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Abstract

With the growth of the Internet and a perpetual increase in electronic devices, botnets
have become increasingly threatening to private and public networks. Using Command-
and-Control (C2) frameworks, malicious actors can perform large-scale attacks on single
devices or entire networks. One such framework is NimPlant, which went open-source in
February 2023. Once a device has been infected and becomes a bot, it can be difficult
to identify that bot in a network. Modern network security systems heavily rely on
present information about known malware, making them poor at detecting novel threats,
such as NimPlant. This project studied the NimPlant framework to guide the detection
of NimPlant bots and other bots with similar communication patterns by monitoring
network traffic. We deployed a NimPlant server in a testing environment with an infected
device and developed strategies to both detect the bot using intrusion detection systems
and to avoid said systems by improving the NimPlant framework. We then equipped
a Reinforcement Learning algorithm with these evasion strategies to find how AI can
improve C2 systems. Our findings show that AI systems can indeed improve the evasion
capabilities of C2 systems. On the other hand, a proper setup of an intrusion detection
system has a large impact on the performance of such AI systems and the detection rate
of bots through network traffic. Based on all results, we discuss some recommendations
for better detection of bot infections.
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Abstract German

Im Zeitalter des Internets und mit einem konstanten Zuwachs an elektronischen Geräten,
sind Botnets über die vergangenen Jahrzehnte zu einer immer grösseren Gefahr für pri-
vate und öffentliche Netzwerke geworden. Mithilfe von Command-and-Control (C2) Fra-
meworks können sogenannte Botmaster schwere Angriffe auf einzelne Geräte oder ganze
Netzwerke ausüben. Ein solches Framework ist NimPlant, eine Software deren Code im
Februar 2023 auf GitHub veröffentlicht wurde. Sobald ein Gerät mit einer solchen Softwa-
re infiziert ist, kann es schwierig sein, das infizierte Gerät in einem Netzwerk zu entdecken.
Moderne Netzwerksicherheitssysteme verlassen sich zu grossen Teilen auf spezifische Er-
kennungsmerkmale von bereits bekannter Schadsoftware. Eine Schwäche dieser Systeme
ist somit unerforschte Bedrohungen wie NimPlant zu entdecken. In diesem Projekt haben
wir uns der Untersuchung von NimPlant gewidmet, um Empfehlungen für das Entdecken
von NimPlant und ähnlichen Bots durch die Analyse von Netzwerkaktivitäten zu formu-
lieren. Zu diesem Zweck haben wir in einer gesicherten Umgebung einen NimPlant-Server
eingerichtet und ein weiteres Gerät mit dem Bot infiziert. Als Nächstes haben wir Stra-
tegien entwickelt, um zum einen die Kommunikation mit dem Server auf dem infizierten
Client zu entdecken, und zum anderen Strategien, um vom Server aus genau dies zu ver-
hindern. Anschliessend haben wir zudem einen Reinforcement-Learning-Algorithmus mit
diesen Ausweichstrategien ausgerüstet, um herauszufinden, wie KI C2-Systeme verbessern
kann. Unsere Resultate zeigen, dass solche KI-Systeme tatsächlich die Entdeckbarkeit ei-
nes C2-Systems erschweren können. Zudem wird aus unseren Resultaten ebenfalls klar,
dass wohldurchdachte Sicherheitssysteme einen grossen Einfluss haben auf die Leistung
eines solchen KI-Systems und die Erkennungsrate von Bots durch den Netzwerkverkehr.
Unsere Resultate nutzen wir zudem, um einige Empfehlungen für das Bekämpfen von
Botinfektionen zu diskutieren.
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Chapter 1

Introduction

This chapter will present the motivation for this project, the thesis goals, the methodology
used and close with the thesis outline.

1.1 Motivation

Due to their continuous operation and significant vulnerabilities, the Internet is teeming
with machines that create an ideal habitat for malicious actors to create and propagate
botnets in the contemporary digital landscape [3, 14]. These botnets pose a significant
threat to cybersecurity because they comprise a network of compromised computers, col-
loquially known as ”zombies,” which attackers can remotely exploit to carry out various
damaging activities [14]. These include Distributed Denial of Service (DDoS) attacks,
spamming, data theft, and other fraudulent actions.

Not only are these criminal activities widespread, but they also have grave consequences
for both businesses and individuals. The infrastructure established by these botnets is
primarily responsible for the widespread nature of DDoS attacks, email spamming, illegal
acquisition of confidential information, and cyber fraud. Moreover, profit-driven cyber-
criminals frequently employ botnets, leading to the emergence of an entire underground
economy based on them. This illegal activity causes significant economic harm, affecting
individuals, businesses, and even entire nations.

An attacker can use a system known as a Command-and-Control (C2) framework to
orchestrate and manage a botnet effectively. This system gives them a centralized platform
to manage the botnet’s infected computers efficiently. This includes sending commands
to compromised machines, collecting data, and updating the malware to infect additional
computers. Due to the severity of these botnets’ threats, network traffic monitoring is
essential for mitigating potential losses. Detecting C2 activity within a network is essential
to initiate a prompt and effective response. Security teams can vigilantly monitor network
traffic to identify atypical communication patterns between internal systems and external
endpoints. In addition, they can detect traffic patterns that match known C2 traffic
signatures.

1



2 CHAPTER 1. INTRODUCTION

These suspicious activities may involve encrypted traffic, non-standard ports or protocols,
or any other atypical network interaction that deviates from the norm. Identifying these
early indicators of C2 activity permits security teams to contain the threat quickly. They
can inhibit the possibility of data exfiltration and remove malware from compromised
systems, thereby reducing the scope of the attack and mitigating the risk of further com-
promise. Thus, security teams can protect their digital infrastructure and its sensitive
data and information.

NimPlant is a C2 targeted for initial infection before deploying elaborate malware to the
targets [56, 57]. As such, NimPlant provides a lightweight framework aiming to strike a
balance between the ability to evade detection systems and still provide C2 functionality.
Therefore, NimPlant, by design, only permits functionality deemed benign and could be
applied by legitimate (remote access) tools that restrict the use of shellcode executions
but permit basic filesystem operations to evade detection systems. Critical to this mas-
ter’s project is the investigation of automated malware evasion, mainly through Artificial
Intelligence (AI) within Command-and-Control (C2) systems. Malware based on artificial
intelligence can modify its behavior to blend in with its surroundings, making it much
more difficult to detect.

One prominent application of AI in this domain is within C2 systems, which can opti-
mize communication patterns and camouflage with regular network traffic, decreasing the
likelihood of detection and increasing the potential damage [4, 9].

There are also other studies similar to this project where AI was used for malware evasion
purposes such as embedding malware inside video conference software [33, 34], using rein-
forcement learning to manipulate portable executable files [5], using generative adversarial
networks to hide malware communication by simulating legitimate network traffic [42] or
using evolutionary packers to hide malware binaries [20].

In the initial phase of this project, a comprehensive examination of NimPlant and other
cutting-edge botnets will be conducted to delve deeply into this rapidly evolving field.
Therefore, understanding these advanced threats’ tactics, techniques, and procedures will
provide security researchers with invaluable insight. This information is crucial for devel-
oping effective countermeasures and fortifying defense systems against future AI-enhanced
threats. Adopting a proactive approach to studying AI-based evasion techniques makes
it easier to anticipate these threats and develop early detection algorithms.

1.2 Thesis Goals

From the described motivation result the following goals for the project:

• The project should include an overview and comparison of related work in the field of
C2 frameworks, comparing major characteristics observed in NimPlant with similar
state-of-the-art technologies.
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• We create a testing environment by setting up a client and server environment,
decoupled from real network devices. We also install adequate monitoring tools on
the client that allow us to monitor its network traffic. In this environment, we deploy
NimPlant by configuring a Nimplant server on the server machine, and injecting and
executing an implant on the client, simulating a real application of the framework.

• Utilizing the installed monitoring tools, we collect and analyze metrics on anomalous
patterns, ports, protocols, and spikes in traffic to unknown destinations and usage of
encrypted traffic. The results should facilitate identification of major characteristics
that enable the detection of NimPlant C2 network traffic patterns.

• We use NimPlant to deploy further, different purpose malware on the infected device,
capitalizing on NimPlant’s first-stage infection identity.

• With the acquired information on NimPlant network traffic patterns, we manually
configure different modes for the NimPlant server to run in. These modes adhere to
different evasion strategies. We further evaluate the testing scenario with respect to
the individual evasion modes.

• Based on the designed evasion modes, we develop an AI system to implement adap-
tive evasion strategies on the C2 server. We also evaluate the AI system and the
results it yields.

• From all of our acquired results, we deduce recommendations for improving Intrusion
Detection Systems (IDS), in particular with respect to C2 botnets.

These goals were critical to the procedure of the project, the required infrastructure, and
the evaluation of the conducted activities. They do not necessarily correspond to explicit
sections of this work.

1.3 Methodology

To achieve the goals described in the previous subsection, the project was divided into
different phases. The first phase consisted of a review of existing literature covering
topics that are essential to this project. In particular, this included a survey of similar
studies, books, or reports. While we were mostly focusing on white literature, a couple of
technologies, such as NimPlant and some monitoring tools, were not sufficiently covered
by previous works and required the inclusion of official documentations and blog posts, or
a manual review. Some of our findings were used to support the planning of the project,
provide input to the choices of methodologies applied in this project, to validate the
motivation and necessity of our own work, and to ultimately compare our results to the
results of similar previous works. Additionally, this phase contained an investigation of
the fundamentals of botnets, offensive and defensive strategies, NimPlant itself, and AI
in cyber security.

In the second phase, the group installed the environment that would be used for the
rest of the project. This included the installation and configuration of several hardware
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and software components, such as a client and server machine, the NimPlant server, and
monitoring and intrusion detection tools. This phase also contained the deployment and
initial operation of the entire system and first tests of the capabilities of the C2 system
and the defensive tools, including but not limited to the injection of additional malware
through NimPlant. While continuously testing the system, incremental improvements
were made to the defensive aspects and several evasion strategies were developed on the
offensive side of the system. A notable product of this phase was a collection of major
characteristics that allow the identification of network traffic originated by NimPlant.

The third phase involved the selection, design, and implementation of an adequate AI
system with the purpose of developing adaptive evasion strategies on the offensive side.
This technology was then faced with and tested on different layers of defenses on the
infected client. For the reinforcement learning algorithm, Q-learning was used. The
learning environment, the reward function, which is based on the Snort alerts and the
sever were adapted to the NimPlant application. The agent was able to enable and disable
strategies, got rewards and improved the information it had about the environment. All
the data from the learning process and the results were then analyzed and discussed with
the additional goal of developing recommendations for the defense.

1.4 Thesis Outline

The rest of this project report is organized as follows. Section 2 covers the fundamentals of
several topics relevant to the understanding of this work and to the classification of several
activities performed during this work. It also contains a survey of existing literature and
work related to or covering topics that are substantial to the goal and contents of this
work. Additionally, Section 2 closes with a brief discussion of NimPlant, its relevance and
the state of modern cyber security. In Section 3 we present and discuss the design aspects
of all stages of this project. Section 4 describes all implementation parts of the stages of
the project. Section 5 constitutes the evaluation of our systems at the individual stages of
the project and covers our intermediate findings. Section 6 finishes with a summary and
conclusion of our work and discusses some opportunities and insights for future work.



Chapter 2

Fundamentals

The fundamentals which include the background and the related work are presented in this
chapter to provide fundamental information helping the reader understand the concepts
addressed in this work. Additionally, a discussion of the fundamentals including NimPlant
is added.

2.1 Background

This section describes some major fundamental concepts related to this project. It covers
information about Command-and-Control frameworks such as NimPlant. Further the
detection, defense, and evasion of C2 malware and botnets is presented. The section is
finally concluded with a subsection about reinforcement learning.

2.1.1 Command-and-Control

Botnets are a type of malicious software (malware) and are considered to be a major threat
to public and private services [12, 24, 48]. A botnet is a network of infected machines called
bots, a short form of ”robot” [31]. The sizes of these networks are often unknown, though
individual networks can reach sizes of up to a million bots. Experts in 2012 estimated
that 16 to 25 percent of computers with access to the internet are part of at least one
botnet [48]. Botnets are used for various malicious activities, including Distributed Denial
of Service (DDoS) attacks, forms of spam, phishing, data theft, identity theft, creation
of backdoors, and more [31, 48]. Most of the malware botnets use is designed to target
the MS Windows operating system, making it the main target for infections [48]. Despite
being commonly known for their malicious purposes, botnets can also be used for legal
activities, such as to defend against DDoS attacks or to be used as organizational tools
[31, 54].

The main characteristic that differentiates botnets from other types of malware is that they
function based on a Command-and-Control (C2) architecture [12, 24, 48]. Each botnet

5
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is controlled by a so-called botmaster [48]. The C2 architecture allows a botmaster to
connect to the bots over relatively stable communication channels to send commands to
all bots in real time [24, 35]. The connection to the botmaster is not only decisive for the
robustness, stability, and reaction time of the system, but it is also the most vulnerable
part [26, 48]. Originally, C2 botnets were centralized systems in which a single botmaster
server would communicate with the bots over Internet Relay Chat (IRC) channels [24, 31].
This made systems traceable and vulnerable, and botnets could be effectively dissolved by
shutting down the botmaster [31, 48]. For this reason, in the early 2000s, decentralized C2
architectures and alternative, safer communication channels became more popular [31, 48].
Instead of IRC communication channels, modern centralized C2 systems increasingly use
HTTP/HTTPS channels and decentralized systems mostly rely on Peer-to-Peer (P2P)
communication [31].

Bots can spread through different means, such as websites, peer-to-peer (P2P), email
attachments, file-sharing, or previously installed backdoors [48]. The installation of bots
usually happens in three phases [31]: In the first phase, the initial injection, an attacker
infects a potential bot using various injection techniques, such as spam emails or phishing.
In the second phase, the secondary injection, the infected machine downloads and installs
relevant malware binaries. In the last phase, the bot connects to the C2 server to receive
commands. Different approaches exist to establish this connection [26]. Possibilities for
establishing this connection include hard-coded IP addresses, using alternative types of
internet infrastructures, and using third-party services. The connection to the commander
can be permanent or reestablished whenever needed [24]. Commands can be delivered to
bots in a ”push” or ”pull” fashion. The former sends commands immediately to the bots.
The latter lets bots request their commands from the commander regularly [24]. Bots are
typically initialized every time the victim device is started [48].

Internet of Things (IoT) devices are modern everyday life devices that can communicate
over the internet to improve quality of life. In smart cities, the number of IoT devices is
very high and still growing, and despite that, these devices are often weak in security [35,
48]. This makes them popular targets for botnets. Online social networks have become an
important and large part of network traffic. This makes them another popular target for
botnets, offering a completely new way for C2 networks to communicate with their bots
[26, 31, 48]. These networks are called Social Botnets [31]. Cloud computing, another
technology growing in popularity, opens further possibilities for the creation of botnets,
resulting in so-called Dark Clouds [31].

The distributed nature of botnets makes it difficult to track them down and hinders law
enforcement, especially across countries with inconsistent laws [48]. The lack of certifi-
cation for applications available for download, especially on mobile devices, presents a
significant security weakness. Research in this area is handicapped by the limited access
to large numbers of devices and realistic network protocols. The latter are often con-
sidered business secrets or contain other sensitive information. This makes it difficult to
study real botnets and evaluate the effectiveness of security systems [48].
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2.1.2 NimPlant

NimPlant is a C2 framework partially written in the programming language Nim [57]. C2
allows remote communication with malware implants, typically in a client-server archi-
tecture. The functionalities of C2 frameworks can differ substantially between different
frameworks, though, most are designed to be flexible and extensible to allow personal
adaptations. Even though NimPlant had already been developed back in 2021, its creator
made it open-source in February 2023 by releasing the project on GitHub [56, 57]. It
is therefore a recent and up-to-date technology. At the current date, Nimplant implants
only target x64 Windows machines.

On its GitHub page, Nimplant is described as a lightweight and configurable implant. It
encrypts and compresses all traffic by default [57]. In addition, NimPlant is written in
Nim, compiles directly to C, C++, Objective-C, or Javascript, and uses XOR-encoding
for static strings, concealing the binary, and making it inherently harder to trace [56,
58]. It also supports multiple implant types, including self-deleting executables. Once
the server is running and an implant is placed, users have access to a wide range of
functionalities with a focus on early stage operations. The implants can be operated
from the server’s browser interface, seen in Figure 2.1, showing a list of all implants and
allowing users to enter commands directly into a built-in console. This also constitutes a
decent logging system [57]. Some further notable useful features of the web interface are
a kill server switch, which shuts down the server and all active implants, and a download
section, containing the data retrieved from the agents. With so many accessibility features,
NimPlant is beginner-friendly and effortless to use.

Figure 2.1: The overview of connected bots in the server’s browser interface.

NimPlant’s intended use is for the initial infection of systems (first stage) before inject-
ing more elaborate malware as a follow-up. Its main requirements are, therefore, to be
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lightweight, evasive, and functional. Since this initial implant would provide an entry for
further malware, these requirements would be relieved from the other malware [56].

Per the developer’s advice, detecting NimPlant on an infected device should not be done
by focusing on specific tools. Instead, one should look out for generic suspicious activi-
ties, such as untrusted binaries or unusual processes communicating through the internet.
The reason is that NimPlant does nothing that other malware has not done before. Ad-
ditionally, getting hold of any relevant binaries or retrieving memory dumps of running
NimPlant processes (and subsequently finding the encryption key) should suffice for iden-
tifying unambiguously malicious activities [56].

2.1.3 Detection

Command-and-Control traffic is similar to normal, non-malicious traffic. The traffic vol-
ume is low, and there may be very few bots in the monitored network. Additionally, the
traffic may also contain encrypted communication. Such characteristics make detecting
Command-and-Control traffic challenging [24]. But one weak point of the Command-
and-Control traffic that can be used to detect botnets is that bots of a botnet can have
spatial-temporal correlations and similarities. This results from their pre-programmed
response activities to control commands. It means that at a similar time, the bots within
a botnet will execute the same command and report to the Command-and-Control server
the progress or result of the task, with the reports being similar in structure and con-
tent. Normal network activities are not likely to have a much synchronized or correlated
behavior [24]. The most common approaches to botnet Command-and-Control detection
are packet header analysis and deep packet analysis [29].

2.1.3.1 Packet Header Analysis

This method analyzes packet headers to distinguish between malicious and normal traffic.
One way would be to use header elements like source and destination IP for the distinction
[29]. Packets sharing common attributes such as source and destination IP, source and
destination port, and protocol type can be collected, and unique flows can be identified
based on these attributes. Those unique flows represent the fingerprint of a packet, and
the attributes can then be used to determine whether the packet is distinctive or shares
common attributes with other packets. This information can then be used to identify
network anomalies, which can help classify traffic into normal or malicious ones [11].
Another possible way to analyze packet headers would be to perform a n-gram analysis.
A n-gram analysis can be used against botnets that use Domain Generative Algorithms
(DGA). When botnet malware is using DGA to decrease its probability of detection, then
a n-gram score smaller than normal can be observed. This can help to identify whether
normal or malicious traffic from a DGA botnet is present [53].
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2.1.3.2 Deep Packet Analysis

Deep packet analysis deals with analyzing packet payloads, searching for specific malware
signatures, or analyzing specific protocol traffic, such as Domain Name System (DNS)
traffic, to detect anomalies [29]. Botnets use multiple domain names to connect to remote
control servers, send spam mail, drive users to infection servers, and find victims. As
accessing a server over the Internet with a domain name requires DNS, one can obtain
evidence of botnet activities from DNS queries generated by botnets. There are also cases
where botnets use hard-coded IP addresses to connect to the target servers, but recent
botnets tend to use domain names or both IP addresses and domain names [36].

2.1.4 Defense

There are two main aspects of defense against botnets. One part is the measurements
to reduce the possibility of an infected device, which can be grouped as device security
measures and user sensitization [59]. The other part concerns active defense, a possible
tactic when the device is already part of the botnet. The goal of the defense against
botnets can either be local or global, meaning that one can either focus on getting the
device and all the devices in the own local network out of the botnet or one can gather
information and try methods to disturb or get the whole botnet to shut down [39, 62].

2.1.4.1 Device security measures

Using a firewall can help reduce the risk of getting infected by a botnet as it tries to filter
out malicious network requests [51]. Installing an antivirus program can also be useful.
Both security methods use many of the detection methods listed above [13]. Using an
automatic updater for the used software on the device or keeping it manually updated is
also a defensive measure, as it can reduce the risk of getting infected via a known security
risk in an earlier version of the program [7].

2.1.4.2 User sensitization

One approach to initially infecting a user’s device with a virus is using social engineering
methods. Those try to bypass the security measurements by forcing the user to manually
download, install, or execute a malicious file while pretending to be benign. Well-known
social engineering methods for malicious purposes are phishing emails, spoofed websites,
scareware, and similar URLs [43]. A reliable way to protect a user from such attacks is to
sensitize the user to the possible hints and the newest attacks. General behaviour changes
like not using links in emails, using multi-factor authentication for login, and only using
safe sources for downloading files can prevent many possible infections [27].



10 CHAPTER 2. FUNDAMENTALS

2.1.4.3 Active Defense

If the goal of the infected user is to get information about the botnet or to get it to
shut down, one can use active defense techniques. These are more sophisticated methods
and need in comparison to the other defense mechanisms more knowledge of the subject.
Some of those methods, like fuzzing, alter the response message that the infected client
sends back to the C2 server. This can help to identify vulnerabilities in the C2 framework.
Alternatively, there is a method called milking, where the user can try to impersonate an
infected device and communicate with the C2 server to get information about commands
and templates. With this information, one can try to halt or shut down the botnet, which
is the key idea of active defense [62].

2.1.5 Evasion

The following chapters first describe which techniques are used to develop evasive malware
based on malware analysis. Then, several mechanisms are described that are employed to
ensure that the bot binary (which is executed on the victim’s machine once the infection
happened), Command-and-Control server(s), Command-and-Control communication, and
botmaster are not easily detected [32]. Finally, the last sub-chapter deals with evasion
using AI.

2.1.5.1 Malware Analysis

Malware authors have employed several techniques to develop evasive malware [1]. Mainly
to stay stealthy, bypass detection mechanisms, and divert from the analysis process [2].
In the literature [2, 6, 41], we observed two prominent ways of analyzing malware:

• Static analysis: analyzing the source code without executing the malware. This type
of analysis has become challenging since malware authors have been applying all
types of code obfustication (like polymorphism, encryption, packers, and so forth).

• Dynamic analysis: a complementary process for static analysis, where the malware
is executed in a safe environment, and its behavior is observed. To perform this
type of analysis, there are two methods:

– Manual: using debuggers (as the primary analysis tool) and other tools like
Wireshark.

– Automatic: utilizing the sandbox technology to automatically run the mal-
ware in a safe environment separated from the host machine. Automating the
process makes it scalable and allows it to analyze several malware and threats
[60].

For both analysis types, malware writers are constantly engineering new ways to hinder
the analysis and thus evade detection [2]. Figure 2.2 shows the evolution in malware
concealment techniques.
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Figure 2.2: Evasive malware techniques evolution based on [33]

Malware that is not straightforward to detect uses various methods to identify whether
analysis tools or environments exist. The most common methods include anti-debugging
and anti-VM tactics, which use several techniques to obstruct the process of manual and
automatic dynamic analysis [2, 10]. If the malware detects that it is being run on a VM,
often used for analysis purposes or in a debugger, it will employ various techniques to
disrupt the analysis process. Specific techniques are detection-dependent, where the mal-
ware looks for signs of an analysis environment and mounts an evasion action accordingly.
We present selected tactics employed in the anti-debugging category based on [2]:

• Fingerprinting: The malware looks for clues from which it can infer the existence of
a debugger. E.g., reading and analyzing Process Environment Blocks (PEB), i.e.,
reading the data structure that contains data about a specific process, one of the
fields is the BeingDebugged field.

• Debugger traps: Introducing certain parts in the code that, when the debugger
steps on, reveals its presence, e.g., Exception handling.

• Debugger Specific: Utilizing exploits and vulnerabilities of specific debuggers.

• Targeted: Encrypting the malware payload using a key on the victim machine (e.g.,
registry keys); thus, it can not be reverse-engineered without being run.

• AI-Powered Keying: Where an AI generates the decryption key based on the target-
specific attributes.
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In detection-independent techniques, the malware behaves the same regardless of the
execution environment, and the employed evasive tactics do not vary according to the
execution environment. Similarly, we present employed tactics in the anti-VM category
based on [2]:

• Stalling: In an automated analysis, the time allocated for each sample is limited,
and thus, the malware hides its malicious behavior for the post-analysis phase. E.g.,
using sleeping techniques, injecting time-consuming code like a code that writes and
reads from memory, or encrypting the payload using an easy encryption key and
starting brute-forcing it.

• Trigger-based: The malware executes the malicious payload once it receives data
about a pre-determined variable. It can be a system date, opening a specific window,
or receiving data from the network.

• Fileless malware: The analysis environment has no executables to start analyzing.
The malware exploits vulnerabilities in the target system and compromises a browser
or a browser plug-in to inject malicious code into the memory. Malicious actors
employ Windows PowerShell to carry out this task.

2.1.5.2 Evasion tactics at Bots

To evade host-based detection, several mechanisms are employed such that the bots remain
available to the botmaster for an extended period of time [32].

Binary Obfuscation: The bot family expands by exploiting vulnerabilities on machines
infected by the bot-binary. The bot-binary contains mechanisms to coordinate with the
botmaster to receive commands. Several evasion techniques can be used to avoid being
detected by host-based security applications and to hide the bot-binary. For example,
using polymorphism can help against pattern-based detection. Polymorphism describes
the ability of the bot-binary to exist in several forms. One way would be to use encryption,
or another way would be by packing the bot-binary (file condensation). Packing can help
hide the malicious code, and some packers can even produce new binaries whenever the
original malicious executable is packed [32].

Security Suppression: A botnet can proceed and disable existing security software on the
victim’s machine once a successful infection happens. Other competing malware may also
be wiped out if the host is already infected with them [32]. For example, Conficker can
disable several security-related Windows services and registry keys after being installed
[47].

2.1.5.3 Evasion tactics at Command-and-Control Servers

DNS-fluxing / IP-fluxing: DNS-fluxing, also called IP-fluxing, deals with frequently
changing the IP address associated with the Command-and-Control server’s domain name.
This evasion tactic is efficient against IP-based blacklisting and blocking by detection and
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defense systems. Botnets can use Dynamic DNS (DDNS) to keep the mapping of the
Command-and-Control server domain name to IP address up to date in real-time [32].

Domain Generating Algorithms: A Domain Generating Algorithm (DGA) dynamically
generates a large number of random domain names and then selects a small subset of
these domains for Command-and-Control communication. The domains are computed
based on a given seed, consisting of numeric constants, current date/time, or Twitter
trends. The purpose of the seed is to serve as a shared secret between botmasters and
the bots to compute shared gathering points. Generating and changing the used domains
constantly makes detection based on static domain blacklists ineffective. DGA has several
advantages for attackers. By dynamically generating domain names, the attackers do not
have to include hard-coded domain names in their malware binaries, making extracting
this information by the defenders more complicated. Additionally, suppose the generated
domains depend on time. In that case, the value of domains extracted by the defenders
from dynamic malware analysis systems is reduced because different domains will be
observed at different time points. Also, using short-lived domains registered shortly before
they become valid evades domain reputation services [40].

2.1.5.4 Hiding Command-and-Control Communication

Encryption: Command-and-Control communication can be encrypted to evade detection,
which makes content-based analysis inefficient. This forces the defenders to rely on other
traffic characteristics such as packet arrival times or packet length [32].

Traffic Manipulation: Botnets can purposely create low-volume Command-and-Control
traffic spread over relatively large periods such that statistical and volume-based detection
techniques become less effective [32].

Novel Communication Technique: Novel communication techniques such as social net-
working websites like Twitter can be used by botnets for communication. For example,
the information-stealing botnet Brazen used Twitter to spread links that contained com-
mands or executables to download. Bots subscribed to the malicious Twitter account to
get status updates [32].

2.1.5.5 Evasion by the Botmaster

Stepping-Stones: Botmasters can hide their identity by setting up a number of intermedi-
ate hosts called stepping-stones. They are then placed between the Command-and-Control
server and the botmasters. Examples can be network redirection services like proxies such
as HTTP. The stepping-stones are then hosts compromised by the botmaster. Also, bot-
masters can use an anonymization network as a stepping-stone which offers the additional
benefit of hiding the botmaster’s IP address, making it hard to trace back the botmaster
[32].
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2.1.5.6 Evasion with AI

The use of AI to improve malware’s capabilities is a relatively recent development. There
are multiple use cases for AI in malware, such as using AI to hide malware code from
detection or using AI for network traffic detection evasion [18]. A single representative
method is presented in the following subchapters for each case.

Evolutionary Packers

Standalone software that encodes and compresses an executable program is called a packer.
The encoding done by a packer can happen, for example, with common techniques like
the Caesar chiper. Packers were initially used to mitigate reverse engineering and protect
intellectual property [20]. In Microsoft Windows operating systems, packers are used for
the Portable Executable (PE). The PE is the native file format for every executable in
Windows operating systems, for example, for .NET executables. Since most shareware
comes packed to reduce the size and to provide an added layer of protection, the packer
is used to insert code to unpack the file in memory when the execution happens [23]. If a
computer has anti-virus software, then the anti-virus software analyzes portions of code
inside a PE. This can be done statically and dynamically. In the static approach, file
sections are checked against a database of signatures of known malicious software. In the
dynamical analysis, the program operations are tracked while a heuristic mechanism tries
to recognize behavioral patterns of typical malware [20].

Packers can also be misused for malicious purposes to transform the executable binary
of malware into another form such that it is smaller and/or has a different appearance
than before. The goal in such a case is to evade signature-based detection by anti-virus
scanners [25]. The idea behind obfuscation through evolutionary packers is to use malware
that can evolve its packer such that a new encoding routine is created in each infection.
The approach is based on evolutionary computation and embeds an evolutionary core
directly in the malware. The evolutionary core can have the ability to learn and to be
trained. Packers are generated through genetic operators, and the encoding routine is a
Turing-complete evolutionary algorithm able to generate completely new algorithms. The
encoding and the decoding functions are a randomly generated, variable-length sequence
of x86 assembler instructions [20].

Those instructions perform operations understood and executed by x86 microprocessors
widely used in personal computers and servers [21]. The instructions are directly handled
as binary opcodes, so no compilation or linking phases are needed. The generation of new
packers requires finding reversible assembly instructions (e.g., INC or ROR) and small
blocks of code that have a complementary one [20]. Reversible assembly instructions can
be undone or reversed by applying the same instruction in the reverse direction. Executing
an instruction and then executing its reverse leads to the original state of the data.

Since anti-virus software can even mark a few bytes as a signature, it is also necessary
to partially shuffle the instructions. While the encoding and the decoding functions are
created in parallel, only the decoding functions are included in the generated malware. To
measure whether a packer is useful, the encoding and decoding routines are subsequently
applied to the randomly generated sequence of bytes. If the final result differs from the
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original sequence, the packer is disposed of. Otherwise, if the packer turns out to be
useful, then the packer is used to obfuscate the malware. The Jaccard Similarity is also
evaluated to assess the packer’s fitness values to achieve maximal dissimilarity from the
original code. Having the decoding routine embedded in the PE, once the new malware
is executed, it will restore each part of the program in memory so the malware is ready
for execution. The same code generation engine is used at run-time to mitigate heuristic-
based recognition of behavioral patterns of typical malware [20].

Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a class of generative models that can be
used to evade detection of malware [42]. GANs focus on generating new samples based on
a distribution learned from a training set. They have two neural networks: a generator
(G) and a discriminator (D). The generator is provided with a random vector z as input
and is trained to generate fake data indistinguishable from the real data distribution.
Conversely, the discriminator tries to tell whether a given sample came from the real or
the generator data distribution. This is done by taking in a data sample and outputting
a single scalar, which describes the probability that the data sample x is real. Each data
sample x receives a probabilityD(x) if x has a high probability. The discriminator believes
that x is likely to be real. Otherwise, if x receives a low probability, the discriminator
believes that x is more likely to be fake [22]. The training of the discriminator is done
using two decks of data: the training data x that results from the real data probability
distribution pdata and the data generated by the generator G(z) [42].

GANs are specific Artificial Neural Networks (ANNs) [28], and loss functions play a sig-
nificant role in ANNs, because they represent the error measure. They are based on the
difference between the generated and the true values of the outcome. This means that
they describe how closely the generated output of an ANN matches the true values. To
improve the matching of the generated and the true values, the goal of ANNs is to reduce
the loss function but also to prevent overfitting (which would mean that the model has
memorized the training data rather than learned to generate new and diverse samples)
[8]. The discriminator and the generator have their loss functions in GANs [42]. This
means that the discriminator is trying to reduce its discriminator loss function and the
generator’s loss function. The discriminator loss can be interpreted as how well the dis-
criminator performs distinguishing between the generated and the real data. Typically,
the discriminator loss J (D) is mathematically described as following [42]:

J (D) = −1

2
Ex

˜
pdatalog(D(x))− 1

2
Ezlog(1−D(G(z)))

On the other side, the generator loss can be interpreted as how well the generator generates
realistic data to deceive the discriminator. Usually, the following formula describes the
generator loss [42]:

J (G) = −1

2
Ezlog(D(G(z)))
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2.1.6 Reinforcement Learning

This subsection provides an overview of reinforcement learning and explains the concepts
of the Q-Learning approach which is applied in this project.

2.1.6.1 Overview of Reinforcement Learning

Reinforcement Learning (RL) is a category of machine learning. It is classified as nei-
ther supervised nor unsupervised learning [37, 50]. Akin to other techniques of machine
learning, reinforcement learning is used for making predictions and helping with decision
making. It is generally based on probability theory and optimization [37].

In reinforcement learning, there exists an agent that faces a problem in an oftentimes
dynamic environment. The purpose of the agent is to approach this problem by trial and
error and to develop strategies that optimize the outcome and possibly achieve a given
goal. Initially, the agent is usually not given any strategy and instead must discover them
by trying randomly [30, 50]. To achieve these things, the agent must be aware of the
environment and must be able to evaluate the outcome.

A reinforcement learning model traditionally can be divided into four subelements [50]:

• Policy: A policy is usually the core of the system. It defines the behaviour of the
agent and determines its actions. A policy can be simple rule-based decisions or
complex computations.

• Reward: The reward signal allows the agent to evaluate the outcome of its actions.
Underlying the reward function is a goal that the agent is supposed to achieve. The
reward signal forms the basis of altering the agent’s behaviour with every step and
should lead to iterative improvements in the strategy.

• Value function: A potential value function is similar to a reward function. However,
reward functions tend to favour short-term optimization. Opposite to the reward
function, the value function is responsible for evaluating long-term effects and the
potential of strategies. This is usually much harder to develop than the reward
signal.

• Model: The model of the environment mimics the behaviour of realistic scenarios if
the system is tested outside of a real application. It reacts to the agent’s behaviour
and acts as an input to the reward and value functions.

With respect to these components, reinforcement learning agents learn how to optimize
the reward signal. By doing so, the agent relies on the concept of state, cause, and effect,
and faces significant uncertainty [50]. This makes reinforcement learning the closest to
how humans and animals learn when compared to other forms of machine learning. To
model the interaction between states, actions, and probabilities, reinforcement learning
uses the Markov decision process framework, which is intended to represent the funda-
mental features of artificial intelligence problems in a simple manner. A problem that
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reinforcement learning systems tend to face, is the trade-off between exploration and ex-
ploitation. An agent may try to optimize a successful strategy and stop investigating new
strategies. The value function may prevent this from happening.

2.1.6.2 Q-Learning

One of the possible options for learning an optimal action-selection policy is Q-Learning.
It is a model-free learning method as it does not try to mimic the environment with a
model of it but only relies on the reward of an action in the current state. Q is a function
that gives a value to each state-action pair, which indicates the expected reward. The
method uses a Q-table for this with the states as the indices for the rows and the actions
for the indices of the columns and each cell holding the expected reward value. A learning
process starts with the Q-table being initialised with the value zero everywhere, as no
information was yet collected. The actions selection balances exploration, which means
taking a random possible action of the current state, and exploitation, which chooses the
best possible action of the current state according to the Q-table. After taking the action
and receiving the reward, the Q-table gets updated according to the following update rule
[50]:

Q(s, a)← (1− α) ∗Q(s, a) + α ∗ (R + γ ∗maxa′Q(s′, a′)−Q(s, a))

• s is the current state

• a is the current action

• Q(s,a) is the value of the Q-table for the current state and action

• α is the learning rate, that balances the impact of old and new information

• R is the reward for taking action a in state s

• γ is the discount factor, that weights future rewards to a value in the present

The Q-table gets updated for each action in only one place. Thus, to gather enough
information, the updates continue until one of the termination conditions is reached.
These are not unique to the Q-learning method. Common termination conditions can be
the reaching of a maximum number of episodes, only absolute or relatively small changes
in the Q-table updates occurring, or the optimal policy, which is derived from the Q-table
has not changed for a longer period of time.

2.2 Related Work

The related work section describes scientific work that includes botnet infrastructure,
detection and defense of malware, evasion of malware with AI and two C2 tools as a
comparison to NimPlant.
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2.2.1 Botnet Infrastructure

Previous works have investigated different aspects of C2 infrastructures to understand
botnets better and create systems that can detect and defend against them more efficiently.
In 2014, Gardiner et al. wrote a comprehensive report on the state of C2 channels.
The main focus of their report lies in the mechanics and techniques used to establish
different C2 channels [19]. They also provide introductory discussions of other aspects
of C2 malware and present some case studies of C2-based attacks. An extensive analysis
of all aspects of botnet communication was provided by Vormayr et al. in 2017 [61].
Their work examines botnet topologies and protocols and presents a taxonomy for botnet
communication patterns.

In 2019, Jovanovic and Vuletic analyzed the dynamic behavior of the Mirai and Gafgyt
(also known as BASHLITE) malware which are both powerful botnets used for DDoS
attacks [29]. To observe the C2 systems from the perspective of typical network de-
fense systems, they installed four Raspberry Pi devices, connected them to the internet,
and infected them with the previously mentioned malware. Their work presents insights
into communication, obfuscation techniques, and the Mirai and Gafgyt malware lifecycle.
Compared to this study, their analysis is more observant and general and considers dif-
ferent C2 frameworks. A different study by Marzano et al. also investigates Mirai and
Bashlite but focuses on the evolution of these botnets instead [38]. For this purpose, they
studied 47 honeypots (mock-up bot hosts) over 11 months.

2.2.2 Detection

Network-based defense and detection systems are often insufficient to protect individual
members of the network and offer too little help to fight malware on an infected machine.
For this reason, in 2012, Etemad and Vahdani developed a host-based approach that
identifies an infection on a host by analyzing the inbound and outbound network traffic
[12]. This subsequently allows the filtering out of all malicious traffic to suppress all
communication with the C2 network. Their work is relevant to this study since we are
also interested in detecting a bot by analyzing an infected machine instead of a complete
network.

The opposite approach is shown in a paper by Gu et al. from 2008 [24]. Instead of
observing a single user’s network traffic, they propose a detection system that analyzes
traffic in a local area network to detect C2 channels based on network traffic anomalies.
They argue that even without prior knowledge about a network, it should be possible to
detect patterns in network traffic, given that all bots in a botnet work similarly. Their
experiments showed positive results. However, this technique is less relevant to our study
since we aim to detect an infection on an individual machine instead of finding a complete
botnet.

There exist other techniques to expose botnets. Since many defense systems work by
blacklisting known malicious domains, major botnet malware uses Domain Generation
Algorithms (DGA) to avoid being blacklisted. In 2016, Tong and Nguyen presented a
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DGA botnet detection scheme that applies DNS traffic analysis to identify botnets using
randomly generated domains [53]. They tested their method with more than 300.000
domain names, including domains generated by several DGA botnets, and achieved a
detection rate of 99 percent.

Network traffic monitoring is a common approach when detecting an infection on a host
machine. However, for this reason, advanced malware applies several techniques to behave
like benign traffic, making it difficult to detect it. Another approach is to monitor termi-
nal processes on a machine to search for processes that might be executed by malicious
software. In their study, Tobiyama et al. proposed a detection method based on such
process behavior using feature classification in two different types of neural networks [52].

2.2.3 Defense

In 2006, Bayer et al. developed a tool that analyzes Windows executables by executing
them in an emulated operating system environment [6]. This enables a secure analysis
of unknown executables and helps understand unexplored malware. The results can,
therefore, help detect malicious executables in the first place and help develop appropriate
defensive mechanisms. However, the efficiency of such a tool depends on the number of
executables to be analyzed. It is, therefore, most useful if another virus scanner has
already found unknown executables or if detected malware needs to be further analyzed.

2.2.4 Evasion with AI

• DeepLocker: How AI Can Power a Stealthy New Breed of Malware: In 2018, IBM
Research presented the DeepLocker tool as a new family of stealthy malware [33, 34].
In a proof of concept, they showcased an evasive ransomware attack embedded inside
innocuous video conference software. They illustrated how AI could aid targeted
attacks to evade detection. Besides other concealing techniques often employed by
malware authors to increase the detection evasion rate, DeepLocker only reveals
its malicious payload once it ensures it is being run on the target’s machine. To
this end, the tool leverages AI to identify the target. They demonstrated that
indicators and characteristics like the victim’s facial expression, geographic location,
or voice can be used as the malware’s trigger condition to disclose its malicious
behavior. Especially worth mentioning is that the malware can be embedded inside
benign applications, similar to their proposed Video conference application, that
can spread and be downloaded by thousands of users without the malicious payload
being detected or executed on any of these users’ devices. Utilizing the complicated
nature of Deep Neural Network (DNN) AI models to generate the decryption key of
the adversarial payload makes it nearly impossible to recover the individual attack
characteristics,e.g., determining the individuals for whom the DNN will generate a
valid key, such as in the case of facial recognition, remains an elusive task. Using the
DeepLocker technique, a range of malware families can be concealed and encrypted
inside benign software, and other AI models can be used to trigger the condition
effect.
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• Learning to Evade Static PE Machine Learning Malware Models via Reinforce-
ment Learning: In another work from 2018, researchers introduced a reinforcement
learning agent endowed with a sequence of operations enabling the manipulation
of portable executable (PE) files associated with malware [5]. These modifications
included adjusting header checksums, appending unused sections, and renaming
them. Crucially, these modifications were carefully designed to preserve the PE file
format while introducing alterations that did not compromise the malware’s funda-
mental behavior. Nevertheless, they discovered that the behavior of some mutations
changed in a subsequent test. In rounds, they trained the Agent on various types
of malware. Each training round allowed the Agent to perform up to ten mod-
ifications with a specified budget of 50,000 mutations. The Agent was rewarded
with either 10 or 0 points depending on the effect of its action. They targeted a
static anti-malware engine employing machine learning techniques. This engine pro-
vided binary verdicts- benign or malicious-based on extracted features, command
sequences, and other traits from PE files. While static AV does not offer a 100%
guarantee, they are a primary tool for pre-inspection. In their work, the authors
used a black-box attack approach to simulate a realistic scenario. They claim this is
one of the reasons why the success rate (decrease in median detection rate over the
validation set) was moderate compared to other works (e.g., using white-box, grey-
box attacks), which partially achieved more than 90% evasion. In the context of
their study, the researchers observed significant results concerning 200 ransomware
samples from the validation set. Initially, these samples had a median detection rate
of 52.5 out of 65 on VirusTotal. However, using the trained Agent, the detection
rate notably decreased to 16.5% out of 65%. Interestingly, using a random policy
to mutate the PEs from another 200 ransomware validation set samples decreased
the median detection rate from 44.5 out of 65 to 9.5 out of 65.

• Bringing a GAN to a Knife-fight: Adapting Malware Communication to Avoid
Detection: Maria Rigaki and Sebastian Garcia demonstrated in 2018 the use of
GAN for generating network traffic to mimic other types of traffic [42]. They modi-
fied the network behavior of malware to mimic the traffic of a legitimate application
to avoid detection. The malware they used was the open-source Remote Access
Trojan (RAT) called Flu. Flu was modified first to receive the input from the GAN
generator and then to adapt its network behavior to mimic Facebook messaging
traffic such as Facebook chat. They used the Intrusion Prevention System (IPS)
Stratosphere Linux IPS to evaluate the quality of the generated samples from the
GAN generator. The Stratosphere Linux IPS system was chosen because it could
model behaviors in the network and uses machine learning algorithms to detect
those behaviors in the network. The IPS blocked all the traffic that did not look
like Facebook chat, and the GAN generator was trained until the imitation of Face-
book chats was sufficient to pass the IPS. The malware monitored whether it was
being blocked by the IPS and used this information as a feedback signal to im-
prove the GAN models. The experiment results showed that after enough training
epochs, the researchers managed to reduce the number of blocking actions to zero,
even with a relatively small dataset, which means that the malware can keep behav-
ing like Facebook forever and not be blocked. One constraint that the researchers
highlighted in the experiment was that the communication between malware and C2
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server had to continue unimpeded, which means that the C2 channel of the malware
had to be kept operative.

• Malware Obfuscation through Evolutionary Packers: In 2015, a group of researchers
applied an obfuscation mechanism based on evolutionary algorithms [20]. The idea
was to embed an evolutionary core in the malware to generate a different, optimized
hiding strategy for every infection. They performed experiments on a Windows-
based Operating System with an Intel x86 architecture and used two malware scan-
ners. The malware had a high initial detection rate such that the malware scanner
would detect it without the appliance of the evasion method. Applying the evolu-
tionary algorithm led to the creation of a malware variant that had three different
stages of the evolution of the packing mechanism. The results showed that the detec-
tion rate was high without the packing mechanism. However, as soon as the packing
mechanism was applied, the detection rate decreased drastically. With every further
evolutionary step, the detection rate decreased further.

DeepLocker Evade Static PE Machine
Learning Malware Models

AI Model DNN Reinforcement Learning
Goal Executes malware only on the

target machine.
Modify certain instructions in
the malware PE such that it
cannot be classified as malware
by ML anti-malware engines.

Results Functioning proof-of-concept,
in which Malware is embedded
in a video app and encrypts
payload.

Detection rate varies by mal-
ware family. For Ransomware,
median detection dropped from
52.5 to 16.5 out of 65.

Method Malware payload encrypted
and embedded in benign app.
DNN generates valid decryp-
tion key only when malware
runs on victim’s machine.

Iterates through multiple
rounds with ten modifications
each. RL model rewards based
on anti-malware ML engine’s
classification.

Attack Type Black-box attack Black-box attack
Evasion Dimension Malware Binary Malware Binary

Table 2.1: Evasion with AI part 1

Bringing a GAN to a Knife-
fight

Evolutionary Packers

AI Model GAN Turing-complete evolutionary
algorithm

Goal Mimics legitimate network traf-
fic,

Hides malware binary.

Results With sufficient training, full
evasion is possible, meaning a
detection rate of 0.

With increased evolutionary
steps, the detection rate de-
creased. The last evolution
step led to a detection rate of
1/57.

Method Adapts the network behavior
based on GAN generator input.

Adapts packers to encrypt the
malware in different variations.

Attack Type White-box attack Black-box
Evasion Dimension Network Malware Binary

Table 2.2: Evasion with AI part 2
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2.2.5 C2 Tools

• Empire: is an open-source tool employed within red team engagements to simulate
the actions of actual adversaries. Initially introduced in 2015, the original framework
was eventually archived, leading to its further development and maintenance being
taken over by various forks. The most used and known fork is by bc-security [45].
Empire boasts an array of impressive attributes, including encrypted communication
channels, support for Graphical User Interface (GUI) and Command-Line Interface
(CLI) clients, execution of in-memory .NET assemblies, customizable bypass tech-
niques, and more [45]. It supports profile creation to customize the behavior of
each beacon. Of significant relevance is the observation that both Cobalt Strike
and Empire leverage a common technique of ”malleable” Command and Control
(C2) listeners [46]. One can define and set profiles using the CLI. For example,
it is possible to utilize the Dropbox profile, which emulates the behavior of legiti-
mate communication with the Dropbox API [44], thereby further camouflaging the
communication’s purpose and origin:

1 (Empire) > uselistener dbx

Listing 2.1: Dropbox profile - Empire

A simple script profile defines the listener’s instruction for data interpretation, ex-
traction, and storage. Both Cobalt Strike and Empire can launch one single profile
per Empire instance [46].

• Cobalt Strike: is another post-exploitation toolset engineered to replicate the ac-
tions of sophisticated threat actors, thus mirroring the behaviors of adversarial en-
tities [16]. Characterized by its commercial nature, Cobalt Strike (CS) is primarily
tailored to serve red teaming endeavors. The cobalt strike toolset costs $3,540 per
user for one year license, aligning with its comprehensive and specialized capabilities
[16]. At its core, CS can operationalize various formats to carry its post-exploitation
payload, known as the ”beacon” (to be installed on the victim machine) [17]. A no-
table facet pertains to its integrated phishing mechanism, serving for the delivery
task of the beacon [17]. A distinctive aspect of CS’s methodology is adopting a
deliberate ”low and slow” communication strategy [15]. This methodology simulates
the behavior of advanced malicious software, thereby rendering the communication
inconspicuous and evading detection. It allows custom profiles to camouflage com-
munication between the beacon and the C2 server as much as possible [55].

https://github.com/EmpireProject/Empire/releases
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Table 2.3 presents a concise comparative analysis encompassing Nimplant, Cobalt Strike,
and Empire.

Nimplant Cobalt Strike Empire

Language Nim/Python Java Python/PowerShell2.0

Release Date Initial public release 02.2023 Initial public release 02.2012 Initial public release 10.2015
Configuration Uses TOML file, which is flexi-

ble and extensible to allow per-
sonal adaptations.

Uses a flexible configuration,
that allows for various modifi-
cations.

The configuration is modular
to allow operator flexibility.
There are large amounts of con-
figurable parameters.

Interaction Web GUI & CLI Web GUI & CLI Web GUI & CLI
Platform Support Windows Windows, MacOS X, and Linux Windows, MacOS X, and Linux
Main Purpose Information gathering, first-

stage infection
Commercial tool for Adversary
Simulations and Red Team Op-
erations

Post-exploitation and adver-
sary emulation framework

Evasion Support Encryption, compression, ob-
fuscates static strings

Malleable C2 with changing
network indicators to look like
different malware each time

Adaptable communication pro-
files

Table 2.3: Nimplant and other C2-frameworks

2.3 Discussion

NimPlant was recently published; this master project analyzes and applies an up-to-date
C2 framework. Although there is literature about using AI to evade malware detection,
as shown in Chapter 2.2.4, no prior scientific paper has been released using NimPlant.
This project aims to set up NimPlant in a safe testing environment, use NimPlant to
deploy malware, and apply evasion strategies on NimPlant using AI. Evasion can be
applied on several dimensions and with several strategies, such as using evolutionary
packers on the binary dimension or GANs on the network dimension. AI can reduce the
detection rate of C2 frameworks significantly with sufficient training, leading to powerful
C2 frameworks. This is dangerous since it may incentivize hackers to empower their C2
frameworks with AI to increase their success when executing malicious work. Therefore,
it is important to be one step ahead and to improve detection systems beforehand. By
applying AI on NimPlant and analyzing the findings to propose detection strategies for
enhancing detection systems, this paper can help prepare detection systems for future C2
frameworks that use AI for evasion.

https://github.com/chvancooten/NimPlant/releases
https://download.cobaltstrike.com/releasenotes.txt
https://github.com/EmpireProject/Empire/releases
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Chapter 3

Design

The design chapter presents the scenario including the assumptions for this project, sum-
marizes the snort rules and describes the design of the different stages of NimPlant such
as using NimPlant with command-based evasion or with AI.

3.1 Scenario and Assumptions

For this project, the following scenario was chosen: An IT security employee hired by a
company uses an intrusion detection system and defines monitoring rules based on his/her
IT security knowledge. The reason for selecting this scenario is that it can be regarded as
realistic as there might be cases in companies where companies hire IT security employees
for such purposes. Related to the scenario, two assumptions regarding defensive models
were made, resulting in two different defensive models:

• One naive IT security employee

• One expert IT security employee

Having a more naive and a more expert IT security employee is a reasonable assumption,
as the level of experience of real IT security employees can vary as well. Additionally, the
following assumptions had to be defined such that strategies could be implemented that
worked on our testing setup:

• The system is always online.

• The intrusion prevention system analyses all incoming traffic on a given interface
(i.e., internet connection) and alerts based on packet contents and headers. The
client does not blacklist IP addresses.

• The network packets between different clients and the server are similar.

• The client device already runs the NimPlant executable.

25



26 CHAPTER 3. DESIGN

The first additional assumption of having the system always online is a reasonable as-
sumption since this is the usual goal that providers of client-server systems try to achieve
to provide continuous services. The second additional assumption is necessary because
of our limitations regarding the number of servers. Having only one server means that
if the detection system detects the malicious network communication and then alerts or
blocks every packet from that same IP address, NimPlant would have no chance to con-
tinue working on the affected client. Therefore, the intrusion detection system analyses
packets and alerts based on packet content without alerting based on IP addresses. If
there were more possible servers, then in such a case, the implant may change the server
it is communicating with and continue working on the infected client. But on one side,
we are missing the resources to use multiple servers, and on the other side, changing IP
addresses of the same server would lead to an overextended complexity for this project.
We further assume that the network packets between different clients and the server are
similar since multiple clients would only differ in the IP addresses at the HTTP network
layer. Finally, we assume the client device already runs the NimPlant executable. This is
a reasonable assumption, as one can argue that the file could be transferred and executed
on the victim’s machine through methods like social engineering.

3.2 Snort Rules

The intrusion detection and prevention system Snort 1 was installed on the client during
the setup of the testing environment. Snort was chosen as a detection system because it
provides flexibility regarding the use of monitoring actions, allows the creation of custom
rules, and comes with a large number of predefined community rules which can be ap-
plied to detect potentially malicious network communication. For this project, Snort was
configured to alert based on the rules presented in Table 3.1. The design of these rules
is based on the scenario, the assumptions, and the indicators of compromise described in
the NimPlant network analysis in subsection 5.1.3. The rules are divided into naive rules
and expert rules, following the assumptions of Section 3.1. The complete Snort setup,
including all applied rules, can be found in the following GitHub branch: configuration-
stage-2 2.

1https://www.snort.org/
2https://github.com/MAP-Cyber-Security-AI/Snort-Setup/tree/configuration-stage-2
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Defensive
Model

Nr. Rule Reason for Implementation

Naive 1 Alert packets that contain
the keyword ”nimplant”.

Such keywords may indicate malicious
network behavior, and therefore it is
plausible that detection systems may
send alerts when detecting them.

2 Alert packets that contain
the keyword ”register”.

3 Alert packets that contain
the keyword ”task”.

4 Alert packets that contain
the keyword ”result”.

5 Alert specific ports Monitoring multiple ports generates
more network traffic and presumably
more unrelated alerts. Fewer ports are
easier to manage, and some ports are
at higher risk of attacks than others.

Expert 1 Alert all ports Monitoring all ports negates the risk
of overlooking attacks on unforeseen
ports.

2 Alert host header Host headers are commonly replaced
with domain names. IPv4 addresses
in the header are against common
practice and indicate that the packet
might not originate from a trustwor-
thy source.

3 Alert packet frequency and
packet size

Constant packet frequency may indi-
cate keep-alive mechanisms and high
frequency may indicate DDoS attacks,
or other harmful behaviour. Receiv-
ing streams of packets of similar size
may indicate procedural communica-
tion, such as keep-alive mechanisms.

Table 3.1: Snort Rules

The idea of having two defensive models is rooted in our assumptions, potential infection
scenarios, and how security employees with various knowledge and experience would react
upon discovering the infection.

• Naive defensive model: To simulate small-size enterprises without a dedicated IT
security department and generally low budget for IT. In this defensive model, the
Snort rules creator is assumed to look for apparent indicators, like the NimPlant
keyword, known ports, and potentially suspicious keywords.

• Expert defensive model: This model simulates a more robust detection by alerting
all indicators we discovered during our network and communication analysis phase
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between the master and the bot (cf. Subsection 5.1.3). It also covers all evasion
strategies we implemented in the NimPlant framework (both server and client-side).
Thus, it simulates a more knowledgeable security analyst to better catch and detect
NimPlant C2 traffic. It goes beyond simple static detection to include other dynam-
ics found in C2 traffic, like different ports (to cover port hopping), frequency, and
size of the packets related to the C2 communication.

3.3 NimPlant with command-based evasion

After the configuration of the rules, the initial NimPlant version could be detected and
alerted by Snort. Thus, the NimPlant code was adapted at this stage to change strategies if
commanded proactively by the botmaster. The following table 3.2 describes the strategies
that were implemented and also could be enabled on runtime when giving commands to
the server using the console:

Nr. Strategy Console
Command

Description

1 Server name
changing

Strategy
One

When commanded, the server randomly changes its
server name after each 100 client requests such that
the server name is no longer ”NimPlant C2 Server”.
The server uses server names like ”Apache”, ”GWS”
or ”Domino” combined with numbers to simulate
versioning.

2 User agents
changing

Strategy
Two

When commanded, the client changes its user agents
after every 50 requests such that the user agent is no
longer ”NimPlant C2 Client”. The client uses user
agent names like ”Mozilla/5.0 (Windows NT 10.0;
Win64; x64)”.

3 Port Hopping Strategy
Three

When commanded, the ports for the communication
between client and server change every 10 minutes.

4 Endpoint
changing

Strategy
Four

When commanded, the endpoints of the client and
server change such that the initial endpoints are no
longer observable as long as the strategy is enabled.

5 Host header
changing

Strategy
Five

When commanded, the host header is changed to
no longer show the server’s IP address but to show
a randomly defined web page.

6 Command
request
frequency
changing

Strategy
Six

When commanded, the client changes the frequency
for sending the command requests. Instead of the
initial constant frequency, a varying frequency is ini-
tiated.

7 Packet size
changing

Strategy
Seven

When commanded, then the client and server re-
quests are artificially increased to show a variety
of packet sizes and avoid packets having a constant
packet size.

Table 3.2: Strategies
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The possibility of enabling or disabling strategies leads to the availability of a control
mechanism that creates the base to allow NimPlant to test out strategies and even combine
them.

3.4 NimPlant with AI

This section describes the process of the AI model selection, the assumptions for the
training of the AI, the design of the Q-Learning, the chosen learning parameters and
additional information that is relevant for the design of this stage.

3.4.1 AI model selection

First, we had several AI models in mind that could be used and also were used for evasion
purposes, as we described in the related work in 2.2.4. Using evolutionary packers and
DeepLocker was an interesting approach but is not well suited for this project as we focus
on evasion at the network level. Therefore, we could work with two models: generative
adversarial networks and reinforcement learning. We liked using GANs but encountered
problems generating sufficient and diverse data. The requirements regarding data are
much higher, as, for example, we would have to collect a sufficient amount of legitimate
network data (for example, WhatsApp communications) and malicious network data (of
NimPlant communication). Both data sets posed difficulties during the project as we
had only one client and one server. Therefore, we decided to use reinforcement learning
because the agent’s training is less challenging as not two large data sets are required
compared to the GAN. Reinforcement learning is also better fitted for our purpose as
we could automate the activation and deactivation of strategies with machine learning.
GANs would help to hide the general NimPlant communication by simulating legitimate
network communication. Still, GANs would not help us in enabling disabling strategies
and measuring the consequences of it. Having an agent enabling/disabling strategies and
getting rewarded based on the outcome of its actions was more intuitive and had lower
data requirements.

3.4.2 Assumptions related to Training of AI

We used a lab scenario with one infected client and the NimPlant server, where the
strategies are controlled by the RL agent. A main goal was to test if the chosen AI
method can be used to learn patterns for improving evasion. Two different agents were
trained, one for the naive rules and one for the expert rules. Following assumptions were
established to reduce noise and improve the learning results.

• The model has access to the snort alerts.

• The connection between server and client is reliable and NimPlant is not blocked.
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• All strategy changes are done by the RL agent.

Getting access to snort alerts in a real scenario could be possible as a NimPlant connection
to a client would enable the attacker to install additional malware, which could get access
to the snort alerts and transfer them to the server. Because Snort does alert but does
not block any traffic, it is realistic that a connection between client and server could
continue even though several alerts would indicate a NimPlant infection. The case, where
disconnections and blocking of traffic are considered is part of future work.

3.4.3 Q-Learning

In this project Q-Learning was used as the reinforcement learning algorithm. Each state
has seven boolean attributes indicating if the strategies are enabled or disabled. This
gives us two to the power of seven different states, thus the observation space has 128
distinct states. The agent has eight possible actions, which include actions to switch each
strategy from enabled to disabled and vice versa and an additional action to do nothing.
Thus, the Q-table has 128 rows and 8 columns. For the reward function we use the set
of triggered alerts in the current state and weight each alert by a factor indicating how
clearly this alert may indicate a NimPlant communication. For example if an alert is
triggered, that indicates that the keyword ”NimPlant” is detected in the packet header,
the alert is weighted with factor 5, because it can be seen as a clear indicator for NimPlant
communication. In contrast if an alert was triggered, that indicates the detection of the
keyword ”register”, then this alert is weighted with factor 1 as ”register” can also be a
non-malicious network activity coming from legitimate systems.

3.4.4 Learning Parameters

The learning parameters were chosen based on current literature, documentation and
testing from our side. All the parameters have values in their usual range for a Q-learning
scenario. For the learning rate α, the value of 0.2 was chosen, which has the effect that
the values are more stable and new information only update the values moderately. The
Discount factor γ has a value of 0.95, which gives a high weight for future rewards. For
the value of ϵ 0.2 was chosen, thus only in 20% of the cases a random action was chosen.
The number of episodes was set to 100. This was long enough for the Q-table to converge
and still not too long for the setup to run into problems. An episode starts in the initial
state, where no strategies are enabled and runs until the done condition is met, which
was in this case no Snort alerts and not more than five strategies enabled. The length of
episodes can vary widely. In similar settings, episodes at the beginning took significantly
longer than later ones.

3.4.5 Alert Reading

The required input for the running RL algorithm were the alerts generated by the intrusion
detection system. For this purpose, Snort was run in a mode that writes alerts in a log
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file at real time. Additionally, we equipped both the client and the server each with a
Python script, which established a connection using Python sockets. The client’s script
read new log entries the moment they came in, applied some filters, and sent the relevant
entries to the server, which then fed them to the RL algorithm.

3.4.6 Additional Adaptions

For the purpose of data collection, after each step all learning data like action, number of
alerts, state and reward were saved. Also a fail save was built in where after each episode
the current number of the episode and the most recent Q-table were saved. The fail save
ensured that if the learning would have stopped then a restart would be able to start right
after the last successfully completed episode.
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Chapter 4

Implementation

This chapter shows the implementation of NimPlant with command-based evasion and
with AI.

4.1 NimPlant with Command-based Evasion

The following section contains subsections which describe the implementation of the differ-
ent strategies for evading the detection of NimPlant. The adaptions of NimPlant related
to this stage were committed in the following GitHub branch evasion-stage-2 1.

4.1.1 Strategy One - Server Name Changing

To implement Strategy One, the listener.py in the server part, which is responsible for
the communication with the client, was adapted to have a random server name generator.
Another relevant file is the server.py, where a console input had to be added such that
the botmaster could enable or disable the strategy using the console. Figure 4.1 shows
the architecture of NimPlant with the most relevant files for this project. The marked
files are the ones adapted for this strategy.

Since the nimplant.py is responsible for keeping track of the server state, three variables
were added to this file. One variable was added to track whether Strategy One was enabled
or not. The second variable is to reverse the server name back to ”NimPlant C2 Server,”
if the strategy was enabled and then set back to be disabled. Finally, the third variable
was added to save the number of client requests. Saving the number of client requests
allowed the listener.py to check whether the desired number of requests has been reached
to change the server name.

1https://github.com/MAP-Cyber-Security-AI/Nimplant/tree/evasion-stage-2

33
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Figure 4.1: Strategy One: Server Name Changing

4.1.2 Strategy Two - User Agents Changing

The server and the client side must be adapted to enable the random user agent changing.
Looking first at the server side, the files had to be changed as in Strategy One. The
server.py and the nimplant.py were adapted the same as in Strategy One by adding console
input in server.py and a variable to keep track of the strategy state in the nimplant.py.
Figure 4.2 shows the affected files for implementing this strategy.

The third affected server file is the listener.py that needed two major adaptions. On one
side, the listener.py has to communicate the state of whether the strategy is enabled or
not to the client. This is why the file was adapted to encrypt the state and send it to
the client after each client request such that the client gets informed, whether it has to
execute the user agents changing or not. On the other side, the file had to be adapted to
not only allow the initial user agent ”Nimplant C2 Client”, but to accept a list of possible
legit-looking user agents like ”Mozilla/5.0 (Windows NT 10.0; Win64; x64)”. On the
client side, the file webClient.nim had to be adapted to generate legit-looking user agents
randomly if it detects on the server responses that the strategy is enabled.

Disabling the strategy would trigger the client to generate the initial ”Nimplant C2 Client”
user agent. To keep track of the strategy state, the webClient.nim was adapted to have
a state variable updated after each server response. Finally, a counter was needed on the
same file to ensure that after the desired number of requests have been reached, the legit
user agent would be changed to another legit user agent if the strategy was enabled.



4.1. NIMPLANT WITH COMMAND-BASED EVASION 35

Figure 4.2: Strategy Two: User Agents Changing

4.1.3 Strategy Three - Port Hopping

The same files as in Strategy Two, shown in figure 4.2, had to be adapted. To enable port
hopping, the server.py was changed, so the botmaster can use a console input to stop
the current listener thread, change the port in the configuration for the new listener, and
start a new listener thread. Ports are changed in 10 minutes and chosen randomly from
a list of possible ports unless Strategy One is enabled, which changes the server name. In
this case, the port will change when the server name changes, according to a dictionary
shown in 4.1, where each possible server name has a port assigned. In the file listener.py,
the GET endpoint for tasks was also adapted to return information about the next port.

1 ...

2 possiblePorts = [8080, 8081, 8082, 8083, 8084, 8085, 8086, 8087]

3
4 serverNamePortDict = {"Apache": 8080, "IIS": 8081, "Nginx": 8082, "

Lighttpd": 8083, "NetWare": 8084, "GWS": 8085, "Domino": 8086, "

NimPlant C2 Server": 80}

5 ...

Listing 4.1: Port numbers and associated services - server.py

On the client side, the webClient.nim was changed to receive the information about the
next port and change to the target port. To register a new listener, the server will always
keep the port from the configuration open. This port is defined at compile time as shown
in 4.2.
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1 ...

2 # Configure listener port , mandatory even if hostname is specified

3 port = 80

4 ...

Listing 4.2: Default Port number - config.toml

After registration and if Strategy Three is enabled, the target port is changed accordingly
without having to re-register to the listener; thus, commands given over one port can be
returned over another if the port is changed on the server side before asking for a task. If
Strategy Three gets disabled, the server and the client will change back to the port set in
the configuration file.

4.1.4 Strategy Four - Endpoint Changing

To further improve the evasion, the config.toml was changed such that the endpoint for
the registration of the client is no longer "/register" but instead "/r" as shown in figure
4.3 and listing 4.3.

Figure 4.3: Strategy Four: Endpoint Changing
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1 ...

2 # Configure the URI paths used for C2 communications

3 registerPath = "/r" # previoulsy "/ register"

4 taskPath = "/task"

5 resultPath = "/result"

6 ...

Listing 4.3: Compile-Time Config: Endpoints - config.toml

To handle the input of the bot master, the server.py was adapted on the server side
to enable or disable Strategy Four and the nimplant.py to save the state of the strat-
egy. The listener.py had to be adapted on one side to communicate the Strategy Four
state coming from the nimplant.py to the client, and on the other side, endpoints were
added. The endpoints responsible for answering the client’s getTask() requests, upload-
ing files, downloading files, and getting results from the client were copied and adjusted
with random endpoint names. Traditionally, endpoints like ’/task’ and ’/result’ are
clear indicators of automated activity. To counteract this, we implemented a dynamic
endpoint renaming mechanism, as illustrated in our proof of concept (PoC), where we
replaced ’/task’ with ’/zero’ and ’/result’ with ’/zone.’ This modification was
facilitated by the changeEndPointsStrategy() function on the client side, as detailed in
Listing 4.4.

1 proc changeEndPointsStrategy(li :var Listener): void =

2 li.taskPath = "/zero"

3 li.resultPath = "/zone"

4
5 proc doRequest(li: var Listener , ...) : Response =

6 ...

7 if li.changeEndPoints:

8 changeEndPointsStrategy(li)

9 ...

Listing 4.4: Overwriting Communicaiton Endpoints - webClient.nim

This function alters the endpoints for task listening and result submission based on the
configurations of Strategy Four. The strategy can be extended to other endpoints from
a predefined set of endpoint names or generate random endpoint paths. Those endpoints
are only used if Strategy Four is enabled; otherwise, they are ignored.

Crucially, for the efficacy of this strategy, synchronization between the client and server is
paramount. When an endpoint is changed on the client, the server must be concurrently
updated to recognize and respond to requests on the new endpoint. This synchronization
ensures seamless communication despite the dynamic nature of the endpoint paths. By
implementing such a strategy, we demonstrate the potential to significantly reduce the
detectability of bot traffic, as standard, easily identifiable endpoints are replaced with
unconventional, varying ones, complicating the task for defensive network monitoring
systems.
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4.1.5 Strategy Five - Host Header Changing

Based on the inspection of indicators of the compromise phase, we extensively utilized
community-based Snort rules. One such rule notably flagged instances where the Host
header contained an IP address [49]. To address this, we employed Strategy Five, focus-
ing primarily on the client-side aspect (mainly modifying webClient.nim), as the client
consistently issued GET requests with its IP address in the header. We modified the Host
header to validate this in our PoC, setting it to "www.good-website.com," as shown in
Listing 4.5.

1 proc doRequest(li: var Listener , ...) : Response =

2 ...

3 if li.changeHost:

4 headers.add(Header(key: "Host", value: "www.good -website.com"))

5 ...

Listing 4.5: Overwriting Host Header - webClient.nim

The underlying premise for such an alert could be substituting a domain name with an IP
address, potentially enabling DNS bypass, diverging from standard web traffic patterns,
and indicating possible command and control operations.

The server side needed the basic server adaptions on the server.py, nimplant.py, and
listener.py, which were done the same as in the previous strategies to allow the input for
the bot master, to keep track of the strategy state and communicate the strategy state to
the client. Therefore, the affected files are the same as shown in figure 4.2.

4.1.6 Strategy Six - Command Request Frequency Changing

In Strategy Six, we aimed to disrupt the predictability of communication timing between a
bot and its master server. Originally, the bot’s ping intervals to the server for task retrieval
were consistent, revealing a discernible pattern due to the sleep time being fixed at compile
time and thus unchangeable during runtime, as illustrated in Listing 4.6 extracted from
config.toml.

1 ...

2 # Configure the default sleep time in seconds

3 sleepTime = 10

4 # Configure the default sleep jitter in %

5 sleepJitter = 0

6 ...

Listing 4.6: Compile-Time Config: Sleep and Jitter Parameters - config.toml

As demonstrated in Listing 4.7, derived from webClient.nim, Strategy Six incorporated a
’jitter’ mechanism into the bot’s request protocol to mitigate this.
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1 proc doRequest(li: var Listener , ...) : Response =

2 ...

3 if li.changeSleepTime:

4 li.sleepJitter = 0.6

5 else:

6 li.sleepJitter = 0

7 ...

Listing 4.7: Activating Jitter in Strategy Six - webClient.nim

A jitter (variation of latency) of for example 0.6 means that the actual sleep time between
requests varies randomly, with a maximum deviation of 60% from the set sleep interval.
For example, if the default sleep time is 10 seconds, with a jitter of 0.6, the actual sleep
time could vary between 4 seconds (40% of 10 seconds) and 16 seconds (160% of 10
seconds). This variability is introduced to make the bot’s communication pattern less
predictable and more akin to human-like traffic.

The importance of adding jitter lies in its ability to mask automated behaviors, making
detection by network monitoring tools, which often look for regular, machine-like patterns,
more challenging. By implementing this jitter, the bot’s traffic blends more seamlessly
with regular user traffic, reducing the likelihood of detection and enhancing the bot’s
effectiveness in an offensive security context.

As described in the previous strategy, the usual adaptions had to be made on the server
side.

4.1.7 Strategy Seven - Packet Size Changing

Strategy Seven of this master project addressed the uniformity of packet sizes in bot com-
munications, specifically in GET task requests. As demonstrated in the Wireshark capture
4.4, packet sizes remained constant before enforcing Strategy Seven. Upon activating this
strategy, packet sizes began to fluctuate randomly, reverting to their original fixed size
once the strategy was deactivated.

Figure 4.4: Packet Size Variation with Activated Strategy Seven



40 CHAPTER 4. IMPLEMENTATION

Varying the packet size is crucial in this context for evading detection by network mon-
itoring systems. Fixed packet sizes, especially with consistent time intervals, indicate
automated, non-human traffic. By introducing variability in packet size, the traffic mim-
ics the less predictable patterns of human-generated network activity more closely, thereby
reducing the likelihood of detection.

To achieve this variability, and for the sake of our PoC, we utilized the ’X-Request-ID’
header. Typically used to identify HTTP requests uniquely, this header was repurposed
to add random-length strings ranging between 50 and 200 characters, as illustrated in
Listing 4.8, adapted from webClient.nim.

1 proc doRequest(li: var Listener , ...) : Response =

2 ...

3 # check if packet size shall change

4 if li.changePacketSize:

5 # add a header with the random generated string

6 headers.add(Header(key: "X-Request -ID", value: randomString (50, 200)

))

7 ...

Listing 4.8: Random-Size Header Addition - webClient.nim

This randomization directly impacted the packet size, creating the desired variability. The
choice of the header for this addition was necessitated by the nature of GET requests, which
do not have body content to modify. Hence, the header was the only viable section to
introduce this randomness. This approach underscores the innovative methods employed
in offensive security to subtly alter traffic characteristics and evade detection systems,
demonstrating the nuances and depth of strategic techniques that can be used.

To adapt the server for the artificial creation of content, a function was added in the
listener.py that generated random content called contentGenerator, shown in Listing
4.9.

1 def contentGenerator ():

2 np = np_server.getNimplantByGuid(flask.request.headers

3 .get("X-Identifier"))

4
5 # Choose one random number

6 randomNumber = random.randint (200, 700)

7
8 # Ensure that the last two random numbers are not the same

9 while abs(randomNumber - np_server.lastRandomNumber) < 50:

10 randomNumber = random.randint (200, 700)

11
12 # Update the last random number for future comparisons

13 np_server.lastRandomNumber = randomNumber

14
15 # Multiply random number with a character to generate the content

16 createdContent = ’x’ * randomNumber

17
18 # Encrypt

19 createdContentEncrypted = encryptData(str(createdContent), np.

cryptKey)

20 return createdContentEncrypted

Listing 4.9: contentGenerator - listener.py
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The function uses a range between 200 and 700 to generate a random number. The
random number is then multiplied with the character ’x’ to create the artificial content,
encrypted, and finally added on one side to the header and on the other side to the body
of the server request. The range between 200 and 700 resulted from tests that assured
a sufficient variety in the resulting packet sizes. Increasing the range on the lower part
would increase the risk of still generating alerts, as the resulting content may be in the
range of the alert. Increasing the upper range would increase the risk that the server
may create a third TCP segment when sending the requests, which would increase the
risk that the third segment would have a content size in the alert range as Snort checks
each TCP segment of a request. Therefore, a compromise for the range was found to
reduce both risks. To further increase the variety, the function ensures that the last two
randomly generated numbers must have a difference equal to or larger than 50. Other
server adaptions that impacted the listener.py, server.py, and nimplant.py were the same
ones as in all previous strategies.

4.2 NimPlant with AI

This section aims to give detailed information about the implementation and integration
of the AI model into the NimPlant environment. The code snippets are in some cases
cleaned up and unnecessary code, for example for data collection or for the fail save, was
removed. The adaptions of NimPlant related to this stage were committed in the following
GitHub branch evasion-stage-3 2.

4.2.1 Q-Learning

The Q-Learning training function is implemented in such a way, that it takes as input the
learning environment, the alpha value, which is the learning rate, that balances the impact
of old information and new information, the gamma value, which is the discount factor,
that revalues future rewards to the current time, the epsilon value, which is between 0
and 1 and balances exploration and exploitation, and the number of episodes the learning
algorithm should run. The function call is shown in Listing 4.10.

1 env = NimPlantEnv ()

2 env.reset()

3 nimplantPrint("Waiting 30 seconds for client to connect . . .")

4 time.sleep (30)

5 nimplantPrint("Started Q_learning")

6
7 Q_learn_pol , Q_table = Q_learning_train(env , 0.2, 0.95, 0.2, 100)

8 # env , alpha , gamma , epsilon , episodes

Listing 4.10: Call of Q-Learning - server.py

2https://github.com/MAP-Cyber-Security-AI/Nimplant/tree/evasion-stage-3
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The Q-learning training starts with the initialization of the Q-table with small random
values, as it is detailed in Listing 4.11. This is a practical approach for the beginning as
no information is seen yet thus we want to explore more in the beginning and only later
we want to exploit the gathered information more. For every episode the environment
gets reset and the inner loop will run until a high enough reward was achieved. During
these iterations the action gets decided either randomly, which happens in our case in 20
percent of the time or by selecting the action with the best Q-values, which happens in the
other 80 percent of the time. After the decision of the action is sent to the environment, it
gets executed and the reward, the next state and the information if the reward threshold
is reached to stop this episode, get returned. With the reward information the Q-table
gets updated according to the update rule.

1 def Q_learning_train(env , alpha , gamma , epsilon , episodes):

2
3 #Initialize Q table of 128 x 8 size (128 states and 8 actions) with

small random values

4 q_table = np.random.rand(env.observation_space.n, env.action_space.n

) * 0.01

5
6 for i in range(1, episodes +1):

7 state = env.reset()

8 reward = 0

9 done = False

10
11 while not done:

12 if random.uniform(0, 1) < epsilon:

13 # Explore action space randomly

14 action = env.action_space.sample ()

15 else:

16 # Exploit learned values by choosing optimal values

17 action = np.argmax(q_table[state , :])%8

18
19 next_state , reward , done , info = env.step(action)

20
21 old_value = q_table[state , action]

22 next_max = np.max(q_table[next_state , :]) if q_table[

next_state ].size > 0 else 0

23
24 new_value = (1 - alpha) * old_value + alpha * (reward +

gamma * next_max)

25 q_table[state , action] = new_value

26
27 state = next_state

28
29 policy = derive_policy(env , q_table)

30 return policy , q_table

Listing 4.11: Q-learning - Qlearning.py

After the training has completed the final Q-table and the optimal policy are returned.
The optimal policy can be derived from the Q-table by simply selecting the action with
the highest Q-value in each state, as showed in Listing 4.12.
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1 def derive_policy(env , q_table):

2 # Start with a random policy

3 policy = np.ones([env.observation_space.n, env.action_space.n]) /

env.action_space.n

4
5 for state in range(env.observation_space.n): # for each states

6 best_act = np.argmax(q_table[state])%8 # find best action

7 policy[state] = np.eye(env.action_space.n)[best_act] # update

8
9 return policy

Listing 4.12: Policy derivation - Qlearning.py

4.2.2 Learning Environment

The python library gymnasium3 was used to create the reinforcement learning environ-
ment as shown in Listing 4.13. For the action space eight discrete values from 0 to 7 were
used, because they can be mapped to their according strategy by the index. As each state
has seven boolean values indicating if each strategy is enabled or disabled, the possible
observation space has 2 to the power of 7 possible combinations, which results in 128
states. The initial state will be an array of 7 values, which are all zeros, indicating that
no strategy is enabled. A key component of the environment is the step function, which
first checks whether the action selected in Q-learning is possible in the current state. In
this case this is not necessary as in every state every action is possible. After the strategy
which is assigned to the selected action has been triggered, the function waits 15 seconds
to accumulate the alerts and then count them. Afterwards the state information gets
updated, the reward is calculated, the function checks if the done condition is met and
then returns all the information.

1 class NimPlantEnv(gym.Env):

2
3 def __init__(self , natural=False):

4 self.action_space = spaces.Discrete(8, start =0)

5 self.observation_space = spaces.Discrete (128)

6 self.state = np.zeros(7, dtype=bool)

7
8 def step(self , action):

9
10 assert self.action_space.contains(action)

11 done = False

12 strategy = self.actionDict[action]

13 self.trigger_strategy(strategy)

14 self.action_time = datetime.now()

15 print("Sleep for 15 seconds to count alerts ...")

16 time.sleep (15)

17
18 # Read and filter Snort alerts based on the time interval

19 alerts = self.read_snort_alerts ()

20 if(action != 0):

21 self.state[action -1] = not self.state[action -1]

3https://gymnasium.farama.org/index.html

https://gymnasium.farama.org/index.html
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22
23 reward = self.reward(alerts)

24
25 if(reward >= min_reward_to_done):

26 done = True

27 return self.state_to_index(self.state), reward , done , {}

Listing 4.13: Environment - NimPlantEnv.py

4.2.3 Reward Function

In Listing 4.14 the alert weight dictionary and the reward function are shown. An alert
that is a good indicator of a NimPlant infection has a high weight, and an alert that
could also be triggered by other programs has a lower weight. The range of the weights
is from 1 to 5. For the calculation of the reward the alerts and the number of strategies
enabled were relevant. If there are no alerts then the max reward of value 10 subtracted
with the number of enabled strategies is the final reward. In the case where alerts would
be triggered, the function would sum up the weights of the triggered alerts and the sum
would then be multiplied with a factor of -4, which is the punishment per weight. Again
the number of enabled strategies is subtracted from the reward.

1 self.alert_weights = {

2 1000301: 5, # nimplant keyword

3 1000302: 1, # register ->

4 1000303: 2, # task ->

5 1000304: 2, # result ->

6 1000305: 5, # nimplant keyword

7 1000306: 1, # register <-

8 1000307: 1, # task <-

9 1000308: 1, # result <-

10 1000309: 3, # thresholds 2 in 0.5 minute size 200<>300

11 1000310: 3, # thresholds 2 in 0.5 minute size 150<>200

12 1000311: 3, # thresholds 2 in 0.5 minute size 100<>150

13 1000312: 1 # IP_IN_HOST_HEADER

14 }

15
16 def reward(self , alerts):

17 number_of_alerts = len(alerts)

18 punishment_per_weight = -4

19 max_reward = 10

20
21 if number_of_alerts == 0:

22 reward = max_reward - self.state.sum()

23 else:

24 sum_of_weights = 0

25 for sid in alerts:

26 sum_of_weights += self.alert_weights[sid]

27 reward = punishment_per_weight * sum_of_weights - self.state

.sum()

28 return reward

Listing 4.14: Reward Function - NimPlantEnv.py



Chapter 5

Evaluation

The evaluation chapter describes the findings related to the initial NimPlant configuration,
NimPlant with other malware, and NimPlant with AI and concludes with a discussion.

5.1 Initial NimPlant Configuration

The setup, pre-findings, and network analysis of the initial NimPlant configuration are
presented in this section.

5.1.1 Setup

For the client, we used a desktop computer with an Intel Core i5-3550 CPU and 8GB
RAM, formatted the hard drive, and installed the newest version of Windows 10, as
shown in Figure 5.1. To monitor the client’s network traffic, we installed Wireshark1 on
the client. Wireshark is a popular network protocol analyzer. It logs individual packets
and allows saving logs of given time frames. We use these to determine whether we can
detect NimPlant based on the client’s network activities. Since bots usually communicate
over a network to receive commands, release information, perform attacks, or redistribute,
monitoring network connections and traffic is a potentially effective detection technique.

We used an Ubuntu VM with Ubuntu 23 as the operating system for the server. To be able
to use the Web-based GUI of NimPlant, a lightweight desktop GUI called Ubuntu MATE2

was installed, which runs well on the limited resources in the setting of this experiment
with 4GB RAM and with 50GB disk space available. To access the same remote desktop
from different devices, TightVNC3 was used. The necessary modules and dependencies for
NimPlant were installed according to the instructions on the GitHub repository4. After

1https://www.wireshark.org/
2https://ubuntu-mate.org
3https://www.tightvnc.com
4https://github.com/chvancooten/NimPlant
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Figure 5.1: Testing Setup

starting the NimPlant server, the web-based GUI can be opened with the preinstalled
browser, which was Mozilla Firefox5.

5.1.2 Pre-Findings

NimPlant, with its initial settings, was tested on the client after completing the setup in
stage 1 to determine whether the Windows Defender detects malicious network traffic.
Data was collected using Wireshark before and after the infection with NimPlant. It was
discovered that the Windows Defender would detect and block the NimPlant binaries.
Hence, no execution was possible without explicitly permitting Windows Defender to allow
NimPlant to be downloaded and executed. Therefore, a second infection was executed,
but in that case, disabling all the features of the Windows Defender except the firewall and
network protection. The second infection showed that the firewall and network protection
could not detect the malicious NimPlant communication. The NimPlant server could give
commands to the client, and the client responded and executed the commands without
any interference from the Windows Defender. Thus, NimPlant is initially already able to
evade the detection of malicious network traffic by the Windows Defender; the decision
was made to use the intrusion detection system Snort and to apply the evasion on Snort.

5.1.3 NimPlant Network Analysis

The underlying network communication of NimPlant follows the same principles as every
client-server system, where the communication is based on REST APIs like POST and
GET requests. But unlike usual client-server systems, NimPlant uses the REST APIs
for malicious activities. Once the victim’s machine has been infected and the NimPlant
executable is executed, the infected machine sends GET requests to the server, as shown

5https://www.mozilla.org
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in Figure 5.2. As soon as the server notices the requests from the client, the server creates
an ID and sends the ID to the client. Since now the client has the affirmation that the
server is online, the client initiates a POST request to complete the registration by sending
encrypted data about the victim.

Figure 5.2: NimPlant HTTP Communication Process

After the registration has been completed, the client continuously asks the server for
commands using GET requests. As soon as the server sends a command, for example,
to take a screenshot, the client executes the command, sends the result with a POST
request, and continues asking for further commands.

Analyzing the communication process with Wireshark enabled the display of the HTTP
data packets sent between the client and the server. Analyzing the HTTP packets al-
lows for uncovering indicators of compromise. Some of them are marked green in Figure
5.3. The indicators of compromise can be detected on the initial NimPlant configuration
without any code adaptions:
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• One of the indicators of compromise can be the naming of the client and the server.
Naming the client ”User-Agent: NimPlant C2 Client” and the server ”Server: Nim-
Plant C2 Server” openly indicates that a C2 communication is happening.

• A second indicator of compromise could be keywords in the URL like ”register”,
”task”, and ”result”, which may indicate that a malicious bot asks for commands
and returns results.

• NimPlant initially uses port 80 to communicate between the client and server. Thus,
this port can be seen as a potential indicator of compromise when being aware that
NimPlant is using it.

• Revealing the IP address of the host server in each client request header may also
indicate a NimPlant-specific indicator of compromise, as it is not usual to reveal the
host’s IP address in the header.

• The frequency of the packets from the client asking for commands is constantly
10 seconds. This may indicate a malicious communication as it may indicate a
keep-alive mechanism that C2 frameworks use.

• Observing the network traffic also reveals some constant packet sizes in the client
and server requests as demonstrated for the client in 4.4. Constant packet sizes that
are specific for NimPlant can indicate NimPlant activities.

• Using HTTP instead of HTTPS in the network communication leads to having
intrusion prevention systems alerting that the communication is not secure. Thus
HTTP can be an indicator of compromise.

A command is given encrypted, and as soon as the client executes it and sends back the
results, the results are encrypted, too.

Figure 5.3: Indicators of Compromise in the HTTP Network Communication
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5.2 NimPlant with other Malware

Since the Windows Defender can detect the NimPlant.exe, we had to deactivate the
Windows Defender to be able to run the executable such that the network could be
analyzed during the use of NimPlant with additional malware. For the additional malware,
we chose to use ransomware. We decided to use ransomware because it is plausible that
in a real-world scenario, hackers could combine C2 frameworks like NimPlant as a first
infection malware to deploy, then more harmful malware like ransomware to encrypt the
data of the victim and then blackmail the victim for money. For our analysis, we chose
the ransomware called Crypter 6. Crypter is an open-source ransomware developed by
researchers for experimental and educational purposes. Crypter has the benefit that the
key for the decryption is generated on the same device, such that after the encryption
happens, the user can use the key provided to them to decrypt the device.

First, we executed the NimPlant.exe. As soon as it started running, we executed several
commands using the web user interface of NimPlant as shown in Figure 5.4

Figure 5.4: Given commands using NimPlant with Crypter

The first command was used to upload Crypter on the victim’s machine. Then, the
directory was changed to access Crypter, and finally, a shell command was done to execute
Crypter. As NimPlant is initially designed to return the location of the upload, the hacker
would get the information they need to move to the correct path using the command cd

and run the Crypter executable with the command shell start.

The same process can be analyzed at the network communication level with Wireshark.
The upload of Crypter using NimPlant is shown in Figure 5.5, where the requests related

6https://github.com/sithis993/Crypter
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to the upload command are marked within the red square. It can be spotted that once a
command like the upload command is initiated, the constant communication with fixed
packet lengths (i.e., client-side 212 bytes and server-side 318 bytes) is interrupted by
packets that break this pattern with varying packet lengths.

Figure 5.5: Upload of Crypter using NimPlant

It can first be observed that the server informs the client that an upload will take place
in the HTTP request of 447 bytes and then confirmed by the client with the HTTP
size of 268 bytes. Then the upload starts, and in such a case where a large file like
the Crypter.exe with a size of around 13.5 million bytes compressed in a gzip has to be
uploaded, NimPlant splits the segments of the file into multiple TCP segments. Those
are linked with each other and to the main HTTP request. Wireshark captures this
segmentation and reconstructs it by linking the TCP segments to the corresponding HTTP
request of the size 575 bytes. Clicking on this HTTP request opens the subordinate
reassembled TCP segments as shown in the figure. After the file has been uploaded, the
client informs the server about the upload location in the request of the size 233 bytes,
which confirms this with the HTTP request of the size 70 bytes. Next, the cd command
with the size of 419 bytes and the shell start command with the size of 407 bytes can be
observed in the Figure 5.6 which again, like the previous command, disrupt the constant
flow of client and server requests of fixed sizes.

Even if, in a real-world scenario, more adaption of the NimPlant.exe and Crypter.exe
binaries would be needed to evade the detection by the Windows Defender (like, for
example, using binary obfuscation with polymorphism as described in chapter 2.1.5.2,
in a further way to even use AI-based evolutionary packers like described in 2.1.5.6),
this demonstration shows that NimPlant has powerful functionalities to execute attacks
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Figure 5.6: HTTP communication of the ”cd” and ”shell start” commands

which could be potentially used by hackers remotely. In such a case, the hackers would use
ransomware that sends the decryption key back to their servers and then start blackmailing
the victim.

5.3 NimPlant with AI

This section will compare the results gathered from the RL agent’s training. This will
provide insights into the agent’s performance under varying conditions and rule sets,
mainly focusing on its effectiveness under naive rules on the target system compared to
its counterpart trained with advanced, expert-driven rules. This comparative analysis
aims to unveil the divergences in training outcomes under distinct rule sets and reveal the
effectiveness of the implemented strategies in enhancing the agent’s proficiency during the
training phase.

In our comprehensive results analysis, we organize our presentation of results into three
distinct components, each shedding light on various facets of our RL models’ performance:

1. Training Time: Unveiling the temporal dynamics of our models’ training, we scru-
tinize the time investment required for proficiency under diverse rule sets. This part
provides insights into the duration disparity between models subjected to naive and
expert-driven rules, offering a nuanced understanding of the training phase.

2. Actions and Rewards: Delving into the behavioral aspects of our models, we explore
how the number of actions and rewards evolves across episodes for both models. This
segment aims to clarify the agents’ learning trajectories, showcasing the improve-
ment patterns in their decision-making processes and the corresponding rewards
obtained during training.

3. Strategies: Embarking on a detailed examination of the learned strategies, this part
employs comprehensive heatmap comparisons to reveal the significance and distri-
bution of strategies employed by both models throughout training. By unraveling
the intricacies of strategy utilization, we aim to highlight the strategic adaptations
that contribute to the models’ evolving competence in evading Snort rules.
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5.3.1 Q-Learning Results - Training Time

As illustrated in Figure 5.7, a notable divergence in training times emerges. The model
subjected to naive rules exhibits a relatively rapid convergence, completing 100 training
episodes in just over an hour. In contrast, the model trained against expert rules requires
approximately 6 hours to accomplish the same training. This discrepancy can be directly
attributed to the termination conditions and the reward function. The more intricate
evasion rules in the expert scenario demand extended training periods for the model to
navigate the augmented complexity, emphasizing the relationship between the rule set
and the time required for model proficiency.

Figure 5.7: Models Training Time

Figure 5.8 provides a nuanced temporal perspective, analyzing the training time per 20
episodes, grouped into five intervals (Episode Groups). The expert model exhibits a
compelling trend, demonstrating a reduction in training time as it gains insights into the
environment.

As the model accumulates knowledge, it strategically exploits its learned strategies to
enhance evasion, gradually reducing alerts. In contrast, the naive model displays slightly
higher initial training times but achieves stability in the later episode groups. This sta-
bility arises from the model’s discovery of an optimal set of strategies that yield minimal
alerts, resulting in higher rewards. Consequently, the naive model’s overall training time
diminishes, reflecting the efficacy of the learned strategies in mitigating alerts and opti-
mizing performance.

These findings emphasize the relationships between rule complexity, training time, and
the adaptive learning process of reinforcement learning agents in evading detection within
the context of Snort rules. The expert model’s extended training duration highlights
the necessity of comprehensive training to tackle intricate rule sets. At the same time,
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Figure 5.8: Models Training Time - Grouped Episodes

the temporal dynamics depicted in Figure 5.8 emphasize the iterative refinement and
exploitation of learned strategies in the pursuit of efficient evasion strategies.

5.3.2 Q-Learning Results - Actions and Rewards

In Figure 5.9, we present a detailed examination of the number of actions the RL agent
takes per episode, contrasting its behavior under naive and expert Snort rule scenarios.
Initially, due to the stochastic nature of Q-Learning, both models exhibit an increased
number of actions. As the episodes progress, a discernible decrease is observed, signifying
the models’ learning and adaptive capabilities. Notably, the model exposed to the ex-
pert rules displays fluctuations, which can be attributed to the nuanced exploration and
exploitation phases, reflecting the intricate nature of actions taken based on the environ-
ment setup, as expounded in the implementation chapter. Conversely, the model exposed
to naive rules stabilizes quickly, indicating the efficiency of a limited set of strategies in
achieving low alerts and high rewards.

Figure 5.10 extends our analysis to the rewards obtained per episode, mirroring the fluc-
tuation pattern observed in the actions figure. The expert model, in particular, showcases
notable negative spikes beyond the initial episodes, elucidating the impact of randomly
enabling/disabling strategies. However, from episode 60 onward, a distinct reward in-
crease becomes evident as the model progressively exploits its acquired knowledge. It
is crucial to note that the ”Done” condition may be achieved despite an overall nega-
tive reward, emphasizing the importance of reaching low alert counts during the iterative
strategy enabling/disabling process. Additionally, our implementation incorporates a re-
ward counter, currently set to trigger the ”Done” condition after five positive rewards
or a single positive reward exceeding 4, contributing to the iterative progression through
episodes. Incorporating a reward counter in our implementation introduces a strategic ele-
ment, ensuring the agent progresses through episodes based on predefined positive reward
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thresholds. This counter adds an extra layer of control and adaptability to the learning
process.

Figure 5.9: Number of Actions per Episode

Figure 5.10: Amount of Reward per Episode
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These insights detail our understanding of the models’ actions and rewards and lay a ro-
bust foundation for interpreting their evolving decision-making dynamics, which is crucial
in cybersecurity detection evasion.

5.3.3 Q-Learning Results - Strategies

Figure 5.11 presents a heatmap illustrating strategy counts for the model operating against
expert Snort rules across 100 episodes. Initially, the heatmap reveals dense, dark areas,
indicating heightened strategy enablement in the early training phases. This suggests the
agent’s exploration as it assesses optimal strategies.

Figure 5.12 replicates this heatmap for the model under naive rules. In contrast to expert
rules, fewer dense dark areas indicate that the model sufficiently explores the set of optimal
strategies without requiring extensive exploration.

Figure 5.11: Strategy Counts per Episode (Expert)
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Figure 5.12: Strategy Counts per Episode (Naive)

Figures 5.13 and 5.14 introduce a crucial analytical step by presenting normalized and
grouped counts of enabled strategies, contrasting with the absolute counts depicted in the
prior heatmaps. This deliberate approach significantly enhances the interpretability and
comparative analysis of our RL model’s evolving strategies.

Normalization is employed to scale the strategy counts relative to the total actions taken
within each episode group. This normalization eliminates potential biases arising from
variations in the total number of actions across different episode groups. By doing so, we
obtain a proportionate representation of strategy prevalence, enabling a more accurate
evaluation of their relative importance.

Grouping the counts over 20 episodes offers a condensed overview, smoothing out potential
episode-specific anomalies and highlighting overarching trends. This strategic grouping
aids in identifying consistent patterns and discerning the emergence of effective strate-
gies throughout training. It provides a more precise narrative of the model’s strategic
evolution, especially in distinguishing recurrent and impactful strategies from sporadic or
context-specific occurrences.
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Figure 5.13 introduces normalized values for strategy counts grouped over 20 episodes,
offering a nuanced perspective. The dark areas, excluding strategy 0, imply substantial
counts across various strategies, emphasizing the absence of a dominant strategy to evade
expert rules. Strategy 1 and 2 (related to the NimPlant keyword) and Strategy 5 (host
header changing) exhibit consistent dark areas, underlining their significance.

Figure 5.14 extends this analysis to the model under naive rules, showcasing two prominent
strategies (3 and 4) across episode groups 3 and 4. Strategy 3, involving port hopping,
and Strategy 4, changing communication endpoints, emerge as effective tactics. Strategy
3 aligns with our assumption that network security analysts might block traffic on known
default ports, making port hopping an effective evasion tactic.

In both scenarios, the do-nothing strategy sees minimal triggering, signifying the model’s
recognition that enabling this strategy does not lead to a decrease in alerts.

Figure 5.13: Normalized and Grouped Strategy Counts (Expert)
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Figure 5.14: Normalized and Grouped Strategy Counts (Naive)

5.4 Discussion

The discussion covers topics like reaction time, scalability, automation level and ends with
recommendations for the defense against C2 malware like NimPlant.

5.4.1 Reaction time

One important aspect of C2 malware and defense against C2 malware is the reaction time,
which we consider the time that the client of the C2 malware needs to adapt strategies
enabled or disabled by the server. This is a relevant concept in cases where C2 malware
like NimPlant is used because having a low reaction time enables C2 malware to be more
flexible regarding its dynamic behavior, as the server can quickly communicate behavior
changes. The clients adapt themselves according to the server’s commands (as some
strategies need to be communicated to the clients to function, for example, the endpoint
changing). For NimPlant, the reaction time is based on the frequency on which the
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client sends the getTask() requests to the server that can be modified in NimPlant with
the variable sleepTime. To positively influence the flexibility of NimPlant, one could,
therefore, argue that it would be beneficial to maximize the frequency as much as possible
(by setting a sleep time as low as possible). However, having a very high frequency comes
with downsides, as very high frequencies can be marked by malware defense systems as
malicious, such as being marked as DDoS attacks. The challenge from the attacker’s
perspective lies in achieving sufficient flexibility without creating suspicious behaviors.

Another important aspect in this context is that the benefits of a faster reaction time can
only be leveraged if the attacker can decide which strategies to enable or disable and give
the commands for enabling or disabling strategies at the same speed as the reaction time
(or faster). Consider the following scenario as an example to demonstrate the thought.
Let us say we have NimPlant running, and the getTask() is arriving all 5 seconds to
the server, and the attacker needs 10 seconds to decide which command for enabling
or disabling strategies should be given. This means that the adaptation of NimPlant’s
dynamic behavior always takes 10 seconds as the input from the attacker is needed to
change the dynamic behavior, and the benefit of the relatively fast reaction time of 5
seconds is not leveraged. Conversely, if the attacker needs, for example, 4 seconds to
decide and give the commands for enabling and disabling strategies, the reaction time is
5 seconds. After 5 seconds, the dynamic behavior of the C2 malware will change. Those
examples demonstrate that if the pre-step (deciding which strategies to enable or disable)
takes longer than the after-step (communicating the enabling or disabling of the strategies
to the clients), then the benefits of the after-step are reduced.

5.4.2 Scalability

If the thought from the previous sub-chapter is expanded further, then one could argue
that the more variations of strategies and potential dynamic behaviors the attacker as an
option has, the higher the probability that the attacker would need more time to decide
which strategies to enable and which to disable. Therefore, scaling the number of strategies
and dynamic behaviors for a real-life scenario could lead to a point where human-driven
attacks may face limits, as the speed of a human would not be sufficient to leverage the
benefits of a high reaction time. Thus, one could argue that automating this decision
process of choosing strategies by having an algorithm managing the behavior of the C2
malware at a higher speed than a human could solve this problem. Incorporating AI in the
algorithm could increase its cleverness and make faster decisions due to the automation
and make smarter ones than humans, as humans tend to make wrong decisions under
time pressure.

Since our testing setup only considered one client, scaling the scenario to multiple clients
is also worth considering. An attacker may not only infect one device of a company but try
to increase its chance of success by infecting multiple devices and hoping that one of them
will have a vulnerability to exploit. In such a case, the options for potential strategies
would increase further as one could also vary between strategies that have the same effect
on all the clients and strategies that only affect specific clients to avoid a synchronized
behavior of all clients that could indicate C2 traffic. However, having multiple clients can
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also increase the risk for the attacker that the detection systems may observe multiple
clients showing similar behaviors (for example, the keep-alive mechanism), which may
lead to having those clients marked as part of a C2 botnet.

5.4.3 Automation level

At this stage, it should be evident that the management of a C2 server can demand a
lot of actions from the botmaster during any potential training and a real application.
As highlighted in the previous paragraphs, this is potentially extended by the additional
dimension of timing and reaction. Depending on the use case, any such system piloted by
a human may suffer serious performance restrictions. For this reason, automating certain
aspects can lead to significantly better results. One such aspect has already been discussed
in Section 5.4.2: automated strategy switching. Switching strategies may be necessary
during training sessions to develop effective evasion strategies, or in a real scenario as a
reaction to a change in the environment or preemptively as part of an evasion strategy.
In the former two cases, reaction time is crucial to prevent a bot from being identified.
In a training scenario, this also drives the amount of training that can be done in a given
time frame. Manual strategy switching is, therefore, simply unreasonable, even more so
in a system that may be online the whole day. We have presented a method of automated
strategy switching in this project, but there are other ways that one might choose to use for
the task. While our method was to learn from all experiences during the system’s lifetime,
another system might prefer to apply strategies based on the most recent environmental
changes.

One aspect that could be expanded is using commands through the implants’ command
line interface. The necessity of automating this part depends on the context and intended
use of the system. While the keep-alive mechanism already warrants an automated strat-
egy switching, the number of commands being sent can vary from a small handful to a
single bot to hundreds or thousands to a whole botnet. In the latter case, one might want
to automate the execution of some commands. Again, if the submission of commands
is bound to certain events, automating these commands might also be practical. Given
that NimPlant commands are entered in a command line interface, writing a script that
automates certain commands should be perfectly feasible. In this project, using com-
mands was not part of the training process either. Still, in a testing environment with
commands, automating the submission of these would be reasonable for the same reasons
already discussed.

In theory, the RL model could also be amplified by additional features. The RL program
in this project ran for up to six hours uninterrupted. For an AI training model, this is
still a very manageable period. If a botmaster were to develop a larger set of strategies,
choose a different AI model, train with longer intervals between strategy switches, or train
the model on a system with more servers or bots, the time required to train the model
may increase drastically. In this case, it may be favorable to give the model options to
adjust the training process on runtime based on already gathered information. Last but
not least, if the AI model is not only used in a training environment to develop evasion
strategies but is instead implemented as an operational application, it could potentially
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be trained to improve additional factors, and further training automation would probably
be needed.

5.4.4 Recommendations for the defense

This subsection presents several recommendations that result from experiences and knowl-
edge gained throughout the project.

5.4.4.1 Watch out for Indicators of Compromise

On one side, there are indicators of compromise that are specific for individual malware
like static characteristics that are, for example, keywords referencing a specific malware
or dynamic characteristics that expose themselves during the runtime of the malware
like NimPlant had the constant size of the client and server requests. Therefore, when
designing detection systems, one should set the basis for the rules by considering static and
dynamic indicators of compromise. Attackers can still change those characteristics of the
malware, but focusing on them still provides a good starting point for establishing rules as
there may exist the chance that an attacker did not successfully cover all indicators such
that the defender may be able to detect the malware. The challenge is, therefore, to be
more familiar with malware than the attackers are to set rules that may trigger indicators
that the attackers didn’t think about. On the other hand, there are also indicators of
compromise that are not specific for individual malware but are related to a category of
malware, like the keep-alive mechanism that is not just NimPlant-specific but a general
indicator of compromise for C2 frameworks. Such indicators should also be considered
when defining rules as they may increase the general protection against malware.

5.4.4.2 Think like an Attacker

Developing strategies to evade Snort’s detection made us think like an attackers. As
an attacker, we preferred rules for which less effort was required to develop strategies
over those for which more effort had to be invested for evasion. For example, evading a
signature-based detection which alerts on keywords like ”NimPlant” was developed in a
shorter timeframe as keywords could just be exchanged in comparison to changing the
content sizes of the packets or changing ports on runtime, which would influence the
dynamic behavior of NimPlant. This could imply for the defense that detecting malware
like NimPlant based on signatures could be less effective than detecting malware based
on dynamic behavior. The reason is that signatures like keywords may need less effort
for the adaption by attackers to enable evasion than changing the dynamic behavior of
malware. Encrypting, for example, network communication by using HTTPS instead
of HTTP would change the malware’s signature entirely and make the rules based on
keywords useless. Therefore, it is important for detection systems to consider not only
rules that analyze the static characteristics of malware but also rules that alert based on
dynamic behaviors such as request frequency or content size of requests.
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5.4.4.3 Think one step ahead of the Attacker

Thinking as a defender about potential evasion strategies that may not exist yet allows the
defender to prepare for future scenarios. Consider how current and future technologies can
impact the evasion of malware detection, for example, how GANs were used for evasion, as
discussed in the related work, and how the defense can prepare itself against such attacks.
In this context, it is essential to stay up-to-date with technology development and watch
out for threats and opportunities from evolving technologies such as AI. We found in our
literature studies in 2.1.5.6 that using AI to improve malware’s capabilities is a relatively
recent development. Nevertheless, as AI is continuously evolving, the opportunities for
attackers to use it increase, so defenders should increasingly think about how to deal with
AI-powered malware attacks.

5.4.4.4 Keep your rules secretly

The defense mechanisms become worthless if attackers find a way to get insights into
the rules used. This would allow the attackers to develop specific strategies tailored for
the evasion of those rules. The attackers could try to discover the rules through social
engineering or by having an insider who could access the companies’ intrusion detection
rules. To reduce this risk, organizational measures could be taken by the company, like
limiting the number of people having access to the company’s rules to as few as possible
and as much as necessary. People who have gained the trust of a company should be
placed in positions to access the rules and the access should be continuously monitored
and logged such that if a breach happens, one could first check if suspicious activities
might have been discovered in the logs. The monitoring and logging may also have a
preventive effect and scare off people with malicious intentions.

5.4.4.5 Use short time spans for threshold rules

Using threshold rules in intrusion detection systems like Snort can contribute to detecting
the dynamic behavior of C2 malware. For example, if it is observable that C2 malware
contains specific content sizes or specific frequencies during its execution, threshold rules
could be defined to search for those specific measures and to alert based on them. But the
threshold rules also come with the challenge of how to set the period. Too short periods
can increase the probability of false positives as the intrusion detection system would alert
traffic that may not be malicious. Otherwise, too long periods could give the attacker
sufficient time to react and adapt strategies, as the intrusion detection system would only
be able to react after the period ended. This could lead to missing out on the detection
of malicious network behavior. So, even if short periods may increase the number of false
positives, one could argue that the potential negative consequences of false positives are
less problematic than missing out on the detection, which could enable the attacker to
perform malicious behavior. Therefore, having better too-short than too-long time spans
for the threshold rules should be more secure.
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5.4.4.6 School your employees

The reinforcement learning demonstrated in a proof of concept that it was far easier to
train an algorithm against naive rules compared to the expert rules. The time in which
the optimal order of strategies was achieved was significantly smaller for the naive one
compared to the expert. This demonstrates that the harder the rules are, the more time
is needed to achieve full evasion. An implication of this can mean that having experts
creating rules makes it harder for attackers to create evasion strategies than when having
less knowledgeable personnel doing it. Therefore, a company can improve its chances
of having more expert rules by investing in schooling to improve the knowledge of its
employees. This could lead to more knowledgeable employees, increasing the challenges
for the attackers. Since cyber security is constantly evolving, schooling should also happen
regularly, for example, yearly schooling that keeps the employees up-to-date.
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Chapter 6

Final Considerations

The final considerations chapter concludes the report with a summary of the work done,
the conclusions derived from the work, the difficulties encountered, and suggestions for
future work.

6.1 Summary

In the foundational exploration of C2 tools, detection and evasion strategies, and related
work (cf. Chapter 2), our project investigated the NimPlant framework, an open-source
C2 tool written in Nim for clients (victims’ bots) and Python for the server. Grounded in
a prototypical testing environment, we opted for a Windows 10 machine as a victim simu-
lation, aligning with the OS’s prevalence and the NimPlant client’s Windows exclusivity.
This strategic selection based on our assumptions is substantiated in Section 3.1.

A major pillar in our methodology was the systematic detection using Snort, detailed
in Section 3.2, outlining rules and alerts derived from NimPlant’s client-server communi-
cation. To enhance detection robustness (cf. Section 3.2), we introduced two defensive
models - one leveraging naive rules for users with moderate security knowledge and the
other incorporating expert-based rules for experienced security analysts.

In our practical experiments, as discussed in Section 5.1, we simulated infecting the Win-
dows 10 device and analyzed the traffic using tools like Wireshark scrutinizing packets for
indicators of compromise. Analyzing indicators from the traffic provided insights for de-
tecting C2 activity, forming the basis for constructing the two detection models mentioned
above.

Moving on to our interventions (adoptions of the NimPlant framework), we implemented
seven command-based evasion strategies, elaborated in Section 4.1 and clarified in Section
3.3. These strategies, activated through the CLI upon a specific connection from the bot,
ranged from tweaking the user agent to adjusting the frequency and size of packets between
the client and the server. The strategies required user intervention for proactive enabling,
hence the labeling ”command-based.”

65
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Aligned with our project’s goal to explore the potential of using offensive AI for enhanced
evasion, we investigated offensive AI applications. Guided by our literature review and
considering our assumptions and timing constraints, we explored various AI models (such
as RL, GAN, DNN) to determine their applicability to our scenario. Given these consider-
ations, we decided on RL. Unlike proactive enabling, RL involves the AI model identifying
optimal strategies and enabling them dynamically based on the environment (e.g., num-
ber of triggered alerts by Snort). Specifically, our implementation of the RL agent to
enable evasion strategies, which is trained against Snort, is detailed in Section 4.2. We
integrated Q-Learning from the Gymnasium library and trained two RL models - one with
naive rules and the other with expert rules - over 100 episodes.

The results of this training, presented in Section 5.3, highlight the RL agent’s successful
identification of the optimal combination of enabled strategies. This led to the lowest
number of alerts within a relatively short time, approximately 1 hour, for the case of the
naive rules. In contrast, the RL agent exposed to the expert rules took 6 hours for the
same number of epochs. Importantly, both agents ultimately identified the best strategy
combinations independently of the training time.

An ultimate and precise comparison of our obtained results with the state-of-the-art is
constrained due to the following factors: first, the utilized tools: In the literature (cf.
Chapter 2), the papers we found dealt with evading and attacking ML-based detectors
or other detection tools, often using black-box testing (i.e., the trained AI model, e.g.,
a GAN or RL agent operated with a binary output from the defensive model, either the
sample is malicious or not). However, in our case, we used Snort, a non-ML-based IDS,
and the trained RL agent’s goal was to reduce the number of triggered alerts generated by
a set of pre-defined rules. Second, the simplicity and broad assumptions of our approach.
In our scenarios, we assumed that the NimPlant infection binaries are already installed
and running on the victim’s system. Our pre-tests found that AVs like Windows Defender
prevent the execution of the NimPlant binaries on the system, flagging them as malicious.
Also, the number of trained epochs is relatively low; nevertheless, it was sufficient for
the two RL agents to find the optimal set of strategies and converge. Again, this can
be attributed to the moderate number of strategies and their complexity in reducing
Snort alerts. Last, and directly related to the previous reason, our project, driven by
the goal of providing recommendations for the defense, mainly highlights AI’s offensive
potential. It raises awareness of AI’s dual capacity (defensive and offensive) by showcasing
the feasibility and extensibility of the trained RL agents, prioritizing this demonstration
over building a sophisticated AI model. Overall, the obtained results comply with their
trend with the state-of-the-art regarding AI’s ability to optimize evasion strategies.

Moreover, in Subsection 5.4.4, our project included broad defense recommendations, em-
phasizing vigilance for indicators of compromise, dynamic behavior analysis, awareness of
emerging threats, rule confidentiality, and employee training.

Additionally, our investigation assessed NimPlant’s compatibility with ransomware, re-
vealing implications for network traffic, as discussed in Section 5.2.

This project, rooted in a review of C2 tools, detection, and evasion strategies, and relevant
literature, allowed for our subsequent analysis, experimentation, and recommendations for
the defense. It offers a holistic view of the ever-evolving cybersecurity threat landscape and
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recent offensive techniques, combining foundational insights with a thorough examination
of NimPlant’s C2 aspects. Moreover, the integration of offensive AI, by our utilization
of RL, enhances the sophistication of our approach and contributes to a more subtle
understanding of AI’s offensive potential.

6.2 Conclusions

In the conclusions of our project, the combination of the NimPlant C2 framework with
RL, which refined dynamic strategies for evading Snort alerts, has shown various different
insights in the intersection of the fields of cybersecurity and AI. As we wrap up our
findings, it becomes evident that navigating these two scientific fields requires a careful
approach, which covers the complexities of infrastructure setup, detection mechanisms,
and the dynamic interplay between offensive and defensive strategies, along with the
potential of AI.

Our exploration shows the importance of establishing a robust infrastructure for activi-
ties related to malware testing and malicious operations. Beyond the basic execution of
simulated attacks, there is a critical need to emphasize creating a secure and controlled
environment which complies with ethical experimentation. This approach is key for eval-
uating the potential of offensive AI and detecting and isolating C2 network traffic, which
is crucial for effectively developing evasive strategies against derived detection models.

Furthermore, our analysis highlights the significance of comprehensive detection of C2
frameworks. Utilizing dedicated tools like Snort and Wireshark, we monitor and inspect
the communication between the client and server architecture, which is common in C2
master-bot communication. From rule-based detection models to the thorough examina-
tion of packet details (e.g., protocols, ports, addresses, and other packet-specific elements),
our project underscores the importance of an observant and adaptive detection framework.
This fortifies the defensive posture and provides critical insights for understanding offen-
sive malicious activities and constructing more robust threat models.

Highlighting the offensive capabilities of AI, our project demonstrated its adaptability
across diverse detection models, showcasing its potential in optimizing evasion strategies.
Noteworthy was the RL agent’s ability to determine optimal evasion tactics, significantly
reducing the number of Snort alerts. While it is acknowledged that augmenting the model
with additional features, such as OS type and extending the various detection mecha-
nisms (specifically related to C2 infection executables and master-bot communication),
may extend training times, the demonstrated success implies the feasibility of integrat-
ing further elements into the AI model. This highlights the scalability and potential of
our approach, opening possibilities for further exploration and refinement in subsequent
research projects.

Our project incorporates vital defense recommendations, emphasizing their value in en-
hancing cybersecurity resilience. Issuing and following these recommendations is crucial
for organizations as they provide proactive measures to detect and mitigate threats, fos-
tering adaptability in the face of evolving cyber risks. By implementing these guidelines,
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organizations can improve their defenses, stay ahead of potential attackers, and maintain
a robust security posture.

Finally, recognizing the important role of AI in cybersecurity goes beyond refining de-
fensive tactics, extending to a crucial awareness of its offensive potential, e.g. optimizing
evasive strategies. While AI is commonly applied in defensive measures, such as ML-based
anomaly detection, it is essential to remain aware of its dual capacity to enhance evasion
techniques and attack other AI-based defensive models.

Reflecting upon the outcomes of this project, these insights lay a solid foundation for future
advancements in the cybersecurity landscape, contributing to a subtle understanding of
the complex interplay between cyber threats and the defensive measures necessary to
mitigate them while keeping the offensive potential of AI in mind.

6.3 Challenges

To ensure that each group member had access to the testing environment, we set up a
remote connection to the client and server in the testing environment from our private
devices. A reoccurring problem that we experienced in this context was that the connec-
tion to the client was not consistently stable, which led to repeating disconnections. Once
the client had disconnected, we had to contact someone from the university to reestablish
the connection. To make sure that those disconnections would not interrupt or cause
disturbance in the training process of the AI model, we implemented a fail-safe. This
way, in the worst case, if such a disconnection disrupts the training, we could restart and
continue the training from where it stopped.

Some other difficulties stemmed from the IDS we chose, Snort. This was our primary
monitoring tool for the client’s network traffic and served as a simulated adversary for
the improved evasion strategies we had either developed manually or that were generated
by the RL model. As we developed more offensive and defensive strategies, it became
clear that Snort has limited monitoring capabilities, partially due to the client using a
Windows operating system. The strongest restriction while writing rules for Snort’s packet
analysis was that individual TCP segments checked by Snort could only count towards
one threshold rule at a time, effectively prohibiting the use of correlating rules. This
was mainly an issue for the rules that were monitoring the frequency or size of incoming
packages. We were able to compensate for some of the limitations by adjusting some
designs, but the final version was weaker than we had hoped for nonetheless.

6.4 Future Work

Given the challenges and limitations that we encountered, we thought about some possible
investigations that could be conducted to lower or overcome limitations and could provide
more valuable insights related to the topic of this project:
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• Future work could focus on testing another IDS like for example Suricata1. Suricata
may overcome the limitations that we had with Snort and could therefore contribute
to the training of a more complex AI model.

• This project only focused on analysing the network traffic of an already infected
device (see sub-chapter 3.1). This excluded two major aspects of a complete se-
curity system: The initial infection and the monitoring of the infected device on
its own. There are many ways in which a device can be infected with malware
(e.g., social engineering, backdoors), which also differ vastly in how to best prevent
them. These are mostly independent of NimPlant and might include non-technical
problem-solving. Higher related to our project would instead be the monitoring of
infected devices concerning stored files and running processes. This could lead to
an interesting investigation about how NimPlant runs on infected clients. As is,
infecting a client with an unmodified NimPlant implant will trigger the Windows
Defender. This is not a problem we addressed in this project, and may or may not
be difficult to solve (renaming the implant to something other than ’NimPlant.exe’
would be an improvement), but it clearly shows that evasion mechanisms for Nim-
Plant go beyond its network traffic.

• In addition, it would be interesting to create a larger physical setup, i.e., a network
of computers instead of a single client. This would be much more similar to a
real botnet and would open up new possibilities for monitoring. With multiple
devices communicating with the server in parallel, one could compare the network
traffic of devices in the network. This would allow to identify traffic patterns more
deterministically and severely weaken some evasion strategies. Of course, this would
require much more sophisticated network traffic analysis algorithms, on top of an
IDS on each machine.

• Training AI models in a larger setting could provide even more insights as one could
collect more diverse data that could support the development of defence systems.

• Another step that could be done for future analysis would be to use HTTPS com-
munication instead of HTTP for NimPlant which would increase the challenge for
detecting and alerting the NimPlant communication. This could lead to more in-
sights about how to deal with C2 malware that uses HTTPS.

1https://suricata.io/
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Appendix A

Additional Contents

A.1 Repositories

Several repositories were defined in GitHub for the project MAP-Cyber-Security-AI under
the url https://github.com/MAP-Cyber-Security-AI. The following table summarizes
information related to those repositories.

Repository Content URL

Nimplant Contains the code related to all Nim-
Plant stages. The codes for the stages
are in the corresponding branches. The
main branch contains the initial Nim-
Plant code, the evasion-stage-2 branch
contains the stage with the command-
based evasion and the evasion-stage-3
branch contains the code and the data
related to the training of the RL agent.

https://github.com/

MAP-Cyber-Security-AI/

Nimplant

Snort-Setup Contains the description for the setup
of Snort. The main branch contains
the initial Snort setup and the branch
configuration-stage-2 contains the Snort
setup with our rules that are relevant for
this project.

https://github.com/

MAP-Cyber-Security-AI/

Snort-Setup

Architecture Contains the draw.io file that was used
to create the architecture of NimPlant
for the sections 4.1.1, 4.1.2 and 4.1.4.

https://github.com/

MAP-Cyber-Security-AI/

Architecture

Infrastructure-
Configuration

Contains information related to the in-
frastructure used for this project.

https://github.com/

MAP-Cyber-Security-AI/

Infrastructure-Configuration

Table A.1: Repositories
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A.2 SharePoint

A SharePoint folder was created where the mid and final presentations, the zipped folder
with the Code of all NimPlant stages and a copy of the report were uploaded. The
following URL leads to the SharePoint folder: https://uzh.sharepoint.com/:f:/s/

MPCybersecurityAI/EiPeardFc3ZItOm2ABOYrq8B4TUZteTvsl_PJqQo8zicrQ

https://uzh.sharepoint.com/:f:/s/MPCybersecurityAI/EiPeardFc3ZItOm2ABOYrq8B4TUZteTvsl_PJqQo8zicrQ
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