries. Since the reconstruction step may yield up ¢s8&g-

ments, the algorithm greedily merges the most similar ones
R to reduce the time series tsegments. As illustrated in
Fig. 2(f), APCA improves over DWT by inserting true aver-
age values into the segments that are inferred from wavelet
coefficients. Being data-adaptive it also improves over PAA

e APCA still introduces higher errors than our greedy eval-

i uation algorithms. This is due to the underlying DWT de-

"""" e composition, which is not data-adaptive and breaks apart th
(D APCA, error 257 constant-value segments in the ITA relation, yielding éarg

approximation errors. The consequent greedy merging step
of APCA can only smooth these errors out, but cannot fix
T e them entirely.

PTA, 109
(9) error Palpanas et al. [20,21] propose a framework that ap-

peeedf . . . . . .
. proximates older time series entries with a higher error and
SE— 1 brmeresonef ™ keeps recent entries more precise. The user can specify a rel
(h) gPTA,, error 119 ative or absolute amnesic function that controls the amount

of error permitted at each time point. With an absolute am-
nesic function the number of output segments is minimized,
with an error at each segment that is upper-bounded by a
user-specified threshold. For an absolute amnesic function
The symbolic aggregate approximation SAX [17] a”dAA(t) = ¢ the amnesic effect is eliminated and the problem
its scalable version iSAX [22] allow very efficient near- hecomes equivalent to ATC. Choosing a relative amnesic
est neighbor queries by representing the input time seriggnction transforms the problem into an instance of APCA,
as a word of symbols. The symbolic representation is CONyhere the error has to be minimized subject to the maximal
structed in two steps. First, PAA is used to partition theetim ,,mber of allowed segments. The problem is equivalent to
series inta equal sized segments. Second, the segments ag&q_pounded PTA when a relative amnesic function is used
represented using different symbols in such a way that \y;in RA(t) = 1, that is, its effect is disabled by permitting
each symbol has approximately the same probability of ocz equal amount of amnesia at every time point. Similar
currence. Increasing the vocabulavyeads to more precise gPTA the proposed evaluation algorithm follows a dy-
representations. The limitations of PAA carry over to SAX. namic programming strategy. The two approaches are iden-
Elmeleegy et al. [8] propose an approach similar to ATCtical when dealing with one-dimensional time series data
that aims at guaranteeing a given error bound while maxand the above amnesic function. In this paper we extend
imizing the compression ratio of a continuous time serieghe strategy to multi-dimensional data and take advanthge o
data stream. The proposed algorithm constructs a new afemporal gaps and aggregation groups to significantly speed
proximation segment if attaching an incoming data point taup the evaluation. In addition, a greedy evaluation alanit
the previous segment exceeds an error threshold. The datpresented that merges adjacent tuples whenever more than
in each segment are approximated with a linear function. It entries are present in the heaf?T A follows the same
line with other stream approximation techniques, the infinidea. Beyond this we explore various early merging strate-

Fig. 2 Various approximations of time series data.



gies and show that shortly delaying the merging step caby two chrononsity,te], denoting its inclusive starting and
significantly reduce the approximation error. For timeeri ending points, respectively. ifht’ # 0, we say that the two
data and parametér= 0 for gPT A;, the two algorithms are intervals overlap (or intersect), otherwise they are disjo
equivalent. Next, we define instant temporal aggregation.
In summary, time series approximation algorithms do_ . .. .
not consider the constant value intervals in the ITA result.Deflnltlon L (IljstanF Temporal Aggregation) Letr be a
emporal relation with schem@ = (Aq,...,An,T), group-

When applied in the context of temporal aggregation, the)s tributesA — (A q te functiofse
might split such intervals and produce high approximationIng attributesh = {Ay, ..., A}, and aggregate functio
f1/Bu1,..., fp/Bp}. Furthermore, letoalescebe the coa-

errors. Moreover, temporal gaps in the data and the appro . tor I5 a A—anterT
mation of multiple aggregation groups under one global (er—eSCIng operator | _] antdy, N {rir cr ATA=gAtErT)
e all tuples ofr with grouping attribute values equal ¢p

ror or size) bound are not supported. PTA employs a mor dint ting t it Instant t I i
general data model and overcomes such limitations. Its datfgsndelf?n(:jszz ing ime poit Instant temporal aggregation

adaptive approach outperforms the time series algorithms i

terms of approximation quality (cf. Fig. 2 and Sec. 7). G'TAIA, F]r = coalescés| g€ mAJr At € AT Argy #OA
f=(fa(rge),..., fp(rge)) A
2.3 Histogram Construction s=gofoltt]}.

. . . dh hend= (Aq,...,A,B1,...,Bp, T).
Jagadish et al. [11] present an optimal, dynamic program{im as sche (A A B pT)

ming based algorithm for the construction of histograms for g ranges over all combinations of grouping attribute val-
one-dimensional data, given either a size or error boundies inr, andt over the time domain. For each combina-
The authors advocate the use of the sum square error atidn of g andt, the aggregation grougy; collects all argu-
show how to compute it in constant time, which leads to atmment tuples that have grouping attribute values equa to
overall complexity ofO(n?c) time andO(n?) space for the and are valid at timé. A result tuple s, is produced by ex-
histogram construction. Our algorithm for the precise com{endingg with the result of the aggregate functiofievalu-
putation of PTA emanates from this work and extends it forated over the non-empty: and with timestamjit,t]. Each
multi-dimensional data. Furthermore, we exploit the pres; is some aggregation function that takes a (temporal) rela-
ence of temporal gaps and aggregation groups in our datén as argument and applies aggregation to one of the rela-
and propose further optimizations of the dynamic programtion’s attributes. The resulting value is stored as theevalu
ming scheme. an attribute nameB;. The final step is coalescing of value-

equivalent result tuples over consecutive time pointstimo

ples over maximal time periods during which the aggregate
3 Preliminaries values do not change. The result of ITA contains uprte 2

] ) ] ) tuples, wheren is the size of the argument relation [4].
A relation schemas a tripleR = (Q2,A,dom), whereQ is

a non-empty, finite set of attributed, is a finite set of do- Example 1The ITA query“What is the average monthly
mains, andlom: Q — A is a function that associates a do- salary for each project?”in our running example (see
main with each attribute. Auple, r, over schem&is a fi-  also Fig. 1(c)) is formulated a%'TA[A F]proj with ag-
nite set that contains for eveAy € Q a pairA; /v; such that ~ gregate function§ = {avg(Sal)/AvgSa} and grouping at-
vi € dom(A). A relation, r, over schemaR is a finite set tributes A = {Proj}. The schema of the result relation is
of tuples overR. A temporal relation schemis a relation  (Proj,AvgSajT).
schema with at least one timestamp attribUtethat ranges
over thetime domaimA™, i.e., T € Q anddomT) =AT € A.
For simplicity we assume an ordering of the attributes an
represent a temporal relation schem&as (Aq,...,Am,T)
and a corresponding tuple Bs- (vi,.. ., Vi, t). For a tupler
and an attributé we writer.A to denote the value of the at-
tributeAin r. For a set of attribute& = {Aq,..., A}, k<m,
we definer. A = (r.Aq,...,r.Ay).

We assume a discrete time doma,. Its elements are
termed chronons (or time points/instants), equipped with @ Parsimonious Temporal Aggregation
total order<" (e.g., calendar months with the usual chrono-
logical order). Atimestamp(or time interval) t, is a convex In this section we introduce and define parsimonious tem-
set of chronons over the time domain, and it is representegoral aggregation, PTA, which conceptually comprises two

A property common to any ITA result relatios, is that
he timestamps of the tuples within a single aggregation
%roup do not intersect, i.e., for any pair of tupgss; € s
such thats # s; ands.A = sj.A we haves.TNs;.T = 0.
We term such (temporal) relatiosgquential For example,
in Fig. 1(c) the timestamps of all tuples with identi¢abj
values are temporally disjoint.



steps: (1) obtain the ITA result from the argument relation  To reduce the ITA resuls, to a specific size, the merge
and (2) merge adjacent ITA result tuples until a user specieperator is applied recursively. However, there ibaer
fied size or error bound is satisfied. We begin by describindpound cnin, for the size of the reduced ITA result, which
the merging of adjacent tuples and an error measure that is determined by the difference between the cardinality of
used to quantify the introduced error. and the number of adjacent tuple pairs that can be merged,
i.e.,Cmin=|s| — [{(s,Sj)|s,Sj € SAS < Sj}|. In our running
example, the ITA result contains seven tuples with four ad-
jacent pairs, givin@min=7—4=3.

Next, we introduce a (nondeterministic) reduction func-
gion that reduces an ITA result relation to a given size

4.1 Merging Adjacent Tuples

The ITA result is always a sequential relation, which shal
be preserved by allowing only adjacent tuples to be merge
Definition 4 (Reduction Function) Let s be an ITA result
relation,s < sj be two adjacent tuples i andc > cmin be

a size constraint. Theeduction p, of relations to sizec is

defined as

Definition 2 (Adjacent Tuples) Let s be a sequential rela-
tion with schemeS= (Aq,...,A,Ba,...,Bp, T) and group-
ing attributesA = {Aq,...,Ac}. Two tupless, s; € saread-
jacent s < s;, iff the following holds:

s sl <c,
p(s.c)=
p(s\{s;sjjU{s®sj}.c) [s>c

If the cardinality ofs is smaller or equal t@, the re-
The first condition ensures that the two tuples are valueduction process terminates. Otherwise, two adjacentsyple
equivalent in the non-temporal attributes. The second cors and sj, are substituted by the merged tugles sj. No-
dition requires that the tuples are immediately conseeutivtice the nondeterministic nature pfwhich allows any pair
and not separated by a temporal gap. of adjacent tuples to be merged. We will be more specific
about choosing tuples for merging later on.

(1) s.A=sjA,
(2) S.te=sj.tp — 1.

Example 2In the ITA result in Fig. 1(c) we have, < s <
S8 < S < Ss. Tuplesss andsg are not adjacenss 4 Sg, since  Example 4The ITA result relation in Fig. 1(c) is reduced to
the Proj-values are different, violating the first condition. sizec = 4 in three merging steps with(s,4). The reduced
Similar, ss,s7 andsy, s3 are not adjacent since they are sepa+elation in Fig. 1(d) is obtained by merging tupkss; into
rated by a temporal gap and violate the second condition. z; ands; @ (s4 ® S5) into z. Choosing different pairs of tu-

Definition 3 (Merge Operator) Let s be an ITA result re- ples for merging produces different results.

lation with schemaS = (Aq,...,A,B1,...,Bp, T), where

A = {Aq,...,A} are the grouping attributes anB = 4.2 The Error Measure
{B1,...,Bp} store the aggregate values. Timerge &, of
two adjacent tuples;,sj € S, 5 < s}, is defined as Merging tuples introduces an error with respect to the ITA

result, which we quantify using the following error measure

S@Sj:(S.A]_,---,S-Ak,VL-~~,Vp,[s-tb,sj-te]), q fy g g

18715 B + 15,.T[5, B Definition 5 (Error Measure) Lets, S A,B be as in Def. 3,
: |S‘_Td| - |s]j:T\ = for1<d < p. z=p(s,-) be a reduction o§, and let for eactz€ z, s, =

{s|sesAsA=zAAST CzT} be the set of all ITA result

The mergg operator produces a new tuple from.two IT'Atuples that are merged into For a set of positive weights,
result tuples, i.ez=s @s;. The values of the grouping at- Wi > 0,....wp > 0, theerror, SSEs,2), that is introduced

tributes qu are identical to _the ones af(andsj). The times- by reducingsto z is
tampz.T is the concatenation of the timestampsainds;. )
Since the aggregate values $fands; hold at every time B 2
point ins.T ands;.T, respectively, trJ1e new aggregate val- SSHs?) = z z leWSIS'Tl(S'Bd —2Ba)".
ues,vi,...,Vp, are computed by averaging over the times-
tamps, i.e.Vq is the weighted average &f.By ands;.By
with the weights being the length sf.T ands;.T, respec-
tively.

wherevy =

2672 5€S

This is the well-known sum squared error, which is given
as the total sum of the squared distance between the tu-
ples ins andz. More specifically, it computes for each tu-
ple,z € z, the squared distance (over all aggregation results,
Example 3Merging the two tuples; = (A,800,[1,2]) and  By,...,Bp) betweerz and the ITA result tupless € s;, that

s = (A,600,[3,3]) in Fig. 1(c) yields the result tupley =  are merged to produce The weightsng are used to lever-
1@ = (A, 73333,[1,3]) in Fig. 1(d). The average salary age the impact of the different aggregation attributes. The
is determined ag;.AvgSal= (2-800+1-600)/(2+1) = choice of such weights is out of the scope of this paper; the

73333. interested reader is referred to Wettschereck et al. [29].



Example 5Consider the merge afy = (A,800,[1,2]) and  to cmin tuples. Condition 4 ensures that no reduction to a
s = (A,600[3,3]) in Fig. 1(c) to tuplez= (A,73333,[1,3]) smaller or the same numbef,< c, of tuples exists with a
in Fig. 1(d). With a weight of 1 for the only aggregation at- smaller error. Again, the result may not be unique.

tribute AvgSal the introduced error iSSEs, z) = 1-2(800— . . .
73333)2+ 1-1.(600—73333)2 = 26 66667. Example 7With an error threshold = 1 we obtain obvi-

ously the maximal reduction of th@oj relation to three tu-
ples. Allowing 2% error yields 4 result tuples as in Fig. 1(d)
4.3 The PTA Operator

We provide two variants of the PTA operator. First, size-5 PTA Evaluation Using Dynamic Programming
bounded PTA reduces the ITA relation to a user-specified
size, while minimizing the introduced error. Second, error For the evaluation of PTA queries, ITA is computed first,
bounded PTA reduces the size of the ITA result relation afollowed by a reduction of the ITA result until a given size
much as possible, while maintaining the total introduced eror error bound is satisfied. In this section we propose algo-
ror below a given threshold. rithms PTA, and PT A for the precise evaluation of size-
bounded and error-bounded PTA, respectively. While any
Definition 6 (Size-Bounded PTA)Let r be a temporal |TA algorithm can be used for the first step, we adopt a dy-
relation with schemaR = (Aq,...,An,T), grouping at-  namic programming based approach to compute an optimal
tributes A = {Aq,...,Ac}, and aggregate functions =  reduction of the ITA result. We further propose various op-
{f1/Ba,..., fp/Bp}, and letc > cmin be an application-  timization techniques to improve the basic DP scheme, such
specific size constraint. A relatioz is the result of ascomputing the error in constant time and exploiting tem-

size-bounded parsimonious temporal aggregatian= poral gaps and aggregation groups to prune the search space.
GPTAIA F, dr, iff

(1) s=9"TAAFr,

(2) Z= p(S,C),
(3) 3Z(Z = p(s,c) ASSHs,Z) < SSHs,z)). Let s= {s1,...,s} be an ITA result relation sorted on
the aggregation groups and, within each aggregation group,
Relationsis the ITA result, which is reduced mtuples  along the time line. Then each pair of consecutive tuples tha
in the best possible way, that is, there is no better reduictio gre non-adjacen$ % .1, marks a boundary (temporal gap

Z, of sto ¢’ < ctuples that would introduce a smaller error. or change of aggregation group) that cannot be crossed dur-
A PTA result is not necessarily unique. If different reduc-ing the merging process.

tions to sizec introduce the same minimal error, all of them

represent valid PTA results. Example 8Consider the ITA result in Fig. 1(c), which is
sorted first by theProj attribute and, within each group,

Example 6There are four different ways to reduce the ITA j chronological order. It contains two boundaries, namely

result in Fig. 1(c) toc = 4 tuples. Fig. 1(d) shows the best s s; since the two tuples belong to different aggregation

shows a different reduction, which has an error of 63 000. temporal gap.

5.1 Basic DP Scheme for Size-Bounded PTA

Definition 7 (Error-Bounded PTA) Letr, R, A, andF be Lets; = {s,...,sj} denote the first tuples ins and
as in Def. 6 ance, 0 < € < 1, be an application-specific S\'Sj = {Sj 1....,S} the rest. Then the reduction sto c
error bound. Furthermore, |8SEnax = SSES,p(S,Cmin))  tuples,p(s,c), can be defined recursively as follows: find a

denote the largest possiple error. A relatipris the re- reductionp(s;,c—1) for somesplit point j and merge the
sult of error-bounded parsimonious temporal aggregation remaining tuples into one, i.g(s\ s;, 1). For the reduction

_ @PTA i X . .
z=9"""AF,¢]r iff to be optimal, the sum of errors introduced on both sides of

1) s=9"TAAFr, j must be minimized at each recursive step. To avoid that
non-adjacent tuples are merged, we set the error of merging

(2) Je(z=p(s.c), non-adjacent tuples to infinity. Thus, merging altogettmgr a

(3) SSHs,z) < &-SSEhax, subses C syields an infinite error i§ contains at least one

(4) $Z,d(Z =p(s,d)NC <CcASSHEs Z) < SSEs,z)). pair of non-adjacent tuples, A s11.

Relationz is a maximal reduction of (to a sizec) such  Example 9Fig. 3 illustrates the four options for the split
that the introduced error is smaller or equaktmultiplied  point, j. For instance, forj = 3, the solution is to find an
by the largest possible error, which occurs whésreduced optimal reductiorp(ss, 3) and to mergeu, ss, Ss, Sy into one



tuple, which yields an infinite error sinGe £ s £ S7. The  point j that tells us where to spliin order to construct the

only split point with an error different frorw is j = 6. final result. The tuplesj,4,...,s, are then merged into a
single one, whereas tuplss ..., sj are merged inte—1 tu-
ples, following the next split point that is stored in thelcel

5 25— — 5 . (c—1,j), etc.
—= Example 11Figure 5 shows the split point matrix in our

WMS kb running example. The split points of the optimal reduction

p(4.3) j—4 S5 DS DSy are framed. The first split point is= 6, the value of cell
AMNANANNANNNANNNANNNANNS (4,7). We generate the result tuple= s; and proceed to re-
oo PSS ool =D il ducess to size 3 by taking the value of c€lB, 6) as the next

p(ss,3) j—6 split point. We generate the result tuge= s5. Then we
ANNNANNANNNNNNNNNNNNNNNNNNNNNNN proceed to reducs; to 2 tuples, obtaining, = S3s® s P Ss.

Fig. 3 Four possible ways to reduce the ITA result to four tuples. Finally, we reduces, to size 1, yieldingy = 51 & s, (the last
split point in cell(2,1) is 0).

To find an optimal reduction, we propose a dynamic pro-

gramming technique that constructs emor matrix, Ecxn, i=1 2 3 4 5 6 7
with crows andn columns. A cell(k,i) represents the small- k=1 | 0 @ 0 0 0 o0 O
est error (_)f reducing to k.tuples. The matrix is filled incre- 5| _ 1 1 2 5 0
mentally in each step using the values that have been com-
puted in the previous steps, i.Ex; = 3 - - 2 3 3 6
: 41 - - - 3 3 5
min {Ex1j+ 6]
k-1<j<i ’
SSHs\sj,p(s\sj,1))} k>1, Fig. 5 Split point matrixJ.
SSHs,p(s,1)) k=1AS1<...<s,
o0 k=1A-(s1<...<5).

. i 5.2 Efficient Computation of the Error
The matrix is filled row-wise for ak =1, ..., c, and, for any

fixedk, in increasing order dffori=1,...,|s. Ateachstep  The pp scheme frequently needs to compute the error that
k, the values computed in stép-1 are used. At the end, s introduced when a set of adjacent tuples is merged. Ja-

the valueEcn contains the error introduced by an optimal gaqish et al. [11] introduce a technique to calculate thererr
reduction of relatiorsto c tuples. for one-dimensional data in constant time. We extend their

Example 10Figure 4 shows the error matrix that is con- approach for mu|t|-d|men3|0|jal d"’?ta- . .
structed when reducing the ITA result in our running exam- Letsbe an ITA result relation with aggregation attributes

ple to size 4. The matrix is filled starting from rdwe= 1. To B = {Bl"“’Bp},' .The add't'on"?‘l information that 1S re—.
fill the second row. the data from row 1 are used. etc. Everduired for an efficient computation of the error is stored in

tually, cell (4,7) contains the error of the optimal reduction. WO matricesSo, g, SShxy and a vectot g, which are de-
fined as follows:

i=1 2 3 4 5 6 7 o Tl
= sj.T|sj.B
0 26666 67500 208333 269285 o S le| i-T15;-Ba,

=1

2| - 0 5000 41666 49166 269285 o i ,
3 - - 0 5000 6666 49166 269285 SS*J:Zl|Sj~T|Sj~Bd,
4

=

- - - 0 1666  6666] 49166| i

Li= Z |Sj .T|.
=1

Sy, is the sum of theBy values over all tuples frors; to
s, SSis the sum of the squares of tiigy values, and.
In order to construct the reduced relation, we maintairis the sum of the lengths of the timestamps. Observe that
a split point matrix Jexn. A cell (k;i) in the matrix stores precomputing this information does not introduce any addi-
the value ofj that led to the minimal error value when com- tional overhead since the ITA algorithm can fill the matrices
puting Ex ;. Consequently the ce{t,n) stores the first split  while producing the output.

k

Fig. 4 Error matrixE.
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Using such information, the error of merging a set ofspeed up the evaluation &; = min {Ey 1+ SSHEs\
ITA result altogether can be computed@gp) time, where k<<
p is the number of aggregation attributes in the ITA result.
This is shown in the following proposition.

sj,P(s\sj,1))} by reducing the value range of the variable
j- The bounds depend on the positions of the non-adjacent
tuple pairs in the sorted input relatian Thus, the perfor-
mance improvements are data-dependent.

Let G be a vector that stores the positions of the non-
adjacent tuple pairs in the sorted input relatign,e., Gy, =
lif 5,941 €S § £ 5.1, is themth pair of non-adjacent

p (Sa,j — Sji-1)? tuples. We use the information {& to compute the bounds
SSEs;, {z}) = dz W5 [ss“ —SSyi1- L, L. | ofiand]variables.

Proposition 1 Lets, = {s,S1,...,5j} C ssuch that s<
... =< sj. The error that is introduced by mergirsginto one
tuple, z, can be computed as

Proof From Def. 3 of the merge operator we have thatExample 13For the ITA result of the running example we
zBy = ﬁ Y scs, |S.T|S.Bg. We rewrite the error equation in haveG = (5,6), which is illustrated in Fig. 6. The first pair

Def. 5 as }ollows: of non-adjacent tuples B £ ss. The second pair iss 4 S7.
p
SSHs,, {z}) = WZ[ sT|sB?—
Ao 7)) [gl d S;J 584 s1= (A, 800) s3=(A,500) S5 = (A;300) 57 = (B,500)

s = (A, 600) s4=(A,350) ss = (B,500)
2zBy4 S [sT|sBg+zB3 § |sT } 1 1

| |
———— —— G1 Gz
=[zT|zBy =|zT]|

Fig. 6 The vector of gapsG.
p _
=Y Wi| > IsT|sB - |z.T|z.B§}

=1 lsey First, we determine an upper boumgsy, for the variable

- W2 [ ST|sBZ (Sses, |ST[SBg)? i under whichEy; does not evaluate to infinity. Intuitively, if
_dgl d SEZSZ I |zT| the number of non-adjacent tuple pairssinis greater than
D k, then merging across gaps is unavoidable, and, we are sure

_ e 2
=S wW3|SSi—SSii1— (S‘”Sd'l)} . thatthe erroEy; is infinite. As long ak < |G|, the valueGy
L Li—Lia tells us the position of thk-th non-adjacent tuple pair. Con-
O sequently, the subset= {s1,...,5¢,} C s hask—1 non-
adjacent tuple pairs and is the maximal subset that can be
Example 12For the ITA result in Fig. 1(c) the matrices and reduced to siz&. Thereforejmax= Gk and for alli > imax

vectors are given as follows: we haveEy; = ». Whenk > |G|, the rule may no longer be
applied and we séfaxequal to the size of the input relation,

S=( 1600 2200 2700  3400Q...), imax= |S|. The more non-adjacent tuple pairs are present in

SS= (1280000 1640000 18900002135000... ), the relation, the more advantageous is this upper bound to
L= 2, 3, 4, 6,...). speed up the evaluation.

Using this information, the error of merging the tuplesgyample 14Consider the computation & ; using the vec-

{s2,83} into a tuplezis computeg asSSE{%,%},{Z}) =  tor G = (5,6) shown in Fig. 6. The valu6; = 5 indicates

1890000- 1280000~ % =5000. that at most the first five tupless = {si,...,s5}, can be

merged into one tuple without crossing a gap and inducing

an infinite error. Therefore, givea= 1, the upper bound for
5.3 Pruning the Search Space of the DP Scheme i iSimax=G1 = 5; foralli > 5 we haveE; ; = «. Givenk = 2

the upper bound faris imax= G2 = 6. For all greater values

Recall that filling the error matrik involves computing the  f k the rule does not apply andannot be upper-bounded.
value of each cellk,i) forallk=1,...,candi=1,...,nus-

ing the above dynamic programming equation. This leadsto Second, whenevd,; must be evaluated, we can deter-
an algorithm whose performance depends quadratically omine a lower boundjmin, for the variablej. The recursion
the input size and linearly on the output size. In this sectio formula for Ey; determines the error of merging the tuples
we introduce bounds for the variableand j (in the equa- s\ sj into one tuple, which will be infinite i§ \ s; contains
tion) to improve the performance of the algorithm. Bound-at least one non-adjacent tuple pair. This is the cagasf
ing variablei allows us to avoid the computation of some smaller than the position of the right-most non-adjacent tu
Ey; if that would anyway evaluate to infinity. Otherwise, we ple pair ins, if such a pair exists. The lower bound fpis
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therefore the position of the right-most non-adjacentdupl 1 Algorithm: PTA(r,A,F,c)

pair, i.e.,jmn=max{G, | G <iAnl =1,...,|G|}. If 5 con- 2 s 9'TAA Fr;
tains no gaps, we séhin = k— 1. Hence, to evaluatéy; it 3 Initialize G,L,S,SS _
is enough to loop only ovejmin < j < i. To efficiently de- 4 Initialize E,J to « and 0, respectively;

AR . 5 fork=1,...,

termine jmin, We use binary search ov&. If there are no ork=1,..,cdo B S
. 6 if k< |G| then imax= Gk else imax=s];

gaps ins, the search does not return any result and we set; fori=Kk,...,imaxdo

jmin = K— 1. Whenjmin = Gk_1, the subses has exactlyk 8 if k= 1then
gaps and the only choice to spiitis atj = jmin. 9 Eii + SSHs,p(s,1));
10 J1i < 0;
Example 15To computeEs, the basic DP scheme evalu- E E|Sejmir‘% max(k—1.G1[Gy <iAl =1.....[Gl):
ates thesSEof merging the tupless\sj for j=2,...,5. The |5 if Gy_1 = jmin then
right-most non-adjacent pair & iS jmin = G1 =5. There- 14 i< Jmin;
fore, only for j = 5 the error is different fromo; the error 15 Eki < Ex-1j+ SSEs \sj,p(s\5,1));
computation forj = 2, ..., 4 can safely be pruned. 13 else\]k"i b
18 for j=i—1,..., jmindo
19 erry < Ex_1j;
5.4 The Size-Bounded PTA Algorithm 20 errp < SSHs \ sj.p(s \ sj.1));
21 if erry+errp < Ey; then
Figure 7 shows algorithr®TA; for the precise evaluation ;i L JEkji e ey,
of size-bounded PTA queries using the above DP scheme. Lo o
First, the ITA results, over the input relation is computed | L iferr2>Eythen break

using any ITA algorithm. (We assunsgo be sorted by the L -
grouping attribute#\ and, within each group, in chronologi- 25 2+ 0,n« |s|;
cal order; if not, an additional sorting step is requiredext\ 2‘75 Wh"? i>JO do

. Cc,n»
the vectorsG, L. and mz?\trlf:e_§, SStha_t are need_eq f_qr the g 2¢ 20{8j10... B}
error computation are initialized. Notice that this inliza- 20 | nejicec—1;
tion could be pushed into the ITA algorithm to avoid an ad- 34 retym z:
ditional scan ok. Next, the errork, and split point,J, matri-
ces are initialized. The following loop fills these matritgs

implementing the DP scheme together with the performance

?mprovements desc'ribed abqve. For each matrix kowe  of the upper boundax. Similarly, we computeEs; for all

iterate over columns, computingEy ;. The upper bound for j _ 2,...,6 and avoid the evaluation & . Whenk = 2 and
i is obtained from the gap vect@. Whenk = 1, we imple- j s petween 2 and 5, the loop ovgranges between 1 and
ment the first condition in the scheme, and the evaluation ofjowever, wheri is 6, the value of is fixed at 5. This way

second condition. When the number of non-adjacent pairgnq the final output relation shown in Fig. 1(d) is produced.
in the subse$ equals tdk, the only possible split point is at

j = jmin. In all other cases, an iteration oviis necessary. The runtime complexity oPT A; depends on the ITA al-
We lower-bound the variabli that is,j must be greater than gorithm and the merging step. We assume that ITA is com-
the index of the right-most non-adjacent pair in the sugset Puted by one of several algorithms that have been proposed
Recall thatE,; has been initialized to infinity. By iterating in the past, e.g. [4,15,18]. Their average running time is
over j in decreasing order, we choose any smaller value. IP(nlogn), wheren is the size of the input relation. In the
has been shown by Jagadish et al. [11] thstould be iter- merging step we evaluate the error within three nested |oops
ated in decreasing order, i.e., frdm 1 towardsjmi,. Since ~ One per variablé, i, andj. The first two perform at most

the value oferr, increases with each iteration, the loop canandn iterations, respectively. The maximum number of it-
be safely broken wheg, alone exceeds the smallest error €rations inj equals to the size of the largest adjacent tuple
Exi found so far. The final while loop computes the outputsubset in the ITA result, sag. The error evaluation takes

using the split point matrid as described before. O(p) time for p aggregation functions, howevegris usually
insignificantly small and can be regarded as a constant. This

Example 16The evaluation oPTA; over theproj relation  yields a runtime complexity ad(cnq) for the merging step
starts with the computation of the ITA ressltThe tuples in the PTA; algorithm. In the worst case, when the dataset
are enumerated from 1 to 7 as in Fig. 1(c). Nek{, is  has no temporal gaps or aggregation groagps,n and the
computed for ali = 1,...,5. The value€;s andE1 7 are  complexity ofPT A is O(n?c). The space complexity of the
infinite and their evaluation will be avoided with the help algorithm isO(n?) as the split point matrixJ, must be kept

Fig. 7 The PT A algorithm for size-bounded PTA.
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in memory entirely. On the other hand, only the two most3.= (A 800) S5 = (A,500) S = (A,300) s = (B,500)

recent rows of the error matri€, are necessary. %7 (A,600) %=(A350) | s=(B.S00)

73 = (B,500)
2 = (A, 420) 74 = (B,500)
To answer error-bounded PTA queries, we use the same DRy. 9 The dendrogram of the greedy merging steps.
scheme as for the size-bounded algorithm. The DP solution
computes all optimal reductions ko= 1,2,... tuples in in-
creasing order ok. As k increases, the error monotonically 8S the ITA result tuples arrive, i.e., before the whole resul
decreases. Thus, the relation with the smakesat satisfies computed. In this way the memory requirement is reduced
the error bound is the solution. to O(c+ B), wherec is the PTA result size an is typically
Figure 8 depicts the evaluation algorithm for error-@ small fraction of the ITA result; the runtime complexity fo

bounded PTA, which is similar to the algorithm in Fig. 7. the merging step i©(nlog(c+ B)).

The variableEnay is set to the maximum non-infinite error,

i.e., the error that would be introduced by merging all ad-

jacent tuples together. This value can be computed togeth€rl Greedy Merging Strategy

with the ITA result at no additional cost. In the main loép,

iterates from 1 to the cardinality of the ITA relation, where Let s be an ITA result relation. Thgreedy merging strat-
the error matrixE, and the split point matrix), are com-  €dy (GMS) reducess in an iterative manner until the size
puted. The loop is terminated when the error exceeds OF error bound is satisfied. At each step, it operates on an

The runtime complexity of this algorithm is the same as forintermediate result relation, choosing from it a pair of the
PTA. most similar tuples for merging. Intuitively, the smalléet

error of merging two tuples is, the more similar they are.
By replacing the chosen pair with the newly merged tuple a

5.5 The Error-Bounded PTA Algorithm 7 = (A, 800)

1 Algorithm:  PTA(r,A,F,€) reduced intermediate result is obtained. When several pairs

2 s 9'TAAFr; of tuples are equally similar, any pair can be chosen. We

3 Emax ¢ SSHS,p(S, Cmin)); elect to merge the pair with the smallest timestamp value.

4 Initialize S,SSL,G,E,J; . . . .

5 fork=1,...,|s do This choice, however, does not influence the total error in-

6 Fill E,J using lines 6-24 in Fig. 7; troduced by the greedy merging process.

7 if E[|s],k] < &-Emaxthen

8 €+ '; Example 17Fig. 9 illustrates the greedy merging steps over

9 break; the example ITA relation with size bourd= 4. The first tu-

10 Build outputz using lines 25-29 in Fig. 7; ples to be merged (i.e., the most similar ones)sarendss

11 return z; followed bys, ands;. The two new tuples are then merged
Fig. 8 ThePTA algorithm for error-bounded PTA. to produce the final result tuple. The result of greedy

merging differs from the precise PTA result in Fig. 1(d),

where tuples, is merged withs;. The DP algorithm intro-

duces an error of 49 166, while the error of the greedy ap-

proach is 63 000, yielding an error ratio of 1.28 between the
6 PTA Evaluation Using Greedy Merging two.

The DP approach computes a precise result with minimal In order to apply GMS, the notion of similarity between
merging error, but incurs a relatively high computationaltuple pairs needs to be precisely defined. Consider a sequen-
cost for large relations. Many applications, however, wloul tial relations’ that is obtained from the initial relatios, by
benefit from a quick and cheap computation of an approxiapplying the reduction operator. Merging a pair of adjacent
mate answer to PTA queries. In this section we present atupless € s, sj € ' leads to a new relation, say Then, the
alternative evaluation strategy, which greedily merges thdissimilarity of the tupless ands; is the error introduced
most similar pairs of ITA result tuples until the size or er- by the merge, i.e.dsim(s,s;) = SSHs,z) — SSHs,s)). In

ror bound is satisfied. The additional error introduced byorder to determine the dissimilarity using this equatitwe, t
greedy merging is reasonably small and upper bounded. Weource relatiors must be available, which is not practical if
introduce two novel algorithmglPTA. andgPTA;, for the  we want to start merging before the whole ITA result is com-
greedy evaluation of size- and error-bounded PTA queriequted. The following proposition shows thiginT(s,sj) can
respectively. We show that greedy merging can commendee determined by considering only the tupdeands;.
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Proposition 2 Letsbe a sequential relatiors = p(s,k) be  Proof By the definition of the greedy merging strategy, the
a reduction to size k, andbe obtained frons' by merging  error introduced by the merge of two most similar tuples in
the tuples sc ,sj € S to § &'sj = z€ z. The dissimilarity Kis
of the tuples ss;j is dsin(s,sj) = SSE{s;,s;j},{z}). SSEE, 1) — mir:k{dsin(s,sj)}.

§.Sj€
Proof Lets' C sbe the tuples isthat make ufs, i.e., for all S5
s€ 5 we haves/A] = §[A]As.T C §.T. Lets] be defined
for sj in a similar fashion. Thers® = " Usj constitutez
Since the sets'\ {s,s;} andz\ {z} are identical we rewrite

The minimum is upper-bounded by an average which is, in
turn, upper-bounded by the total error, i.e.,

dsim(s,s;) as SSHS, & 1) < kfll Y dsims,s))
‘SjGSk
dsim(s, 5;) = SSES', {2}) — SSES',{s,5,}) 5%
— SSEs, {z}) — SSES {s}) + (a) < 1 C-SSES2)
SSEs], {z}) - SSEs|, {s}}) (b)

C is a constant whose minimal value may vary depending
on k, yet there is a value that satisfies akiyAccording

to Proposition 2, the errdBSES", s°) made by the greedy
algorithm is the sum of errors made at each intermediate
merging step, i.eSSES", &) = y¢7L SSH¢, &1). Replac-

ing the summand with the upper-bound we §8ES", s°) <

The summatioria) + (b) is possible because the tupkess;
are adjacent, i.e., they do not overlap. Recall, that acogrd
to the merge functiors; = ﬁ Y ses [S.Ts. Using the defi-
nition of the error, we can rewrite equati¢e (and similarly

(b)) as C-SSEs",z) 3¢t L5, which leads to the error bound of the
SES &
(@) = z sT|(s—2)2— Z sT|(s—5)2 theorem, namel SS&I’ié",z)> <C- Zﬁiﬁkfll <O(logn). O
ses sey A straightforward implementation of the greedy merg-
=|s.T|(Z-2z-5+5) = SSH{z},{s}). ing strategy is to use a priority queue (e.g., a binary heap)

to find the most similar tuple pairs. After inserting all ITA
Since the square sum error is defined as a sum of individudliple pairs in the heap, the merging process starts, taking
errors ands, sj are adjacent, we have O(nlogn) time andO(n) space to compute any reduction of
n ITA tuples. In the following we describe a more efficient
dsims,s;) = (a) + (b) = SSE{z},{s}) + SSE{z}.{s;})  implementation of the greedy merging strategy for size- and
— SSE{z}.{s.5}). error-bounded PTA queries, which starts the merging pro-
cess before the complete ITA result is available.

O
6.2 A Greedy Algorithm for Size-Bounded PTA
In contrast to the DP approach, GMS does not neces-

sarily compute an optimal ITA reduction. At every greedyg 2.1 Basic Idea
merging step, there is a chance of making a sub-optimal
decision. Therefore, the more merging steps are performetlve present thgPT A algorithm for the evaluation of size-
the more additional error can be accumulated. The followingpounded PTA queries, which integrates the computation of
theorem shows that the error ratio of the greedy and optimahe ITA result and greedy merging into one process. In a nut-
solution is asymptotically upper-bounded by the logarithmshell, gPT A reads ITA result tuples as they become avail-
of the number of merging steps. Experimentally we showable and inserts them into a binary heap, which is used to
that the greedy reduction is indeed very close to the optimadfficiently identify the most similar tuple pair for merging
one. Whenever the heap contains more tlatuples, the algo-

rithm attempts to merge the tuple at the top with its im-
Theorem 1 Lets" be a sequential relation of sizesf,be a mediate predecessor, which requires some care. The tuples
reduction ofs” to ¢ tuples obtained using the greedy merg-are only merged if GMS operating on the whole ITA rela-
ing strategy, and be an optimal reduction o to ¢ tuples  tion would also choose to merge them. Such a situation can
obtained using PTA The error ratio between the two solu- only be identified if the last two tuples in the heap are non-

tions is adjacent as stated by the following proposition. At any time
during the computation the heap contains at nees{3 tu-
SSES',s°) <O(logn). ples. Sinces is typically small,gPTA improves over GMS

SSEs", z) in terms of running time and space efficiency.
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Recall that the ITA result tuples come sorted along theby merging subsequent tuples. Therefore, to keep the heap
aggregation groups, and, within each group, along the tensize small we use a parametér,to specify the minimum
poral dimension. We enumerate them from Inté.e.,s=  number of adjacent tuples that have to follow the merge can-
{s1,...,S}. Given a subset dod, the following proposition didate for it to be merged. We will show experimentally that
specifies when GMS will merge the most similar tuples.  with d = 1 the difference betweegPTA and GMS is neg-

ligible, yet space and performance gain is significant.

Observe that + 0 is essentially the lower bound of the
heap size. In the worst yet unlikely case the heap size will be
equal to the ITA result size. The higher is the valuépthe
closer is the final result to that of GMS. Whén= o, gPTA
and GMS produce the same output as shown by Theorem 2
Proof The GMS will not elects,s 1 for merging as long below.
as there are more similar pairs $nSinces,s 1 are most
similar insj1, all pairs which are more similar than s ;1

(if any) must be ins, \ sj. Therefore, leaving,s 1 intact, g2 o Heap Data Structure
the smallest intermediate relation produced by GM$ is

{s1,-:8,841,.-,8],8j:1@ - O} Sincels| > [sj| > ¢, e yse a binary heap to avoid scanning the entire inter-
more merging steps are needed to rects’,lct.e sizec. Sinceé  agiate relation in search of the most similar pair of tu-
the two tuplessj, sj1 & --- @ s are not adjacent, the most a5 Given a relatiors, we represent a tuple € s as a

similar pair ins to be merged nextcan only Bes+1. 0 odeN that records the following information: the sequence

Example 18Consider reading the first five tuples; =  number of the tupleN.id), the tuple itself ¢), a pointer to
{s1,...,Ss}, of the ITA resultin Fig. 9, and let the size bound the previous (in chronological order) noder¢\), a pointer
for the PTA result be = 4. The tupless; < s are the most to the next nodenex?, and the error that would be in-
similar ones, yet they cannot be merged since the tuple t§oduced by merging with the previous tuplekgy), i.e.,
be read nextss, might form an even more similar pair with N-key= SSEs, {N.s® N.preus}). The key is set teo if N
ss. Therefore, we read ahead an get= {sy,...,ss}. Since andN.prevrepresent nhon-adjacent tuplessas the first tu-
s £ S6, the GMS has to make a merge in the first five tuplesP!€:
independent of the tuples that will follow. We define the following operations on the heapsERT
creates a new node for a tuple and inserts it into the heap;
Proposition 3 provides a criterion to perform early merg-his includes also the computation of tkeyvalue. FEEK
ing, yet guaranteeing the same result as GMS, namely: {fstyrns the top node\, but does not remove it from the
more thanc tuples are in the heap and the last tuple pair isneap. MERGE removes the top nodey, off the heap and
not adjacent. When temporal gaps are rare or the aggregati%rges the tupl&\.s into the preceding nod® = N.prey,
groups are few, a large portion of the ITA result (in the Worslyie|dingPs= Ps@N.s. The pointer® nextandN.next prev
case the whole result relation) may be inserted into the hegge updated, the key valuesMfprevand ofN.nextare re-

before a non-adjacent pair arrives. To avoid the heap grovsomputed, and the heap structure is updated. The Fiad
ing much beyond size, we propose a heuristic to deter- yemains unchanged.

mine whether the currently most similar tuple pairs 1,

would also be merged by GMS. Suppose tais the last . ) ) o
tuple in the heap and there is a more similar pairsc.1, Example 19Figure 10 depicts a binary heap. Solid lines

in the ITA result that is connected .1 by a sequence represent parent—chilq relationships, dashed. lines atelic
of adjacent tuples, but has not yet been inserted into thBrévandnextlinks. In Fig. 10(a) the heap contains the whole
heap, i.€.81={St....,8,S41,--,5j, .-, S 1}, Where ITA result. The key oSl is mflmte sinces; is the first tuple,
Si1< ... < S1. GMS would first mergese, Sc.1. Since yvhereas the keycs‘a_ls_lnflnlte beca_tug.% andsg are not ad-
the merge results & sc:1, might be more similar te 1 jacent. The most similar Fuple pair $3,S5. Thus, the podg
thans,s.1 are, the new tuple is next merged with ;. on the peak represergswith the key value 1667, which is

This might propagate back, asd1 may potentially become the error of mergings andss. Figure 10(b) shows the heap
after performing one merge. Nodgis merged into nods,

more similar to its new successor (which is the result of seve" ™ X
eral merging steps) than . In such a situation, merging Which now containsy & ss. The key value ofs © s andss
s,5..1 would be a mistake, leading to a result that is likely to@r€ ré-evaluated, and thextpointer ofs & ss and theprev
be different from the GMS result. However, the more tupled?CiNter ofss are updated. The new peak nodejsthuss,
follow the current merge candida®,s . 1, the lower is the ~@Ndss will be merged next.

probability that the similarity of,s.1 will be influenced

Proposition 3 Letsj;1 = {s1,...,5,S+1,.--,Sj,Sj+1} be a
part of the ITA resuls = {sy,...,s} and $ < 51 be the
most similar pair of tuples isj 1 for some i< j. The greedy
merging strategy operating aamerges sand $,1if j > ¢

and § A sj 1.
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(1667s5) « -~~~ deviate from GMS result. Whed = « the effect of the pa-
/ H \ l rameter is eliminated and merging will only happen when
(50003) k- - - - - Lo » (15000s4) non-adjacent tuple pairs are discovered. In that case the al
/ \ \ '.\ / \ gorithm is guaranteed to produce the same result as GMS. If
+

none of the two conditions is true, merging is not possible.
We break the cycle and wait for more tuples to be inserted
into the heap. Finally, if the whole ITA result is read and the
heap still does not satisfy the size bound, we merge the the

(.51) « - > (3666752) = (,55) === (*0,57)
(a) Before merging

L -----»(500083) ¢ -~~~ - ;
: \ most similar tuples untiH| = c.
L T
(36667s2) .--->(563334®s5)
/ » \ 7 1 Algorithm: gPTA(r,A,F,3,c)
I ig .
(c0,81) « -7 (00,8) ¢ - = - ----- > (00)s7) 2 H..F new empty heap; .
’ ’ ’ 3 Initialize the ITA operator wittF, A, andr;
(b) After merging 4 LastGapld« 0; BG+ 0; AG+ 0;
5 while s « next tuple fron#%'TA[A F]r do
Fig. 10 Binary heap used in thgPT A algorithm. 6 N < INSERT(S);
7 if N.key= o then
8 LastGapld« N.id;
6.2.3 gPTA Algorithm 9 BG«+ BG+AG,
10 AG <+ 1;
. . 11 else
F|g_ure 11 s_hows the algorithgPT A for the_ greedy eval- | AG«AG+1;
uation of size-bounded PTA. It takes as input parameters13 while [H| > cdo
the size boundg, and d. The first step is to initialize an N« PEEK():
empty heap, the ITA operator that produces a sorted outis if N.id < LastGapld\BG > cthen
put, and three variablekastGapld BG, andAG. Variable 16 ‘ BG« BG-1;
LastGapldstores the sequence number of the last seen nont’ else'\# T\JR;?’LastGapldA N hass adjacent
adjacer?t tuple pair, i.e., it.is equal to tNed of the last seen successorthen
node with key valueo. VariablesBG andAG store the num- 19 AG«— AG—1;
ber of tuples that preceed and, respectively, succeedghe la20 MERGHK),
non-adjacent nodé,astGapld Trivial modifications to the 21 else _
ITA algorithm proposed by Bhlen et al. [4] are necessary 2 | L break

to allow processing the tuples one by one as they become, | e H| > ¢ > Cin do
available from the operator. 24 | MERGE);

For each incoming ITA tuple a new nods, is created 25 return H:
and inserted into the heap. N.key= o, the node repre-
sents a non-adjacent pair, varialhlastGapldis set to the
sequence number of this node aB@ is increased by the
value of AG. Otherwise AGis incremented by 1.

Fig. 11 Greedy algorithmgPT A, for size-bounded PTA.

Example 21Consider runningPT A; over theproj relation
Example 20Assume that the first six tuples of the ITA re- with c=3 andd = 1. Figure 12 depicts each intermediate
sult in Fig. 9 are read. Since five tuples precede the latestate of the heap. The ITA tuples come sorted: first the group
gap,BG = 5. Only one tuple follows the gap, thé&s=1.  “A’and only then the group “B". In (a) the heap contains the
Finally, LastGapld= 6 indicates the non-adjacent tuple thatfirst four ITA tuples. The merging process can start as the
follows immediately after the gap. most similar pairs, andss, has 1 successor. In (8) ® s3

has been created to keep the heap size equal to 3. Next, tuple

When the size of the heap exceeds the PTA size boung; is inserted leading to (c) where the tuple at the top of the

¢, the merging process starts with the second while loopheap isss. Even though the size of the heap exceedhe
First, the node with the smallest key value is read from thenerge cannot happen sinsgdoes not havé = 1 succes-
heap. Then we check whether merging can take place usirgprs. Observe that tupss may happen to be more similar to
Proposition 3. If the condition evaluates to true, we prdcee ss (which is not known yet) and, therefore should be merged
with merging. Otherwise, we make use of the heuristic anavith it. When tupless arrives (d), it becomes clear that merg-
only check whether the node has at leastdjacent succes- ing is possible. The heap now contains five tuples. The algo-
sors. The higher i®, the less likely it is that the choice to rithm repeatedly merges adjacent tuples (e,f) until the siz
merge is different from that of GMS and thgPT A will constraint is satisfied again. Specifically,is merged tcss
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@isert] s [ < [ <s | <w| to identify tuple pairs in a subset of the ITA result that will
be merged by GMS.

M) Mergef s [ <nos | <s |

Proposition 4 Letsj;1 = {s1,...,5,5+1,.--,Sj,Sj+1} be a
@nsert] s [ <%6%| <u | <s ‘ subset of the ITA result relatios,= {s1,...,S}, § < S+1
be the most similar pair of tuples isj1 for some i< j,
and Enax= SSHEs, p(s,1)) be the maximum total error. The
(e) Merge} s1 | <505 | <uTs | s ‘ greedy merging strategy operating arwill merge $ and
S1if dsim(s,s;1) < eEm@ and § £ sj44.

(d)lnsert:| s1 | <92933| <% | <S5 | A S ‘

(f)Merge:| S |<52L55| A |

Proof In the error-bounded setting GMS has to make as

(@) lnserti| S1 | <% 9.5 | A S | A Sy \ many merges as possible, yet introducing at ns&stax er-
ror. Let the total error introduced at some intermediatp ste
MMerge} &1 255 | A% | As | beE;or. GMS will elects;, s 1 for merging at that step only
Fig. 12 Reducing an ITA result to three tuples wigPT A. if there is no other more similar pair among those in the

intermediate result anBo; + £ 5% < eEmay. Sinces,si1

dth Itis th dwi Finallv. with th are most similar irsj1, at mostn— j — 1 more similar tu-
and the result is then merged wish® ss. Finally, with the ple pairs may exist irs, \ sj. Once all of these tuples are

arrival of tuplesy (g) the final result is computed as shown merged, the total error will b&o < (n— j — 1) .gE%aX_

:cn (ht). IOver t::e whole procg_sAstthtle hehap C(E)ntalned at mO§ince these merging steps do not change the similarity of
ive tuples, whereas seven uples have been processe (,S.1 (due tosj £Sj11), S..1 become now the most sim-

ilar pair. Sinchtot+£EmTﬁ‘x < €Emax GMS will make at least
Theorem 2 The output of the gPTfalgorithm withd =« one more merging step, choosigsgs 1 for merging. O
is identical to that of GMS.

To avoid the heap growing too much while we wait for
Proof The proof follows from Proposition PTA merges & non-adjacent tuple pair, we adopt the same heuristic as for
the same tuple pairs that GMS would merge. O the size-bounded case. That is, the more tuples follow the
current merge candidate, the more likely it is that this pair
The complexity o§PT A depends on the ITA algorithm.  will be merged also by GMS. Hence, we use a user-specified
Assume that the latter takd@stime to produce a result rela- parameterd to determine the minimum number of tuples
tion of sizen. In addition, it usesS space for internal struc- that should follow the merge candidate for it to be merged.
tures. ThengPTA: requiresO(T + nlog(c+ B)) time and Figure 13 shows thgPTA algorithm for the greedy
O(S+c+ B) space (assuming that the heap operations takevaluation of error-bounded PTA. The varialfig, is up-
logarithmic time). In the worst case+ 8 = n, however for  dated after each merging step and tracks the total error made
the majority of datasets we expexct 3 to be much smaller  so far. In addition, in line 6 we estimate the maximal total
thann. error,Emax and the size of the ITA relation, Incoming ITA
tuples are inserted into the heap as they arrive and merging i
) attempted with each new tuple. Merging may only happen if
6.3 A Greedy Algorithm for Error-Bounded PTA the key of the node at the top of the heap is less than the av-
, ) erage expected err@Emax/N, and the node is followed by
The algorithm,gPT4;, for the greedy evaluation of error- a non-adjacent tuple pair or at le@dstdjacent tuples. Once

bounded PTA queries follows the same intuition as its size, \yhole |TA relation has been processed we know the real
bounded counterpart. As ITA result tuples are p_roduced, fnaximal error that can be mad&max Therefore, as long as
starts to merge tuples a_s early as possmlg and tries to MErd total error introduced so fdf;ot, does not exceed the er-
as many tuples as possible before exceeding the error %hreq}&r bound we use GMS to finalize the merging process. The

oId_ €. The major difference is on how to determine tUpleworst-case time and space complexitg8fT A is the same
pairs that would also be merged by GMS. For that we neegs ofgPTA

to know the sizen, of the ITA result,s, and the maximal er-

ror, Emax= SSES, p(s, Cmin) ), of reducings to the smallest Example 22We rungPTA: on theproj relation withe =
possible sizegmin. Since we do not wait until the ITA result 0.5 andd = 1. We seEnax= Emax0f the corresponding ITA

is completed, these values have to be estimated. The ITfesult, which is 269 285.714, amd= n = 7. Therefore, if
relation can be safely estimated to contain twice as many tuve were to merge all the tuples, the average error we would
ples as the argument relation. In order to estimate the totahake per step would b&Eqnax/n = 1923469.gPTA: reads
error we have to obtain a good sample of the ITA result. Usthe ITA tuples one by one and tries to merge those that in-
ing these two values, the following preposition shows howtroduce less than the expected average error. The first such
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1 Algorithm: gPTA(r,A,F,9,¢)

2 H « new empty heap;

3 Initialize the ITA operator with-, A, andr;
4 LastGapld+ 0; BG+ 0; AG+ 0;

5 Etot < 0; Emax<0;

6 EstimateEnaandm;

7 while s « next tuple fron%'TA[A, F]r do

8

Lines 6 — 12 frongPT A algorithm in Fig. 11;

that the resultis the same as for GMS. It seems reasonable to
sample the argument relation and compute the correspond-
ing ITA result to obtain an error estimate. A more detailed
investigation of this aspect is part of the future work.

7 Experimental Evaluation

9 while truedo

10 N « PEEK(); In this section we experimentally evaluate the capabilfty o
1 if N.key> eEmay/Nthen break; PTA to reduce ITA results. We quantify the error that our so-
g i NédGiLSSGt?iP'dthen lutions introduce and compare it to other related apprasche
14 Euot ¢ Evot + Nokey We investigate also the runtime performance and space re-
15 MERGE(); quirements of our algorithms.

16 else if N.id > LastGapldA N hasd successorthen

17 AG <+ AG—-1,

18 < Etort + N.key,

" 'l\E/I‘fERG atf;t Y 7.1 Setup and Data

20 else . . . . .

21 | break; We implemented the algorithms introduced in this pa-

= per as well as the ATC [2], APCA [7], DWT [24], and

PAA [14] algorithms and Chebyshev polynomials [6] in
JavdM Version 6. The experiments run on a Linux machine
with four AMD 2600MHz Opteron processors and 16GB of

22 while truedo
23 N + PEek();
24 if N.key< oo A (Eiot + N.key) /Emax < € then

25 MERGK); .
26 Etot ¢ Erot + N.key, RAM. An Oracle 11g database running on the same ma-
27 else chine is used as data storage medium.
28 | break; For the experiments we used the following four data sets:
29 return H: the real-world Incumbents data set kindly donated by the

University of Arizona, USA; the synthetic employee tempo-
ral data set (ETDS) donated by F. Wang [28]; a subset of
real-world time series data from the UCR Time Series Data
Repository [13]; and a synthetic dataset for large scale ex-
periments. We evaluate PTA with various aggregation func-
tions and grouping attributes and with a varying number
of temporal gaps. Therefore, we issue different aggregatio
queries over the four base relations to get a total of 12 ITA
relations with different attribute value distributiongymber
Proof ThegPTA algorithm will consider merging a pair of Of aggregation groups, and temporal gaps (see Table 1).
tupless;,s41 only if dsim(s,S41) < SE%X < gE%ax_ There- The ETDS relation reports the evolution of employees
fore, as follows from Proposition 4, the algorithm will merg in @ company and contains 2875697 records. Each record

the same tuple pairs that GMS would. o  Stores employee number, sex, department, title, salady, an
contract validity interval in months. The ITA queries over

The estimated valugsandEmax play an important role this relation are summarized in Tab. 1(a). Queries E1, E2,
in thegPTA: algorithm. First, the estimated values may in-and E3 specify different aggregation functions over the
fluence the correctness of the final output. Second, the prealary attribute without any grouping, yielding ITA result
cision of the estimate affects the size of the heap. The est6f 6 394 tuples each. Since these relations have no temporal
mation of the ITA result size is easy, since it can be at mosgjaps nor aggregation groups, we hayg = 1. In Query E4
twice as large as the argument relation, thus 2|r| — 1.  we group by employee number and department. The cor-
Estimating the maximal erroEmay is more complicated. responding ITA result contains more than 5 million tuples,
The key aspect to consider here is how precise should th&hich exceeds the size of the input relation.
estimate be. As long &max < Emax the estimate only in- The Incumbents relation records the change of employee
fluences the size of the heap. That is, WKk« < Emax salaries over time. It has 83857 tuples, where each tuple
none or very few early merges will take place. Thus, theecords a project ID, department ID, salary, and time inter-
heap will be filled with almost the entire ITA result before val in months. The ITA queries 11, 12, and I3 in Tab. 1(b)
the merging will commence. On the other hand, when the egroup the base table by department and project and compute
ror is overestimated, i.eEmax < Emax We cannot guarantee different aggregate functions over the salary attribute.

Fig. 13 Greedy algorithmgPT A, for error-bounded PTA.

candidates arsy, s3 (see Fig. 1(c)). However, thieparame-
ter dictates to read tupk before merging that pair.

Theorem 3 The output of the gPTAalgorithm withd =
is identical to that of GMS iFma < Emax,
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Table 1 ITA aggregation queries used for the evaluation.
(a) ETDS relation

Name GroupingA  Agg. FunctionsF  ITA Size Cmin
El 0 avg(Salary) 6394 1
E2 0 maxSalary) 6394 1
E3 0 suniSalary) 6394 1
E4 Emp.No., Dep. avgSalary) 5419493 339067

(b) Incumbents relation

Name GroupingA  Agg. FunctionsF  ITA Size Cmin
11 Dep., Proj. avg(Salary) 16144 131
12 Dep., Proj. maxSalary) 16144 131
13 Dep., Proj. sun(Salary) 16144 131
(c) Time series data
Name Relation No. of Dimensions  ITA Sizé Cmin
T1 Chaotic.dat 1 1800 1
T2 Tide.dat 1 8746 1
T3 Wind.dat 12 6574 216
(d) Synthetic

Name Grouping Dimensions ITA Size Cmin
S1 - 10 10000 000 1
S2 yes 10 10000000 50000

results are identical and we do not report them here.) We
use every dataset except E4 and the synthetic one as they
are too large to be processed in reasonable time with the
DP approach. The error and output size are normalized to
the range between 0 to 100%. Thus, we show error growth
curves, where the horizontal axis depicts the reductian rat
and the vertical axis the error. Any ITA result has 0% re-
duction and thus 0% error; 100% error is reached when the
dataset is reduced in.

Fig. 14(a) depicts the error curves in the range of 90%
to 100% reduction for the first three datasets. Observe that
for most queries the error remains very low even when they
are significantly reduced. For example, the series T1 can be
reduced by 95% (i.e., to 100 tuples) before the total error
exceeded 10%. Only T3 reaches an error of 55% already at
90% of reduction.

The relatively large error on the high-dimensional
dataset, T3, suggest that the reduction capabilities dkpen
on the dimensionality of the data. Therefore, in Fig. 14(b)
we evaluate several PTA queries over a 2000 tuple subset
of the synthetic dataset. For each query we specify a differ-
ent number of aggregation attributes (dimensions). As the

The UCR Time Series Data Repository [13] offers a va-dimensionality increases, the introduced error grows.

riety of real-world time series data from various sources. W
use two one-dimensional datasets, chaotic.dat and tigle.da
and one dataset with 12 dimensions, wind.dat. Each record
in time series data has one or more aggregate values (dimen-
sions) and atimestamp value. We replace the timestamp by a
validity interval of length one to obtain a sequential relat
Thus, we can omit the ITA aggregation and pass the data di-
rectly to the PTA merging step. Table 1(c) summarizes the
used time series.

To avoid any data induced bias we generate a synthetic
dataset with 10 million tuples, one grouping attribute, 26d
aggregate attributes with uniformly distributed valuee W
issue two different ITA queries over this dataset as shown in
Table 1(d). Query S1 does not specify any grouping, and the
result has no temporal gaps, hemgg, = 1. Query S2 uses
grouping and produces a result relation with 50 000 groups
with 200 tuples in each.

7.2 Quality Evaluation
The first set of experiments evaluates the error that PTA

introduces when reducing the ITA result using the DP and
GMS based approaches.

7.2.1 Quality of the DP Approach

In Fig. 14 we measure the error introduced by BieA. al-
gorithm for every possible output size. (Note that A

X
5
i
90 92 94 96 98 100
Reduction Ratio, %
(a) EDTS, Incumbents, and Time series data
100
80
R 60
S
w40
20
0 20 40 60 80 100

Reduction Ratio, %
(b) Synthetic data

Fig. 14 PTA error as a function of the reduction ratio.
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From the results of this experiment we conclude that in 20
most cases the PTA operator can reduce the ITA result size

significantly inducing only a small error. Moreover, the re- 15 |

duction capabilities do not depend on the aggregation func- _

tions or grouping attributes in the query, but on the data di- f 10 1

mensionality. This is not surprising as the dimensionaéty u%

lated problems have long been known [3]. 5|

7.2.2 Quality of the Greedy Approach om

We quantify the reduction error of the greedy PTA algo- Reduction Ratio, %
rithms. First, we measure how close the greedy and the pre- (a) Error

cise solutions are and whether the former can outperform
other known data approximation algorithms. We gBg A
with & = o (gPTA: vyields identical results). Second, we
evaluate the influence @ on the results of thgPTA: and
gPTA: algorithms.

Figure 15 compares the errors introducedyByf A. and
other algorithms for Query T1 at each size bound from 1 to
1800. In DWT there is no direct relationship between the
number of coefficients retained and the number of segment
in the restored time series signal. The signal restored from 1 - ) ) )

N
T

%rror Ratio (logscale)
[
o

k coefficients will contain fronk to 3k intervals. To obtain 0 20 40 60 80 100
a DWT result of sizec, we have to search for a suitalde Reduction Ratio, %
If several solutions exist, we retain the one that yields the (b) Error ratio

smallest approximation error. APCA, on the other hand, will
always yieldc segments as it applies greedy merging on t0|d:"9J
of the time series that is reconstructed from wavelet coef-
ficients. ATC takes as input an error bound. We generate a
list of exponentially decaying error bounds and compute th&hebyshev polynomials. We compute approximations using
ATC result for each one of them. If for two error bounds from 1 up to 1000 coefficients and compare the resulting
ATC yields several results of the same size, we keep the orféne series with thé>TA; result with the same number of
that introduces the smallest error. tuples. Overall, thgPT A; algorithm consistently provides
Observe in Figure 15(a) that thgPTA; error curve is the best error ratio, that is, its results are closest toetlubs
closest to the error curve of the precise result which is comP T4 ATC is the second best algorithm, however, its per-
puted withPT A.. Thus, the greedy algorithm is closest to theformance is not consistent; ATC shows satisfactory results
optimal result and outperforms all other data approxinmatio for E4 and T3 but not for I1 and I12. For query E4 we use
algorithms, out of which DWT and PAA perform signifi- gPTA: as baseline since the dataset is too large to be eval-
cantly worse. We take theT A; result as a baseline and plot Uated withPT A, and we compare it with the error of ATC,
the ratio of the reduction error to the baseline. An error raWhich is slightly worse. APCA, DWT, PAA, and Cheby-
tio 1 means an optimal reduction, whereas any greater valu&'€V Polynomials are not applicable for the queries I1, 12,
signifies a divergence from it. The error ratio gPTA; is I3, and T3 since they cannot cope vv_|th multiple aggregauon
very close to 1 and increases only slightly with the numbe@roups and temporal gaps. Interestingly, the algorithms de
of merging steps to reach 1.25. This behavior is predicteéigned for time series approximation perform better on the
by Theorem 1. ATC and APCA |ag behind. DWT and PAA time series data T1, T2, and T3 and significantly worse on
perform significantly worse and are not shown. temporal data, which can be explained by their inability to
We run the same experiment for all queries and comput8@ndle constant value intervals.
the average error ratio over the full range o¥alues for In our last experiment we evaluate the impactdofo
gPTA, ATC, APCA, DWT, and PAA algorithms. The result the quality of the result o§PTA. and gPTA: algorithms.
is shown in Fig. 16. A pattern-filled bar depicts the aver-Instead of estimating the relation size and the total ermr w
age error ratio, and a thin line indicates the standard .errouse the correct values. Figure 17 shows the average error ra-
Note the logarithmic scale for the error ratio. The figure retio and standard error for a varyidgand different datasets.
ports also the average error ratio of the approximation witlPTA. and PTA. are used as baseline solution, and the er-

. 15 Reduction error of different algorithms for query T1.
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Fig. 16 Average error ratio for different datasets. Fig. 17 Impact ofd.

ror is averaged over all possible size boundisand error 5o gptained foPT A, and hence are not reported here). We

bounds.e. Whend = 0 the algorithms return the wprst re- expectPT A to be faster when dealing with data that sports
sult, whereas fod = « the best results that are possible with multiple temporal gaps and aggregation groups.

greedy merging are obtained. It is interesting to see that fo Figure 18 illustrates the impact of the input size to the

0 > 1 the results are practically the same. From this obser omputation time. In Fig. 18(a), we use sequential subsets

vation we can conclude that reading ahead by just one tuplce . .
(before merging) is sufficient to obtain very good resuhts. | of the synthetic dataset, which have no temporal gaps and

. . . aggregation groups. The size of the input varies from 500
the following scalability experiments we show that a small . . .

S to 6500 tuples, whereas the outpat,and dimensionality,
allows also to reduce the heap significantly and to get better : .
runtime performance p, are fixed at 500 and 10, respectively. As expected, the
P ' two approaches show no significant difference. Figure 18(b)

shows that the performance BT A. improves significantly
7.3 Performance Evaluation over DP when the argument relation sports multiple groups

or gaps. Here we use subsets of different size of the grouped
The second set of experiments evaluates the runtime perfotynthetic data (S2) and we keep the number of aggregation
mance. Thereby, we measure only the time of the mergingroups fixed at 200; only the number of tuples within each
phase and exclude the time taken to produce the ITA resuifoup increases with the input size. As the figure shows,

and to write the final PTA result back to the database. PTA: significantly outperforms DP and scales almost lin-
early since the presence of gaps reduces the amount of com-
7.3.1 Performance of the DP Approach putation.

The next experiments in Fig. 19 shows how the change
As a baseline solution (DP) we use the straightforward imef the output sizeg, influences the performance. As input
plementation of the DP scheme described in Sec. 5.1. W#ata we use 2000 tuples from the synthetic dataset with
compare it to thePTA, algorithm, which implements the 200 groups and 10 tuples in each group. The valuevafies
improvements described in Sec. 5.2-5.3 (the same resulfisom 1 to 2 000. As expected, the running time increases lin-
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6000 7.3.2 Performance of the Greedy Approach
5000 | : . .
First, we quantify the space requirements of the two greedy
w 4000 r algorithms by measuring the maximal heap size. We use the
g3ooo I synthetic relation without gaps and vary the output size as
= well asd. The input size is fixed at 10 000 000. The results
2000 f are shown in Fig. 20, where the horizontal axis ranges over
1000 + the result size and the vertical axis over the heap size. In
gPTA, the heap is filled with the whole ITA result when
%, 2000 2000 6000 & = . Whend = 0, the behavior is exactly the opposite,
Input size and the heap size never exceeds the output siF&r other
(a) Synthetic data with no gaps (S1) values ofd the heap size is+ . Smallerd lead to smaller
B. Eventuallyf converges to 0 and the heap size scales lin-
1500 N R— ' early with respect to the output size,ThegPT A algorithm
PTAc —&— behaves similarly, however, its heap is significantly large

independently ob.

The last experiment in Fig. 21 compares the perfor-
mance ofgPTA and gPTA to APCA, DWT, PAA, and
ATC by measuring the average running time of each algo-
rithm with respect to the size of the input. We use subsets
of the synthetic dataset without temporal gaps that range in
size from 1 to 10 million tuples. The size bourg)for the

0 2000 4000 6000 9PTA algorithm is set to 10% of the input size; we found
Input size empirically that the corresponding error bound §RT A
(b) Synthetic data with gaps (S2) is € = 0.65. We used = 1 since previous experiments have
shown that this value yields very good quality at the small-
Fig. 18 Runtime as a function of the input size. est space requirements. For ATC we set the local error bound

0.01. We exclude the runtime of approximation with Cheby-
shev polynomials. The algorithm nee@$nc) time to com-
pute ¢ coefficients making it unsuitable for large datasets
and large values of. As can be seen in Fig. 25PTA

is the slowest algorithm since it has to deal with an ever-
increasing heap structure. On the other hg A is com-
parable to other approaches. Such performance advantage is
due to very small heap thgPTA: operates on.

180
150 |
120
90 r

DP —8—

0 500 1000 1500 2000
Output size

Fig. 19 Runtime as a function of the output size on synthetic data with/ -4 Summary
gaps.
The experimental results reported in this section show that
the PTA operator can significantly reduce the ITA result,
early with the increasing size of the output. Observe, howyet introducing only small errors. The dynamic program-
ever, that théPTA; algorithm is not overly sensitive to the ming based algorithm$TA, and PTA;, scale linearly in
size boundg, as the presence of gaps is the most importanfea|-world situations, though in the worst case they remain
speed factor. quadratic with respect to the input size. The reduction ef th
To summarize, the experiments confirm the estimatedTA result obtained with the two greedy algorithngR T A
performance of th@T A algorithm. When data sports tem- andgPTA;, is very close to the optimal result. The greedy
poral gaps or aggregation groups are specified in the questgorithms consistently and significantly outperform othe
(as in many realistic application®T A. is much faster than known approximation methods in terms of approximation
the plain DP approach. quality. In addition, they are scalable for huge datasets.
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Fig. 20 Maximal heap size ojPTA andgPTA as a function of the
output size.

600 T

gPTAe

PAA
500 ATC ]

gPTAC
400 | "APCA 1

Z:" DWT
g 300 1

=
200 r 1
100 + 1
0 _m
0 2e+06 4e+06 6e+06 8e+06  le+07
Input size

Fig. 21 Performance of the greedy algorithms compared to other linear

approximation methods.

8 Conclusions and Future Work

compute a precise result for PTA queries. In realistic situa
tions, when data sports temporal gaps or aggregation groups
are specified in the query, the algorithms scale linearli wit
respect to the size of the input. For a quick computation of
an approximation of the PTA result, we proposed two greedy
algorithms,gPTA; andgPTA:. We proved that the error ra-
tio of the greedy approach with respect to the precise so-
lution is upper-bounded b@(logn), wheren is the size of
ITA result. The greedy algorithms tak&c+ 3) space and
O(nlog(c+ B)) time for a result of size, andf is typically
very small. An extensive experimental evaluation confirmed
the theoretical estimations and showed that the greedy algo
rithms scale very well for large data sets and provide signif
icantly better approximation quality than other known ap-
proximation techniques.

In our future work we will explore the possibility of
merging tuples separated by temporal gaps. In addition, we
will address the issue of estimating the maximal error that
the reduction of an ITA result may introduce. We believe that
novel ways to sample temporal data have to be developed in
order to obtain good estimates. We will extend both greedy
algorithms to deal with streaming temporal data. This is a
challenging problem since a streaming ITA result cannot be
sorted along the aggregation groups. Finally, a carefsnv
tigation of different error measures is worthwhile.
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