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Abstract Temporal aggregation is an important operation
in temporal databases, and different variants thereof have
been proposed. In this paper we introduce a novel temporal
aggregation operator, termed parsimonious temporal aggre-
gation (PTA), which overcomes major limitations of existing
approaches. PTA takes the result of instant temporal aggre-
gation (ITA) of sizen, which might be up to twice as large
as the argument relation, and merges similar tuples until a
given error (ε) or size (c) bound is reached. The new opera-
tor is data-adaptive and allows the user to control the trade-
off between the result size and the error introduced by merg-
ing. For the precise evaluation of PTA queries, we propose
two dynamic programming based algorithms for size- and
error-bounded queries, respectively, with a worst-case com-
plexity that is quadratic inn. We present two optimizations
that take advantage of temporal gaps and different aggrega-
tion groups and achieve a linear runtime in experiments with
real-world data. For the quick computation of an approxi-
mate PTA answer, we propose an efficient greedy merging
strategy with a precision that is upper bounded byO(logn).
We present two algorithms that implement this strategy and
begin to merge as ITA tuples are produced. They require
O(nlog(c+β )) time andO(c+β ) space, whereβ is the size
of a read-ahead buffer and is typically very small. An empir-
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ical evaluation on real-world and synthetic data shows that
PTA considerably reduces the size of the aggregation result,
yet introducing only small errors. The greedy algorithms are
scalable for large data sets and introduce less error than other
approximation techniques.
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1 Introduction

1.1 Problem Description

Temporal data are abundant in almost every sector. Whether
it is financial, medical, or sensor data, we often associate a
timestamp or a validity interval with each record. Temporal
aggregation is used to summarize large sets of such data by
aggregating specific attribute values over all tuples that hold
at a time point or a time interval. As such, temporal aggre-
gation is very important in temporal databases. It has been
previously studied in various flavors, most importantly, as
instant and span temporal aggregation.

In instant temporal aggregation (ITA) [4,15,18,26,27,
30], the aggregate value at a time instantt is computed from
the set of all tuples whose timestamp containst. Result tu-
ples at consecutive time instants with identical aggregate
values are then coalesced into result tuples over maximal
time intervals during which the aggregate results are con-
stant. While ITA considers the distribution of the data, due
to temporally overlapping argument tuples the result size
might become up to twice the size of the input [4], which
is in conflict with the very idea of aggregation to provide a
summary of the data.

Span temporal aggregation (STA) [4,15], on the con-
trary, allows an application to specify in the query the time
intervals for which to report result tuples, e.g., for each year
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from 2000 to 2005. For each of these intervals a result tu-
ple is produced by aggregating over all argument tuples that
overlap with such an interval. Therefore, the result size of
STA is predictable, yet it may fail to provide good sum-
maries of the data since the aggregation intervals do not con-
sider the distribution of the input data.

In this paper we introduce parsimonious temporal ag-
gregation (PTA) that overcomes major limitations and com-
bines the best features of instant and span temporal aggre-
gation. By approximating ITA, it computes compact aggre-
gation summaries that reflect the most significant changes
in the data over time. If the user specifies the desired re-
sult size, PTA minimizes the approximation error. Alterna-
tively, the user can specify a maximal error bound, and PTA
minimizes the number of result tuples. Conceptually, PTA
operates in two steps: (1) compute the ITA result of the in-
put relation and (2) reduce the ITA result by merging simi-
lar and temporally adjacent tuples until a user-specified size
or error bound is satisfied. Tuples are adjacent if they be-
long to the same aggregation group and are not separated
by a temporal gap. PTA inherits the data-adaptive approach
of ITA and the control over the result size of STA. PTA is
useful for such applications as data visualization or similar-
ity search for classification and clustering, where the fine-
grained result of ITA is too large to handle and, instead, a
concise overview of the data at hand is necessary.

1.2 Example

As a running example throughout the paper we use the re-
lation proj in Fig. 1(a), which records information about
project assignments: an employee (Empl), the project he/she
works for (Proj), the monthly salary (Sal), and the time pe-
riod (in months) during which the assignment is effective
(T). For instance, tupler1 states that John works on project A
and has a monthly salary of 800 in the time period[1,4]. In
the graphical illustration timestamps are drawn as horizontal
lines.

Consider the following STA query:“For each project,
what is the average monthly salary in each trimester?”. This
query explicitly partitions the time line into trimesters (in-
dependent of the distribution of the data) over which the re-
sults are reported for each project. The result is shown in
Fig. 1(b).

Fig. 1(c) shows the result of the corresponding ITA
query: “For each project, what is the average monthly
salary?”. Here the average salary is determined for each
month and project, followed by a coalescing of value-
equivalent tuples over consecutive time points. The result
size exceeds the size of the input relation, though some ad-
jacent tuples have quite similar aggregate values, e.g.,s4 and
s5.

Fig. 1(d) shows the result of the following PTA query:
“For each project, what is the average monthly salary,
where the result size shall not exceed 4 tuples?”. The re-
sult is obtained by applying three merging steps on the ITA
result in Fig. 1(c) such that the introduced error is minimal.
For instance,s1 ands2 are merged into the PTA result tuple
z1, where the average salary ofz1 is computed by averaging
the salaries ofs1 ands2 over each month, i.e., 800 for two
months and 600 for one month, yielding the value 733.33.
Tuples separated by temporal gaps (e.g.,s6 ands7) or be-
longing to different aggregation groups (e.g.,s3 ands6) can-
not be merged. Different from the other two operators, PTA
reveals significant changes in the aggregation values.

1.3 Contributions

We introduce and formally define a novel temporal aggre-
gation operator, termed parsimonious temporal aggregation
(PTA), that overcomes major limitations and combines the
best features of previous temporal aggregation operators.
Two variants of PTA are provided. Size-bounded PTA al-
lows the specification of a maximal result size,c, while
error-bounded PTA allows the specification of a maximal
error threshold,ε.

Second, we propose two dynamic programming based
algorithms,PTAc and PTAε , for the precise evaluation of
size-bounded and error-bounded PTA queries, respectively.
The two algorithms requireO(n2cp) time andO(n2) space
in the worst case, wheren is the ITA result size,c is the PTA
result size, andp is the number of aggregate functions. We
present two optimizations that take advantage of temporal
gaps and aggregation groups, yielding almost linear running
times on real-world datasets.

Third, for a quick evaluation over potentially huge data
sets, we propose an efficient greedy merging strategy that
computes an approximation of the PTA result with a pre-
cision that is upper-bounded byO(logn). We present two
algorithms,gPTAc andgPTAε , for size- and error-bounded
queries, respectively, that implement this strategy and tightly
integrate the computation of ITA and the merging step. That
is, the merging process needs not to wait for the completion
of the ITA result, but starts with the merging as ITA result
tuples are produced. The algorithms run inO(nlog(c+β ))
time andO(c+β ) space, wherec+β ≤ n; we show exper-
imentally thatβ is typically very small.

Finally, we conduct extensive experiments using real-
world and synthetic data. The results show that PTA
achieves a significant reduction of the ITA result, introduc-
ing only a small error. The greedy algorithms are scalable
for large data sets, and they introduce significantly less error
than other state of the art time series and temporal approxi-
mation methods.
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Empl Proj Sal T
r1 John A 800 [1, 4]
r2 Ann A 400 [3, 6]
r3 Tom A 300 [4, 7]
r4 John B 500 [4, 5]
r5 John B 500 [7, 8]

r1 = (John,A,800)
r2 = (Ann,A,400)

r3 = (Tom,A,300)

r4 = (John,B,500) r5 = (John,B,500)

t1 2 3 4 5 6 7 8
(a) proj Relation

Proj AvgSal T
s1 A 500 [1, 4]
s2 A 350 [5, 8]
s3 B 500 [1, 4]
s4 B 500 [5, 8]

s1 = (A,500)
s2 = (A,350)

s3 = (B,500)
s4 = (B,500)

t1 2 3 4 5 6 7 8
(b) STA Result

Proj AvgSal T
s1 A 800 [1, 2]
s2 A 600 [3, 3]
s3 A 500 [4, 4]
s4 A 350 [5, 6]
s5 A 300 [7, 7]
s6 B 500 [4, 5]
s7 B 500 [7, 8]

s1 = (A,800)
s2 = (A,600)

s3 = (A,500)
s4 = (A,350)

s5 = (A,300)

s6 = (B,500) s7 = (B,500)

t1 2 3 4 5 6 7 8

(c) ITA Result

Proj AvgSal T
z1 A 733.33 [1, 3]
z2 A 375 [4, 7]
z3 B 500 [4, 5]
z4 B 500 [7, 8]

z1 = (A,733.33)
z2 = (A,375)

z3 = (B,500) z4 = (B,500)

t1 2 3 4 5 6 7 8
(d) PTA Result of Size 4

Fig. 1 Theproj relation and different temporal aggregation queries to compute the average monthly salary per project.

1.4 Organization

The rest of the paper is organized as follows. In Section 2
we discuss related work. After presenting some preliminary
concepts in Section 3, we introduce and formally define the
PTA operator in Section 4. In Section 5 we describe the dy-
namic programming based evaluation algorithms, followed
by the greedy evaluation strategy and algorithms in Sec-
tion 6. Section 7 reports the experimental results. Finally,
Section 8 draws conclusions and outlines future work.

2 Related Work

2.1 Temporal Aggregation

Various forms of temporal aggregation have been studied in
the past. They differ mainly in how the time line is parti-
tioned. Instant temporal aggregation (ITA) [15,18,27] op-
erates at the smallest granularity of time instants. For each
time instant,t, the aggregate functions are computed over
all tuples that hold att. Identical aggregate results at con-
secutive time instants are coalesced into tuples over maxi-
mal time intervals. Moving-window (or cumulative) tempo-
ral aggregation (MWTA) [19,23,30] extends ITA and com-
putes for each time instant,t, the aggregate values over all

tuples that hold in a window “around”t. While ITA and
MWTA report the most detailed result, the main drawback
is that the result size might become up to twice as large as
the input size.

Span temporal aggregation (STA) [23] allows users to
control the result size by partitioning the time line into inter-
vals that are specified in the query. For each such interval, a
result tuple is computed over all argument tuples that over-
lap with that interval. STA does not consider the distribu-
tion of the data, and most approaches consider only regular
time spans expressed in terms of granularities, e.g., yearsor
months.

Vega Lopez et al. [27] formalize temporal aggregation
in a uniform framework that enables the comparison of the
different temporal aggregation variants. Similarly, the multi-
dimensional temporal aggregation operator [4] generalizes
previous temporal aggregation operators towards more flex-
ibility for the specification of aggregation groups.

The approximation of temporal aggregation is a rela-
tively new topic [9,10,25]. Tao et al. [25] were the first to
introduce an approximate temporal aggregation technique,
which leverages span temporal aggregation and, for a given
time interval, finds an approximate aggregation result from
tuples that overlap with that interval. The approach uses
off-the-shelf B- and R-trees to compute the aggregation re-



4

sult in linear space and logarithmic time with respect to the
size of the database. Since the proposed technique approx-
imates span temporal aggregation, where the user specifies
the aggregation intervals, it is not data-adaptive and cannot
be used to reveal significant changes in the data. Moreover,
only error-bounded approximation for thesumandcountag-
gregation functions is possible.

In our previous work [9,10] we introduce parsimonious
temporal aggregation as an approximation of ITA. In this
paper we extend it in various directions. First, in addition
to size-bounded PTA that reduces an ITA relation to a user-
specified size, we define error-bounded PTA that minimizes
the result size under a maximal error threshold specified by
the user. We provide new query evaluation algorithms for
error-bounded PTA, and we report the results of additional
experiments, including the comparison of PTA with various
time series approximation techniques.

Berberich et al. [2] introduce an approximate temporal
coalescing (ATC) technique to reduce the size of a temporal
inverted file index. The index is represented as a temporal
relation, where each record contains a document reference,
a term, its index value, and a validity interval. ATC reads
sorted and temporally adjacent tuples that share the same
document/term pair and merges them if the introduced lo-
cal error does not exceed a user-specified threshold. Though
the aim is different, ATC can be used to merge ITA result
tuples. Experiments show that the total error of ATC is up
to an order of magnitude higher than that of PTA and varies
significantly depending on the dataset. Such a behavior is
not surprising since ATC makes merging decisions based on
local information only. The performance gain of ATC with
respect to our greedy algorithms is negligible.

2.2 Time Series Approximation

An ITA result can be considered as a time series if no tempo-
ral gaps and aggregation groups are present, and hence time
series approximation techniques can be applied to obtain an
PTA approximation. The need to visualize, mine, and index
abundant amounts of time series data has motivated exten-
sive research on their approximate representation [1,6,7,14,
16,17,20,22,31]. Lin et al. [17] provide an excellent clas-
sification of different representation techniques. In Fig.2(a)
we plot an ITA result over a small excerpt of the Incum-
bents data set that we use for the experimental evaluation
(cf. Sec. 7). With only one aggregate value and no aggrega-
tion groups and temporal gaps it can be considered as a time
series. Figures 2(b-h) depict different approximate represen-
tations of this ITA result. Dotted lines show the ITA result,
while solid lines represent the approximated values.

Discrete wavelet transform (DWT) [1] with Haar
wavelets recursively averages neighbouring values, yield-
ing a representation of the data at various levels of reso-

lution. Coefficients that allow to reconstruct finer represen-
tations from coarser resolutions are stored at each level. A
step function constructed from thec most influential coef-
ficients approximates the original time series. DWT might
break apart constant-valued segments, which leads to higher
approximation errors. Moreover, since the size of the in-
put data has to be a power of two, the data often need
to be padded, which influences the approximation result.
In Fig. 2(b) an example of a DWT approximation using
10 wavelet coefficients is shown using solid lines. Observe
the fluctuation of values at the right-hand side because of
padding.

Contrary to wavelets, discrete Fourier transform (DFT)
[16] approximates the input time series with a continuous
function. An example of a DFT approximation using 10 co-
efficients is shown in Fig. 2(c). DFT cannot be directly em-
ployed to evaluate PTA queries as we require the output of
PTA to be a step function with a user-specified number of
segments and constant aggregation values throughout each
segment. Keogh and Kasetty [12] have shown that the dif-
ference in terms of approximation error between DWT and
DFT is typically small. In this work we show that the ap-
proximation quality ofgPTAc algorithm is much better than
that of DWT.

Cai and Ng [6] suggest to use Chebyshev polynomials
to represent and index time series data for similarity search.
Similarly to DFT, the signal restored from Chebyshev coef-
ficients, see example in Fig. 2(d), is a continuous function.
However, instead of total approximation error it minimizes
the maximum deviation from the true value. The authors ar-
gue that this property is desired in similarity search and de-
fine a distance for Chebyshev coefficients that lowerbounds
the Euclidean distance for the original time series. They
show that a small number of coefficients, up to 25, is enough
to construct an index that allows very efficient search. Com-
puting more coefficients may not be practical as the compu-
tation time depends linearly on their number. In this work
our aim is to minimize the total error of approximation in-
stead of maximum deviation, nevertheless, we compare the
time series restored from Chebyshev coefficients to corre-
spondinggPTAc approximations having the same number
of intervals. We show thatgPTAc provides a significantly
better approximation.

Piecewise aggregate approximation (PAA) for time se-
ries has been introduced by Keogh and Pazzani [14] and,
concurrently, by Yi and Faloutsos [31] where it is termed
Segmented means. A time series is divided intoc segments
of equal length, and for each segment the average value is
computed. It is shown that PAA and DWT produce the same
result under theL2 norm whenc and the length of the in-
put are powers of 2. Like DWT, this approach is not data-
adaptive. An example of a PAA approximation using 10 in-
tervals is shown in Fig. 2(e).
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(a) Time series data

(b) DWT, error 2903

(c) DFT, error 669

(d) Chebyshev, error 17257

(e) PAA, error 2516

(f) APCA, error 2573

(g) PTA, error 109

(h) gPTAc, error 119

Fig. 2 Various approximations of time series data.

The symbolic aggregate approximation SAX [17] and
its scalable version iSAX [22] allow very efficient near-
est neighbor queries by representing the input time series
as a word of symbols. The symbolic representation is con-
structed in two steps. First, PAA is used to partition the time
series intoc equal sized segments. Second, the segments are
represented usingw different symbols in such a way that
each symbol has approximately the same probability of oc-
currence. Increasing the vocabularyw leads to more precise
representations. The limitations of PAA carry over to SAX.

Elmeleegy et al. [8] propose an approach similar to ATC
that aims at guaranteeing a given error bound while max-
imizing the compression ratio of a continuous time series
data stream. The proposed algorithm constructs a new ap-
proximation segment if attaching an incoming data point to
the previous segment exceeds an error threshold. The data
in each segment are approximated with a linear function. In
line with other stream approximation techniques, the infin-

ity norm is used as error measure. Consequently, the global
approximation error is maintained under a given threshold
by keeping local errors under the same threshold. However,
the infinity norm is not appropriate for PTA, and we use the
Euclidean norm as suggested by Jagadish et al. [11]. Ad-
ditionally, our approach allows the user to specify either a
global size or a global error bound.

Chakrabarti et al. [7] leverage PAA and DWT and in-
troduce adaptive piecewise constant approximation (APCA)
for time series. The authors suggest to infer approximation
segments from the underlying data to increase the approxi-
mation accuracy. The proposed algorithm starts by decom-
posing the input into DWT coefficients. Only thec most
significant coefficients are used to reconstruct the time se-
ries. Since the reconstruction step may yield up to 3c seg-
ments, the algorithm greedily merges the most similar ones
to reduce the time series toc segments. As illustrated in
Fig. 2(f), APCA improves over DWT by inserting true aver-
age values into the segments that are inferred from wavelet
coefficients. Being data-adaptive it also improves over PAA.
APCA still introduces higher errors than our greedy eval-
uation algorithms. This is due to the underlying DWT de-
composition, which is not data-adaptive and breaks apart the
constant-value segments in the ITA relation, yielding large
approximation errors. The consequent greedy merging step
of APCA can only smooth these errors out, but cannot fix
them entirely.

Palpanas et al. [20,21] propose a framework that ap-
proximates older time series entries with a higher error and
keeps recent entries more precise. The user can specify a rel-
ative or absolute amnesic function that controls the amount
of error permitted at each time point. With an absolute am-
nesic function the number of output segments is minimized,
with an error at each segment that is upper-bounded by a
user-specified threshold. For an absolute amnesic function
AA(t) = ε the amnesic effect is eliminated and the problem
becomes equivalent to ATC. Choosing a relative amnesic
function transforms the problem into an instance of APCA,
where the error has to be minimized subject to the maximal
number of allowed segments. The problem is equivalent to
size-bounded PTA when a relative amnesic function is used
with RA(t) = 1, that is, its effect is disabled by permitting
an equal amount of amnesia at every time point. Similar
to gPTAc the proposed evaluation algorithm follows a dy-
namic programming strategy. The two approaches are iden-
tical when dealing with one-dimensional time series data
and the above amnesic function. In this paper we extend
the strategy to multi-dimensional data and take advantage of
temporal gaps and aggregation groups to significantly speed
up the evaluation. In addition, a greedy evaluation algorithm
is presented that merges adjacent tuples whenever more than
c entries are present in the heap.gPTAc follows the same
idea. Beyond this we explore various early merging strate-
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gies and show that shortly delaying the merging step can
significantly reduce the approximation error. For time series
data and parameterδ = 0 for gPTAc, the two algorithms are
equivalent.

In summary, time series approximation algorithms do
not consider the constant value intervals in the ITA result.
When applied in the context of temporal aggregation, they
might split such intervals and produce high approximation
errors. Moreover, temporal gaps in the data and the approxi-
mation of multiple aggregation groups under one global (er-
ror or size) bound are not supported. PTA employs a more
general data model and overcomes such limitations. Its data-
adaptive approach outperforms the time series algorithms in
terms of approximation quality (cf. Fig. 2 and Sec. 7).

2.3 Histogram Construction

Jagadish et al. [11] present an optimal, dynamic program-
ming based algorithm for the construction of histograms for
one-dimensional data, given either a size or error bound.
The authors advocate the use of the sum square error and
show how to compute it in constant time, which leads to an
overall complexity ofO(n2c) time andO(n2) space for the
histogram construction. Our algorithm for the precise com-
putation of PTA emanates from this work and extends it for
multi-dimensional data. Furthermore, we exploit the pres-
ence of temporal gaps and aggregation groups in our data
and propose further optimizations of the dynamic program-
ming scheme.

3 Preliminaries

A relation schemais a tripleR= (Ω ,∆ ,dom), whereΩ is
a non-empty, finite set of attributes,∆ is a finite set of do-
mains, anddom: Ω → ∆ is a function that associates a do-
main with each attribute. Atuple, r, over schemaR is a fi-
nite set that contains for everyAi ∈Ω a pairAi/vi such that
vi ∈ dom(Ai). A relation, r , over schemaR is a finite set
of tuples overR. A temporal relation schemais a relation
schema with at least one timestamp attribute,T, that ranges
over thetime domain∆ T , i.e.,T ∈Ω anddom(T) =∆ T ∈∆ .
For simplicity we assume an ordering of the attributes and
represent a temporal relation schema asR= (A1, . . . ,Am,T)
and a corresponding tuple asr = (v1, . . ., vm, t). For a tupler
and an attributeA we writer.A to denote the value of the at-
tributeA in r. For a set of attributesA = {A1, . . . ,Ak}, k≤m,
we definer.A = (r.A1, . . . , r.Ak).

We assume a discrete time domain,∆ T . Its elements are
termed chronons (or time points/instants), equipped with a
total order,<T (e.g., calendar months with the usual chrono-
logical order). Atimestamp(or time interval),t, is a convex
set of chronons over the time domain, and it is represented

by two chronons,[tb, te], denoting its inclusive starting and
ending points, respectively. Ift∩ t′ 6= /0, we say that the two
intervals overlap (or intersect), otherwise they are disjoint.

Next, we define instant temporal aggregation.

Definition 1 (Instant Temporal Aggregation) Let r be a
temporal relation with schemaR= (A1, . . . ,Am,T), group-
ing attributesA = {A1, . . . ,Ak}, and aggregate functionsF=

{ f1/B1, . . . , fp/Bp}. Furthermore, letcoalescebe the coa-
lescing operator [5] andrg,t = {r | r ∈ r ∧ r.A = g∧ t ∈ r.T}
be all tuples ofr with grouping attribute values equal tog
and intersecting time pointt. Instant temporal aggregation
is defined as

G
ITA[A,F]r = coalesce{s | g∈ π[A]r ∧ t ∈ ∆ T ∧ rg,t 6= /0∧

f = ( f1(rg,t), . . . , fp(rg,t))∧

s= g◦ f ◦ [t, t]}.

and has schemaS= (A1, . . . ,Ak,B1, . . . ,Bp,T).

g ranges over all combinations of grouping attribute val-
ues in r , and t over the time domain. For each combina-
tion of g andt, the aggregation grouprg,t collects all argu-
ment tuples that have grouping attribute values equal tog
and are valid at timet. A result tuple,s, is produced by ex-
tendingg with the result of the aggregate functionsfi evalu-
ated over the non-emptyrg,t and with timestamp[t, t]. Each
fi is some aggregation function that takes a (temporal) rela-
tion as argument and applies aggregation to one of the rela-
tion’s attributes. The resulting value is stored as the value of
an attribute namedBi . The final step is coalescing of value-
equivalent result tuples over consecutive time points intotu-
ples over maximal time periods during which the aggregate
values do not change. The result of ITA contains up to 2n−1
tuples, wheren is the size of the argument relation [4].

Example 1The ITA query “What is the average monthly
salary for each project?” in our running example (see
also Fig. 1(c)) is formulated asG ITA[A,F]proj with ag-
gregate functionsF = {avg(Sal)/AvgSal} and grouping at-
tributesA = {Proj}. The schema of the result relation is
(Proj,AvgSal,T).

A property common to any ITA result relation,s, is that
the timestamps of the tuples within a single aggregation
group do not intersect, i.e., for any pair of tuplessi ,sj ∈ s
such thatsi 6= sj andsi .A = sj .A we havesi .T∩ sj .T = /0.
We term such (temporal) relationssequential. For example,
in Fig. 1(c) the timestamps of all tuples with identicalProj
values are temporally disjoint.

4 Parsimonious Temporal Aggregation

In this section we introduce and define parsimonious tem-
poral aggregation, PTA, which conceptually comprises two
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steps: (1) obtain the ITA result from the argument relation
and (2) merge adjacent ITA result tuples until a user speci-
fied size or error bound is satisfied. We begin by describing
the merging of adjacent tuples and an error measure that is
used to quantify the introduced error.

4.1 Merging Adjacent Tuples

The ITA result is always a sequential relation, which shall
be preserved by allowing only adjacent tuples to be merged.

Definition 2 (Adjacent Tuples) Let s be a sequential rela-
tion with schemaS= (A1, . . . ,Ak,B1, . . . ,Bp,T) and group-
ing attributesA = {A1, . . . ,Ak}. Two tuplessi ,sj ∈ s aread-
jacent, si ≺ sj , iff the following holds:

(1) si .A = sj .A,

(2) si .te = sj .tb−1.

The first condition ensures that the two tuples are value-
equivalent in the non-temporal attributes. The second con-
dition requires that the tuples are immediately consecutive
and not separated by a temporal gap.

Example 2In the ITA result in Fig. 1(c) we haves1 ≺ s2 ≺
s3≺ s4≺ s5. Tupless5 ands6 are not adjacent,s5 6≺ s6, since
the Proj-values are different, violating the first condition.
Similar,s6,s7 ands1,s3 are not adjacent since they are sepa-
rated by a temporal gap and violate the second condition.

Definition 3 (Merge Operator) Let s be an ITA result re-
lation with schemaS= (A1, . . . ,Ak,B1, . . . ,Bp,T), where
A = {A1, . . . ,Ak} are the grouping attributes andB =
{B1, . . . ,Bp} store the aggregate values. Themerge, ⊕, of
two adjacent tuples,si ,sj ∈ s, si ≺ sj , is defined as

si⊕sj = (si .A1, . . . ,si .Ak,v1, . . . ,vp, [si .tb,sj .te]),

wherevd =
|si .T|si .Bd + |sj .T|sj .Bd

|si .T|+ |sj .T|
for 1≤ d≤ p.

The merge operator produces a new tuple from two ITA
result tuples, i.e.,z= si ⊕sj . The values of the grouping at-
tributes ofzare identical to the ones ofsi (andsj ). The times-
tampz.T is the concatenation of the timestamps ofsi andsj .
Since the aggregate values ofsi andsj hold at every time
point in si .T andsj .T, respectively, the new aggregate val-
ues,v1, . . . ,vp, are computed by averaging over the times-
tamps, i.e.,vd is the weighted average ofsi .Bd and sj .Bd

with the weights being the length ofsi .T andsj .T, respec-
tively.

Example 3Merging the two tupless1 = (A,800, [1,2]) and
s2 = (A,600, [3,3]) in Fig. 1(c) yields the result tuplez1 =
s1⊕ s2 = (A,733.33, [1,3]) in Fig. 1(d). The average salary
is determined asz1.AvgSal= (2 · 800+ 1 · 600)/(2+ 1) =
733.33.

To reduce the ITA result,s, to a specific size, the merge
operator is applied recursively. However, there is alower
bound, cmin, for the size of the reduced ITA result, which
is determined by the difference between the cardinality ofs
and the number of adjacent tuple pairs that can be merged,
i.e.,cmin= |s|− |{(si ,sj)|si ,sj ∈ s∧si ≺ sj}|. In our running
example, the ITA result contains seven tuples with four ad-
jacent pairs, givingcmin = 7−4= 3.

Next, we introduce a (nondeterministic) reduction func-
tion that reduces an ITA result relation to a given sizec.

Definition 4 (Reduction Function) Let s be an ITA result
relation,si ≺ sj be two adjacent tuples ins, andc≥ cmin be
a size constraint. Thereduction, ρ , of relations to sizec is
defined as

ρ(s,c) =

{

s |s| ≤ c,

ρ(s\{si ,sj}∪{si⊕sj},c) |s|> c.

If the cardinality ofs is smaller or equal toc, the re-
duction process terminates. Otherwise, two adjacent tuples,
si and sj , are substituted by the merged tuplesi ⊕ sj . No-
tice the nondeterministic nature ofρ which allows any pair
of adjacent tuples to be merged. We will be more specific
about choosing tuples for merging later on.

Example 4The ITA result relation in Fig. 1(c) is reduced to
sizec= 4 in three merging steps withρ(s,4). The reduced
relation in Fig. 1(d) is obtained by merging tupless1,s2 into
z1 ands3⊕ (s4⊕ s5) into z2. Choosing different pairs of tu-
ples for merging produces different results.

4.2 The Error Measure

Merging tuples introduces an error with respect to the ITA
result, which we quantify using the following error measure.

Definition 5 (Error Measure) Let s,S,A,B be as in Def. 3,
z = ρ(s, ·) be a reduction ofs, and let for eachz∈ z, sz =

{s | s∈ s∧s.A = z.A∧s.T⊆ z.T} be the set of all ITA result
tuples that are merged intoz. For a set of positive weights,
w1 > 0, . . . ,wp > 0, theerror, SSE(s,z), that is introduced
by reducings to z is

SSE(s,z) = ∑
z∈z

∑
s∈sz

p

∑
d=1

w2
d|s.T|(s.Bd−z.Bd)

2.

This is the well-known sum squared error, which is given
as the total sum of the squared distance between the tu-
ples ins andz. More specifically, it computes for each tu-
ple,z∈ z, the squared distance (over all aggregation results,
B1, . . . ,Bp) betweenz and the ITA result tuples,s∈ sz, that
are merged to producez. The weightswd are used to lever-
age the impact of the different aggregation attributes. The
choice of such weights is out of the scope of this paper; the
interested reader is referred to Wettschereck et al. [29].
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Example 5Consider the merge ofs1 = (A,800, [1,2]) and
s2 = (A,600, [3,3]) in Fig. 1(c) to tuplez= (A,733.33, [1,3])
in Fig. 1(d). With a weight of 1 for the only aggregation at-
tributeAvgSal, the introduced error isSSE(s,z) = 1·2·(800−
733.33)2+1·1·(600−733.33)2=26666.67.

4.3 The PTA Operator

We provide two variants of the PTA operator. First, size-
bounded PTA reduces the ITA relation to a user-specified
size, while minimizing the introduced error. Second, error-
bounded PTA reduces the size of the ITA result relation as
much as possible, while maintaining the total introduced er-
ror below a given threshold.

Definition 6 (Size-Bounded PTA) Let r be a temporal
relation with schemaR = (A1, . . . ,Am,T), grouping at-
tributes A = {A1, . . . ,Ak}, and aggregate functionsF =
{ f1/B1, . . . , fp/Bp}, and let c ≥ cmin be an application-
specific size constraint. A relationz is the result of
size-bounded parsimonious temporal aggregation, z =

G PTA[A,F,c]r , iff

(1) s= G
ITA[A,F]r ,

(2) z= ρ(s,c),
(3) ∄z′(z′ = ρ(s,c)∧SSE(s,z′)<SSE(s,z)).

Relations is the ITA result, which is reduced toc tuples
in the best possible way, that is, there is no better reduction,
z′, of s to c′ < c tuples that would introduce a smaller error.
A PTA result is not necessarily unique. If different reduc-
tions to sizec introduce the same minimal error, all of them
represent valid PTA results.

Example 6There are four different ways to reduce the ITA
result in Fig. 1(c) toc = 4 tuples. Fig. 1(d) shows the best
possible reduction with an introduced error of 49 166. Fig. 9
shows a different reduction, which has an error of 63 000.

Definition 7 (Error-Bounded PTA) Let r , R, A, andF be
as in Def. 6 andε, 0≤ ε ≤ 1, be an application-specific
error bound. Furthermore, letSSEmax = SSE(s,ρ(s,cmin))

denote the largest possible error. A relationz is the re-
sult of error-bounded parsimonious temporal aggregation,
z= G PTA[A,F,ε ]r iff

(1) s= G
ITA[A,F]r ,

(2) ∃c(z= ρ(s,c)),
(3) SSE(s,z)≤ ε ·SSEmax,

(4) ∄z′,c′(z′ = ρ(s,c′)∧c′ ≤ c∧SSE(s,z′)< SSE(s,z)).

Relationz is a maximal reduction ofs (to a sizec) such
that the introduced error is smaller or equal toε multiplied
by the largest possible error, which occurs whens is reduced

to cmin tuples. Condition 4 ensures that no reduction to a
smaller or the same number,c′ ≤ c, of tuples exists with a
smaller error. Again, the result may not be unique.

Example 7With an error thresholdε = 1 we obtain obvi-
ously the maximal reduction of theproj relation to three tu-
ples. Allowing 2% error yields 4 result tuples as in Fig. 1(d).

5 PTA Evaluation Using Dynamic Programming

For the evaluation of PTA queries, ITA is computed first,
followed by a reduction of the ITA result until a given size
or error bound is satisfied. In this section we propose algo-
rithms PTAc and PTAε for the precise evaluation of size-
bounded and error-bounded PTA, respectively. While any
ITA algorithm can be used for the first step, we adopt a dy-
namic programming based approach to compute an optimal
reduction of the ITA result. We further propose various op-
timization techniques to improve the basic DP scheme, such
as computing the error in constant time and exploiting tem-
poral gaps and aggregation groups to prune the search space.

5.1 Basic DP Scheme for Size-Bounded PTA

Let s = {s1, . . . ,sn} be an ITA result relation sorted on
the aggregation groups and, within each aggregation group,
along the time line. Then each pair of consecutive tuples that
are non-adjacent,si 6≺ si+1, marks a boundary (temporal gap
or change of aggregation group) that cannot be crossed dur-
ing the merging process.

Example 8Consider the ITA result in Fig. 1(c), which is
sorted first by theProj attribute and, within each group,
in chronological order. It contains two boundaries, namely
s5,s6 since the two tuples belong to different aggregation
groups, ands6,s7 since the two tuples are separated by a
temporal gap.

Let sj = {s1, . . . ,sj} denote the firstj tuples ins and
s\ sj = {sj+1, . . . ,sn} the rest. Then the reduction ofs to c
tuples,ρ(s,c), can be defined recursively as follows: find a
reductionρ(sj ,c−1) for somesplit point j and merge the
remaining tuples into one, i.e.,ρ(s\sj ,1). For the reduction
to be optimal, the sum of errors introduced on both sides of
j must be minimized at each recursive step. To avoid that
non-adjacent tuples are merged, we set the error of merging
non-adjacent tuples to infinity. Thus, merging altogether any
subsets′ ⊆ syields an infinite error ifs′ contains at least one
pair of non-adjacent tuples,si 6≺ si+1.

Example 9Fig. 3 illustrates the four options for the split
point, j. For instance, forj = 3, the solution is to find an
optimal reductionρ(s3,3) and to merges4,s5,s6,s7 into one
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tuple, which yields an infinite error sinces5 6≺ s6 6≺ s7. The
only split point with an error different from∞ is j = 6.

s1
s2 s3

s4 s5

s6
s7

ρ(s3,3) j = 3 s4⊕s5⊕s6⊕s7

ρ(s4,3) j = 4 s5⊕s6⊕s7

ρ(s5,3) j = 5 s6⊕s7

ρ(s6,3) j = 6 s7

Fig. 3 Four possible ways to reduce the ITA result to four tuples.

To find an optimal reduction, we propose a dynamic pro-
gramming technique that constructs anerror matrix, Ec×n,
with c rows andn columns. A cell(k, i) represents the small-
est error of reducingsi to k tuples. The matrix is filled incre-
mentally in each step using the values that have been com-
puted in the previous steps, i.e.,Ek,i =







min
k−1≤ j<i

{Ek−1, j +

SSE(si\sj ,ρ(si\sj ,1))} k> 1,

SSE(si ,ρ(si ,1)) k=1∧s1≺ . . .≺ si ,

∞ k=1∧¬(s1≺ . . .≺ si).

The matrix is filled row-wise for allk= 1, . . . ,c, and, for any
fixedk, in increasing order ofi for i = 1, . . . , |s|. At each step
k, the values computed in stepk−1 are used. At the end,
the valueEc,n contains the error introduced by an optimal
reduction of relations to c tuples.

Example 10Figure 4 shows the error matrix that is con-
structed when reducing the ITA result in our running exam-
ple to size 4. The matrix is filled starting from rowk= 1. To
fill the second row, the data from row 1 are used, etc. Even-
tually, cell(4,7) contains the error of the optimal reduction.

i = 1 2 3 4 5 6 7
k= 1 0 26666 67500 208333 269285 ∞ ∞

2 – 0 5000 41666 49166 269285 ∞

3 – – 0 5000 6666 49166 269285

4 – – – 0 1666 6666 49166

Fig. 4 Error matrixE.

In order to construct the reduced relation, we maintain
a split point matrix, Jc×n. A cell (k, i) in the matrix stores
the value ofj that led to the minimal error value when com-
putingEk,i . Consequently the cell(c,n) stores the first split

point j that tells us where to splits in order to construct the
final result. The tuplessj+1, . . . ,sn are then merged into a
single one, whereas tupless1, . . . ,sj are merged intoc−1 tu-
ples, following the next split point that is stored in the cell
(c−1, j), etc.

Example 11Figure 5 shows the split point matrix in our
running example. The split points of the optimal reduction
are framed. The first split point isj = 6, the value of cell
(4,7). We generate the result tuplez4 = s7 and proceed to re-
duces6 to size 3 by taking the value of cell(3,6) as the next
split point. We generate the result tuplez3 = s6. Then we
proceed to reduces5 to 2 tuples, obtainingz2 = s3⊕s4⊕s5.
Finally, we reduces2 to size 1, yieldingz1 = s1⊕s2 (the last
split point in cell(2,1) is 0).

i = 1 2 3 4 5 6 7

k= 1 0 0 0 0 0 0 0

2 – 1 1 2 2 5 0

3 – – 2 3 3 5 6

4 – – – 3 3 5 6

Fig. 5 Split point matrixJ.

5.2 Efficient Computation of the Error

The DP scheme frequently needs to compute the error that
is introduced when a set of adjacent tuples is merged. Ja-
gadish et al. [11] introduce a technique to calculate the error
for one-dimensional data in constant time. We extend their
approach for multi-dimensional data.

Letsbe an ITA result relation with aggregation attributes
B = {B1, . . . ,Bp}. The additional information that is re-
quired for an efficient computation of the error is stored in
two matricesSp×|s|,SSp×|s| and a vectorL |s|, which are de-
fined as follows:

Sd,i =
i

∑
j=1
|sj .T|sj .Bd,

SSd,i =
i

∑
j=1
|sj .T|sj .B

2
d,

L i =
i

∑
j=1
|sj .T|.

Sd,i is the sum of theBd values over all tuples froms1 to
si , SS is the sum of the squares of theBd values, andL
is the sum of the lengths of the timestamps. Observe that
precomputing this information does not introduce any addi-
tional overhead since the ITA algorithm can fill the matrices
while producing the output.
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Using such information, the error of merging a set of
ITA result altogether can be computed inO(p) time, where
p is the number of aggregation attributes in the ITA result.
This is shown in the following proposition.

Proposition 1 Let sz = {si ,si+1, . . . ,sj} ⊆ s such that si ≺
. . .≺ sj . The error that is introduced by mergingsz into one
tuple, z, can be computed as

SSE(sz,{z}) =
p

∑
d=1

w2
d

[

SSd, j −SSd,i−1−
(Sd, j −Sd,i−1)

2

L j −L i−1

]

.

Proof From Def. 3 of the merge operator we have that
z.Bd = 1

|z.T| ∑s∈sz |s.T|s.Bd. We rewrite the error equation in
Def. 5 as follows:

SSE(sz,{z}) =
p

∑
d=1

w2
d

[

∑
s∈sz

|s.T|s.B2
d−

2z.Bd ∑
s∈sz

|s.T|s.Bd

︸ ︷︷ ︸

=|z.T|z.Bd

+z.B2
d ∑

s∈sz

|s.T|

︸ ︷︷ ︸

=|z.T|

]

=
p

∑
d=1

w2
d

[

∑
s∈sz

|s.T|s.B2
d−|z.T|z.B

2
d

]

=
p

∑
d=1

w2
d

[

∑
s∈sz

|s.T|s.B2
d−

(∑s∈sz |s.T|s.Bd)
2

|z.T|

]

=
p

∑
d=1

w2
d

[

SSd, j −SSd,i−1−
(Sd, j −Sd,i−1)

2

L j −L i−1

]

.

⊓⊔

Example 12For the ITA result in Fig. 1(c) the matrices and
vectors are given as follows:

S= 〈 1600, 2200, 2700, 3400, . . . 〉,
SS= 〈 1280000, 1640000, 1890000, 2135000, . . . 〉,
L = 〈 2, 3, 4, 6, . . . 〉.

Using this information, the error of merging the tuples
{s2,s3} into a tuplez is computed asSSE({s2,s3},{z}) =

1890000−1280000− (2700−1600)2

4−2 = 5000.

5.3 Pruning the Search Space of the DP Scheme

Recall that filling the error matrixE involves computing the
value of each cell(k, i) for all k= 1, . . . ,c andi = 1, . . . ,n us-
ing the above dynamic programming equation. This leads to
an algorithm whose performance depends quadratically on
the input size and linearly on the output size. In this section
we introduce bounds for the variablesi and j (in the equa-
tion) to improve the performance of the algorithm. Bound-
ing variablei allows us to avoid the computation of some
Ek,i if that would anyway evaluate to infinity. Otherwise, we

speed up the evaluation ofEk,i = min
k−1≤ j<i

{Ek−1, j +SSE(si\

sj ,ρ(si\sj ,1))} by reducing the value range of the variable
j. The bounds depend on the positions of the non-adjacent
tuple pairs in the sorted input relations. Thus, the perfor-
mance improvements are data-dependent.

Let G be a vector that stores the positions of the non-
adjacent tuple pairs in the sorted input relation,s, i.e.,Gm =
l if sl ,sl+1 ∈ s, sl 6≺ sl+1, is them-th pair of non-adjacent
tuples. We use the information inG to compute the bounds
of i and j variables.

Example 13For the ITA result of the running example we
haveG = 〈5,6〉, which is illustrated in Fig. 6. The first pair
of non-adjacent tuples iss5 6≺ s6. The second pair iss6 6≺ s7.

s1 = (A, 800)
s2 = (A, 600)

s3 = (A,500)
s4 = (A,350)

s5 = (A,300)
s6 = (B,500)

s7 = (B,500)

G1 G2

Fig. 6 The vector of gaps,G.

First, we determine an upper bound,imax, for the variable
i under whichEk,i does not evaluate to infinity. Intuitively, if
the number of non-adjacent tuple pairs insi is greater than
k, then merging across gaps is unavoidable, and, we are sure
that the errorEk,i is infinite. As long ask≤ |G|, the valueGk

tells us the position of thek-th non-adjacent tuple pair. Con-
sequently, the subsetsi = {s1, . . . ,sGk} ⊆ s hask− 1 non-
adjacent tuple pairs and is the maximal subset that can be
reduced to sizek. Therefore,imax= Gk and for all i > imax

we haveEk,i = ∞. Whenk> |G|, the rule may no longer be
applied and we setimaxequal to the size of the input relation,
imax= |s|. The more non-adjacent tuple pairs are present in
the relation, the more advantageous is this upper bound to
speed up the evaluation.

Example 14Consider the computation ofE1,i using the vec-
tor G = 〈5,6〉 shown in Fig. 6. The valueG1 = 5 indicates
that at most the first five tuples,s5 = {s1, . . . ,s5}, can be
merged into one tuple without crossing a gap and inducing
an infinite error. Therefore, givenk= 1, the upper bound for
i is imax=G1 = 5; for all i > 5 we haveE1,i =∞. Givenk= 2
the upper bound fori is imax= G2 = 6. For all greater values
of k the rule does not apply andi cannot be upper-bounded.

Second, wheneverEk,i must be evaluated, we can deter-
mine a lower bound,jmin, for the variablej. The recursion
formula for Ek,i determines the error of merging the tuples
si \sj into one tuple, which will be infinite ifsi \sj contains
at least one non-adjacent tuple pair. This is the case ifj is
smaller than the position of the right-most non-adjacent tu-
ple pair insi , if such a pair exists. The lower bound forj is
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therefore the position of the right-most non-adjacent tuple
pair, i.e., jmin = max{Gl |Gl < i∧ l = 1, . . . , |G|}. If si con-
tains no gaps, we setjmin = k−1. Hence, to evaluateEk,i it
is enough to loop only overjmin≤ j < i. To efficiently de-
termine jmin, we use binary search overG. If there are no
gaps insi , the search does not return any result and we set
jmin = k−1. When jmin = Gk−1, the subsetsi has exactlyk
gaps and the only choice to splitsi is at j = jmin.

Example 15To computeE3,6, the basic DP scheme evalu-
ates theSSEof merging the tupless6\sj for j = 2, . . . ,5. The
right-most non-adjacent pair ins6 is jmin = G1 = 5. There-
fore, only for j = 5 the error is different from∞; the error
computation forj = 2, . . . ,4 can safely be pruned.

5.4 The Size-Bounded PTA Algorithm

Figure 7 shows algorithmPTAc for the precise evaluation
of size-bounded PTA queries using the above DP scheme.
First, the ITA result,s, over the input relationr is computed
using any ITA algorithm. (We assumes to be sorted by the
grouping attributesA and, within each group, in chronologi-
cal order; if not, an additional sorting step is required.) Next,
the vectorsG, L and matricesS, SSthat are needed for the
error computation are initialized. Notice that this initializa-
tion could be pushed into the ITA algorithm to avoid an ad-
ditional scan ofs. Next, the error,E, and split point,J, matri-
ces are initialized. The following loop fills these matricesby
implementing the DP scheme together with the performance
improvements described above. For each matrix row,k, we
iterate over columns,i, computingEk,i . The upper bound for
i is obtained from the gap vectorG. Whenk= 1, we imple-
ment the first condition in the scheme, and the evaluation of
Ek,i is straightforward. The following lines implement the
second condition. When the number of non-adjacent pairs
in the subsetsi equals tok, the only possible split point is at
j = jmin. In all other cases, an iteration overj is necessary.
We lower-bound the variablej, that is,j must be greater than
the index of the right-most non-adjacent pair in the subsetsi .
Recall thatEk,i has been initialized to infinity. By iterating
over j in decreasing order, we choose any smaller value. It
has been shown by Jagadish et al. [11] thatj should be iter-
ated in decreasing order, i.e., fromi−1 towardsjmin. Since
the value oferr2 increases with each iteration, the loop can
be safely broken whene2 alone exceeds the smallest error
Ek,i found so far. The final while loop computes the output
using the split point matrixJ as described before.

Example 16The evaluation ofPTAc over theproj relation
starts with the computation of the ITA results. The tuples
are enumerated from 1 to 7 as in Fig. 1(c). Next,E1,i is
computed for alli = 1, . . . ,5. The valuesE1,6 andE1,7 are
infinite and their evaluation will be avoided with the help

1 Algorithm: PTAc(r ,A,F,c)

2 s← G ITA[A,F]r ;
3 Initialize G,L ,S,SS;
4 Initialize E,J to ∞ and 0, respectively;
5 for k= 1, . . . ,c do
6 if k≤ |G| then imax= Gk else imax= |s|;
7 for i = k, . . . , imax do
8 if k= 1 then
9 E1,i ← SSE(si ,ρ(si ,1));

10 J1,i ← 0;
11 else
12 jmin←max{k−1,Gl |Gl < i∧ l = 1, . . . , |G|};
13 if G k−1 = jmin then
14 j ← jmin;
15 Ek,i ← Ek−1, j +SSE(si \sj ,ρ(si \sj ,1));
16 Jk,i ← j;
17 else
18 for j = i−1, . . . , jmin do
19 err1← Ek−1, j ;
20 err2← SSE(si \sj ,ρ(si \sj ,1));
21 if err1+err2 < Ek,i then
22 Ek,i ← err1+err2;
23 Jk,i ← j;

24 if err2 > Ek,i then break;

25 z← /0, n← |s|;
26 while c> 0 do
27 j ← Jc,n;
28 z← z∪{sj+1⊕ . . .⊕sn};
29 n← j; c← c−1;

30 return z ;

Fig. 7 ThePTAc algorithm for size-bounded PTA.

of the upper boundimax. Similarly, we computeE2,i for all
i = 2, . . . ,6 and avoid the evaluation ofE7,2. Whenk= 2 and
i is between 2 and 5, the loop overj ranges between 1 andi.
However, wheni is 6, the value ofj is fixed at 5. This way
all the remaining errors are computed untilk= 4 andi = 7,
and the final output relation shown in Fig. 1(d) is produced.

The runtime complexity ofPTAc depends on the ITA al-
gorithm and the merging step. We assume that ITA is com-
puted by one of several algorithms that have been proposed
in the past, e.g. [4,15,18]. Their average running time is
O(nlogn), wheren is the size of the input relation. In the
merging step we evaluate the error within three nested loops,
one per variablek, i, and j. The first two perform at mostc
andn iterations, respectively. The maximum number of it-
erations inj equals to the size of the largest adjacent tuple
subset in the ITA result, sayq. The error evaluation takes
O(p) time for p aggregation functions, however,p is usually
insignificantly small and can be regarded as a constant. This
yields a runtime complexity ofO(cnq) for the merging step
in the PTAc algorithm. In the worst case, when the dataset
has no temporal gaps or aggregation groups,q = n and the
complexity ofPTAc is O(n2c). The space complexity of the
algorithm isO(n2) as the split point matrix,J, must be kept
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in memory entirely. On the other hand, only the two most
recent rows of the error matrix,E, are necessary.

5.5 The Error-Bounded PTA Algorithm

To answer error-bounded PTA queries, we use the same DP
scheme as for the size-bounded algorithm. The DP solution
computes all optimal reductions tok = 1,2, . . . tuples in in-
creasing order ofk. As k increases, the error monotonically
decreases. Thus, the relation with the smallestk that satisfies
the error boundε is the solution.

Figure 8 depicts the evaluation algorithm for error-
bounded PTA, which is similar to the algorithm in Fig. 7.
The variableEmax is set to the maximum non-infinite error,
i.e., the error that would be introduced by merging all ad-
jacent tuples together. This value can be computed together
with the ITA result at no additional cost. In the main loop,k
iterates from 1 to the cardinality of the ITA relation, where
the error matrix,E, and the split point matrix,J, are com-
puted. The loop is terminated when the error exceedsε.
The runtime complexity of this algorithm is the same as for
PTAc.

1 Algorithm: PTAε (r ,A,F,ε)

2 s← G ITA[A,F]r ;
3 Emax← SSE(s,ρ(s,cmin));
4 Initialize S,SS,L ,G,E,J;
5 for k= 1, . . . , |s| do
6 Fill E,J using lines 6–24 in Fig. 7;
7 if E [|s|,k]≤ ε ·Emax then
8 c← k;
9 break;

10 Build outputz using lines 25–29 in Fig. 7;
11 return z ;

Fig. 8 ThePTAε algorithm for error-bounded PTA.

6 PTA Evaluation Using Greedy Merging

The DP approach computes a precise result with minimal
merging error, but incurs a relatively high computational
cost for large relations. Many applications, however, would
benefit from a quick and cheap computation of an approxi-
mate answer to PTA queries. In this section we present an
alternative evaluation strategy, which greedily merges the
most similar pairs of ITA result tuples until the size or er-
ror bound is satisfied. The additional error introduced by
greedy merging is reasonably small and upper bounded. We
introduce two novel algorithms,gPTAc andgPTAε , for the
greedy evaluation of size- and error-bounded PTA queries,
respectively. We show that greedy merging can commence

s1 = (A, 800)
s2 = (A, 600)

s3 = (A,500)
s4 = (A,350)

s5 = (A,300)
s6 = (B,500)

s7 = (B,500)

z1 = (A, 800)
z2 = (A, 420)

z3 = (B,500)
z4 = (B,500)

Fig. 9 The dendrogram of the greedy merging steps.

as the ITA result tuples arrive, i.e., before the whole result is
computed. In this way the memory requirement is reduced
to O(c+β ), wherec is the PTA result size andβ is typically
a small fraction of the ITA result; the runtime complexity for
the merging step isO(nlog(c+β )).

6.1 Greedy Merging Strategy

Let s be an ITA result relation. Thegreedy merging strat-
egy (GMS) reducess in an iterative manner until the size
or error bound is satisfied. At each step, it operates on an
intermediate result relation, choosing from it a pair of the
most similar tuples for merging. Intuitively, the smaller the
error of merging two tuples is, the more similar they are.
By replacing the chosen pair with the newly merged tuple a
reduced intermediate result is obtained. When several pairs
of tuples are equally similar, any pair can be chosen. We
elect to merge the pair with the smallest timestamp value.
This choice, however, does not influence the total error in-
troduced by the greedy merging process.

Example 17Fig. 9 illustrates the greedy merging steps over
the example ITA relation with size boundc= 4. The first tu-
ples to be merged (i.e., the most similar ones) ares4 ands5

followed bys2 ands3. The two new tuples are then merged
to produce the final result tuplez2. The result of greedy
merging differs from the precise PTA result in Fig. 1(d),
where tuples2 is merged withs1. The DP algorithm intro-
duces an error of 49 166, while the error of the greedy ap-
proach is 63 000, yielding an error ratio of 1.28 between the
two.

In order to apply GMS, the notion of similarity between
tuple pairs needs to be precisely defined. Consider a sequen-
tial relations′ that is obtained from the initial relation,s, by
applying the reduction operator. Merging a pair of adjacent
tuplessi ∈ s′,sj ∈ s′ leads to a new relation, sayz. Then, the
dissimilarity of the tuplessi andsj is the error introduced
by the merge, i.e.,dsim(si ,sj) = SSE(s,z)−SSE(s,s′). In
order to determine the dissimilarity using this equation, the
source relations must be available, which is not practical if
we want to start merging before the whole ITA result is com-
puted. The following proposition shows thatdsim(si ,sj) can
be determined by considering only the tuplessi andsj .
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Proposition 2 Letsbe a sequential relation,s′ = ρ(s,k) be
a reduction to size k, andz be obtained froms′ by merging
the tuples si ∈ s′,sj ∈ s′ to si ⊕sj = z∈ z. The dissimilarity
of the tuples si ,sj is dsim(si ,sj) = SSE({si ,sj},{z}).

Proof Let s∗i ⊂ sbe the tuples ins that make upsi , i.e., for all
s∈ s∗i we haves[A] = si [A]∧ s.T ⊆ si .T. Let s∗j be defined
for sj in a similar fashion. Then,s∗ = s∗i ∪ s∗j constitutez.
Since the setss′ \{si ,sj} andz\{z} are identical we rewrite
dsim(si ,sj) as

dsim(si ,sj) = SSE(s∗,{z})−SSE(s∗,{si ,sj})

= SSE(s∗i ,{z})−SSE(s∗i ,{si})+ (a)

SSE(s∗j ,{z})−SSE(s∗j ,{sj}) (b)

The summation(a)+(b) is possible because the tuplessi ,sj

are adjacent, i.e., they do not overlap. Recall, that according
to the merge function,si =

1
|si .T|

∑s∈s∗i
|s.T|s. Using the defi-

nition of the error, we can rewrite equation(a) (and similarly
(b)) as

(a) = ∑
s∈s∗i

|s.T|(s−z)2− ∑
s∈s∗i

|s.T|(s−si)
2

= |si .T|(z
2−2z·si +s2

i ) = SSE({z},{si}).

Since the square sum error is defined as a sum of individual
errors andsi ,sj are adjacent, we have

dsim(si ,sj) = (a)+(b) = SSE({z},{si})+SSE({z},{sj})

= SSE({z},{si ,sj}).

⊓⊔

In contrast to the DP approach, GMS does not neces-
sarily compute an optimal ITA reduction. At every greedy
merging step, there is a chance of making a sub-optimal
decision. Therefore, the more merging steps are performed,
the more additional error can be accumulated. The following
theorem shows that the error ratio of the greedy and optimal
solution is asymptotically upper-bounded by the logarithm
of the number of merging steps. Experimentally we show
that the greedy reduction is indeed very close to the optimal
one.

Theorem 1 Let sn be a sequential relation of size n,sc be a
reduction ofsn to c tuples obtained using the greedy merg-
ing strategy, andz be an optimal reduction ofsn to c tuples
obtained using PTAc. The error ratio between the two solu-
tions is

SSE(sn,sc)

SSE(sn,z)
≤O(logn).

Proof By the definition of the greedy merging strategy, the
error introduced by the merge of two most similar tuples in
sk is

SSE(sk,sk−1) = min
si ,sj∈sk

si≺sj

{dsim(si ,sj)}.

The minimum is upper-bounded by an average which is, in
turn, upper-bounded by the total error, i.e.,

SSE(sk,sk−1)≤
1

k−1 ∑
si ,sj∈sk

si≺sj

dsim(si ,sj)

≤
1

k−1
C ·SSE(sn,z).

C is a constant whose minimal value may vary depending
on k, yet there is a value that satisfies anyk. According
to Proposition 2, the errorSSE(sn,sc) made by the greedy
algorithm is the sum of errors made at each intermediate
merging step, i.e.,SSE(sn,sc) =∑c+1

k=nSSE(sk,sk−1). Replac-
ing the summand with the upper-bound we getSSE(sn,sc)≤

C·SSE(sn,z)∑c+1
k=n

1
k−1, which leads to the error bound of the

theorem, namelySSE(sn,sc)
SSE(sn,z) ≤C ·∑c+1

k=n
1

k−1 ≤O(logn). ⊓⊔

A straightforward implementation of the greedy merg-
ing strategy is to use a priority queue (e.g., a binary heap)
to find the most similar tuple pairs. After inserting all ITA
tuple pairs in the heap, the merging process starts, taking
O(nlogn) time andO(n) space to compute any reduction of
n ITA tuples. In the following we describe a more efficient
implementation of the greedy merging strategy for size- and
error-bounded PTA queries, which starts the merging pro-
cess before the complete ITA result is available.

6.2 A Greedy Algorithm for Size-Bounded PTA

6.2.1 Basic Idea

We present thegPTAc algorithm for the evaluation of size-
bounded PTA queries, which integrates the computation of
the ITA result and greedy merging into one process. In a nut-
shell,gPTAc reads ITA result tuples as they become avail-
able and inserts them into a binary heap, which is used to
efficiently identify the most similar tuple pair for merging.
Whenever the heap contains more thanc tuples, the algo-
rithm attempts to merge the tuple at the top with its im-
mediate predecessor, which requires some care. The tuples
are only merged if GMS operating on the whole ITA rela-
tion would also choose to merge them. Such a situation can
only be identified if the last two tuples in the heap are non-
adjacent as stated by the following proposition. At any time
during the computation the heap contains at mostc+β tu-
ples. Sinceβ is typically small,gPTAc improves over GMS
in terms of running time and space efficiency.
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Recall that the ITA result tuples come sorted along the
aggregation groups, and, within each group, along the tem-
poral dimension. We enumerate them from 1 ton, i.e., s=
{s1, . . . ,sn}. Given a subset ofs, the following proposition
specifies when GMS will merge the most similar tuples.

Proposition 3 Let sj+1 = {s1, . . . ,si ,si+1, . . . ,sj ,sj+1} be a
part of the ITA results= {s1, . . . ,sn} and si ≺ si+1 be the
most similar pair of tuples insj+1 for some i≤ j. The greedy
merging strategy operating ons merges si and si+1 if j ≥ c
and sj 6≺ sj+1.

Proof The GMS will not electsi ,si+1 for merging as long
as there are more similar pairs ins. Sincesi ,si+1 are most
similar in sj+1, all pairs which are more similar thansi ,si+1

(if any) must be insn \ sj . Therefore, leavingsi ,si+1 intact,
the smallest intermediate relation produced by GMS iss′ =
{s1, . . . ,si ,si+1, . . . ,sj ,sj+1⊕·· ·⊕sn}. Since|s′| ≥ |sj |> c,
more merging steps are needed to reduces′ to sizec. Since
the two tuplessj ,sj+1⊕ ·· ·⊕ sn are not adjacent, the most
similar pair ins′ to be merged next can only besi ,si+1. ⊓⊔

Example 18Consider reading the first five tuples,s5 =
{s1, . . . ,s5}, of the ITA result in Fig. 9, and let the size bound
for the PTA result bec= 4. The tupless4 ≺ s5 are the most
similar ones, yet they cannot be merged since the tuple to
be read next,s6, might form an even more similar pair with
s5. Therefore, we read ahead an gets6 = {s1, . . . ,s6}. Since
s5 6≺ s6, the GMS has to make a merge in the first five tuples,
independent of the tuples that will follow.

Proposition 3 provides a criterion to perform early merg-
ing, yet guaranteeing the same result as GMS, namely: if
more thanc tuples are in the heap and the last tuple pair is
not adjacent. When temporal gaps are rare or the aggregation
groups are few, a large portion of the ITA result (in the worst
case the whole result relation) may be inserted into the heap
before a non-adjacent pair arrives. To avoid the heap grow-
ing much beyond sizec, we propose a heuristic to deter-
mine whether the currently most similar tuple pair,si ,si+1,
would also be merged by GMS. Suppose thatsj is the last
tuple in the heap and there is a more similar pair,sk,sk+1,
in the ITA result that is connected tosi+1 by a sequence
of adjacent tuples, but has not yet been inserted into the
heap, i.e.,sk+1 = {s1, . . . ,si ,si+1, . . . ,sj , . . . ,sk,sk+1}, where
si+1 ≺ . . . ≺ sk+1. GMS would first mergesk,sk+1. Since
the merge result,sk⊕ sk+1, might be more similar tosk−1

than si ,si+1 are, the new tuple is next merged withsk−1.
This might propagate back, andsi+1 may potentially become
more similar to its new successor (which is the result of sev-
eral merging steps) than tosi . In such a situation, merging
si ,si+1 would be a mistake, leading to a result that is likely to
be different from the GMS result. However, the more tuples
follow the current merge candidate,si ,si+1, the lower is the
probability that the similarity ofsi ,si+1 will be influenced

by merging subsequent tuples. Therefore, to keep the heap
size small we use a parameter,δ , to specify the minimum
number of adjacent tuples that have to follow the merge can-
didate for it to be merged. We will show experimentally that
with δ = 1 the difference betweengPTAc and GMS is neg-
ligible, yet space and performance gain is significant.

Observe thatc+ δ is essentially the lower bound of the
heap size. In the worst yet unlikely case the heap size will be
equal to the ITA result size. The higher is the value ofδ , the
closer is the final result to that of GMS. Whenδ =∞, gPTAc

and GMS produce the same output as shown by Theorem 2
below.

6.2.2 Heap Data Structure

We use a binary heap to avoid scanning the entire inter-
mediate relation in search of the most similar pair of tu-
ples. Given a relations, we represent a tuples ∈ s as a
nodeN that records the following information: the sequence
number of the tuple (N.id), the tuple itself (s), a pointer to
the previous (in chronological order) node (prev), a pointer
to the next node (next), and the error that would be in-
troduced by mergings with the previous tuple (key), i.e.,
N.key= SSE(s,{N.s⊕N.prev.s}). The key is set to∞ if N
andN.prevrepresent non-adjacent tuples ors is the first tu-
ple.

We define the following operations on the heap. INSERT

creates a new node for a tuple and inserts it into the heap;
this includes also the computation of thekeyvalue. PEEK

returns the top node,N, but does not remove it from the
heap. MERGE removes the top node,N, off the heap and
merges the tupleN.s into the preceding node,P = N.prev,
yieldingP.s=P.s⊕N.s. The pointersP.nextandN.next.prev
are updated, the key values ofN.prevand ofN.nextare re-
computed, and the heap structure is updated. The fieldP.id
remains unchanged.

Example 19Figure 10 depicts a binary heap. Solid lines
represent parent-child relationships, dashed lines indicate
prevandnextlinks. In Fig. 10(a) the heap contains the whole
ITA result. The key ofs1 is infinite sinces1 is the first tuple,
whereas the key ofs6 is infinite becauses5 ands6 are not ad-
jacent. The most similar tuple pair iss4,s5. Thus, the node
on the peak representss5 with the key value 1 667, which is
the error of mergings4 ands5. Figure 10(b) shows the heap
after performing one merge. Nodes5 is merged into nodes4,
which now containss4⊕s5. The key value ofs4⊕s5 ands6

are re-evaluated, and thenextpointer ofs4⊕s5 and theprev
pointer ofs6 are updated. The new peak node iss3, thuss2

ands3 will be merged next.
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(1667,s5)

(5000,s3)

(∞,s1) (36667,s2)

(15000,s4)

(∞,s6) (∞,s7)

(a) Before merging

(5000,s3)

(36667,s2)

(∞,s1) (∞,s6)

(56333,s4⊕s5)

(∞,s7)

(b) After merging

Fig. 10 Binary heap used in thegPTAc algorithm.

6.2.3 gPTAc Algorithm

Figure 11 shows the algorithmgPTAc for the greedy eval-
uation of size-bounded PTA. It takes as input parameters
the size bound,c, and δ . The first step is to initialize an
empty heap, the ITA operator that produces a sorted out-
put, and three variables,LastGapId, BG, andAG. Variable
LastGapIdstores the sequence number of the last seen non-
adjacent tuple pair, i.e., it is equal to theN.id of the last seen
node with key value∞. VariablesBGandAGstore the num-
ber of tuples that preceed and, respectively, succeed the last
non-adjacent node,LastGapId. Trivial modifications to the
ITA algorithm proposed by B̈ohlen et al. [4] are necessary
to allow processing the tuples one by one as they become
available from the operator.

For each incoming ITA tuple a new node,N, is created
and inserted into the heap. IfN.key= ∞, the node repre-
sents a non-adjacent pair, variableLastGapIdis set to the
sequence number of this node andBG is increased by the
value ofAG. Otherwise,AG is incremented by 1.

Example 20Assume that the first six tuples of the ITA re-
sult in Fig. 9 are read. Since five tuples precede the latest
gap,BG= 5. Only one tuple follows the gap, thusAG= 1.
Finally,LastGapId= 6 indicates the non-adjacent tuple that
follows immediately after the gap.

When the size of the heap exceeds the PTA size bound,
c, the merging process starts with the second while loop.
First, the node with the smallest key value is read from the
heap. Then we check whether merging can take place using
Proposition 3. If the condition evaluates to true, we proceed
with merging. Otherwise, we make use of the heuristic and
only check whether the node has at leastδ adjacent succes-
sors. The higher isδ , the less likely it is that the choice to
merge is different from that of GMS and thatgPTAc will

deviate from GMS result. Whenδ = ∞ the effect of the pa-
rameter is eliminated and merging will only happen when
non-adjacent tuple pairs are discovered. In that case the al-
gorithm is guaranteed to produce the same result as GMS. If
none of the two conditions is true, merging is not possible.
We break the cycle and wait for more tuples to be inserted
into the heap. Finally, if the whole ITA result is read and the
heap still does not satisfy the size bound, we merge the the
most similar tuples until|H|= c.

1 Algorithm: gPTAc(r ,A,F,δ ,c)
2 H← new empty heap;
3 Initialize the ITA operator withF, A, andr ;
4 LastGapId← 0; BG← 0; AG← 0;
5 while si ← next tuple fromG ITA[A,F]r do
6 N← INSERT(si);
7 if N.key= ∞ then
8 LastGapId← N.id;
9 BG← BG+AG;

10 AG← 1;
11 else
12 AG← AG+1;

13 while |H|> c do
14 N← PEEK();
15 if N.id < LastGapId∧BG≥ c then
16 BG← BG−1;
17 MERGE();
18 else if N.id > LastGapId∧N hasδ adjacent

successorsthen
19 AG← AG−1;
20 MERGE();
21 else
22 break;

23 while |H|> c> cmin do
24 MERGE();

25 return H;

Fig. 11 Greedy algorithm,gPTAc, for size-bounded PTA.

Example 21Consider runninggPTAc over theproj relation
with c = 3 andδ = 1. Figure 12 depicts each intermediate
state of the heap. The ITA tuples come sorted: first the group
“A” and only then the group “B”. In (a) the heap contains the
first four ITA tuples. The merging process can start as the
most similar pair,s2 ands3, has 1 successor. In (b)s2⊕ s3

has been created to keep the heap size equal to 3. Next, tuple
s5 is inserted leading to (c) where the tuple at the top of the
heap iss5. Even though the size of the heap exceedsc, the
merge cannot happen sinces5 does not haveδ = 1 succes-
sors. Observe that tuples5 may happen to be more similar to
s6 (which is not known yet) and, therefore should be merged
with it. When tuples6 arrives (d), it becomes clear that merg-
ing is possible. The heap now contains five tuples. The algo-
rithm repeatedly merges adjacent tuples (e,f) until the size
constraint is satisfied again. Specifically,s4 is merged tos5
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(a) Insert: s1 ≺ s2 ≺ s3 ≺ s4

(b) Merge: s1 ≺ s2⊕s3 ≺ s4

(c) Insert: s1 ≺ s2⊕s3 ≺ s4 ≺ s5

(d) Insert: s1 ≺ s2⊕s3 ≺ s4 ≺ s5 6≺ s6

(e) Merge: s1 ≺ s2⊕s3 ≺ s4⊕s5 6≺ s6

(f) Merge: s1 ≺ s2
⊕. . . s5 6≺ s6

(g) Insert: s1 ≺ s2
⊕. . . s5 6≺ s6 6≺ s7

(h) Merge: s1
⊕. . . s5 6≺ s6 6≺ s7

Fig. 12 Reducing an ITA result to three tuples withgPTAc.

and the result is then merged withs2⊕ s3. Finally, with the
arrival of tuples7 (g) the final result is computed as shown
in (h). Over the whole process the heap contained at most
five tuples, whereas seven ITA tuples have been processed.

Theorem 2 The output of the gPTAc algorithm withδ = ∞
is identical to that of GMS.

Proof The proof follows from Proposition 3.gPTAc merges
the same tuple pairs that GMS would merge. ⊓⊔

The complexity ofgPTAc depends on the ITA algorithm.
Assume that the latter takesT time to produce a result rela-
tion of sizen. In addition, it usesSspace for internal struc-
tures. Then,gPTAc requiresO(T + nlog(c+ β )) time and
O(S+c+β ) space (assuming that the heap operations take
logarithmic time). In the worst casec+β = n, however for
the majority of datasets we expectc+β to be much smaller
thann.

6.3 A Greedy Algorithm for Error-Bounded PTA

The algorithm,gPTAε , for the greedy evaluation of error-
bounded PTA queries follows the same intuition as its size-
bounded counterpart. As ITA result tuples are produced, it
starts to merge tuples as early as possible and tries to merge
as many tuples as possible before exceeding the error thresh-
old ε. The major difference is on how to determine tuple
pairs that would also be merged by GMS. For that we need
to know the size,n, of the ITA result,s, and the maximal er-
ror, Emax= SSE(s,ρ(s,cmin)), of reducings to the smallest
possible size,cmin. Since we do not wait until the ITA result
is completed, these values have to be estimated. The ITA
relation can be safely estimated to contain twice as many tu-
ples as the argument relation. In order to estimate the total
error we have to obtain a good sample of the ITA result. Us-
ing these two values, the following preposition shows how

to identify tuple pairs in a subset of the ITA result that will
be merged by GMS.

Proposition 4 Let sj+1 = {s1, . . . ,si ,si+1, . . . ,sj ,sj+1} be a
subset of the ITA result relation,s= {s1, . . . ,sn}, si ≺ si+1

be the most similar pair of tuples insj+1 for some i≤ j,
and Emax= SSE(s,ρ(s,1)) be the maximum total error. The
greedy merging strategy operating ons will merge si and
si+1 if dsim(si ,si+1)≤ ε Emax

n and sj 6≺ sj+1.

Proof In the error-bounded setting GMS has to make as
many merges as possible, yet introducing at mostεEmax er-
ror. Let the total error introduced at some intermediate step
beEtot. GMS will electsi ,si+1 for merging at that step only
if there is no other more similar pair among those in the
intermediate result andEtot + ε Emax

n ≤ εEmax. Sincesi ,si+1

are most similar insj+1, at mostn− j −1 more similar tu-
ple pairs may exist insn \ sj . Once all of these tuples are
merged, the total error will beEtot ≤ (n− j − 1) · ε Emax

n .
Since these merging steps do not change the similarity of
si ,si+1 (due tosj 6≺ sj+1), si ,si+1 become now the most sim-
ilar pair. SinceEtot+ε Emax

n ≤ εEmax, GMS will make at least
one more merging step, choosingsi ,si+1 for merging. ⊓⊔

To avoid the heap growing too much while we wait for
a non-adjacent tuple pair, we adopt the same heuristic as for
the size-bounded case. That is, the more tuples follow the
current merge candidate, the more likely it is that this pair
will be merged also by GMS. Hence, we use a user-specified
parameterδ to determine the minimum number of tuples
that should follow the merge candidate for it to be merged.

Figure 13 shows thegPTAε algorithm for the greedy
evaluation of error-bounded PTA. The variableEtot is up-
dated after each merging step and tracks the total error made
so far. In addition, in line 6 we estimate the maximal total
error,Emax, and the size of the ITA relation,n. Incoming ITA
tuples are inserted into the heap as they arrive and merging is
attempted with each new tuple. Merging may only happen if
the key of the node at the top of the heap is less than the av-
erage expected error,εEmax/n, and the node is followed by
a non-adjacent tuple pair or at leastδ adjacent tuples. Once
the whole ITA relation has been processed we know the real
maximal error that can be made,Emax. Therefore, as long as
the total error introduced so far,Etot, does not exceed the er-
ror bound we use GMS to finalize the merging process. The
worst-case time and space complexity ofgPTAε is the same
as ofgPTAc.

Example 22We rungPTAε on theproj relation withε =

0.5 andδ = 1. We setEmax=Emaxof the corresponding ITA
result, which is 269 285.714, andn = n = 7. Therefore, if
we were to merge all the tuples, the average error we would
make per step would beεEmax/n= 19234.69.gPTAε reads
the ITA tuples one by one and tries to merge those that in-
troduce less than the expected average error. The first such
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1 Algorithm: gPTAε (r ,A,F,δ ,ε)
2 H← new empty heap;
3 Initialize the ITA operator withF, A, andr ;
4 LastGapId← 0; BG← 0; AG← 0;
5 Etot← 0; Emax← 0;
6 EstimateEmax andn;
7 while si ← next tuple fromG ITA[A,F]r do
8 Lines 6 – 12 fromgPTAc algorithm in Fig. 11;
9 while truedo

10 N← PEEK();
11 if N.key> εEmax/n then break;
12 if N.id < LastGapIdthen
13 BG← BG−1;
14 Etot← Etot +N.key;
15 MERGE();
16 else if N.id > LastGapId∧N hasδ successorsthen
17 AG← AG−1;
18 Etot← Etot +N.key;
19 MERGE();
20 else
21 break;

22 while truedo
23 N← PEEK();
24 if N.key< ∞∧ (Etot +N.key)/Emax≤ ε then
25 MERGE();
26 Etot← Etot +N.key;
27 else
28 break;

29 return H;

Fig. 13 Greedy algorithm,gPTAε , for error-bounded PTA.

candidates ares2,s3 (see Fig. 1(c)). However, theδ parame-
ter dictates to read tuples4 before merging that pair.

Theorem 3 The output of the gPTAε algorithm withδ = ∞
is identical to that of GMS ifEmax

n ≤ Emax
n .

Proof ThegPTAε algorithm will consider merging a pair of
tuplessi ,si+1 only if dsim(si ,si+1)≤ ε Emax

n ≤ ε Emax
n . There-

fore, as follows from Proposition 4, the algorithm will merge
the same tuple pairs that GMS would. ⊓⊔

The estimated valuesn andEmax play an important role
in thegPTAε algorithm. First, the estimated values may in-
fluence the correctness of the final output. Second, the pre-
cision of the estimate affects the size of the heap. The esti-
mation of the ITA result size is easy, since it can be at most
twice as large as the argument relation, thusn = 2|r | − 1.
Estimating the maximal error,Emax, is more complicated.
The key aspect to consider here is how precise should the
estimate be. As long asEmax≤ Emax, the estimate only in-
fluences the size of the heap. That is, whenEmax≪ Emax,
none or very few early merges will take place. Thus, the
heap will be filled with almost the entire ITA result before
the merging will commence. On the other hand, when the er-
ror is overestimated, i.e.,Emax< Emax, we cannot guarantee

that the result is the same as for GMS. It seems reasonable to
sample the argument relation and compute the correspond-
ing ITA result to obtain an error estimate. A more detailed
investigation of this aspect is part of the future work.

7 Experimental Evaluation

In this section we experimentally evaluate the capability of
PTA to reduce ITA results. We quantify the error that our so-
lutions introduce and compare it to other related approaches.
We investigate also the runtime performance and space re-
quirements of our algorithms.

7.1 Setup and Data

We implemented the algorithms introduced in this pa-
per as well as the ATC [2], APCA [7], DWT [24], and
PAA [14] algorithms and Chebyshev polynomials [6] in
JavaTM Version 6. The experiments run on a Linux machine
with four AMD 2600MHz Opteron processors and 16GB of
RAM. An Oracle 11g database running on the same ma-
chine is used as data storage medium.

For the experiments we used the following four data sets:
the real-world Incumbents data set kindly donated by the
University of Arizona, USA; the synthetic employee tempo-
ral data set (ETDS) donated by F. Wang [28]; a subset of
real-world time series data from the UCR Time Series Data
Repository [13]; and a synthetic dataset for large scale ex-
periments. We evaluate PTA with various aggregation func-
tions and grouping attributes and with a varying number
of temporal gaps. Therefore, we issue different aggregation
queries over the four base relations to get a total of 12 ITA
relations with different attribute value distributions, number
of aggregation groups, and temporal gaps (see Table 1).

The ETDS relation reports the evolution of employees
in a company and contains 2 875 697 records. Each record
stores employee number, sex, department, title, salary, and
contract validity interval in months. The ITA queries over
this relation are summarized in Tab. 1(a). Queries E1, E2,
and E3 specify different aggregation functions over the
salary attribute without any grouping, yielding ITA results
of 6 394 tuples each. Since these relations have no temporal
gaps nor aggregation groups, we havecmin= 1. In Query E4
we group by employee number and department. The cor-
responding ITA result contains more than 5 million tuples,
which exceeds the size of the input relation.

The Incumbents relation records the change of employee
salaries over time. It has 83 857 tuples, where each tuple
records a project ID, department ID, salary, and time inter-
val in months. The ITA queries I1, I2, and I3 in Tab. 1(b)
group the base table by department and project and compute
different aggregate functions over the salary attribute.
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Table 1 ITA aggregation queries used for the evaluation.

(a) ETDS relation

Name Grouping,A Agg. Functions,F ITA Size cmin

E1 /0 avg(Salary) 6 394 1
E2 /0 max(Salary) 6 394 1
E3 /0 sum(Salary) 6 394 1
E4 Emp.No., Dep. avg(Salary) 5 419 493 339 067

(b) Incumbents relation

Name Grouping,A Agg. Functions,F ITA Size cmin

I1 Dep., Proj. avg(Salary) 16 144 131
I2 Dep., Proj. max(Salary) 16 144 131
I3 Dep., Proj. sum(Salary) 16 144 131

(c) Time series data

Name Relation No. of Dimensions ITA Size cmin

T1 Chaotic.dat 1 1 800 1
T2 Tide.dat 1 8 746 1
T3 Wind.dat 12 6 574 216

(d) Synthetic

Name Grouping Dimensions ITA Size cmin

S1 – 10 10 000 000 1
S2 yes 10 10 000 000 50 000

The UCR Time Series Data Repository [13] offers a va-
riety of real-world time series data from various sources. We
use two one-dimensional datasets, chaotic.dat and tide.dat,
and one dataset with 12 dimensions, wind.dat. Each record
in time series data has one or more aggregate values (dimen-
sions) and a timestamp value. We replace the timestamp by a
validity interval of length one to obtain a sequential relation.
Thus, we can omit the ITA aggregation and pass the data di-
rectly to the PTA merging step. Table 1(c) summarizes the
used time series.

To avoid any data induced bias we generate a synthetic
dataset with 10 million tuples, one grouping attribute, and10
aggregate attributes with uniformly distributed values. We
issue two different ITA queries over this dataset as shown in
Table 1(d). Query S1 does not specify any grouping, and the
result has no temporal gaps, hencecmin = 1. Query S2 uses
grouping and produces a result relation with 50 000 groups
with 200 tuples in each.

7.2 Quality Evaluation

The first set of experiments evaluates the error that PTA
introduces when reducing the ITA result using the DP and
GMS based approaches.

7.2.1 Quality of the DP Approach

In Fig. 14 we measure the error introduced by thePTAc al-
gorithm for every possible output size. (Note that thePTAε

results are identical and we do not report them here.) We
use every dataset except E4 and the synthetic one as they
are too large to be processed in reasonable time with the
DP approach. The error and output size are normalized to
the range between 0 to 100%. Thus, we show error growth
curves, where the horizontal axis depicts the reduction ratio
and the vertical axis the error. Any ITA result has 0% re-
duction and thus 0% error; 100% error is reached when the
dataset is reduced tocmin.

Fig. 14(a) depicts the error curves in the range of 90%
to 100% reduction for the first three datasets. Observe that
for most queries the error remains very low even when they
are significantly reduced. For example, the series T1 can be
reduced by 95% (i.e., to 100 tuples) before the total error
exceeded 10%. Only T3 reaches an error of 55% already at
90% of reduction.

The relatively large error on the high-dimensional
dataset, T3, suggest that the reduction capabilities depend
on the dimensionality of the data. Therefore, in Fig. 14(b)
we evaluate several PTA queries over a 2 000 tuple subset
of the synthetic dataset. For each query we specify a differ-
ent number of aggregation attributes (dimensions). As the
dimensionality increases, the introduced error grows.
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From the results of this experiment we conclude that in
most cases the PTA operator can reduce the ITA result size
significantly inducing only a small error. Moreover, the re-
duction capabilities do not depend on the aggregation func-
tions or grouping attributes in the query, but on the data di-
mensionality. This is not surprising as the dimensionalityre-
lated problems have long been known [3].

7.2.2 Quality of the Greedy Approach

We quantify the reduction error of the greedy PTA algo-
rithms. First, we measure how close the greedy and the pre-
cise solutions are and whether the former can outperform
other known data approximation algorithms. We usegPTAc

with δ = ∞ (gPTAε yields identical results). Second, we
evaluate the influence ofδ on the results of thegPTAc and
gPTAε algorithms.

Figure 15 compares the errors introduced bygPTAc and
other algorithms for Query T1 at each size bound from 1 to
1 800. In DWT there is no direct relationship between the
number of coefficients retained and the number of segments
in the restored time series signal. The signal restored from
k coefficients will contain fromk to 3k intervals. To obtain
a DWT result of sizec, we have to search for a suitablek.
If several solutions exist, we retain the one that yields the
smallest approximation error. APCA, on the other hand, will
always yieldc segments as it applies greedy merging on top
of the time series that is reconstructed from wavelet coef-
ficients. ATC takes as input an error bound. We generate a
list of exponentially decaying error bounds and compute the
ATC result for each one of them. If for two error bounds
ATC yields several results of the same size, we keep the one
that introduces the smallest error.

Observe in Figure 15(a) that thegPTAc error curve is
closest to the error curve of the precise result which is com-
puted withPTAc. Thus, the greedy algorithm is closest to the
optimal result and outperforms all other data approximation
algorithms, out of which DWT and PAA perform signifi-
cantly worse. We take thePTAc result as a baseline and plot
the ratio of the reduction error to the baseline. An error ra-
tio 1 means an optimal reduction, whereas any greater value
signifies a divergence from it. The error ratio ofgPTAc is
very close to 1 and increases only slightly with the number
of merging steps to reach 1.25. This behavior is predicted
by Theorem 1. ATC and APCA lag behind. DWT and PAA
perform significantly worse and are not shown.

We run the same experiment for all queries and compute
the average error ratio over the full range ofc values for
gPTAc, ATC, APCA, DWT, and PAA algorithms. The result
is shown in Fig. 16. A pattern-filled bar depicts the aver-
age error ratio, and a thin line indicates the standard error.
Note the logarithmic scale for the error ratio. The figure re-
ports also the average error ratio of the approximation with
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Fig. 15 Reduction error of different algorithms for query T1.

Chebyshev polynomials. We compute approximations using
from 1 up to 1000 coefficients and compare the resulting
time series with thePTAc result with the same number of
tuples. Overall, thegPTAc algorithm consistently provides
the best error ratio, that is, its results are closest to those of
PTAc. ATC is the second best algorithm, however, its per-
formance is not consistent; ATC shows satisfactory results
for E4 and T3 but not for I1 and I2. For query E4 we use
gPTAc as baseline since the dataset is too large to be eval-
uated withPTAc, and we compare it with the error of ATC,
which is slightly worse. APCA, DWT, PAA, and Cheby-
shev polynomials are not applicable for the queries I1, I2,
I3, and T3 since they cannot cope with multiple aggregation
groups and temporal gaps. Interestingly, the algorithms de-
signed for time series approximation perform better on the
time series data T1, T2, and T3 and significantly worse on
temporal data, which can be explained by their inability to
handle constant value intervals.

In our last experiment we evaluate the impact ofδ to
the quality of the result ofgPTAc and gPTAε algorithms.
Instead of estimating the relation size and the total error we
use the correct values. Figure 17 shows the average error ra-
tio and standard error for a varyingδ and different datasets.
PTAc andPTAε are used as baseline solution, and the er-
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Fig. 16 Average error ratio for different datasets.

ror is averaged over all possible size bounds,c, and error
bounds,ε. Whenδ = 0 the algorithms return the worst re-
sult, whereas forδ =∞ the best results that are possible with
greedy merging are obtained. It is interesting to see that for
δ ≥ 1 the results are practically the same. From this obser-
vation we can conclude that reading ahead by just one tuple
(before merging) is sufficient to obtain very good results. In
the following scalability experiments we show that a smallδ
allows also to reduce the heap significantly and to get better
runtime performance.

7.3 Performance Evaluation

The second set of experiments evaluates the runtime perfor-
mance. Thereby, we measure only the time of the merging
phase and exclude the time taken to produce the ITA result
and to write the final PTA result back to the database.

7.3.1 Performance of the DP Approach

As a baseline solution (DP) we use the straightforward im-
plementation of the DP scheme described in Sec. 5.1. We
compare it to thePTAc algorithm, which implements the
improvements described in Sec. 5.2–5.3 (the same results
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Fig. 17 Impact ofδ .

are obtained forPTAε , and hence are not reported here). We
expectPTAc to be faster when dealing with data that sports
multiple temporal gaps and aggregation groups.

Figure 18 illustrates the impact of the input size to the
computation time. In Fig. 18(a), we use sequential subsets
of the synthetic dataset, which have no temporal gaps and
aggregation groups. The size of the input varies from 500
to 6500 tuples, whereas the output,c, and dimensionality,
p, are fixed at 500 and 10, respectively. As expected, the
two approaches show no significant difference. Figure 18(b)
shows that the performance ofPTAc improves significantly
over DP when the argument relation sports multiple groups
or gaps. Here we use subsets of different size of the grouped
synthetic data (S2) and we keep the number of aggregation
groups fixed at 200; only the number of tuples within each
group increases with the input size. As the figure shows,
PTAc significantly outperforms DP and scales almost lin-
early since the presence of gaps reduces the amount of com-
putation.

The next experiments in Fig. 19 shows how the change
of the output size,c, influences the performance. As input
data we use 2 000 tuples from the synthetic dataset with
200 groups and 10 tuples in each group. The value ofcvaries
from 1 to 2 000. As expected, the running time increases lin-
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early with the increasing size of the output. Observe, how-
ever, that thePTAc algorithm is not overly sensitive to the
size bound,c, as the presence of gaps is the most important
speed factor.

To summarize, the experiments confirm the estimated
performance of thePTAc algorithm. When data sports tem-
poral gaps or aggregation groups are specified in the query
(as in many realistic applications),PTAc is much faster than
the plain DP approach.

7.3.2 Performance of the Greedy Approach

First, we quantify the space requirements of the two greedy
algorithms by measuring the maximal heap size. We use the
synthetic relation without gaps and vary the output size as
well asδ . The input size is fixed at 10 000 000. The results
are shown in Fig. 20, where the horizontal axis ranges over
the result size and the vertical axis over the heap size. In
gPTAc, the heap is filled with the whole ITA result when
δ = ∞. Whenδ = 0, the behavior is exactly the opposite,
and the heap size never exceeds the output size,c. For other
values ofδ the heap size isc+β . Smallerδ lead to smaller
β . Eventuallyβ converges to 0 and the heap size scales lin-
early with respect to the output size,c. ThegPTAε algorithm
behaves similarly, however, its heap is significantly larger
independently ofδ .

The last experiment in Fig. 21 compares the perfor-
mance ofgPTAε and gPTAc to APCA, DWT, PAA, and
ATC by measuring the average running time of each algo-
rithm with respect to the size of the input. We use subsets
of the synthetic dataset without temporal gaps that range in
size from 1 to 10 million tuples. The size bound,c, for the
gPTAc algorithm is set to 10% of the input size; we found
empirically that the corresponding error bound forgPTAε
is ε = 0.65. We useδ = 1 since previous experiments have
shown that this value yields very good quality at the small-
est space requirements. For ATC we set the local error bound
0.01. We exclude the runtime of approximation with Cheby-
shev polynomials. The algorithm needsO(nc) time to com-
pute c coefficients making it unsuitable for large datasets
and large values ofc. As can be seen in Fig. 21,gPTAε
is the slowest algorithm since it has to deal with an ever-
increasing heap structure. On the other hand,gPTAc is com-
parable to other approaches. Such performance advantage is
due to very small heap thatgPTAc operates on.

7.4 Summary

The experimental results reported in this section show that
the PTA operator can significantly reduce the ITA result,
yet introducing only small errors. The dynamic program-
ming based algorithms,PTAc and PTAε , scale linearly in
real-world situations, though in the worst case they remain
quadratic with respect to the input size. The reduction of the
ITA result obtained with the two greedy algorithms,gPTAc

andgPTAε , is very close to the optimal result. The greedy
algorithms consistently and significantly outperform other
known approximation methods in terms of approximation
quality. In addition, they are scalable for huge datasets.
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8 Conclusions and Future Work

In this paper we defined size- and error-bounded parsimo-
nious temporal aggregation (PTA). This new aggregation
operator overcomes limitations of existing operators and
reduces the result size of instant temporal aggregation by
merging the most similar tuples until a user-specified error
or size bound is satisfied. We presented two dynamic pro-
gramming based evaluation algorithms,PTAc andPTAε , to

compute a precise result for PTA queries. In realistic situa-
tions, when data sports temporal gaps or aggregation groups
are specified in the query, the algorithms scale linearly with
respect to the size of the input. For a quick computation of
an approximation of the PTA result, we proposed two greedy
algorithms,gPTAc andgPTAε . We proved that the error ra-
tio of the greedy approach with respect to the precise so-
lution is upper-bounded byO(logn), wheren is the size of
ITA result. The greedy algorithms takeO(c+β ) space and
O(nlog(c+β )) time for a result of sizec, andβ is typically
very small. An extensive experimental evaluation confirmed
the theoretical estimations and showed that the greedy algo-
rithms scale very well for large data sets and provide signif-
icantly better approximation quality than other known ap-
proximation techniques.

In our future work we will explore the possibility of
merging tuples separated by temporal gaps. In addition, we
will address the issue of estimating the maximal error that
the reduction of an ITA result may introduce. We believe that
novel ways to sample temporal data have to be developed in
order to obtain good estimates. We will extend both greedy
algorithms to deal with streaming temporal data. This is a
challenging problem since a streaming ITA result cannot be
sorted along the aggregation groups. Finally, a careful inves-
tigation of different error measures is worthwhile.
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