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Introduction

The Department of Informatics (IFI) of the University of Zurich, Switzerland works on
research and teaching in the area of computer networks and communication systems.
Communication systems include a wide range of topics and drive many research and
development activities. Therefore, during the autumn term HS 2025, a new instance of
the Internet Economics seminar has been prepared and students as well as supervisors
worked on this topic.

Even today, Internet Economics are run rarely as a teaching unit. This observation
seems to be a little in contrast to the fact that research on Internet Economics has been
established as an important area in the center of technology and economics on networked
environments. After some careful investigations it can be found that during the last
ten years, the underlying communication technology applied for the Internet and the
way electronic business transactions are performed on top of the network have changed.
Although, a variety of support functionality has been developed for the Internet case, the
core functionality of delivering data, bits, and bytes remained unchanged. Nevertheless,
changes and updates occur with respect to the use, the application area, and the technology
itself. Therefore, another review of a selected number of topics has been undertaken.

Seminar Operation

Based on well-developed experiences of former seminars, held in different academic envi-
ronments, all interested students worked on an initially offered set of papers and book
chapters. Those relate to the topic titles as presented in the Table of Content below. They
prepared a written essay as a clearly focused presentation, an evaluation, and a summary
of those topics. Each of these essays is included in this technical report as a separate
section and allows for an overview of important areas of concern, sometimes business
models in operation, and problems encountered.

In addition, every group of students prepared a slide presentation of approximately 45
minutes to present its findings and summaries to the audience of students attending the
seminar and other interested students, research assistants, and professors. Following a
general question and answer phase, a student-lead discussion debated open issues and
critical statements with the audience.

Local IFI support for preparing talks, reports, and their preparation by students had been
granted by Katharina O. E. Miiller, Chao Feng, Daria Schumm, Weijie Niu, Thomas Grubl,
Andy Aidoo, Ahmad Abtahi, Reza Abtahi, Nasim Nezhadsistani, Franciso Enguix, Gokcan
Cantali, and Prof. Burkhard Stiller. In particular, many thanks are addressed to Chao
Feng for organizing the seminar and for their strong commitment on getting this technical
report ready and quickly published. A larger number of pre-presentation discussions have



provided valuable insights in the emerging and moving field of communication systems,
both for all groups of students and supervisors. Many thanks to all people contributing to
the success of this event, which has happened in a lively group of highly motivated and
technically qualified students and people.

Zurich, January 2026
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Chapter 1

The Recent Advances of Retrieval
Augmented Generation (RAG) Systems

Joshua Winterflood

Retrieval augmented generation (RAG) systems have emerged over the past 5 years as an
ecosystem to assist large language models (LLMs). RAG systems may enhance LLMs in the
pre-training, fine-tuning or inference stage. These three main branches form the basis of
the recent advances of RAG systems, each addressing a different weakness of LLMs. In this
report we will thouroughly investigate the most predominant branch - the inference branch
- and discuss how the naive RAG pipeline evolved to modern RAG architectures. This will
include a brief introduction of the naive RAG pipeline, where we discuss how embeddings
can be used for semantic document retrievals, which are in turn provided to the LLM as
context to enhance the LLM’s generation phase. Additionally we will pinpoint advanced
RAG techniques such as pre- and post-retrieval processes, which are widely employed to
address problems which arise due to the retrieval’s sensitiveness. Lastly we will investigate
how RAG systems can be evaluated, such that a formal measurement of the advances within
the RAG ecosystem is at hand.
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1.1 Introduction

Over the past 5 years, retrieval augmented retrieval (RAG) systems have emerged as a
leading branch of technology to enhance large language models (LLM) [6]. Prior to the
establishment of RAG systems, LLMs performed poorly on realtime-dependent, knowledge-
intensive and domain-specific tasks, leading to outdated and generalized responses. To
address this issue three branches of RAG have emerged to address the encountered problems
in different stages of the LLM deployment: fine-tuning, pre-training and inference. The
pre-training branch is the least represented branch and aims to select datasets, which are
then fed to the LLM during the training stage. Fine-tuning of LLMs is an intensive task,
which can be done completely LLM-sided. However, RAG systems can aid this fine-tuning
process, for instance by providing information which is formatted in a specific way [6].
This branch can enhance the LLM in a way, that less training time is needed for the same
results and therefore less ressources are needed for the same quality of responses. The
inference branch is the most predominant branch, and aims to retrieve specific documents,
when given a prompt. These documents are then used alongside with the original query as
the context for the LLM’s generation phase [8]. By providing the LLM with the retrieved
documents, the LLM is then able to generate a response iteratively, where a new token
is generated based on all of the previous tokens, the original query and the retrieved
documents [§]. The reliance of the stochastic token generation on previous tokens creates
the phenomenon of hallucinations, where parts of the response seem reasonable, but are
factually incorrect. Augmentation retrieval processes are common methods to mitigate
such hallucinations. These processes leverage a judgement stage to asess the generated
content so far [6], and perform possibly multiple retrievals based on said judgement. For the
retrieval of documents, embeddings are used to facilitate semantic searches. The embedding
process itself is a learned technique, using unsupervised constrastive learning [11]. By
embedding the query into a high-dimensional vector, the top-k closest vectors from a vector
database can be retrieved. Whenever the database contains massive amounts of vectors,
approximate nearest neighbor (ANN) search methods are used to accelerate retrieval while
maintaining acceptable accuracy. These embedding-based retrieval approaches form the
foundation for modern information retrieval and retrieval-augmented generation systems.

1.2 Problem Statement

1.2.1 Limitations of current LLMs architecture

Large Language Models (LLMs) have established themselves as a highly useful tool for
various applications. Especially for tasks, where the output quality is hard to measure,
the generative characteristic of LLMs yield a robust approach in comparison to rule-based
algorithms [7]. Prior to the emergence of LLMs, Recurrent Neural Networks (RNNs)
established themselves as an effective aproach to produce coherent text, capturing context
to assert the meaning of words [10]. However, due to their sequential processing nature, the
performance of RNNs degraded drastically with the introduction of long-range dependencies.
Tranformers revolutionized text generation by the means of attention mechanisms, which
are able to capture context across multiple documents simultaneously. In the following
sections, we pinpoint the gaps of the pre-training, fine-tuning and inference stage of LLMs,
which sets the fundament for how RAG systems can be used to asisst LLMs.

1.2.1.1 Pre-Training

The pre-training phase in the development of LLMs encompasses feeding extensive amounts
of text data to the model, from which the model learns patterns and gains its general
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Figure 1.1: Evolution of the RAG ecosystem over the past 5 years and the emergence of
the 3 main branches : pre-training, fine-tuning, inference

understanding of language, stored in the form of its parameters. Since this process involves
aggregating large amounts of data from the internet, several issues might arise. Firstly,
unwanted biases which are present in the collected documents are integrated into the
models knowledge, which is reflected in the responses it generates during the inference
stage [5](see section . Additionally the knowledge present on the internet exhibits a
strong tendency towards beginner-level expertise [I12]. Here the underlying reason is found
within the social structure of beginners and experts within a domain. Beginners make
up a large proportion of the entire community, which leads to more frequent discussions
on beginner-level topics. Furthermore a beginner is typically in touch with a variety
of superficial topics, which leads to even more discussions led on entry-niveau. These
phenomenons result in a predominantly superficial, general and naive knowledge base for
the model. To address these problematic phenomenons, a filtering strategy is required, to
extract relevant information.

1.2.1.2 Fine-Tuning

Fine-tuning is a technique employed after the pre-training phase of LLMs and aims to
redirect the model in a specific way. This redirection might take the form of tuning
the model in a way, such that its output is formatted in a specific way. Depending on
the interest, the model can be trained to produce predominantly tabular, qualitative,
quantitative data. Furthermore the length and style of the response can be adjusted to
individual needs. Gao et al. [6] states that LLMs struggle to learn new factual information
thorough unsupervised fine-tuning.

1.2.1.3 Inference

The inference stage of the LLM is the stage you encounter when prompting a chatbot with
a query. It is the stage during which the LLM uses the learned knowledge and patterns to
answer your query. The generation of the response happens in a token by token fashion
where each token is chosen by the means of a weighted random choice. This weighted
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random choice of the i-th token is facilitated by the original query, the previous i-1 tokens
and retrieved documents if present [§]. This method is prone to halucinations, since the
accumulation of the i-1 tokens influences the choice of the next token. Here we define
halucinaitons as information which is plausible, but factually incorrect, i.e. verifiably
incorrect. Addressing halucinations of LLMs is a topic of current research and we will see
how RAG systems can be used to mitigate them. Namely we will grant an overview over
augmentation processes [6], which implement a judging phase during which the current
state within the generation is asessed.

1.2.1.4 Cost of Training a LLM

Training large language models is expensive, as the establishment of the LLM’s knowledge-
base usually requires billions of documents for modern models. For instance, the cost of
training of Gemini 1, a very recent LLM of Google, is estimated to be in the range from 30
million USD to 190 million USD [2]. This estimation excludes the staff salaries, meaning
the estimation is soley concerned with infrastructural cost. This cost is primarily composed
of renting GPUs (graphics processing units) and TPUs (tensor processing units), which
are specialized hardwares to perform paralell computing [3]. As mentioned previously,
paralell computing has revolutionized the approaches used for natural language processing
(NLP) tasks and furthermore paralell computing also finds application in deep learning.
The vast amounts of energy consumed by these hardwares impose a significant cost as well
as for instance the training of GPT-3 consumed as much energy as hundreds of homes
annually [3]. Furthermore, the persistance layer requires a lot of space for storing the
models parameters. The immensive cost of training a LLM leads to a rigid and slow
training regime.

1.3 Approaches

1.3.1 Naive RAG

To discuss the different recent advances of the RAG ecosystem, we first establish a broad
overview of the fundamental RAG pipeline. Having emerged in the year of 2020 RAG
is an extremely new branch of technology [6]. Within RAG, three main adaptations can
be observed: pre-training, fine-tuning and Inference stage. Each of the adpatations aims
to improve a different stage of the LLM, as described in the problem statement. In the
following sections we introduce the fundamental pipeline, which subsequently allows us to
pinpoint how recent advances of RAG addressed a specific problem encounter in the naive
implementation.

Define "middle ear" (x) (- ----------------------------- The middle ear includes
- . End-to-End Backprop through q and pg the tympanic cavity and
QuQestlon An(s)werlng: 2 Y the three ossicles. (y)
uestion Query Docum \ Question Answering:
o : Answer Generation
Barack Obama was d(Z) s

born in Hawaii. (x) q(x)
Fact Verification: Fact Query

el Margin- Fact Verification:

\

e . Label Generation
Lz ;— —_ 5 alize
ot 22
g::\ezl‘u(:f —> q —> MIPS‘: = Pe 3 This 14th century work
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Figure 1.2: The fundamental RAG pipeline using query encoding to retrieve semantically
similar documents and provide them to the generator (LLM) as context
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In this pipeline we can observe the following 3 phases :

1.3.1.1 Query Encoding

Query encoding is the process of converting a user’s input (like a question or prompt) into
a numerical vector in an embedding space. This embedding captures semantic meaning,
so sematically similar queries map to nearby points. These query vectors are then used
to compare against document embeddings to identify relevant content. By measuring
similarity (e.g. via cosine similarity), the system can efficiently find documents that
semantically match the query.

1.3.1.2 Document Retrieval

In document retrieval, the system searches a large index of pre-embedded documents
to find the most relevant ones to the query vector. It typically uses efficient similarity
search, such as approximate nearest neighbor (ANN) algorithms, to return a small subset
of documents. These documents act as context or "memory” for the generator, providing
background knowledge or factual information. Good retrieval improves both the accuracy
and relevance of downstream generation. The usage of an approximate solution is due to
the fact that finding the exact top k nearest neighbours of a query vector imposes a great
computational expense. In practice, an approximate solution suffices, since the runtime of
these queries is more critical then finding the exact solution. Here methods like inverted
file index or hierarchical navigable small world are used to find an approximated solution
of the top k nearest neighbours of a query vector [9].

Hierarchical navigable small world searches rely on a division of the embedded documents
into layers, where each of the layers is traversable in polylogarithmic time.

Inverted file indez is a method which relies on a chosen set of centroids C in the embedded
euclidean vectorspace. Each centroid ¢ will have a voronoi region associated with it, which
is defined as :

Voronoi(c) :={x eR| |z —¢|| < ||z = ||} Vd €C

Each embedded document will then be assigned to its nearest centroids, by identifying in
which voronoi region they are located in. This process will create an association between
the a centroid an a list of embedded documents. When querying the vector database with
some query vector, in a first step the nearest centroid is identified and in a second step
the top k embedded documents associated with the centroid are retrieved. Problematic
for the inverted file index approach are queries which lie near the boundary of voronoi
regions and sparse vector databases.

1.3.1.3 Generation

The generation component, in our case the LLM, takes the retrieved documents along with
the original query as input. It uses them to produce a coherent, contextually grounded
output (like an answer, summary, or continuation). The model can "copy” factual detail
from the retrieved documents or use them as inspiration while generating. This ensures
that the response is both relevant to the query and grounded in up-to-date or factual data.

1.3.2 Advanced RAG

Advanced RAG systems utilize the naive RAG pipeline and enhance it by invoking pre-
retrieval and post-retrieval processes [6]. The reason why such processes are widely adopted
lies in the sensitive characteristic of the retrieval itself. Small changes of the query which is
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Figure 1.3: Voronoi Cells associated with Centroids, which facilitate an approximate
nearest neighbour (ANN) search using the inverted file index method

used for the similarity search may yield a completely different set of retrieved documents.
Especially in dense vectordatabases this phenomenon occurs more frequently. Additionally,
the system cannot apriori estimate the relevance and length of the retrieved documents,
which is why post-retrieval processes are invoked.

1.3.2.1 Pre-retrieval processes

Pre-retrieval processes intend to transform the query in a way such that the retrieved
documents are relevant. This usually involves query rewriting, query expansion and query
routing.

Query rewriting revolves around the concept that the user’s input is not structured in a
way such that a lookup will yield the documents of interest. This is due to a common
vocabulary mismatch between the user and the embedded documents, since users choose
different wordings than those found in formal literature. Furthermore the user’s query
might contain several semi-independent sections, which do not need to be processes in the
same way. If for instance the query involves the comparison of a recent incident to an
incident in the past, the two sections of the query can be processes seperatly. Here we
may assume that the LLM was trained prior to the recent incident and therefore we need
to retrieve the information about the recent incident from an external database. For the
incident in the past we may assume that the LLM was trained later on than the incident
occured and therefore the LLM has access to this information itself and no retrievals need
to be performed. In conclusion, query rewriting identifies the sections for which a retrieval
needs to be performed and rewrites those section such that it is more suitable for the
lookup.

Query expansion is a technique used to provide the query with additional metadata [1].
This metadata is used to indicate the context in which the query is used. This is crucial
since for instance the word "apple” may be a fruit, a company or even a color depending on
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the context. Since the embeddings mapping will assign the same vector to the word "apple”
in all of the three contexts, expanding the query with additional metadata is essential.
Query routing deals with adjusting the RAG pipeline to a specific query. This process
facilitates the concept that not every query or section of a query needs to processed in the
same way. In order to implement a query router one needs to first identify the query labels,
usually in the range of 10 to 20 labels [4]. These labels should exhibit clear boundaries in a
way, such that no query should be assignable to two labels. Subsequently a query classifier
is needed, which assigns a label to queries. This classifier may rely on keyword matching,
to assign a label based on the presence of a certain set of words in a query. This method
cannot capture the context in which a keyword is used, which is why a shift towards an
LLM classifier can be observed. Finally based on the label of query a label-specific RAG
pipeline is built to process the query or section of the query.

1.3.2.2 Post-retrieval processes

Post-retrieval processes aim to evaluate the relevance of the retrieved documents and
compress the documents to provide the LLM with a information-dense context.
Reranking documents is a widely adopted practice where the relevance of the retrieved
documents is asessed. The reason why this reranking is important is due to the fact
that performing a top k similarity search based on a query might not yield k relevant
documents, since the database might not contain as many relevant documents as needed.
This phenomenon can be observed especially in sparse databases, where the top k most
similar documents are not located very closely to the input query. The goal of reranking
the documents is to assign weights to the documents based on their relevance, such that
the context provided to the LLM is not impacted by possibility that the searched database
may only contain a few relevant documents.

Summary. Summarizing is a technique used after retrieval to compress multiple documents
into a shorter, information-dense representation that preserves the most relevant facts
for the language model. This reduces noise, removes redundancy, and ensures the model
processes only the essential content rather than full passages.

Fusion, by contrast, focuses on integrating information from several retrieved sources
through methods such as ranked fusion, passage aggregation, or multi-document merging
to create a unified evidence set. While summarization aims at compressing content, fusion
aims at combining it to resolve inconsistencies and strengthen shared signals. Together,
these processes enhance answer accuracy by providing the model with concise yet coherently
integrated information.

1.3.3 Modular RAG

Modular RAG is a further advancement in the RAG ecosystem which is strongly tied to
the idea of query routing (see section [1.3.2.1]). Here the key concept is abstracting RAG
functionalities into modules. These individual modules aim to perform a certain set of
instructions to process a query. Futhermore a set of patterns form the basis for how a
pipeline is constructed, i.e. patterns are the assembly of multiple modules, whose grouping
is oftenly encountered for common queries. In the figure the advancement of the RAG
pipeline is displayed.

1.4 Evaluation of RAG systems and Reflection

A core question which arises when comparing different approaches of RAG is how to
evaluate different approaches. To gain insights of the performance of a RAG system the
following evaluation metrics were stated by [6]. According to them, the primary task of
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Figure 1.4: RAG Pipeline Advances Overview, displaying the naive, advanced and modular
RAG pipeline

RAG remains question answering (QA). Contemporary RAG evaluation focuses on three
core quality scores-context relevance, answer faithfulness, and answer relevance-along with
four key abilities that measure robustness and adaptability. Context relevance reflects
how precisely the system retrieves useful information, while answer faithfulness measures
whether generated answers remain grounded in the retrieved context. Answer relevance
assesses how directly the response addresses the user’s query.

Beyond these scores, RAG systems are evaluated on their noise robustness (handling
irrelevant or low-value but related documents), negative rejection (knowing when not to
answer due to insufficient evidence), information integration (combining information from
multiple sources for complex queries), and counterfactual robustness (ignoring known
inaccuracies in retrieved content). Context relevance and noise robustness primarily
indicate retrieval quality, whereas the remaining abilities and scores assess generation
quality.
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Chapter 2

A Comparison of Open-Source and
Proprietary Large Language Models

Zhuhao Fan

Large Language Models (LLMs) have become fundamental infrastructure for artificial
intelligence applications, yet organizations face a critical decision between proprietary
services (e.qg., OpenAl’s GPT, Anthropic’s Claude) and open-source alternatives (e.g.,
Meta’s LLaMA, DeepSeek). This report provides a systematic comparison across three
critical dimensions: Public Safety, Personal Privacy, and Commercial & Preference Con-
siderations. Through qualitative analysis of representative models, we examine how each
paradigm addresses security threats (including prompt injection, jailbreaking, and data
leakage), privacy concerns (data sovereignty, memorization risks, and GDPR compliance),
and business trade-offs (cost structures, vendor lock-in, and strategic control). Our analysis
reveals fundamental structural differences: proprietary models offer centralized safety mech-
anisms and operational convenience but require third-party data exposure and create vendor
dependency; open-source models enable complete data sovereignty and customization but
demand greater technical expertise and infrastructure investment. We find that perfor-
mance metrics are rapidly converging, making architectural and philosophical differences
increasingly decisive. The choice between paradigms reflects classic “build versus buy”
considerations, with market segmentation emerging naturally: startups favor proprietary
APlIs for rapid prototyping, while enterprises increasingly adopt open-source solutions for
requlated industries and strategic applications. This work provides evidence-based guidance
for researchers, developers, and policymakers navigating the evolving LLM landscape.

18
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2.1 Introduction and Problem Statement

2.1.1 Basic Mechanisms of Large Language Models

Large Language Models (LLMs) represent a paradigm shift in artificial intelligence, funda-
mentally transforming how machines understand and generate human language. At their
core, modern LLMs are built upon the Transformer architecture [21], which introduced
the revolutionary self-attention mechanism. This mechanism allows the model to weigh
the importance of different words in a sequence when processing each token, enabling it to
capture complex linguistic relationships and long-range dependencies that were challenging
for previous architectures.

The development of LLMs typically follows a two-stage process:

1. Pre-training: In this foundational phase, models are trained on massive corpora
of text data (often encompassing trillions of tokens) using self-supervised learning
objectives. The most common objective is causal language modeling, where the model
learns to predict the next token in a sequence given the preceding context. Through
this process, the model develops a comprehensive understanding of grammar, facts,
reasoning patterns, and stylistic variations present in the training data. The scale of
this training—in terms of both data size and model parameters (now often exceeding
hundreds of billions)—is crucial for emergent capabilities such as reasoning and
instruction following.

2. Alignment and Fine-tuning: While pre-trained models acquire broad knowledge, they
often require additional tuning to become helpful, harmless, and honest assistants.
This is achieved through techniques like:

e Supervised Fine-Tuning (SFT): Training on high-quality demonstration data
to improve task performance

¢ Reinforcement Learning from Human Feedback (RLHF): Optimizing model
responses based on human preferences [19)]

e Direct Preference Optimization (DPO): A more recent alternative to RLHF
that directly optimizes for human preferences

During inference, LLMs generate text auto-regressively—producing one token at a time
while conditioning on all previously generated tokens. This generative capability, combined
with their extensive knowledge base, enables applications ranging from conversational
assistants and code generation to creative writing and complex problem-solving.

2.1.2 Mathematical Foundations

To formalize the mechanisms underlying modern LLMs, we present the core mathematical
operations that enable their capabilities.

The fundamental building block of Transformer architectures is the self-attention mecha-
nism. Introduced in the seminal work [21], it computes contextualized representations by
attending to all positions in the input sequence [4]:

. QKT
Attention(Q, K, V') = softmax 1% (2.1)

Vdy,
where Q € R™*% K ¢ R™% and V € R™ % represent the query, key, and value matrices
respectively, n is the sequence length, and dj, is the dimensionality of the key vectors. The
scaling factor ﬁ prevents the dot products from growing too large in magnitude, which
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Figure 2.1: The Transformer model architecture. The encoder (left) processes the input
sequence through multi-head self-attention and feed-forward layers, while the decoder (right)
generates the output sequence using masked self-attention, encoder-decoder attention, and
feed-forward layers. Residual connections and layer normalization are applied throughout.
Figure adapted from [21].

helps mitigate the issue of the softmax function saturating and thereby stabilizes gradient
propagation during training [§].

Figure illustrates the complete Transformer architecture, showing how multiple at-
tention heads operate in parallel to capture different aspects of the input relationships.
This architecture has become the foundation for modern LLMs, enabling them to pro-
cess sequences of arbitrary length while maintaining computational efficiency through
parallelization.

The pre-training objective for causal language modeling is formulated as maximizing
the log-likelihood of the training corpus, a fundamental approach in statistical language
modeling [26]:

T

Lim(0) == log Py(w; | wey) (2.2)
t=1

where 6 represents the model parameters, w; is the token at position ¢, and w.; denotes

all preceding tokens in the sequence.

For alignment through Reinforcement Learning from Human Feedback (RLHF), the

optimization objective balances reward maximization with maintaining proximity to the

reference policy [19]:

Lrrur(8) = E(zy)~p logmo(y | @) - r(2,y)] — B - KL(7g]|meer) (2.3)

where 7y is the policy being optimized, . is the reference policy (typically the pre-
trained model), r(z,y) is the reward function learned from human preferences, and f is
a hyperparameter controlling the strength of the KL penalty to prevent the model from
deviating too far from the reference distribution.

As shown in Figure [2.2] the RLHF process involves multiple stages of human feedback
integration, starting from supervised demonstrations and progressing to preference-based
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Figure 2.2: Three-stage RLHF: (1) supervised fine-tuning on demonstrations, (2) training
a reward model from human preference comparisons, and (3) reinforcement learning (e.g.,
PPO) to optimize the policy to match human preferences. Figure adapted from [15].

optimization. This multi-stage approach has proven essential for producing helpful,
harmless, and honest Al assistants.

2.1.3 Proprietary LLMs

Proprietary LLMs are developed and maintained by commercial organizations that retain
exclusive control over their underlying technology. These models, exemplified by OpenAl’s
GPT series, Anthropic’s Claude, and Google’s Gemini, are typically accessed through
Application Programming Interfaces (APIs) or web interfaces. Users interact with
these models without direct access to the model weights, architecture details, or training
methodologies, which are treated as trade secrets.

The proprietary approach offers several advantages: consistent performance, regular
updates and maintenance, integrated safety measures, and ease of use through well-
documented APIs. However, this closed nature also raises significant concerns regarding
data privacy, vendor lock-in, limited transparency, and dependency on the providing
company’s business decisions and ethical standards.

2.1.4 Open-Source LLMs

In contrast, open-source LLMs such as Meta’s LLaMA series, Falcon, and DeepSeek embrace
principles of transparency and accessibility. It is worth noting that while commonly referred
to as “open-source’, many of these models are more accurately classified as Open Weights
models, as their licenses often include restrictions on commercial usage or derivative works—
a distinction that carries significant legal implications for enterprise compliance. These
models publicly release their architecture, training methodologies, and—crucially—their
model weights, enabling researchers, developers, and organizations to download, modify,
and deploy them on their own infrastructure.

The open-source paradigm fosters innovation through community collaboration, enables
independent verification of model capabilities and limitations, and provides users with
complete control over their deployment environment. This approach particularly benefits
applications requiring data privacy, custom fine-tuning, or integration into specialized work-
flows. However, it also demands significant technical expertise, computational resources
for deployment, and responsibility for implementing appropriate safety measures.

2.1.5 Dimensions of Comparison

The fundamental differences between proprietary and open-source LLMs necessitate a
structured framework for comparison. This paper examines these competing paradigms
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across three critical dimensions that capture their broader implications beyond mere
performance metrics:

e Public Safety: Evaluating how each approach addresses potential misuse, including
the generation of harmful content, dissemination of misinformation, and imple-
mentation of safety mechanisms. This dimension examines the trade-offs between
centralized control and community-driven safety efforts.

e Personal Privacy: Analyzing data handling practices, user control over personal infor-
mation, and risks of data leakage. This dimension contrasts the privacy implications
of cloud-based API services versus local deployment.

e Commercial and Preference Considerations: Assessing economic factors including
cost structures, business models, strategic flexibility, and market adoption patterns.
This dimension explores how different stakeholders balance convenience against
control and long-term sustainability.

These dimensions provide a comprehensive framework for understanding the complex trade-
offs between the two dominant approaches to LLM development and deployment, enabling
more informed decision-making for users, organizations, and policymakers navigating the
rapidly evolving Al landscape.

2.2 Related Work

2.2.1 Technical Evolution and Performance Benchmarking of LLMs

The rapid advancement of Large Language Models began with the transformative Trans-
former architecture, which enabled parallel processing of sequential data through self-
attention mechanisms. This breakthrough catalyzed the development of increasingly
sophisticated models, from early iterations like GPT-2 to the landmark GPT-3 and beyond.
The emergence of proprietary models such as OpenAI’'s GPT series, Anthropic’s Claude,
and Google’s Gemini established early dominance in performance metrics across various
benchmarks including MMLU, GSMS8K, and HumanEval.

However, the landscape shifted significantly with the release of open-source alternatives
like LLaMA, which demonstrated that high-performance models could be openly avail-
able. Recent iterations including LLaMA-3 and DeepSeek have substantially narrowed
the performance gap, with comprehensive evaluations showing competitive results on
many benchmarks. This performance convergence represents a fundamental shift in the
LLM ecosystem, making architectural and philosophical differences increasingly relevant
compared to raw capability metrics.

2.2.2 Safety, Alignment, and Misuse Prevention

Ensuring the safe deployment of LLMs has emerged as a critical research area. Proprietary
model providers have pioneered techniques such as Reinforcement Learning from Human
Feedback (RLHF) to align model behavior with human values. Red teaming has become a
standard practice for identifying safety vulnerabilities before deployment.

Despite these efforts, adversarial attacks through jailbreaking remain a persistent challenge.
The open-source paradigm presents a different safety landscape: while models can be
deliberately stripped of safety features, the transparency enables community-wide scrutiny
and collaborative development of robust defenses. Research has shown that supervised
fine-tuning on safety-specific datasets can effectively build harm resistance directly into
model weights, though this approach requires careful curation and validation.
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2.2.3 Privacy and Data Governance Considerations

Privacy concerns in LLMs span multiple dimensions. A fundamental risk arises from
training data memorization, where models can regurgitate verbatim sensitive information
from their training corpora. This creates particular concern for proprietary models where
user interactions may contribute to future training cycles without transparent opt-out
mechanisms.

The European Union’s GDPR has established the “right to be forgotten” as a legal
requirement, yet practical implementation in LLM training remains challenging. Open-
source models address these concerns through local deployment, ensuring data never leaves
user-controlled environments. This approach is particularly crucial in regulated industries
such as healthcare and finance, where data sovereignty is non-negotiable. The ability to
completely audit and control data flows represents a significant privacy advantage for
open-source implementations.

2.2.4 Business Models and Ecosystem Development

The commercial landscape for LLMs has bifurcated into distinct paradigms. Proprietary
models typically follow a Software-as-a-Service (SaaS) model, offering accessibility at the
cost of vendor lock-in and recurring expenses. Industry analyses indicate that over 70% of
large enterprises are exploring internal LLM deployments to protect intellectual property
and maintain strategic control.

Conversely, the open-source ecosystem has fostered innovative business models around
hosted services (e.g., Hugging Face, Together AI) that provide the flexibility of open-source
with the convenience of managed infrastructure. Market segmentation naturally emerges:
startups and individual developers favor proprietary APIs for rapid prototyping, while
established enterprises increasingly invest in open-source solutions for long-term strategic
advantage. This division reflects fundamental differences in resource availability, risk
tolerance, and strategic priorities across organizational types.

2.3 Approach(es)

To conduct a systematic and fair comparison between open-source and proprietary LLMs,
this paper adopts a structured, multi-dimensional analytical framework. Rather than
focusing solely on narrow performance benchmarks, which are rapidly converging, we seek
to evaluate the broader implications and trade-offs of each paradigm. Our methodology
consists of two main components: (1) the establishment of key comparison dimensions,
and (2) the methodology for gathering and analyzing evidence.

2.3.1 Comparative Framework

We propose a comparative analysis across three critical dimensions that encompass technical,
social, and economic considerations: Public Safety, Personal Privacy, and Commercial
& Preference. These dimensions were selected because they represent the primary areas
of concern and decision-making for policymakers, developers, enterprises, and end-users
when choosing between LLM paradigms. They move beyond raw capability to address the
real-world impact and sustainability of LLM adoption.

The specific dimensions are defined as follows:

Public Safety. This dimension assesses the potential for LLMs to be misused (e.g., to
generate harmful content, disinformation, or facilitate illegal activities) and the effectiveness
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of the mechanisms in place to mitigate these risks. It examines the ongoing “cat-and-mouse”
game between model safeguards and adversarial attacks.

Personal Privacy. This dimension focuses on data sovereignty and control. It evaluates
how user data—including prompts, conversations, and documents—is handled, stored, and
potentially used for further model training. It also considers the risks of data leakage and
the practical implementation of data deletion policies.

Commercial & Preference. This dimension analyzes the economic and strategic implica-
tions. It compares cost structures (e.g., subscription fees vs. initial hardware investment),
business models (SaaS vs. self-hosted), agility in development, and the risk of vendor
lock-in.

2.3.2 Methodology

This study employs a qualitative comparative analysis based on synthesis of existing
literature, technical documentation, and industry reports. We adopt a case-study approach,
examining representative models from each paradigm:

e Proprietary Models: OpenAl’'s GPT series, Anthropic’s Claude, and Google’s Gemini.

e Open-Source Models: Meta’s LLaMA series (e.g., LLaMA-2, LLaMA-3), Falcon, and
DeepSeek.

For each of the three comparison dimensions—Public Safety, Personal Privacy, and
Commercial & Preference—we systematically contrast the architectural choices, deployment
models, and operational trade-offs of these representative systems. The analysis draws on:

e Published research on alignment techniques (RLHF, Constitutional AI), adversarial
robustness, and red teaming

e Studies on privacy vulnerabilities including data memorization, membership inference
attacks, and differential privacy

e Industry analyses of cost structures, business models, and strategic considerations
e Technical documentation of security tools and deployment frameworks

Our goal is not to provide quantitative benchmarks—which rapidly become outdated—but
rather to elucidate the structural differences between paradigms that shape their respective
strengths, limitations, and suitability for different use cases.

2.4 Solutions

2.4.1 Public Safety

The security posture of LLMs varies significantly between proprietary and open-source
paradigms, necessitating distinct solutions for each.
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2.4.1.1 Security Mechanisms in Proprietary Models

Proprietary models typically employ a centralized, top-down approach to safety, integrating
multiple layers of defense:

Constitutional AI and Hierarchical Filtering: Systems evaluate model outputs
against predefined ethical principles (a “constitution”) and apply hierarchical filters
at different abstraction levels before returning results to users [2].

Adversarial Training: Models are hardened through minimax optimization:

i L ) 2.4

minmax £(fs(z +6), y), (24)

where ¢ represents adversarial perturbations constrained to A. This technique
enhances model resistance against manipulated inputs.

Reinforcement Learning from Human Feedback (RLHF): Human feedback shapes
reward models to align model behavior with preferred outcomes, helping models
distinguish between acceptable and harmful responses [19].

Output Sanitization Pipelines: Real-time content classification systems analyze
generated text for toxicity, bias, and harmful instructions using specialized classifiers
before delivery [12].

Red Teaming: Companies invest in security experts who systematically attempt to
breach model defenses, identifying vulnerabilities before malicious actors can exploit
them [I1].

Security Tools Integration: Proprietary ecosystems often integrate with or offer
dedicated security tools that provide prompt injection protection, sensitive data
leakage prevention, and hallucination detection. Examples include Lakera Guard
and Protect Al LLM Guard, which have been shown effective in mitigating security
threats.

These managed defenses reduce risk for general users. However, they must be continuously
updated to counter new jailbreak tactics, creating a perpetual cat-and-mouse dynamic [23].

2.4.1.2 Security Mechanisms in Open-Source Models

Open-source models adopt a fundamentally different, community-driven security approach:

Transparent Scrutiny: Publicly available weights and code enable the global research
community to collectively examine models for vulnerabilities and collaboratively
develop fixes [3].

LoRA Safety Tuning: Low-Rank Adaptation enables efficient safety fine-tuning
through parameter-efficient updates:

W' =W+ AW =W + BA, (2.5)

where B € R™" and A € R"™** are low-rank matrices with r < min(d, k), allowing
safety improvements without full model retraining.

Supervised Safety Fine-Tuning: Developers can proactively fine-tune models on
curated safety corpora, building robust defenses directly into model weights rather
than relying on external filters.
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e Open-Source Security Tools: The community provides various security frameworks
such as LLM Guard [20] (detecting and sanitizing harmful language, preventing
data leakage, resisting prompt injections), Guardrails Al (validating and correcting
LLM outputs), and Garak [I8] (vulnerability scanner for LLMs). The architectural
transparency of open-source models allows organizations to implement and test their
own rigorous, auditable guardrails using these specialized tools to counter evolving
threats.

e Ensemble Safety Filters and Customizable Safeguards: Multiple specialized clas-
sifiers can be deployed in parallel for defense-in-depth. Organizations can tailor
safety protocols to specific needs and risk environments, potentially exceeding the
protections available in proprietary offerings.

The open-source paradigm emphasizes transparency, community verification, and customiz-
able protection mechanisms at the cost of requiring more operational effort.

2.4.1.3 Threat Models and Attack Vectors

Understanding the security landscape requires systematic analysis of attack vectors:

e Prompt Injection Attacks: Malicious inputs designed to override safety instructions
or manipulate model behavior. These attacks exploit the lack of clear boundaries
between instructions and user data in natural language interfaces. Techniques include
direct injections, indirect injections [13], and language switching to bypass filters. The
proliferation of complex variants, particularly Indirect Prompt Injection, necessitates
deep architectural transparency, enabling system-wide security auditing—a key
advantage that favors open-source deployment for high-risk applications.

e Multi-Turn Attacks / Jailbreaking: Sequences of interactions—including role-playing
scenarios, encoded instructions, and multi-turn conversation manipulation—that
gradually coax models into unsafe responses. Recent research reports success rates
reaching 92.78% against some open-weight models [23].

e Data Leakage and Training Data Extraction: LLMs might unintentionally leak
sensitive information from their training data [12], including personally identifiable
information (PII), confidential corporate data, or internal system prompts if not
properly isolated. Adversaries use targeted queries to reconstruct training examples
(membership or reconstruction attacks).

e Model Stealing / Theft: Attackers repeatedly query models to distill their capabilities
into local copies, misusing the model to duplicate its functionality for financial gain
or to bypass licensing costs.

Defenses follow a defense-in-depth philosophy: input validation, rate limiting, monitoring,
ensemble filtering, adversarial fine-tuning, legal/contractual controls, and air-gapped
deployment. The optimal combination depends on deployment context (e.g., internet-
facing API vs. on-prem inference).

2.4.2 Personal Privacy

Privacy trade-offs are structural: cloud-hosted, proprietary services centralize data (and
hence risk), while local open-source deployments enable stronger data sovereignty.
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2.4.2.1 Privacy Limitations in Proprietary Models

Proprietary models face inherent privacy limitations due to their cloud-based nature:

e Third-Party Data Exposure: Every prompt and conversation is typically processed
on the vendor’s servers, which means sensitive information leaves the user’s direct
control.

e Unverifiable Data Practices: Users often cannot independently verify how their
data is handled, stored, or whether it is completely deleted upon request, as the
infrastructure and processes are not transparent.

e Data Leakage Risks: Models may regurgitate verbatim text from their training data,
potentially exposing private information from other users who contributed to the
training corpus [12]. Industry reports document that data breaches and unauthorized
data exposure remain persistent threats [22].

These limitations create fundamental privacy concerns that cannot be fully resolved within
the proprietary model framework.

2.4.2.2 Formal Privacy Attack Models

Privacy risks can be formalized through several attack frameworks:

e Membership Inference: A(z, fy) — {0, 1}, where an attacker predicts whether x was
in the training set. Success rates correlate with model overfitting and memorization.

e Attribute Inference: P(attribute | partial info, f5) > P(attribute | partial info).
The model leaks information if its predictions improve attribute inference beyond
prior probabilities.

e Differential Privacy: This framework provides formal guarantees expressed as (€, d)-
DP: PIM(D) € S] < e“P[M(D’) € S]+ 6, where D and D’ are neighboring datasets

differing in one record [7].

2.4.2.3 Enhanced Privacy in Open-Source Models
Open-source models provide superior privacy solutions through local deployment:

e Complete Data Sovereignty: All data—prompts, documents, and internal secrets—
can be processed entirely on the user’s own device or private servers, ensuring data
never leaves the organization’s controlled environment. The critical need for complete
data sovereignty and the explicit ability to fulfill the “right to erasure” (GDPR, Article
17) [9] fundamentally limits the deployability of proprietary, cloud-hosted LLMs in
highly regulated sectors such as healthcare and finance, where data sovereignty is
non-negotiable.

e Transparent and Auditable Systems: The open nature of the software allows for
independent verification of data handling practices, code inspection, and runtime
monitoring [3].

e Guaranteed Deletion and Flexible Management: Organizations can enforce and
verify complete data deletion when required, with unambiguous ownership rights
and clear boundaries about data usage.

For handling sensitive information in fields like healthcare, finance, or legal services,
open-source models offer stronger privacy-preserving solutions.
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2.4.3 Commercial & Preference

The commercial trade-offs remain: convenience and rapid access versus control and long-
term predictability.

2.4.3.1 Proprietary Model Business Framework

Proprietary models often operate on a Software-as-a-Service (SaaS) model:

e Low Barrier to Entry: No upfront hardware investment or extensive technical
expertise is required for initial use, enabling rapid prototyping and deployment. This
is evident in the rapid adoption by startups and individual developers who leverage
these APIs to build applications without managing infrastructure [24].

e Continuous Updates: Users automatically benefit from the provider’s ongoing
research and development, receiving model upgrades that enhance capabilities [24].

¢ Financial and Strategic Risks: Recurring subscription costs can scale significantly
with usage, leading to unpredictable expenditures [24]. Strategic risks include vendor
lock-in, where deep integration with a provider’s ecosystem (e.g., Microsoft Azure AI)
can make switching costly [25], and dependency on the vendor’s business continuity.

2.4.3.2 Open-Source Model Value Proposition

Open-source models require greater initial investment but offer superior long-term control:

e Total Independence and Operational Longevity: Self-hosted models are not subject
to a provider’s decision to retire a service, ensuring business continuity and eliminating
dependency on external services [6].

e Complete Customization: Organizations can fine-tune models extensively on their
proprietary data, achieving higher accuracy and relevance for niche applications.
This is crucial for enterprises looking to leverage their unique data as a competitive
advantage [5].

e Predictable Long-term Costs: This represents a shift from Operational Expenditure
(OpEx)—the pay-as-you-go model of proprietary APIs—to Capital Expenditure
(CapEx) for hardware acquisition. While requiring substantial initial capital, this
structure eliminates unpredictable per-token fees, providing financial predictability
and potential cost savings at scale. An IBM study found that 51% of businesses
using open-source Al tools reported positive ROI [17].

e Enhanced Security & Privacy: On-premises deployment keeps sensitive data within
the organization’s control, which is a critical factor for regulated industries and
enterprises concerned about data privacy [17].

The market naturally segments: startups and individual developers favor proprietary APIs
for convenience and low initial cost, while enterprises prefer open-source solutions for
control, customization, and data security [24} [6].
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2.5 Evaluations and Discussion

2.5.1 A Comparative Analysis Across Three Dimensions

2.5.1.1 Public Safety: The Walled Garden vs. The Open Field

Proprietary models offer centrally-managed safety mechanisms, often integrating advanced
security tools. However, this “walled garden” approach can be perpetually challenged by
new adversarial attacks, creating a cat-and-mouse dynamic [23]. The effectiveness of safety
tools can vary, with evaluations showing differences in their ability to handle malicious
prompts while minimizing false positives.

The “open field” approach of open-source models demands more responsibility from the
deployer but fosters flexibility and transparency [3]. It allows organizations to directly
integrate specialized security toolkits and tailor safety protocols to their specific needs
and threat environments. This paradigm can lead to more customizable and potentially
auditable security postures.

2.5.1.2 Personal Privacy: Sovereignty vs. Convenience

Proprietary models typically necessitate third-party data exposure through API calls and
cloud infrastructure. In contrast, open-source models enable full data sovereignty via local
deployment on user-controlled hardware.

A: Proprietary Model Data Flow (Risk) B: Open-Source Model Data Flow (Control)

Sensitive User Data Sensitive User Data

Enterprise Firewall

‘ Enterprise Private Cloud / On-prem ‘

Complete Data Sovereignty
Proprietary LLM Vendor Cloud |-------- > Vendor Lock-in (Closed Loop)

¢ ‘ Open-Source LLM (Inference/Fine-tuning) ‘

LLM (Inference)
Data Leakage Risk

’ Potential Training Set

’ Auditable Local Logs }7

Figure 2.3: Data Flow Comparison: Proprietary API vs. Open-Source Deployment.

This distinction is not merely a matter of preference but can represent a compliance
imperative for many industries subject to regulations such as GDPR, HIPAA, or other
sector-specific data protection requirements. The privacy advantage of open-source models,
derived from their local deployment model, is structural and forms a core part of their
value proposition, especially for organizations handling sensitive data.

2.5.1.3 Commercial & Preference: Strategic Agility vs. Operational Simplicity

Proprietary APIs lower the barrier to entry and reduce operational overhead but create
long-term vendor lock-in and cost uncertainty. Open-source models require significant
upfront investment in infrastructure and expertise but grant greater control and predictable
long-term costs.

The choice often mirrors classic “build versus buy” decisions in enterprise technology. For
core competitive capabilities where differentiation and control are critical, “building” on
open-source foundations can be strategically advantageous despite higher initial costs.
For non-differentiating functionalities where speed-to-market is paramount, “buying” via
proprietary API can be operationally efficient.
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This commercial landscape is also influenced by a broader context where enterprise
technology buyers face economic uncertainties and are focusing on practical, cost-effective
AT solutions that deliver clear returns. The positioning of different organizational types
and their strategic choices within this landscape is visualized in Figure 2.4] which provides
a practical decision framework for organizations evaluating their LLM deployment strategy.

Technical / Maintenance Cost (Low — High)

Q2: High-Cost Q1: Enterprise
Proprietary Open-Source
(State-of-the- (Strategic Con-
Art, Managed) trol, Regulated)

Q3: Proprietary API | Q4: Niche Open-Source
(Rapid Prototyp- (Unnecessary
ing, Low ‘3;11’1&(\1‘) Complexity)

Customization Need / Data Sensitivity (Low — High)
® Small Startup
Financial/Healthcare (On-prem)

Figure 2.4: LLM Selection Decision Framework based on Customization and Operational Cost.

2.5.2 Synthesis and Future Trajectories

We observe a complex LLM landscape where the choice between proprietary and open-
source involves multifaceted trade-offs. Notably, the boundaries between these paradigms
are increasingly blurring: proprietary vendors now offer more flexible deployment options,
while open-source models are increasingly available via managed services.

2.5.2.1 Emerging Considerations

Several trends and considerations may shape the future evolution of both paradigms:

e Application-Level Safety: There is a growing recognition of the need to evaluate
safety at the application level, not just the base model level [I]. Components such
as system prompts, retrieval pipelines, and specific guardrails significantly influence
the overall safety of deployed LLM applications.

e Practical AI and Business Alignment: Enterprises are increasingly focused on
“Practical AI”, seeking technologies that offer clear, measurable returns and align
with specific business needs and industry requirements, often amidst economic
uncertainty.

e Specialized Security Tools: The ecosystem of LLM security tools, both proprietary
and open-source, continues to evolve, offering more sophisticated means to address
vulnerabilities like prompt injections, data leakage, and model hallucinations.

e Emerging Architectures: Novel architectures such as Mixture-of-Experts (MoE) with
sparse activation, Mixture-of-Depths for dynamic computation allocation, and State
Space Models (e.g., Mamba) may offer computational advantages and challenge the
current Transformer-dominated landscape. Additionally, the rise of Small Language
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Models (SLMs) significantly lowers the hardware barrier for local deployment, serving
as a catalyst for SMEs to adopt open-source solutions without massive infrastructure
investment.

e Regulatory Evolution: Emerging Al regulations (EU Al Act, potential US frame-
works) will fundamentally reshape the LLM ecosystem, potentially imposing new
compliance burdens on open-source models while creating regulatory moats and
stricter safety requirements for proprietary models.

2.5.3 Limitations of this Study

This analysis is based on the rapidly evolving state of the art. The pace of innovation in
large language models and their associated security tools means that specific capabilities,
offerings, and the threat landscape can change significantly over short time periods [3].
Furthermore, the analysis often focuses on prominent models and widely discussed tools,
and may not capture the full diversity of the LLM ecosystem, including highly specialized
or regional solutions.

Evaluations of security tools and model performance are often snapshots in time [11].
The dynamic nature of both model development and adversarial techniques necessitates
continuous evaluation rather than one-time assessment for real-world deployment decisions.

2.6 Summary and Conclusions

This systematic comparison reveals fundamental trade-offs between open-source and propri-
etary LLM paradigms that extend beyond performance metrics to encompass architectural,
philosophical, and strategic considerations.

2.6.1 Key Findings

Public Safety: Centralized Control vs. Community Vigilance. Proprietary models
implement managed safety through techniques like Constitutional Al and RLHF, providing
consistent baseline protections but engaging in perpetual cat-and-mouse dynamics with
adversarial attacks. Open-source models enable transparent scrutiny and customizable
defenses, allowing organizations to tailor security protocols to specific threat environments
through community-driven verification and defense-in-depth strategies.

Personal Privacy: Structural Sovereignty vs. Operational Convenience. The privacy
distinction is architectural: proprietary models necessitate third-party data exposure
through cloud APIs, creating inherent risks of data leakage and unverifiable deletion
practices. Open-source models enable complete data sovereignty through local deployment,
providing decisive advantages for regulated industries where data control represents a
compliance imperative rather than mere preference.

Commercial Considerations: Strategic Control vs. Operational Efficiency. Proprietary
APIs lower barriers to entry through SaaS models, offering operational efficiency but
creating vendor lock-in risks and unpredictable scaling costs. In contrast, open-source
models require substantial initial investment but provide long-term cost predictability,
complete customization, and operational independence. Market segmentation naturally
emerges, with startups favoring proprietary solutions for rapid prototyping while enterprises
adopt open-source for core competitive capabilities.

2.6.2 Decision Framework

Organizations should prioritize proprietary models when:
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Rapid prototyping and time-to-market are critical

Technical expertise for deployment is limited

Data sensitivity is low and regulatory requirements minimal
e Automatic updates and managed infrastructure are valued over control
Open-source models are preferable when:

e Data sovereignty and privacy are non-negotiable (regulated industries)

Long-term cost predictability and vendor independence are strategic priorities

Extensive customization and fine-tuning on proprietary data are required

Technical capabilities for self-hosting exist

2.6.3 Future Outlook

The LLM ecosystem exhibits dual trajectories: performance metrics are converging while
strategic approaches are diverging. Emerging hybrid solutions blur traditional boundaries,
with proprietary vendors offering flexible deployment options and open-source models
available through managed services. Future competitive advantage will be determined by
ecosystem suitability rather than individual model capabilities, with regulatory frameworks,
specialized architectures, and application-level safety evaluation shaping the evolving
landscape.

The optimal strategy increasingly involves portfolio approaches—leveraging proprietary
APIs for non-differentiating rapid experimentation while deploying open-source solutions
for strategic core capabilities and sensitive data handling. This strategic pivot toward open-
source control is evidenced by market data: high-performing organizations, for example,
are over 40% more likely to utilize open-source models to maintain autonomy and reduce
vendor lock-in [I6]. Furthermore, the democratization of fine-tuning techniques, such
as Low-Rank Adaptation (LoRA) [14], drastically lowers the computational barrier for
bespoke model customization, further accelerating the open-source trajectory for niche
and domain-specific applications.

The emergence of comprehensive regulatory frameworks, such as the EU AI Act [10],
will increasingly favor models that offer auditable transparency and full architectural
control, thereby strengthening the open-source value proposition for high-risk applications.
These regulatory developments, combined with the growing emphasis on data sovereignty
under frameworks like GDPR [9], position open-source models as the preferred choice for
organizations operating in highly regulated environments.
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Chapter 3

Clickbait Capitalism — The Economics of
Misinformation Online

Elliot Jonsson

This report examines how economic incentives, political strategies, and new technologies
shape the spread of misinformation in today’s digital environment. It explains how clickbait
capitalism rewards attention rather than accuracy, creating conditions where disinformation
can grow both as a political tool and as a profitable product. Russia’s influence campaigns
illustrate how state actors use this system to polarise societies, with Sweden serving as
an example of a country that is both vulnerable and resilient due to its digital openness.
The report also explores how large language models change the structure of propaganda by
enabling automated and scalable content creation. Several countermeasures are discussed,
including fact checking, requlation, economic incentives for platforms, and improvements
in digital competence. The analysis shows that no single solution is sufficient. Instead,
resilience depends on a combination of policy, technology, and education, as well as an
understanding of how people interpret and react to information.
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3.1 Introduction and Problem Statement

In this report, I use the term clickbait capitalism to describe the economic system that
drives the modern internet. It is a system in which human attention is monetised. Digital
platforms such as Facebook, YouTube, TikTok, and X do not earn revenue by producing
content. Instead, they profit by keeping users engaged for as long as possible. Their
business model depends on advertising income, which grows with every view, click, and
share. As a result, online content that provokes curiosity, emotion, or outrage spreads more
widely than accurate information [I1]. This dynamic encourages platforms to optimise
for engagement rather than truth. It also creates a structural bias. Content that triggers
strong reactions becomes more visible and therefore more profitable. The outcome is
an attention economy where the most sensational material wins, regardless of whether
it is true. In this sense, clickbait capitalism forms the economic foundation that allows
misinformation to thrive.

Within this attention-driven system, I argue that disinformation has become a profitable
product. The same incentives that drive viral marketing now reward false or exaggerated
stories because they generate engagement. Entire networks of low-quality content farms
and "fake news” sites operate with the primary aim of monetising deception through ad
clicks or affiliate revenue, as documented in research on disinformation economies and
influence operations [6]. In this view, disinformation is not simply a byproduct of the digital
age. It functions as a deliberate commercial strategy that turns propaganda, manipulation,
and outrage into commodities traded in the global information market.

Propaganda, which once was the domain of state-run media has found a new ecosystem
within this economy. Today, it no longer requires a centralised state apparatus to spread.
It can be distributed through the same commercial platforms that host viral entertainment.
State actors, extremist groups, and private influencers all exploit the same attention-based
logic by blending political messaging with clickbait culture, as documented in research on
contemporary disinformation strategies [11]. The result is a modern hybrid information
environment in which propaganda is both political and profitable. Platforms benefit
financially from traffic and engagement, while political actors benefit strategically from
shaping public perception.

Research by the RAND Corporation, a U.S.-based policy research institute [6] shows that
Russia frequently uses digital platforms to spread large volumes of emotional and polarising
content. This pattern makes Russia one of the clearest examples of how state actors
can exploit attention-based systems for strategic influence. Instead of relying only on
traditional state media, Russian actors employ digital techniques that allow their messages
to circulate quickly and reach broad audiences. Russia therefore offers a strong case for
examining how political motives can align with the economic incentives that shape today’s
information environment.

One implication is that the emergence of large language models (LLMs) adds a new
technological layer to this economy of misinformation. These systems are trained on massive
datasets to predict and generate text, and they can produce convincing articles, comments,
and images at scale and at minimal cost. As a result, the supply of misinformation can
become virtually infinite while its production cost approaches zero. The economic logic
remains the same: engagement generates profit. What changes is that Al accelerates
and automates this process. One risk is that truth becomes economically uncompetitive.
Authentic journalism is slow and costly, while synthetic disinformation is instant and
scalable.

At the same time, LLMs are not inherently harmful. Their impact depends on how
people use them. The same persuasive and conversational abilities that can be used
for propaganda can also be used for positive purposes. Research shows that long and
personalised conversations with Al systems can reduce belief in conspiracy theories over
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time [10]. This suggests that such systems can support reflection and help people reconsider
false beliefs when used responsibly. These tools can be influenced by biased data, political
goals, or commercial incentives. However, they can also be used to support fact-checking,
reduce conflict, and improve public understanding. The challenge is therefore not only
technical. It is also human and structural.

According to a report by the Swedish Centre for Eastern European Studies (SCEEUS) [9]
and Kragh [5], Sweden illustrates this tension well. It is a small and digitally open
democracy where the distance between citizens and politicians is short, which makes it
both resilient and vulnerable. Russian influence operations have targeted Swedish debates
on membership in the North Atlantic Treaty Organization (NATO), migration, and energy
policy. The reports note that Sweden’s size and transparency give such efforts symbolic
and political value.

This study examines how economic incentives in clickbait capitalism interact with recent
developments in Al It focuses on how financial incentives, human behaviour, and Al tools
together can sustain and scale disinformation. The study also explores how these forces
can be strategically used by state actors, including Russia.

3.2 Related Work

Many researchers have shown that misinformation online is not only a communication
problem but also an economic one. A well-known study from the Massachusetts Institute
of Technology [11] found that false news spreads faster and wider than true news on
social media. The reason is that false stories often sound more emotional, surprising, or
entertaining, which makes people more likely to share them. Every click, view, and share
creates advertising revenue for digital platforms. As a result, these engagements become
more valuable than accuracy. This means that online systems are built to reward attention
rather than truth. Scholars often describe this as part of the "attention economy”; a digital
market where human attention is the main product. In this system, misinformation is no
longer just an accident. It becomes a practice that is economically rewarded.

Another group of studies focuses on how Russia uses information as a political tool.
Researchers in political communication and security studies describe this as a form of
information warfare that builds on older Soviet strategies known as "active measures”.
Reports from the Swedish Institute of International Affairs [9] show that Russian influence
campaigns target both local and foreign audiences, especially in Europe and the United
States. Their goal is often to weaken trust in democratic institutions, increase social
division, and promote ideas that support Russian interests. In Sweden, for example,
Russian media and online networks have focused on topics such as NATO membership,
gas prices, and migration [9]. These topics are chosen because they create emotional
reactions such as fear, anger, or uncertainty. Such reactions increase engagement and
visibility online. The research shows that Russian propaganda takes advantage of the same
attention-based logic that drives the online economy.

More recently, researchers have started to study how artificial intelligence changes the
way misinformation spreads. Large language models (LLMs) can now create realistic
and persuasive text almost instantly. This makes it easier and cheaper to produce and
share false or misleading information. Scholars often mention three main risks: bias,
hallucination, and content automation [2] [6] [8]. Bias happens because Al systems learn
from online data that already contains errors or stereotypes. Hallucination means that Al
can produce information that sounds true but is completely made up. In a recent paper,
Anqi Shao [8] describes AI hallucinations as a new kind of misinformation that comes
from how these models predict words, not from human intention. Finally, researchers
warn about "Al content farms”. These systems produce large amounts of low-quality text
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automatically, often just to attract clicks and advertising revenue. This combination of
low cost and high speed makes misinformation more profitable and harder to control.
Together, these studies show that misinformation spreads because of how the digital
economy works, not just because of human behaviour. False content is profitable, political
propaganda uses the same system to reach people, and new Al tools make it all faster and
cheaper. This research provides the background for understanding how clickbait capitalism
connects economics, politics, and technology in today’s information environment.

3.3 Approaches: Russia and Propaganda Online

Research shows that Russia uses a broad combination of traditional influence methods
and modern online techniques when it conducts information operations. RAND describes
this communication model as the firehose of falsehood, meaning that Russia spreads large
amounts of messages at high speed without a clear focus on consistency or factual accuracy.
The strategy builds on volume, repetition, emotional framing, and constant exposure. In
this approach the goal is not always to convince people of one clear version of events.
Instead it aims to create confusion and weaken trust in information in general [6].

The strategy builds on volume, repetition, emotional framing, and constant exposure. In
this approach the goal is not always to convince people of one clear version of events.
Instead, it aims to create confusion and weaken trust in information in general. This
pattern has been described in the literature as similar to the idea of "flooding the zone
with misinformation”, where a large amount of often contradictory content makes it harder
for audiences to know what to trust [4]. Such an environment benefits actors seeking
influence by replacing clarity with noise and uncertainty [6].

Alongside this communication model, Russia uses a mix of tools that function together in
the current online environment. RAND notes that state controlled media such as RT and
Sputnik continue to present narratives that support the Russian state. They operate as
international news outlets. However, they often highlight stories that frame Europe and
the United States as unstable or aggressive. At the same time, covert online activity takes
place through organised groups that operate accounts on social media and attempt to shape
public discussions. These coordinated accounts include bot networks that automatically
react to posts. They also include human-operated profiles that take part in debates in
order to amplify certain messages. Troll factories like the Internet Research Agency in
St Petersburg are known examples of such activity. Their purpose is to place politically
charged stories into ordinary online conversations in a way that makes the messages appear
spontaneous and locally produced [6].

Beyond these general methods, Russia also targets specific countries where geopolitical and
symbolic gains are higher. Sweden is one of them. For decades, Sweden maintained military
non-alignment. In parallel, it acted as a key partner for the NATO and the European
Union. This gave Sweden an unusual position: formally outside military alliances yet
deeply integrated in Western political and security structures. From a Russian perspective,
influencing Swedish opinion has therefore offered both geopolitical and symbolic value.
Weakening trust in Swedish institutions or shaping perceptions around defence issues can
indirectly affect the balance of security in the Baltic region.

Sweden also carries symbolic weight as a stable and well-functioning democracy. In Russian
state media, Sweden often appears as a reference point in debates about European values,
migration, and social cohesion. Challenging Sweden’s image or portraying it as unstable
can support broader narratives that question the strength of Western democracies. This
symbolic dimension makes Sweden useful not only as a regional target but also as an
example in Russia’s international communication.
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At the same time, Sweden’s domestic debates offer openings that foreign actors can exploit.
Issues such as migration, crime, energy policy, and NATO membership have been polarising
topics in recent years. These subjects tend to produce strong emotional reactions and
attract significant attention online, which makes them ideal targets in the attention-driven
logic of modern platforms. Russian influence campaigns often amplify existing tensions
rather than introduce entirely new themes. By repeating stories that emphasise division or
uncertainty, they can strengthen narratives that already circulate within Swedish political
discourse.

The SCEEUS report, authored by Martin Kragh [5] [9] shows how these methods have
been directed at Sweden in recent years. According to the report, Sweden has long been an
important country in Russian security thinking, and this pattern continues today. Russian
influence efforts often focus on issues that already generate debate within Swedish society.
Topics such as NATO membership, migration, crime, and energy policy are repeatedly
used because they trigger emotional reactions and can divide public opinion. Kragh
presents several examples of how Russian actors have used both official channels and
covert online activity to shape discussions around these issues. The report also notes that
Russian campaigns sometimes involve forgeries, cyber intrusions, or targeted narratives in
connection with major political events. One example is the increased focus on Sweden in
Russian state media during the years when Sweden moved closer to NATO cooperation [5]
Taken together, the RAND analysis, the SCEEUS report, and Sweden’s geopolitical
situation show how Russia adapts a broad communication strategy to a specific national
context. The firehose model, state-controlled media, troll networks, and coordinated online
accounts form a layered system that can be directed at countries where the symbolic
and strategic payoff is high. Sweden fits this pattern. Its long tradition of military
non-alignment combined with close cooperation with NATO and the EU gives it strategic
relevance in the Baltic region. Its reputation as a stable democracy gives it symbolic value
in Russian narratives about European decline. Simultaneously, Sweden’s open digital
environment and its polarising debates on issues such as migration, crime, energy policy,
and NATO membership provide entry points for influence efforts. The choice of topics is
often based on identifying existing tensions in a target society and then repeating stories
that reinforce those tensions. In this way, Russia’s general methods and Sweden’s specific
vulnerabilities reinforce each other, combining older political goals with modern digital
tools that make influence faster, cheaper, and harder to detect. This dynamic helps explain
why Sweden continues to be a recurring focus of Russian information operations despite
its small population.

3.4 Large Language Models and Propaganda

Large language models have introduced a major shift in the way information is created
and circulated. According to the Stanford Foundation Models report, these systems are
built by training on enormous collections of text from the internet as well as from books
articles and other written sources. During training, the model repeatedly predicts the next
word in a sentence and through this process it learns patterns structures and regularities
in human language [2].

Because the training data covers a wide range of topics and styles, the model can later
produce coherent text, respond to questions, summarise long documents, and imitate
different voices. This also means that the model does not understand truth in any human
sense. It mirrors patterns rather than evaluating them. This distinction is important
because it shows why LLMs can reproduce misinformation, even when the developers did
not intend it. This gives large language models a degree of fluency that makes their output
appear natural and convincing, even when no human writer is involved.
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The fact that these models rely on large internet datasets also makes them vulnerable
to the broader information environment. Models trained on digital content absorb not
only useful knowledge but also the distortions, bias, and errors that exist online. If certain
narratives are repeated very frequently the model learns them as statistical patterns.
In practice, this creates an incentive structure where the most persistent voices in the
online environment exert the strongest influence on future models. This gives organised
propaganda networks disproportionate power compared to ordinary users, because a model
can reproduce claims that reflect what is common in the data, even if those claims are
misleading. Importantly this process does not require direct interference with the system.
The influence appears through the data itself and through the way the model learns to
imitate the language it has seen.

This makes large language models sensitive to what researchers describe as data contami-
nation. Bommasani et al. [2] explain that models trained on the public internet cannot
avoid being shaped by the quality of the information that circulates there. If false or biased
content becomes widespread, it can enter the training material and become part of the
model’s behaviour. Recent research by Anthropic further demonstrates that even small,
targeted samples of problematic data can disproportionately influence model outputs,
highlighting how vulnerable training processes are to manipulation and poisoning [I]. In
the context of propaganda this creates a situation where repeated narratives may later
reappear through the model in more polished and persuasive form. Shao [8] describes
this as a feedback effect since earlier distortions can be reinforced by the model and later
reintroduced to the online environment.

A second important development concerns scale. Large language models make it possible
to produce text at a speed and volume that were not achievable through human labour
alone. Once a model has been trained it can generate unlimited amounts of text at very
low cost. Tasks which previously required large teams, such as writing comments, creating
posts, or producing opinion pieces, can now be done by a small group with access to
generative tools. This shift lowers the cost of influence operations and removes many of
the practical constraints that previously limited the spread of propaganda. In economic
terms it increases the supply of misinformation at almost no marginal cost. These tools
can create messages in many languages, adapt tone and style to different audiences, and
respond instantly to ongoing discussions. As a result, influence operations can move from
manual work to continuous and automated production.

This automation also changes the nature of online identities. Large language models can
generate synthetic personas that appear consistent, realistic, and human. This blurs the
line between genuine public debate and artificial participation. When synthetic personas
are mixed with real citizens the very idea of a democratic conversation becomes harder to
maintain. They can imitate conversational habits preferences and writing style in a way
that makes detection difficult. Such systems can operate across multiple platforms and
interact in ways that give the impression of genuine public engagement. In the context of
propaganda this allows actors to spread political messages in a way that blends seamlessly
into ordinary online activity [2].

These capabilities introduce several risks. The first concerns credibility. Once Al generated
text becomes indistinguishable from human writing users can no longer rely on typical
cues to judge whether a message comes from an individual or from a generative system
[8]. The result is an environment where trust becomes a scarce resource. Even accurate
information may be doubted simply because users cannot verify its origin. This uncertainty
weakens trust in online information as a whole. A second risk involves amplification.
Because models can produce content at such high volume false or misleading information
can circulate faster than fact-checking or content moderation can respond. Traditional
countermeasures such as removing harmful posts or verifying sources are challenged by
the speed and scale of automated production.
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A further risk is feedback contamination. If large language models are trained on material
that includes their own earlier outputs the model may gradually learn from versions of
itself. Bommasani et al. [2] note that this can create cycles in which earlier mistakes or
biases reappear in new forms. This dynamic matters because it shows how misinformation
can accumulate over time. The issue is not one mistake but the gradual drift of the
entire information ecosystem away from reliable grounding. Over time this feedback loop
can distort the model’s behaviour in a way that is difficult to correct. Shao [§] raises
similar concerns in relation to hallucination, which refers to the tendency of a model to
generate statements that sound plausible but are not supported by any actual evidence. If
hallucinated content appears online and is later included in new training data the model
may reinforce its own inaccuracies.

Finally there are questions of responsibility. When propaganda is produced by automated
systems rather than human writers it becomes more difficult to identify the source of
influence. This lack of accountability undermines democratic institutions which depend
on the ability to trace responsibility and assign blame. Propaganda without authorship
becomes harder to regulate and easier to deny. The person who develops the model,
the organisation that deploys it, and the actors who insert strategic content into the
information environment all contribute to the outcome. Yet no single individual controls
the entire process. Bommasani et al. [2] argue that this lack of accountability is one of the
central challenges of large language models since it complicates efforts to manage their
social impact.

Figure [3.1] gives a simple visual overview of how feedback contamination can appear inside
a large language model. The outer area represents the full training data that the model
learns from. Inside this space there are smaller areas that show different types of overlap
between new material and earlier sources. The light red field illustrates everything that
could be contaminated. The darker centre shows rephrased samples which are harder to
detect because the words are new but the meaning is almost the same. The left side of
the figure shows how surface level methods such as n gram overlap can identify direct
repetition. The right side shows how similarity searches based on embeddings can reveal
deeper connections between texts, even when the wording has changed. The figure also
shows that some contaminated material may remain inside the training data, even after
attempts to clean it. This illustrates why contamination can be difficult to remove. Some
patterns sit inside the training material in subtle ways and can re appear when the model
generates new text.

Together, these developments show that large language models do not simply change how
propaganda is created. They change the structure of propaganda itself. The influence of
information becomes continuous automated and integrated into the same digital spaces
where people carry out their everyday communication. It operates with a speed and scale
that make traditional protective measures less effective. For this reason, understanding the
relationship between training data model behaviour and the surrounding information envi-
ronment is essential for assessing the role of large language models in modern propaganda
and for identifying how democratic societies can respond.

3.5 Solutions and Countermeasures

There is no single solution to the problems created by misinformation and Al-driven
propaganda. Instead, several approaches need to work together to reduce the impact
of false content and strengthen the resilience of democratic societies. These approaches
involve technological tools, policy interventions, economic incentives, and education. None
of them can solve the problem alone, but each addresses a different part of the system
that allows misinformation to spread.
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Figure 3.1: Feedback contamination in LLMs

One of the most common responses is fact-checking. Verifying information and exposing
false claims is an important part of any strategy against misinformation. The challenge
is that fact-checking becomes harder as the volume of online content continues to grow.
Automated systems can create thousands of posts, articles, and comments in very little
time, which makes traditional verification slow in comparison. Tools that claim to detect
Al-generated text are often presented as a solution, but the technology is still too unreliable
to depend on. Language models evolve quickly, which means detectors tend to fall behind
and sometimes classify human writing as synthetic. Because of this, it is not realistic to
expect an Al system to reliably determine which information is true or false. Instead, fact-
checking needs to be supported by human oversight and by clearer rules about transparency
so that information can be traced, understood, and evaluated.

A second dimension concerns the economic incentives behind online platforms. As long as
digital companies earn money from engagement, they indirectly profit from content that
spreads quickly, even if that content is misleading. Outrage and sensational stories generate
attention, and attention generates advertising revenue. This means that the economic
structure of the platforms creates little motivation to stop disinformation. To change this
dynamic, platforms need to face economic consequences when harmful content spreads.
Possible measures include financial penalties or requirements that reduce the profitability
of disinformation. Greater transparency about how algorithms select and promote content
may also help limit engagement-driven incentives. In other words, the system needs to
shift towards rewarding accuracy and trust rather than emotional reactions and clicks.
Policy and regulation form a third area where significant efforts are already underway.
At the European level, the Digital Services Act introduces obligations for large online
platforms to reduce systemic risks connected to disinformation. It requires transparency
regarding how algorithms operate and demands regular assessments of how harmful content
spreads. If companies fail to address these risks, they may face sanctions. Regulation
does not replace the need for fact checking or platform responsibility, but it establishes
clearer expectations and ensures that companies cannot ignore the problem. In Sweden,
the Civil Contingencies Agency works to increase public awareness through campaigns
on source criticism, educational programs, and analysis of foreign information influence.
These initiatives aim to strengthen society’s ability to identify manipulation and to make
the information environment more transparent.

Education and media literacy represent another key element of any long-term, bottom-up
solution. Even with strong regulation and improved platform policies, users need the
ability to judge information for themselves. Developing digital competence helps people
recognise manipulative content, understand how algorithms shape what they see, and
identify signals of coordinated influence. The European Digital Competence Framework
outlines what digital literacy should include and offers guidance on how these skills can
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be taught. Expanding such frameworks in schools and universities may help create a
more informed and critical population. This is especially important because the success of
disinformation depends on user behaviour. If people stop clicking on misleading content
and avoid sharing unverified claims, the financial incentive behind misinformation weakens.
In this way, improving media literacy not only protects individuals but also reduces the
return on investment for those who attempt to spread propaganda.

Taken together, these approaches show that the challenge of misinformation cannot be
solved through technology alone. Automated detectors and fact-checking tools play a role,
but they cannot compensate for economic structures that reward attention or for political
actors that intentionally manipulate the information environment. Regulation can create
new responsibilities for platforms and demand greater transparency, while education helps
citizens navigate a complex digital landscape. When combined, these strategies can make
societies more resilient by reducing the spread of false content and strengthening trust in
public information. The aim is not to eliminate misinformation entirely but to limit its
influence and make it less profitable for the actors who depend on it.

3.6 Evaluation and Discussion

Evaluating the current landscape of propaganda and misinformation shows that no single
factor explains its impact. Instead, it is the interaction between political strategy, economic
incentives, and technological change that shapes the outcome. Russia’s methods remain
effective not because they are especially sophisticated, but because they fit the logic of
today’s digital environment. High volume messaging, emotional framing, and repetition
work well in a system built to reward engagement. The firehose approach does not require
every claim to be convincing; it only needs to create confusion and weaken trust.

At the same time, it is difficult to measure how effective these methods actually are.
Influence does not leave clear traces, and people rarely shift their opinions in ways that
can be directly linked to one message or campaign. Public attitudes are shaped through a
mix of personal beliefs, political events, and social context, which makes it challenging to
isolate the precise impact of Russian activity. As a result, the visibility of propaganda
online does not necessarily equal influence. Nonetheless, the alignment between Russia’s
strategy and the incentives of digital platforms — fast distribution, emotional content, and
minimal verification — suggests that these methods can exploit existing vulnerabilities in
democratic societies. Even when the exact scale of their effect is uncertain, the structural
fit between strategy and platform dynamics remains significant.

Sweden provides a useful example of how these forces interact. As a small, open, and
highly digitalised society, Sweden is exposed to influence efforts because information
spreads quickly and public debate is easily accessible. At the same time, the country also
has strong institutions, high levels of education, and a relatively trusted media system.
This combination makes Sweden both vulnerable and resilient. External actors can reach
Swedish audiences with little effort, but Swedish society also has the capacity to analyse
and resist such attempts. In this sense, Sweden illustrates a broader challenge faced by
many democracies: openness brings strength, but also risk.

The rise of large language models adds a new layer of uncertainty. These systems can
scale up propaganda efforts and accelerate the spread of misleading information, but it
is still unclear whether their long-term impact can be controlled. One open question is
whether LLM-driven propaganda can be limited, or whether society is entering an arms race
between automated influence systems and increasingly advanced detection tools. Another
question concerns responsibility. Commercial AI companies such as OpenAl, Google, and
Meta now operate technologies that can shape public understanding on a global scale.
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Their decisions about training data, safety measures, and transparency directly influence
how vulnerable societies are to manipulation.

There is also the issue of how small, digitally open countries will be affected. Nations like
Sweden may face a higher level of risk, simply because their information environments
are easy to access and their populations are active online. If propaganda becomes fully
automated, the scale of influence attempts may grow faster than the capacity of institutions
to respond.

Finally, I argue that the discussion must acknowledge a fundamental limitation: the human
brain does not function like a computer. People do not process information by calculating
probabilities or scanning datasets. Instead, they rely on emotions, social cues, and cognitive
shortcuts. Propaganda succeeds when it exploits these tendencies, and Al-driven content
may intensify this effect by producing messages that feel personal and believable. This
means that technological solutions alone will never be enough. Any response must also
consider how people interpret and react to information, because the ultimate target of
propaganda is not the system, but the human mind.

3.7 Conclusion

This report shows that the relationship between propaganda, technology, and the digital
economy is more complex than it first appears. Large language models and automated
systems have changed the speed and volume of online communication. Yet the main
driving forces remain human. Political motives, commercial interests, and cognitive habits
still shape how information is created and shared. Al amplifies these patterns but does
not produce them on its own. Understanding this interaction is essential for assessing the
challenges that modern societies face.

One clear conclusion is that the economic structures of the online environment often
work against the protection of public debate. Digital platforms mainly earn money from
user engagement. Engagement tends to increase when content triggers strong emotional
reactions. This creates a structural conflict of interest. Efforts to limit harmful or
misleading content can directly reduce platform profits. Content moderation is expensive to
implement. Reducing the visibility of sensational content can also lower advertising revenue.
Investigative reporting by Reuters [7] shows that a significant share of Meta’s income
may come from fraudulent advertising. Financial reporting by CNBC [3] further indicates
that such ads were projected to account for around 10 percent of Meta’s total revenue
in 2024. These findings show how economic incentives can discourage strict enforcement
and instead allow harmful content to persist. As a result, technological development often
focuses on automation and scale rather than trust and accuracy. Without meaningful
changes to the economic incentives that shape the digital environment, technical solutions
alone are unlikely to lead to lasting improvements in the quality of public discourse.
Another conclusion is that large language models blur the line between genuine human
communication and artificial content. These systems can produce writing that feels
personal and confident, which makes them effective tools in influence operations. Yet the
impact depends on human choices. The models do not decide which narratives should be
pushed. They do not decide which conflicts should be amplified. It is the people who use
them who make these decisions. This highlights a broader point in the report: the main
problem is rarely the tool itself, but the intention behind it.

The human mind is also a crucial part of this picture. People react to emotion long before
they react to facts. Stories, identities, and symbols shape how we interpret information.
Propaganda has always taken advantage of this. Al-generated messages can intensify the
effect because they can be tailored to feel relevant and familiar. This means that critical
thinking and media literacy remain the strongest forms of defence. Technology can support
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these skills, but it cannot replace them. Individuals still need to question sources and
recognise messages that target emotion rather than reason.

The examples discussed in the report show how propaganda adapts to the structure of
modern information systems. Russia uses a combination of older influence traditions
and new digital tools, and these methods fit well into the attention-driven logic of online
platforms. Sweden’s position as a small, open, and highly digital society shows how
geopolitical interests, domestic debates, and platform incentives can come together to
create both risk and resilience. Strong institutions, high education levels, and a trusted
media landscape can limit many attempts at manipulation. At the same time, the country’s
openness and political climate create opportunities for external actors. This combination
shows that resistance to influence depends on more than technology; it grows out of the
political and social structure of a society.

Looking ahead, influence operations will likely become more automated and more difficult
to detect. Large language models are already used in these efforts, and their role will only
grow as the technology becomes faster and cheaper to use. Future risks include a situation
where synthetic content becomes so common that people can no longer trust anything they
see online. There is also a growing concern that propaganda systems and defensive systems
will develop in parallel, creating a kind of race in which each side tries to outpace the
other. Another uncertainty is the possibility that Al models will interact with each other
in unpredictable ways, potentially allowing misinformation to spread without direct human
intention. These trends raise a core question: can democratic institutions and regulatory
systems adapt quickly enough to manage a communication landscape that evolves at the
speed of computation? Progress will require cooperation between governments, researchers,
digital platforms, and citizens. Above all, it will require recognition that technology tends
to magnify human choices rather than replace them.

The challenge of misinformation is not only a struggle against false content. It is a question
of how societies organise their information systems and how they hold commercial actors
accountable. It is also a question of how individuals understand the world around them.
Large language models will continue to evolve, and strategies for manipulation will evolve
with them. This makes it necessary to strengthen the human abilities that no machine
can provide. Critical thinking, transparency, and democratic norms remain the core of
any defence. By addressing the economic conditions that reward harmful content and
by investing in the resilience of citizens, democratic societies can protect the integrity of
public debate at a time when influence can be produced as quickly as a line of text.
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Chapter 4

Exploring Governance in Self-Sovereign
Identity Wallets

Saksham Joshi

Self-Sovereign Identity (SSI) seeks to decentralize digital identity by granting individuals
control over their personal data and credentials. While existing research extensively exam-
ines the cryptographic foundations, standards, and technical architectures of SSI systems,
considerably less attention has been paid to the governance of SSI wallets—the primary
interface through which users experience self-sovereign identity in practice. This report
addresses this gap by analyzing governance structures in SSI wallets and assessing how
they support or undermine the principles of decentralization and user self-sovereignty.
The study first reviews relevant literature on SSI foundations, decentralized governance,
usability trade-offs, and wallet security to establish the research gap. It then introduces
a conceptual framework based on four governance dimensions: control, transparency, ac-
countability, and resilience. Using a qualitative, comparative methodology, the framework
s applied to existing SSI wallet ecosystems to examine governance concentration, decision-
making authority, and institutional dependencies.

The analysis reveals that while SSI wallets enable operational control over credentials, gov-
ernance authority frequently remains centralized within foundations, corporations, or public
institutions. Open-source development and protocol decentralization do not necessarily
result in decentralized governance, and usability, interoperability, and regqulatory require-
ments often reinforce centralization. The report concludes that governance—rather than
cryptographic design alone—represents a critical determinant of practical self-sovereignty
in SST wallets. It argues that sustainable SSI ecosystems require explicit, transparent, and
resilient governance arrangements that acknowledge and manage the trade-offs between
decentralization, usability, and accountability.
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4.1 Introduction

Self-Sovereign Identity (SSI) represents a shift away from traditional, centralized identity
systems by enabling individuals to control and manage their digital identities directly.
Instead of depending on governments, corporations, or digital platforms to authenticate
users, SSI distributes trust and gives user ownership over their credentials and cryptographic
keys. Within this architecture, the SSI wallets server is the core user-facing component,
functioning as the primary interface through which individuals store, present, and manage
verifiable credentials. Because every SSI interaction-whether issuance, verification, or
presentation-happens through the wallet, its design fundamentally shapes how users
experience autonomy and control.

Despite this promise of decentralization, SSI wallets introduce a structural tension: although
users control their keys and credentials, the wallet software itself is governed by the
developers or organizations that build and maintain it. These actors determine which
features are supported, how standards are implemented, where updates are deployed, and
what data may be collected. This creates a hidden dependency that can reintroduce forms
of centralization, even within a system designed to eliminate them. The contradiction is
significant because, without transparent governance, users cannot reliably assess whether
the wallet truly operates in their interest, preserves their privacy, or upholds the principles
of self-sovereignty.

Existing academic work on SSI largely focuses on technical components-such as decen-
tralized identifiers (DIDs), verifiable credential protocols, cryptographic primitives, in-
teroperability frameworks, and privacy-preserving verification mechanisms. In contrast,
governance structures behind SSI wallets remain comparatively under-examined. Ques-
tions of transparency, accountability, decision-making power, update control, and the
socio-technical dynamics of wallet maintenance receive far less attention, despite being
crucial for evaluating whether SSI systems genuinely achieve decentralization in practice.
Governance therefore represents a critical research gap.

This report addresses this gap by examining SSI wallet governance through the lens of
transparency. The central research question guiding the study is: To what extent do gover-
nance structures in SSI wallets support or undermine the principles of decentralization
and user self-sovereignty? The analysis further considers who controls wallet updates and
standards adoption, how transparent and accountable existing governance models are, and
which governance structures might strengthen user autonomy and trust.

The purpose of this report is to investigate how transparency(or lack thereof) in wallet
governance affects user control, decentralization, and trust within SSI ecosystems. By
comparing governance approaches across different types of wallet and identifying the risks
posed by opaque decision-making, the report proposes a conceptual framework for more
transparent, accountable, and resilient wallet governance. Strengthening governance is
essential not only for the credibility of SSI systems but also to ensure that self-sovereignty
is realized in practice rather than remaining an idealistic design goal.

4.2 Literature Review

4.2.1 SSI Foundations and Technical Architecture

Self-Sovereign Identity (SSI) is introduced in the literature as a response to the structural
limitations of centralized digital identity systems, which concentrate control over identity
data in the hands of institutions and platform providers. Foundational work defines SSI
as an identity model in which individuals retain direct control over their identifiers and
credentials, enabling greater autonomy, privacy, and portability across digital contexts
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without reliance on centralized authorities [I]. A core principle underlying SSI is the reduc-
tion of unnecessary data disclosure and the minimization of trust placed in intermediaries
during identity verification.

From a technical standpoint, SSI architectures are largely standardized around a small
set of interoperable components. Decentralized Identifiers (DIDs) provide globally unique,
cryptographically verifiable identifiers that are controlled by the identity subject rather
than issued or managed by centralized registries [10]. Verifiable Credentials (VCs) define a
structured data model and associated cryptographic mechanisms that allow trusted entities
to issue attestations about identity attributes, which holders can later present to verifiers
in a tamper-evident and privacy-preserving manner [I1]. These mechanisms are typically
supported by public-key cryptography, digital signatures, and, in many implementations,
distributed ledger technologies that enable identifier resolution and trust anchoring.
Across surveys and systematic reviews, SSI ecosystems are consistently described through
the interaction of three primary roles: issuers, holders, and verifiers. Issuers attest to
claims by issuing credentials, holders manage and selectively disclose these credentials,
and verifiers assess their validity without requiring direct access to the underlying personal
data. Comparative studies emphasize that standardized protocols and data models allow
interoperability across SSI implementations while preserving user privacy and reducing
dependence on centralized identity infrastructures [5][4].

Within this technical framing, wallets are introduced as the software artifacts responsible
for managing cryptographic keys, storing decentralized identifiers, and holding verifiable
credentials on behalf of users. Wallets are therefore acknowledged as essential operational
components within SSI systems. However, existing literature predominantly discusses
wallets in functional and technical terms—such as credential storage, protocol compliance,
and security properties—while offering limited analysis of how wallet software is developed,
updated, or governed in practice [5][12].

4.2.2 Governance in Blockchain and Decentralized Systems

Governance has emerged as a central research topic in blockchain and decentralized
systems, addressing the mechanisms through which collective decisions are made, rules
are enforced, and system evolution is coordinated without centralized authority. Existing
literature conceptualizes governance as a combination of technical mechanisms and social
processes that determine how changes to protocols, rules, and organizational structures
are proposed, evaluated, and implemented [2]. In decentralized environments, governance
is often presented as a core challenge due to the absence of formal hierarchies and the need
to balance decentralization with effective coordination.

A significant portion of this literature focuses on governance models implemented through
Decentralized Autonomous Organizations (DAOs). DAO governance mechanisms typi-
cally rely on token-based voting, delegation, and proposal systems to enable stakeholder
participation in decision-making [2]. Studies identify a range of governance approaches,
including on-chain governance—where decisions are encoded and executed directly by
smart contracts—and off-chain governance, where deliberation and coordination occur
through informal channels such as forums, working groups, or core development teams
[2]. While these mechanisms aim to enhance transparency and decentralization, empirical
analyses highlight persistent challenges such as voter apathy, governance capture by large
token holders, and the concentration of decision-making power among a small subset of
participants.

Recent governance reviews further emphasize that decentralization in governance is often
more limited in practice than suggested by formal mechanisms. Although DAOs provide
participatory frameworks, many critical decisions are influenced by core developers, mul-
tisignature committees, or informal leadership structures that operate outside formal voting
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processes [2]. As a result, governance outcomes may depend less on broad stakeholder
participation and more on technical expertise, economic power, or social influence. These
findings suggest that transparency and accountability in decentralized governance cannot
be assumed solely on the basis of open voting mechanisms.

Despite the maturity of governance research at the protocol and organizational levels, this
literature largely treats governance as a property of blockchain networks or DAOs rather
than of user-facing software. Wallets, which mediate user interaction with decentralized
systems and shape how governance decisions are experienced in practice, are not analyzed
as governance actors within existing frameworks. Consequently, governance studies provide
valuable theoretical insights into decentralization, participation, and control, but offer
limited guidance on how governance is exercised at the interface level where users interact
with decentralized identity systems.

4.2.3 Usability vs Decentralization Trade-offs

A recurring theme across the SSI and broader blockchain literature is the tension between
decentralization and usability. While decentralized architectures aim to maximize user
autonomy and minimize reliance on trusted intermediaries, they often impose significant
cognitive and technical burdens on end users. Surveys of SSI systems consistently identify
usability as a critical non-functional requirement, noting that complex key management,
recovery procedures, and unfamiliar interaction patterns can hinder adoption despite strong
privacy and security guarantees [12][5].

In the context of SSI, decentralization requires users to manage cryptographic keys, control
identifiers, and make informed decisions about credential disclosure. Comparative studies
highlight that these responsibilities, while essential for self-sovereignty, introduce usability
challenges that are not present in centralized identity systems [12]. As a result, many
SSI implementations adopt design choices that trade strict decentralization for improved
user experience, such as simplified recovery mechanisms, abstracted key management, or
reliance on trusted infrastructure components. These choices are frequently justified as
necessary for practical deployment and user adoption.

Related literature emphasizes that usability pressures often lead to the reintroduction of
centralized elements within ostensibly decentralized systems. Surveys and taxonomies
of SSI solutions show that wallets frequently embed assumptions about trusted services,
default configurations, or predefined workflows to reduce user complexity [5] [4]. While
these design decisions can enhance accessibility, they may also shift control away from users
in subtle ways, particularly when users lack visibility into how wallet software operates or
evolves over time.

Importantly, existing studies treat usability trade-offs primarily as design or engineering
challenges rather than governance issues. Decisions about which trade-offs to priori-
tize—such as convenience over decentralization or automation over user control—are rarely
analyzed in terms of who makes these decisions, how they are justified, or whether users
have meaningful influence over them. Consequently, the literature recognizes the existence
of usability—decentralization trade-offs but does not examine how governance structures
within wallets institutionalize these trade-offs and shape long-term user autonomy.

4.2.4 Wallet Security and Threat Models

Security considerations form a substantial part of the existing literature on SSI wallets and
related blockchain-based systems. Academic surveys and systematic reviews analyze wallets
primarily through the lens of technical threat models, focusing on risks associated with
cryptographic key management, credential storage, recovery mechanisms, and interaction
with potentially malicious environments [4][12][5]. These studies frame wallets as critical
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security components, as compromise of wallet integrity can directly result in identity theft,
credential misuse, or loss of access to identity data.

A dominant concern across the literature is private key management. SSI wallets require
users to securely generate, store, and protect cryptographic keys that control identifiers
and credentials. Surveys highlight threats such as key loss, phishing attacks, malware,
and insecure backup practices, all of which can undermine the security guarantees of SSI
systems even when underlying protocols are correctly implemented [12][5]. To mitigate
these risks, many wallet implementations introduce recovery mechanisms, such as social
recovery, custodial backups, or trusted recovery agents. While these mechanisms improve
resilience against key loss, they may also introduce additional trust assumptions and
potential attack surfaces.

Beyond key management, the literature also examines privacy-related risks associated
with wallet usage. Studies note that improper handling of metadata, network interactions,
or credential presentation patterns can lead to unintended information leakage, enabling
correlation or tracking of users across contexts [4][5]. Wallets are therefore evaluated
in terms of their ability to support selective disclosure, unlinkability, and minimal data
exposure. However, these evaluations remain largely technical, focusing on protocol
compliance rather than operational practices.

Importantly, existing threat models generally assume that wallet software behaves as
intended and that updates or design changes are inherently benign. Security analyses
rarely consider who controls wallet updates, how security-critical decisions are made, or how
emergency interventions are governed in practice. As a result, wallets are treated as static
technical artifacts rather than evolving software systems embedded within governance
structures.

4.2.5 Synthesis and Research Gap

The literature reviewed above demonstrates that research on Self-Sovereign Identity has
reached a high level of maturity with respect to technical architecture, cryptographic
mechanisms, and ecosystem design. Foundational works establish clear principles of
decentralization, user control, and privacy, while standards such as Decentralized Identifiers
and Verifiable Credentials define interoperable technical building blocks for SSI systems
[1] [I0] [11]. Survey and review papers further analyze SSI implementations in terms
of functional requirements, security properties, and usability considerations, providing
comprehensive overviews of the current state of the ecosystem [5][4][12].

At the same time, governance has emerged as a well-developed area of inquiry within the
broader blockchain literature. Studies of decentralized governance and DAOs examine
how decision-making power is distributed, how protocol changes are coordinated, and how
transparency and accountability are maintained in decentralized systems [2]. These works
highlight persistent governance challenges, including concentration of power, informal con-
trol structures, and the gap between formal decentralization and practical decision-making.
However, governance research remains largely focused on protocols and organizations
rather than on user-facing software components.

When considering usability and security, the literature recognizes that SSI wallets sit
at the intersection of competing objectives. Usability studies document the trade-offs
between decentralization and user convenience, while security analyses develop detailed
threat models addressing key management, recovery, and privacy risks [4][12][5]. Yet,
these discussions frame wallets primarily as technical artifacts whose behavior is defined
by design choices and protocol compliance, rather than as evolving systems shaped by
ongoing governance decisions.

Taken together, this body of literature reveals a significant gap. Although SSI wallets are
the primary interface through which users experience self-sovereign identity in practice, their
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governance structures remain largely unexamined. Decisions regarding wallet development,
feature inclusion, update mechanisms, and standards adoption are typically made by
foundations or development organizations operating in a centralized manner, even as the
surrounding identity architecture aspires toward decentralization. The literature does not
systematically analyze how such governance arrangements affect transparency, nor how
they shape the extent to which users exercise meaningful control over their identity data.
This gap motivates the present study, which identifies an overlooked problem in existing SSI
research and develops a conceptual framework for analyzing governance in SSI wallets. By
focusing on transparency in wallet governance, the report seeks to clarify how centralized
decision-making at the wallet level can undermine the principles of decentralization and
user self-sovereignty that SSI systems are intended to uphold.

4.3 Conceptual Framework

To systematically analyze governance in Self-Sovereign Identity (SSI) wallets, this report
introduces a conceptual framework that operationalizes governance at the wallet level. The
framework is motivated by the research gap identified in Section 2, namely that while SSI
architectures aim to decentralize identity control, wallet governance remains insufficiently
examined despite wallets serving as the primary interface through which users experience
SSI in practice. Rather than treating wallets as neutral technical artifacts, the framework
conceptualizes them as socio-technical systems whose governance structures shape user
autonomy, transparency, and trust.

The framework comprises four governance dimensions—Control, Transparency, Account-
ability, and Resilience—which together capture the key aspects through which governance
manifests in SSI wallets. These dimensions are derived from recurring concerns in the
literature on SSI architecture, decentralized governance, usability trade-offs, and wallet
security, and they provide a structured basis for comparative and analytical evaluation.

4.3.1 Control

Control refers to the distribution of decision-making power over the evolution and operation
of an SSI wallet. This includes who determines changes to the wallet codebase, who controls
update mechanisms, and who decides which decentralized identifier (DID) methods,
credential formats, or standards are supported. Although SSI principles emphasize user
control over identity data, control at the wallet level may remain centralized if key
decisions are made exclusively by foundations, core development teams, or sponsoring
organizations. Within this framework, control captures the extent to which users can
meaningfully influence wallet behavior beyond mere usage, and whether governance
authority is distributed or concentrated.

4.3.2 Transparency

Transparency concerns the visibility and openness of governance processes related to SSI
wallets. This dimension examines whether decisions about wallet development, updates,
and feature inclusion are documented, publicly communicated, and accessible to users.
Transparent governance enables users to understand how and why changes occur, assess
potential risks, and evaluate whether wallet behavior aligns with SSI principles. In the
absence of transparency, governance decisions may remain opaque, limiting users’ ability to
make informed choices and undermining trust in the wallet as an instrument of self-sovereign
identity.
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4.3.3 Accountability

Accountability addresses responsibility and answerability within wallet governance struc-
tures. This dimension considers who bears responsibility when governance decisions lead
to security failures, privacy violations, or loss of user autonomy. In decentralized identity
systems, accountability can be difficult to establish due to diffuse roles and informal
decision-making processes. The framework therefore examines whether clear mechanisms
exist for assigning responsibility, addressing user grievances, and responding to governance
failures. Accountability is critical for evaluating whether SSI wallets provide not only
technical self-sovereignty but also institutional safeguards for users.

4.3.4 Resilience

Resilience refers to the robustness of wallet governance against capture, coercion, or sys-
temic failure. This includes the ability of governance structures to withstand concentration
of power, external pressure from regulators or sponsors, and disruptions such as developer
withdrawal or infrastructure failure. Resilient governance mechanisms reduce reliance on
single points of control and enhance the long-term sustainability of SSI wallets. Within the
framework, resilience captures whether governance arrangements can adapt to challenges
while preserving decentralization and user trust.

4.3.5 Application

Together, these four dimensions provide an analytical lens for evaluating SSI wallets in a
structured and comparable manner. By examining how different wallets allocate control,
ensure transparency, enforce accountability, and maintain resilience, the framework enables
systematic analysis of governance practices at the wallet level. This approach allows the
report to move beyond purely technical evaluation and to assess whether SSI wallets, in
practice, align with the principles of decentralization and self-sovereignty that underpin
the SSI paradigm.

Table 4.1: Governance Dimensions and Analytical Focus

Governance Dimension | Analytical Focus

Control Who decides updates, standards, and core functionality
of the SSI wallet

Transparency Visibility and documentation of governance processes
and decision-making

Accountability Allocation of responsibility and available recourse when
failures or disputes occur

Resilience Robustness of governance structures against capture,
coercion, or systemic breakdown

4.4 Methodology

This study adopts a qualitative, comparative governance analysis to examine how gover-
nance is operationalized within Self-Sovereign Identity (SSI) wallets. Given the conceptual
nature of the research question and the absence of primary data collection or fieldwork, the
methodology focuses on systematic analysis of existing SSI wallet implementations through
the analytical framework introduced in Section 3. This approach allows for structured
comparison across wallets while maintaining alignment with the principles and goals of

SSL.
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4.4.1 Research Design

The research design is exploratory and comparative. Rather than evaluating wallets in terms
of performance or technical efficiency, the analysis focuses on governance characteristics
and decision-making structures. SSI wallets are treated as socio-technical systems whose
governance models influence user autonomy, transparency, and trust. By applying a
consistent set of governance dimensions across multiple cases, the methodology enables
identification of patterns, similarities, and divergences in wallet governance practices.

4.4.2 Case Selection

The study selects three to five representative SSI wallets to capture variation across
governance models and institutional contexts. Wallets are chosen to reflect diversity along
the following dimensions:

e Open-source community-driven wallets, where governance is primarily exercised by
distributed developer communities.

e Corporate-backed wallets, developed and maintained by private organizations.

e Institutionally or government-backed wallets, where governance is linked to public-
sector or semi-public entities.

This selection strategy ensures that the analysis is not limited to a single governance
paradigm and allows comparison of how different institutional arrangements shape wallet
governance in practice.

4.4.3 Analytical Procedure

Each selected wallet is evaluated using the four governance dimensions defined in the
conceptual framework: Control, Transparency, Accountability, and Resilience. For each
dimension, qualitative indicators are examined, such as:

e who controls the wallet codebase and update mechanisms,
e how governance decisions are communicated and documented,
e whether responsibility for failures or disputes is clearly defined,

e and how governance structures respond to risks such as capture, coercion, or organi-
zational failure.

The analysis relies on publicly available documentation, governance statements, devel-
opment practices, and observable decision-making processes associated with each wallet.
Applying the same analytical lens to each case ensures methodological consistency and
comparability.

4.4.4 Comparative Analysis

The analysis relies on publicly available documentation, governance statements, devel-
opment practices, and observable decision-making processes associated with each wallet.
Applying the same analytical lens to each case ensures methodological consistency and
comparability:.
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4.4.5 Methodological Limitations

This methodology is subject to several limitations. First, the analysis is based on publicly
available information and does not incorporate insights from internal decision-making
processes or stakeholder interviews. Second, governance practices may evolve over time,
and the analysis reflects governance structures at a specific point. Despite these limitations,
the comparative framework provides a systematic and replicable approach for analyzing
governance in SSI wallets and offers a foundation for future empirical or longitudinal
research.

4.5 Governance Analaysis of SSI Wallet

This section applies the conceptual framework introduced above to empirically analyze
governance practices in selected Self-Sovereign Identity (SSI) wallets. Following the
methodology outlined in Section 4, the analysis evaluates wallet governance along four
dimensions—Control, Transparency, Accountability, and Resilience—in order to assess how
governance structures align with the principles of decentralization and user self-sovereignty.
The section begins with an in-depth case analysis of the Sovrin ecosystem as a foundational
SSI implementation.

4.5.1 Sovrin Wallet Governance Analysis

Sovrin represents one of the earliest and most influential implementations of Self-Sovereign
Identity, positioning itself as a global public utility for decentralized identity. The Sovrin
ecosystem is built on top of Hyperledger Indy and is governed by a formal and comprehensive
governance architecture administered by the Sovrin Foundation, a non-profit organization
established to steward the Sovrin Network [7]. This governance structure provides a useful
case for examining how formalized governance operates within an SSI ecosystem and how
it affects wallet-level self-sovereignty.

4.5.1.1 Control

Control within the Sovrin ecosystem is primarily exercised through the Sovrin Foundation
and its associated governance bodies. The Sovrin Governance Framework explicitly defines
the roles, responsibilities, and authorities involved in operating the Sovrin Network, includ-
ing decision-making over ledger governance, steward participation, and policy enforcement
[3][8]. While SSI principles emphasize user control over identifiers and credentials, strategic
and technical decisions—such as updates to governance policies, ledger rules, and network
participation criteria—are centrally coordinated and ultimately approved by the Foun-
dation’s governing bodies. Wallet implementations interacting with the Sovrin Network
therefore operate within a governance environment where core infrastructural decisions
remain foundation-led rather than user-driven.

4.5.1.2 Transparency

Transparency is a comparatively strong dimension within Sovrin’s governance model.
Governance documents, including the Ecosystem Governance Framework and Utility Gov-
ernance Framework, are publicly available and structured to provide detailed explanations
of governance processes, policies, and institutional roles [3[[§]. Additionally, the Sovrin
Governance Framework Working Group allows for public review and comment on gover-
nance documents, enabling community visibility into proposed changes and revisions [9].
However, while documentation is openly accessible, transparency primarily operates at the
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institutional and policy level rather than at the level of individual wallet users, who may
have limited practical engagement with governance deliberations.

4.5.1.3 Accountability

Accountability within the Sovrin ecosystem is formalized through legal and organizational
mechanisms. The Sovrin Trust Assurance Framework defines criteria for compliance
and conformance among network participants, establishing responsibility structures for
stewards, transaction endorsers, and other actors [6]. The Sovrin Foundation assumes
overarching responsibility for maintaining the integrity and public-interest orientation of the
network. Nevertheless, accountability remains institution-centric: users of SSI wallets have
limited direct recourse or participatory mechanisms to influence governance outcomes or
address governance-related failures beyond institutional complaint or compliance channels.

4.5.1.4 Resilience

From a resilience perspective, Sovrin’s governance model emphasizes stability and regulatory
compliance through formalized roles and legal agreements. While this structure enhances
resistance to arbitrary changes and provides continuity, it also introduces potential single
points of governance concentration. The reliance on the Sovrin Foundation as the central
coordinating entity raises questions about resilience against organizational failure, capture,
or external pressure. Although the network is technically decentralized, governance
resilience is closely tied to the ongoing viability and neutrality of the Foundation itself

[718].

4.5.1.5 Interim Assessment

Overall, the Sovrin case illustrates a governance model characterized by high formalization
and transparency, but centralized control and accountability at the institutional level. While
Sovrin’s governance architecture aligns with SSI goals in terms of public documentation
and rule-based operation, it also demonstrates how wallet-level self-sovereignty can be
constrained by foundation-led governance structures operating above the wallet interface.

4.5.2 Comparative Governance Assessment

This subsection situates the Sovrin governance model in relation to the normative principles
of Self-Sovereign Identity, as articulated in the literature and standards reviewed in Section
2. Rather than comparing Sovrin to other wallets at this stage, the analysis evaluates
the degree of alignment and tension between Sovrin’s governance structures and core SSI
objectives, including decentralization, user autonomy, and transparency.

From a governance perspective, Sovrin exhibits a strong commitment to formalization
and rule-based operation. The existence of a comprehensive governance framework,
public documentation, and legally defined roles contributes positively to transparency and
predictability in network operations [3][§][6]. Compared to many decentralized systems that
rely on informal or opaque governance mechanisms, Sovrin’s approach reduces ambiguity
regarding authority and responsibility.

However, when evaluated against the principle of user self-sovereignty, notable tensions
emerge. While SSI architectures emphasize user control over identifiers and credentials,
governance authority within the Sovrin ecosystem remains concentrated at the institutional
level. Strategic decisions regarding network rules, policy updates, and participation criteria
are coordinated and approved by the Sovrin Foundation and its governing bodies, rather
than by wallet users themselves [3][§]. As a result, user sovereignty is primarily exercised
at the operational level (credential management) rather than at the governance level.
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In terms of accountability, Sovrin’s governance model assigns responsibility through
formal organizational structures and compliance frameworks, such as the Trust Assurance
Framework [6]. This enhances institutional accountability but offers limited mechanisms
for direct user participation or redress in governance processes. Accountability is therefore
upward-facing—toward stewards and governing bodies—rather than outward-facing toward
end users of SSI wallets.

With respect to resilience, Sovrin’s governance framework prioritizes stability and regulatory
alignment. While this contributes to robustness against arbitrary changes, it also introduces
dependencies on the continued neutrality and operational viability of the Sovrin Foundation.
Consequently, governance resilience is partially constrained by centralized institutional
reliance, creating potential vulnerabilities in scenarios of organizational failure or external
pressure.

Taken together, this assessment suggests that Sovrin represents a governance model
that is transparent and institutionally accountable, yet centralized in terms of control.
This configuration highlights a broader pattern within SSI ecosystems: while technical
architectures may enable decentralized identity, governance structures at the wallet and
network level can reintroduce centralized authority, thereby shaping the practical limits of
self-sovereignty.

4.6 Analysis

This section synthesizes the empirical findings presented in Section 5 to derive broader
insights into governance dynamics in Self-Sovereign Identity (SSI) wallets. Rather than
reiterating case-specific observations, the analysis focuses on cross-cutting patterns, struc-
tural tensions, and recurring trade-offs that shape wallet governance in practice. These
insights directly address the research question by evaluating how governance structures
support or undermine decentralization and user self-sovereignty.

4.6.1 Governance Concentration as a Systemic Risk

Across examined SSI wallet ecosystems, governance concentration emerges as the primary
structural risk to decentralization. Even when underlying identity protocols are decen-
tralized, decision-making authority over wallet development, updates, and compliance is
frequently centralized within foundations, corporations, or public institutions. This con-
centration enables coordination and stability but simultaneously creates dependencies that
limit user influence over the evolution of wallet functionality. As a result, decentralization
at the protocol level does not necessarily translate into decentralized governance at the
wallet level, where strategic control remains consolidated.

4.6.2 Open-Source Does Not Imply Decentralized Governance

A recurring assumption in decentralized systems is that open-source development inherently
enables decentralized governance. The empirical analysis challenges this assumption. While
open-source SSI wallets provide transparency and auditability, governance power often
resides with a small group of maintainers who control code review, merging rights, and
release cycles. Users may benefit from visibility into development processes, yet they
typically lack formal mechanisms to influence governance outcomes. This distinction
highlights that openness of code is a necessary but insufficient condition for governance
decentralization.
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4.6.3 Usability Pressures Reinforce Centralization

Usability considerations significantly shape wallet governance decisions. Corporate-backed
SSI wallets tend to prioritize user experience, streamlined onboarding, and simplified
recovery mechanisms. While these design choices reduce friction and encourage adoption,
they frequently rely on centralized infrastructure, controlled update channels, or custodial
recovery models. The analysis indicates that usability pressures often justify governance
centralization as a pragmatic trade-off, reinforcing the tension between ease of use and self-
sovereign control. In practice, user convenience is frequently privileged over participatory
governance.

4.6.4 Accountability Gains at the Cost of Sovereignty

Government-backed or institutionally anchored SSI wallets exhibit strong accountability
characteristics, including clear legal responsibility, regulatory alignment, and formal over-
sight. However, these strengths are accompanied by reduced decentralization and increased
state or institutional control. Accountability is achieved through hierarchical governance
structures rather than distributed participation, limiting user autonomy over governance
decisions. This pattern underscores a fundamental tension within SSI: mechanisms that
enhance accountability may simultaneously constrain self-sovereignty when implemented
through centralized authority.

4.6.5 Fully Decentralized Wallet Governance

The comparative analysis suggests that fully decentralized governance in SSI wallets is
rare and difficult to sustain. Governance requires coordination, conflict resolution, and
long-term maintenance—functions that are challenging to distribute without reintroducing
centralized control. Interoperability requirements, compliance obligations, and security
responsibilities further incentivize centralized governance structures. Consequently, SSI
wallets tend to adopt hybrid arrangements that balance decentralization claims with
practical governance constraints.

4.6.6 Interoperability

Interoperability, a core objective of SSI ecosystems, unintentionally strengthens governance
centralization. Wallets must align with dominant standards, reference implementations,
and certification regimes to remain interoperable. These alignment pressures often concen-
trate influence in standard-setting bodies, foundations, or early ecosystem leaders. As a
result, governance authority becomes centralized not through explicit control, but through
dependency on shared infrastructure and standards compliance.

4.6.7 Interim Conclusion

Taken together, these findings indicate that governance—not cryptography or protocol
design—is the decisive factor shaping the practical limits of self-sovereignty in SSI wallets.
While existing governance models enable stability, usability, and accountability, they
frequently do so by constraining user participation and decentralizing control only at a
technical level. This analysis highlights the need for governance models that explicitly
address these trade-offs rather than assuming that decentralization emerges automatically
from open protocols.
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4.7 Pathways Toward Sustainable SSI Wallet Governance

Building on the empirical findings and analytical insights presented in Sections 5-7, this
section outlines potential pathways toward more sustainable governance in Self-Sovereign
Identity (SSI) wallets. Rather than proposing a fully specified governance architecture,
the discussion remains exploratory and conceptual, focusing on design implications that
address the structural tensions identified in current SSI wallet governance models.

A first implication concerns the need to distinguish explicitly between technical decentral-
ization and governance decentralization. The analysis demonstrates that decentralized
protocols alone do not ensure decentralized decision-making at the wallet level. Sustainable
SSI wallet governance therefore requires mechanisms that extend self-sovereignty beyond
credential control to include visibility and influence over wallet evolution. This suggests
that governance should be treated as a first-class design concern, rather than an implicit
byproduct of open standards or open-source development.

Second, the findings indicate that transparency must be complemented by participation.
While many SSI wallet ecosystems provide extensive documentation and public gover-
nance artifacts, transparency alone does not empower users if decision-making authority
remains concentrated. Pathways toward sustainability may involve lightweight partici-
patory mechanisms—such as structured community consultations, public rationale for
governance decisions, or non-binding user feedback processes—that enhance legitimacy
without imposing excessive coordination costs.

Third, accountability mechanisms appear most effective when they balance institutional
responsibility with user-facing safeguards. Foundation-led and government-backed wallets
offer clarity in responsibility and regulatory alignment, yet often limit user recourse. A
more sustainable approach may involve separating operational accountability (e.g., security
incidents, compliance) from strategic governance, thereby preserving clear responsibility
while reducing concentration of long-term control.

Fourth, the analysis highlights the importance of governance resilience in evolving SSI
ecosystems. Reliance on single organizations—whether foundations, corporations, or public
authorities—creates vulnerabilities to capture, policy shifts, or organizational failure.
Sustainable governance pathways may therefore emphasize redundancy, role separation,
and gradual decentralization of decision-making authority as ecosystems mature, rather
than attempting full decentralization from the outset.

Finally, interoperability requirements suggest that coordination is unavoidable in SSI
wallet governance. Rather than resisting this reality, sustainable governance models should
make coordination explicit and transparent, clarifying who sets standards, how changes
propagate, and how wallets can exit or contest governance arrangements. Such clarity can
mitigate the risks of de facto centralization driven by hidden dependencies.

Taken together, these pathways do not prescribe a single optimal governance model.
Instead, they emphasize that sustainable SSI wallet governance is likely to be hybrid,
adaptive, and context-dependent—balancing decentralization ideals with usability, security,
and regulatory constraints. Recognizing and explicitly addressing these trade-offs is a
necessary step toward aligning wallet governance with the broader goals of self-sovereign
identity.

4.8 Conclusion

This report examined governance in Self-Sovereign Identity (SSI) wallets as a critical
yet underexplored dimension of decentralized identity systems. While SSI architectures
are designed to shift control of identity data to individuals, the analysis demonstrated
that wallets—the primary interface through which users interact with SSI-—often remain
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governed by centralized actors. This creates a structural tension between the normative
goals of self-sovereignty and the practical realities of wallet governance.

Through a structured literature review and a comparative governance analysis, the report
showed that existing SSI research largely focuses on cryptographic protocols, standards,
and credential formats, while paying limited attention to governance at the wallet level.
By introducing a conceptual framework based on control, transparency, accountability, and
resilience, the study provided a systematic lens for evaluating how governance structures
shape user autonomy in practice. Application of this framework revealed recurring patterns
of governance concentration, even in ecosystems built on decentralized protocols.

The findings highlight that open-source development and protocol decentralization do not
automatically translate into decentralized governance. Usability pressures, interoperability
requirements, regulatory considerations, and security responsibilities frequently incentivize
centralized decision-making within foundations, corporations, or public institutions. As a
result, user self-sovereignty is often realized at the operational level—through control over
credentials—while remaining constrained at the governance level.

At the same time, the analysis suggests that fully decentralized wallet governance is
difficult to achieve and may not always be desirable. Governance models that emphasize
stability, accountability, and compliance offer important benefits, particularly for identity
infrastructures operating in legally and socially sensitive contexts. The challenge, therefore,
is not to eliminate governance structures, but to design them in ways that are transparent,
resilient, and aligned with the principles of self-sovereign identity.

By framing wallet governance as a first-order concern in SSI system design, this report
contributes to a more nuanced understanding of decentralization in practice. It argues
that without explicit attention to governance, SSI risks reproducing centralized power
dynamics at the wallet layer, undermining its core promise. Future research could extend
this work by empirically examining user perceptions of wallet governance, comparing gov-
ernance practices across a broader set of wallets, or exploring mechanisms for participatory
governance that balance decentralization with usability and accountability.
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Chapter 5

Payoff-Driven Consensus: Incentive
Design for Multi-Agent Federated
Reinforcement Learning (RL)

Pierre Obermazier

Federated reinforcement learning (FRL) [1; 2] extends federated learning (FL) [3; 4] to
sequential deciston-making problems. In FRL, multiple agents collaboratively train a
reinforcement learning policy without sharing raw data. Each agent learns from its local
environment and periodically exchanges model updates with a central server or with other
agents in a peer-to-peer manner. This approach preserves data privacy and ownership, as
in FL, but introduces new challenges: agents may represent self-interested organizations
with divergent goals, resulting in misaligned incentives. For example, free-riding on the
contributions of others may arise [5]. This report examines algorithmic and economic
incentive mechanisms, including reward shaping, reputation systems, and contract-based
methods, for aligning individual agents with the collective objective, facilitating payoff-driven
consensus on a global policy under which cooperation is individually rational [6].
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5.1 Introduction

In recent years, federated learning (FL) has attracted attention as a decentralized, collab-
orative approach that enables multiple parties to train a shared model while preserving
privacy [4]. Instead of sharing the raw data used for model training directly, the raw data
is kept private, and the aggregated, locally computed updates [3] are exchanged.

While FL has been successfully deployed in supervised learning settings, many real-world
tasks involve sequential decision-making and interactive environments. Reinforcement
learning (RL) provides a natural framework for such tasks, and the integration of federated
learning with reinforcement learning has given rise to federated reinforcement learning
(FRL) [2]. FRL allows multiple agents, often from different organizations, to learn local
policies while contributing to a shared global model. Applications include autonomous
driving, robotics, energy systems, finance, healthcare, and other sectors where data is
sensitive.

Despite having significant benefits, FRL also faces fundamental economic and strategic
challenges. Participating agents often have heterogeneous objectives, computational
constraints, and privacy requirements, leading them not to behave cooperatively. This
opens the door to misaligned incentives, such as free-riding behavior, strategic withholding
of updates, or even manipulation of contributions to maximize private benefits and gain a
competitive edge. Such issues have been documented in both classic FL systems and also
in FRL systems, where sequential interaction may amplify these effects [5].

Achieving cooperation in FRL systems requires mechanisms that realign individual in-
centives with the collective learning objective, ensuring that cooperation is individually
rational for agents. This need motivates the study of incentive mechanisms that achieve
payoff-driven consensus, in which adherence to a shared global policy constitutes a sym-
metric Nash equilibrium, and no agent benefits from unilateral deviation from it. The
remainder of this work establishes the foundation for federated reinforcement learning,
reviews the current state of the art in incentive mechanisms, and discusses their contri-
butions to stable collaborative learning in heterogeneous, privacy-preserving, multi-agent
environments.

5.2 Related Work

Federated Learning was introduced by McMahan et al. as a decentralized approach to
training shared models by aggregating locally computed updates [3]. Yang et al. [7] (2019)
generalize the FL framework as a privacy-preserving decentralized collaborative-learning
technique across organizations. They also define a categorization framework based on
the data’s distribution characteristics, horizontal FL, vertical FL, and federated transfer
learning. In horizontal federated learning (HFL), or sample-based FL, the datasets share
the same feature space. Google’s first proposed FL approach [3] is an example of an
HFL approach. Vertical federated learning (VFL), or feature-based federated learning,
is applicable when the organizations’ datasets contain the same sample ID space (i.e.,
user base) but differ in feature space, so the datasets may have overlapping entities but
collect different features about the entities. Federated transfer learning (FTL) applies
when datasets differ in sample and feature space.

Reinforcement learning (RL) is a subset of ML in which agents learn by interacting with
their environment [I] to solve a task, often a sequential decision-making problem. By
extending the FL paradigm to RL, the idea of federated reinforcement learning (FRL)
emerged [2; [§]. Although related to multi-agent reinforcement learning (MARL) [9] in that
they are both distributed RL approaches, FRL puts the privacy-preserving aspect of FL
at its core.
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While these works establish the technical foundations of FL and FRL, they generally assume
cooperative agents aligned with a single collective goal. In a realistic multi-agent scenario,
such as between different organizations, this may not be the case. Organizations, or rather
their agents, may behave strategically or self-interestedly to achieve their respective goals,
undermining the learning process towards a collective goal. Furthermore, free-rider, trust,
and coordination problems may emerge. Recent research acknowledges these issues and
explores solutions. Park et al. (2023) [6] propose a payoff-mechanism design to achieve
cooperation in a multi-agent decision-making problem. Meng et al. (2024) [5] model
FL in a competitive market, analyzing free-riding behavior and incentive compatibility.
Haupt et al. (2024) [10] demonstrate how formal contracts can realign agents to a socially
optimal equilibrium in a MARL setting. These emerging approaches show that aligning
local payoffs with the collective objective, achieving payoff-driven consensus, is central to
maintaining cooperation in distributed learning.

5.3 Background

The previous section briefly summarizes the history of federated reinforcement learning,
referring to foundational research and providing a sense of the timeline. This section
provides the formal definitions and notation for FL. and FRL used throughout the remainder
of this report, and it takes a deeper look at federated learning and federated reinforcement
learning to understand the challenges that arise and to grasp where payoff-driven consensus
comes into play. It also establishes how these two frameworks differ from similar or related
concepts.

5.3.1 Federated Learning

Federated learning (FL), as proposed by McMahan et al. [4], is similar to distributed
computing, where multiple processing nodes are connected via a network so that each node
can process a different part of a common task. The main goal of distributed computing
is to accelerate task completion, whereas FL focuses on building a global model without
privacy leakage. Formally, in FL, there can be N collaborators, each with their own private
data {D1,...,Dx}. A naive approach would be to pool the data and train a collective
model Mgy using the pooled dataset D = {D; U Dy U ---U Dy}. However, this would
leak the private data of the collaborating entities. So, in federated learning, the aim is
to train a model Mpgp without compromising the data of each entity D;,Vi € N, while
achieving accuracy similar to that of Mgy, Using Vgpas to denote the accuracy of model
Mgy, and analogously Vegp for Mpgp, the difference in performance between these two
models can be written as:

\Vsurm — Veep| < 0,0 € R >0

The federated learning algorithm is said to have d-accuracy loss.

FL can be further classified into categories by the distribution characteristics of the data
D;,¥i € N as introduced by Yang et al. [7]. The dataset D; for an entity is a matrix, with
each row representing a sample, each column representing a feature, and, optionally, a
label. Let the feature space be denoted by X, the label data space by Y, and the sample
ID space by I. The subsequent sections will cover how I, X, and Y are used to categorize
FL approaches.

5.3.1.1 Horizontal Federated Learning

Horizontal FL, also called sample-based FL, applies when the different datasets share the
same feature space X, but different sample space I. For example, the Ziircher Kantonalbank
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and the Basler Kantonalbank, both regional banks in Switzerland, may have different
sets of users I in their respective regions, with little or no overlap. Due to their very
similar business, their feature and label space are mostly the same as shown in figure [5.1]
Therefore, horizontal FL. can be summarized as follows:

Xi=X3,Yi=Yj I; # 1j,VD;, Dj,i # j.
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Figure 5.1: A horizontal federated learning scenario

5.3.1.2 Vertical Federated Learning

Vertical FL, also called feature-based FL, applies when the datasets share the same
sample space I but differ in the feature X or label Y spaces. For example, the Ziircher
Kantonalbank and the Ziircher Verkehrsverbund, a regional bank and the public transport
operator of the same region. As many residents of that region (Zurich) will be customers
of both companies, the intersection of their sample spaces I will be large. However, these
companies will collect very different data about their customers. While the bank will
collect customers’ revenue and expenditure, the public transport operator will have ticket
purchasing information, making their feature space very different. This is shown in figure
6.2l Vertical FL is therefore summarized as:

5.3.1.3 Federated Transfer Learning

Federated transfer learning applies when datasets differ in both sample and feature space.
Consider the Ziircher Kantonalbank again, but this time take the public transport operator
of Singapore, SMRT (Singapore Mass Rapid Transit). They have different feature spaces
due to their different businesses, unlike the vertical FL scenario. Due to geographical
restrictions, the two companies will also have vastly different customer bases, making the
intersection of their sample space small as demonstrated in [5.3] Federated transfer learning
is summarized as:

Xi %X],Y;#YB,L%I],VD“D],Z#]
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5.3.2 Reinforcement Learning

In traditional supervised ML tasks, a pre-prepared dataset of samples and their labels, from
which the algorithm shall learn to predict new (previously unseen) samples, is provided.
On the other hand, unsupervised ML tasks also receive a dataset of samples that do
not contain a label to be predicted. Instead, the ML algorithm should find a structure
or pattern in the data, thereby learning to perform, e.g., classification or clustering. In
reinforcement learning (RL), no dataset is provided. Instead, the algorithm, commonly
called an agent, autonomously interacts with the environment, trying to find the best
course of action given the environment’s current state. The goal is to obtain an intelligent
agent, an agent that is autonomous and reacts proactively [I1]. Formally, at time step ¢,
the agent takes an action a; to move from state s; to state s;.1. For any action taken, the
agent gets a reward R; = r(sy,a;). The agent’s goal is to learn, using trial and error, what
the best course of action is based on the cumulative reward

T-1
Gi= Ry
k=t

T is a so-called terminating state sy € S, where S is the set of all possible states.
Completing a sequence of actions from the initial state sy and reaching the terminating
state st is called an episode. Tasks with a well-defined terminating state are called episodic
tasks. Games are often episodic, with a clear initial state, the starting configuration,
discrete actions between state transitions of the players, and conditions under which the
game ends, the terminating states. An example is the board game Go, in which an RL
agent, called AlphaGo Zero, famously outperformed professional Go players of the time
[12].

In the real world, tasks generally cannot be modeled neatly as discrete. Nonetheless, RL
has been successfully deployed to real-world tasks, as evidenced by recent publications, such
as drone racing by researchers at the University of Zurich that beat world champions [13]
or the numerous publications on autonomous driving [I4; [15]. Because time is continuous,
the state space is continuous as well. In autonomous driving, the state may include the
vehicle’s location, current velocity, trajectory, and more, subject to when exactly the sensor
data are measured and processed. Additionally, there may not be a clear terminating
state. The “episode” ends only when the vehicle is completely turned off. Otherwise, the
algorithm runs continuously while the car is still driving. Intermittent stops at a red light
or for turning are just that, intermittent. For continuous tasks, the previous definition
of cumulative reward is insufficient. Thus, a discounted cumulative reward calculation is
introduced with a discount factor 0 < < 1:

G = Z VthH-
t=0

The discount factor v balances the importance of early actions with that of future actions.
With a discount factor of v = 0 only the reward of the first action is counted, while future
rewards are all discounted to 0. A discount factor of v = 1 will result in all rewards
being considered and added to the cumulative sum. When using a discount factor of
~v = 1, the cumulative reward G, is unbounded, which can lead to numerical instability
of the algorithm. Therefore, a discount factor of v < 1 is common in practice and in the
mathematical analysis of RL algorithms.

The agent learns which action to take in each state to maximize the cumulative reward
G;. These state-based decisions are called the policy m. To maximize the reward, the
algorithm needs some sense of the future rewards that it can obtain. In RL, there are two
major methods to do so, using the state value function V;(s) or the action value function
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@~ (s,a). The state value function V,(s) is the expected reward of following policy 7 after
reaching state s, while the state action value function Q(s,a) is the expected reward
obtained when action a is taken in the current state s and then following the policy 7.
Formally, the functions are defined as follows:

Vi(s) =E[Gys],Vs €S

Qr(s,a) = E|[Gy|s,a] ,Vs € S,a € A.

Similarly to S being the set of all possible states s, A is the set of all possible actions a.
The performance of the RL algorithm depends on the accuracy of its approximation of the
value functions V. (s) or Q.(s,a). By iteratively refining the approximation using value or
policy iteration until convergance, the goal of finding an optimal policy 7*, which is the
one that maximizes the cumulative reward, can be achieved:

noargmazr,Vy(s),Vs € S

5.3.2.1 Multi-Agent Reinforcement Learning

In multi-agent reinforcement learning (MARL), multiple agents N = {1,...,n} operate
simultaneously in a shared environment. Each agent observes part or all of the global state
and may coordinate their actions either through explicit communication over a network or
implicitly via the environment. The actions of individual agents may alter the environment,
thereby modifying the global state. Formally, a MARL setting is defined by a set of agents
N, a global state space S, and a joint action space A = A; X --- x A,,. In fully cooperative
settings, the instantaneous reward at time ¢ is given by

e = T(Styat) = Zrz’(st,ai,t)-

iEN

Each agent i € N follows a policy m;(a; | s), and under decentralized execution the joint
policy factorizes as
m(a|s) = Hﬂi(ai | s).
ieN

Similar to FL, MARL systems are often deployed in a distributed manner. Autonomous
driving is a multi-agent domain in which agents, human or artificial, interact with each
other within a shared environment. In practice, however, such shared environments
typically arise only during deployment. Due to safety, cost, and feasibility constraints,
RL agent training for real-world tasks primarily occurs in simulation, with real-world
deployment once the agent demonstrates sufficient, robust performance [15].

5.3.3 Federated Reinforcement Learning

Federated Reinforcement Learning (FRL) extends the federated learning paradigm to
sequential decision-making environments in which multiple distributed agents interact
with their own local environments and collectively aim to improve a shared policy or value
function. Each agent ¢ € {1,...,n} observes local states s, , selects actions a;; according
to a policy m;(a;4|si+), and receives local rewards R;; = 1;4(S;t, a;1). Agents periodically
communicate model updates or policy parameters to a coordinating server, or directly to
one another in peer-to-peer systems, for aggregation into a global policy mg. This global
policy is then redistributed for improvement in the next local learning rounds. In contrast
to MARL, it explicitly addresses collaborative and distributed training.

While FRL is related to MARL, it differs fundamentally in its assumptions. FRL enables
training agents in isolated, potentially heterogeneous environments under privacy and
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ownership constraints. At the same time, FRL introduces additional challenges beyond FL,
including temporal dependencies, exploration—exploitation trade-offs, and non-stationary
learning dynamics. These characteristics make it challenging to aggregate locally learned
policies or value functions, both strategically and algorithmically [2].

5.4 Payoff-Driven Consensus

Having gained insight into how federated learning evolved and was eventually applied
to reinforcement learning, giving rise to federated reinforcement learning, helps in un-
derstanding some of the benefits of FRL: the ability to collaboratively train a shared
model using data from all collaborators while retaining data privacy in a distributed,
potentially decentralized way. Having more data available generally leads to a better
overall machine learning model [16]. So FL or FRL enables training of better models than
any one collaborator could train on their own, especially in domains where samples are
scarce or sensitive. As an example, hospitals, and by extension society, would benefit
hugely by having a better model detecting cancer based on imaging (X-ray, CT, MRI, etc.)
data of patients. Autonomous driving is a task for which FRL specifically shows promise
[14]. With the promise of a better-performing model, one could conclude that agents, or
their organization, would naturally cooperate and collaborate in learning such a shared
model.

However, participating agents operate under heterogeneous local objectives, such as
maximizing task-specific performance based on their private data distributions, minimizing
computational or communication costs, or protecting proprietary information. Such
heterogeneity has been widely observed in federated learning systems and is known to create
strategic incentives for free-riding, withholding updates, or manipulating contributions,
leading to self-interested behavior rather than cooperation (e.g., Yang et al., 2019 [7],
Meng et al., 2024 [5]). In FRL, these issues are further amplified by sequential decision-
making, where local reward structures and environment dynamics may differ substantially
between agents. As a result, cooperative behavior cannot be taken for granted. These
challenges motivate the need for mechanisms that ensure that cooperation in FRL is not
only algorithmically feasible, but also individually rational for all agents involved. To
align agents and have individual cooperation emerge rationally, payoff-driven consensus
is needed. Payoff-driven consensus is achieved once it is not profitable for any agent to
unilaterally deviate from the globally shared policy, since doing so would not yield a higher
payoff (expected cumulative reward G;). Deviating becomes irrational.

Formally, let N = {1,...,n} denote the set of agents. Each agent ¢ has an admissible
policy set II;, and a joint policy profile is denoted m = (7, ..., m,). The expected payoff for
agent ¢ under profile 7 is given by a utility function U; : II; x - -+ x II,, = R. A consensus
policy is one in which all agents adopt the same policy, i.e., (7g,...,7q).

A consensus policy mg has achieved payoff-driven consensus if it forms a symmetric Nash
equilibrium. Concretely, 7 satisfies

Ui(ﬁg,ﬂ'g) > Ui(ﬂ'i,ﬂ'c) Vi e N, vV, € 11,.

Here, U;(m;, m_;) denotes the payoff to agent i when it uses policy m; and all other agents
use the joint policy 7m_;. In particular, U;(7g, mg) if all agents follow the global consensus
policy mg.

How can payoff-driven consensus be achieved? Let’s have a look at three different incen-
tive mechanisms, reward shaping, reputation systems, and contract-based methods to
understand how they can guide agents to cooperate in the collaborative learning process.
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5.4.1 Reward Shaping

Reward shaping is a technique in which the original reward function is augmented to
provide an extra reward signal, leading to a new formulation ' = r + F', where r is the
original reward signal from the environment and F' is the shaping reward function. In
classic RL settings, domain knowledge and heuristics are encoded into the shaping reward
function to guide algorithms to learn faster and better [17]. Reward shaping may introduce
policy inconsistency. Potential-based reward shaping (PBRS) [I8] proposes to solve this
by introducing a potential function ¢ : § — R, defining the shaping reward function as:

F(s, ') = 7o(s") — o(s).

In PBRS, the shaping reward function F' is defined as the difference in potential of two
consecutive states s,s" € S, where v is the discount factor. It is the first approach to
guarantee policy invariance. Intuitively, the agent receives positive shaping rewards for
moving "uphill” in potential and negative rewards for moving "downhill” without altering
the global optimum.

While reward shaping is used in classic RL settings to speed up convergence, in FRL it
can serve as a tool for incentive design. Hu et al. (2021) propose a learning algorithm
called federated reward shaping (FRS), which employs potential-based reward shaping
within the FRL framework [19]. It provides a mechanism to encode collaborative structure
without sharing raw data and iteratively learns a potential function in the “reward shaping
update stage” during federated learning rounds. Eventually, the potential function learns
to capture globally beneficial behavior of the federation. In the “policy update stage,” the
agent now receives a shaping reward for displaying the globally desired behavior, in addition
to its local reward. By incorporating the reward signal into the RL algorithm, the agent is
incentivized to learn this globally desired behavior, which may lead to cross-pollination of
skills. The resulting policy can become more broadly valuable across agents, promoting
cooperation. However, organizations may choose to ignore the reward signal. Therefore,
reward shaping alone cannot solve free-riding or manipulative behavior.

5.4.2 Reputation Systems

Reputation systems constitute a second class of incentive mechanisms designed to promote
cooperation in FRL. In contrast to reward shaping, where incentives are embedded in the
agent’s reward signal, reputation-based methods use meta-level incentives derived from
the agent’s behavioral history. The idea is simple: participation in FRL involves repeated
interactions, and agents can build trust by demonstrating continued cooperation.

Each agent ¢ € {1,...,n} is assigned a reputation score p;. p; reflecting its trust score,
based on criteria such as the reliability of the agent (frequency of participation, dropout
rate), contribution quality, compliance with protocol (truthfulness, absence of malicious
updates), and other conceivable metrics. The reputation score p; is continuously updated
across rounds of federated training.

Agents, respectively the organizations behind them, may be granted priority access to
the global model, their contributions to learning may be weighted more heavily, or they
may be given other benefits if they possess a high reputation score p;. Agents with low
reputation scores, on the other hand, may have their contributions weighted lower, be
excluded from the federation entirely (effectively withdrawing access to the shared global
model), or be penalized in other ways. From a game-theoretic standpoint, a reputation
system transforms the one-shot incentive structure into an infinitely repeated game, in
which cooperation can become a subgame-perfect equilibrium. This is similar to the
transition from the prisoner’s dilemma to its iterated variation. In such a setting, deviation
yields immediate short-term gains but causes long-term losses through reputation decay.
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This mechanism is especially relevant in FRL, as its data-privacy-preserving properties
make it very challenging to detect low-effort or malicious contributions. Al-Maslami et al.
(2024) introduced Reputation-Aware Multi-Agent DRL, which weights local updates using
reputation scores to ensure robustness and fairness in hierarchical FL systems [20]. By
weighting the updates, a clear relationship between an agent’s reputation and its impact
on the globally shared policy emerges. Agents may still try to undermine collaborative
learning using malicious or low-effort updates. However, the resulting reduction in agents’
reputations can decrease their contributions until they become negligible. In contrast,
cooperative agents are incentivized to contribute more, as greater influence over global
policy aligns it more closely with their self-interest. Reputation systems also mitigate
free-riding behavior, but cannot eliminate it entirely. Because reputation relies on a
history of interaction with the federation, an organization may join to obtain an initial
shared policy and subsequently continue training independently without contributing
further. Although such agents may eventually be excluded, they may already have derived
significant benefit by that point.

5.4.3 Contract-Based Mechanisms

Contract-based mechanisms represent the most explicit and enforceable form of incentive
alignment in multi-agent federated reinforcement learning. While reward shaping and
reputation system influence agent behavior indirectly, contracts directly specify the rules,
obligations, payments, and penalties that govern participation in the federation. A contract
is a formal agreement between organizations that may specify expected contributions (e.g.,
number or quality of updates, computational resources), permissible model manipulations
(no adversary updates), penalties for deviations or malicious behavior, bonus payments
based on contributions, and rights to access the shared global model. Contracts are highly
flexible. Bonuses may include lump-sum payments or revenue-sharing agreements, while
penalties may consist of exclusion from the federation, reduced/delayed access to the
global model, or monetary fines. Contract tiers are also possible, in which an organization
can choose different levels of contributions with corresponding rewards, obligations, and
penalties.

Such contracts finally enable the elimination of free-riding. For instance, a contract may
require a minimum level of contribution per training round, with failure to comply resulting
in predefined penalties such as monetary fines, forfeiture of escrowed payments, or loss of
access to future model updates. In this setting, free-riding becomes strictly dominated, as
the cost of non-cooperation outweighs the benefit of accessing the shared policy. Similarly,
contracts can deter malicious updates by specifying penalties for detected manipulation
attempts, transforming adversarial behavior into a costly strategy rather than a low-risk
attack.

Contracts also allow for flexible incentive structures that account for heterogeneity among
participants. Tiered participation schemes can be defined, enabling organizations to choose
different contribution levels with corresponding rewards, access rights, and obligations.
Bonus mechanisms may include lump-sum payments, revenue-sharing agreements, or
preferential access to the global model, while penalties may range from delayed updates
to exclusion from the federation. By tying access and rewards directly to verifiable
contributions, contract-based mechanisms align cooperative behavior with organizational
self-interest.

Recent publications show the viability of such approaches. Park and Barreiro-Gomez
(2023) apply mechanism design to multi-agent task allocation, demonstrating how payoff
mechanisms can guide agents towards socially optimal equilibria [6]. Haupt et al. (2024)
further show how formal contracts can mitigate social dilemmas in MARL by design-
ing transfer payments that make cooperation individually rational [I0]. Contracts are
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particularly valuable in settings where participants are competing organizations, provid-
ing a powerful complement to algorithmic and reputation-based incentives by enabling
enforceable cooperation.

5.5 Conclusion

This report examined the emerging problem of incentive alignment in a multi-agent
federated reinforcement learning (FRL) setting. While FRL promises substantial benefits,
most notably improved model performance under strict privacy constraints, cooperation
among self-interested agents cannot be taken for granted. Heterogeneous objectives, free-
riding behavior, and competitive strategic goals can destabilize the learning process and
undermine model quality.

To address these challenges, payoff-driven consensus is needed, in which adherence to the
shared global policy is individually rational for each participant. Achieving payoff-driven
consensus requires carefully designed incentive mechanisms that realign agents’ local payoffs
with the collective objective. This report explored the use of reward shaping, reputation
systems, and contract-based mechanisms to achieve consensus.

Reputation systems and contract-based mechanisms primarily govern cooperation at the
institutional or organizational level, whereas reward shaping provides a direct, algorithmic
way of incentivizing agents by modifying the reward function. Using smart contracts, both
reputation- and contract-based incentives could also be implemented algorithmically and,
in some settings, incorporated into the reward design itself. Designing such mechanisms,
particularly in combination, is inherently non-trivial, as it requires careful consideration of
strategic behavior, stability, and incentive compatibility within federated reinforcement
learning pipelines.

Achieving payoff-driven consensus is therefore not merely a technical challenge, but a
fundamentally strategic and economic one. Successful federated reinforcement learning
deployments across self-interested organizations must integrate incentive design, algorithms,
and governance mechanisms to ensure that cooperation emerges as the rational and best
course of action.
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Chapter 6

The Role of Explainable Recommender
Systems in Internet Economics

Marcelina Suszczyk

Recommender systems constitute a key technological foundation of many internet-based
platforms and strongly influence economic interactions between users and service providers.
While recent advances in machine learning have led to highly accurate recommendation
models, these systems often exhibit limited transparency. This lack of interpretability
raises concerns regarding user trust, system accountability, and requlatory compliance.
Explainable Recommender Systems aim to address these issues by providing understandable
explanations for personalized recommendations. This report provides an overview of ex-
plainable recommender systems, motivated by the shift from traditional, more transparent
approaches to modern black-box models. It introduces core recommender system paradigms,
including content-based, collaborative, knowledge-based, and hybrid methods, before dis-
cussing how explainability can be incorporated through different explanation types and
technical implementations. The report then examines challenges in assessing explanation
quality, highlighting trade-offs between technical accuracy and human interpretability as
well as methodological limitations in evaluation. Practical applications are analyzed from
the perspectives of system designers, end users, and business owners. Finally, the report
addresses economic evaluation, emphasizing business-oriented metrics alongside traditional
accuracy measures and outlining current gaps and challenges in assessing the economic
impact of explainable recommender systems.
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6.1 Background and Motivation

6.1.1 The Rise of Explainability in Al and Recommendation Systems

Recommender systems are widely used to support decision-making in environments char-
acterized by large and complex choice spaces, such as online retail (Amazon, Zalando),
media streaming (Netflix, Spotify), and social platforms (Instagram, TikTok). By present-
ing personalized suggestions, these systems reduce information overload for users while
simultaneously enabling platforms to increase engagement and revenue. Burke defines a
recommender system as "any system that produces individualized recommendations as
output or has the effect of guiding the user in a personalized way to interesting or useful
objects in a large space of possible options” [I].

6.1.2 The Need for Transparency and User Trust

With the increasing adoption of complex machine learning models recommendation pro-
cesses have become more difficult to interpret. This so-called black-box problem limits the
ability of users to understand why certain items are suggested and complicates validation
and debugging for system designers. From an economic perspective, a lack of transparency
can negatively affect trust, long-term user retention, and compliance with legal require-
ments [4]. These challenges motivate the integration of explainability into recommender
systems.

6.1.3 From Traditional to Explainable Recommenders

As recommender systems have evolved, a shift can be observed from relatively transparent,
heuristic-based approaches toward increasingly complex machine learning models optimized
for predictive accuracy. Early content-based and neighborhood-based collaborative filtering
techniques allowed recommendations to be linked to observable user or item similarities.
In contrast, modern systems often rely on deep learning architectures, whose internal
decision processes are difficult to interpret even for experts. This development has
intensified concerns related to transparency, accountability, and user trust, particularly
in economically relevant online environments where recommendations directly influence
decision-making. Explainable recommender systems have emerged as a response to these
challenges, seeking to restore interpretability while preserving the performance advantages
of advanced models.

6.2 Recommender System Approaches

To meaningfully discuss explainability in recommender systems, it is essential to first
understand the classical recommendation approaches on which many modern systems are
built. Different recommender paradigms vary substantially in how recommendations are
generated, the types of data they rely on, and the degree to which their decision processes
are inherently interpretable. These underlying characteristics directly influence which
explainability methods are feasible and how explanations can be constructed.

6.2.1 Content-Based Filtering

Content-based recommender systems suggest items that are similar to those a user has
previously preferred, based on explicit item features. These systems allow relatively
straightforward explanations, as recommendations can be directly linked to observable
attributes. This approach is visualized in figure [6.1]
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Figure 6.1: Content-based filtering [5]

6.2.2 Collaborative Filtering

83

Collaborative filtering exploits patterns in collective user behavior to identify similarities
between users or items. While highly effective in many domains, the reliance on latent

representations often reduces interpretability. This approach is visualized in figure [6.2]
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Figure 6.2: Collaborative filtering [5]

6.2.3 Knowledge-Based Filtering

Knowledge-based approaches rely on explicit domain knowledge and constraints to generate
recommendations, as seen in figure [6.3] They are particularly suitable for domains with
infrequent interactions or high decision complexity.

6.2.4 Hybrid Methods

Hybrid recommender systems combine multiple techniques to compensate for individual
weaknesses and improve robustness. There are different approaches of creating a hybrid
recomendation, summarised in figure (6.4
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Figure 6.4: Hybrid methods - recommendation approaches based on combining different
methods [5]

6.3 Explainable Recommender System Solutions

Explainable recommender systems extend traditional models by providing justifications
for recommendation outcomes. Explanations may be generated using internal model
information or external post-hoc techniques. Zhang and Chen distinguish explanations
based on both content and presentation format, as presented in figure [6.5]

6.3.1 Explanation Types

Common explanation forms include user- or item-based references, textual and sentence-
level explanations, feature-level explanations, visual highlights, and social explanations
that reference peer behavior.
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Figure 6.5: Different types of recommendation explanations [2]

6.3.2 Technical Implementation

Explainability can be implemented using factorization models with interpretable latent
dimensions, deep learning models augmented with attention mechanisms, or model-agnostic
post-hoc explanation techniques. Each approach involves trade-offs between transparency,
predictive performance, and system complexity.

6.4 Assessing Explanation Quality

Assessing the quality of explanations in recommender systems is a non-trivial task, as
explanations must satisfy both technical correctness and human-centered interpretability
requirements. Unlike traditional recommender evaluation, which focuses primarily on
predictive accuracy, explanation quality involves subjective and contextual dimensions that
are difficult to capture with a single metric. As a result, evaluation frameworks typically
combine technical, behavioral, and perceptual criteria [2].

6.4.1 Technical Accuracy vs. Human Interpretability

A central tension in explainable recommender systems lies in the trade-off between technical
accuracy and human interpretability. From a technical perspective, an explanation is
considered accurate if it faithfully reflects the internal decision logic of the underlying
recommendation model. Faithfulness ensures that explanations are not misleading and
correctly represent the factors that influenced the recommendation outcome. Recent
work emphasizes that explanations which are plausible but not faithful may increase user
acceptance while simultaneously obscuring true model behavior, thereby undermining
transparency and accountability [8]. However, technically accurate explanations are often
difficult for non-expert users to understand, particularly when they rely on complex
interactions learned by deep models. Human interpretability, in contrast, prioritizes
simplicity, coherence, and alignment with users’ mental models [2]. Explanations that
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reference intuitive concepts such as item features, past user behavior, or social signals are
generally easier to process, even if they provide only a partial view of the underlying model.
This creates a fundamental design challenge: explanations must balance fidelity to the
model with cognitive accessibility for users, without sacrificing either dimension entirely.

6.4.2 Challenges and Limitations in Evaluation

Despite growing methodological maturity, evaluating explanation quality remains subject
to several challenges. First, explanation effectiveness is highly context-dependent and
varies across users, domains, and tasks. An explanation that is beneficial in an e-commerce
setting may be ineffective or even distracting in safety-critical or high-stakes domains.
Second, user studies are costly, time-consuming, and difficult to reproduce, which limits
their applicability for large-scale and longitudinal evaluation. Another limitation concerns
the risk of confounding persuasive effects with genuine explanatory value. Explanations
that increase user engagement may do so by persuasion rather than by improving user
understanding, raising ethical and methodological concerns. Furthermore, there is no
universally accepted ground truth for explanation quality, making objective comparisons
between explanation techniques inherently difficult. As a result, evaluation frameworks
must clearly state their assumptions, objectives, and target user groups. In addition,
empirical evaluation is constrained by the limited availability of real-world performance
data. Commercial platforms typically treat detailed information about recommender
system performance, user responses to explanations, and internal evaluation metrics as
proprietary. This lack of transparency restricts independent validation and limits the
generalizability of results obtained from academic prototypes or controlled experiments.
Consequently, many evaluation studies rely on publicly available datasets or simulated
environments, which may only partially reflect the complexity and economic relevance of
large-scale commercial systems.

6.5 Practical Applications

Explainable recommender systems have transitioned from a primarily research-oriented
topic to a component of operational analytics and interactive user services. Their real-world
applications span system design, user experience, and business strategy. By anchoring
discussion in established research, this section demonstrates how explainability is leveraged
across these domains, and where theoretical insights intersect with practical constraints.

6.5.1 System Designers and Developers

From a technical perspective, explainability serves as a tool for model inspection, refinement,
and debugging. Traditional recommender evaluations focused predominantly on accuracy
and ranking metrics, yet such system-centric metrics often fail to capture whether a model
behaves as intended with respect to diverse stakeholders and contexts [6]. Explainable
systems provide developers with insights into latent factors, feature contributions, or
interaction patterns, making it easier to detect erroneous behavior or unintended biases.
As Jannach et al. note, explanations also illuminate the interaction between algorithmic
components and feature engineering choices, clarifying how design decisions affect outcomes
in practice [7]. Furthermore, systems that support interactive explanation interfaces
enable iterative refinement and cross-disciplinary collaboration, as designers can reason
about model behavior with non-technical stakeholders, an important factor in large-scale
deployments. In this context, explanations can be operationalized both at the model level
(intrinsic explanations, which are built into model architectures) and at the post-hoc level
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(external methods that generate human-friendly narratives from model outputs). Hybrid
evaluation frameworks that combine such model introspection with empirical user study
feedback are recommended to ensure that explanations serve both engineering and end-use
purposes [I].

6.5.2 End Users

From the end-user perspective, explainable recommender systems primarily affect trust,
perceived transparency, and decision confidence [4]. Explanations can help users understand
why certain items are recommended, which may reduce feelings of manipulation or loss
of control in highly personalized environments. By linking recommendations to past
interactions, preferences, or explicit item attributes, explanations support users in forming
more informed decisions. Moreover, explainability can improve user engagement by enabling
more meaningful interaction with the system, such as refining preferences or correcting
incorrect assumptions. At the same time, explanations must be designed carefully to avoid
cognitive overload or confusion [2]. Overly complex or technical explanations may reduce
usability, while overly simplified explanations risk being perceived as uninformative or
misleading. Consequently, explanation design must account for diverse user expectations,
levels of expertise, and contextual needs.

6.5.3 Business Owners

For business owners and platform operators, explainable recommender systems have direct
economic implications. Transparent recommendations can increase user trust and satisfac-
tion, which in turn may positively influence engagement, conversion rates, and long-term
customer retention. In competitive digital markets, explainability can therefore serve as a
differentiating factor that enhances perceived service quality [§]. In addition, explainable
recommender systems support compliance with emerging legal and regulatory requirements
related to transparency and accountability. Providing understandable explanations can
reduce legal risk and strengthen a platform’s public legitimacy. However, business owners
must also consider potential downsides, such as the disclosure of strategic information about
recommendation logic or the possibility that explanations reduce persuasive effectiveness.
As a result, commercial deployments often involve a careful balance between transparency,
competitive advantage, and economic performance.

6.6 Economic Evaluation

6.6.1 Evaluation Metrics

To understand the impact of recommender systems from the economic perspective, it is
crucial to not only consider conventional accuracy-oriented measures, but also the impact
on a platform’s objectives. Research mostly focuses on measuring the impact on the
end user’s perspective, assuming that satisfied users will drive the value creation for the
provider. However direct impact in terms of the business value is also an important quality
that has to be considered. To address this area, De Biasio et al. [§] surveyed the literature
incorporating monetary and behavioral metrics such as conversion rates, click-through
rates, revenue uplift, profit margins, average order value, and customer lifetime value to
quantify how recommendations contribute to economic goals. The measures to assess the
economic value of recommenders are listed and explained in figure 2.6.
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Measurement Remarks

Click-Through Rates Easy to measure and established, but often not the ultimate
goal.

Adoption and Conversion Easy to measure, but often requires a domain- and

application specific definition. Requires interpretation and
does not always translate directly into business value.

Sales and Revenue Most informative measure, but cannot always be
determined directly.

Effects on Sales Distribution A very direct measurement; requires a thorough
understanding of the effects of the shifts in sales
distributions.

User Engagement and Behavior  Often, a correspondence between user engagement and
customer retention is assumed; still, it remains an
approximation.

Figure 6.6: Measures to assess the economic value of recommenders [9]

6.6.2 Risks, costs and challenges

Although the evaluation of traditional recommender systems constitutes a well-established
research area, the systematic assessment of explainable recommender systems remains
comparatively underexplored. One possible explanation is that such evaluations are
methodologically complex and resource-intensive, with outcomes that vary substantially
across application domains and user groups. Existing work primarily focuses on the evalu-
ation of specific explanation techniques ([I0]) or on measuring the effects of explanations
from a software engineering perspective ([11]). However, a review of the available literature
did not reveal publications that explicitly analyze the impact of explainable recommender
systems on economic performance measures.

6.7 Summary and Outlook

Advances in recommendation methodologies have led to substantial improvements in both
predictive accuracy and the range of application domains for recommender systems. How-
ever, these improvements have often come at the expense of transparency and traceability
for users and customers. While traditional recommender approaches have been extensively
studied and evaluated using well-established quantitative metrics, comparable progress
in the systematic evaluation of explainable recommender systems remains limited. At
the same time, recent regulatory developments within the European Union emphasize
requirements for transparency and, in some cases, a right to explanation for automated
decision-making systems. These regulatory pressures are likely to increase the practical
relevance of explainable recommender systems and provide additional motivation for further
research in this area, as explanations may become a necessary component of deployed
recommendation technologies.
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Chapter 7

The Cost of Achieving Green AI: Is It
Worth It or Not?

Tristan Hein

The rapid expansion of artificial intelligence (AI) has brought unprecedented computational
demand and a growing environmental footprint. This paper evaluates whether pursuing
Green Al practices is worth the economic and technical cost. We review the Green vs. Red
Al distinction, quantify impacts across energy, carbon, and water, and assess policy drivers.
Drawing on peer-reviewed literature, standards, and credible corporate or international
reports, we analyze economic trade-offs, present case studies, and discuss limitations and
rebound effects. We conclude that Green Al is both feasible and necessary: efficiency, clean
enerqy, and transparent reporting can materially reduce impacts without stalling innovation,
provided incentives and governance align.
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7.1 Introduction

From 2012 to 2018, the compute used in milestone Al training runs grew by roughly 300,000
times, an exponential surge with a doubling time of only a few months [I]. This dramatic
growth in model size and training effort has enabled new state-of-the-art results, but it
comes at a cost: escalating energy consumption and environmental footprint. Training
a single large deep learning model can consume enough electricity to emit hundreds of
kilograms to tons of COs. In one notable analysis, a Transformer-based NLP model’s
training was estimated to produce five times the carbon emissions of an average car’s
lifetime [22]. Aggregated across the exploding use of AI, these impacts raise serious
concerns. Sector-wide assessments warn that, absent interventions, data center electricity
demand—of which Al is a major contributor—could more than double by 2030, further
straining global sustainability efforts [12]. In short, ever-growing compute appetite has
made the question of Al’s environmental cost impossible to ignore.

In response, the concept of “Green AI” has emerged as a rallying call to align Al innovation
with efficiency and sustainability goals [2I]. Researchers have begun advocating that energy
use, carbon emissions, and even water consumption become important metrics of progress,
alongside traditional metrics like accuracy [7; 21]. This involves encouraging methods that
achieve the same results with less compute and transparently reporting resource usage so
that improvements in efficiency are rewarded. A cultural shift is underway. For example,
Henderson et al. propose standardized reporting of energy and COs for ML experiments [7],
and new benchmarks now include power measurements to foster competition on efficiency,
not just speed or accuracy. At the same time, industry and policymakers are increasing
the pressure to green the Al ecosystem. Major tech companies have announced 24/7
carbon-free energy goals for their data centers, and international standards bodies have
introduced metrics such as PUE and WUE to quantify data center sustainability [13].
Regulatory frameworks are following suit. The European Union’s Corporate Sustainability
Reporting Directive, for example, mandates that organizations disclose their carbon and
energy footprints [3], which implicitly includes large Al workloads. Collectively, these
developments reflect a broad recognition that the benefits of AI must be balanced against
its environmental costs.

Given this backdrop, this paper examines the cost of achieving Green Al in terms of
technical, economic, and potential performance trade-offs and asks: “Is it worth it or
not?” We approach this question by synthesizing current strategies for reducing Al’s
environmental impact and evaluating when these efforts yield net positive outcomes. The
discussion spans advances in efficient model design and hardware, operational optimizations
such as smart scheduling and siting of compute, and the role of transparency, benchmarks,
and policy in driving change. Our goal is to provide a neutral, up-to-date overview of the
state of Green AI, highlighting the conditions under which pursuing greener practices is
truly worthwhile, where the trade-offs or limitations lie, and how recent literature assesses
the overall value proposition.

7.2 Theoretical Background and Related Work
7.2.1 Red AI vs. Green Al

Artificial Intelligence (Al) research has often pursued accuracy by scaling computation:
larger models, bigger datasets, and longer training runs. This Red Al paradigm treats
compute as an elastic input, even when marginal accuracy returns diminish and costs rise
[21]. From 2012 to 2018, compute used in milestone training runs grew roughly 300,000
times, doubling approximately every 3.4 months, which illustrates how scale became the
default path to progress rather than efficiency [1].
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Green Al elevates efficiency across energy, cost, and time, along with environmental impact
such as carbon emissions and water use, as first-class objectives alongside accuracy [21} [7].
The goal is to design and report results in ways that compare quality together with
resource use, encouraging compute-aware innovation and reproducible science [7]. While
the benefits are clear, there are trade-offs. Efficiency-focused work may require engineering
time, validation to avoid accuracy regressions, and compatibility with specific hardware
and tooling. Some techniques, such as aggressive quantization, can introduce small quality
losses that must be weighed against lifecycle savings. Importantly, when strong results
are achievable with lower compute budgets, market concentration can decrease. This
enables small and medium-sized enterprises and academia to participate more easily at
the research frontier [2].

7.2.2 Measurement, reporting, and metrics

This subsection clarifies which metrics are relevant and how they connect to broader
system-level performance indicators. At the workload level, three quantifiable measures
are most important:

e Energy (kWh): Electricity consumed by training and inference, ideally with detailed
power traces over time [7].

e Carbon (kgCO,e): Emissions estimated by combining energy usage with the grid’s
location- and time-specific carbon intensity, including any declared assumptions [7].

e Water (L): Consumption from both direct cooling at the facility and indirect use
from electricity generation. These figures vary strongly by region and generation
technology [16].

Facility Key Performance Indicators help standardize reporting context. Power Usage
Effectiveness is calculated as total facility power divided by IT power, while Water
Usage Effectiveness expresses water use per unit of IT energy [13]. Reporting workload-
level metrics alongside KPIs like cooling type, PUE or WUE ranges, and geographic
region improves comparability and interpretability across systems [7; 13]. A thorough
report should mention hardware type and quantity, numerical precision, training duration,
utilization rate, cloud region, and job timing, followed by energy, carbon, and water metrics
along with assumptions and methodologies [7} [15].

Benchmarks and shared norms complement numerical metrics. For example, MLPerf’s
power-aware benchmarks enable standardized comparisons across software and hardware
stacks [20]. Open reports such as BLOOM institutionalize environmental metadata and
impact accounting, setting a reference point for future disclosures [26].

7.2.3 Compute trends and scaling laws

Exponential growth in available compute has driven many recent breakthroughs in AT [T,
though many models are not trained compute-optimally. For a fixed budget of floating
point operations, smaller models trained on more data tokens can outperform much larger
but under-trained models. The comparison between Chinchilla and GPT-3 exemplifies this,
showing similar or better accuracy at far lower cost and energy consumption [§]. Several
factors explain the wide variance in footprint between models:

e Hardware: Performance-per-watt improves with specialized accelerators, high mem-
ory bandwidth, and optimized computation kernels [19].

e Numerical precision: Mixed or low-precision training and inference reduce energy
demands, often without accuracy loss when properly validated [19].
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e Architecture: Efficient model designs, including sparse or mixture-of-experts struc-
tures, can reduce the amount of compute needed for a given accuracy level [19].

e Siting and scheduling: Choosing low-carbon data center regions, aligning workloads
with greener time windows, and using facilities with strong PUE and WUE scores
all reduce operational impact for the same task [19; [13].

Model families such as MobileNet and EfficientNet demonstrate that careful design choices
can deliver competitive accuracy with significantly reduced compute requirements, aligning
capability with energy efficiency goals [9; 23]. In summary, compute-optimal training and
system-level co-design strategies enable the field to progress more intelligently rather than
relying solely on scale.

7.3 Environmental, Economic, and Policy Impacts of Green
Al

7.3.1 Economic trade-offs and incentives

Adopting Green Al typically exchanges modest up-front effort, such as engineering time
for model compression or serving optimization and hardware selection, for lifecycle savings.
Recent disclosures suggest that training accounts for approximately 20 to 40 percent of
energy use in Machine Learning (ML), while inference contributes about 60 to 70 percent.
As a result, even small efficiency gains during inference can lead to significant reductions in
operating expenses at scale [I2]. Compute-optimal training improves accuracy per unit of
computation, reducing costs while maintaining target quality [§]. Because high compute and
capital requirements can be barriers to entry, improving efficiency and disclosing costs and
impacts transparently can reduce market concentration and allow small and medium-sized
enterprises and academia to participate more competitively [2]. Furthermore, instruments
like the Corporate Sustainability Reporting Directive (CSRD) and internal carbon pricing
help convert environmental externalities into actionable management metrics, influencing
siting, scheduling, and facility-level decisions [3} [7].

7.3.2 Environmental impacts: energy, carbon, and water

This subsection introduces the three core environmental accounts and explains why each
is important. Energy use is the primary driver and links directly to both carbon emissions
and water withdrawals through the electricity supply and cooling infrastructure. While
many strategies reduce all three impacts simultaneously, site-specific factors such as grid
composition, local climate, and water stress levels influence outcomes.

Energy (kWh). Training and serving large models require substantial electricity. Projec-
tions indicate that data centre demand will continue to grow through 2030, with Al being
a major contributor [12]. High energy use increases operational costs and may stress local
power systems. Effective strategies to reduce energy use include compute-optimal training,
compression methods such as quantization, pruning, or distillation, the use of sparse
or mixture-of-experts architectures, and serving techniques that prioritize throughput
efficiency [19; §].

Carbon (kgCO,e). Emissions for the same workload can vary significantly depending on
hardware generation, siting decisions, timing, and cooling overhead [19]. Aligning workloads
with low-carbon electricity supply, ideally through 24/7 renewable matching, and using
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Table 7.1: Environmental accounts and typical methods (illustrative).

Account What it measures Primary methods Example indicators
Energy Electricity used by Compute-optimal train- kWh/job; kWh/-
training/inference ing; compression/quan- query; perf-per-
tization; sparsity/MoE; watt [19; §]
serving/throughput tun-
ing; utilization
Carbon COse from electricity Low-carbon siting; kgCOqe/job;
mix and overhead carbon-aware scheduling; kgCOqe/query;
efficient cooling with low PUE; clean energy
PUE; clean PPAs and share [12} 19
24/7 CFE
Water Direct cooling and up- Low-WUE cooling; re- L/kWh  (WUE);
stream generation claimed water; cool-hour potable vs non-
scheduling; basin-aware potable share
siting [13}; [16]

carbon-aware scheduling improves comparability across systems and can meaningfully

reduce total emissions [12; [7].

Water (L). Cooling infrastructure and power generation can impose substantial water
demands. The specific cooling technology and the water stress level of the local watershed
both play major roles in determining impact [16]. Using reclaimed or non-potable water,
selecting low-WUE technologies, and scheduling jobs during cooler periods can reduce
withdrawals. Reporting water usage alongside energy use and other KPIs enhances
transparency and context [13} [16].

Lifecycle and rebound. As operations decarbonize, embodied emissions from hardware
manufacturing and the risk of rebound effects become more relevant. When efficiency
improvements lower operational costs, the resulting increased usage can offset sustainability
gains [19; 12]. Managing total environmental impact requires moving beyond intensity-
based metrics like emissions per kilowatt-hour and instead budgeting total energy, carbon,
and water use over time. Mitigation strategies include extending hardware lifetimes,
modular system upgrades, target utilization levels, and governance that tracks cumulative
rather than relative metrics.

7.3.3 Policy, standards, and governance: EU vs US vs Asia

Policy frameworks and standards play an important role in shaping incentives, guiding
infrastructure choices, and promoting consistent reporting. Disclosure mandates, common
metrics, and permitting regimes influence how organizations design and operate Al systems.
At the same time, benchmarks and review processes help shape academic and industry
culture.

European Union. The updated Energy Efficiency Directive (Directive (EU) 2023/1791)
mandates that large data centres disclose information such as total energy use, PUE,
WUE, renewable energy share, and waste-heat recovery to a centralized EU database [4].
The Corporate Sustainability Reporting Directive extends these requirements to a wide
range of firms and introduces new obligations for tracking environmental performance
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Table 7.2: Regional approaches to Green Al governance (indicative).

Aspect

European Union

United States

Asia (e.g., Singapore)

Policy approach

Metrics focus

Binding transparency
standards; KPI
reporting to EU
database [4; [13]
PUE, WUE, renew-
able share, and heat
reuse [4} 13

Disclosure-oriented;
voluntary bench-
marks and corporate
pledges [25} 20]
Aggregate GHG and
energy use; no federal
PUE or WUE man-

Efficiency gating for new ca-
pacity under DC-CFA pilot
1]

PUE targets of 1.3 or lower
at full IT load, with siting
requirements [10]

dates [25]
Design goals Environmental aware- Technology- and Strict capacity controls
ness via harmonized market-driven  effi- linked to efficiency and

sustainability certifications
[10; 111

standards and targets
for  climate-neutral
data centres by 2030
Hl

ciency with regional
variation in policy
enforcement [20]

[3]. The ISO/TEC 30134 standard series supports these efforts by defining consistent KPI
terminology and measurement guidance [13].

United States. The Securities and Exchange Commission (SEC) has proposed rules that
would formalize climate-related disclosures, including greenhouse gas emissions and energy
use, for publicly listed companies [25]. Broader adoption of Green Al is supported through
voluntary mechanisms, such as the MLPerf power benchmarks, corporate climate pledges,
and regional permitting practices rather than binding federal mandates [20].

Asia (selected). In Singapore, new data-centre development has resumed under strict
energy-efficiency conditions through the Data Centre Call for Application (DC-CFA) pilot.
Facilities must meet stringent requirements such as PUE of 1.3 or lower at full IT load
and Green Mark Platinum certification [10; [IT]. Other countries in Asia have adopted
similar PUE targets or promoted renewable energy integration as part of national digital
infrastructure planning. At the global level, the International Telecommunication Union’s
Y.3001 framework includes environmental sustainability and energy consumption as core
design principles for next-generation networks [14].

7.4 Case Studies and Practical Examples

7.4.1 Large corporations

Many hyperscale Al infrastructure operators such as Google, Microsoft, Amazon, and
Meta have set ambitious environmental goals and invested in custom technologies to reduce
the footprint of their data centers and Al workloads. A prominent example is Google’s
commitment to power its operations with 100 percent carbon-free energy at all times by
2030 [5]. This 24/7 carbon-free energy initiative goes beyond annual offsets and entails
matching each hour of electricity use with local renewable generation, thereby eliminating
fossil-based energy from its supply [5]. In practice, Google increased the share of hourly
carbon-free power for its data centers from 61 percent in 2019 to about 67 percent in 2020,
and some sites already run above 90 percent CFE [5]. Achieving 24/7 CFE globally will
require a combination of energy innovations, such as advanced storage and load shifting,
as well as policy support given the intermittency of renewables [5]. Google’s 2020 white
paper outlines this strategy and emphasizes the importance of temporal matching, meaning
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energy usage aligns with clean energy availability rather than relying solely on carbon
offsets.

Another key tactic among tech giants is carbon-aware scheduling. This involves timing
flexible computing tasks, such as non-urgent model training or batch processing, to run
when and where low-carbon electricity is plentiful. For instance, Google Cloud introduced
a feature that allows customers to choose regions based on real-time CFE percentages,
helping shift workloads to cleaner grids. Microsoft has also experimented with delaying
workloads during peaks in grid carbon intensity as part of its aim to reduce emissions.
These strategies, combined with purchasing agreements for renewables, help large firms
reduce the carbon intensity of their Al operations.

Hyperscalers are also improving efficiency through vertical integration of their hardware
and facilities. They design custom Al accelerators such as Google’s TPUs and Amazon’s
Inferentia chips that deliver more performance per watt than standard processors. By
optimizing chips for machine learning tasks, energy use for training and inference can
drop significantly. Google reports two- to five-fold improvements in energy efficiency
by using specialized ML hardware instead of general-purpose CPUs [19]. Additionally,
companies invest heavily in data center facility efficiency. A common metric is Power
Usage Effectiveness (PUE), defined by ISO/IEC 30134-2 as the ratio of total facility power
to I'T equipment power. State-of-the-art hyperscale data centers achieve PUE values
around 1.1 to 1.2, meaning almost 90 percent of energy goes directly to computing. In
contrast, older enterprise data centers might have PUE of 2.0 or higher, where only 50
percent of energy is used for computing and the rest is lost to cooling and overhead [13} [19)].
Techniques such as advanced cooling, including evaporative cooling or liquid immersion,
and Al-driven environmental control have pushed efficiency to these levels. However, some
of these methods raise concerns about water usage. For example, evaporative cooling can
consume millions of liters of water at a large campus. To address this, companies are
pledging “water-positive” operations. Both Microsoft and Google aim to replenish more
water than they withdraw by 2030 and are exploring innovations like grey water reuse
and switching to air cooling in cooler climates [17]. Recent studies highlight that AI’s
water footprint is becoming significant. Training a single large model can directly consume
hundreds of thousands of liters of water for cooling, with even more consumed indirectly
through electricity generation [16]. These developments have prompted calls for spatial
and temporal workload shifting to reduce water use. For instance, jobs might be run at
night or during cooler seasons to minimize evaporative losses.

From a broader perspective, the impact of these corporate sustainability efforts is evident
but not consistent. Industry-wide data indicate that while efficiency per unit of computation
has improved, total data center energy use continues to rise due to the growth in demand.
In 2024, data centers consumed roughly 415 TWh, representing about 1.5 percent of global
electricity use. This figure has been growing at around 12 percent per year, with Al being
a key driver. The International Energy Agency projects that global data center electricity
consumption could roughly double by 2030 to approximately 940 TWh in its baseline
scenario, reaching about 3 percent of worldwide electricity use [12]. Leading firms argue
that efficiency measures and the adoption of renewables will keep Al’s carbon footprint
under control or even net-positive over time [19]. For example, Google noted that machine
learning workloads have remained under 15 percent of its total energy use in recent years
by applying a suite of best practices such as efficient models, custom hardware, effective
cooling, and optimized workload placement [19]. Nonetheless, the tech sector’s absolute
emissions remain significant and are still increasing, raising questions about the credibility
of “carbon-neutral” or “net-zero” claims.

Indeed, third-party audits have exposed gaps between Big Tech’s promises and their actual
progress. The Corporate Climate Responsibility Monitor 2023, for example, judged many
net-zero pledges in the sector to lack transparency and integrity [I8]. Common issues
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Net-zero pledges break down to only moderate emission reductions alongside offseting
and scope exclusions

What they What they really Potential Scope
appear to commit to role for exclusions
pledge offsets

by
net-zero
target year

~790 MtCO,e (36%)
. Committed emission reductions

~890 MtCO,e (40%):

Emissions under ambiguous targets
where the role for emission reductions
and offsetting is unclear.

by
2030

~2.2 GtCO,e in 2019
Combined GHG
emission footprint of
24 companies with
net-zero targets,
including scope 1,2
and 3 emissions
(target years range ~100 MtCO,e (5%):
from 2030 to 2050) Offsetting plans

~420 MtCO,e (19%)

Emissions that the companies
exclude from the scope coverage
of their net-zero targets.

Figure 7.2: Breakdown of corporate net-zero pledges by actual reductions, offsetting, and
exclusions. Adapted from NewClimate Institute (2023) [1§].

included the use of vague carbon offsets to claim neutrality instead of reducing emissions
directly, and target scopes that omit supply chain or product-use emissions [18]. These
findings suggest that while hyperscalers are ahead of smaller players in adopting Green Al
practices, there remain significant caveats. It is not yet guaranteed that their efficiency
gains and renewable investments will outpace the growth in AI demand. Continued public
scrutiny and standardized reporting will be critical to ensure that green claims translate
into tangible environmental benefits.

7.4.2 SMEs and startups

Compared to trillion-dollar hyperscalers, small and medium-sized enterprises and startups
have fewer resources for custom hardware or dedicated facilities. Green Al efforts in this
cohort therefore tend to focus on software efficiency and smart use of existing infrastructure.
One common strategy is model size reduction through techniques such as network pruning,
quantization, and knowledge distillation. By pruning redundant parameters or quantizing
with lower precision arithmetic, companies can compress models to use less memory and
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energy with minimal impact on accuracy. For instance, 8-bit or 4-bit quantized versions of
neural networks can run much faster and more efficiently than 32-bit versions, enabling
deployment on power-constrained devices. Distillation goes further by training a smaller
student model to replicate a large model’s behavior, often achieving comparable accuracy
with a fraction of the compute requirements [I5]. These approaches are increasingly
accessible via open-source tools, allowing even small startups to significantly reduce
the carbon footprint of their Al workloads. Empirical results have shown that well-
optimized compact models, such as MobileNets or EfficientNet, can reduce inference energy
consumption by an order of magnitude or more compared to naively large models, especially
for vision and mobile applications [9; 23]. By prioritizing efficiency-first architectures,
SMEs not only reduce environmental impact but also save on cloud compute costs, which
is a critical business advantage.

Another path toward greener Al among smaller players is the use of edge computing and
on-device Al to avoid continuous cloud server usage. When inference runs locally on user
devices such as phones or IoT sensors, it distributes the energy load and often eliminates the
need for power-intensive data center queries. This is only feasible if models are lightweight
and the devices are already powered, for example in the case of a smartphone that is
regularly charged. By offloading specific tasks to edge hardware, startups can reduce the
volume of data processed in central servers, indirectly lowering aggregate cloud energy use.
There are trade-offs since not all Al tasks can be efficiently performed on the edge, and
the total energy impact requires holistic evaluation. Still, for use cases such as mobile
vision, audio processing, or personalization, edge deployment can offer advantages in both
latency and sustainability [9].

When SMEs do rely on cloud infrastructure, they increasingly adopt a green cloud approach
by selecting providers and configurations that minimize emissions. Many cloud platforms
now publish region-specific carbon intensity data. This allows SMEs to schedule jobs in
locations with high renewable energy shares or during off-peak hours when clean energy
is more available. Supporting tools are emerging to aid this transition. For example,
Microsoft Azure’s Emissions Impact Dashboard and startups like Clockwork.io offer insights
into the CO5 impact of cloud usage. A culture of emissions transparency is also taking root
among tech startups, partly inspired by academic initiatives. Following the call by Lacoste
et al. [15] for carbon accountability in machine learning research, several startups have
begun publishing training emissions or integrating carbon metrics into documentation.
The BigScience project’s open report of the 50-ton COs footprint for training the BLOOM
language model in 2022 set a precedent. Even nonprofit collaborations can lead in disclosure
and establish best practices that startups may follow [26].

Nonetheless, SMEs face constraints in pursuing Green Al. Unlike large firms, they may lack
access to efficient hardware or the ability to choose compute locations. A startup might be
tied to a specific cloud provider due to customer requirements or platform compatibility.
The upfront time needed to rewrite code for efficiency or set up tracking systems may
be difficult to justify with limited staff. Very small companies may also lack bargaining
power to request clean energy contracts beyond default offerings. Still, many SMEs find
that efficiency aligns with their business objectives. Reducing computation lowers cloud
bills and often improves responsiveness, both of which benefit users. As a result, Green
Al practices are spreading organically in the startup ecosystem, driven by both practical
advantages and a growing sense of responsibility.

7.4.3 NGOs, consortia, and academia

Outside of industry, non-governmental organizations, multi-stakeholder consortia, and
academic institutions play critical roles in advancing Green Al through guidance, standards,
and accountability. At the highest level, global organizations have begun embedding
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environmental goals into Al ethics frameworks. UNESCO’s Recommendation on the
Ethics of Artificial Intelligence, adopted in November 2021, identified sustainability and
environmental responsibility as core principles [24]. Endorsed by 193 member states, the
document urges that Al be developed and deployed in ways that avoid environmental
degradation and resource depletion. This provides an ethical foundation for policymakers
to support greener Al practices.

Meanwhile, industry and academic coalitions are developing more concrete tools. The
Green Software Foundation, launched in 2021, introduced the Software Carbon Intensity
(SCI) specification [6]. This standard defines a methodology for calculating software-related
emissions normalized per unit of output, such as per inference or transaction. An SCI
score enables consistent measurement and comparison of emissions across software systems,
including AT applications. It also provides developers with an actionable metric to reduce
emissions by optimizing code or selecting cleaner execution environments. Although still
early in adoption, SCI is backed by major firms and research bodies and may evolve into an
international standard. In parallel, ISO/IEC JTC1 is preparing the first global standard
for sustainable AI. This framework is expected to incorporate multi-metric footprints,
including carbon and water, as core indicators.

NGOs and research consortia also serve as watchdogs and accountability agents. The
NewClimate Institute, for example, has published audits exposing gaps in corporate
climate strategies [18]. Groups such as Carbon Market Watch and Greenpeace have
scrutinized energy sourcing and policy lobbying by tech firms, pushing for transparent
and substantive commitments. In academia, open-source tools and reporting norms are
gaining traction. Henderson et al. [7] created the Experiment Impact Tracker, which logs
energy and emissions from machine learning training. They also advocated for standard
reporting of compute usage, energy, and carbon in research papers. This practice is
increasingly adopted by journals and conferences. For instance, NeurIPS now includes
environmental impact in its broader impacts checklist, and Green Al workshops have
expanded significantly since 2019 [I5; 21]. Multi-institution collaborations such as Climate
Change Al and the BigScience consortium provide infrastructure to share best practices
and build tools for efficient machine learning. These collective efforts promote a culture in
which sustainability is integral to responsible AI development.

In summary, collaboration between civil society, standard bodies, and academia is essential
to push Green Al from aspiration to norm. These actors complement industry efforts by
introducing benchmarks, creating public pressure, and making tools and knowledge widely
available. Their involvement ensures that sustainability in Al becomes a widely shared
objective across the research and technology landscape.

7.5 Evaluation and Discussion

7.5.1 Synthesis: Conditions Under Which Green AI Is Worth the Cost

We have surveyed various strategies for mitigating Al’s environmental footprint, spanning
from engineering solutions to policy and cultural shifts. But under what conditions do
these Green Al measures truly pay off, delivering net-positive outcomes environmentally
and societally?

First and foremost, Green Al is most worth the cost when technical feasibility aligns with
substantive impact. In other words, when efficiency gains or emissions reductions are
large enough to justify the effort invested. Empirical evidence is encouraging: innovations
in model design, hardware, and data center operations have demonstrated one to two
orders of magnitude improvements in energy efficiency. Google’s 4M best practices
framework, for example, achieved up to 1000 times emissions reduction by combining
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efficient models, machines, mechanization, and map optimization [19]. Similarly, Hoffmann
et al. showed that a 70B-parameter model trained compute-optimally on four times more
data outperformed a 175B model trained conventionally, using far less compute overall [§].
Another favorable condition is the availability of clean energy and sustainable infrastructure.
If AT workloads are powered by carbon-free electricity, especially during times of renewable
surplus, their climate impact shrinks dramatically. Carbon-aware scheduling and regional
job placement can help leverage this flexibility, although policy and market signals must
align to support such shifts.

Economic and strategic incentives also strengthen the case for Green Al. Rising energy costs,
carbon pricing, and regulatory frameworks like the EU’s CSRD [3] make efficiency financially
prudent. Strategically, being perceived as a sustainability leader can attract talent and
customers. Moreover, Schwartz et al. argue that prioritizing efficiency democratizes Al
research by lowering entry barriers [21].

Importantly, Green AI should not come at the expense of innovation. Encouragingly,
many Green Al practices such as architecture optimization or compute-efficient training
have led to breakthroughs rather than trade-offs. A culture of energy-aware metrics and
transparency, as advocated by Henderson et al. [7] and Lacoste et al. [15], allows researchers
to optimize both impact and insight.

7.5.2 Limitations and Risks: Rebound, Partial Metrics, Evidence Gaps

Despite progress, Green Al faces several limitations and risks. One is the rebound effect,
where increased efficiency enables broader usage and ultimately raises total consumption.
The IEA projects that data center energy use could double by 2030, driven in part by
expanding Al workloads [12]. Without managing total demand, efficiency alone may
worsen the problem.

Second, current practices often focus narrowly on carbon and energy, overlooking other
environmental dimensions such as water usage and embodied emissions. Al’s water
footprint from both cooling and electricity generation can be substantial [16]. If data
centers rely on clean power but consume significant volumes of freshwater in arid regions,
sustainability claims may be misleading. Similarly, emissions from manufacturing hardware
like TPUs, GPUs, and supporting infrastructure are often excluded. Patterson et al. note
that most assessments, including theirs, only consider operational emissions [19].
Transparency is another concern. Many net-zero claims rely heavily on offsets or vague
reporting. The NewClimate Institute’s 2023 audit found widespread deficiencies in corpo-
rate climate pledges [I8]. Even when firms purchase renewable energy credits, they may
still operate on fossil grids during peak hours. Google’s push for hourly 24/7 carbon-free
energy seeks to close this gap, but most companies are far from achieving that standard.
Lastly, we must ask whether current Green Al efforts are sufficient to address the overall
scale of the challenge. Efficiency gains of two or five times are meaningful, but compute
demand is growing by a factor of ten or more every few years. Bender et al. caution that
ever-larger models could offset environmental gains [2]. Without rethinking what counts
as progress in Al, we risk accelerating consumption rather than reducing it. The field must
embrace the goal of achieving more with less, as envisioned by Patterson et al. [19].

In short, while Green Al provides viable pathways to sustainability, we must remain
vigilant about rebound effects, narrow metrics, and unverifiable claims. A more holistic
and transparent approach is necessary to realize transformative change.

7.5.3 Recommendations

Building on our analysis, we propose several concrete actions for researchers, industry
practitioners, and policymakers to accelerate the transition to truly sustainable Al:
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Adopt standardized metrics and disclosure practices. The Al field should align around a
set of clear Green Al indicators and reporting guidelines. Just as accuracy and throughput
are standard benchmarks, we need consistent metrics for energy efficiency and emissions.
Key indicators such as PUE and WUE from the ISO 30134 standards should be routinely
reported by cloud providers and for major training runs [13]. At the model level, researchers
can report energy per training task or CO, per inference. Journals and conferences should
encourage this through submission checklists. On the corporate side, Al-related energy
use and emissions should appear in sustainability reports. Regulatory frameworks are
beginning to mandate this. The EU’s Energy Efficiency Directive 2023 requires large
data centers to disclose such metrics publicly [4], while the CSRD mandates broader
environmental disclosures [3]. Early adoption of these practices can improve accountability
and track progress effectively.

Prioritize efficiency in R&D and system design. Efficiency optimization should be a
central objective in research and engineering. This includes investment in model compres-
sion, architecture search, and low-complexity algorithms. Compute-optimal training, such
as that exemplified by Chinchilla [8], helps avoid unnecessary resource use. Techniques
such as sparsity and quantization should become common in deployment [19]. On the
hardware side, energy-efficient chips and Al accelerators should be prioritized. Research
should also explore models that function with less data or operate at lower numerical
precision. As Green Al matures, funding, recognition, and publication incentives should
support sustainable innovation.

Embed carbon awareness into ML operations. Modern ML operations should include
energy and emissions tracking, as well as carbon-aware scheduling. Open-source tools and
commercial dashboards can estimate emissions by location and workload. These should
be integrated into experiment tracking systems to allow automatic emissions reporting.
Carbon-aware scheduling allows non-urgent jobs to be deferred until renewable availability
is higher. Google’s map optimization approach demonstrated up to tenfold emissions
savings from selecting cleaner locations and times for job execution [19]. In self-managed
environments, similar results can be achieved with batteries or intelligent load balancing.
MLOps pipelines should also minimize waste by deactivating idle resources, deleting
redundant checkpoints, and streamlining storage.

Align incentives through procurement and policy. Customers procuring Al services
should include sustainability criteria in vendor evaluations. This might involve prioritizing
providers with hourly renewable matching, low PUE, or detailed emissions transparency.
These choices create demand for greener infrastructure. Governments can support this
transition through targeted funding, regulatory updates, and procurement policies. For
example, regulations could require disclosure of Al compute emissions or incentivize use of
waste-heat recovery and other efficiencies. Publicly funded AT efforts should themselves
meet sustainability standards. International coordination can further establish global
baselines and support adoption in emerging economies.

In conclusion, the success of Green AI depends on aligning technical, operational, and
policy efforts. With standardized metrics, efficiency-focused development, integrated
emissions awareness, and supportive incentives, the Al ecosystem can scale responsibly.
The goal is not just to make Al green in principle, but to embed sustainability as a default
mode of practice.
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7.6 Conclusion

Recent literature suggests that, under the right conditions, Green AI can deliver substantial
net benefits by curbing the environmental footprint of Al systems without compromising
progress. A key insight is that many efficiency interventions yield outsized gains. Improved
model architectures, algorithmic optimizations, and more efficient hardware can reduce
energy usage by orders of magnitude while maintaining comparable accuracy [19]. These
benefits are especially pronounced for large-scale training and deployment scenarios, where
resource demands are highest and even small improvements translate to significant absolute
savings. Operational choices such as the location and timing of computation can also
substantially reduce emissions; studies report up to 5-10x reductions when workloads are
matched to cleaner power grids [19]. When best practices are implemented systematically,
the efficiency gains often outweigh upfront costs, making Green Al worthwhile in many
practical settings. Projections indicate that scaling efficiency measures and clean energy
adoption will be critical for keeping AT’s total energy demand manageable [12].

However, the value of Green Al is not guaranteed. Efficiency can lower costs and thus spur
wider AI deployment, potentially offsetting gains through rebound effects. The impact
depends heavily on how practices are adopted at scale. Moreover, while carbon and energy
have received most attention, the water footprint of Al remains underexplored. As Li
et al. point out, managing water consumption is critical in regions facing scarcity, yet
most assessments exclude this dimension [16]. Some sustainability improvements also
come with trade-offs. For example, quantization may slightly reduce model accuracy.
These compromises must be carefully evaluated to ensure that sustainability goals are not
achieved at the expense of core Al performance.

Overall, the emerging consensus across recent research and policy work is cautiously
optimistic. Standard metrics and transparent reporting are seen as foundational. As
energy and emissions tracking becomes integrated into ML research and Al operations,
it becomes easier to compare systems and identify areas for improvement [7]. Policy
instruments such as the CSRD mandate disclosures that bring AI’s resource use into
public view [3]. Together, technical innovation, operational awareness, and supportive
governance form a foundation for scaling Al sustainably. Green Al is no longer a niche
concern—it is becoming a defining challenge for the field. With appropriate attention to
transparency, efficiency, and system-level coordination, the Al community can continue
advancing capabilities while mitigating environmental costs.
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