A Foundation for Representing and Querying Moving Objects

Ralf Hartmut Güting
FernUniversität Hagen
and
Michael H. Böhlen
Aalborg University
and
Martin Erwig
FernUniversität Hagen
and
Christian S. Jensen
Aalborg University
and
Nikos A. Lorentzos
Agricultural University of Athens
and
Markus Schneider
FernUniversität Hagen
and
Michalis Vazirgiannis
Athens University of Economics and Business

Name: R. H. Güting, M. Erwig, M. Schneider
Affiliation: FernUniversität Hagen
Address: Praktische Informatik IV, D-58084 Hagen, Germany
Name: M. H. Böhlen, C. S. Jensen
Affiliation: Aalborg University
Address: Department of Computer Science, DK-9220, Aalborg Ø, Denmark
Name: N. A. Lorentzos
Affiliation: Agricultural University of Athens
Address: Informatics Laboratory, Iera Odos 75, 11855 Athens, Greece
Name: M. Vazirgiannis
Affiliation: Athens University of Economics and Business
Address: Department of Informatics, Patision 76, 10434 Athens, Greece

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or direct commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works, requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.
This work was partially supported by the CHOROCHRONOS project, funded by the EU under the Training and Mobility of Researchers Programme, Contract No. ERB FMRX-CT96-0056.

Spatio-temporal databases deal with geometries changing over time. The goal of our work is to provide a DBMS data model and query language capable of handling such time-dependent geometries, including those changing continuously which describe moving objects. Two fundamental abstractions are moving point and moving region, describing objects for which only the time-dependent position, or position and extent, are of interest, respectively. We propose to represent such time-dependent geometries as attribute data types with suitable operations, that is, to provide an abstract data type extension to a DBMS data model and query language.

This paper presents a design of such a system of abstract data types. It turns out that besides the main types of interest, moving point and moving region, a relatively large number of auxiliary data types is needed. For example, one needs a line type to represent the projection of a moving point into the plane, or a “moving real” to represent the time-dependent distance of two moving points. It then becomes crucial to achieve (i) orthogonality in the design of the type system, i.e., type constructors can be applied uniformly, (ii) genericity and consistency of operations, i.e., operations range over as many types as possible and behave consistently, and (iii) closure and consistency between structure and operations of non-temporal and related temporal types. Satisfying these goals leads to a simple and expressive system of abstract data types that may be integrated into a query language to yield a powerful language for querying spatio-temporal data, including moving objects. The paper formally defines the types and operations, offers detailed insight into the considerations that went into the design, and exemplifies the use of the abstract data types using SQL. The paper offers a precise and conceptually clean foundation for implementing a spatio-temporal DBMS extension.

Categories and Subject Descriptors: H.2.3 [Information Systems]: Database Management
General Terms: Data Model, Query Language
Additional Key Words and Phrases: Moving objects, spatio-temporal databases

1. INTRODUCTION

A common characteristic of concrete, physical objects is that they have a position and an extent in space at any point in time. This applies to countries, land parcels, rivers, taxis, forest harvesting equipment, fishing boats, air planes, glaciers, lakes, forests, birds, polar bears, and persons, to name but a few types of objects.

A wide and increasing range of database applications manage such space and time referenced objects, termed spatio-temporal objects. In these database applications, the current as well as the past and anticipated future positions and extents of the objects are frequently of interest. This brings about the need for capturing these aspects of the objects in the database.

As an example, forest management involves the management of spatio-temporal objects. Forest harvesting machines have Global Positioning System (GPS) devices attached. A harvesting machine cuts down a pine tree while holding on to the tree; it then strips off the branches while simultaneously cutting the tree into logs of specified lengths, placing also the logs in different piles so that similar logs go into the same pile. During this process, the machine measures the amount and
properties of the harvested wood (e.g., volumes, diameters, lengths) and transmits this information together with the positions of the piles to headquarters. Together with the orders for wood, this information along with the present locations of the harvesting machines is then used for scheduling the pickup of already harvested wood as well as further harvesting.

Two types of spatio-temporal objects may be distinguished, namely discretely moving objects and continuously moving objects. For the former type of object, e.g., land parcels, it is relatively easy to keep track in the database of the objects’ changing positions and extents. This may be accomplished by more or less frequent database updates, and solutions exist for capturing and querying discretely changing spatial positions and extents. For example, this may be accomplished by using separate spatial and temporal columns in relational tables. A time interval in the temporal column describes when the spatial value is valid. However, if we consider the temporal development of a spatial value as a function of time, then this strategy can only represent stepwise constant functions.

Objects that change position or extent continuously, termed moving objects for short, are pervasive, but in contrast to the discretely changing objects, they are much more difficult to accommodate in the database. Supporting these kinds of moving objects is exactly the challenge addressed by this paper. It is not feasible to capture these with separate spatial and temporal values, since we do not have stepwise constant functions any more, and the database cannot be updated for each change to the objects’ spatial aspect. Another tack must be adopted.

The paper defines a complete framework of abstract data types for moving objects. The proposed framework is intended to serve as a precise and conceptually clean foundation for the representation and querying of spatio-temporal data. While proposals exist for spatial and temporal types, no framework has previously been proposed for spatio-temporal types that include support for moving objects. (Section 6 positions the paper’s contribution with respect to related research.)

The framework takes as its outset a set of basic types that includes standard data types such as integer and Boolean; spatial data types, including point and region; and the temporal type instant. The next step is to introduce type constructors that may be applied to the basic types, thus creating new types. For example, the type constructor “moving” that maps an argument type to the type that is a mapping from time to the argument type is included. This leads to types such as moving point, which is a function from instant to point. For example, a harvesting machine’s position may be modeled as a moving point.

The framework emphasizes three properties, namely closure, simplicity, and expressiveness. For example, closure dictates that types exist for the domains and ranges of types that are functions between types.

It is important to note that in a design of abstract data types like the one of this paper, the definitions of the structure of entities (e.g., values of spatial data types) and of the semantics of operations can be given at different levels of abstraction. For example, the trajectory of a moving point can be described either as a curve or as a polygonal line in two-dimensional space. In the first case, a curve is defined as a (certain kind of) infinite set of points in the plane without fixing any finite representation. In the second case, the definition uses a finite representation of a polygonal line, which in turn defines the infinite point set making up the trajectory.
of the moving point. In [Erwig et al. 1999] the difference between these two levels of modeling is discussed at some depth, and the terms abstract and discrete modeling have been introduced for them. Basically, the advantage of the abstract level is that it is conceptually clean and simple, because one does not have to express semantics in terms of the finite representations. One is also free to select later different kinds of finite representations, e.g., polygonal lines, or descriptions based on splines. On the other hand, this additional step of fixing a finite representation is still needed. The advantage of discrete modeling is that it is closer to implementation.

The design of this paper is an abstract model in this sense. However, care has been taken to define all data types and operations in such a way that an instantiation with finite representations (e.g., set of polygons for region) is possible without problems.

The proposed abstract data types may be used as column types in conventional relational DBMSs, or they may be integrated in object-oriented or object-relational DBMS's. It is also possible for a user or a third-party developer to implement abstract data types based on this paper's definitions in an extensible DBMS, e.g., a so-called Universal Server.

The paper is structured as follows. Abstract data types consist of data types and operations that encapsulate the data types, i.e., they form an algebra. Section 2 discusses the embedding of such an algebra into a query language. Section 3 proceeds to present the data types in the framework, and Section 4 defines the appropriate sets of operations to go with the data types. Section 5 explores the expressiveness of the resulting language within two application areas. Section 6 covers related research. Section 7 concludes the paper and identifies promising directions for future research pointed to by the paper.

2. PRELIMINARIES: LANGUAGE EMBEDDING

In order to illustrate the use of the framework of abstract data types in queries, these must be embedded in a query language. A range of languages would suffice for this purpose, including theoretical and practical languages as well as relational, object-relational, and object-oriented languages. We do not care into which language our design, which can be viewed as an application-specific sublanguage, is embedded. In the examples of this paper we show an embedding into a relational model and an SQL-like language with which most readers should be familiar.

To achieve a smooth interplay between the embedding language and an embedded system of abstract data types, a few interface facilities and notations are needed, expressible in one form or another in most object-oriented or object-relational query languages. In order to not be bound to any particular SQL standard, we briefly explain our notations for these facilities.

Assignments. The construct LET <name> = <query> assigns the result of query to a new object called name which can then be used in further steps of a query.

Multistep queries. A query can be written as a list of assignments, separated by semicolon, followed by one or more query expressions. The latter are displayed as the result of the query.

Conversions between sets of objects and atomic values. In relational terms, this means that a relation with a single tuple and a single attribute can be converted into a typed atomic value and vice-versa. We use the notations ELEMENT(<query>)
and $\text{SET}(\text{attrname}, \text{value})$ for this. For example, the expression $\text{SET}(\text{name}, \text{"John Smith"})$ returns a relation with an attribute name and a single tuple having John Smith as the value of that attribute.

Defining derived attributes. We assume that arbitrary ADT operations over new or old data types may occur anywhere in a WHERE clause as long as in the end a predicate is constructed, and they can be used in a SELECT clause to produce new attributes, with the notation

\[
\text{<new attrname> AS <expression>}
\]

Defining operations. We allow for the definition of new operations derived from existing ones, in the form LET $\text{name} = \text{<functional expression>}. A functional expression has the form $\text{FUN (parameter list) <expression>}; it corresponds to lambda abstraction in functional languages.

Example 1. This example shows how a new operation “square” can be defined and used.

LET $\text{square} = \text{FUN (m: integer) m * m}; \text{square}(5)$

Defining aggregate functions. Any binary, associative, and commutative operation defined on a data type can be used as an aggregate function over a column of that data type, using the notation $\text{AGGR(\text{attrname}, \text{operator}, \text{neutral element})}. In case the relation is empty, the neutral element is returned. In case it has a single tuple, then that single attribute value is returned; otherwise the existing values are combined by the given operator. Moreover, a name for the aggregate function can be defined by LET $\text{name} = \text{AGGREGATE(\text{operator}, \text{neutral element})}.

Example 2. Given a relation $\text{emp(name: string, salary: int, permanent: bool)}, we can sum all salaries by

SELECT $\text{AGGR(salary, +, 0)}$ FROM emp

We can determine whether all employees have permanent positions by:

LET $\text{all} = \text{AGGREGATE(and, TRUE)}$
SELECT all(permanent) FROM emp

3. SPATIO-TEMPORAL DATA TYPES

In this and the next section we define a system of data types and operations, or an algebra, suitable for representing and querying geometries changing over time, and in particular, moving objects. Defining an algebra consists of two steps. In a first step we design a type system by introducing some basic types as well as some type constructors. For each type in the type system, its semantics is given by defining a carrier set. In the second step we design a collection of operations over the types of the type system. For each operation, its signature is defined, describing the syntax of the operation, i.e., the correct argument and result types, and its semantics is given by defining a function on the carrier sets of the argument types. In this section we define the type system; operations are given in Section 4.
3.1 The Type System

We define the type system as a signature. Any (many-sorted) signature consists of sorts and operators, where the sorts control the applicability of operators (see e.g. [Loeckx et al. 1996]). A signature generates a set of terms. Signatures are well-known from the definition of abstract data types. For example, in the description of a stack we have sorts STACK, INT and BOOL, and operators push, pop, and empty, as shown in Table 1. A term of this signature is \textit{push(empty, 8)}.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
Operator & Signature \\
\hline
empty & \textit{STACK} \\
push & \textit{STACK} \times \textit{INT} \\
pop & \textit{STACK} \\
\hline
\end{tabular}
\caption{Signature for stack operations}
\end{table}

When we use a signature for defining a type system, the sorts are called \textit{kinds} and describe certain subsets of types, and in the role of operators we have \textit{type constructors}. The terms generated by the signature describe exactly the types available in our type system. For more background on this technique for defining type systems and algebras see [Guting 1993].

Table 2 shows the signature defining our type system. Here kinds are written in capitals and type constructors in italics.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
Type constructor & Signature \\
\hline
\textit{int}, \textit{real}, \textit{string}, \textit{bool} & \textit{BASE} \\
\textit{point}, \textit{points}, \textit{line}, \textit{region} & \textit{SPATIAL} \\
\textit{instant} & \textit{TIME} \\
\textit{moving}, \textit{intime} & \textit{BASE} \cup \textit{SPATIAL} \rightarrow \textit{TEMPORAL} \\
\textit{range} & \textit{BASE} \cup \textit{TIME} \rightarrow \textit{RANGE} \\
\hline
\end{tabular}
\caption{Signature describing the type system}
\end{table}

Terms, and therefore types, generated by this signature are e.g., \textit{int}, \textit{region}, \textit{moving(point)}, \textit{range(int)}, etc. The \textit{range} type constructor is applicable to all the types in the kind \textit{BASE} and all types in kind \textit{TIME}, hence all types that can be constructed by it are \textit{range(int)}, \textit{range(real)}, \textit{range(string)}, \textit{range(bool)}, and \textit{range(instant)}. Type constructors with no arguments, for example \textit{region}, are types already and called \textit{constant types}.

One can see that quite a few types are around. Although the focus of interest are the spatio-temporal types, especially \textit{moving(point)} and \textit{moving(region)}, to obtain a closed system of operations it is necessary to include the related spatial, time, and base types into the design.

So far we have just introduced some names for types. In the sequel we describe their semantics first informally, and then formally by defining carrier sets. We start with the constant types and then discuss (proper) type constructors.
3.1.1 Base Types. The base types are int, real, string, and bool. All base types have the usual interpretation, except that each domain is extended by the value \(\bot \) (undefined).

Definition 1. For a type \(\alpha \) its carrier set is denoted by \(A_{\alpha} \). The carrier sets for the types int, real, string, and bool, are defined as:

- \(A_{\text{int}} \triangleq \mathbb{Z} \cup \{ \bot \} \),
- \(A_{\text{real}} \triangleq \mathbb{R} \cup \{ \bot \} \),
- \(A_{\text{string}} \triangleq V^* \cup \{ \bot \} \), where \(V \) is a finite alphabet,
- \(A_{\text{bool}} \triangleq \{ \text{FALSE}, \text{TRUE} \} \cup \{ \bot \} \).

We sometimes need to talk about the carrier set without the undefined value. As a shorthand for this we define \(\tilde{A}_{\alpha} \triangleq A_{\alpha} \setminus \{ \bot \} \).

3.1.2 Spatial Types. Basic conceptual entities that have been identified in spatial database research are point, line, and region [Güting 1994]. In our design we use four types called point, points, line, and region. They are illustrated in Figure 1.

![Spatial data types](image)

Fig. 1. The spatial data types

Informally, these types have the following meaning. A value of type point represents a point in the Euclidean plane or is undefined. A points value is a finite set of points. A line value is a finite set of continuous curves in the plane. A region is a finite set of disjoint parts called faces each of which may have holes. It is allowed that a face lies within a hole of another face. Each of the three set types may be empty.

Formal definitions are based on the point set paradigm and on point set topology. The point set paradigm expresses that space is composed of infinitely many points and that spatial objects are distinguished subsets of space which are viewed as entities. Point set topology provides concepts of continuity and closeness and allows one to identify special topological structures of a point set like its interior, closure, boundary, and exterior. We assume the reader is familiar with basic concepts of topology\(^1\) and refer to text books such as [Gaal 1964].

\(^1\)In the simple Euclidean spaces considered in this paper, these notions can be characterized as follows. Let \(X \) be the space (i.e., \(\mathbb{R} \) or \(\mathbb{R}^2 \)) and \(S \subseteq X \). For \(\epsilon > 0 \) let \(U(x, \epsilon) = \{ p \in X \mid d(p, x) < \epsilon \} \) be an \(\epsilon \)-disk around \(x \), where \(d \) is the distance metric. A point \(x \in X \) belongs to the **interior of** \(S \), denoted \(S^o \), if there exists an \(\epsilon \)-disk around \(x \) contained in \(S \). It belongs to the **boundary of** \(S \), denoted \(\partial S \), if every \(\epsilon \)-disk around \(x \) intersects both \(S \) and the complement of \(S \). It belongs to the **exterior of** \(S \), denoted \(S^e \), if it is in the interior of the complement of \(S \). The **closure of** \(S \) is \(S \cup \partial S \). A set is closed if it contains its boundary.—Hence any set \(S \) partitions the space \(X \) into three disjoint parts \(S^o, \partial S, \) and \(S^e \).
Point and point set types are still quite simple:

Definition 2. The carrier sets for the types *point* and *points* are:
- \(A_{\text{point}} \triangleq \mathbb{R}^2 \cup \{\bot\}\),
- \(A_{\text{points}} \triangleq \{P \subseteq \mathbb{R}^2 \mid P \text{ is finite}\}\)

For the definition of lines, we need the concept of a curve.

Definition 3. A *curve* is a continuous mapping \(f : [0, 1] \to \mathbb{R}^2\) such that \(\forall a, b \in [0, 1] : f(a) = f(b) \Rightarrow a = b \lor \{a, b\} = \{0, 1\}\).

Let \(\text{rng}(f) = \{p \in \mathbb{R}^2 \mid \exists a \in [0, 1] : f(a) = p\}\). Two curves \(f, g\) are called equivalent iff \(\text{rng}(f) = \text{rng}(g)\). The points \(f(0)\) and \(f(1)\) are called the end points of \(f\). If \(f(0) = f(1) = p\) then we say \(f\) is a loop in \(p\).

The definition allows loops \((f(0) = f(1))\) but forbids equality of different interior points and equality of an interior with an end point.

The curves that we want to deal with must be simple in the sense that the intersection of two curves yields only a finite number of proper intersection points (disregarding common parts that are curves themselves). This is ensured by the following definitions.

Definition 4. Let \(Q \subseteq \mathbb{R}^2\) and \(p \in Q\). \(p\) is called isolated in \(Q \iff \exists \varepsilon \in \mathbb{R}, \varepsilon > 0 : U(p, \varepsilon) \cap (Q \setminus \{p\}) = \emptyset\).

Here \(U(p, \varepsilon)\) denotes an open disk around \(p\) with radius \(\varepsilon\). The set of all isolated points in \(Q\) is denoted as \(\text{isolated}(Q)\).

Definition 5. Let \(C\) be the set of all curves w.r.t. Def. 3. A class of curves \(C' \subseteq C\) is called simple \(\iff \forall c_1, c_2 \in C' : \text{isolated}(\text{rng}(c_1) \cap \text{rng}(c_2))\) is finite.

The *line* data type is to represent any finite union of curves from some class of simple curves. When the abstract design of data types given in this paper is implemented by some discrete design (as explained in the introduction), some class of curves will be selected for representation, for example polygonal lines, curves described by cubic functions, etc. We just require that the class of curves selected has this simplicity property. This is needed, for example, to ensure that the intersection operation between two *line* values yields a finite set of points representable by the *points* data type.

A finite union of curves basically yields a graph structure embedded into the plane (whose nodes are intersections of curves and whose edges are intersection-free pieces of curves). Given a set of points of such a graph, there are many different sets of curves resulting in this point set. For example, a path over the graph could be interpreted as a single curve or as being composed of several curves. The following definitions ensure that (i) a *line* value is a point set in the plane that can be described as a finite union of curves, and (ii) there is a unique collection of curves that can serve as a “canonical” representation of this point set.

Definition 6. Let \(f, g\) be curves. They are quasi-disjoint iff \(\forall a, b \in (0, 1) : f(a) \neq f(b)\). They meet in a point \(p\) iff \(\exists a, b \in \{0, 1\} : f(a) = p = g(b)\).

Definition 7. Let \(S\) be a class of curves. A *C-complex* over \(S\) is a finite set of curves \(C \subseteq S\) such that:
(1) \(\forall f, g \in C, f \neq g: \text{ } f \text{ and } g \text{ are quasi-disjoint.} \)

(2) \(\forall f, g \in C, f \neq g: \text{ } f \text{ and } g \text{ meet in } p \Rightarrow (\exists h \in C, f \neq h \neq g \text{ such that } f \text{ and } h \text{ meet in } p) \lor (f \text{ or } g \text{ is a loop in } p). \)

The set of points of this C-complex, denoted \(\text{points}(C) \), is \(\bigcup_{c \in C} \text{rng}(c) \). The set of all C-complexes over \(S \) is denoted by \(CC(S) \).

The second condition ensures that whenever two curves meet in a point \(p \), then at least three (ends of) curves meet at this point and so it is not possible to merge the two curves into one.

Definition 8. Let \(S \) be a simple class of curves. The carrier set of the line data type is:

\[
A_{\text{line}} \overset{\Delta}{=} \{ Q \subseteq \mathbb{R}^2 | \exists C \in CC(S) : \text{points}(C) = Q \}
\]

Since for a given line value \(Q \) there is a unique\(^2\) C-complex with \(\text{points}(C) = Q \), we can denote it by \(\text{sc}(Q) \) (the simple curves of \(Q \)).

For certain operations we need a notion of components of a line value. Let \(\text{meet}^* \) denote the transitive closure of the meet relationship on curves. This is an equivalence relation which partitions a C-complex into connected components, denoted as \(\text{components}(C) \) (each of which is a C-complex as well). For a line value \(Q \), the decomposition into corresponding point sets is defined as \(\text{blocks}(Q) = \{ \text{points}(C') | C' \in \text{components}(\text{sc}(Q)) \} \).

A region value will be defined as a point set in the plane with a certain structure. Similarly as for line we first define the structure, called an R-complex now, and its associated point set, and then define a region as a point set that could belong to such an R-complex. Again for a region point set its R-complex will be uniquely defined.

For the definition we need the concept of a regular closed set. A set \(Q \subseteq \mathbb{R}^2 \) is called regular closed if the closure of its interior coincides with the set itself, i.e., \(Q = \text{closure}(Q^o) \). The reason for this regularization process is that regions should not have geometric anomalies like isolated or dangling line or point features and missing lines and points in the form of cuts and punctures.

Definition 9. Two regular closed sets \(Q \) and \(R \) are called quasi-disjoint \(\iff \) \(Q \cap R \) is finite.

Definition 10. Let \(S \) be a class of curves. An R-complex over \(S \) is a finite set \(R \) of non-empty, regular closed sets, such that:

1. Any two distinct elements of \(R \) are quasi-disjoint.
2. \(\forall r \in R, \exists c \in CC(S) : \partial r = \text{points}(c) \)

\(^2\)To be precise, the C-complex is uniquely determined up to equivalence of the curves in it. Essentially this means that the graph structure (as a set of curves corresponding to edges) is uniquely determined, but for the definition of a single edge, one C-complex may have a curve \(f \) and another one a curve \(g \) where \(f \) and \(g \) are equivalent, i.e., \(\text{rng}(f) = \text{rng}(g) \). The graph structure is uniquely determined, because edges (curves) intersect only in their end points and are maximal.
Here ∂r denotes the boundary of r. Each element of the R-complex is called a \textit{face}. The union of all points of all faces is denoted $\text{points}(R)$. The set of all R-complexes over S is denoted $RC(S)$.

Hence a \textit{region} can be viewed as a finite set of components called \textit{faces}. Any two faces of a region are disjoint except for finitely many “touching points” at the boundary. Moreover the definition ensures that boundaries of faces are simple in the same sense that lines are simple. For example, the intersection of two regions will also produce only finitely many isolated intersection points. Note that the boundary of a face has outer as well as possibly inner parts, i.e., the face may have holes.

\textit{Definition} 11. Let S be a simple class of curves. The carrier set of the \textit{region} data type is defined as:

$$A_{\text{region}} \triangleq \{ Q \subseteq \mathbb{R}^2 \mid \exists R \in RC(S) : Q = \text{points}(R) \}$$

We require that the same class S of curves is used in defining the \textit{line} and the \textit{region} type. Since for a given \textit{region} value Q its R-complex is uniquely defined, we can denote it by $\text{faces}(Q)$.

We extend the shorthand \bar{A} to the spatial data types, and in fact to all types whose carrier set contains sets of values. For these types α we define $\bar{A}_\alpha \triangleq A_\alpha \setminus \{ \emptyset \}$.

3.1.3 Time Type. Type \textit{instant} represents a point in time or is undefined. Time is considered to be linear and continuous, i.e., isomorphic to the real numbers.

\textit{Definition} 12. The carrier set for \textit{instant} is:

$$A_{\text{instant}} \triangleq \mathbb{R} \cup \{ \bot \}$$

3.1.4 Temporal Types. From the base types and spatial types, we want to derive corresponding temporal types. The type constructor moving is used for this purpose. It yields for any given type α a mapping from time to α. More precisely, this means:

\textit{Definition} 13. Let α be a data type to which the moving type constructor is applicable, with carrier set A_α. Then the carrier set for $\text{moving}(\alpha)$, is defined as follows:

$$A_{\text{moving}(\alpha)} \triangleq \{ f \mid f : A_{\text{instant}} \rightarrow A_\alpha \text{ is a partial function} \land \Gamma(f) \text{ is finite} \}$$

Hence, each value f from the carrier set of $\text{moving}(\alpha)$ is a function describing the development over time of a value from the carrier set of α. The condition “$\Gamma(f)$ is finite” says that f consists of only a finite number of continuous components. This is made precise in Appendix A where a generalized notion of continuity is defined. This condition is needed to ensure (i) that projections of moving objects (e.g., into the 2D plane) have only a finite number of components, (ii) for the decompose operation defined below, and (iii) as a precondition to make the design implementable.

For all “moving” types we introduce extra names by prefixing the argument type with an “m”, that is, $m\text{point}$, $m\text{points}$, $m\text{line}$, $m\text{region}$, $m\text{int}$, $m\text{real}$, $m\text{string}$, and $m\text{bool}$. This is just to shorten some signatures.

The temporal types obtained through the moving type constructor are functions, or infinite sets of pairs (instant, value). It is practical to have a type for representing
any single element of such a function, i.e., a single (instant, value)-pair, for example, to represent the result of a time-slice operation. The \textit{intime} type constructor converts a given type α into a type that associates instants of time with values of α.

\textbf{Definition 14.} Let α be a data type to which the \textit{intime} type constructor is applicable, with carrier set A_α. Then the carrier set for $\text{intime}(\alpha)$, is defined as follows:

$$A_{\text{intime}(\alpha)} \triangleq A_{\text{instant}} \times A_\alpha$$

3.1.5 \textit{Range Types (Sets of Intervals).} For all temporal types we would like to have operations that correspond to projections into the domain and the range of the functions. For the moving counterparts of the base types, e.g. $\text{moving}(\text{real})$ (whose values come from a one-dimensional domain), the projections are, or can be compactly represented as, sets of intervals over the one-dimensional domain. Hence we are interested in types to represent sets of intervals over the real numbers, over the integers, etc. Such types are obtained through a \textit{range} type constructor.

\textbf{Definition 15.} Let α be a data type to which the \textit{range} type constructor is applicable (and hence on which a total order $<$ exists). An α-interval is a set $X \subseteq A_\alpha$ such that $\forall x, y \in X, \forall z \in A_\alpha : x < z < y \Rightarrow z \in X$.

Two α-intervals are adjacent, if they are disjoint and their union is an α-interval. An α-range is a finite set of disjoint, non-adjacent intervals. For an α-range R, $\text{points}(R)$ denotes the union of all its intervals.

Intervals may include their left and/or right boundaries or not and so be left-open, etc.

\textbf{Definition 16.} Let α be any data type to which the \textit{range} type constructor is applicable. Then the carrier set for $\text{range}(\alpha)$ is:

$$A_{\text{range}(\alpha)} \triangleq \{ X \subseteq A_\alpha \mid \exists \text{ an } \alpha\text{-range } R : X = \text{points}(R) \}$$

Again, a range value X has a unique associated α-range denoted by $\text{intvls}(X)$.

Because we are particularly interested in ranges over the time domain we introduce a special name for this type: \textit{periods} $= \text{range}(\text{instant})$.

3.2 Rationale for this Design

The most important design principles that have led to this particular choice of data types are the following:

1. \textit{Closure and consistency between non-temporal and temporal types.} For all base types and all spatial types corresponding temporal types are introduced through the \textit{moving} constructor. The use of the type constructor, instead of ad-hoc definition of temporal types, ensures consistency.

2. \textit{Closure under projection.} For all temporal types, data types must be available to represent the results of projections into (time) domain and range, as well as the result of a time-slice operation.

3. \textit{Uniform support of point vs. point set view.} All data types belong to either a one-dimensional or a two-dimensional space. This third principle requires that in each space, we have data types to represent a single value (called a “point”)}
and a set of values (a “point set”). This is the basis for the definition of generic operations described in the next section, and explained in more detail there.

A deeper discussion of design considerations can be found in [Güting et al. 1998].

4. OPERATIONS

4.1 Overview

The design of the operations adheres to three principles: (i) Design operations as generic as possible. (ii) Achieve consistency between operations on non-temporal and temporal types. (iii) Capture the interesting phenomena.

The first principle is crucial, as our type system is quite large. To avoid a proliferation of operations, it is mandatory to find a unifying view of collections of types. The basic approach to achieve this is to relate each type to either a one-dimensional or a two-dimensional space and to consider all values either as single elements or subsets of the respective space. For example, type \texttt{int} describes single elements of the one-dimensional space of integers, while \texttt{range(int)} describes sets of integers. Similarly, \texttt{point} describes single elements of two-dimensional space, whereas \texttt{points}, \texttt{line}, and \texttt{region} describe subsets of the two-dimensional space.

Second, in order to achieve consistency of operations on non-temporal and temporal types, we proceed in two steps. In the first, we define operations on non-temporal types. In a second step, we systematically extend operations defined in the first step to the temporal variants of the respective types. This is called \textit{lifting}.

Third, in order to obtain a powerful query language, it is necessary to include operations that address the most important concepts from various domains (or branches of mathematics). Whereas simple set theory and first-order logic are certainly the most fundamental and best-understood parts of query languages, we also need to have operations based on order relationships, topology, metric spaces, etc. There is no clear recipe to achieve closure of “interesting phenomena”; nevertheless, that should not keep us from having concepts and operations available like distance, size of a region, relationships of boundaries, and the like.

Section 4 is structured as follows. Section 4.2 develops an algebra over non-temporal types, based on the generic point and point set (value vs. subset of space) view of these types. The classes of operations considered are shown in Table 3 which also gives an overview of operations, just listing their names.

<table>
<thead>
<tr>
<th>Class</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicates</td>
<td>isempty, =, \neq, intersects, inside, \langle, \rangle, before, touches, attached, overlaps, on_border, in_interior</td>
</tr>
<tr>
<td>Set Operations</td>
<td>intersection, union, minus, crossings, touch_points, common_border</td>
</tr>
<tr>
<td>Aggregation</td>
<td>min, max, avg, center, single</td>
</tr>
<tr>
<td>Numeric</td>
<td>no_components, size, perimeter, duration, length, area</td>
</tr>
<tr>
<td>Distance and Direction</td>
<td>distance, direction</td>
</tr>
<tr>
<td>Base Type Specific</td>
<td>and, or, not</td>
</tr>
</tbody>
</table>

Table 3. Classes of Operations on Non-Temporal Types
Section 4.3 defines operations on temporal types. The respective classes of operations are shown in Table 4.

<table>
<thead>
<tr>
<th>Class</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projection to Domain/Range</td>
<td>deftime, rangevalues, locations, trajectory routes, traversed, inst, val</td>
</tr>
<tr>
<td>Interaction with Domain/Range</td>
<td>atinstant, atperiods, initial, final, present at, atmin, atmax, passes</td>
</tr>
<tr>
<td>When</td>
<td>when</td>
</tr>
<tr>
<td>Lifting</td>
<td>(all new operations inferred)</td>
</tr>
<tr>
<td>Rate of Change</td>
<td>derivative, speed, turn, velocity</td>
</tr>
</tbody>
</table>

Table 4. Classes of Operations on Temporal Types

Finally, an operation is needed that is based on our data types, but requires a manipulation of a set of objects in the database (e.g., a relation). It is called decompose and treated in Section 4.4.

4.2 Operations on Non-Temporal Types

In this subsection we first study carefully operations on non-temporal types. Although the focus of the paper is on the treatment of moving objects, and hence on temporal types, this first step is crucial, as indeed later all these operations will, by the process of lifting, become operations on temporal types as well. The following design is adapted to that purpose.

As motivated above we take the view that we are dealing with single values and sets of these values in one-dimensional and two-dimensional spaces. The types can then be classified according to Table 5. (Remember that by “temporal types” we mean types representing functions of time. Types instant and periods are not temporal types in this sense.)

<table>
<thead>
<tr>
<th></th>
<th>1D Spaces</th>
<th>2D Space</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>discrete</td>
<td>continuous</td>
</tr>
<tr>
<td>Integer</td>
<td>int</td>
<td></td>
</tr>
<tr>
<td>Boolean</td>
<td>bool</td>
<td></td>
</tr>
<tr>
<td>String</td>
<td>string</td>
<td></td>
</tr>
<tr>
<td>Real</td>
<td>real</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>instant</td>
<td></td>
</tr>
<tr>
<td>2D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Classification of Non-Temporal Types

Table 5 shows that we are dealing with five different one-dimensional spaces called Integer, Boolean, etc. and one two-dimensional space called 2D. The two types belonging to space Integer, for example, are int and range(int). One-dimensional spaces are further classified as being discrete or continuous. The distinction between 1D and 2D spaces is relevant because only the 1D spaces have a (natural) total order. The distinction between discrete and continuous one-dimensional spaces is important for certain numeric operations. To have a uniform terminology, in any of the respective spaces we call a single element a point and a subset of the space a point set, and we classify types accordingly as point types or point set types.
Example 3. We introduce the following example relations for use within this section, representing cities, countries, rivers, and highways in Europe.

city(name: string, pop: int, center: point)
country(name: string, area: region)
river(name: string, route: line)
highway(name: string, route: line)

4.2.1 Notations for Signatures. Let us briefly introduce notations for signatures that are partly based on Table 5. In defining operation signatures and semantics, \(\pi \) and \(\sigma \) are type variables, ranging over all point and all point set types of Table 5, respectively. If several type variables occur in a signature (e.g., for binary operations), then they are always assumed to range over types of the same space. Hence in a signature \(\pi \times \sigma \to \alpha \) we can, for example, select the one-dimensional space Integer and instantiate \(\pi \) to \(\text{int} \) and \(\sigma \) to \(\text{range(int)} \). Or we can select the two-dimensional space \(2D \) where we can instantiate \(\pi \) to \(\text{point} \) and \(\sigma \) to either \(\text{points} \), \(\text{line} \), or \(\text{region} \).

A signature \(\sigma_1 \times \sigma_2 \to \alpha \) means that the type variables \(\sigma_1 \) and \(\sigma_2 \) can be instantiated independently; nevertheless, they have to range over the same space. In contrast, a signature \(\sigma \times \sigma \to \alpha \) says that both arguments have to be of the same type. The notation \(\alpha \otimes \beta \to \gamma \) is used if any order of the two argument types is valid, hence it is an abbreviation for signatures \(\alpha \times \beta \to \gamma \) and \(\beta \times \alpha \to \gamma \).

Some operations are restricted to certain classes of spaces; these classes are denoted as \(1D = \{ \text{Integer}, \text{Boolean}, \text{String}, \text{Real}, \text{Time} \} \), \(2D = \{ 2D \} \), \(1D\text{cont} = \{ \text{Real}, \text{Time} \} \), \(1D\text{num} = \{ \text{Integer}, \text{Real}, \text{Time} \} \), and \(\text{cont} = \{ \text{Real}, \text{Time}, 2D \} \). A signature is restricted to a class of spaces by putting the name of the class behind it in square brackets. For example, a signature \(\alpha \to \beta \ [1D] \) is valid for all one-dimensional spaces.

A single operation may have several functionalities (signatures). Sometimes for a generic operation there exist more appropriate names for arguments of more specific types. For example, there is a size operation for any point set type; however, for type periods it makes more sense to call this size duration. In such a case, we introduce the more specific name as an alias with the notation size(duration).

In defining semantics, \(u, v, \ldots \) denote single values of a \(\pi \) type, and \(U, V, \ldots \) generic sets of values (point sets) of a \(\sigma \) type. For binary operations, \(u \) or \(U \) will refer to the first and \(v \) or \(V \) to the second argument. Furthermore, \(b \) (\(B \)) ranges over values (sets of values) of base types, and predicates are denoted by \(p \). We use \(\mu \) to range over moving objects and \(t \) (\(T \)) to range over instant values (periods).

For the definition of the semantics of operations we generally assume strict evaluation, i.e., for any function \(f_{op} \) defining the semantics of an operation \(op \) we assume \(f_{op}(\ldots, ? , \ldots) = ? \). We will therefore not handle undefined arguments explicitly in definitions.

The syntax for operations in queries is the prefix notation \(op(arg_1, \ldots, arg_n) \). An exception are the comparison operators =, <, etc. and the Boolean operators and and or, for which it is customary to have infix notation. For two operators, when and decompose, a special syntax is defined explicitly below.

4.2.2 Predicates. We consider unary and binary predicates. On this abstract level, there are not many unary predicates one can think of. For a single point, we
can ask whether it is undefined, and for a point set, we can ask whether it is empty. The generic predicate `isempty` is used for this purpose (Table 6).

<table>
<thead>
<tr>
<th>Operation</th>
<th>Signature</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>isempty</code></td>
<td><code>π</code> → <code>bool</code></td>
<td><code>u = ⊥</code></td>
</tr>
<tr>
<td></td>
<td><code>σ</code> → <code>bool</code></td>
<td><code>U = ∅</code></td>
</tr>
</tbody>
</table>

Table 6. Unary Predicates

To achieve some completeness, the design of binary predicates is based on the following strategy. First, we consider possible relationships between two points (single values), two point sets, and a point vs. a point set in the respective space. Second, orthogonal to this, predicates are based on three different concepts, namely set theory, order relationships, and topology. Order means total order here, which is available only in one-dimensional spaces. Topology means considering for a point set `U` its boundary `∂U` and interior `U^o`.

This design space for binary predicates is shown in Table 7. The idea is to systematically evaluate the possible interactions between single values and sets and, based on that, to introduce (names for) operations. For example, we find that a check whether boundaries intersect is important, and then introduce `touches` as a name for that. Note that operations in the middle column are available in one-dimensional (ordered) spaces in addition to those in the other columns. As a result, we obtain the signature in Table 8.

We have not offered any predicates related to distance or direction (e.g. “north”). However, such predicates can be obtained via numeric evaluations (see Section 4.2.6).

A discussion of the completeness of the predicates can be found in [Gutting et al. 1998].

4.2.3 _Set Operations_. Set operations are fundamental and are available for all point-set types. Where feasible, we also allow set operations on point types, thus allowing expressions such as `u minus v` and `U minus u`. Singleton sets or empty sets that result from this use are interpreted as point values. This is possible because all domains include the undefined value (`⊥`), whose meaning we identify with the empty set. Permitting set operations on point types is especially useful in the context of temporal types, as we shall see later. There is no union operation on two single points, because the result could be two points, which cannot be represented as a value of point type.
Defining set operations on a combination of one- and two-dimensional point sets is more involved. This is because we are using arbitrary closed or open sets in the one-dimensional space, whereas only closed point sets (points, line, and region) exist in the two-dimensional case. The restriction to closed point sets in the two-dimensional case is a natural and common one. Regions lacking part of their boundary or interior points or curves appear unnatural. On the other hand, in the 1D space it is necessary to admit open intervals since these are the domains of temporal (function) types. When a value changes at time t from a to b, then we have to decide what exactly the value is at time t. If at time t it is already b, then we have a right-open time interval (with value a) up to time t and a left-closed interval with value b starting at t. This justifies a different treatment of one- and two-dimensional point sets.

Because our two-dimensional types are closed, it is necessary to apply a closure operation after applying the set operations on such entities which adds all points on the boundary of an open set.

Whereas in all the one-dimensional spaces there is only a single point set type, in 2D space there are three. This requires an analysis of which argument type combinations make sense (return interesting results), and what the result types are.

Generally, if we apply set operations to values of different types, we get results that are a mixture of zero-, one-, and two-dimensional point sets, i.e., points, lines, and proper regions. Usually one is interested mainly in the result of the highest dimension. This is reflected in the concept of regularized set operations [Tilove 1980]. For example, the regularized intersection removes all lower-dimensional pieces from the result of the corresponding intersection result. We will also adopt regularization in our framework as the semantics of the three “standard” set operations union, minus, intersection in 2D.

The three set operations behave as follows on different argument type combinations.

---Union of arguments of equal types has the usual semantics. For unions on different types, due to regularization the result is the higher-dimensional argument.
This result is not interesting as we know it already. Hence we will define union
only for equal types.
—Difference always results in the type of the first argument. Closure has to be
applied to the result. Only those combinations of argument types return new
results where the dimension of the second argument is equal or higher to that of
the first. If the dimension of the second argument is smaller, then by closure, the
first argument value is returned unchanged. We will allow difference on all type
combinations even though some of them are not relevant.
—Intersection produces results of all dimensions smaller or equal to the dimension
of the lowest-dimensional argument. For example, the intersection of a line
value with a region value may result in points and lines. We will define the intersection
operator for all type combinations with regularized semantics, i.e., it returns
the highest-dimensional part of the result. To make the other kinds of results
available, we introduce specialized operators called e.g. common_border or
touch_points.

As a result we obtain the signatures shown in Table 9 (some notations used
in column “Semantics” are explained below). They are divided into five groups,

<table>
<thead>
<tr>
<th>Operation</th>
<th>Signature</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>intersection</td>
<td>$\pi \times \pi \rightarrow \pi$</td>
<td>if $u = v$ then u else \bot</td>
</tr>
<tr>
<td>minus</td>
<td>$\pi \times \pi \rightarrow \pi$</td>
<td>if $u = v$ then \bot else u</td>
</tr>
<tr>
<td>intersection</td>
<td>$\pi \otimes \sigma \rightarrow \pi$</td>
<td>if $u \in V$ then \bot else \bot</td>
</tr>
<tr>
<td>minus</td>
<td>$\pi \times \sigma \rightarrow \pi$</td>
<td>if $u \in V$ then \bot else \bot</td>
</tr>
<tr>
<td>union</td>
<td>$\pi \otimes \sigma \rightarrow \sigma$</td>
<td>if $u \in V$ or type(V) = points then $V \cup {u}$ else V</td>
</tr>
<tr>
<td>intersection, union</td>
<td>$\sigma \times \sigma \rightarrow \sigma$</td>
<td>$[1D] \ U \cap V, U \setminus V, U \cup V$</td>
</tr>
<tr>
<td>intersection</td>
<td>$\sigma_1 \times \sigma_2 \rightarrow \min(\sigma_1, \sigma_2)$</td>
<td>see Def. 17</td>
</tr>
<tr>
<td>minus</td>
<td>$\sigma_1 \times \sigma_2 \rightarrow \sigma_1$</td>
<td>$[2D] \ \rho(Q_1 \setminus Q_2)$</td>
</tr>
<tr>
<td>union</td>
<td>$\sigma \times \sigma \rightarrow \sigma$</td>
<td>$[2D] \ Q_1 \cup Q_2$</td>
</tr>
<tr>
<td>crossings</td>
<td>line \times line \rightarrow points</td>
<td>see Def. 17</td>
</tr>
<tr>
<td>touch_points</td>
<td>region \otimes line \rightarrow points</td>
<td></td>
</tr>
<tr>
<td>common_border</td>
<td>region \times region \rightarrow points</td>
<td></td>
</tr>
<tr>
<td></td>
<td>region \times region \rightarrow line</td>
<td></td>
</tr>
</tbody>
</table>

Table 9. Set Operations

the first two concerning point/point and point vs. point-set interaction. The last
three groups deal with point-set/point-set interaction in one- and two-dimensional
spaces; the last group introduces specialized intersection operations to obtain lower-
dimensional results. The notation $\min(\sigma_1, \sigma_2)$ refers to taking the minimum in an
assumed “dimensional” order $\text{points} < \text{line} < \text{region}$.

The definition of semantics in Table 9 uses predicates $is2D$ and $is1D$ to check
whether the argument is of a two-dimensional or one-dimensional type, respectively.
Also the notations $\rho(Q)$, Q^v, and ∂Q are used for closure, interior, and boundary
of Q, respectively. For example, in the second group of operations, the second
definition for minus says that in two dimensions, after subtracting a point v from
a point set U the closure is applied whereas in one dimension the result is taken directly. Definitions for intersection, that did not fit into the table, are as follows.

Definition 17. The semantics of intersection operations is defined as follows. Let P, L, and R, possibly indexed, denote arguments of type *points*, *line*, and *region*, respectively. Let Q be an argument of any of the three types. For commutative operations we give the definition only for one order of the arguments as it is identical for the other order. Definitions are ordered by argument combinations.

$f_{\text{intersection}}(P, Q) \triangleq P \cap Q$

$f_{\text{crossings}}(L_1, L_2) \triangleq \{ p \in L_1 \cap L_2 \mid p \text{ is isolated in } L_1 \cap L_2 \}$

$f_{\text{intersection}}(L_1, L_2) \triangleq (L_1 \cap L_2) \setminus f_{\text{crossings}}(L_1, L_2)$

$f_{\text{touch_points}}(L, R) \triangleq \{ p \in L \cap R \mid p \text{ is isolated in } L \cap R \}$

$f_{\text{intersection}}(L, R) \triangleq (L \cap R) \setminus f_{\text{touch_points}}(L, R)$

$f_{\text{intersection}}(R_1, R_2) \triangleq \rho((R_1 \cap R_2)^c)$

$f_{\text{common_border}}(R_1, R_2) \triangleq f_{\text{intersection}}(\partial R_1, \partial R_2)$

$f_{\text{touch_points}}(R_1, R_2) \triangleq f_{\text{crossings}}(\partial R_1, \partial R_2)$

The following example shows how with *union* and *intersection* we also have the corresponding aggregate functions over sets of objects (relations) available.

Example 4. “Determine the region of Europe from the regions of its countries.”

```
LET sum = AGGREGATE(union, TheEmptyRegion);
LET Europe = SELECT sum(area) FROM country
```

This makes use of the facility for constructing aggregate functions described in Section 2. *TheEmptyRegion* is some empty region constant defined in the database.

4.2.4 Aggregation. Aggregation reduces sets of points to points (Table 10).

<table>
<thead>
<tr>
<th>Operation</th>
<th>Signature</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>min, max</td>
<td>σ $\rightarrow \pi$ [1D]</td>
<td>$\min(\rho(U)), \max(\rho(U))$</td>
</tr>
<tr>
<td>avg</td>
<td>σ $\rightarrow \pi$ [1Dnum]</td>
<td>$\frac{\sum_{T \in \text{interv}(U)} \sup(T) + \inf(T)}{2}$</td>
</tr>
<tr>
<td>avg[center]</td>
<td>points $\rightarrow \pi$ [2D]</td>
<td>$\frac{1}{n} \sum_{p \in U} \vec{p}$</td>
</tr>
<tr>
<td>avg[center]</td>
<td>line $\rightarrow \pi$ [2D]</td>
<td>$\frac{1}{n} \sum_{c \in \text{circ}(U)} |c|$</td>
</tr>
<tr>
<td>avg[center]</td>
<td>region $\rightarrow \pi$ [2D]</td>
<td>$\frac{1}{n} \int_U (x, y) , du$ where $M = \int_U du$</td>
</tr>
<tr>
<td>single</td>
<td>σ $\rightarrow \pi$</td>
<td>if $\exists u : U = {u}$ then u else \perp</td>
</tr>
</tbody>
</table>

Table 10. Aggregate Operations

In one-dimensional space, where total orders are available, closed sets have minimum and maximum values, and functions (*min* and *max*) are provided that extract these. For open and half-open intervals, we choose to let these functions return infimum and supremum values, i.e., the maximum and minimum of their closure. This is preferable over returning undefined values.

In all domains that have addition, we can compute the average (*avg*). In 2D, the average is based on vector addition and is usually called *center* (of gravity).
It is often useful to have a “casting” operation available to transform a singleton set into its single value. For example, some operations have to return set types although often the result is expected to be a single value. The operation single does this conversion.

Example 5. The query “Find the point where highway A1 crosses the river Rhine!” can be expressed as:

```sql
LET RhineA1 = ELEMENT(  
  SELECT single(crossings(R.route, H.route))  
  FROM river R, highway H  
  WHERE R.name = "Rhine" and H.name = "A1" and  
  R.route intersects H.route)
```

The result can be used as a point value in further queries, whereas crossings returns a points value.

In the definition of semantics, the one for the average of a line value needs some explanation. Recall that \(sc(U) \) denotes the set of simple curves from which line \(U \) is built. We define the \(x \) - and \(y \)-projections of a curve \(c \): \(\forall u \in [0,1]: c_x(u) = x \) and \(c_y(u) = y \) iff \(c(u) = (x, y) \). Then the length of a curve \(c \), denoted \(\|c\| \), is defined as:

\[
\|c\| = \int_0^1 \sqrt{c'_x(u)^2 + c'_y(u)^2} \, du
\]

where, e.g., \(c'_x \) is the derivative of \(c_x \), that is, \(\frac{dc_x(u)}{du} \). The length of a line \(U \), denoted \(\|U\| \), is given by the sum of the lengths of its curves, hence \(\|U\| = \sum_{c \in sc(U)} \|c\| \).

The average of a curve \(c \) is defined as a point vector:

\[
\overrightarrow{c} = \int_0^1 c(u) \, du
\]

In the definition of avg (or center) of a region, integration is done over pieces of the region according to the general formula

\[
\int_S f(x, y) \, dS
\]

which integrates a function \(f \) defined on the 2D plane over an arbitrary region \(S \). In this case integration is done over the vectors \((x, y) \) for each piece \(dU \).

4.2.5 Numeric Properties of Sets. For sets of points some well known numeric properties exist (Table 11). For example, the number of components (no_components) is the number of disjoint maximal connected subsets, i.e., the number of faces for a region, connected components for a line graph, and intervals for a 1D point set. The size is defined for all continuous set types (i.e., for range(real), periods, line, and region). For 1D types, the size is the sum of the lengths of component intervals, for line it is the length, and for region it is the area. For the region type, we are additionally interested in the size of the boundary, called perimeter.
Table 11. Numeric Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Signature</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>no_components</td>
<td>(\sigma \rightarrow \text{int})</td>
<td>([1D])</td>
</tr>
<tr>
<td>points</td>
<td>(\text{int} \rightarrow U)</td>
<td></td>
</tr>
<tr>
<td>line</td>
<td>(\text{int} \rightarrow \text{blocks}(U))</td>
<td></td>
</tr>
<tr>
<td>region</td>
<td>(\text{int} \rightarrow \text{faces}(U))</td>
<td></td>
</tr>
<tr>
<td>size[duration]</td>
<td>(\sigma \rightarrow \text{real})</td>
<td>(\sum_{T \in \text{intvls}(U)} \sup(T) - \inf(T))</td>
</tr>
<tr>
<td>size[length]</td>
<td>(\text{line} \rightarrow \text{real})</td>
<td>(|U|)</td>
</tr>
<tr>
<td>size[area]</td>
<td>(\text{region} \rightarrow \text{real})</td>
<td>(\int_U dU)</td>
</tr>
<tr>
<td>perimeter</td>
<td>(\text{region} \rightarrow \text{real})</td>
<td>(\int_{\text{length}}(\partial U))</td>
</tr>
</tbody>
</table>

Example 6. “List for each country its total size and the number of disjoint land areas.”

```
SELECT name, area(area), no_components(area) FROM country
```

Example 7. “How long is the common border of France and Germany?”

```
LET France =
   ELEMENT(SELECT area FROM country WHERE name = "France");
LET Germany =
   ELEMENT(SELECT area FROM country WHERE name = "Germany");
length(common_border(France, Germany))
```

4.2.6 Distance and Direction. A distance measure exists for all continuous types. The distance function determines the minimum distance between the closest pair of points from the first and second argument. The distance between two points is the absolute value of the difference in one-dimensional space and the Euclidean distance in two-dimensional space. The time domain inherits arithmetics from the domain of real numbers, to which it is isomorphic.

Table 12. Distance and Direction Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Signature</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance</td>
<td>(\pi \times \pi)</td>
<td>real ([1D\text{cont}])</td>
</tr>
<tr>
<td>(\pi \otimes \sigma)</td>
<td>real ([1D\text{cont}])</td>
<td>(\min{u - v}</td>
</tr>
<tr>
<td>(\sigma \times \sigma)</td>
<td>real ([1D\text{cont}])</td>
<td>(\min{u - v}</td>
</tr>
<tr>
<td>(\pi \times \pi)</td>
<td>real ([2D])</td>
<td>(\text{dist}(u, v) = \sqrt{(u.x - v.x)^2 + (u.y - v.y)^2})</td>
</tr>
<tr>
<td>(\pi \otimes \sigma)</td>
<td>real ([2D])</td>
<td>(\min{\text{dist}(u, v)</td>
</tr>
<tr>
<td>(\sigma \times \sigma)</td>
<td>real ([2D])</td>
<td>(\min{\text{dist}(u, v)</td>
</tr>
<tr>
<td>direction</td>
<td>point \times point</td>
<td>real</td>
</tr>
</tbody>
</table>

Example 8. “Find all cities north of and within 200 kms of Munich!”
LET Munich = ELEMENT(SELECT center FROM city WHERE name = "Munich");
SELECT name FROM city
WHERE distance(center, Munich) < 200 and
direction(Munich, center) >= 45 and
direction(Munich, center) <= 135

In this way we can express direction relationships such as north, south, etc. via numeric relationships.

4.2.7 Specific Operations for Base Types. Some operations on base types are needed that are not related to the point/point set view. We mention them because they have to be included in the scope of operations to be lifted, i.e., the kernel algebra.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Signature</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>and, or, not</td>
<td>bool × bool → bool</td>
<td>as usual (with strict evaluation)</td>
</tr>
</tbody>
</table>

Table 13. Boolean Operations

4.2.8 Scope of the Kernel Algebra. The kernel algebra is defined to consist of the types in $BASE \cup SPATIAL$ together with all operations defined in Section 4.2, restricted to these types.

4.3 Operations on Temporal Types

Values of temporal types (i.e., types $moving(\alpha)$) are partial functions of the form $f : A_{instant} \rightarrow A_{\alpha}$. In the following subsections we discuss operations for projection into domain and range, interaction with values from domain and range, the when operation, lifting, and operations related to rate of change.

4.3.1 Projection to Domain and Range. For values of all $moving$ types – which are functions – operations are provided that yield the domain and range of these functions (Table 14). The domain function $deftime$ returns the times for which a function is defined.

In 1D space, operation $rangevalues$ returns values assumed over time as a set of intervals. For the 2D types, operations are offered to return the parts of the projections corresponding to our data types. For example, the projection of a moving point into the plane may consist of points and of lines; these can be obtained separately by operations $locations$ and $trajectory$, respectively. In particular, if a moving point (or point set) changes its position only in discrete steps, then $locations$ returns its projection as a $points$ value. Operation $routes$ similarly returns the projection of a discretely moving $line$ value. The “more natural” projections of continuously moving objects are obtained by operations $trajectory$ and $traversed$.

For values of $intime$ types, the two trivial projection operations $inst$ and val are offered, yielding the two components.

All the infinite point sets that result from domain and range projections are represented in collapsed form by the corresponding point set types. For example,
Table 14. Operations for Projection of Temporal Values into Domain and Range

<table>
<thead>
<tr>
<th>Operation</th>
<th>Signature</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>deftime</td>
<td>moving(α) → periods</td>
<td>dom(μ)</td>
</tr>
<tr>
<td>rangevalues</td>
<td>moving(α) → range(α)</td>
<td>rng(μ)</td>
</tr>
<tr>
<td>locations</td>
<td>moving(point) → points</td>
<td>isolated(rng(μ))</td>
</tr>
<tr>
<td>trajectory</td>
<td>moving(point) → line</td>
<td>rng(μ) \ flocations(μ)</td>
</tr>
<tr>
<td>traversed</td>
<td>moving(line) → region</td>
<td>(\bigcup\ rng(μ) \setminus ftraversed(μ))</td>
</tr>
<tr>
<td>routes</td>
<td>moving(line) → line</td>
<td>(\bigcup\ rng(μ))</td>
</tr>
<tr>
<td>inst</td>
<td>intime(α) → instant</td>
<td>(t) where (u = (t, v))</td>
</tr>
<tr>
<td>val</td>
<td>intime(α) → α</td>
<td>(v) where (u = (t, v))</td>
</tr>
</tbody>
</table>

a set of instants is represented as a *periods* value, and an infinite set of regions is represented by the union of the points of the regions, which is represented in turn as a *region* value. That these projections can be represented as finite collections of intervals, faces, etc. and hence correspond to our data types is due to the continuity condition required for types *moving(α)* (see Section 3.1.4).

The design is complete in that all projection values in domain and range can be obtained. This was one of the major principles in the design of the type system, as discussed in Section 3.2.

For defining the semantics of operations on temporal types, a few more notations are needed. For a partial function \(f : A \rightarrow B\) we write \(f(x) = \bot\) whenever \(f\) is undefined for \(x \in A\). To adjust the undefined value \(\bot\) for values of type *points*, *line*, and *region* to \(\emptyset\), we use the function:

\[
x \uparrow \alpha = \begin{cases}
\emptyset & \text{if } x = \bot \land \alpha \in \{\text{points, line, region}\} \\
\alpha & \text{otherwise}
\end{cases}
\]

The domain of \(f\) is given by \(\text{dom}(f) = \{x \in A \mid f(x) \neq \bot\}\). Similarly, the range of \(f\) is defined by \(\text{rng}(f) = \{y \in B \mid \exists x \in A : f(x) = y\}\). If the elements of \(\text{rng}(f)\) are sets then we write \(\bigcup \text{rng}(f)\) as an abbreviation of the union of all these sets, i.e., \(\bigcup \text{rng}(f) = \bigcup_{Y \in \text{rng}(f)} Y\).

Example 9. For illustration of operations on temporal types we use the example relations:

- **flight** *(airline: string, no: int, from: string, to: string, route: mpoint)*
- **weather** *(name: string, kind: string, area: mregion)*
- **site** *(name: string, kind: string, area: mregion)*

Attributes **airline** and **no** of the relation **flight** identify a flight. In addition, the relation records the names of the departure and destination cities and the route taken for each flight. The last attribute is of type *moving(point)*. We assume that a flight’s route is defined only for the times the plane is in flight and not when it is on the ground.

The relation **weather** records weather events such as high pressure areas, storms, or temperature maps. Some of these events are given names to identify them. The attribute **kind** gives the type of weather event, such as, “snow-cloud” or “tornado,” and the **area** attribute provides the evolving extent of each weather event.
Relation site contains positions of certain well-known sites such as the Eiffel tower, Big Ben, etc.

Example 10. With the operations of this subsection we can formulate queries:
“How long is the part of the route of flight LH 257 that lies within France?”

\[
\text{LET route257 = ELEMENT(}
\begin{align*}
\text{SELECT route FROM flight WHERE airline = "LH" and no = 257);}
\end{align*}
\begin{align*}
\text{length(intersection(France, trajectory(route257)))}
\end{align*}
\]

“What are the departure and arrival times of flight LH 257?”

\[
\begin{align*}
\text{min(deftime(route257)); max(deftime(route257))}
\end{align*}
\]

Example 11. “At what time and distance does flight 257 pass the Eiffel tower?”

We assume a closest operator with signature \(mpoint \times point \rightarrow intime(point) \), which returns time and position when a moving point is closest to a given fixed point in the plane. We will later show how such an operator can be defined in terms of others.

\[
\begin{align*}
\text{LET EiffelTower = ELEMENT(SELECT pos FROM site WHERE name = "Eiffel Tower");}
\end{align*}
\begin{align*}
\text{LET pass = closest(route257, EiffelTower);}
\end{align*}
\begin{align*}
\text{inst(pass); distance(EiffelTower, val(pass))}
\end{align*}
\]

4.3.2 Interaction With Points and Point Sets in Domain and Range. In this subsection we systematically study operations that relate the functional values of moving types with values either in their (time) domain or their range. For example, a moving point moves through the 2D plane; does it pass a given point or region in this plane? Does a moving real ever assume the given value 3.5? Besides comparison, one can also restrict the moving entity to the given domain or range values, e.g., get the part of the moving point when it was within the region, or determine the value of the moving real at time \(t \) or within time interval \([t_1, t_2]\).

<table>
<thead>
<tr>
<th>Operation</th>
<th>Signature</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>atinstant</td>
<td>moving(a) \times \text{instant} \rightarrow intime(a)</td>
<td>((t, \mu(t) \mid a))</td>
</tr>
<tr>
<td>atperiods</td>
<td>moving(a) \times \text{periods} \rightarrow moving(a)</td>
<td>\{ (t, y) \in \mu \mid t \in T }</td>
</tr>
<tr>
<td>initial</td>
<td>moving(a) \rightarrow intime(a)</td>
<td>\{ \text{lim}_{t \rightarrow \inf}\text{dom}(\mu) : \mu(t) }</td>
</tr>
<tr>
<td>final</td>
<td>moving(a) \rightarrow intime(a)</td>
<td>\{ \text{lim}_{t \rightarrow \sup}\text{dom}(\mu) : \mu(t) }</td>
</tr>
<tr>
<td>present</td>
<td>moving(a) \times \text{instant} \rightarrow \text{bool}</td>
<td>(f_{\text{atperiods}}(\mu, T) \neq \emptyset)</td>
</tr>
<tr>
<td>present</td>
<td>moving(a) \times \text{periods} \rightarrow \text{bool}</td>
<td>(f_{\text{atinstant}})</td>
</tr>
<tr>
<td>at</td>
<td>moving(a) \times \alpha \rightarrow moving(a)</td>
<td>({ (t, y) \in \mu</td>
</tr>
<tr>
<td>at</td>
<td>moving(a) \times \text{range}(a) \rightarrow moving(a)</td>
<td>({ (t, y) \in \mu</td>
</tr>
<tr>
<td>at</td>
<td>moving(a) \times \text{point} \rightarrow mpoint</td>
<td>({ (t, y) \in \mu</td>
</tr>
<tr>
<td>at</td>
<td>moving(a) \times \beta \rightarrow \text{moving}(\min(\alpha, \beta))</td>
<td>({ (t, y) \in \mu</td>
</tr>
<tr>
<td>atmin</td>
<td>moving(a) \rightarrow moving(a)</td>
<td>({ (t, y) \in \mu</td>
</tr>
<tr>
<td>atmax</td>
<td>moving(a) \rightarrow moving(a)</td>
<td>({ (t, y) \in \mu</td>
</tr>
<tr>
<td>passes</td>
<td>moving(a) \times \beta \rightarrow bool</td>
<td>(f_{\text{at}}(\mu, x) \neq \emptyset)</td>
</tr>
</tbody>
</table>

Table 15. Interaction of Temporal Values With Values in Domain and Range

In Table 15, the first group of operations concerns interaction with time domain values, the second interaction with range values. Operations atinstant and
atperiods restrict a moving entity to a given instant, resulting in a pair (instant, value), or to a given set of time intervals, respectively. The atinstant operation is similar to the timeslice operator found in most temporal relational algebras (see e.g. [McKenzie and Snodgrass 1991; Özsoyoglu and Snodgrass 1995]). Operations initial and final return the first and last (instant, value) pair, respectively. Operation present allows one to check whether the moving value exists at a given instant, or is ever present during a given set of time intervals.

In the second group, the purpose of at is again restriction (like atinstant, atperiods), this time to values in the range. For 1D space, restriction by either a point or a point-set value returns a value of the given moving type. For example, we can reduce a moving real to the times when its value was between 3 and 4. In 2D, the resulting moving type is obtained by taking the minimum of the two argument types \(\alpha \) and \(\beta \) with respect to the order point < points < line < region. For example, the restriction of a moving(point) by a point will result in a moving(point). This is analogous to the definition of result types for intersection in 2D in Section 4.2.3.

In one-dimensional spaces, operations atmin and atmax restrict the moving value to the times when it was minimal or maximal with respect to the total order on this space. Operation passes allows one to check whether the moving value ever assumed (one of) the value(s) given as a second argument.

For the definition of semantics, notations for the arguments have been defined in Section 4.2.1. In particular, \(\mu \) is a function argument, and a function is a set of (argument, value) pairs.

All of these operations are of interest from a language design point of view. Some of them are derived, however, so they can be expressed by other operations in the design. For example, we have

\[
\text{present}(f, t) = \text{not}(\text{isempty}(\text{val}(\text{atinstant}(f, t))))
\]

Example 12. “When and where did flight 257 enter the territory of France?”

LET entry = initial(at(route257, France)); inst(entry); val(entry)

Example 13. “For which periods of time was the Eiffel Tower within snow storm ‘Lizzy’?”

LET Lizzy = ELEMENT(SELECT area FROM weather WHERE name = "Lizzy" and kind = "snow storm");

deftime(at(Lizzy, EiffelTower))

4.3.3 The Elusive when Operation. We now consider (speculate about) an extremely powerful yet conceptually quite simple operation called when, whose signature is shown in Table 16. The idea is that we can restrict a time dependent value to the periods when its range value fulfills some property specified as a predicate.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Signature</th>
<th>Semantics</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>when</td>
<td>moving((\alpha)) (\times (\alpha \rightarrow \text{bool})) (\rightarrow) moving((\alpha))</td>
<td>({ (t, y) \in \mu \mid p(y) })</td>
<td>(arg_1 \ op [arg_2])</td>
</tr>
</tbody>
</table>

Table 16. The when Operation
If we had such an operator, we could express a query such as “Restrict a moving region \(mr\) to the times when its area was greater 1000” as:

\[
\text{mr when} \begin{align*}
\text{FUN (r: region) area(r) > 1000}
\end{align*}
\]

Here the result would be of type \(mregion\) again.

Whereas such an operation would be very powerful and desirable, it is questionable whether such a definition makes any sense. This is because the operator has to call for evaluation of the parameter predicate infinitely many times, since our moving entities are functions over a continuous domain. Looping over an infinite domain is inherently impossible. So for the moment this operation seems impossible to implement.

4.3.4 Lifting Operations to Time-Dependent Operations

Section 4.2 systematically defines operations on non-temporal types, the kernel algebra. This section uniformly lifts these operations to apply to the corresponding moving (temporal) types.

Consider an operation to be lifted. The idea is to allow any argument of the operation to be made temporal and to return a temporal type. More specifically, the lifted version of an operation with signature \(\alpha_1 \times \ldots \times \alpha_k \rightarrow \beta\) has signatures \(\alpha'_1 \times \ldots \times \alpha'_k \rightarrow \text{moving(}\beta\text{)}\) with \(\alpha'_i \in \{\alpha_i, \text{moving(}\alpha_i\text{)}\}\). So, each of the argument types may change into a time-dependent type which will transform the result type into a time-dependent type as well. The operations that result from lifting are given the same name as the operation they originate from. For example, the \textbf{intersection} operation with signature

\[
\text{region} \times \text{point} \rightarrow \text{point}
\]

is lifted to the signatures

\[
\begin{align*}
\text{mregion} \times \text{point} & \rightarrow \text{mpoint}, \\
\text{region} \times \text{mpoint} & \rightarrow \text{mpoint}, \\
\text{mregion} \times \text{mpoint} & \rightarrow \text{mpoint}.
\end{align*}
\]

To define the semantics of lifting, we note that an operation \(op: \alpha_1 \times \ldots \times \alpha_k \rightarrow \beta\) can be lifted with respect to any combination of argument types. Such a combination can be conveniently described by a set of indices \(L \subseteq \{1, \ldots, k\}\) for the lifted parameters, and we define:

\[
\alpha_i^L = \begin{cases}
\text{moving(}\alpha_i\text{)} & \text{if } i \in L \\
\alpha_i & \text{otherwise}
\end{cases}
\]

Thus, the signature of any lifted version of \(op\) can be written as \(op: \alpha_1^L \times \ldots \times \alpha_k^L \rightarrow \text{moving(}\beta\text{)}\). If \(f_{op}\) is the semantics of \(op\), we now have to define the semantics of \(f_{op}^L\) for each possible lifting \(L\). For this we define what it means to apply a possibly lifted value to an instant-value:

\[
x_i^L(t) = \begin{cases}
x_i(t) & \text{if } i \in L \\
x_i & \text{otherwise}
\end{cases}
\]

Now we can define the functions \(f_{op}^L\) pointwise by:

\[
f_{op}^L(x_1, \ldots, x_k) = \{ (t, f_{op}(x_1^L(t), \ldots, x_k^L(t))) \mid t \in A_{\text{instant}} \}
\]
This lifting of operations generalizes existing operations that did not appear to be of great utility to operations that are quite useful. For example, an operator that determines the intersection of a region with a point may not be of great interest, but the operation that determines the intersection between a region and an mpoint ("get the part of the mpoint within the region") is quite useful. This explains why Section 4.2.3 took care to define the set operations for all argument types, including single points.

The fact that now all operations of the kernel algebra are available also as time-dependent operations results in a very powerful query language. Here are some examples.

Example 14. We can formulate pretty involved queries such as "For how long did the moving point mp move along the boundary of region r?"

\[
\text{duration(deftime(at(on_border(mp, r), TRUE)))}
\]

Here predicate on_border yields a result of type mbbool. This result is defined for all times that mp is defined and has value TRUE or FALSE. Operation at reduces the definition time of this mbbool to the times when it has value TRUE.

Example 15. “Determine the periods of time when snow storm ‘Lizzy’ consisted of exactly three separate areas.”

\[
\text{deftime(at(no_components(Lizzy) = 3, TRUE))}
\]

Again, this works because ‘Lizzy’ is of type mregion, hence the lifted versions of no_components and of equality apply.

Example 16. We are now able to define the closest operator of Example 11 within a query:

\[
\text{LET closest = FUN (mp: mpoint, p: point)} \\
\quad \text{at_instant(mp, inst(initial(at_min(distance(mp, p)))))}
\]

This depends on the lifted distance operator. We reduce the resulting mreal to the times when it is minimal, take the first such (instant, value) pair and then the instant from this pair. Finally, the original moving point is taken at this instant.

Lifting is the key to achieving the goal of consistency and closure between non-temporal and temporal operations, as explained in Section 4.1.

4.3.5 *The Elusive when Revisited.* After lifting the operations of the kernel algebra, it turns out that we have another way of expressing the query of Section 4.3.3 “Restrict a moving region mr to the times when its size was greater 1000”. Using when this was written:

\[
\text{mr when[FUN (r: region) area(r) > 1000]}
\]

Using the lifted versions of area and $>$, this is equivalent to:

\[
\text{at_periods(mr, deftime(at(area(mr) > 1000, TRUE)))}
\]

Why is it suddenly possible to realize the effect of the apparently unimplementable when? The reason is that we do not try to evaluate the parameter expression area(r) > 1000 on infinitely many instances of parameter r, but instead evaluate
its “lifted version” \(\text{area}(\text{mr}) > 1000 \) on the original argument \(\text{mr} \) of \textit{when}. In
terms of implementation, there will be two different functions (algorithms) for \textit{area},
one that is applicable to \textit{region} values, and one that is applicable directly to \textit{mregion}
values. We do not call the first algorithm (applicable to \textit{region} values) infinitely
times, but instead the latter (applicable to \textit{mregion} values) just once.

This is in fact a general technique for translating \textit{when} queries. It is applicable
for all parameter expressions of \textit{when} that are formed using only operations of the
kernel algebra. The translation is:

\[
x \text{ when} [\text{FUN}(y: \alpha) \ p(y)] = \text{aperiods}(x, \text{deftime}(\text{at}(p(y) \theta, \text{TRUE})))
\]

The substitution \(\theta = \{y/x\} \), applied to \(p(y) \), replaces each occurrence of \(y \) with the
original moving object \(x \) (of type \textit{moving}(\alpha)). Hence \textit{when} can be implemented by
rewriting it in this way. So, based on lifting and rewriting, we have in fact obtained
an effective implementation of the \textit{when} operator.

4.3.6 Rate of Change. An important property of any time-dependent value is its
rate of change, i.e., its \textit{derivative}. To determine to which of our data types this
concept is applicable, consider the definition of the derivative, given next.

\[
f'(t) = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t}
\]

This definition, and thus the notion of derivation, is applicable to any temporal
type \textit{moving}(\alpha) with a range type \(\alpha \) that (i) supports a difference operation, and
(ii) supports division by a value of type \textit{real}.

Type \textit{real} clearly qualifies as a range type. For type \textit{point}, at least three operations
may assume the role of difference in the definition, namely the Euclidean distance,
the direction between two points, and the vector difference (viewing points as 2D
vectors). This leads to three different derivative operations, which we call \textit{speed},
\textit{turn}, and \textit{velocity}, respectively. Note that one can get the acceleration of a moving
point \(mp \) as a number by \texttt{derivative(speed(mp))} and as a vector, or moving point,
by \texttt{velocity(velocity(mp))}.

The notion of derivation does not apply to the discrete data types \textit{int}, \textit{string}, and
\textit{bool} because there is no division available (for \textit{string} and \textit{bool} a difference operation
is also absent). There is also no obvious way to define difference and division for
regions, although some ideas for this are discussed in [Gütting et al. 1998].

Example 17. Nevertheless, one can still observe, for example, the growth rate of
a moving region: “At what time did snow storm Lizzy expand most?”

\[
\text{inst (initial(atmax(derivative(area(Lizzy)))))}
\]
Example 18. “Show on a map the parts of the route of flight 257 when the plane’s speed exceeds 800 kmh.”

\[
\text{trajectory} (\text{atperiods} (\text{route257}, \text{deftime} (\text{at(speed(route257)} > 800, \text{TRUE}))))
\]

Of course, the background of the map still has to be produced by a different tool or query.

4.4 Operations on Sets of Objects

All operations defined in Sections 4.2 and 4.3 apply to “atomic” data types only, i.e., attribute data types with respect to a DBMS data model. All data types of our design, as described in Section 3, and including the temporal ones, are atomic in this sense. However, sometimes in the design of data types for new applications there are operations of interest that cannot be formulated in terms of the atomic data types alone, but need to manipulate a set of database objects (with attributes of the new data types) as a whole. An example in spatial databases is the computation of a Voronoi diagram. Such data type related operations on sets of objects have been introduced earlier, for example, in the ROSE algebra [Güting and Schneider 1995].

In the design of this paper we need only a single set operator called \text{decompose}. Its purpose is to make the components of values of point set types accessible within a query. “Components” refers to connected components; all our point set types are defined to have a structure that consists of a finite number of connected components. For any \text{range} type a component is a single interval, for the types \text{points}, \text{line}, and \text{region}, a component is a single point, a maximal connected subgraph, and a face, respectively (this is defined formally below).

Decomposition basically transforms a value of some point set type into a set of values of the same type such that each value in the result set contains a single component.

Similarly, \text{decompose} makes available the connected components of temporal data types. Here a component is a maximal continuous part of the function value.

As a manipulation of a set of database objects, this is treated as follows. The first argument of \text{decompose} is a set of database objects (e.g., a set of tuples in the relational model). The second argument is a function (e.g., an attribute name) that maps an object (e.g., a tuple) into a value of some point set type. The third argument is an identifier, used as a name for a new attribute. The result set of objects is produced as follows: For each object \(u\) with an attribute value that has \(k\) components, \text{decompose} returns \(k\) copies of \(u\), each of which is extended by one of the \(k\) component values (under the new attribute). The signature is shown in Table 18.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Signature</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{decompose}</td>
<td>\text{set}(\omega_1) \times (\omega_1 \rightarrow \sigma \times \text{ident}) \rightarrow \text{set}(\omega_2)</td>
<td>see Def. 18</td>
</tr>
<tr>
<td></td>
<td>\text{set}(\omega_1) \times (\omega_1 \rightarrow \text{moving}(a)) \times \text{ident} \rightarrow \text{set}(\omega_2)</td>
<td>see Def. 18</td>
</tr>
</tbody>
</table>

Table 18. Operations on Sets of Database Objects

The syntax for applying this operator is \(\text{arg}_1 \ op[\text{arg}_2, \text{arg}_3]\). The semantics can be defined formally as follows.
Definition 18. Let S be a value of any of our point set types, and μ a value of a temporal type. We first define a generic function comp to decompose S or μ into a finite set of values of the same type, namely:

$$
\text{comp}(S) =
\begin{cases}
\text{intvls}(S) & \text{if } S \text{ is of type } \text{range}(\alpha) \\
\{p \mid p \in S\} & \text{if } S \text{ is of type } \text{points} \\
\text{blocks}(S) & \text{if } S \text{ is of type } \text{line} \\
\text{faces}(S) & \text{if } S \text{ is of type } \text{region}
\end{cases}
$$

$$
\text{comp}(\mu) = \Gamma(\mu)
$$

Here $\Gamma(\mu)$ is the function which determines the maximal continuous components of a moving object μ as defined in Appendix A.

Let $O = \{o_1, \ldots, o_n\}$ be a set of database objects (e.g., tuples) and let attr be a function yielding an attribute value of a database object $o \in O$. Let name be a name for the new attribute. Furthermore, let \oplus be a function that appends an attribute value to a database object, or an attribute to an object type. Then

$$
\text{fdecompose}(O, \text{attr}, \text{name}) = \{o \oplus v \mid o \in O, v \in \text{comp}(\text{attr}(o))\}
$$

The type mapping performed by the decompose operator is

$$
\tau_{\text{decompose}}(\text{set}(\omega_1), \omega_1 \rightarrow \gamma, \text{name}) = \text{set}(\omega_1 \oplus (\text{name}, \gamma))
$$

That is, the result is a set of objects with an additional attribute “name” of type γ.

Example 19. Consider the relation $\text{country(name:string, area:region)}$ introduced earlier. The query

$$
\text{country decompose[area, part]}
$$

returns a relation with schema $(\text{name:string, area:region, part:region})$

Example 20. This example illustrates decomposition of a temporal value. Let us assume that flight 257 alternates between being over land areas of Europe and over sea. We would like to see a list of time periods, ordered by duration, when flight 257 was over land.

$$
\text{LET land257 = SET(route, at(route257, Europe)) decompose[route, piece]; SELECT start AS min(\text{deftime}(piece)), end AS max(\text{deftime}(piece)), duration AS duration(\text{deftime}(piece)) FROM land257 ORDER BY duration}
$$

Here the at operation restricts flight 257 to the parts above Europe (the area of which has been computed earlier, in Example 4). The SET constructor transforms this into a relation with one tuple and a single attribute route containing this value. To this relation, decompose is applied which puts each component of the moving point into a separate tuple. The relation land257 created in this way is then processed in the next part of the query.
5. APPLICATION EXAMPLES

To illustrate the query language resulting from our design, in this section we consider two rather different example applications. The first, related to multimedia presentations, has relatively simple spatio-temporal data that change only in discrete steps. The second, forest fire analysis, allows us to show some more advanced examples on moving objects, and moving regions in particular.

5.1 Multimedia Scenario

Multimedia presentations are good examples of spatio-temporal contexts. Here we have multimedia objects that are presented for some time occupying space on the screen (we assume that they are rectangles) and then they disappear. A crucial part of a multimedia scenario is the set of spatio-temporal relationships/constraints that define the spatial and/or temporal order of media object presentations [Vazirgiannis et al. 1998]. The ability to query the spatio-temporal configuration of a multimedia presentation would be an important aid to multimedia application designers.

A sample scenario for a news clip might be described as follows. The news clip starts with presentation of image A, located at point (50, 50) relative to the application origin. At the same time a background music E starts. 10 seconds later a video clip B starts. It appears to the right side (18cm) and below the upper side of A (12 cm). And so forth. The spatial and temporal configuration (or “layout”) of the scenario is illustrated in Figure 2.

We assume that the following relational schema is used to store information about objects that participate in the presentation as moving regions:

\[
\text{object}(\text{name: string, actor: mregion})
\]

In this case actors are boxes (trivial moving regions) that result from the presentation of an object for some time. We can then formulate the following queries.

Example 21. “What is the screen (spatial) layout at the 5th second of the application?”

\[
\text{SELECT val(\text{atinstant(actor, 5)}) FROM object WHERE present(actor, 5)}
\]

Example 22. “What is the temporal layout of the application between the 10th and the 18th second of the application?”

![Fig. 2. Spatial and Temporal Layout of a News Clip](image-url)
SELECT name, intersection(deftime(actor), [10,18])
FROM object
WHERE intersects(deftime(actor), [10,18])

Example 23. “Which objects overlap spatially object A during its presentation?”

SELECT Y.name
FROM object X, object Y,
WHERE intersects(X.actor, Y.actor) and X.name = "A" and
 Y.name =/= "A"

5.2 Forest Fire Control Management

In a number of countries like the USA, Canada, and others, fire is one of the main
agents of forest damage. Forest fire control management mainly pursues the two
goals of learning from past fires and their evolution and of preventing fires in the fu-
ture by studying weather and other factors like cover type, elevation, slope, distance
to roads, and distance to human settlements. Specialized geographical information
systems enriched by a temporal component and by corresponding analysis tools
could be appropriate systems to support these tasks.

In a very simplified manner this application example considers the first goal
of learning from past fires and their evolution in space and time. We assume a
database containing relations with schemas

forest(forestd: string, territory: mregion)
forest__fire(firend: string, extent: mregion)
fire_fighter(fighternd: string, location: mpoint)

The relation forest records the location and the development of different forests
growing and shrinking over time through clearing, cultivation, and destruction pro-
cesses, for example. The relation forest__fire documents the evolution of different
fires from their ignition up to their extinction. The relation fire_fighter describes
the motion of fire fighters being on duty from their start at the fire station up to their
return. The following sample queries illustrate enhanced spatio-temporal database
functionality.

Example 24. “When and where did the fire called ‘The Big Fire’ have its largest
extent?”

LET TheBigFire = ELEMENT(
 SELECT extent FROM forest__fire WHERE firend = "The Big Fire");
LET max_area = initial(atmax(area(TheBigFire)));
atinstant(TheBigFire, inst(max_area));
val(max_area)

The second argument of atinstant computes the time when the area of the fire
was maximum. The area operator is used in its lifted version.

Example 25. “Determine the total size of the forest areas destroyed by the fire
called ‘The Big Fire’.” We assume a fire can reach several, perhaps adjacent, forests.

LET ever = FUN (mb: mbool) passes(mb, TRUE);
LET burnt =
SELECT size AS area(traversed(intersection(territory, extent)))
FROM forest_fire, forest
WHERE firename = "The Big Fire" and
ever(intersects(territory, extent));
SELECT SUM(size)
FROM burnt
Here the intersects predicate of the join condition is a lifted predicate. Since the join condition expects a Boolean value, the ever predicate checks whether there is at least one intersection between the two mregion values just considered.

Example 26. “When and where was the spread of fires larger than 500 km²?”

LET big_part =
SELECT big_area AS extent when[FUN (r: region) area(r) > 500]
FROM forest_fire;
SELECT *
FROM big_part
WHERE not (isempty (deftime(big_area)))
The first subquery reduces the moving region of each fire to the parts when it was large. For some fires this may never be the case, and hence for them bigarea may be empty (always undefined). These are eliminated in the second subquery.

Example 27. “How long was fire fighter Th. Miller enclosed by the fire called ‘The Big Fire’ and which distance did he cover there?”

SELECT time AS duration(deftime(intersection(location, TheBigFire))),
distance AS length(trajectory(intersection(location, TheBigFire)))
FROM fire_fighter
WHERE fightername = "Th. Miller"
We assume that the value ‘TheBigFire’ has already been determined as in Example 24, and that we know that Th. Miller was in this fire (otherwise time and distance will be returned as zero).

Example 28. “Determine the times and locations when ‘TheBigFire’ started.”
We assume that a fire can start at different times with different initial regions which may merge into one or even stay separate. The task is to determine these initial regions. This is a fairly complex problem and one may wonder whether it can be expressed with the given operations at all. We will show that it is possible.

The crucial point is that with no_components we have a tool to find the transitions when a new region (face) was added to the moving region describing the fire. We will find the times of these transitions and then go back to the moving region itself to determine the new face starting at this time.

LET number_history =
SET(number, no_components(TheBigFire)) decompose[number, no];
LET history =
SELECT period AS deftime(no), value AS single(no)
FROM number_history;
LET pairs =
SELECT interval1 AS X.period, interval2 AS Y.period
FROM history X, history Y
WHERE max(X.period) = min(Y.period) and X.value < Y.value;
SELECT starttime AS min(interval2),
region AS minus(val(initial(atperiods(TheBigFire, interval2))),
val(final(atperiods(TheBigFire, interval1))))
FROM pairs

In the first step, the lifted version of no_components produces a moving integer
describing how many components ‘TheBigFire’ had at different times. We put
this into a single attribute/single tuple relation and then apply decompose. For
a moving integer each change of value produces another component, hence after
decompose there is one tuple for each value with its associated time interval.

In the second step, relation history is computed which has for each of these
components its time interval and value. In the third step, a self-join of history is
performed to find pairs of adjacent time intervals where the number of components
increased. In the final step, we compute the transition times (when the number of
components increased) as well as the new fire regions. These can be obtained by
subtracting the final region of the earlier time interval from the initial region of the
later time interval.

Since this observes only changes in the number of components, but not yet the
change from 0 to 1, we still have to get the very first time and region of the
fire. However, these are very easy to determine by inst(initial(TheBigFire)) and
val(initial(TheBigFire)).

Note that the capability of observing structural changes via no_components,
as demonstrated in the previous example, is important for many applications. For
example, one can find transitions when states merged or split (e.g. reunification),
when disjoint parts of a highway network were connected, etc.

6. RELATED WORK

The core of this paper’s contribution is a framework of data types for capturing the
time-varying spatial extents of moving objects. We cover in turn the relation to
spatial and temporal databases, then consider a variety of related spatio-temporal
proposals. Finally, attention is devoted to the relation to the data types available
in object-relational database systems.

The traditional database management systems, offering a fixed set of types for
use in columns of tables, are generally inadequate for managing spatial, let alone
spatio-temporal, data. The restriction to the use of standard data types forces
a decomposition of spatial values into simple components, thus distributing the
representation of even a single polygon over many rows. This renders even simple
queries difficult to formulate; and they are hopelessly inefficient to process because
the decomposed spatial values must be reconstructed.

Observations such as these have led to an abstract data type view of spatial enti-
ties with suitable operations, used as attribute types in relational or other systems.
Spatial types and operations have been used in many proposals for spatial query
languages, e.g., [Güting 1988; Egenhofer 1994]; and they have been implemented in
prototype systems, e.g. [Roussopoulos et al. 1988; Güting 1989]. Dedicated designs
of spatial algebras with formal semantics are given in [Scholl and Voisard 1989; Gargano et al. 1991; Güting and Schneider 1995].

Perhaps in part because of the pervasiveness of time and their simpler structures, time types are already supported by existing database systems, and the SQL standard offers types such as DATE, TIME, and TIMESTAMP [Melton and Simon 1993]. In the research domain, semantic foundations for interpreting time values [Snodgrass 1995, Ch. 5] and efficient formats [Snodgrass 1995, Ch. 25] for storing time values have been proposed [Dyreson and Snodgrass 1994], as has extensible, multi-cultural support, including support for multiple languages, character sets, time zones, and calendars. Most proposals adopt bounded, discrete, and totally ordered types for the representation of time.

The temporal database community has also explored the use of temporal types, but mainly with a focus on temporal base types and at an abstract data-model level. Thus, a number of temporal data models (e.g., TERM [Klopprogge and Lockemann 1983], HRDM [Clifford 1982; Clifford and Croker 1987], and Gadia’s temporal data model [Gadia 1988]) offer types that are functions from time to types corresponding to the base types in this paper. The related time-sequences data model [Tansel et al. 1993, Ch. 11] allows attribute values that are basically sequences of time-value pairs.

Next, temporal data models may be generalized to be spatio-temporal. The idea is simple: Temporal data models provide built-in support for capturing one or more temporal aspects of the database entities. It is conceptually straightforward to also associate the database entities with spatial values. Concrete proposals include a variant of Gadia’s temporal model [Tansel et al. 1993, Ch. 2], a derivative of this model [Cheng and Gadia 1994], and STSQL [Böhlen et al. 1998]. Essentially, these proposals introduce functions from the product of time and space to base domains, and they provide languages for querying the resulting databases. These proposals are orthogonal to the specifics of types and simply abstractly assume types of arbitrary subsets of space and time; no frameworks of spatio-temporal types are defined. Over the past decade, Lorentzos has studied the inclusion of a generic interval column data type in multiple papers (see, e.g., [Lorentzos and Mitsopoulos 1997] for further references). This type may be used for representing time intervals as well as lengths, widths, heights, etc.

From the other side, it is also possible to generalize spatial data models to become spatio-temporal. The data model by Worboys [Worboys 1994] represents this approach. Here, spatial objects are associated with two temporal aspects, and a set of operators for querying is provided. However, this model does not provide an expressive type system, but basically offers only a single type, termed ST-complex, with a limited set of operations. In addition, two papers exist that consider spatio-temporal data as a sequence of spatial snapshots and in this context address implementation issues related to the representation of discrete changes of spatial regions over time [Kämpke 1994; Raafat et al. 1994].

Reference [Sistla et al. 1997] presents a model for moving objects along with a query language. This model represents the positions of objects as continuous functions of time. However, the model captures just the current and anticipated, near future positions, in the form of motion vectors. The main issue addressed is how often motion vectors need to be updated to guarantee some bound on the
error in predicted positions. This model does not describe complete trajectories of moving objects, as is done in this paper, nor does it offer a comprehensive set of types and operations. Moving regions are not addressed.

Work in constraint databases is applicable to spatio-temporal settings, as arbitrary shapes in multidimensional spaces can be described. Papers that explicitly address spatio-temporal examples and models include [Grumbach et al. 1998; Chomicki and Revesz 1997]. However, this kind of work essentially assumes the single type “set of constraints,” and is not concerned with types in the traditional sense. Operations for querying are basically those of relational algebra on infinite point sets. Recent work recognizes the need to include other operations, e.g., distance [Grumbach et al. 1998].

The Informix Dynamic Server with Universal Data Option offers type extensibility [Informix Press 1997a]. So-called DataBlade modules may be used with the system, thus offering new types and associated functions that may be used in columns of database tables. Of relevance for this paper, the Informix Geodetic DataBlade Module [Informix Press 1997b] offers types for time instants and intervals as well as spatial types for points, line segments, strings, rings, polygons, boxes, circles, ellipses, and coordinate pairs. Informix does not offer any integrated spatio-temporal data types. Limited spatio-temporal data support may be obtained only by associating separate time and spatial values. The framework put forward in this paper provides a foundation allowing Informix or a third-party developer to develop a DataBlade that extends Informix with expressive and truly spatio-temporal data types.

Since 1996, the Oracle DBMS has offered a so-called spatial data option, also termed a Spatial Cartridge, that allows the user to better manage spatial data [Oracle Corporation 1997]. Current support encompasses geometric forms such as points and point clusters, lines and line strings, and polygons and complex polygons with holes. However, no spatio-temporal types are available in Oracle.

The support offered by Oracle resembles the support offered by DB2’s Spatial Extender [Davis 1998], which offers spatial types such as point, line, and polygon, along with “multi-” versions of these, as well as associated functions, yielding several spatial ADT’s. Like Oracle, spatio-temporal types are absent.

7. CONCLUSIONS
The contribution of this paper is an integrated, comprehensive design of abstract data types involving base types, spatial types, time types, as well as consistent temporal and spatio-temporal versions of these. Embedding this in a DBMS query language, one obtains a query language for spatio-temporal data, and moving objects in particular, whose flexibility, expressivity, and ease of use is so far unmatched in the literature. Some unique aspects of our framework are the following:

— The emphasis on genericity, closure, and consistency.
— The abstract level of modeling. This design includes the first comprehensive model of spatial data types (going beyond the study of just topological relationships) formulated entirely at the abstract infinite point set level.
— Continuous functions. This is also to our knowledge the first model that deals systematically and coherently with continuous functions as values of attribute
data types.

—Lifting. The idea of defining a kernel algebra over non-temporal types that is then lifted uniformly to operations over temporal types seems to be a new and important concept to achieve consistency between non-temporal and temporal operations.

Complete, precise definitions of signatures for all operations and of the semantics of types and operations have been provided. The usability of the design as a query language has been demonstrated by example applications and queries.

In this paper we have restricted attention to moving spatial objects in the two-dimensional space. This is motivated by the fact that spatial data types in 2D have been in the focus of database research and are well-understood. Also, the temporal versions of 2D objects are embedded in a 3D space which is still easy to comprehend and visualize. An extension to moving points in the three-dimensional space would probably not be difficult. However, a comprehensive design like the one of this paper, including moving volumes, their projection into 3D space, etc. seems much more involved and is left to future work.

The next steps in the line of work suggested by this paper are: (i) Design a discrete model. As mentioned earlier, the abstract model of this paper has to be instantiated by selecting discrete representations. The issues arising at this step are discussed in some detail in [Erwig et al. 1999]. (ii) Given a discrete model, design appropriate data structures for the types and algorithms for the operations. (iii) Implement these data structures and algorithms in the form of a DBMS extension package for some extensible DBMS interface (e.g., as a data blade).

A design of a discrete model has in the meantime been presented in [Forlizzi et al. 1999], and the implementation of an extension package is underway.

Acknowledgments

We thank the anonymous reviewers whose careful work and suggestions for improvement have led to a much better presentation.

APPENDIX

A. DEFINITION OF CONTINUITY

We are interested in a generalized definition of continuity that is valid for all our temporal data types (i.e., types moving(α)) whereas the well-known classical definition refers only to real-valued functions. The definition should capture “discrete changes”. A discrete change occurs when, for example, a new point appears in a points value, a curve in a line value suddenly turns by 90 degrees, or a region value suddenly (“from one instance to the next”) is displaced to a new position. Intuitively, discontinuity means that the value changes in a single step without traversing all the intermediate stages.

We start by slightly modifying the basic definition of continuity. Since we are interested in temporal functions, the definition is given for them directly, rather than in more abstract terms.

\textbf{Definition 19.} Let \(f : \bar{A}_\text{instant} \rightarrow \bar{A}_\text{α} \), and \(t \in \bar{A}_\text{instant} \). \(f \) is \(\psi \)-continuous in \(t \) iff

\[\forall \gamma > 0 \ \exists \epsilon > 0 \text{ such that } \forall \delta : \psi(f(t \pm \delta), f(t)) < \gamma \]
where \(\gamma, \epsilon, \delta \in \mathbb{R} \), and \(\psi \) is a function \(\psi : \bar{A}_\alpha \times \bar{A}_\alpha \to \mathbb{R} \).

Continuity is hence determined by the function \(\psi \) which expresses a measure of “dissimilarity” of its two arguments. It should be zero iff the two values are equal, and it should approach zero when the two values get more and more similar. The definition then says that for any chosen threshold \(\gamma \), we can find an \(\epsilon \)-environment of \(t \) where dissimilarity is bounded by \(\gamma \).

Definition 20. For any type \(\alpha \) to which the moving type constructor is applicable, the dissimilarity function \(\psi \) is defined as follows:

\[
\begin{align*}
\alpha \in \{ \text{int}, \text{string}, \text{bool} \} : \psi(x, y) &= \begin{cases}
0 & \text{if } x = y \\
1 & \text{otherwise}
\end{cases} \\
\alpha = \text{real} : \psi(x, y) &= |x - y| \\
\alpha = \text{point} : \psi(p_1, p_2) &= d(p_1, p_2) \\
\alpha = \text{points} : \psi(P_1, P_2) &= \sum_{p \in P_1} d(p, P_2) + \sum_{p \in P_2} d(p, P_1) \\
\alpha = \text{line} : \psi(L_1, L_2) &= \int_0^1 d(c(u), L_2) \, du + \int_0^1 d(c(u), L_1) \, du \\
\alpha = \text{region} : \psi(R_1, R_2) &= \operatorname{size}(R_1 \setminus R_2) + \operatorname{size}(R_2 \setminus R_1)
\end{align*}
\]

Here \(d(p_1, p_2) \) denotes the Euclidean distance between two points, \(d(p, P) \) the distance from \(p \) to the closest point in \(P \). Similarly, for a line \(L \), \(d(p, L) \) denotes the distance from \(p \) to the closest point in \(L \). Finally, \(\operatorname{size}(R) \) denotes the area of a region \(R \).

This means that there are no continuous changes for the three discrete types; whenever the value changes, a discontinuity occurs. For points, dissimilarity is the sum over the distances from each point of one set to the closest point in the other set. For lines, the idea is the same; one just needs to integrate over the simple curves. For regions, dissimilarity is the area of the symmetric difference. Note that the definition fulfills the requirements stated for \(\psi \) above.

Based on this, the values of our types \(\text{moving}(\alpha) \) can be partitioned along the time domain into maximal continuous pieces. For a value \(\mu \in A_{\text{moving}(\alpha)} \) we denote by \(\Gamma(\mu) \) its set of maximal continuous components.

REFERENCES

