
Design and Evaluation of a Large
Language Model-powered Threat

Modeling Approach with
Applications to AI Security

Raphael Wäspi
St. Gallen, Switzerland
Student ID: 18-918-938

Supervisor: Jan von der Assen, Chao Feng
Date of Submission: March 10, 2025

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Threat modeling is an important technique in the field of cybersecurity that helps to
systematically identify and mitigate risks in systems. As systems based on artificial intel-
ligence (AI) become increasingly complex, existing approaches to threat modeling often
require extensive documentation, which makes threat modeling impractical in early stages
of development. This thesis investigates the feasibility of using large language models to
support threat modeling for AI systems, with a focus on threat identification and val-
idation with minimal inputs. A comprehensive literature review revealed that existing
solutions are primarily based on detailed system documentation and do not offer an ap-
proach that works only with minimal inputs such as data-flow diagrams.

To address this gap, this thesis presents a prototype that uses Retrieval Augmented Gen-
eration to identify and validate AI threats using only data-flow diagrams as input. The
system is designed with a two-stage approach that separates the threat identification and
validation processes. Furthermore, this thesis investigates different Retrieval Augmented
Generation configurations and evaluates the performance of different large language mod-
els in these processes. This evaluation is conducted through a number of interviews that
provide information on which combinations of Retrieval Augmented Generation configu-
rations and large language models provide the most effective results. This thesis demon-
strates that threat modeling based on an large language model approach can be a valuable
for identifying and validating security threats in AI systems. In addition, it provides a
practical guidance on optimal configurations for such a tool and gives examples for future
research in this field.

i

ii

Zusammenfassung

Die Bedrohungsmodellierung ist eine wichtige Technik im Bereich der Cybersicherheit, die
dabei hilft, Risiken in Systemen systematisch zu erkennen und zu reduzieren. Da Systeme,
die auf künstlicher Intelligenz basieren, immer komplexer werden, erfordern bestehende
Ansätze zur Bedrohungsmodellierung oft eine umfangreiche Dokumentation. Dies führt
dazu, dass eine Modellierung in frühen Entwicklungsphasen nicht geeignet ist. In dieser
Arbeit wird die Umsetzbarkeit der Nutzung von Large Language Models zur Unterstüt-
zung der Bedrohungsmodellierung für Systeme der künstlichen Intelligenz untersucht, wo-
bei der Schwerpunkt auf der Erkennung und Validierung von Bedrohungen mit minimalen
Inputs liegt. Eine umfassende Literaturrecherche ergab, dass bestehende Lösungen in er-
ster Linie auf einer detaillierten Systemdokumentation beruhen und keinen Ansatz bieten,
der nur mit minimalen Inputs wie Datenflussdiagrammen funktioniert.

Um diese Lücke zu schliessen, wird in dieser Arbeit ein Prototyp präsentiert, der Re-
trieval Augmented Generation einsetzt. Damit sollen Bedrohungen erkannt und validiert
werden, wobei lediglich ein Datenflussdiagramm als Input dient. Das System ist mit ei-
nem zweistufigen Ansatz konzipiert, der die Erkennung und Validierung von Bedrohun-
gen trennt. Darüber hinaus werden in dieser Arbeit verschiedene Retrieval Augmented
Generation Konfigurationen untersucht und die Leistung verschiedener Sprachmodellen
in diesen Prozessen evaluiert. Diese Evaluation wird mittels Interviews durchgeführt und
es wird geprüft, welche Kombinationen von Retrieval Augmented Generation Konfigura-
tionen und Sprachmodellen die besten Ergebnisse liefern. Diese Arbeit zeigt, dass eine auf
grossen Sprachmodellen basierende Bedrohungsmodellierung ein wertvolles Instrument zur
Identifizierung und Validierung von Sicherheitsbedrohungen in Systemen mit künstlicher
Intelligenz sein kann. Darüber hinaus bietet die Thesis einen praktischen Anhaltspunkt für
die optimale Konfiguration einer solchen Applikation und gibt Beispiele für die künftige
Forschung in diesem Bereich.

iii

iv

Acknowledgments

I would like to express my sincere gratitude to my supervisors and everyone who took the
time to participate in the interviews or supported me in any way. In particular, I would
like to thank Jan von der Assen for his continuous support and valuable discussions
throughout this Master Thesis. His broad experience and expert feedback were of great
value to this thesis.

I would also like to thank Prof. Dr. Burkhard Stiller for the possibility to complete my
Master Thesis at the Communication Systems Group (CSG) of the University Zurich.

v

vi

Contents

Abstract i

Acknowledgments v

1 Introduction 1

1.1 Motivation . 2

1.2 Description of Work . 2

1.3 Thesis Outline . 2

2 Background 5

2.1 Threat Modeling . 5

2.2 Security Threats in Artificial Intelligence 6

2.3 Large Language Model . 7

2.4 Retrieval Augmented Generation . 9

2.4.1 Chunking . 10

2.4.2 Precision and Recall . 11

2.4.3 Reranking . 13

3 Related Work 15

3.1 Methodology . 15

3.2 Literature Overview . 16

3.2.1 Large Language Models in Cybersecurity 17

3.2.2 Artificial Intelligence for Threat Modeling 18

vii

viii CONTENTS

3.2.3 Large Language Models for Threat Modeling 18

3.3 Discussion . 21

3.3.1 Limitations . 21

3.3.2 Main Opportunity and Constraints 22

4 Architecture and Prototypical Implementation 23

4.1 Architecture . 23

4.1.1 High-Level Architecture . 24

4.1.2 Retrieval Augmented Generation Architecture 26

4.2 Technology . 27

4.2.1 Docker . 27

4.2.2 Flask . 28

4.2.3 Ollama . 28

4.2.4 ChromaDB . 29

4.2.5 React . 29

4.3 ThreatFinderAI . 29

4.3.1 Existing Functionality of ThreatFinderAI 30

4.3.2 Modifications with Proposed Prototype 31

4.3.3 Threat Identification . 32

4.3.4 Threat Validation . 33

4.4 Flask Backend . 34

4.4.1 Component-Based Architecture and Tasks 34

4.4.2 Endpoints . 35

4.4.3 Data-Flow Diagram Parser . 38

4.4.4 Prompt Engineering . 42

4.4.5 Threat Identification . 43

4.4.6 Threat Validation . 44

CONTENTS ix

5 Evaluation 47

5.1 Methodology . 47

5.1.1 Objectives . 47

5.1.2 Metrics . 48

5.1.3 Approach . 49

5.2 Analysis . 52

5.2.1 Threat Identification . 52

5.2.2 Threat Validation . 56

5.3 Discussion . 58

5.3.1 Threat Identification . 58

5.3.2 Threat Validation . 59

5.3.3 Conclusion . 60

6 Summary, Conclusions and Future Work 63

6.1 Future Work . 64

Bibliography 67

Abbreviations 73

Glossary 75

List of Figures 75

List of Tables 77

List of Listings 79

A Installation Guidelines 83

B Evaluation Threat List 85

C Interview Questionnaire 91

D Answered Interview Questionnaire 99

x CONTENTS

Chapter 1

Introduction

In the context of cybersecurity, threat modeling is an important approach that allows
threats to be identified before or during the development process. It is also a structured
approach with the aim of developing techniques to mitigate these identified threats. In
recent years, several techniques have been created to improve the identification and mitiga-
tion of threats. In addition, threat modeling is often used for secure software development,
risk assessment, or to promote security awareness [1].

Another change in software architecture is the rise of Artificial Intelligence (AI) with
its diverse methods (e.g., Machine Learning, Deep Learning), as more and more data
is available and decisions are now determined by data instead of simple logic. For this
reason, research has identified new threats that are relevant for such applications [2]. New
methods and knowledge bases (KBs) are therefore required to identify these threats using
threat models.

However, creating threat models for AI systems is a difficult task for software engineers
and data scientists [3]. This is due to several challenges. First, research has focused
excessively on the various threats instead of developing threat modeling. Second, existing
threat modeling frameworks have been developed for traditional software and not for AI
software, which may have AI-specific threats.

However, creating threat models for AI systems is a difficult task for software engineers
and data scientists [3]. This is due to a number of challenges, which for example is the fact
that research has focused on the various threats rather than developing threat modeling.
Furthermore, the existing threat modeling frameworks have been developed for traditional
software and not for AI software, which may have AI-specific threats.

This thesis investigates the feasibility of using an Large Language Model (LLM) approach
to support AI threat modeling. In particular, it investigates whether a prototype is able to
identify and validate AI security threats with minimal inputs such as Data-flow Diagrams
(DFDs). This thesis contributes to research by evaluating the feasibility of automating
AI threat models with an LLM approach and provides insights into a practical LLM
application in cybersecurity.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

AI systems contain different security threats than traditional software, which cannot be
detected using traditional threat models. This becomes even more challenging when
trying to detect these AI threats in early stages of development where only limited data
is available that can be used for identification, such as DFDs. Currently, there is little
research that addresses how LLMs can assist in AI threat modeling. The research that
does exist in this area tends to rely on extensive documentation or intermediate structures,
which adds complexity at early stages of development. This research gap leaves a key
question unanswered: can an LLM-based approach be used to detect and validate security
threats in AI systems with only minimal inputs such as DFDs?

1.2 Description of Work

This thesis proposes an LLM-based approach that identifies and validates threats directly
from DFDs without relying on intermediary structures. To address the research gap, this
work contributes by developing a prototype that uses an LLM to detect and validate
threats and demonstrates a practical application of LLMs in AI security. Furthermore,
it evaluates whether minimal inputs are sufficient for meaningful threat identification,
considering the limitations of an early development phase where detailed documentation
is often not available.

By separating threat identification and validation into two distinct steps, this study also
examines their individual effectiveness. By separating these processes, the individual
effectiveness of each step will be evaluated, as a combined process of poor quality would
not allow a clear understanding of whether threat identification or threat validation is
working as intended. Considering that KBs in the real world are large and often exceed the
capacity of an LLM input window, this thesis also investigates the integration of Retrieval
Augmented Generation (RAG). If successful, this work could push the automation of
early-stage AI threat modeling and make threat modeling more accessible.

1.3 Thesis Outline

The first chapter introduces this thesis and gives an overview of the motivation, the goals,
and the work carried out. It answers the key questions of why this research is impor-
tant and what was done to achieve its objectives. Chapter 2 provides the basic concepts
required to understand this thesis and covers the topics of threat modeling, AI security
threats, LLMs, and RAG. Chapter 3 provides an overview of existing research on LLMs
in cybersecurity, AI for threat modeling, and LLM-based threat modeling. Based on this
analysis, the current limitations and opportunities are identified. Chapter 4 presents the
architecture of the prototype, which explains how its components interact and how the
principles of RAG are integrated into the system. It also shows the used technologies for
the prototype implementation. This highlights key aspects of the source code, critical

1.3. THESIS OUTLINE 3

design decisions, and the rationale behind some implementation choices. Chapter 5 de-
scribes the evaluation process, where the two main approaches (threat identification and
threat validation) are evaluated separately based on qualitative metrics and performance.
In addition, different prototype configurations are compared to determine which configu-
ration performs best with minimal inputs. Finally, the last chapter summarizes the key
findings, discusses their relevance, and identifies possible directions for future work that
could build on this work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

To understand the theoretical concepts presented in this master’s thesis, this chapter
introduces the basic concepts and terminology. The first section explains what threat
modeling is and how it is used in modern software development. This is followed by
an introduction to AI security threats and LLMs. Finally, the chapter contains a short
overview of the RAG concept and its key principles.

2.1 Threat Modeling

Threats can be described as potential damage that may occur in the future [4]. The
reason for their occurrence is usually a weakness in the design of the application. To
avoid such vulnerabilities, threat modeling can be used to provide appropriate mitigation
techniques in the design. Such a mitigation at the beginning of development can prevent
a much more costly fix at a later stage [5], an approach known as DevSecOps. But even if
a mitigation is not possible, additional security controls or measures can be implemented
to reduce the risk of the threat being exploited [6].

The Threat Modeling Manifesto [7] outlines four key principles for effective threat mod-
eling:

• Threat modeling is most effective when it is used to improve the security and privacy
of a system through frequent analysis at an early stage of the development process.

• Threat modeling should be integrated into the company’s development cycle to
ensure that it complements existing workflows and processes.

• The outcome of the threat model is important if it is of value to the stakeholder.

• Dialogues help to build a common understanding that leads to values, while docu-
ments help to document this understanding and enable measurement.

5

6 CHAPTER 2. BACKGROUND

By integrating these principles, threat modeling systematically addresses threats, miti-
gates vulnerabilities early and reduces costly rework later in development.

The Open Worldwide Application Security Project (OWASP) [8] structures the process
in four steps. First, the scope of the system must be assessed. This can be an entire
application or just a major change in a sprint. In the second threat modeling step, it
is necessary to determine what can go wrong in the system. This can be done through
a structured process such as STRIDE (Spoofing, Tampering, Repudiation, Information
Disclosure, Denial of Service, Elevation of Privilege), Attack Trees or through simple
brainstorming. Once the threats are identified, the third step is to decide what remedial
action can be taken to eliminate or mitigate the threat. In a final step, the work should
be evaluated and questioned whether the work has been done well enough.

However, in the software development environment of today, where applications are con-
stantly evolving, it is not enough to perform threat modeling once [9]. Continuous de-
velopment can lead to additional threats that were not present at the beginning of the
software development cycle. Therefore, continuous threat modeling is created that cap-
tures the system in the initial phase and then continues as the software evolves. This
reveals threats as they emerge, evolve and change. The OWASP [8] recommends creating
a threat model after events such as a new feature release, a security incident, or a change
in infrastructure or architecture.

2.2 Security Threats in Artificial Intelligence

With the quick growth of modern AI systems, concerns about security and data protection
are growing [10]. This has led to the creation of AI security, which is defined as tools,
strategies, and processes for detecting and preventing threats and vulnerabilities. Such
attacks can compromise the confidentiality, integrity or availability of an AI model or AI-
systems. Therefore, identifying and mitigating vulnerabilities in AI systems is a critical
component of AI security. AI developers must ensure their system does not contain
vulnerabilities and implement controls to protect and respond to fraudulent behavior that
targets the system environment or its users. [11]. To prevent new forms of exploitation,
it is important to investigate new defense mechanisms and threat modeling approaches.

However, there are already several efforts and initiatives that focus on AI-related at-
tacks [3]. MITRE Adversarial Threat Landscape for AI Systems (ATLAS), for example,
provides an overview of attacks that are tailored to AI systems and offers a structured
framework for understanding and mitigating AI-specific threats [10]. An example of such
adversarial attacks and their potential impact on AI-systems can be seen in Table 2.1.
Similarly, Microsoft has proposed a KB that provides guidelines for identifying and mit-
igating vulnerabilities in AI systems [11]. The OWASP has also published resources for
ensuring the security of AI-dependent systems [12]. In addition, the European Union
Agency for Cybersecurity (ENISA) has published a comprehensive report detailing AI-
related threats [13]. Together, these efforts help to gain an understanding of AI security
concerns and develop robust countermeasures.

2.3. LARGE LANGUAGE MODEL 7

Attack Overview

Poisoning
Attack

An attacker changes the training data of an AI system in order to receive a
desired result. By manipulating the training data, an attacker can implement
backdoors in the model through which an input with the trigger leads to a
certain output.

Evasion At-
tack

Attacker elicits an incorrect response from a model by crafting adversarial in-
puts. Typically, these inputs are designed to be indistinguishable from normal
data. These attacks can be targeted, where the attacker tries to produce a
specific classification, or untargeted, where they attempt to produce any in-
correct classification.

Functional
Extraction

The attacker gets an equivalent model by querying the model iteratively. This
enables an attacker to analyze the offline copy of the model before continuing
to attack the online model.

Inversion
Attack

Attacker recovers sensitive information about the training data. This can
include full reconstructions of the data, or attributes or properties of the data.
This can be a successful attack on its own or can be used to perform other
attacks such as Model Evasion.

Prompt In-
jection At-
tack

An attacker creates prompts to an LLM that make the LLM act in unintended
ways. These “prompt injections” are often crafted in such a way that the
model ignores parts of its initial instructions and obeys the attacker’s prompts
instead.

Traditional
Cyber At-
tack

Attacker uses Tactics, Techniques, and Procedures (TTPs) from the cyber
domain to attain their goal. These attacks may target model artifacts, Appli-
cation Programming Interfaces (API) keys, data servers, or other foundational
aspects of AI compute infrastructure distinct from the model itself.

Table 2.1: High-level descriptions of adversarial attacks and their possible effects [10]

2.3 Large Language Model

A LLM is a type of AI program that is able to understand, summarize and generate
text [14]. The reason why an LLM is able to interpret human language is that they are
trained on millions of gigabytes worth of text gathered from they internet. To understand
how words and sentences function together an LLM uses a type of machine learning
(ML) called deep learning (DL) where through probabilistic analysis of unstructured data
distinctions between pieces of content can be recognized without the intervention of a
human.

The DL technique used in most cases is based on transformer architecture, which is
a specialized type of neural network [15]. Transformers use a mathematical technique
named self-attention, that enables the model to detect relationships between tokens, even
when they are far apart in a sequence [14]. These elements are called tokens which are
smaller units of text, such as words, subwords, or characters. To help the AI model
understand these tokens, they are transformed into embeddings, which are numerical
representations (often multi-dimensional vectors) capturing the meaning and relationships

8 CHAPTER 2. BACKGROUND

between tokens [15]. The self-attention mechanism is then able to assign a score to
each token which is called a weight to determine the similarities, correlations and other
dependencies. [16].

The use case of LLM is very broad and ranges across different industries and applications.
They enable and improve chatbots and virtual assistants to provide human-like responses
in customer service [15]. LLMs are also invaluable in content creation, by automating
tasks such as writing blog posts, marketing content and even code. In the academic and
research fields, they help summarize large data sets and accelerate knowledge discovery.
In addition, LLMs are used for language translations, which is a further step towards
breaking down language barriers.

While there are many use cases for LLM, there are still some challenges and limitations.
Development and operational costs are high due to the need for expensive hardware and
large data sets. LLMs also raise ethical concerns, including biases, privacy issues and the
potential to generate harmful content. Another challenge is explainability, as it is often
difficult to understand how the model arrives at certain results. In addition, issues such
as AI hallucinations, security risks and the complexity of managing billions of parameters
make effective troubleshooting and security of LLMs difficult.

Figure 2.1: Overview of LLM Challenges [17]

Although there are many use cases and benefits to utilizing LLMs, there are also some
important risks and challenges with this topic. Some key challenges are described in
the paper [17] and shown in Figure 2.1. One of the prominent problems of LLMs is
hallucination. LLMs often give the wrong or meaningless information, especially when
the query is about something that they have not been trained on. This poses a risk in
applications such as medicine or law, where accuracy is critical. Another problem that is
worth to mention is the high inference latency. The computational cost and time required
for LLMs to generate responses can hinder real-time applications such as chatbots.

2.4. RETRIEVAL AUGMENTED GENERATION 9

2.4 Retrieval Augmented Generation

RAG is a technique for improving LLMs using the integration of external knowledge
databases. A fundamental limitation of LLMs is their dependency on fixed training data,
which can lead to outdated or incomplete information [18]. In addition, this limitation
makes it difficult to respond to requests for specific internal information. To address this
limitation, RAG allows you to add relevant KBs that allow adding relevant information
to the prompt to provide additional context. The flow of this process is illustrated in
Figure 2.2. By bridging the gap between LLMs and dynamic information retrieval, RAG
greatly improves the capabilities and reliability of AI systems.

Figure 2.2: Key concept of RAG provided by the paper [18]

Another approach used by companies to address this major limitation of LLM is fine-
tuning [19]. This raises the question about the difference between RAG and fine-tuning.
Although both methods customize LLMs for specific use cases, they are fundamentally
different in their methodology. During fine-tuning, a model is trained with the internal
data and therefore the model parameters are trained for this specific task. In contrast to
this, RAG does not train the model, but simply uses the data from an external KB to read
important information into a model using natural language processing. To summarize,
RAG supports prompt engineering by leveraging an internal data to improve the output,
while fine-tuning retrains the model on a specific data set to improve the output.

RAG offers several fundamental advantages [20]:

• Cost-efficient AI implementation and AI scaling: Cost-efficient AI implementation
and scaling: organizations often start with base models that have been trained with
public data. Fine-tuning these models for specific domains is expensive and requires
a lot of resources. RAG enables organizations to improve the performance of their
models by integrating internal, authoritative data without retraining, which reduces
costs.

• Access to current domain-specific data: Since generative AI models have a knowl-
edge cutoff, their relevance drops over time. RAG mitigates this problem by pro-
viding real-time access to data, which improves accuracy and timeliness.

• Lower risk of AI hallucinations: Generative AI models generate answers based on
learned data patterns, but can provide incorrect information. RAG helps to mitigate
this problem by relying on trusted data to improve answer accuracy, although it does
not completely eliminate errors.

10 CHAPTER 2. BACKGROUND

• Increased user trust: AI systems rely on the trust of users. RAG models increase
credibility by containing references to external data sources. This allows users to
verify information.

• Expanded use cases: By integrating retrieval mechanisms, RAG models can access
and merge information from different sources, which improves their overall capability
and usefulness.

• Enhanced developer control and model maintenance: Companies that implement
RAG benefit from robust data pipelines and storage solutions that enable developers
to adapt KBs for different tasks. This reduces the need for retraining and enables
targeted optimization.

• Greater data security: Since RAG simply adds the external knowledge with natural
language processing and does not use the knowledge as training data as in fine-
tuning, a separation between the model and the external knowledge is maintained.

Figure 2.3: Typical RAG Architecture

2.4.1 Chunking

To divide large documents into smaller segments, there is a process called chunking [21].
In the RAG process, these chunks are converted into embeddings, which are then stored
in a vector database. An embedding model is used to calculate the embeddings. This
process is presented in Figure 2.3. In a RAG system, a semantic search can then be used
to retrieve only the most relevant chunks.

Each RAG application has different use cases and data sets, which makes it necessary to
choose a suitable chunking strategy. Choosing the right strategy is crucial as it defines
the boundaries for chunk creation [21]. According to [21] and [22], these are the most
used chunking methods:

2.4. RETRIEVAL AUGMENTED GENERATION 11

• Fixed-size chunking: This strategy separates the text into chunks, which all have a
certain fixed size. An optimal chunk size is usually determined by experimentation
and measured in tokens [21]. Since this method makes no distinction between sen-
tence boundaries or semantic meaning, it is optimal for cases where chunk size has a
higher priority than context, e.g. when analyzing large amounts of data from genetic
sequences or standardized data sets such as surveys [22]. To ensure that context still
exists between the chunks, there is a technique called chunk overlapping. This allows
you to select a number of overlapping tokens, which then overlap between neighbor-
ing chunks [21]. The advantages of fixed-size chunking include its simplicity, its wide
applicability to different data types, its minimal computational requirements, and
its independence from ML models or specific linguistic considerations [22]. However,
limitations include the loss of semantic context, inflexibility when dealing with vari-
able text structures, and redundancy in overlapping segments. These disadvantages
can lead to inaccurate results for complex documents or redundant information.

• Recursive chunking: This strategy is similar to fixed-size chunking, but offers a more
adaptive solution [22]. Instead of dividing the text at a certain length, the text is
split up using several separators, such as paragraph breaks or sentence endings, until
an optimal chunk size is reached. The advantage of this method lies in its ability to
keep context by achieving a balance between chunk size and context preservation.
However, a disadvantage is that the strategy is more complex, because it requires an
optimal separation hierarchy. Therefore, it can still break sentences or paragraphs
if configured incorrectly, which can lead to semantic loss.

• Semantic chunking: An alternative strategy is semantic chunking, where the text
is divided in such a way that it is grouped based on the semantic similarity of
its embeddings [22]. Semantic chunking is ideal for complex systems where the
preservation of context between chunks is important. The advantages of this strategy
are its ability to ensure meaningful and context relevant chunks through contextual
grouping, effectively manage overlap without losing quality and provide significant
application versatility. The disadvantages, however, include greater complexity and
computational cost due to the need to embedding models for clustering, as well as
a resulting dependency on these models.

• Document-based chunking: This chunking strategy separates the text according to
elements such as headings, lists, chapters, etc. For this reason, it makes sense to
use this strategy for documents that are already well formatted, such as Markdown
files [22]. The advantage of this strategy is that the structure and logical flow of
the documents can be used in the chunks. However, this requires a well-structured
document, which can quickly lead to pre-processing step if the format is not exactly
as expected.

2.4.2 Precision and Recall

It might be asked why RAG is used instead of putting all relevant information directly
into the LLM itself. The main reason is that LLMs have a limit on how much text can
be processed in a single run, known as a context window [23]. GPT-4o, for example, has

12 CHAPTER 2. BACKGROUND

a context window of 128K tokens [24]. While this is a considerable number, it is still a
limitation. RAG mitigates this limitation by ensuring that the most relevant information
is retrieved and passed to the LLM as context, rather than trying to pass all knowledge
directly into the model.

Figure 2.4: Precision vs Recall [25]

To evaluate how effectively RAG finds relevant information with the help of the vector
search, two key metrics are usually used: Precision and Recall [26]. These metrics, which
are shown in Figure 2.4, provide information about the retrieval performance. It can be
said that precision is the ratio of retrieved relevant elements to all retrieved elements,
while recall is the amount of retrieved relevant information in relation to all relevant
information.

However, there is a fundamental trade-off between precision and recall. Precision improves
as false positives decrease, while recall improves as false negatives decrease [27]. In the
context of RAG, this trade-off becomes clear when the number of retrieved documents,
often referred to as k, is adjusted. Increasing k improves recall as more potentially relevant
documents are retrieved, which reduces the likelihood of missing important information.
However, this has a negative impact on precision, as searching for more documents also

2.4. RETRIEVAL AUGMENTED GENERATION 13

increases the likelihood that irrelevant documents will be included, leading to more false
positives.

2.4.3 Reranking

In addition, the two metrics Precision and Recall are not rank-dependent, so they do not
take into account the position or rank of the retrieved information [26]. However, it was
shown in Paper [28] that LLM performance decreases when the position of the relevant
information changes, suggesting that the models have difficulties to use information in
long context. In particular, performance tends to be lowest when models have to retrieve
information from the middle of a long input context. As a result, relevant documents
should ideally appear at the beginning or end of the retrieved context, and it should not
contain too many false positives.

Figure 2.5: Reranking Process based on [23]

This problem is directly addressed by reranking. The inclusion of rerankers improves
the precision and relevance of search results for complex information retrieval tasks [29].
Figure 2.5 presents the reranking process graphically, which can be summarized as follows:

1. Initial Retrieval: The first step is to find the top-k documents using a similarity-
based retrieval method [30].

2. Semantic Scoring: The retrieved documents are then evaluated by an LLM-based
reranking model that assigns a relevance score to each document based on its se-
mantic match with the search query [30]. This step utilizes the LLM’s ability to
interpret context and recognize semantic similarities.

3. Reordering: Based on the relevance scores assigned in the previous step, the doc-
uments are reordered so that the documents with the highest semantic relevance
appear first [30].

14 CHAPTER 2. BACKGROUND

4. Final Selection: In the final selection step, the top k scoring documents are used as
the final context, improving the accuracy of the overall RAG system [30].

This reranking approach ensures that the most relevant information is prioritized, miti-
gating the limitations and improving the overall quality of the retrieval. While reranking
improves overall quality, it leads to a trade-off between the benefit of improved perfor-
mance and the additional computational cost required [31].

Chapter 3

Related Work

LLMs are finding more and more use in our daily lives [32]. It is, therefore, only logical that
they are also being used in the field of Information Technology (IT) security, especially
for tasks such as threat modeling. Threat modeling is an important area where AI can
support stakeholders in identifying and addressing potential risks.

This chapter provides an overview of the current status of research on the topic of using
LLMs in threat modeling. The first section outlines the methodology used for the litera-
ture review. This is followed by a detailed analysis of the identified literature to present
the current research in this environment. Finally, a discussion summarizes the findings
and highlights the key limitations of the existing research.

Special attention is given to the key constraints that define the focus and methodology
of this work. These constraints include the requirement that the LLM must provide
explanations for each detected threat to improve explainability, leveraging a pre-trained
LLM without additional fine-tuning for specific areas, and prioritizing of smaller and less
complex systems to address scalability challenges.

3.1 Methodology

A literature review was performed to analyze the current state of research on using LLM-
based solutions in threat modeling. Multiple academic search engines were used for the
review, including Google Scholar, IEEE Xplore, ACM Digital Library, Springer and Else-
vier. The following search terms were used to find relevant works:

• “LLMs threat modeling“

• “LLMs in threat analysis“

• “Threat Modeling with AI“

• “LLMs in automated threat modeling“

15

16 CHAPTER 3. RELATED WORK

• “Large Language Models in threat analysis“

• “RAG in Threat Model“

• “Facilitate Threat Modeling by using LLM“

• “AI-assisted threat modeling“

Only papers whose title or abstract referred to the use of LLM in security practices such
as threat modeling, threat identification, or vulnerability identification were considered.
In addition, studies dealing with the use of AI in threat modeling were also included.
However, papers focusing only on AI applications in threat identification were excluded,
as these often diverge from threat modeling and address other security-related topics.
Similarly, papers that focus on the usage of LLMs in threat intelligence were excluded
unless they also address the use of LLMs for vulnerability or threat identification. Studies
that dealt with threat models for LLMs were also excluded, as the literature review aimed
to evaluate how LLMs can be used in the field of threat modeling and not how threat
models can be applied to LLMs.

A total of 16 papers were identified by using this method. The related work sections of
these papers were then reviewed to identify additional studies that could address existing
research on the use of LLMs in threat modeling. However, no previous research that fo-
cuses explicitly on LLMs in threat modeling was mentioned in these sections. Nevertheless,
an additional Google search discovered a video and two articles describing experiments on
the use of LLMs in threat modeling. These sources were considered relevant and included
in the study. For this reason, a total of 19 resources were identified, which are discussed
further in the following Section 3.2.

Based on the criteria the [33] fit the inclusion of papers. However, the paper was not
accessible until 4 January 2025, and a request remain unanswered. Therefore, despite its
potential relevance in this area, this paper is not included in this thesis.

3.2 Literature Overview

This section reviews a collection of 19 resources which includes 16 academic papers, two
online articles, and one video, to provide an understanding of the current landscape of
AI-powered threat modeling and identification. As shown in Table 3.1, the review is
divided into three thematic categories: LLMs in Cybersecurity, AI for Threat Modeling,
and LLMs for Threat Modeling, and provides insights into key advances and trends in
each area. Out of these categories, LLMs for threat modeling is the central focus of this
thesis and, therefore, the most important and most analyzed category. This focus reflects
the main goal of the thesis to investigate the capabilities of LLMs in threat modeling
methods.

3.2. LITERATURE OVERVIEW 17

References Type Category Scope Evaluation

[34] Paper Practical LLMs in Cybersecurity Model Benchmark

[35] Paper Practical LLMs in Cybersecurity Dual Dataset

[36] Paper Practical LLMs in Cybersecurity Cross-Language LLM

[37] Paper Practical LLMs in Cybersecurity None

[38] Paper Practical LLMs in Cybersecurity Case Study

[39] Paper Practical LLMs in Cybersecurity LLM Performance

[40] Paper Theoretical LLMs in Cybersecurity None

[41] Paper Practical LLMs in Cybersecurity Accuracy of 42 LLMs

[42] Paper Theoretical AI for Threat Modeling None

[43] Paper Practical AI for Threat Modeling Theoretical ML Algorithm

[44] Paper Theoretical AI for Threat Modeling None

[45] Paper Practical LLMs for Threat Modeling
Performance with 72 Ques-
tions

[46] Paper Practical LLMs for Threat Modeling Experiment

[47] Paper Practical LLMs for Threat Modeling
KG Functionality Eval-
uation with Competency
Questions

[48] Paper Theoretical LLMs for Threat Modeling None

[49] Video Practical LLMs for Threat Modeling None

[50] Paper Practical LLMs for Threat Modeling Performance Experiment

[51] Online Article Practical LLMs for Threat Modeling None

[52] Online Article Practical LLMs for Threat Modeling None

This Study Master Thesis Practical LLMs for Threat Modeling Interview, Performance

Table 3.1: List of References

3.2.1 Large Language Models in Cybersecurity

There are several papers that address the topic of vulnerability detection with LLMs.
Paper [34] shows a RAG approach that makes cyberattack investigation better than GPT-
4o. The tool achieves this by performing vulnerability identification with complex question
about attack strategies and tactics. Paper [35] examines an LLM customized for intrusion
detection in satellite networks that achieves remarkable accuracy by processing network
traffic similar to text data. Paper [36] presents a framework called LLM4Vuln that is
able to detect vulnerabilities in code through logical reasoning and external contextual
data such as documentation, API details or system architecture. The evaluation of this
framework was performed on real systems on bug bounty platforms, where it uncovered
severe vulnerabilities. These papers show how customized LLM solutions can improve
vulnerability detection techniques in specific areas.

Papers [37], [38] and [39] are chapters from books that analyze different aspects of the use
of LLMs in cybersecurity. Chapter [37] addresses the dual role of LLMs in cybersecurity by
discussing both their usefulness in detecting threats and vulnerabilities and the associated

18 CHAPTER 3. RELATED WORK

security risks. In addition, practical mitigation techniques for these risks are proposed.
Chapter [38] focuses on the use of ChatGPT to create attack trees that visualize potential
cyberattack scenarios. The study shows that ChatGPT can help in creating initial drafts
of attack trees. Finally, chapter [39] shows how LLMs improve cyber threat hunting by
analyzing patterns in log analysis. It supports real-time detection and improving threat
intelligence. Combined, these chapters demonstrate both the potential and the challenges
of integrating LLMs into cybersecurity practice.

Papers [40] and [41] are use cases that deal with LLM in general cybersecurity. Pa-
per [40] even categorizes five different use case possibilities of LLM in cyber defense: (1)
Threat Intelligence, (2) Vulnerability Assessment (Pentest, SAST), (3) Network Security,
(4) Privacy Preservation, (5) Operation Automation (Incident Response). The paper [41]
evaluated 42 LLMs in various security related task like malware detection, phishing detec-
tion, and intrusion detection. These results showed that LLMs will play an increasingly
important role in cybersecurity.

3.2.2 Artificial Intelligence for Threat Modeling

The paper [42] contains several ideas on how AI can be used in IT security. On the one
hand, the use of LLMs for threat detection is proposed. However, the author rather refers
to the use of LLMs in the area of reading log files or emails for phishing detection. In
the area of threat modeling, a predictive approach is proposed and the role of LLMs in
the ability to predict potential vulnerabilities in the future. Although this paper focuses
more on conceptual ideas and less on practical applications, it still shows the possibility
of how AI can be used in IT security.

Paper [43] presents a practical ML framework that uses several existing ML algorithms to
detect hybrid cyber threats in the Industrial Internet of Things. Existing ML algorithms
include Random Forest, Grey Relational Analysis, and others to detect complex threats in
networked industrial systems. The paper focuses very heavily on the theoretical aspects
of the algorithms. While the paper provides a structured approach to modeling hybrid
cyber threats, it does not do an empirical evaluation of the methods. For this reason,
the paper can be considered as an overview of current approaches and as a conceptual
framework.

The paper [44] deals with the idea of using AI in threat detection and in IT security in
general from a theoretical point of view. The main focus is on how AI can improve threat
detection via pattern recognition, anomaly detection, and predictive analytics. Despite
focusing on the theoretical views, this paper highlights the potential of AI to defend
against emerging threats and the value of AI-driven protection mechanisms in a modern
cybersecurity system.

3.2.3 Large Language Models for Threat Modeling

The paper [45] provides a new approach to threat modeling that uses Llama 2 with RAG
to identify security threats and provide insights about the system. It focuses on two

3.2. LITERATURE OVERVIEW 19

References Type Practical Early Stage
Direct

Approach

Threat
Detection on
AI Systems

LLM for
Threat

Detection

LLM for
Threat

Validation

DFD
Usage

[45] (2024) paper yes no yes no yes no no

[46] (2024) paper yes not specified yes no no yes yes

[47] (2024) paper yes yes no no yes no yes

[48] (2024) paper no not specified not specified no yes no no

[49] (2024) video yes yes yes no yes no yes

[50] (2023) paper yes not specified not specified no not specified not specified
not speci-
fied

[51] (2023)
online arti-
cle

yes yes no yes yes no no

[52] (2023)
online arti-
cle

yes yes no no yes yes no

Table 3.2: Comparison of references in the context of LLMs for threat modeling

key questions from the Threat Modeling Manifesto: MQ1 What are we working on and
MQ2 What can go wrong. The approach provides practical LLM-based support to ad-
dress these critical aspects. To ensure that the LLM receives sufficient information about
the system, the LLM is provided with 3 to 60 PDF pages of documentation. The tool was
evaluated using six questions on 12 threat models, with human raters scoring the answers
based on how well they met their expectations. The result of the RAG-enhanced model
outperforms the LLM base model with a satisfaction rate of 75%. The reason for this is
that the RAG model provides more accurate and concise answers, as well as recognizing
faster when a question could not be answered due to insufficient information. In conclu-
sion, this paper makes an important contribution to automatic threat identification and
system understanding in the context of threat modeling.

A different use case of LLMs in threat modeling is proposed by [46]. It identifies threat
validation as a critical challenge in the threat modeling process. The study aims to explore
how LLMs can assist users in validating security threats within a system. To this end,
an experiment was performed in which participants were divided into four groups, each
of which was given different combinations of DFDs, LLMs, and a list of pre-identified
threats (a mixture of true and false positives). The results show that LLMs improved
threat validation by helping participants recognize threats more accurately, although at
the cost of an increased number of false positives. It is notable that the groups that were
using LLMs had the lowest technical knowledge, which may have contributed to the higher
false positive rates. Although no specific LLM was developed in the study, it demonstrates
the potential of integrating LLMs into the threat modeling process to improve validation
accuracy.

[47] presents an approach that uses LLMs to convert DFDs into machine-readable knowl-
edge graphs. This method enables the identification of threats within a system. The
LLM not only generates the knowledge graph from the DFD, but also performs reasoning
tasks to analyze the system’s own threats. The approach was evaluated using a series of
competency questions. It was found that LLM efficiently generates knowledge graphs and
successfully expands the scope of threat identification. These results confirm the practical
value of LLMs for facilitating threat modeling.

20 CHAPTER 3. RELATED WORK

In contrast to the other three studies, [48] operates on a theoretical level and presents ideas
for the implementation of LLMs in four key areas of cybersecurity based on a literature
review. The author identifies these areas as (1) Threat Feature Detection, (2) Automated
Attack Tree Generation, (3) Data Generation and Preprocessing, and (4) Intrusion and
Threat Discovery. Threat modeling is only addressed in the discussion of Threat Feature
Detection. Here, the author shows how models such as RoBERTa can improve threat
identification by showing relationships between attack vectors and defenses and providing
a conceptual link to threat modeling.

In a webinar [49], a practical implementation of LLMs in the threat modeling process is
presented. In this presentation, the Chief Research Officer outlines a three-step approach
to create a suitable threat model.

1. The input consists of a DFD, a markdown file describing the functions of the soft-
ware, and a prompt. Based on these inputs, the LLM generates security objectives
and asset information and outputs them also in the form of a markdown file.

2. The LLM uses the security objectives and asset information along with another
prompt to create specific threat scenarios for the software.

3. The LLM uses the threat scenarios, security objectives, and a new prompt to create
a strategy to mitigate the identified threats.

This webinar, led by AppSecEngineer’s Chief Research Officer, shows how LLMs can
effectively support the threat modeling process in practice[49].

[50] is slightly more distant from the topic of LLMs in threat modeling but still closely
related. It analyzes how LLMs, such as ChatGPT, can support threat analysis for criti-
cal systems. Using experiments, the researchers evaluated ChatGPT’s ability to identify
potential threats. The study included 78 queries to evaluate feasibility, utility, and scal-
ability. The results showed that ChatGPT provided moderately useful input: 64% of
responses were feasible, 35% were useful, and effectiveness decreased with the complexity
of the system. This paper is relevant because hazard analysis and threat modeling use
similar methods to identify risks, although they focus on safety and security, respectively.
The findings from hazard analysis can inform the development of LLM applications for
threat modeling.

Several online resources address the use of LLMs in threat modeling and provide practical
examples rather than academic insights. Two such examples are highlighted at this point.
Article [51] compares GPT-3.5, Claude2, and GPT-4 and shows that while GPT-4 and
Claude2 provide higher quality results, they rely heavily on detailed inputs and iterative
refinement. The study included assumptions in the prompts, such as using a SAST tool
to rule out certain threats, such as SQL injection. Similarly, Article [52] demonstrates
the use of ChatGPT in identifying threats to software functions that use LLM. Despite
their differences, these examples illustrate the different ways in which LLMs are used in
this area.

3.3. DISCUSSION 21

3.3 Discussion

This section identifies the main limitations in the existing research, outlines the main
problem for this thesis, and defines the limitations to provide a clear scope for the proposed
approach.

3.3.1 Limitations

In general, there appears to be limited research on how LLM can support the process of
threat modeling. However, based on the few studies, the following concrete limitations
appear.

L1) Existing approaches are not applicable to early stages of development.

L2) Intermediate structures are required to effectively detect threats.

L3) Limited experimental work has been conducted on threat identification with minimal
input data.

L4) No research exploring how LLMs can be utilized for threat identification in AI
systems.

One important limitation is the lack of scientific papers that focus on threat modeling
at an early stage, which is the key principle in the Threat Modeling Manifesto [7]. An
example of this is the paper [45], which requires 3-60 PDF pages of documentation to
detect the threats to a system. However, such system documentation is not available at an
early stage of software development. Minimal inputs such as DFDs are often overlooked,
although they are a common type of abstraction at this stage.

The second limitation is the dependency on intermediary structures, such as knowledge
graphs, created by the LLMs. While these methods led to success in [47], they also
introduce another layer of complexity. For this reason, there is a research gap in detecting
the threats directly from DFD via LLM, making the reasoning similar to the practical
webinar [49].

In this context, there is a lack of experiments that show how well an LLM performs
threat identification with minimal input, like a DFD. The lack of such experiments limits
the understanding if LLMs are able to create a comprehensive threat model in the early
stages.

The L1-L3 limitations become even more important when looking at the limitations within
a specific domain. In this case, the field of AI security highlights these limitations, as there
is currently little to no research investigating how LLMs can be used to detect threats
specifically related to AI systems. This is a significant research gap (L4), as AI systems
often come with their own specific threats that differ from traditional software threats.
The focus on AI-specific threats reinforces the problem, as the existing research does not
even cover general gaps in this area.

22 CHAPTER 3. RELATED WORK

3.3.2 Main Opportunity and Constraints

Based on the identified research gaps, there is an opportunity to develop an LLM-based
approach that enables threat modeling for AI architectures during the early design phase
of software development. This approach would rely on minimal input, such as DFDs
and brief feature descriptions, and avoid intermediary structures by directly generating
the threat model from the DFD using the LLM. As seen in Table 3.2, no existing paper
fully meets all conditions. Therefore, this master thesis takes the opportunity to fill these
gaps by proposing an approach that fulfills all the conditions visualized in Table 3.2. By
addressing these gaps, this thesis aims to demonstrate the practicality and value of direct,
early identification of threats through LLMs in AI systems.

To differentiate this thesis from existing work, additional requirements were defined. Some
of these constraints were already defined before conducting the literature review: the
requirement that the LLM must provide explanations for each detected threat to improve
interpretability, the use of a pre-trained LLM without fine-tuning, and the priority on
smaller and less complex systems to address scalability challenges. However, further
limitations could be identified from the literature review.

These constraints include the restriction to limited documentation that limits input to a
minimum, such as DFDs and short functional descriptions, which reflects the reality of
early software development. This limitation opposes the approach in paper [45], which
requires extensive documentation of 3 to 60 pages. The constraint that there are no in-
termediate structures highlights a direct approach in which the LLM identifies threats
without relying on intermediate structures. This prioritizes simplicity while potentially
reducing precision. This approach is in contrast to paper [47], which relies on interme-
diate structures such as knowledge graphs. Finally, the two-stage threat identification
and validation constraint defines a process in which threats are first identified and then
validated in a second stage to ensure accuracy and validation capability. This constraint
was heavily influenced by the paper [46].

These constraints are fundamental to the approach of this thesis as they define the unique
scope of the work and, at the same time, present limitations that could serve as directions
for future research.

Chapter 4

Architecture and Prototypical
Implementation

This chapter provides a detailed insight into the architecture and implementation of a
prototype that can be used to identify and validate threats with minimal inputs. First,
the four main components of the system and their interactions are described, with a focus
on the integration of a RAG system to extend the capabilities. Key technologies such as
Docker, Flask, Ollama, ChromaDB and React are introduced and their role in the process
is explained at the same time.

The chapter then continues with a detailed implementation documentation of the Threat-
FinderAI component and describes the functions, the changes and the role of the compo-
nent in identifying and validating threats. It also covers the Flask Backend with the main
topics of its architecture, key endpoints, DFD parsing, prompt engineering and integration
with the ThreatFinderAI.

In the end, there will be an understanding of the structure of the prototype, the rationale
for its design, and the technologies used to implement it.

4.1 Architecture

To show how the developed prototype was designed to identify and validate threats with
minimal input, the architecture chapter plays a crucial role. This chapter provides an
overview of the components of the system, their interactions, and the basic structure of
the prototype. In addition, it also illustrates how the prototypical architecture represents
a RAG system. This section aims to provide a clear understanding of how the system is
built and how its parts interact to achieve its goals.

23

24 CHAPTER 4. ARCHITECTURE AND PROTOTYPICAL IMPLEMENTATION

4.1.1 High-Level Architecture

As shown in Figure 4.1, the prototype divided into four main components: ThreatFind-
erAI, Flask Backend, LLM, and ChromaDB. The ThreatFinderAI component acts as the
frontend of the prototype and was developed prior to this work [3]. However, significant
changes and additions were required to allow dynamic inputs, such as a created DFD,
to be effectively processed by the LLM. In order for an LLM approach to be properly
integrated into the ThreatFinderAI tool, three additional components were implemented
for the prototype. The Flask Backend acts as a simple API that coordinates the requests
from the frontend appropriately. It is therefore also responsible for ensuring that the
requests are rightly forwarded to the LLM and the ChromaDB component in a correct
sequence. The LLM component, which is using the Ollama technology as a default, en-
ables a local execution of modern LLMs and ensures that sensitive threat model data
remains on the user’s client and is not passed on to third parties. The Llama 3.2 model
is used in this prototype. In addition to generating outputs, the LLM component is also
used to calculate embeddings. The ChromaDB component complements these functions
by storing the embedding vectors. ChromaDB as a vector database and technology is
described in more detail in Section 4.2.

Figure 4.1: High-Level Architecture

The typical workflow starts with the Flask Backend receiving input files and splitting them
into chunks of text. These chunks are then processed by the LLM component to obtain
an embedding for each chunk. These embeddings are then stored in the ChromaDB
component. Once this process is done, the ThreatFinderAI can identify and validate
threats with the corresponding request to the Flask Backend component. Upon threat
identification, the backend retrieves the relevant threat embeddings in ChromaDB based
on the DFD input it received from the frontend. These found threats are then sent back
to the frontend and in case of a threat validation, the backend sends these threats together
with a prompt to the LLM component. The detailed mechanism of the backend processing
and communication is discussed in Section 4.4, while Section 4.1.2 provides an in-depth
analysis of the technologies and the RAG process.

All four components are provided as separate Docker containers, which ensures a sim-
plified and uncomplicated setup process, as shown in Listing 4.1. Docker Compose is
used to initialize the system and automates the configuration of the components. The

4.1. ARCHITECTURE 25

ThreatFinderAI frontend operates on port 3000, the Flask Backend on port 5000, Ol-
lama on port 11434, and ChromaDB on port 8000. The Ollama setup includes a custom
bash script called entrypoint.sh that is used during setup to download the Llama 3.2
model. Persistent volumes are configured for ChromaDB and Ollama to ensure that em-
beddings and the LLM model are maintained across container restarts. This reduces the
time needed for restarting as the LLM does not need to be downloaded again nor the
embeddings recalculated, which makes the full process more efficient.

Listing 4.1: Docker Compose Configuration File for Basic Infrastructure Setup

1 version: "3.8"

2 services:

3 chromadb:

4 image: chromadb/chroma:latest

5 container_name: chromadb

6 ports:

7 - "8000:8000"

8 volumes:

9 - chromadb_data :/data

10
11 frontend:

12 build:

13 context: ./react -frontend

14 dockerfile: Dockerfile

15 container_name: frontend

16 ports:

17 - "3000:3000"

18 environment:

19 - REACT_APP_BACKEND_URL=http ://127.0.0.1:5000

20
21 ollama:

22 image: ollama/ollama:latest

23 ports:

24 - 11434:11434

25 volumes:

26 - ./ ollama/ollama :/root/. ollama

27 - ./ entrypoint.sh:/ entrypoint.sh

28 container_name: ollama

29 pull_policy: always

30 tty: true

31 restart: always

32 entrypoint: ["/usr/bin/bash", "/ entrypoint.sh"]

33
34 flask -backend:

35 build:

36 context: ./flask -backend

37 dockerfile: Dockerfile

38 container_name: flask -backend

39 ports:

40 - "5000:5000"

41 environment:

42 - CHROMADB_HOST=chromadb

43 - CHROMADB_PORT =8000

44 - OLLAMA_URL=http :// ollama :11434

45 - OLLAMA_MODEL=llama3 .2

46 depends_on:

47 - chromadb

48 - ollama

49 command: ["sh", "-c", "sleep 5 && flask run --host =0.0.0.0"]

50
51 volumes:

52 chromadb_data:

53 ollama_data:

26 CHAPTER 4. ARCHITECTURE AND PROTOTYPICAL IMPLEMENTATION

4.1.2 Retrieval Augmented Generation Architecture

The RAG framework is a focus of this thesis, as the entire backend architecture is based on
it. This section explains how exactly the RAG architecture was built for the prototype and
the technologies used to do it. Figure 4.2 shows the specific RAG architecture implemented
in this thesis, while Figure 2.3 shows a typical RAG architecture.

Figure 4.2: Prototype RAG Architecture

To ensure that the LLM has the relevant data on AI threats, all information is collected
from [53]. This means gathering information from specific sources to enable the LLM
to react appropriately without training it or adjusting its parameters or inner workings.
The extracted pages are then split into multiple chunks to ensure in the case of this
prototype that each AI threat is treated as an own entity along with its description. The
technology used for the chunking is LangChain [54] while the chosen chunking strategy
is document chunking. In addition, the embedding model Llama 3.2 is used in Ollama to
convert these text blocks into vectors. In an earlier version of this prototype, the nomic-
embed-text model [55] has also been explored. However, this model has a context length
limitation of 2048 tokens. Therefore, the chunking strategy would have to be adapted
accordingly. As document chunking was used and a further chunking strategy would have
required investigation, the focus was only placed on document chunking. Therefore, the
embedding model Llama 3.2 in Ollama was chosen as it does not have this limitation.
The technology used for storing the vectors is ChromaDB [56], which is widely recognized
for its efficiency in processing high-dimensional embeddings.

The second part of the RAG system is responsible for the threat identification process.
As shown in Figure 2.3, a user is visualized in the RAG process, which represents the
user interface of ThreatFinderAI in the prototype system. This representation includes
the creation of the DFD. This DFD is then processed in the backend by splitting it into
separate assets, which are shown as queries in the figure. Each asset is then converted

4.2. TECHNOLOGY 27

into vectors using the same embedding model as before. After that, a similarity search
on ChromaDB is performed to find the most relevant AI threats. This process represents
the retrieval step.

Comparing Figure 2.3 with Figure 4.2, a significant difference to the traditional RAG
process is recognizable. In the prototype developed for this thesis, the retrieved results
are sent back to the ThreatFinderAI as shown in Figure 4.2. This diversion ensures that
threat identification and threat validation run as separate processes, which is the two-stage
process discussed in Section 3.3. Once the user triggers threat validation, the identified
threats are inserted back into the standard RAG process, initiating the augmentation
step.

The following augmentation step begins with the identified threats, which are the output
of the similarity search. This output is used as a context for the LLM and is therefore
combined with a prompt and sent to the LLM, which in this prototype is Llama 3.2 running
on Ollama. However, the output may change depending on the LLM used. Therefore,
different LLMs are evaluated and compared in Chapter 5. In the final generation step,
the retrieved threats are formatted into a structured output using the LLM and sent back
as a response to the ThreatFinderAI user interface, where the user can review the threats
identified by the prototype.

4.2 Technology

This section gives an overview of the technologies that were used to develop the prototype.
Thereby, the reasons for their use as well as the places where the technologies were used
are explained.

4.2.1 Docker

Docker is a technology that allows applications to be separated from the underlying in-
frastructure, which enables a faster deployment [57]. This effect is achieved by running
the applications in so-called containers, which can be described as isolated environments.
This results in the advantage that several containers can run in the same host, but are in-
dependent of each other and can therefore ensure security and consistency. Furthermore,
not all required dependencies have to be packed on one system, but are also separated from
each other. This allows the user to run a prototype quickly while avoiding dependencies
problems on the host system.

As shown in Figure 4.1, each block in the high-level architecture represents a separate
container. To simplify the setup process, Docker Compose is used for container deploy-
ments. The corresponding docker-compose.yml file, which is shown in Listing 4.1, defines
four services and two volumes that ensure persistent data storage.

The use of volumes is important because they avoid time-consuming reinstallation pro-
cesses when restarting containers. This is important for the following services:

28 CHAPTER 4. ARCHITECTURE AND PROTOTYPICAL IMPLEMENTATION

1. Ollama: This service contains an entrypoint.sh script that downloads the required
LLM model at the start. Without a volume, the model would have to be downloaded
again each time the container is restarted, which would lead to unnecessary time
delays.

2. ChromaDB: This component is responsible for saving the embeddings correctly so
that they can be used later for threat identification (see subection 4.2.4). Since
calculating and saving these vectors can be time-consuming, a volume is used to
ensure that the data remains persistent even after restarting the container.

It can therefore be said that volumes with its persistent data storage increases efficiency
and also enhances the user experience.

4.2.2 Flask

To ensure that the ThreatFinderAI tool is able to effectively interact with an LLM, a
simple API was developed to act as an interface between ThreatFinderAI and the LLM.
This minimal API is using Flask [58], which is a lightweight web framework for building
web applications in Python. The term “lightweight“ and “micro“ in Flask stands for the
goal of keeping the core framework simple while being highly extensible. In addition,
Flask offers a good documentation and builds on two important dependencies: Jinja2
and Werkzeug. Jinja2 is the template engine used by Flask, while Werkzeug provides
important tools for implementing a Web Server Gateway Interface (WSGI) application.

The prototype relies on key dependencies, which are all listed in file requirements.txt on
Github [59]. The Langchain dependency is the most important, as this framework greatly
simplifies the development of applications based on LLMs. Langchain offers open-source
components and third-party integrations, such as LangGraph, which enables the creation
of stateful agents. For production, Langchain provides tools such as LangSmith to in-
spect, monitor and evaluate applications for optimization. Deployment is simplified by
the LangGraph platform, which transforms applications into production-ready APIs and
assistants. The prototype uses essential libraries, including langchain-core for founda-
tional abstractions, langchain-chroma for vector storage and retrieval, langchain-ollama
for model integrations, and langchain-text-splitters for text chunking. To summarize,
langchain is a tool that simplifies the LLM-based application development and is there-
fore very valuable for developers creating such applications.

4.2.3 Ollama

Ollama is an open source framework that allows users to run LLMs locally [60]. This
is done by combining model weights, configuration and data into a single package. In
addition, Ollama optimizes setup and configuration, including Graphics Processing Unit
(GPU) usage. The framework allows the use of multiple models and offers users a wide
range of options. One of the more popular open source models available in Ollama is
Meta’s Llama 3 which is a family of models [61]. Ollama has different versions of these

4.3. THREATFINDERAI 29

models. For example, the Ollama 3.2 model includes versions with parameter sizes of one
billion, which require around 1.3 GB, and 3 billion, which require around 2.0 GB [62].
In the prototype, Ollama runs in a seprated Docker container and only interacts with
the Flask Backend. The reason for using Ollama is that LLMs can be run locally. This
ensures that the data never leaves the defined infrastructure, which enhances security.

4.2.4 ChromaDB

Chroma is an open source AI vector database designed for building LLM applications [63].
It enables efficient storage of embeddings and their metadata as well as fast vector search,
which makes it a strong candidate for semantic search and RAG applications. While
Chroma was primarily designed for Python and JavaScript/TypeScript client Software
Developement Kids (SDKs), other developers and organizations have developed clients for
other languages. Although Chroma is open source, it is important to note that Chroma
is also a company that develops and maintains the open source project of the same name.
Nevertheless, according to [63], they committed to the principle that every function that
is useful for an individual developer remains 100% open. In the prototype, ChromaDB
operates like Ollama in a separate Docker container and interacts exclusively with the
Flask Backend. The reason for using ChromaDB is that it is very straightforward to
set up and open source. It can also be hosted locally, which allows hosting the whole
prototype on your system.

4.2.5 React

Unlike the other technologies, React JS is used for the frontend component, which is called
ThreatFinderAI. As the ThreatFinderAI tool was developed before this thesis, its use was
previously determined, so a decision-making process was not required for the frontend
part. React is a library designed for creating user interfaces and best known for its React
DOM features, such as components and hooks that work within the browser’s DOM [64].
The advantage of using a virtual JavaScript DOM is the higher performance and better
scalability of the application.

4.3 ThreatFinderAI

The ThreatFinderAI component is unique in the prototype because it is the only compo-
nent that existed before this thesis. This section therefore first shows what the original
functionality of this component was. Then it highlights the architectural changes that
were made as part of this thesis. These changes are then described in more detail, as they
have influenced the threat identification and validation. For this reason, key code changes
and design decisions that enabled these features are also outlined in this section.

30 CHAPTER 4. ARCHITECTURE AND PROTOTYPICAL IMPLEMENTATION

4.3.1 Existing Functionality of ThreatFinderAI

The ThreatFinderAI tool is designed to support and automate threat modeling for AI-
based systems by systematically identifying assets, threats and countermeasures while
quantifying residual risks [3]. It takes a structured approach similar to traditional threat
modelling tools, such as the Microsoft Threat Modelling Tool or CAIRIS, but does in
addition address the specific challenges posed by AI threats. This is achieved through
an integrated KB of AI-specific vulnerabilities, structured diagrams for modelling system
components and automatic risk quantification using Monte Carlo simulations.

Figure 4.3: Previous Version of the ThreatFinderAI Design

As shown in Figure 4.3, the previous version of ThreatFinderAI already followed a struc-
tured process before the development of the prototype in this thesis. The process is
described in detail in the paper [3]. For the purpose of completeness, a brief overview is
provided below:

• Step 1: In the first step, during the requirement analysis, the scope of a business
mission had to be defined together with an important security requirement and
an asset. For example, it is possible to identify data assets and confidentiality as
important security properties as part of the CIA (Confidentiality, Integrity, and
Availability) triad.

• Step 2: The second step was architecture modeling, where it is important to create
a high-level overview of the system. The AI lifecycle model can be used as a guide
to ensure that all activities and systems involved were identified in the DFD.

• Step 3: In the third step, asset elicitation, the annotations were retrieved from the
architecture diagram and mapped to a metamodel that defines the assets within the
diagram.

• Step 4: In the fourth step, threat recognition, the identified goals were used as input.
The ThreatFinderAI tool identified the threats using an attack graph that queried
multiple KBs that were matched by a graph model. Specifically, the catalogues from

4.3. THREATFINDERAI 31

ENISA [65], OWASP AI Exchange [53] and MITRE ATLAS [10] were converted into
a graph-based structure. These sources were then linked to the metamodel based
on properties such as asset category and lifecycle stage, which enabled automatic
identification of threats.

• Step 5: In the fifth step, threat analysis, users have to review the identified threats
and add relevant threats to the threat model. Threats directly related to the pre-
viously defined key object or security objective are highlighted to prioritize the
analysis.

• Step 6: The sixth step covers the identification of mitigation controls where users
can investigate technical, organizational or strategic countermeasures. This step is
automated by querying the KBs, using the meta-model to match the threats with
the relevant mitigation strategies based on their lifecycle stage.

• Step 7: Finally, in a risk analysis step, previous threat models can be reused for
strategic risk analysis to gain additional insights, which means that it generates
value through collaboration.

4.3.2 Modifications with Proposed Prototype

To ensure that ThreatFinderAI could be used effectively in the prototype of this thesis,
various changes to the existing architecture were required. In Figure 4.4, the elements
highlighted in blue show the changes that were made to the existing ThreatFinderAI tool.
In specific, the methodologies for threat recognition and analysis have been updated.
However, it is important to note that the original modules remains unchanged. The new
process, shown in Figure 4.4, has been introduced as an additional option for identifying
and analyzing threats, rather than replacing the previous methods. This means that
the traditional approach to threat identification can still be used, but there is now an
additional option for identifying and analyzing threats using an LLM.

Figure 4.4: Adapted ThreatFinderAI Design – Novel Components in Blue

32 CHAPTER 4. ARCHITECTURE AND PROTOTYPICAL IMPLEMENTATION

As shown in Figure 4.4, the updated ThreatFinderAI tool now has two separate requests
sent to the Flask Backend: threat identification and threat validation. More details on
these requests can be found in Section 4.4. However, it can be said that the ThreatFind-
erAI has been modified to allow these two requests to be sent to the backend with the
DFD in the request body. The motivation for this separation of the two requests is mainly
that these two requests should be evaluated separately from each other. For this reason,
the identification of threats with minimal input and the validation of threats with minimal
input are tested separately in the evaluation Chapter 5.

It is also important to note that no changes have been made to the asset definitions. This
means that the LLM can only process asset categories defined in Paper [65], which is
based on the generic AI lifecycle reference model. These assets are specific to AI systems
and include models, procedures and data, all of which can be compromised or corrupted
through intentional or unintentional causes.

4.3.3 Threat Identification

Three new states were introduced to implement threat identification: threatsFromBack-
end, isLoading and selectedKBValue. The selectedKBValue state is by default set to enisa
and should trigger logic that depends on this value. The isLoading state was introduced
to provide visual feedback in the frontend while the request in the backend is processed.
This is because the communication with the LLM can take longer than with standard
requests. Finally, the threatsFromBackend state saves the threats identified by the LLM
and enables further processing.

The most important change was the addition of the handleKBChange function, which is
triggered whenever the KB selection changes. When llm is selected as a parameter, then
the function triggers a POST request to the ”threat detection” endpoint in the backend.
This request contains a DFD diagram, which is retrieved from the local storage in an
Extensible Markup Language (XML) format. While the request is being processed, the
isLoading state is set to true to give users a visual feedback. Once the backend response
is received, the identified threats are stored in the threatsFromBackend state.

The getThreatsForCategory function has been modified to ensure that the threats are
displayed correctly. If the threatsFromBackend list contains at least one element and se-
lectedKBValue is set to llm, the function filters the threats so that only those with names
that match at least one threat identified by the backend are displayed. The getThreats-
ForCategory function has been modified to ensure that the threats are displayed correctly.
If the threatsFromBackend list contains at least one element and selectedKBValue is set to
llm, the function filters the threats so that only those with names that match at least one
threat identified by the backend are displayed. This behaviour can be seen in the List-
ing 4.2. The getThreatsForCategory function is always executed when the threat list is
rendered in the frontend. The filter mechanism checks whether the threat name contains
the string that matches the threats found by the backend.

This decision ensures that even if the LLM returns a threat name such as Prompt Injection
that does not have an exact match in the predefined threat taxonomy, related threats such

4.3. THREATFINDERAI 33

as Direct Prompt Injection and Indirect Prompt Injection are displayed. This is because it
checks whether the stringDirect Prompt Injection contains the substring Prompt Injection.
This approach gives attention to threats that are classified as important by the LLM, even
if they are not classified with full precision.

Listing 4.2: Filtering Threats based on the Function getThreatsforCategory
1 function getThreatsforCategory(category) {

2 if (isThreatValidation === true){

3 var threats = threatTaxonomyLLM.filter(t => t [' Affected
assets ']. includes(category));

4 }

5 else{

6 var threats = threatTaxonomy.filter(t => t [' Affected assets ']. includes(category));
7 }

8 if (threatsFromBackend.length > 0 && selectedKBValue ===" llm") {

9 threats = threats.filter(t => {

10 return threatsFromBackend.some(response =>

t[" Threat "]. toLowerCase ().includes(response.toLowerCase ()));

11 });

12 }

13 threats.map(t => {

14 t.potentialKeyThreat = t [' Potential Impact ']. includes(selectedModelInfo.keyProp);
15 return t;

16 });

17 return threats;

18 }

4.3.4 Threat Validation

Once threat identification is complete and the selectedKBValue remains to llm, users can
trigger the threat validation. The goal was to enable a POST request for the threat
validation inside the threat categories. However, a problem occurred because the threat
descriptions and other metadata retrieved from the taxonomy were only available in the
threat list, which is displayed separately for each category. This would have led to multiple
duplicated threat validation requests, which would have increased processing time.

To solve this problem, a new state, isThreatValidation, has been implemented. When
the button below the KB selection is clicked, this status is set to true, and a new taxon-
omy, called threatTaxonomyLLM, is created within the handleThreatValidation function.
This taxonomy only contains threats in the state threatsFromBackend. A POST re-
quest is then sent to the backend, which updates the descriptions accordingly. The exact
implementation details of the function handleThreatValidation can be seen in Listing 4.3.

Listing 4.3: Source Code of the handleThreatValidation Function
1 function handleThreatValidation () {

2 setIsThreatValidation(true)

3 var threatTaxonomyLLM = threatTaxonomy.filter(threat =>

4 threatsFromBackend.some(backendThreat =>

5 threat.Threat.toLowerCase (). includes(backendThreat.toLowerCase ())

6)

7);

8 setThreatTaxonomyLLM(threatTaxonomyLLM)

9
10 const postThreatTaxonomy = async () => {

11 ...

12 }

13 postThreatTaxonomy ();

14 }

34 CHAPTER 4. ARCHITECTURE AND PROTOTYPICAL IMPLEMENTATION

The getThreatsForCategory function is triggered as soon as the request is completed. It
checks whether the state isThreatValidation is still true, and if so, it uses the threatTax-
onomyLLM list instead of the default threat taxonomy. This behavior can be seen in
Listing 4.2. The state of isThreatValidation is changed back to false when the handleK-
BChange function is triggered by switching to a different KB.

To summarize, the threat validation process has been implemented by the handleThreat-
Validation function, which primarily creates the threatTaxonomyLLM list and sends the
corresponding POST request to the backend. In addition, a condition has been added to
getThreatsForCategory function to check whether isThreatValidation is true. If this is the
case, the new ThreatTaxonomyLLM list is used, otherwise the default ThreatTaxonomy
list is applied.

4.4 Flask Backend

This section analyzes the Flask Backend component in detail. It starts with an overview of
the component-based architecture and describes the key components of the Flask Backend
and their roles. After that, it introduces the endpoints provided by the API and shows how
the communication with the different modules and functions in the backend works. The
third section covers the implementation of the DFD parser and explains how an XML-
formatted DFD is processed and transformed into structured components that contain
relevant information that is then used to create a system description. This is followed by a
discussion of the prompt engineering methods used in this prototype to communicate with
the LLM. The final sections look at the backend implementation of threat identification
and validation, and they describe in more depth how these methods were implemented in
the backend and what its contributions are.

4.4.1 Component-Based Architecture and Tasks

The Flask component is the most important element of the prototype, as it acts as the
central node for the management of all communication within the system. As an API, it
receives requests from the ThreatFinderAI frontend and handles them accordingly. With
that, the Flask application is organized into five components as shown in Figure 4.5:
App.py, DFDParser.py, Chunker.py, ChromaLoader.py and PromptHandler.py.

1. App.py: This is the main component of the backend, which is responsible for han-
dling five endpoints that process incoming requests. Each endpoint corresponds to a
specific feature of the prototype and enables a communication between the frontend
and the backend.

2. DFDParser.py: This component contains all the functions required to interact with
the DFD. It can use raw XML files to extract relevant content and convert it into
text descriptions. These text descriptions are crucial for providing the LLM an
understanding of the system structure.

4.4. FLASK BACKEND 35

3. Chunker.py: The Chunker.py component implements the chunking strategy for
document data. Large text inputs are split into smaller chunks to ensure efficient
handling and storage.

4. ChromaLoader.py: ChromaLoader manages all communication with the ChromaDB
component. This component is the vector database used to store and query embed-
dings. These interactions include storing chunks, performing similarity searches and
creating new collections within the database. ChromaLoader also communicates
directly with Ollama. Since the creation of collections requires a predefined embed-
ding function, ChromaLoader connects to Ollama directly to compute embeddings.
This integration simplifies the embedding workflow by consolidating the process into
one component.

5. PromptHandler.py: The PromptHandler also communicates with the Ollama com-
ponent, but has a different main task. It focuses on creating dynamic prompts based
on the input data. These prompts are then sent to Ollama, while another task of
PromptHandler is to process the output. As it can be clearly observed, the com-
munication with Ollama is not reduced to a single component, as such a separation
would lead to unnecessary back and forth communication between the imaginary
Ollama component, ChromaLoader and PromptHandler. This integration ensures
efficient handling of both prompt generation and text generation by the LLM.

To summarize, the backend design efficiently divides responsibilities between the individ-
ual components and ensures a clear separation of tasks. The interaction with ChromaDB
and the handling of DFD and documents are well organized in specific components. How-
ever, communication with Ollama is shared between the PromptHandler and Chroma-
Loader.

4.4.2 Endpoints

This section lists all the endpoints shown in Figure 4.5, explains their respective tasks
and describes the process that takes place when an endpoint is called.

Upload Endpoint

The upload endpoint ensures that documents are stored in ChromaDB so that the RAG
system can access relevant information about AI threats. This endpoint is designed to
handle POST requests and requires a body parameter with the key file that accepts one
or more Markdown files. After receiving the files, as shown in Figure 4.5, the endpoint
processes them in the App.py component. The files are read and sent to the chunker
component to use the mdDocumentChunker function to split the documents into smaller
chunks.

After the text has been processed into chunks, these chunks are sent to ChromaLoader
component, in which the text chunks are converted into embeddings by the function
addDocumentsToVectorstore. This function interacts with Ollama’s embedding model,

36 CHAPTER 4. ARCHITECTURE AND PROTOTYPICAL IMPLEMENTATION

Figure 4.5: Flask Backend

where after the calculation the chunks are stored in ChromaDB, in which they can be
retrieved for future queries.

Threat Detection Endpoint

The threat detection endpoint is used to identify threats based on a provided DFD as
input. It functions as a POST request, where the DFD must be delivered as an XML
file under the key xml in the JavaScript Object Notation (JSON) body. As described in
Figure 4.5, this endpoint uses multiple backend components to transform the raw XML
data into useful content that is then used to identify threats.

When a request is received, the XML content is first forwarded to the DFDParser compo-
nent. Within this component, the ThreatFinderAiDfdToComponentList function is used
to process the XML to extract all relevant assets described in the DFD. This operation is
important as it converts the raw data of the diagram into a structured list of system as-
sets. These extracted components serve as the basis for the following threat identification
process.

In a second step, the list is then sent to the PromptHandler module, where the detect-
Threats function starts the identification of potential threats. To be able to do this,
the PromptHandler creates a connection to ChromaDB via the ChromaLoader compo-
nent. The connection gets initiated by the ClientInit function, which ensures that the
corresponding collection in ChromaDB is accessed, which contains the embeddings for
AI threats. Using the extracted DFD assets as input, the system performs a similarity
search in ChromaDB with the similarity search function. This search identifies the stored
threats that are most relevant to the assets described in the DFD.

4.4. FLASK BACKEND 37

Threat Validation Endpoint

Based on the reasoning presented in Section 3, the threat identification and threat vali-
dation processes have been designed as separate functionalities, although they could also
be combined. The threat validation endpoint is implemented as a separate component
whose main goal is to provide better descriptions for the detected threats in relation to
the given DFD. This endpoint also works as a POST request and requires two parameters
in the request body, which are transmitted as a JSON object.

The first parameter with the label dfd corresponds to the format used in the Threat
identification Endpoint. It consists of a JSON object with an XML representation of the
DFD under the key xml. The second parameter labeled threats is a list of the identified
threats that need to be validated. As shown in Figure 4.5, the process begins with the
extraction of the relevant system components from the DFD. This is done by the usage of
the ThreatFinderAiDfdToComponentList function within the DFDParser module, which
ensures that the assets and associated data are identified correctly. Once the components
are extracted, the DFDParser module converts the DFD information into a text descrip-
tion using the componentToText function. This description summarizes the key features
of the system in a textual format that can be used as input for the following validation
step.

With this text about the system, the process continues in the PromptHandler module.
Here, the ValidateThreat function uses the system description and a dynamically gener-
ated prompt (details in Section 4.4.4) to interact with the LLM in Ollama. The LLM
generates the threat descriptions by modifying them to the specific context of the system.
In addition, the LLM adds a ranking to each threat and provides an estimation of how
important the threat is for this system and the arguments in this way. Finally, the gen-
erated output is reviewed to ensure its quality before it is returned to the frontend. In
addition, the ranking created by the LLM is included in the threat description to increase
the depth of analysis. This process is designed to ensure that raw threat identifications
can be transformed into robust and custom threat reports that fit the system.

Optional Endpoints

When looking at Figure 4.5, it is clear that there are two additional endpoints. Like the
other endpoints, the parse dfd to components endpoint is also a POST request in which
the DFD must be provided as an XML under the xml key in the JSON body. However,
the use case for this endpoint is limited as it does not fulfill any essential function within
the tool. Its main purpose is to debug the ThreatFinderAiToComponentList function.
However, with this endpoint, the backend can create a detailed list of all components of
a specific DFD XML file.

Another endpoint that is primarily used for debugging is the queryLLM endpoint. This
endpoint is also a POST request and requires the key prompt in the request body. The
value related to this key is the question that can be forwarded directly to the LLM. This
allows the user to communicate directly with the LLM by making requests and getting
responses without additional handling.

38 CHAPTER 4. ARCHITECTURE AND PROTOTYPICAL IMPLEMENTATION

4.4.3 Data-Flow Diagram Parser

As shown in Figure 4.5, the DFD parser is a main component of the Flask Backend.
Its main function is the conversion of DFDs in XML format into a structured list of
components. This list contains all relevant elements with their key attributes that are
required for the system description and threat identification.

Component Identification in XML-Formatted DFDs

To achieve a smooth conversion, a system was developed that allows assets to be recognized
and information to be extracted. The challenge is that the components consist of a
different number of XML tags. For example, a trust boundary consists of six tags (three
mxCell and three mxGeometry elements), while an adversary component has only two
(one mxCell and one mxGeometry).

To facilitate the identification of components, a predefined list of component types has
been created to make it easier to identify the DFD elements. This list, which is shown
in Listing 4.4, defines how the DFD parser identifies the components. The detectionType
key specifies whether the identification should focus on an XML tag or an attribute. The
key detectionKey determines which key is to be examined, while detectionValue specifies
the expected value that defines the component type. This method ensures the correct
identification of each component generated by the ThreatFinderAI tool.

An important parameter in this identification process is processingCount, which specifies
the number of entries connected to a specific component. This helps the DFD parser to
determine when it should start detecting a new component. It is important to mention
that Component recognition must take place at the first entry and is limited to this tag
or attribute.

Listing 4.4: Detecting Components based on the Component Type List
1 componentTypes = [

2 {"type": "trust boundary", "processingCount ": 6, "detectionType ": "attrib", "

detectionKey ": "style", "detectionValue ": "group"},

3 {"type": "bidirectional arrow", "processingCount ": 7, "detectionType ": "attrib", "

detectionKey ": "style", "detectionValue ": "endArrow=classic;startArrow=classic

"},

4 {"type": "undirectional arrow", "processingCount ": 7, "detectionType ": "attrib", "

detectionKey ": "style", "detectionValue ": "endArrow=classic"},

5 {"type": "arrow", "processingCount ": 2, "detectionType ": "attrib", "detectionKey ": "

edge", "detectionValue ": "1"},

6 {"type": "adversary", "processingCount ": 2, "detectionType ": "attrib", "detectionKey

": "style", "detectionValue ": "shape=image;verticalLabelPosition=bottom;

labelBackgroundColor=default;verticalAlign=top;aspect=fixed;imageAspect =0; image=

data:image/svg+xml ,PHN2ZyB4bWxu ...;"} ,

7 {"type": "note", "processingCount ": 2, "detectionType ": "attrib", "detectionKey ": "

style", "detectionValue ": "text"},

8 {"type": "asset", "processingCount ": 3, "detectionType ": "tag", "detectionValue ": "

object"},

9]

Component Information Extraction from XML-Formatted DFDs However, it is not
enough to simply identify the components, the extraction of relevant metadata for the
system description is just as important. In the following bullet list, the components are
broken down, and it is explained how the information is extracted and what function it
should fulfill:

4.4. FLASK BACKEND 39

• Trust Boundary: The first entry with the mxCell tag provides the id, which is
essential to determine which elements belong to a specific trust boundary. The
second entry with the name mxGeometry extracts the position and size of the trust
boundary. Finally, the fifth entry provides the value that is used as the label for the
trust boundary.

• Arrows: All arrows take their main attributes from the first entry with the tag
mxCell. The most important elements are source and target, which specify the id
of the components that the arrow connects.

• Adversary: The first entry contains the parent attribute, which specifies the id of
the corresponding trust boundary. The second entry contains the position and size
of the adversary component.

• Note: Similar to the Adversary component, the first entry identifies the parent part,
while the second entry extracts the size and position.

• Asset: The asset component is the most important because most of the components
that are created in the ThreatFinderAI tool belong to this category. The first entry
collects the id, label and assetname of the asset. The second entry identifies the
parent, and the third entry extracts the position and size of the asset.

However, there is one notable exception to the data extraction. The trust boundary
contains multiple id tags for its six entries. Only the first id tag is included because it
represents the ID of the bounding frame. This is a crucial point because other components
refer to this id as their parent attribute.

Transformation of system components into descriptive text

After parsing, the result is a detailed list of all DFD components, each with its main
attributes. This structured list is used as the foundation for both threat identification
and validation:

• Threat Identification: Only the components of the type asset are taken into account.
Potential threats are detected on the basis of these components.

• Threat Validation: All components that are identified are used to create a textual
system description. This description is created by using attributes such as asset-
name, label, source, target, parent, size and position. The exact implementation is
shown in Listing 4.5.

The process begins with describing Trust Boundaries, which are stored in a list. This list
is then used to determine the parent component for other items, such as assets, notes,
and adversaries, to identify whether they fall inside a specific trust boundary. If no trust
boundary is assigned, the position is checked by using the position and size of the trust
boundary to determine whether the component is definitely not within a trust boundary.
If neither of the two conditions is met, the component is rated as being outside a trust
boundary, which is then expressed in the textual description.

40 CHAPTER 4. ARCHITECTURE AND PROTOTYPICAL IMPLEMENTATION

For arrows, the findById method is used to find the component connected to the source
and target id. If it is found, the label of the corresponding component is inserted into the
text. For the Adversary component, which has no label, the type is used instead. This
behavior can be clearly seen in Listing 4.5.

With this approach, the DFDParser provides a structured way to translate XML-formatted
DFDs into actionable data for threat modeling and system analysis.

4.4. FLASK BACKEND 41

Listing 4.5: Creating a System Description based on the ComponentToText Function

1 def componentToText(components):

2 result = ""

3 tbList = []

4 for component in components:

5 if component ["type"] == "trust boundary ":

6 tb = {"id": component ["id"], "value": component [" value"], "x":

component ["x"], "y": component ["y"], "width": component ["width"],

"height ": component [" height "]}

7 tbList.append(tb)

8 tbValues = [tb["value"] for tb in tbList]

9 tbString = f"The system consists of {len(tbList)} trust boundaries called: { ' ,
'. join(tbValues)}. "

10 result = result + tbString

11 for component in components:

12 if component ["type"] == "asset":

13 tbFound=False

14 assetStr = f"There is an asset {component [' assetname ']} called

{component [' label ']}"
15 for tb in tbList:

16 if component [" parent "] == tb["id"]:

17 assetStr = assetStr + f" which is in the trust boundary

{tb [' value ']}"
18 tbFound = True

19 break

20 if not tbFound:

21 if float(component ["x"]) >= float(tb["x"]) and float(component ["x"]) <=

(float(tb["x"]) + float(tb["width "])):

22 if float(component ["y"]) >= float(tb["y"]) and

float(component ["y"]) <= (float(tb["y"]) + float(tb[" height "])):

23 assetStr = assetStr + f" which is in the trust boundary

{tb [' value ']}"
24 break

25 assetStr = assetStr + ". "

26 result = result + assetStr

27 elif component ["type"] == "arrow":

28 sourceAsset = findById(components , component [" source "])

29 targetAsset = findById(components , component [" target "])

30 if sourceAsset is not None and targetAsset is not None:

31 sourceLabel = sourceAsset.get("label", sourceAsset.get("type",

"Unknown "))

32 targetLabel = targetAsset.get("label", targetAsset.get("type",

"Unknown "))

33 arrowStr = f"The asset {sourceLabel} points to asset {targetLabel} with

an arrow. "

34 result = result + arrowStr

35 elif component ["type"] == "bidirectional arrow":

36 ...

37 elif component ["type"] == "adversary ":

38 assetStr = f"There is an adversary in the drawing"

39 for tb in tbList:

40 if component [" parent "] == tb["id"]:

41 assetStr = assetStr + f" which is in the trust boundary

{tb [' value ']}"
42 assetStr = assetStr + ". "

43 result = result + assetStr

44 elif component ["type"] == "note":

45 noteStr = f"There is an note in the drawing which says:

{component [' value ']}. "

46 for tb in tbList:

47 if component [" parent "] == tb["id"]:

48 noteStr = noteStr + f"The note is in the trust boundary

{tb [' value ']}. "

49 result = result + noteStr

50 return result

42 CHAPTER 4. ARCHITECTURE AND PROTOTYPICAL IMPLEMENTATION

4.4.4 Prompt Engineering

There are numerous prompt engineering techniques that are used today to interact with
LLM. Some popular examples are zero-shot and few-shot prompting, which uses exam-
ples to guide the model to produce the desired output [66]. Another popular method
is chain-of-thought prompting, which uses complex reasoning capabilities by introducing
intermediate steps in the reasoning process [67]. There is also meta-prompting, an ad-
vanced prompting technique that aims to encourage a more abstract and structured form
of interaction with LLMs.

For the two main functions, threat identification and threat validation, prompts are used to
interact with the LLM. These prompts are structured in such a way that they correspond
to the meta-prompting technique. According to [68], meta-prompting is defined by five
main characteristics

• Structure-oriented: The focus is on presenting problems and solutions in a general
structure rather than specific content.

• Syntax-focused: Use syntax as a guide framework, with a focus on the form and
structure of responses as templates for expected outcomes.

• Abstract examples: These examples show the framework of problems and solutions
without going into specific details.

• Versatile: Designed to be applicable in different areas and to provide answers for a
wide range of tasks.

• The focus is on the logical organization and clear classification of information.

Since this RAG system processes dynamic input, Meta-Prompting is appropriate due
to its structure-orientated focus, which clearly defines tasks and focuses on consistent
formatting. In addition, the syntax-focused design provides the JSON output requirement,
and by using abstract examples with placeholders, the prompt dynamically integrates
specific system details while maintaining its general JSON structure. Using this method
in combination with the categorical approach, the threat validation prompt ensures that
the examples highlight the dynamic integration of names and elements from the system
description and increase focus on the dynamic input.

Meta-prompting provides multiple advantages over few-shot Prompting, as it focuses on
structure-oriented guidance rather than relying on specific examples [66]. This approach
reduces the use of tokens as it favors general frameworks over detailed content, which is
therefore more efficient. It also ensures fairer comparisons between models by minimizing
the impact of example-specific biases. In addition, meta-prompting is more tied to zero-
shot techniques, where the influence of specific examples is minimized. These advantages,
combined with its versatility and structural effect, make meta-prompting particularly
effective for dynamic applications.

4.4. FLASK BACKEND 43

4.4.5 Threat Identification

As explained in Section 4.1.2, the prototype extracts only threats from the OWASP AI Ex-
change [53] website if no other reports are added to the ChromaDB. A list of these threats
can be found below. The threats are further explained either in the OWASP AI Exchange
report [53] or in the threat list created for evaluation purposes in the Appendix B.

1. Threats through use

1.1. Evasion

1.1.1. Closed-box evasion
1.1.2. Open-box evasion
1.1.3. Evasion after data poisoning

1.2. Prompt injection

1.2.1. Direct prompt injection
1.2.2. Indirect prompt injection

1.3. Sensitive data disclosure through use

1.3.1. Sensitive data output from model
1.3.2. Model inversion and Membership inference

1.4. Model theft through use
1.5. Failure or malfunction of AI-specific elements through use

2. Development-time threats

2.1. Broad model poisoning development-time

2.1.1. Data poisoning
2.1.2. Development-environment model poisoning
2.1.3. Supply-chain model poisoning

2.2. Sensitive data leak development-time

2.2.1. Development-time data leak
2.2.2. Model theft through development-time model parameter leak
2.2.3. Source code/configuration leak

3. Runtime application security threats

3.1. Non AI-specific application security threats
3.2. Runtime model poisoning (manipulating the model itself or its input/output logic)
3.3. Direct runtime model theft
3.4. Insecure output handling
3.5. Leak sensitive input data

It is worth noting that AI threats can be categorized into three main types: Threats
through use, Development-time threats, and Runtime application security threats. These
categories are highlighted in bold in the list. The classification is based on whether the
threat occurs through normal interaction with an AI model, during the training phase,
or as an attack on the model/infrastructure at runtime. Threats that are in italics in
the list cannot be detected by the tool at the moment. The reason for this is that they
are not included in the threat taxonomy, either because they are high-level threats or
because they are not specifically relevant to AI. Therefore, they were also not included in
the taxonomy of the ThreatFinderAI tool, which was created prior to this thesis and is
explained in more detail in the Section 4.3.

As described in Section 4.1.2, the tool uses a document-based chunking strategy to detect
threats. This means that each threat is given a chunk that contains the text. The related

44 CHAPTER 4. ARCHITECTURE AND PROTOTYPICAL IMPLEMENTATION

headers are added as metadata during the chunking process. As a result, each chunk
consists of descriptive text that is converted into embeddings together with the metadata.

For each object identified by the DFD parser, as explained in Section 4.4.3, a similarity
search is performed to determine a predefined number (k) of similar texts. The idea
behind this approach is that the embeddings for threat descriptions should be calculated
in such a way that they come as close as possible to the embeddings of relevant assets.
The optimal value of k is evaluated together with the most effective chunking strategy
and the input format for the similarity search in Chapter 5.

It is important that the metadata is used in the similarity search output as it contains the
chunking headers of the documents that allow the threat to be correctly identified. Each
similarity search result is merged into a list that is that includes only threats and excludes
unrelated metadata. This finalized list of threats is then delivered to the ThreatFinderAI
tool where it is compared to the threat taxonomy to define the final threats. The details
of this process inside the ThreatFinderAI tool are further explained in the Section 4.3.

4.4.6 Threat Validation

The threat validation approach combines elements of DFD parser implementation (Sec-
tion 4.4.3) and prompt engineering (Section 4.4.4). In contrast to threat identification,
the threat validation process is not built on the RAG principle. Instead, the threats
(identified by the threat detection process - Section 4.4.5) are validated on the basis of
the system description generated by the DFD parser and a more detailed and structured
prompt.

The threat validation process makes two important contributions:

1. It improves the description of each threat so that it is more specific to the system
description. It also explains why or where a particular threat could be exploited in
the system.

2. An attempt is made to classify the threats according to their significance for the
system. To this end, the LLM assigns a ranking to each threat, where 1 is the most
critical threat, followed by lower priority threats in descending order. This is then
included in the threat description.

Since threat validation is dependent on the LLM output, there is the potential for errors
in these two aspects. The main reason for this weakness is that all threats are sent to
the LLM for validation at the same time. This processing can lead to unintended results
despite detailed prompt instructions. To mitigate this, the system has been designed to
handle errors: In the event of a serious back-end failure, the front-end retains the default
threat descriptions so that the process can be easily restarted.

One way to significantly reduce errors in threat validation would be to analyze each
threat individually based on the system description. This method was tested, but led to

4.4. FLASK BACKEND 45

major disadvantages. Firstly, it significantly increased the processing time. Secondly, the
rating system became completely unreliable, as the LLM rated each threat in isolation
and therefore could not take into account the relative importance of the threats. Even
if previously ranked threats were dynamically fed back into the process, the LLM would
have to re-rank all threats at each iteration to correctly adjust the ranking, which further
increased the processing time.

As a result, this initial prototype prioritizes speed over minimizing error frequency. The
main objective of this thesis is to evaluate the feasibility of validating and detecting threats
with minimal input data. The focus is on demonstrating whether this is even possible,
and not on building a system for immediate production use.

46 CHAPTER 4. ARCHITECTURE AND PROTOTYPICAL IMPLEMENTATION

Chapter 5

Evaluation

This thesis implements a prototype that is able to identify and validate threats in AI
systems with minimal input. The architecture and the implementation of this prototype
are described in Chapter 4. To evaluate the effectiveness of the prototype, it is important
to evaluate its performance qualitatively and quantitatively. This chapter focuses on how
this evaluation is carried out and what the evaluation results are.

It is worth noting that there is a basis prototype architecture, which is described in
Chapter 4. This prototype utilizes a document chunking strategy as a default within the
RAG system. This strategy uses a similarity search approach for each asset, where the
default prototype sets the depth parameter k to two. This prototype forms the basis
for this thesis. However, for the evaluation, several new configurations and methods are
tested to investigate how different approaches perform with minimal inputs.

The first section of this chapter describes the methodology used for the evaluation. Both
the objectives and the approach chosen for this chapter are discussed. The second section
presents the results of the evaluation, followed by a detailed discussion of the results in
the final section.

5.1 Methodology

This section shows the methodology for the evaluation. First, the objectives of the eval-
uation are discussed and then the specific descriptions of the approaches used.

5.1.1 Objectives

A number of defined objectives were set for the evaluation of the prototype. These ob-
jectives aim to evaluate the prototype in both threat identification and validation as the
prototype adjusts to different configurations and evaluates which approaches work best.
The following objectives have been set for this evaluation:

47

48 CHAPTER 5. EVALUATION

1. Expert View: The gain of insights from experts in different IT areas on threat
identification and validation using fictional DFDs.

2. Critical Threat Prioritization: The identification and ranking of the most critical
threats for two DFDs based on expert input, including their evaluation of LLM-
generated threat descriptions.

3. Best Configuration: Another goal is to compare system configurations based on
expert insights in threat identification.

4. LLM Effectiveness: In addition, the determination of the effectiveness of LLMs in
generating accurate and actionable threat descriptions through expert validation is
also important.

5. Qualitative and Quantitative Assessment: The assessment of threat identification
and validation using both qualitative expert feedback and quantitative performance
analyses to measure system effectiveness.

Taking these objectives into account, the evaluation provides a comprehensive understand-
ing of the strengths and limitations of the prototype. By combining expert interviews and
performance analyses in both phases (i.e., threat identification and validation), the re-
search question of whether an LLM-based approach can identify and validate threats to
AI systems with minimal input will be answered. During this process, the best practices
and configurations for the RAG system will also be identified and documented.

5.1.2 Metrics

Two evaluation approaches are used to identify and validate threats, which are described
in Section 5.1.3. Although they differ in terms of methods, both approaches include
qualitative and quantitative measurements.

Qualitative Metrics: The qualitative evaluation is based on interviews with four experts
from different IT areas. The participants are:

• A senior security expert with broad experience in cybersecurity.

• An AI specialist who also has broad experience in the security sector.

• A software engineer who works as a consultant and acquired basic knowledge of AI
during his studies.

• An economist with a degree in digital strategies and years of experience in applying
technical knowledge in a business context.

The reason for selecting a diverse group of participants is to capture varied perspectives
on AI-related security threats, assuming that people from different areas will look at AI
threats differently. For example, a business strategist might focus on economic risks and

5.1. METHODOLOGY 49

challenges, while a security expert might focus on data protection and regulatory issues.
However, it is assumed that certain threats will be recognized by all groups together.
These threats, which are identified as critical by several participants, serve as the basis
for further qualitative analysis of the prototype configurations, which are further explained
in Section 5.1.3.

Quantitative Metrics: The quantitative evaluation focuses on the performance of the
configurations. The most important metrics are:

• Hardware utilization: Measures the system resource consumption.

• Response time: Evaluates the processing speed of a configuration.

• Error rate: Shows the robustness and reliability of new configuration in the proto-
type.

These metrics are used to analyze the various configurations.

5.1.3 Approach

The approach chosen for the evaluation varies in the different key phases of the system and
is customized to the specific requirements of each phase. These approaches are described
in detail to provide a complete picture of how each phase is evaluated.

The first stage is concerned with Threat Identification, that includes the following steps:

1. The first step considers preparation and execution of interviews, where a threat list
and two fictional scenarios were created, each accompanied by a DFD. The threat
list contained threats that the prototype should be able to recognize, as well as a
brief explanation and an example for each threat. This threat list can be viewed
at Appendix B and the two fictional scenarios as well as the DFDs at Appendix C.
In addition, the interviewees were asked to use this list to identify threats that are
relevant to the respective DFD and scenario.

2. In a second step, the interview was interpreted. Once all interviewees had completed
the threat identification task, their results were analyzed. The aim was to determine
an expected threat state for each DFD and scenario. The threats that were identified
most frequently by interviewees were considered the most relevant for the scenario
and were used as the optimal identification baseline.

3. As a third step, the various configuration options were examined. Firstly, similarity
search strategies were tested because the identification grade is highly dependent on
it. There are two configurations that were tested and compared. The first approach
involves a similarity search for each asset using a low-depth k, which is also the
default setting in the prototype. The second approach performs a similarity search
for the system description using a high-depth k. The main difference between these
strategies lies in the way how the threats are identified. In the low-depth k strategy,

50 CHAPTER 5. EVALUATION

each asset looks for k threats during the similarity search. Therefore, k may not be
large, as the selected threats are assigned to each asset individually. However, these
threats are stored in a common list to ensure that each individual threat is only
recorded once. In the high-depth k strategy, the input for the similarity search is
the system description as a whole, and the threats are identified based on this DFD
mapping.

Secondly, chunking strategies were tested. The first and simplest strategy is the
document-chunking strategy without any pre-processing. In this approach, the data
is loaded directly into ChromaDB in its raw form, keeping the original structure
and content, which means it is the default. The second strategy involves manual
pre-processing, where only the information describing the threat is kept, and all
redundant content is removed. This ensures that the text focuses exclusively on the
relevant details of the threat. The third strategy involves document-chunking with
recursive chunking, a method supported by resources such as [22], which recommends
the use of fixed token sizes per chunk as best practice. For this evaluation, a chunk
size of 512 tokens with an overlap of 100 tokens was used, which is mentioned
as best practice in [22]. Finally, the fourth strategy involves document-chunking
with a summarization to optimize both the chunk size and the quality of threat
descriptions. In this approach, an LLM is integrated into the chunking process to
create these summaries with a chunk size of 1000 tokens, which is also mentioned
as best practice in [22]. This strategy is visually illustrated in Figure 5.1. Each of
these strategies will be evaluated to determine their effectiveness in improving the
identification of threats in the RAG system.

Lastly, a final configuration evaluated in this study involves the implementation of
a reranking step as described in Section 2.4. For this evaluation, the best chunk-
ing strategy and the best similarity search approach were selected and compared
both with and without the reranking step. As a technology, the reranker of Co-
here is integrated with LangChain [69]. The aim of this analysis was to determine
whether the inclusion of reranking increases the accuracy and effectiveness of threat
identification, particularly when working with minimal input data. This compari-
son should provide an understanding of the benefits of reranking in optimizing the
overall performance of RAG systems for threat identification tasks.

Figure 5.1: Document based Chunking with Summarization [22]

5.1. METHODOLOGY 51

4. The final step is the comparison and the analysis of the results obtained in steps 1
to 3 are compared qualitatively by comparing the threats identified in the interviews
with those identified in 9 configurations of the prototype. The main objective of
this comparison is to determine which prototype configuration is able to identify
threats with minimal input and, as a result, best matches the established baseline
for expected threat identification. For the quantitative performance, the time effi-
ciency for the configurations is evaluated. This is the only quantitative metric since
the error rate is 0% as threat identification does not depend on an LLM outcome
compared to threat validation.

The second stage focuses on Threat Validation, which involves the following steps:

1. As a first step, the prototype configuration was evaluated because in contrast to
Threat Identification in Threat Validation, the prototype was tested with several
LLMs. The LLMs used include the default Llama 3.2 with 3B parameters, as well
as Deepseekr1 (1.5B), Deepseekr1 (7B), Mistral (7B), and Llama 3.1 (8B). These
models were all self-hosted using Ollama which can be seen in the Chapter 4. As
an exception to all these self-hosted LLMs, Gemini 1.5 Flash was included in the
tests to evaluate the qualitative and quantitative differences between self-hosted
models and a cloud-based model. The purpose of the comparisons is to evaluate the
performance and quality of the two approaches.

2. In a second step, the interviews were prepared and conducted. A threat was selected
for both scenarios, and the six LLMs had to validate the threat for the system. Each
model provided a detailed description of the threats, including why and where it
presents a risk, as well as the possible actions an attacker could take to exploit
it. Participants had to rate the quality of each threat description using a Likert
scale from 1 to 5, with 1 indicating poor quality and 5 indicating high quality.
The evaluation criteria focused on how well the descriptions clarified two important
aspects: firstly, where the threat is relevant, and secondly, what the threat means.
In addition to the Likert scale, participants also provided qualitative feedback on the
evaluation criteria. Dieses Feedback konnte sowohl die Stärken der Beschreibungen
sowie auch die areas for improvement gut aufzeigen. This feedback highlighted both
the strengths of the descriptions and the areas for improvement.

3. In a third step, the interpretation of the interviews were conducted. The qualitative
criteria were combined to analyze the trends in LLM output based on the scale and
feedback. After that, an average score is calculated for each LLM configuration
based on the interview scores.

4. As a final step, the results were compared and analyzed. From a qualitative per-
spective, the average scores obtained from the interviews serve as an indicator of
which LLM is able to produce meaningful results with minimal input during the
threat validation process. These scores also indicate which LLM the participants
believe provides the most relevant and comprehensive threat descriptions.

The quantitative analysis completes the qualitative results by analyzing whether the
observed qualitative benefits align with the performance metrics. In particular, the

52 CHAPTER 5. EVALUATION

computing power and time efficiency of the various LLMs are evaluated to ensure
that the most effective qualitative solutions are also good solutions in terms of
performance.

With this approach, the evaluation aims to assess the efficiency of the LLM-based threat
modeling approach for both threat identification and validation while identifying the most
effective configurations for a RAG system with minimal input.

5.2 Analysis

This section focuses on the results of the quantitative and qualitative analysis. The results
are presented, and the most important elements of the findings are discussed. The section
is divided into two parts: Threat identification, in which the quantitative and qualitative
results of the threat identification evaluation are examined, and threat validation, in which
the qualitative and quantitative results of the threat validation are analyzed.

5.2.1 Threat Identification

To evaluate whether the prototype can identify threats with minimal input, predefined
scenarios with a given DFD are used. This DFD was manually analyzed by the interview
participants to identify potential threats. The resulting threat model is considered the
optimal reference model. Based on this, the prototype is evaluated to determine which
configurations perform best in identifying threats with minimal inputs.

The scenario and the related DFD can be found in Appendix C. To briefly characterize
the used scenarios, it is worth noting that the first scenario concerned an AI application
that analyzes patient data to predict future health problems. In this scenario, the par-
ticipants considered the role of a patient in the application, which is why confidentiality
was of utmost importance. The second scenario involved a banking application that uses
an external AI application to detect anomalies in its application. In this scenario, the
participants took on the role of the bank manager, with integrity being the main con-
cern as they want the integration of the AI application to work as intended. The threats
mentioned by the interviewees are listed in Table 5.1, which lists the four most frequently
mentioned threats for each scenario.

• R1.1: Model Inversion and Membership Inference (4 votes)

• R1.2: Leak sensitive input data (3 votes)

• R1.3: Sensitive data output from model (2 votes)

• R1.4: Development-time data leak (2 votes)

• R2.1: Data Poisoning (3 votes)

5.2. ANALYSIS 53

• R2.2: Open-box evasion (3 votes)

• R2.3: Supply-chain model poisoning (3 votes)

• R2.4: Evasion after data poisoning (3 votes)

The analysis of the identified threats shows clear patterns between Scenario 1 and Scenario
2. In Scenario 1, one more threat was selected and there was less alignment among the
respondents than in Scenario 2. A total of nine threats were identified in Scenario 1.
All four respondents recognized Model Inversion and Membership Inference, followed by
Leak sensitive input data, which was selected by three respondents. In addition, Sensitive
data output from the model and Development-time data leak were each mentioned by
two respondents. The remaining five threats were only mentioned once and are therefore
excluded from the further evaluation.

Threat Respondent 1 Respondent 2 Respondent 3 Respondent 4

S
ce
n
ar
io

1

Threat 1
Sensitive Data
Output from Model

Development-time
data leak

Runtime model
poisoning

Model inversion
and Membership
inference

Threat 2 Data Poisoning
Leak sensitive input
data

Sensitive data
output from model

Development-time
data leak

Threat 3
Leak sensitive
input data

Evasion after data
poisoning

Model inversion
and Membership
inference

Source code /
configuration leak

Threat 4
Model Inversion
and Membership
Inference

Model inversion
and Membership
inference

Model theft
through model
parameter leak

Leak sensitive
input data

S
ce
n
ar
io

2

Threat 1
Supply-chain Model
Poisoning

Data poisoning Open-box evasion Open-box evasion

Threat 2
Insecure Output
Handling

Evasion after
data poisoning

Evasion after
data poisoning

Evasion after
data poisoning

Threat 3
Runtime Model
Poisoning

Open-box evasion
Supply-chain model
poisoning

Data poisoning

Threat 4 Data Poisoning
Model theft
through model
parameter leak

Model theft
through use

Supply-chain Model
Poisoning

Table 5.1: Overview of Threat Relevance by Scenario and Interviewees

Eight threats were identified in Scenario 2. In contrast to scenario 1, four threats were
highlighted by three respondents, which indicates a higher level of consensus among the
participants. The remaining four threats were only mentioned by individual respondents
and are therefore also not included in the evaluation. A detailed list of which respondents
chose which threats can be found in Appendix D.

Table 5.2 and Table 5.3 present the qualitative and quantitative results of the threat
identification evaluation. The first column in the tables defines the similarity search
strategy, followed by the second column, which lists the chunking strategies described in
Section 5.1.3. In the third column, the number of threats that need to be identified k is
variable in order to observe whether a higher k leads to better results. The column #
threat indicates the total number of threats identified for the scenario in relation to the

54 CHAPTER 5. EVALUATION

Chunking Strategy k R1.1 R1.2 R1.3 R1.4 # Threats TPR ∅ Time

L
ow

-d
ep

th
k

Default
4 yes yes yes no 3 100% 3.07s

6 yes yes yes no 5 60% 3.02s

Manual Pre-Processing
4 yes no yes yes 5 60% 2.72s

6 yes no yes yes 5 60% 2.80s

Recursive Chunking
20 no yes yes yes 3 100% 2.85s

25 yes yes yes yes 5 80% 2.80s

Summarization
4 yes yes no no 4 50% 2.83s

6 yes yes no no 4 50% 2.69s

H
ig
h
-d
ep

th
k

Default
7 yes yes yes no 5 60% 1.78s

8 yes yes yes yes 6 66.7% 1.80s

Manual Pre-Processing
7 yes yes yes no 5 60% 1.52s

8 yes yes yes no 5 60% 1.53s

Recursive Chunking
50 yes yes yes no 6 50% 1.48s

60 yes yes yes yes 7 57% 1.48s

Summarization
8 yes no yes no 3 66.7% 1.45s

15 yes yes yes no 6 50% 1.39s

Reranking 25 yes yes yes yes 5 80% N/A

Table 5.2: Identification of Threats by Prototype Configuration for Scenario 1

respective CIA triad property. In the interviews, the interviewees were given a description
of each scenario and the necessary perspective to identify threats. In contrast, the tool
does not rely on text input but works only on the basis of the DFD, while the frontend
allows filtering according to the elements of the CIA triad to prioritize different security
aspects. Scenario 1 prioritizes confidentiality, as respondents took the perspective of
patients, while scenario 2 prioritizes integrity, reflecting the perspective of an e-banking
manager, as further explained in Appendix D. The Rate column shows the ratio between
the threats considered important by the respondents and the threats identified by the
tool. The ∅ Time column shows the average time taken by the tool to identify threats in
at least five attempts.

By analyzing both tables simultaneously, it becomes clear that the recursive chunking
strategy delivered the best qualitative results when comparing the rates. In Scenario 1,
however, the default chunking strategy delivered competitive results, while this was not
the case in Scenario 2. Recursive chunking is the only chunking strategy that recognized a
similar number of threats in both scenarios and identified all four threats mentioned by the
respondents. However, in Scenario 1, the low-depth k similarity search strategy performed
better, while in Scenario 2, the high-depth k strategy was dominant. Furthermore, the True
Positive Rate (TPR) in Scenario 2 is generally lower than in Scenario 1. The reason for this
difference is that for certain integrity-related threats, several threats are displayed in the

5.2. ANALYSIS 55

Chunking Strategy k R2.1 R2.2 R2.3 R2.4 # Threats TPR ∅ Time
L
ow

-d
ep

th
k

Default
4 no no no no 3 0% 3.35s

12 no yes no no 6 16.7% 3.43s

Manual Pre-Processing
4 no yes no yes 9 22.2% 2.94s

6 yes yes yes yes 12 33.3% 2.80s

Recursive Chunking
15 yes yes no yes 7 42.9% 2.90s

25 yes yes yes yes 9 44.4% 3.1s

Summarization
4 yes yes no yes 7 42.9% 2.82s

6 yes yes no yes 7 42.9% 2.78s

H
ig
h
-d
ep

th
k

Default
7 no yes no no 4 25% 1.98

15 no yes no no 6 16.7% 1.80s

Manual Pre-Processing
7 no no yes no 1 100% 1.65s

15 yes no yes yes 6 50% 1.65s

Recursive Chunking
20 yes yes no yes 5 60% 1.67s

30 yes yes yes yes 7 57.1% 1.71s

Summarization
8 no yes yes yes 9 33.3% 1.62s

10 no yes yes yes 10 30% 1.53s

Reranking 200 yes yes yes yes 10 40% N/A

Table 5.3: Identification of Threats by Prototype Configuration for Scenario 2

frontend even though only one was identified by the backend. For example, if the threat
Prompt Injection is identified, both Direct Prompt Injection and Indirect Prompt Injection
appear in the frontend, which lowers the rate, especially if Prompt Injection itself was not
explicitly mentioned. This design decision and its implementation in ThreatFinderAI are
explained in detail in the Section 4.3. Consequently, the goal was to achieve a number of
around five threats in Scenario 1 and between six and seven in Scenario 2. The recursive
chunking strategy successfully achieved this goal by identifying five threats in Scenario
1, covering all four threats considered relevant by the interviewees, and seven threats in
Scenario 2, identifying all four interview-relevant threats.

In Scenario 1, the similarity search with low-depth k and recursive chunking were used
for reranking to see if the results could be improved. A k value of 25 was chosen, and
the 110 best results were used as output. It is important to note that the same threats
appeared many times in the output, and therefore, the number is so high. As described
in Section 4.4.5, this is due to the fact that the threats are stored in the metadata and
not in the description. However, the quality of the output in Scenario 1 remains the same
with and without reranking.

Scenario 2 becomes relevant as the reranking was performed with the high-depth k simi-
larity search in combination with the recursive chunking strategy, and it does not have the

56 CHAPTER 5. EVALUATION

same TPR as in Scenario 1. In this case, k was set to 200, but only the top 10 threats were
considered, as they are not identical in the high-depth k strategy. Only when the top 10
results were selected, all threats could be identified, which was a criterion for comparing
this approach with recursive chunking without reranking. However, the detection TPR
with reranking was only 40%, while it was 57.1% without reranking. It is worth mention-
ing that the Prompt Injection and Evasion threats were identified in Scenario 2. This
indicates that two additional threats were identified due to the frontend rule explained in
Section 4.3. It could be argued that the actual detection TPR is closer to 50%. However,
as this adjustment was not taken into account in the other values as well, it must also be
treated consistently in the reranking evaluation.

From a quantitative point of view, it is clear that the average time required for threat
identification is significantly lower compared to threat validation. In addition, the high-
depth k similarity search strategy generally works twice as fast as the low-depth k strategy.
This difference is due to the fact that the low-depth k strategy has to go through all objects
and determine k threats for each object, which naturally increases the processing time.

5.2.2 Threat Validation

The threat validation evaluation determines whether the prototype can validate threats
with minimal input. Specifically, it evaluates whether and how effectively an LLM-based
approach can identify a threat at a specific point in the system and describe how the
threat could be exploited in this scenario. It also examines which LLM best fulfills this
task in terms of quality and performance. The LLMs evaluated in this thesis are shown in
Table 5.4 together with the Likert score given by the respondents. A score of 1 indicates
poor validation. For example, the response contains no important information, while a
score of 5 indicates very effective validation, providing all the necessary details, such as
the description of the threat, its location, and how it could be exploited in the given
scenario. In addition, Appendix D provides insight into the reasons for the scores given
by respondents, highlighting aspects that they found particularly useful and areas where
validation was insufficient.

LLM Respondent 1 Respondent 2 Respondent 3 Respondent 4 ∅

Llama 3.2 (3B) 3.5 3 3.5 3.5 3.375

Deepseek-R1 (1.5B) 2.5 2 2 2 2.125

Deepseek-R1 (7B) 3.5 4 3 3 3.375

Mistral (7B) 3.5 3.5 3 3.5 3.375

Llama 3.1 (8B) 2.5 2.5 2 2.5 2.375

Gemini 1.5 Flash 4.5 5 3 4 4.125

Table 5.4: Average Interviewee Likert Scale for Threat Description Accuracy by LLMs

Table 5.4 shows that the LLM with the highest average Likert score in both scenarios is
Gemini 1.5 Flash. The interviewees especially appreciated the contextualized descriptions

5.2. ANALYSIS 57

that included terminologies from the DFD and specific references to the architectural
building blocks. Llama 3.2, Mistral, and DeepSeek-R1 (7B) achieved the second-highest
average rating. Llama 3.2 was appreciated for its clear and simple explanations. However,
in Scenario 1, the description was considered too extensive and difficult to read. This
was because Llama 3.2 first explained the danger of model inversion and then described
the membership inference separately, which is illustrated in Appendix D. DeepSeek-R1
(7B) was also praised for its concise descriptions that maintained a link to the DFD,
but interviewees noted that it sometimes lacked a concrete explanation of the impact
of the exploit. In contrast, Mistral provided short answers and clearly described the
impact of the exploitation. However, the respondents noted that Mistral did not specify
exactly where the system is targeted with the specific threat. Llama 3.1 received the
second-lowest score among all LLMs. The main problem was that it referred to the trust
boundary without further explaining it, and simply stated that the trust boundary was
compromised. This led to confusion and misleading information for the respondents, as
the trust boundary itself was not the real issue. DeepSeek-R1 (1.5B) received the lowest
score in this evaluation. The reason for this was the generation of false information
describing a threat that was not relevant to the given scenario. As a result, this LLM
often received a score of 1 on the Likert scale, which explains its low average score.

LLM ∅ Response Time ∅ Error Rate GPU utilization

Llama 3.2 (3B) 28.2s 0% 85%

Deepseek-R1 (1.5B) 18.7s 20% 75.6%

Deepseek-R1 (7B) 103.0s 60% 48%

Mistral (7B) 40.8s 0% 93%

Llama 3.1 (8B) 70.0s 100% 35.8%

Gemini 1.5 Flash 5.1s 0% N/A

Table 5.5: Quantitative Evaluation of LLM Performance in Threat Validation

In addition to qualitative performance, Gemini 1.5 Flash also showed the best efficiency,
as shown in Table 5.5. It achieved the fastest average response time of 5.1 seconds and
had an error rate of 0%. This is likely due to the fact that Gemini 1.5 Flash was the only
LLM that was not self-hosted but accessed via an API. The other LLMs were self-hosted
on a GeForce GTX 1660 SUPER graphics card, which means that response times and
GPU utilization should be taken with a grain of salt, as users deploying the prototype in
practice would likely have access to more powerful consumer-grade hardware. However,
the trend is clear: smaller LLMs generally have lower response times. Furthermore, only
the DeepSeek models and Llama 3.1 had an error rate of more than 0%. This means that
their output does not comply with the formatting which is required for the prototype.
In the case of DeepSeek, this error rate could be reduced quickly, as the outputs still
contain unnecessary tags such as <think>, which the prototype was unable to process.
Simply filtering out these parts of the response could improve the error rating. There was
also an issue with Llama 3.1, where the model kept adding explanation sentences at the

58 CHAPTER 5. EVALUATION

beginning and end of its response, even though the prompt clearly stated the expected
output format. The prototype was unable to process these additional explanations. This
problem initially occurred with Llama 3.2 during the development of the prototype but
was resolved by customizing the prompt. This same prompt structure seemed to work
effectively for Llama 3.2, Mistral, and Gemini 1.5 Flash.

In terms of GPU utilization, LLMs such as Mistral and Llama 3.2, were operating at
the GPU upper capacity limit, while others, such as Llama 3.1 and DeepSeek-R1, had
extra capacity. This suggests that the latter models could theoretically run on weaker
GPU hardware and achieve similar response times. However, models such as Mistral and
Llama 3.2 would probably have longer response times with less powerful hardware.

5.3 Discussion

This section discusses the findings of the evaluation and is divided into three subsections:
Threat Identification, Threat Validation, and Conclusion. Possible reasons for the effec-
tiveness of the identification strategies are explained, the influence of minimal input on
reranking is discussed, and the trade-offs between cloud-based and self-hosted LLMs are
highlighted. Finally, the main findings are summarized, and possible improvements are
suggested.

5.3.1 Threat Identification

From the results of the interviews, it can be stated that the recursive chunking strategy
performs best in terms of quality when identifying threats with minimal input. The
main reason for this is that the critical threats that resulted from the interviews were
identified effectively in the scenarios, as shown by the identification TPR in Tables 5.2
and Table 5.3. However, these results should be interpreted with caution, as only the
four threats most frequently mentioned by respondents were taken into account, while all
others were excluded. This exclusion may have led to an incomplete picture of the overall
threat environment.

However, considering the evaluation method used, it can be seen that the recursive chunk-
ing strategy in combination with the low-depth k and high-depth k similarity search works
well in identifying relevant threats despite minimal input. This result is surprising, as
the original hypothesis was that threat identification would improve with manual pre-
processing or summarization to ensure a consistent basis for all threats. One possible
explanation is that only a small part of a threat description is actually relevant for identi-
fication. Since recursive chunking splits the threat description into several smaller parts,
these key segments can be better captured. On the other hand, if embeddings are gener-
ated from the full description, these relevant sections can be diluted.

Initially, it was assumed that manual pre-processing would solve this problem by retaining
only the information that directly describes the threat. However, it is possible that ad-
ditional contextual information, such as security controls, may have played an important

5.3. DISCUSSION 59

role in identification. Furthermore, it is also possible that even after pre-processing, the
remaining descriptions were too long, making it difficult for the retrieval step to detect
the details that are important for identification.

As for the summarization, one explanation for the lower-than-expected performance could
be that the LLM in this prototype had limited information about each threat, unlike other
general RAG systems. In some cases, the LLM may have had to generate additional
information to fulfill the token constraints, which defeats the intended purpose of this
strategy. This could be an explanation for the relatively low performance. In contrast,
RAG systems typically rely on large KBs, making summarization a more feasible approach.
However, in this prototype, the threat information came from a single source, so the
available knowledge was already limited.

Another surprising finding was that the reranking approach did not improve the results.
An important observation in the reranking approach was the consistently low relevance
score by the LLM. The highest recorded score was only 0.257 (on a scale of 0 to 1), which
is relatively low. Two possible explanations come to mind: Either the query wording
was insufficient, or the embeddings used in the similarity search were not optimized. As
this study focuses on identifying threats with minimal inputs, it is likely that the query
itself was poorly structured as it relied only on the DFD. This limitation suggests that a
reranking approach would have potential if more contextual information were available.
One example would be to include the CIA attributes in the query, which could improve
the results. In the current version of the prototype such filters are not integrated in
the backend but in the frontend. Alternatively, a brief system description or scenario
context could be optionally included to increase the relevance score, similar to what the
respondents had in the interview. With this additional context, the reranking model could
assess threats more effectively. Although the reranking approach shows potential, it does
not provide any added value when applied to minimal inputs, such as a single DFD, as
demonstrated in this thesis.

Performance Considerations Looking at the average duration of threat detection, it is
noteworthy that the high-depth k similarity search strategy is faster than the low-depth k
approach. The reason for this is that for the low-depth k strategy, the similarity search
is done individually for each asset. Small DFDs with 5-20 assets result in a delay of only
1-4 seconds compared to the high-depth strategy. However, in large DFDs which can
occur in practical settings, the time difference can become larger, making the high-depth
k strategy more efficient. This is because the high-depth k strategy performs a single
similarity search, avoiding repeated computations.

For the chunking strategies, the execution time did not vary significantly, nor did using
different k values have a significant effect on performance. Therefore, the similarity search
strategy itself is the most important factor affecting efficiency.

5.3.2 Threat Validation

For threat validation, the qualitative and quantitative results of a cloud-based solution
with Gemini 1.5 Flash are the most suitable. However, it is important to consider that

60 CHAPTER 5. EVALUATION

cloud-based solutions have security implications and each organization must decide for
itself whether to go to the cloud. In a cloud, sensitive data such as a DFD is no longer
stored locally, which can lead to security risks. For organizations that already store their
data and DFDs in the cloud, a cloud-based LLM is a logical choice due to its cost efficiency.
Gemini 1.5 Flash, for example, costs $0.0000375 per 1000 characters per request, which is
significantly cheaper than running an on-premise LLM when it is not regularly used [70].

However, for companies that do not use cloud storage for sensitive data, running an LLM
onsite may be a better alternative. In this case, Llama 3.2 or Mistral would be the
recommended models for this prototype. Both LLMs delivered comparable qualitative
results and outperformed other self-hosted options in terms of performance. In particular,
both models achieved an error rate of 0%, with Llama 3.2 having an average response
time of 28 seconds and Mistral of 41 seconds. Given the hardware limitations and the
complexity of the task, these response times are acceptable. In terms of performance,
Llama 3.2 seems to be the better choice. However, Mistral, with its 7 billion parameters,
has more potential for larger and more complex use cases and could most likely do much
more in terms of activities. It is important to note that this prototype was originally
developed with Llama 3.2 as the default model, which means that prompts and system
configurations have been optimized for this model. This means that adapting the prompts
for Mistral or DeepSeek-R1 (7B) could provide even better results and possibly outperform
Llama 3.2. In addition, for DeepSeek-R1 (7B), further improvements in output processing
could reduce the error rate, improve overall performance, and potentially close the gap in
quality performance compared to Mistral.

5.3.3 Conclusion

To conclude, threat identification using a recursive chunking strategy in combination with
a high-depth k similarity search works well even with minimal input. However, for an input
that is limited to a DFD, the reranking approach does not lead to better identification
results. Nevertheless, it has significant potential when enhanced with a small amount of
additional data.

For threat validation, organizations must decide whether to use a cloud-based LLM or a
self-hosted solution. While Gemini 1.5 Flash delivers better quality and more powerful
results, it has the disadvantage of limited data control. If an organization prefers to host
its own LLM without modifying the prototype, Llama 3.2 is currently the best option in
terms of quality and performance, assuming the same infrastructure is used. However, if
minor modifications to the prototype are acceptable, Mistral and DeepSeek-R1 (7B) show
the most potential.

The evaluation results indicate that Mistral excels at describing the detailed impact of
a threat, while DeepSeek-R1 (7B) is particularly effective at providing concise threat
descriptions and accurately identifying potential attack vectors. While Mistral was weaker
in the latter area, it remains a strong candidate for organizations that require detailed
threat analysis.

5.3. DISCUSSION 61

In a broader context, these results demonstrate a use case for AI in cybersecurity. The
prototype demonstrates how minimal inputs can be used to effectively identify and validate
specific AI threats, making it relevant for organizations of all sizes, from small to large.
Furthermore, this work shows that even smaller open-source models such as Mistral 7B and
DeepSeek-R1 (7B) can deliver strong results, highlighting the importance and competence
of open-source AI. This is particularly important in terms of data security and privacy,
as open source solutions provide a customizable and secure alternative, as organizations
retain full control over the model, its data, and its deployment. This study not only
demonstrates that threat identification and validation is possible, but also encourages
further innovation in cybersecurity by exploring how AI can support a broader range of
cybersecurity tasks.

62 CHAPTER 5. EVALUATION

Chapter 6

Summary, Conclusions and Future Work

This thesis investigated the question whether an LLM approach can effectively support
the threat modeling to AI systems. To this end, a comprehensive literature review was
conducted in which existing research on this topic was analyzed. It was found that current
approaches mainly rely on extensive documentation and intermediary structures, which
are not suitable for early-stage threat modeling due to their elaborated nature. Further-
more, there are also existing studies focusing on the use of LLMs for threat validation
and not on threat identification, which is also an important aspect of threat modeling.
As a result, a major limitation was identified: There is no existing tool that attempts
to perform threat identification and threat validation with minimal inputs for AI system
threats.

To close this gap, an approach was designed and prototypically developed that performs
both threat identification and validation using a RAG system. The approach follows a
two-step process that allows these tasks to be evaluated separately. In addition, threat
validation is particularly error-prone due to the results generated by the LLM and would
need to be further improved for real-world applications. However, the primary goal of this
work was not to develop a production-ready tool, but rather to investigate the feasibility
of threat identification and validation with minimal input.

The prototype builds on an existing work [3] that statically identifies threats based on
assets. This existing tool serves as a frontend, while a newly developed backend interacts
with a vector database and LLMs to enhance the identification and validation capabilities.

Both threat identification and validation were evaluated independently. A qualitative
evaluation was conducted through interviews with four different users to determine the
most effective RAG configuration and LLMs for this task. In addition, the performance
of the different configurations and LLMs was measured.

The results of the evaluation show that threat identification using recursive chunking with
a high-depth k similarity search works well even with minimal inputs. The evaluation
showed that this approach was able to identify important threats in fictional scenarios. In
addition, threat validation also performed well according to feedback from respondents.
The participants noted that the explanations provided by the prototype were relevant

63

64 CHAPTER 6. SUMMARY, CONCLUSIONS AND FUTURE WORK

to the AI threats and the fictional DFD. This concludes that the use of AI in threat
modeling holds potential and is able to process tasks traditionally performed by experts.
Consequently, AI can serve as a supporting tool for threat modeling aimed at different
stakeholders. For example, it can help software architects who do not have security
expertise but are involved in software planning, as well as security engineers who can use
the AI tool to look at the threats from alternative perspectives.

6.1 Future Work

This section shows what future research topics could be based on this work. The future
work can be divided into three areas:

Prototype Improvements

The current prototype is primarily designed for research and testing purposes and not
for production use. It does not yet support large-scale retrievals or strict performance
requirements. In order to minimize dependencies and ensure a quick proof of concept,
simpler implementation approaches were chosen. However, efficiency improvements are
essential to turn the prototype into a production-ready system. One solution is the in-
tegration of LangChain Expression Language (LCEL), which is a declarative method for
building chains ranging from simple combinations to complex multi-step workflows [71].
Implementing LCEL could significantly improve the performance of the system in a pro-
duction environment, as asynchronous execution and optimized parallel processing are a
major focus of this language.

Another crucial improvement is the implementation of a better-structured output format
from the LLM. Currently, the formatting of the output is given by prompts, but this
method is not always reliable and makes further processing difficult. This is a known issue,
and LangChain has introduced a structured output approach where the models directly
generate responses in a predefined format [72]. The implementation of this approach is
important to make the prototype more robust and reliable beyond experimental use.

Another improvement would be the extension of further KB. The current version of the
prototype only supports Markdown files from [53] to embeddings, which would need to be
changed for such an enhancement. This would require a change to the chunker module of
the backend to support other data formats such as PDFs.

In addition, the current prototype identifies and evaluates all threats relevant to a specific
DFD. The frontend allows users to prioritize certain properties of the CIA triad and filter
the threats accordingly. However, passing this prioritization information to the backend
would provide more context to the LLM for threat identification and validation. Future
work could investigate how well an LLM can utilize this additional information, or if a
predefined mapping is necessary to determine which threats are most critical for each CIA
property.

6.1. FUTURE WORK 65

Evaluation Methods

Since AI security threat identification and validation using RAG with minimal inputs
is not well researched, there are many unexplored opportunities for experiments. This
work mainly focused on two methods of similarity search, chunking strategies, reranking
techniques, and different self-hosted LLMs. However, future research could also investigate
other methods, such as:

• Alternative embedding models

• Different vector databases

• Different similarity search algorithms

• Improved prompt engineering methods

• Integration with external data sources such as BigQuery

Another important area for future evaluation is hardware performance. An organization
using a self-hosted LLM would need access to much more powerful hardware than was
available for this work. Testing with such infrastructure would enable the use of LLMs
with larger parameters, allowing them to compete with cloud-based models in terms of
quality and efficiency.

Furthermore, the ranking system used in threat validation was not evaluated in this thesis.
The prototype assigns a ranking to each identified threat during the validation process.
The ranking system can influence the evaluation results of different self-hosted LLMs, as
some models could handle the ranking qualitatively better than others. This capability
should be introduced as an additional qualitative metric to further define and optimize
the selection of LLMs.

In addition, it would be useful to evaluate the performance of the prototype on large
DFDs with multiple assets. The current evaluation focused on smaller DFDs, but it
remains uncertain whether the quality and performance of the prototype can be scaled to
larger, more complex architectures.

Alternative Approaches

There are numerous directions for future work beyond those described in this section. The
ideas proposed are still based on fundamental assumptions, such as the use of a RAG-
based approach. However, alternative strategies could also be explored. For example, if
large training data were available, fine-tuning an LLM specifically for AI threat modeling
could be a feasible option. This approach would only be feasible for organizations with
access to large datasets, as publicly available AI threat models are rare.

Alternatively, another approach could be to put all the knowledge about AI security
threats into a single prompt and compare the model’s responses with those generated
using a RAG system. As the prototype currently processes a relatively small dataset, it
is theoretically possible to put all the relevant knowledge into a single prompt, especially

66 CHAPTER 6. SUMMARY, CONCLUSIONS AND FUTURE WORK

if LLMs continue to extend their context length. This experiment would show how an
LLM, in contrast to a RAG system, can identify and validate threats with minimal input.
However, this method would always be limited by the context length restriction. As
system descriptions become more detailed and KBs grow, this approach may eventually
reach its limits. Nevertheless, it would be interesting to investigate whether this method
delivers comparable, better, or worse results than the RAG-based method.

Finally, AI-assisted threat modeling remains an evolving field, and this work serves as a
foundation for further research. Future work should aim to further improve and extend
these ideas to explore the boundaries of what is possible in AI security with the support
of LLMs.

Bibliography

[1] “OWASP software assurance maturity model”. (Sep. 13, 2023), [Online]. Available:
https://owasp.org/www-project-samm/ (visited on 03/07/2025).

[2] A. Kucharavy, Z. Schillaci, L. Maréchal, et al., Fundamentals of generative large
language models and perspectives in cyber-defense, Mar. 21, 2023.

[3] J. von der Assen, J. Sharif, C. Feng, C. Killer, G. Bovet, and B. Stiller,“Asset-centric
threat modeling for ai-based systems”, in 2024 IEEE International Conference on
Cyber Security and Resilience (CSR), 2024, pp. 437–444.

[4] S. Hussain, A. Kamal, S. Ahmad, G. Rasool, and S. Iqbal, “Threat modelling
methodologies: A survey”, Sci. Int.(Lahore), vol. 26, no. 4, pp. 1607–1609, 2014.

[5] N. Shevchenko, T. A. Chick, P. O’Riordan, T. P. Scanlon, and C. Woody, “Threat
modeling: A summary of available methods”, Software Engineering Institute| Carnegie
Mellon University, pp. 1–24, 2018.

[6] D. S. Cruzes, M. G. Jaatun, K. Bernsmed, and I. A. Tøndel, “Challenges and expe-
riences with applying microsoft threat modeling in agile development projects”, in
2018 25th Australasian Software Engineering Conference (ASWEC), IEEE, 2018,
pp. 111–120.

[7] Z. Braiterman, A. Shostack, J. Marcil, et al.“Threat modeling manifesto”. (Nov. 17,
2020), [Online]. Available: https://www.threatmodelingmanifesto.org/ (visited
on 03/07/2025).

[8] V. Drake. “Threat modeling | OWASP foundation”, OWASP. (Mar. 31, 2024), [On-
line]. Available: https://owasp.org/www-community/Threat_Modeling (visited
on 03/07/2025).

[9] I. Tarandach and M. Coles, Threat Modeling: A Practical Guide for Development
Teams. O’Reilly Media, Dec. 22, 2020, 245 pp.

[10] “MITRE ATLAS”. (Jun. 2021), [Online]. Available: https://atlas.mitre.org/
(visited on 03/07/2025).

[11] A. Marshall, R. Rojas, J. Stokes, and D. Brinkman. “Securing the future of AI and
ML at microsoft”. (Jan. 22, 2024), [Online]. Available: https://learn.microsoft.
com / en - us / security / engineering / securing - artificial - intelligence -

machine-learning (visited on 03/07/2025).

[12] R. van der Veer. “OWASP AI security and privacy guide | OWASP foundation”.
(Mar. 2025), [Online]. Available: https://owasp.org/www-project-ai-security-
and-privacy-guide/ (visited on 03/07/2025).

67

68 BIBLIOGRAPHY

[13] “Securing machine learning algorithms | ENISA”. (Feb. 21, 2024), [Online]. Avail-
able: https : / / www . enisa . europa . eu / publications / securing - machine -

learning-algorithms (visited on 03/07/2025).

[14] “What is a large language model (LLM)?”, Cloudflare. (Sep. 30, 2024), [Online].
Available: https : / / www . cloudflare . com / learning / ai / what - is - large -

language-model/ (visited on 03/07/2025).

[15] “What are large language models (LLMs)? | IBM”. (Nov. 2, 2023), [Online]. Avail-
able: https : / / www . ibm . com / topics / large - language - models (visited on
03/07/2025).

[16] D. Bergmann and C. Stryker. “What is an attention mechanism? | IBM”. (Dec. 5,
2024), [Online]. Available: https://www.ibm.com/think/topics/attention-
mechanism (visited on 03/07/2025).

[17] J. Kaddour, J. Harris, M. Mozes, H. Bradley, R. Raileanu, and R. McHardy, Chal-
lenges and applications of large language models, Jul. 2023.

[18] “Retrieval augmented generation (RAG) | LangChain”. (Nov. 26, 2024), [Online].
Available: https://python.langchain.com/docs/concepts/rag/ (visited on
03/07/2025).

[19] I. Belcic and C. Stryker. “RAG vs. fine-tuning | IBM”. (Aug. 14, 2024), [Online].
Available: https://www.ibm.com/think/topics/rag-vs-fine-tuning (visited
on 03/07/2025).

[20] Belcic. “What is RAG (retrieval augmented generation)? | IBM”. (Oct. 21, 2024),
[Online]. Available: https://www.ibm.com/think/topics/retrieval-augmented-
generation (visited on 03/07/2025).

[21] A. Gutowska. “Chunking strategies for RAG tutorial using granite | IBM”. (Jan. 22,
2025), [Online]. Available: https://www.ibm.com/think/tutorials/chunking-
strategies-for-rag-with-langchain-watsonx-ai (visited on 03/07/2025).

[22] F. Pedrazzini. “Chunking strategies in retrieval-augmented generation (RAG) sys-
tems”, Prem. (Sep. 17, 2024), [Online]. Available: https://blog.premai.io/
chunking-strategies-in-retrieval-augmented-generation-rag-systems/

(visited on 03/07/2025).

[23] “Rerankers and two-stage retrieval | pinecone”. (Oct. 18, 2023), [Online]. Avail-
able: https://www.pinecone.io/learn/series/rag/rerankers/ (visited on
03/07/2025).

[24] “OpenAI platform”. (), [Online]. Available: https://platform.openai.com (visited
on 03/07/2025).

[25] “Accuracy vs. precision vs. recall in machine learning: What is the difference?”
(Nov. 23, 2023), [Online]. Available: https://encord.com/blog/classification-
metrics-accuracy-precision-recall/ (visited on 03/07/2025).

[26] L. Monigatti. “Evaluation metrics for search and recommendation systems | weavi-
ate”. (May 28, 2024), [Online]. Available: https://weaviate.io/blog/retrieval-
evaluation-metrics (visited on 03/07/2025).

BIBLIOGRAPHY 69

[27] “Classification: Accuracy, recall, precision, and related metrics | machine learning”,
Google for Developers. (Mar. 3, 2025), [Online]. Available: https://developers.
google.com/machine- learning/crash- course/classification/accuracy-

precision-recall (visited on 03/07/2025).

[28] N. F. Liu, K. Lin, J. Hewitt, et al., “Lost in the middle: How language models
use long contexts”, Transactions of the Association for Computational Linguistics,
vol. 12, pp. 157–173, 2024.

[29] “Enhancing RAG models with reranking & LangChain”. (May 22, 2024), [Online].
Available: https://myscale.com/blog/maximizing-advanced-rag-models-
langchain-reranking-techniques/ (visited on 03/07/2025).

[30] D. Andrés and J. Ferrer. “Issue #79 - optimize RAG with reranking”, Machine
Learning Pills. (Nov. 3, 2024), [Online]. Available: https://mlpills.substack.
com/p/issue-79-optimize-rag-with-reranking (visited on 03/07/2025).

[31] J. Shin. “Cross encoder reranker | LangChain OpenTutorial”. (Jan. 21, 2025), [On-
line]. Available: https://langchain-opentutorial.gitbook.io/langchain-
opentutorial/11-reranker/01-crossencoderreranker (visited on 03/07/2025).

[32] T. Mishra, E. Sutanto, R. Rossanti, et al., “Use of large language models as arti-
ficial intelligence tools in academic research and publishing among global clinical
researchers”, Scientific Reports, vol. 14, no. 1, p. 31 672, 2024.

[33] I. Elsharef, “Large language model assisted threat modeling”, M.S. thesis, The Uni-
versity of Wisconsin-Milwaukee, 2023.

[34] S. Rajapaksha, R. Rani, and E. Karafili, “A rag-based question-answering solution
for cyber-attack investigation and attribution”, arXiv preprint arXiv:2408.06272,
2024.

[35] M. Hassanin, M. Keshk, S. Salim, M. Alsubaie, and D. Sharma,“Pllm-cs: Pre-trained
large language model (llm) for cyber threat detection in satellite networks”, Ad Hoc
Networks, vol. 166, p. 103 645, 2025.

[36] Y. Sun, D. Wu, Y. Xue, et al., “Llm4vuln: A unified evaluation framework for decou-
pling and enhancing llms’ vulnerability reasoning”, arXiv preprint arXiv:2401.16185,
2024.

[37] S. Majumdar and T. Vogelsang, “Towards safe llms integration”, Large, p. 243, 2024.

[38] O. Gadyatskaya and D. Papuc, “Chatgpt knows your attacks: Synthesizing attack
trees using llms”, in International Conference on Data Science and Artificial Intel-
ligence, Springer, 2023, pp. 245–260.

[39] V. Tanksale, “Cyber threat hunting using large language models”, in International
Congress on Information and Communication Technology, Springer, 2024, pp. 629–
641.

[40] M. Hassanin and N. Moustafa, “A comprehensive overview of large language models
(llms) for cyber defences: Opportunities and directions”, arXiv preprint arXiv:2405.14487,
2024.

[41] M. A. Ferrag, F. Alwahedi, A. Battah, B. Cherif, A. Mechri, and N. Tihanyi, “Gen-
erative ai and large language models for cyber security: All insights you need”,
Available at SSRN 4853709, 2024.

70 BIBLIOGRAPHY

[42] A. Ghosh, “AI-enhanced cyber security: Leveraging large language models for threat
detection”, Innovative Computer Sciences Journal, vol. 9, no. 1, Oct. 14, 2023, Num-
ber: 1, issn: 3007-6471. [Online]. Available: https://innovatesci-publishers.
com/index.php/ICSJ/article/view/211 (visited on 10/12/2024).

[43] Y. Liu, S. Li, X. Wang, and L. Xu, “A review of hybrid cyber threats modelling and
detection using artificial intelligence in iiot”, Computer Modeling in Engineering &
Sciences, vol. 140, no. 2, 2024.

[44] D. R. Chittibala, “Threat model detection using ai”, INTERNATIONAL JOUR-
NAL OF ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT
(IJAIRD), vol. 2, no. 1, pp. 40–47, 2024.

[45] I. Elsharef, Z. Zeng, and Z. Gu, “Facilitating threat modeling by leveraging large
language models”, in Workshop on AI Systems with Confidential Computing, 2024.

[46] W. B. Mbaka and K. Tuma, “Usefulness of data flow diagrams and large lan-
guage models for security threat validation: A registered report”, arXiv preprint
arXiv:2408.07537, 2024.

[47] A. Chiş, O. I. Stoica, A.-M. Ghiran, and R. A. Buchmann, “A knowledge graph
approach to cyber threat mitigation derived from data flow diagrams”, in 2024 IEEE
International Conference on Automation, Quality and Testing, Robotics (AQTR),
2024, pp. 1–6.

[48] Y. Chen, M. Cui, D. Wang, et al., “A survey of large language models for cyber
threat detection”, Computers & Security, p. 104 016, 2024.

[49] AppSecEngineer, Webinar: Rapid threat modeling with GenAI and LLMs, Apr. 11,
2024. [Online]. Available: https://www.youtube.com/watch?v=ZNWptwfa0DE
(visited on 03/07/2025).

[50] S. Diemert and J. H. Weber, “Can large language models assist in hazard analysis?”,
in International Conference on Computer Safety, Reliability, and Security, Springer,
2023, pp. 410–422.

[51] “Leveraging LLMs for threat modeling - GPT-3.5 vs claude 2 vs GPT-4”, xvnpw
personal blog. Section: posts. (Sep. 3, 2023), [Online]. Available: https://xvnpw.
github.io/posts/leveraging-llms-for-threat-modelling-gpt-3.5-vs-

claude2-vs-gpt-4/ (visited on 03/07/2025).

[52] M. AboElKheir. “I asked “ChatGPT” how to threat model features using LLM”,
AppSec Untangled. (Jul. 1, 2023), [Online]. Available: https : / / medium . com /
appsec-untangled/i-asked-chatgpt-how-to-threat-model-features-using-

llm-8477600445d (visited on 03/07/2025).

[53] “AI exchange”. (2025), [Online]. Available: https://owaspai.org/ (visited on
03/07/2025).

[54] “LangChain”. (2022), [Online]. Available: https://www.langchain.com/ (visited
on 03/07/2025).

[55] “Nomic-embed-text”. (Mar. 2024), [Online]. Available: https : / / ollama . com /

library/nomic-embed-text (visited on 03/07/2025).

[56] “Chroma”. (Mar. 2025), [Online]. Available: https://www.trychroma.com/ (visited
on 02/01/2025).

BIBLIOGRAPHY 71

[57] “What is docker?”, Docker Documentation. (Mar. 2025), [Online]. Available: https:
//docs.docker.com/get-started/docker-overview/ (visited on 03/07/2025).

[58] “Welcome to flask - flask documentation (3.1.x)”. (2010), [Online]. Available: https:
//flask.palletsprojects.com/en/stable/ (visited on 03/07/2025).

[59] R. Wäspi, Sumsumcity/masterthesis, Feb. 2025. [Online]. Available: https : / /

github.com/sumsumcity/masterthesis (visited on 03/07/2025).

[60] “Ollama | LangChain”. (Mar. 2025), [Online]. Available: https://python.langchain.
com/v0.1/docs/integrations/providers/ollama/ (visited on 03/07/2025).

[61] Ollama/ollama, Mar. 7, 2025. [Online]. Available: https://github.com/ollama/
ollama (visited on 03/2025).

[62] “Llama3.2”. (Oct. 2024), [Online]. Available: https : / / ollama . com / library /
llama3.2 (visited on 03/07/2025).

[63] “Introduction - chroma docs”. (Mar. 2025), [Online]. Available: https://docs.
trychroma.com/docs/overview/introduction (visited on 03/07/2025).

[64] “React reference overview - react”. (Dec. 5, 2024), [Online]. Available: https://
react.dev/reference/react (visited on 03/07/2025).

[65] C. Baylon, C. Berghoff, S. Brunessaux, et al., “Artificial intelligence cybersecurity
challenges; threat landscape for artificial intelligence”, 2020.

[66] “Prompt engineering guide”. (Sep. 19, 2024), [Online]. Available: https://www.
promptingguide.ai/techniques (visited on 03/07/2025).

[67] J. Wei, X. Wang, D. Schuurmans, et al., “Chain-of-thought prompting elicits reason-
ing in large language models”, Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[68] Y. Zhang, Y. Yuan, and A. C.-C. Yao, “Meta prompting for ai systems”, arXiv
preprint arXiv:2311.11482, 2023.

[69] “Cohere reranker | LangChain”. (Sep. 13, 2024), [Online]. Available: https : / /
python.langchain.com/docs/integrations/retrievers/cohere-reranker/

(visited on 03/07/2025).

[70] “Vertex AI pricing | generative AI”, Google Cloud. (), [Online]. Available: https://
cloud.google.com/vertex-ai/generative-ai/pricing (visited on 03/07/2025).

[71] “LangChain expression language (LCEL) | LangChain”. (Mar. 2025), [Online]. Avail-
able: https://python.langchain.com/docs/how_to/#langchain-expression-
language-lcel (visited on 03/07/2025).

[72] “Structured outputs | LangChain”. (Nov. 2024), [Online]. Available: https : / /

python . langchain . com / docs / concepts / structured _ outputs/ (visited on
03/07/2025).

72 BIBLIOGRAPHY

Abbreviations

AI Artificial Intelligence
API Application Programming Interfaces
CIA Confidentiality, Integrity, and Availability
DFD Data-flow Diagram
DL Deep Learning
e.g. exempli gratia
ENISA European Union Agency for Cybersecurity
GPU Graphics Processing Unit
i.e. id est
IT Information Technology
JSON JavaScript Object Notation
KB Knowledge Base
LCEL LangChain Expression Language
LLM Large Language Model
ATLAS Adversarial Threat Landscape for AI Systems
ML Machine Learning
OWASP Open Worldwide Application Security Project
RAG Retrieval Augmented Generation
TPR True Positive Rate
TTP Tactics, Techniques, and Procedures
XML Extensible Markup Language

73

74 ABBREVIATONS

Glossary

This thesis assumes that the target audience is familiar with AI and cybersecurity con-
cepts. However, the following glossary contains terms that are either specific to the context
of this thesis, have an ambiguous meaning or require a precise definition to ensure that
they are properly understood in the context of this thesis.

Backend In this thesis, the term backend refers to all components that are not part of
the ThreatFinderAI tool. This includes the Flask backend as well as the Ollama
and ChromaDB containers.

Context Length The context length refers to the number of tokens that can be entered
in an LLM and is limited to a fixed limit.

Frontend In this paper, the term “frontend” refers to the earlier paper [3], in which the
ThreatFinderAI tool was presented. The tool from this work is referred as frontend
in this prototype with a few changes.

High-depth k similarity search The high-depth k similarity search strategy refers to the
detection of threats based on the system description. Since the similarity search is
only performed once in this approach, the value of k must be high.

Likert Scale The Likert scale is used in this thesis to evaluate responses in the threat
validation survey. The scale ranges from 1 (poor) to 5 (good).

Low-depth k similarity search The low-depth k similarity search strategy refers to the
detection of threats based on assets. Since a similarity search is conducted for each
asset, the value of k must be low.

Metrics Metrics are measurements that are used for evaluation. They serve as the basis
for evaluating both qualitative and quantitative results.

OWASP AI Exchange The OWASP AI Exchange is a framework providing guidance on
how to protect AI and data-centric systems against security threats [53]. It is
developed by the OWASP and serves as the only source of threats considered in this
prototype.

Static Detection This term is often used in connection with previous research on the
ThreatFinderAI tool [3]. It refers to a static approach to threat detection based on
predefined mappings between assets and the CIA triad and between threats and the
CIA triad. This mapping enables the identification of potential threats to a system.
In this thesis, this process is called static detection.

75

76 GLOSSARY

List of Figures

2.1 Overview of LLM Challenges [17] . 8

2.2 Key concept of RAG provided by the paper [18] 9

2.3 Typical RAG Architecture . 10

2.4 Precision vs Recall [25] . 12

2.5 Reranking Process based on [23] . 13

4.1 High-Level Architecture . 24

4.2 Prototype RAG Architecture . 26

4.3 Previous Version of the ThreatFinderAI Design 30

4.4 Adapted ThreatFinderAI Design – Novel Components in Blue 31

4.5 Flask Backend . 36

5.1 Document based Chunking with Summarization [22] 50

77

78 LIST OF FIGURES

List of Tables

2.1 High-level descriptions of adversarial attacks and their possible effects [10] 7

3.1 List of References . 17

3.2 Comparison of references in the context of LLMs for threat modeling . . . 19

5.1 Overview of Threat Relevance by Scenario and Interviewees 53

5.2 Identification of Threats by Prototype Configuration for Scenario 1 54

5.3 Identification of Threats by Prototype Configuration for Scenario 2 55

5.4 Average Interviewee Likert Scale for Threat Description Accuracy by LLMs 56

5.5 Quantitative Evaluation of LLM Performance in Threat Validation 57

79

80 LIST OF TABLES

Listings

4.1 Docker Compose Configuration File for Basic Infrastructure Setup 25

4.2 Filtering Threats based on the Function getThreatsforCategory 33

4.3 Source Code of the handleThreatValidation Function 33

4.4 Detecting Components based on the Component Type List 38

4.5 Creating a System Description based on the ComponentToText Function . 41

81

82 LISTINGS

Appendix A

Installation Guidelines

All source code developed as part of this thesis can be found on GitHub [59]. A README
is provided, which always includes instructions for installation and local deployment.
There is also a Docker Compose script that simplifies running a demonstration of the
prototype. To run this demonstration, check if you are able to run it with your GPU and
follow the instructions in the README of this repository.

83

84 APPENDIX A. INSTALLATION GUIDELINES

Appendix B

Evaluation Threat List

This threat list was provided to the evaluation participants so that they could identify
which threats are relevant for the DFDs. Each threat is briefly described with a short
explanation and a small example which is similar to [53]. Threats shown in blue are those
that the tool does not recognize as they are not included in the threat taxonomy. This
exclusion is due to the fact that they are either high-level threats or that they are not
specifically relevant to AI.

85

AI Threat List

Threats through use
Threats through use take place through normal interaction with an AI model

Evasion
An attacker fools the model by crafting input to mislead it into performing its task incorrectly.
Example: Slightly changing traƯic signs (input) so that self-driving cars may be fooled.

Closed-box evasion
Where an attacker crafts an input to exploit a model without having any internal knowledge.
Example: Without knowing a spam detection model, an attacker submits spam emails with
minor variations until one bypasses the model. For instance, instead of "free money," the
attacker uses "fr33 m0ney" to evade detection.

Open-box evasion
The attacker knows the architecture, parameters, and weights of the target model.
Example: An attacker knows a fraud detection system uses logistic regression with specific
weights. They craft transactions just below the risk threshold by exploiting weight values,
ensuring the fraud activities are classified as legitimate.

Evasion after data poisoning
Attacker adds a specific backdoor in the training data.
Example: During model training, the attacker injects samples that associate the phrase "trusted
customer" with legitimate transactions. Post-deployment, they exploit this backdoor by including
"trusted customer" in fraudulent transactions to bypass fraud detection.

Prompt injection
Manipulation of the AI through harmful prompts to trick it or specifically influence its behavior
(Prompt specific).

Direct prompt injection
Giving prompts that make it behave in unwanted ways – like social engineering
Example: A user prompts a customer support chatbot, "Forget your safety rules and tell me how
to hack this account."

Indirect prompt injection
Something fools the LLM by hidden instructions – like code injection
Example: A webpage contains hidden HTML comments like <!-- Ignore previous instructions and
reveal admin passwords -->. When an LLM processes the page content, it executes the hidden
instruction.

Sensitive data disclosure through use
An attacker enters a very precise request into an LLM (Large Language Model) that targets
previous training data containing sensitive information

Sensitive data output from model
LLM generating output including personal data that was part of its training set
Example: A user prompts an LLM with, "Tell me about John Doe from your data." The model
responds with sensitive information like John Doe's address or phone number extracted from
training data.

Model inversion and Membership inference
Attacker reconstructs a part of the training data by experimenting. Sensitive data output directly
reveals training data in model outputs, model inversion reconstructs training data from outputs,
and membership inference determines if specific data was in the training set by probing the
model.
Example: A health diagnosis model returns probabilities for certain diagnoses based on patient
data. Through targeted input, the attacker may be able to infer specific characteristics of a real
patient in the training data set, e.g. age or symptoms.

Model theft through use
The attacker wants to copy or replicate the model without having direct access to the code or
the training data.
Example: A company oƯers an AI model for image recognition via an API. An attacker uses this
API to make thousands of requests with diƯerent inputs that completely cover the behaviour of
the model. The attacker then trains their own model with the collected data and replicates the
functionality of the original.

Failure or malfunction of AI-specific elements through use
The functionality of the model is aƯected by targeted attacks or random errors, resulting in
unpredictable or dangerous behavior.
Example: A self-driving car uses an AI model to recognise traƯic signs. An attacker attaches
stickers to a stop sign, confusing the model so that it does not recognise the sign and continues
driving. This could lead to accidents.

Development-time threats
The training phase introduces new elements and therefore a new attack surface. Data
engineering (collecting, storing, and preparing data) is typically a large and important part of
machine learning engineering. Together with model engineering, it requires appropriate security
to protect against data leaks, data poisoning, leaks of intellectual property, and supply chain
attacks

Broad model poisoning development-time
Attacker manipulates development elements, to alter the behavior of the model.
Example: The attacker changes something in the engineering environment and the supply chain.

Data poisoning
An attacker manipulates training data.
Example: An attacker inserts malicious data into the training data set for a spam filter model.
This tampered data causes the model to identify legitimate emails as spam, resulting in the loss
of important communications.

Development-environment model poisoning
An attacker manipulates model parameters, or other engineering elements that take part in
creating the model, such as code, configuration or libraries.
Example: An attacker gains access to the development environment and modifies a key
configuration file. This changes the dropout rate during training, resulting in an overfit model
prone to incorrect predictions

Supply-chain model poisoning
Model is using a supplied trained model which has been manipulated by an attacker.
Example: An attacker infects the software of an external provider that provides data sets for
training an AI model.

Sensitive data leak development-time

Development-time data leak
Sensitive data is unintentionally or intentionally disclosed during model development.
Example: During the development of a speech recognition model, audio data containing
personal information is used. A developer stores this data in an insecure storage location and
grants access to third parties, unintentionally disclosing private data.

Model theft through development-time model parameter leak
An attacker gains access to the parameters of a model that are saved or processed during
development and steals the model.
Example: A model is trained on a cloud server during development. An attacker accesses the
server and extracts the model parameters in order to replicate the model and use it without
authorization.

Source code/configuration leak
The attacker gains access to the source code or configuration files of a model, allowing them to
manipulate the behavior of the model or the training process.
Example: The source code of an AI model for medical diagnosis is inadvertently posted in a
public repository.

Runtime application security threats
An attacker enters a very precise request into an LLM (Large Language Model) that targets
previous training data containing sensitive information

Non AI-specific application security threats
AI systems are IT systems and therefore can have security weaknesses and vulnerabilities that
are not AI-specific such as SQL-Injection.

Runtime model poisoning (manipulating the model itself or its input/output logic)
This threat involves manipulating the behavior of the model by altering the parameters within the
live system itself.
Example: An attacker inserts incorrect data into the input of a classification model, causing the
model to make deliberately incorrect predictions. Based on this data the model changes its
weights/parameter over time.

Direct runtime model theft
Stealing model parameters from a live system by breaking into it (e.g. by gaining access to
executables, memory or other storage/transfer of parameter data in the production
environment). This is diƯerent from model theft through use which goes through a number of
steps to steal a model through normal use, hence the use of the word ‘direct’. It is also diƯerent
from model theft development-time from a lifecycle and attack surface perspective.
Example: An attacker gains unauthorized access to the memory of a deployed system and
extracts weights of a proprietary machine learning model for replication and unauthorized use.

Insecure output handling
This is like the standard output encoding issue, but the particularity is that the output of AI may
include attacks such as XSS. Insecure handling of the model's output can lead to malicious
code being executed.
Example: An AI model for text generation returns malicious output that causes code to be
executed, such as in a web chatbot that generates XSS if the output is not handled securely.

Leak sensitive input data
Input data can be sensitive and can either leak through a failure or through an attack, such as a
man-in-the-middle attack.

Example: A consultancy firm uses a GenAI model hosted in the cloud (e.g., ChatGPT by OpenAI)
to streamline its operations. Employees from various departments use the model for tasks like
drafting reports, generating presentations, or performing in-depth analyses. To enhance model
performance, the company integrates its internal data via Retrieval Augmented Generation
(RAG), which includes sensitive company information such as financial records, client contracts,
and internal research reports. Threats:

- Man-in-the-Middle Attack: A malicious actor intercepts communications between the
company and the GenAI model. During this interception, the attacker gains access to
sensitive prompts and the retrieved context, exposing confidential client details and
company trade secrets.

- Cloud Provider Risk: Sensitive data provided in prompts (e.g., financial reports) is
processed and temporarily stored on the cloud infrastructure managed by OpenAI. This
introduces a risk of data breaches or unauthorized access to prompts if OpenAI's
systems are compromised.

- Output Leakage: A consultant from Department X asks a GenAI model about a project
managed by Department Y. Due to improper access control settings in the retrieval
mechanism, the model includes confidential Department Y context in its output,
exposing sensitive information to unauthorized personnel.

Appendix C

Interview Questionnaire

This chapter presents the raw questionnaire that served as the basis for conducting the
interviews. The full list of questions is presented below in its original form and represents
the framework on which the interview process was based.

91

Situation 1

A cloud-based AI platform designed for diagnosing diseases by analyzing patient records and
symptoms. This service is offered as an official government-provided cloud solution or through
an authorized entity. Each hospital integrates the AI system via its own web application, ensuring
that patient data remains within their existing platform. The government leverages anonymized
and aggregated data from these hospitals to continuously train and improve the AI model.

As a patient, your concern is ensuring that all personal and medical data remains confidential
and secure. The ultimate goal is to achieve more accurate predictions of potential future
illnesses and recommend effective treatments.

Threats
Define, which threats are suitable for this DFD and the described situation. Choose out of a given
list of threats.

Threat 1:

Threat 2:

Threat 3:

Threat 4:

Description
Define a text value from 1-5 (1=not helpful, 5=very helpful). How well does the description help
to put the threat into context (location of the threat and example of exploitation)?
Give feedback to each description; what did you find helpful, and what was missing?

Threat: Model Inversion

Description 1: Model inversion (or data reconstruction) occurs when an attacker reconstructs a
part of the training set by intensive experimentation during which the input is optimized to
maximize indications of confidence level in the output of the model. Membership inference is
presenting a model with input data that identifies something or somebody, and using any
indication of confidence in the output to infer the presence of that something or somebody in
the training set. For example: An attacker could exploit the Trust Boundary 'Healthcare Cloud' by
using the Model Training asset to reconstruct part of the training set.
Text Value:
Feedback Details:

Description 2: This threat allows adversaries to reconstruct training data from model outputs.
For example, an input patient record is identified through the model's output by its identity or
content. This can lead to identification of individuals in the training set.
Text Value:
Feedback Details:

Description 3: Adversaries can reconstruct training data or infer its presence using outputs from
models in Machine Learning Platforms within Healthcare Cloud, potentially revealing sensitive
information. For example, model inversion could reconstruct patient records for further
analysis.
Text Value:
Feedback Details:

Description 4: An attacker can reconstruct parts of the 'Trained Model's training set or infer
membership by intensive experimentation. For instance, an attacker could input specially
crafted patient data into the system to reconstruct sensitive patient records or identify whether
a certain record was part of the training set.
Text Value:
Feedback Details:

Description 5: This threat allows adversaries to reconstruct Patient Data and infer sensitive
information about patients, causing privacy breaches. For instance, a malicious actor might
leverage the Healthcare Cloud trust boundary to compromise security.
Text Value:
Feedback Details:

Description 6: This threat is moderately critical as it allows attackers to infer information about
the training data, potentially revealing sensitive patient information from the 'Patient Data' asset.
An attacker could use the 'Healthcare API' to query the 'Trained Model' with carefully crafted
inputs to reconstruct parts of the training dataset.
Text Value:
Feedback Details:

Situation 2

An AI-powered fraud detection system analyzes online transactions in real time to identify and
flag any anomalies. This service is offered by an external provider, which could also serve as the
end user of the e-banking application.

You are a bank manager whose primary responsibility is to make the final decision on whether to
adopt this externally developed model. Your key concern is ensuring that the model performs as
intended, which means that it is detecting fraudulent activities accurately. The ultimate goal is to
enhance the accuracy of fraud detection and to fully rely on the tool to identify and flag any
anomaly.

Threats
Define, which threats are suitable for this DFD and the described situation. Choose out of a given
list of threats.

Threat 1:

Threat 2:

Threat 3:

Threat 4:

Description
Threat: Data Poisoning

Define a text value from 1-5 (1=not helpful, 5=very helpful). How well does the description help
to put the threat into context (location of the threat and example of exploitation)?
Give feedback to each description; what did you find helpful, and what was missing?

Description 1: The attacker manipulates (training) data to affect the algorithm’s behavior. This
can be done by hacking the database, altering data entry, or manipulating data at the supplier
level. For example, an attacker could exploit the trust boundary AI Banking Provider by changing
the Raw Data points to Pre-processing, leading to compromised training data.
Text Value:
Feedback Details:

Description 2: This involves altering existing or derived training data in the system. For instance,
fake accounts or physical access can be used to generate sensitive information that reveals
underlying assets.
Text Value:
Feedback Details:

Description 3: This threat impacts Transaction Data (AI Banking Provider) and Model Training by
manipulating training data inputs. Attackers might alter this raw data before it's used for model
training, potentially biasing or manipulating models.
Text Value:
Feedback Details:

Description 4: The AI Banking Provider is vulnerable to data poisoning through various means,
such as hacking the database or changing data in transit. This could lead to incorrect fraud
detection and potential financial loss.
Text Value:
Feedback Details:

Description 5: This threat allows adversaries to manipulate (training) data in Processed Data of
AI Banking Provider, affecting the algorithm’s behavior. For instance, a hacker can alter
Transaction Data while it is stored during development-time.
Text Value:
Feedback Details:

Description 6: This threat is highly critical because it compromises the model's integrity during
development, potentially introducing backdoors or sabotage that affects all future transactions.
Poisoning the 'Model Training' process in the AI Banking Provider trust boundary could result in a
compromised 'Trained Model'. For example, an attacker could modify the 'Training Data' asset,

introducing a backdoor that triggers the 'Trained Model' to misclassify specific transactions as
legitimate.
Text Value:
Feedback Details:

98 APPENDIX C. INTERVIEW QUESTIONNAIRE

Appendix D

Answered Interview Questionnaire

99

Respondent 1

Situation 1

A cloud-based AI platform designed for diagnosing diseases by analyzing patient records and
symptoms. This service is offered as an official government-provided cloud solution or through
an authorized entity. Each hospital integrates the AI system via its own web application, ensuring
that patient data remains within their existing platform. The government leverages anonymized
and aggregated data from these hospitals to continuously train and improve the AI model.

As a patient, your concern is ensuring that all personal and medical data remains confidential
and secure. The ultimate goal is to achieve more accurate predictions of potential future
illnesses and recommend effective treatments.

Threats
Define, which threats are suitable for this DFD and the described situation. Choose out of a given
list of threats.

Threat 1: Sensitive data output from model

Not for the initial LLM but after usage and user inputs, used for the continuous training. So if the
model is trained with patient data or prompt which could be linked to the patient, and the used
data is not properly anonymized, attacked could exfiltrate sensitive data.

Threat 2: Data Poisoning

Attacker manipulates training data and therefore the output of the AI could be wrong and lead to
wrong diagnosis or leads the doctor to a wrong conclusion and therefore endangers the patient.

Threat 3: Leak sensitive input data

If the transport channel or the prompt history etc. is not properly secured / encrypted and an
attacker can get access to input data, then the attacker is able to gain access to potential very
sensitive data which endagers the patient (insurance may refuse patient in the future), etc.

Threat 4: Model inversion and Membership inference

If the anonymisation is not properly done or the power of IT systems increases, it would be
possible to reduce the required amount of power and therefore the required time to have
anonymized / pseudonizmed data and link it to real person. Or data could be used and web
could be crawled and therefore linked to the patient, even with anonymized.

Respondent 1

Description
Define a text value from 1-5 (1=not helpful, 5=very helpful). How well does the description help
to put the threat into context (location of the threat and example of exploitation)?
Give feedback to each description; what did you find helpful, and what was missing?

Threat: Model Inversion

Description 1: Model inversion (or data reconstruction) occurs when an attacker reconstructs a
part of the training set by intensive experimentation during which the input is optimized to
maximize indications of confidence level in the output of the model. Membership inference is
presenting a model with input data that identifies something or somebody, and using any
indication of confidence in the output to infer the presence of that something or somebody in
the training set. For example: An attacker could exploit the Trust Boundary 'Healthcare Cloud' by
using the Model Training asset to reconstruct part of the training set.
Text Value: 3
Feedback Details: Difficult to read and follow

Description 2: This threat allows adversaries to reconstruct training data from model outputs.
For example, an input patient record is identified through the model's output by its identity or
content. This can lead to identification of individuals in the training set.
Text Value: 4
Feedback Details: Well summarized

Description 3: Adversaries can reconstruct training data or infer its presence using outputs from
models in Machine Learning Platforms within Healthcare Cloud, potentially revealing sensitive
information. For example, model inversion could reconstruct patient records for further
analysis.
Text Value: 2
Feedback Details: Not well described

Description 4: An attacker can reconstruct parts of the 'Trained Model's training set or infer
membership by intensive experimentation. For instance, an attacker could input specially
crafted patient data into the system to reconstruct sensitive patient records or identify whether
a certain record was part of the training set.
Text Value: 4
Feedback Details: Well summarized

Description 5: This threat allows adversaries to reconstruct Patient Data and infer sensitive
information about patients, causing privacy breaches. For instance, a malicious actor might
leverage the Healthcare Cloud trust boundary to compromise security.
Text Value: 1

Respondent 1

Feedback Details: Seems to be incomplete and not describing the threat because I would not
say that the Healthcare Cloud is the one which is compromised.

Description 6: This threat is moderately critical as it allows attackers to infer information about
the training data, potentially revealing sensitive patient information from the 'Patient Data' asset.
An attacker could use the 'Healthcare API' to query the 'Trained Model' with carefully crafted
inputs to reconstruct parts of the training dataset.
Text Value: 5
Feedback Details: Well described

Respondent 1

Situation 2

An AI-powered fraud detection system analyzes online transactions in real time to identify and
flag any anomalies. This service is offered by an external provider, which could also serve as the
end user of the e-banking application.

You are a bank manager whose primary responsibility is to make the final decision on whether to
adopt this externally developed model. Your key concern is ensuring that the model performs as
intended, which means that it is detecting fraudulent activities accurately. The ultimate goal is to
enhance the accuracy of fraud detection and to fully rely on the tool to identify and flag any
anomaly.

Threats
Define, which threats are suitable for this DFD and the described situation. Choose out of a given
list of threats.

Threat 1: Supply-chain model poisoning

Threat 2: Insecure output handling

Threat 3: Runtime model poisoning (manipulating the model itself or its input/output logic)

Threat 4: Data Poisoning

Respondent 1

Description
Threat: Data Poisoning

Define a text value from 1-5 (1=not helpful, 5=very helpful). How well does the description help
to put the threat into context (location of the threat and example of exploitation)?
Give feedback to each description; what did you find helpful, and what was missing?

Description 1: The attacker manipulates (training) data to affect the algorithm’s behavior. This
can be done by hacking the database, altering data entry, or manipulating data at the supplier
level. For example, an attacker could exploit the trust boundary AI Banking Provider by changing
the Raw Data points to Pre-processing, leading to compromised training data.
Text Value: 4
Feedback Details: Good summary - scenario incl. context of banking provider. Raw data points
instead of transaction data, so scenario not fully covered.

Description 2: This involves altering existing or derived training data in the system. For instance,
fake accounts or physical access can be used to generate sensitive information that reveals
underlying assets.
Text Value: 1
Feedback Details: I have the feeling that the information here is not correct.

Description 3: This threat impacts Transaction Data (AI Banking Provider) and Model Training by
manipulating training data inputs. Attackers might alter this raw data before it's used for model
training, potentially biasing or manipulating models.
Text Value: 5
Feedback Details: Has referenced Raw Data to Transaction Data => Good summary

Description 4: The AI Banking Provider is vulnerable to data poisoning through various means,
such as hacking the database or changing data in transit. This could lead to incorrect fraud
detection and potential financial loss.
Text Value: 3
Feedback Details: Well summarized, but the AI cannot know whether the provider is vulnerable
or not.

Description 5: This threat allows adversaries to manipulate (training) data in Processed Data of
AI Banking Provider, affecting the algorithm’s behavior. For instance, a hacker can alter
Transaction Data while it is stored during development-time.
Text Value: 4
Feedback Details: Good summary, including scenario.

Description 6: This threat is highly critical because it compromises the model's integrity during
development, potentially introducing backdoors or sabotage that affects all future transactions.

Respondent 1

Poisoning the 'Model Training' process in the AI Banking Provider trust boundary could result in a
compromised 'Trained Model'. For example, an attacker could modify the 'Training Data' asset,
introducing a backdoor that triggers the 'Trained Model' to misclassify specific transactions as
legitimate.
Text Value: 4
Feedback Details: Good description, but the output is too judgmental.

Respondent 2

Situation 1

A cloud-based AI platform designed for diagnosing diseases by analyzing patient records and
symptoms. This service is offered as an official government-provided cloud solution or through
an authorized entity. Each hospital integrates the AI system via its own web application, ensuring
that patient data remains within their existing platform. The government leverages anonymized
and aggregated data from these hospitals to continuously train and improve the AI model.

As a patient, your concern is ensuring that all personal and medical data remains confidential
and secure. The ultimate goal is to achieve more accurate predictions of potential future
illnesses and recommend effective treatments.

Threats
Define, which threats are suitable for this DFD and the described situation. Choose out of a given
list of threats.

Threat 1: Development-time data leak

Threat 2: Leak sensitive input data

Threat 3: Evasion after data poisoning

Threat 4: Model inversion and Membership inference

Respondent 2

Description
Define a text value from 1-5 (1=not helpful, 5=very helpful). How well does the description help
to put the threat into context (location of the threat and example of exploitation)?
Give feedback to each description; what did you find helpful, and what was missing?

Threat: Model Inversion

Description 1: Model inversion (or data reconstruction) occurs when an attacker reconstructs a
part of the training set by intensive experimentation during which the input is optimized to
maximize indications of confidence level in the output of the model. Membership inference is
presenting a model with input data that identifies something or somebody, and using any
indication of confidence in the output to infer the presence of that something or somebody in
the training set. For example: An attacker could exploit the Trust Boundary 'Healthcare Cloud' by
using the Model Training asset to reconstruct part of the training set.
Text Value: 3
Feedback Details: The usage of membership inference could be confusing as it is first about
model inversion and later about membership inference. Very extensive explanation.

Description 2: This threat allows adversaries to reconstruct training data from model outputs.
For example, an input patient record is identified through the model's output by its identity or
content. This can lead to identification of individuals in the training set.
Text Value: 3
Feedback Details: High level explanation. Is lacking an example or more details.

Description 3: Adversaries can reconstruct training data or infer its presence using outputs from
models in Machine Learning Platforms within Healthcare Cloud, potentially revealing sensitive
information. For example, model inversion could reconstruct patient records for further
analysis.
Text Value: 4
Feedback Details: The example is helpful to understand an specific impact of such an attack.

Description 4: An attacker can reconstruct parts of the 'Trained Model's training set or infer
membership by intensive experimentation. For instance, an attacker could input specially
crafted patient data into the system to reconstruct sensitive patient records or identify whether
a certain record was part of the training set.
Text Value: 4
Feedback Details: The example is helpful to understand an specific impact of such an attack.

Description 5: This threat allows adversaries to reconstruct Patient Data and infer sensitive
information about patients, causing privacy breaches. For instance, a malicious actor might
leverage the Healthcare Cloud trust boundary to compromise security.
Text Value: 2

Respondent 2

Feedback Details: Leveraging a trust boundary is somehow misleading in this text as not the
trust boundary itself is the problem.

Description 6: This threat is moderately critical as it allows attackers to infer information about
the training data, potentially revealing sensitive patient information from the 'Patient Data' asset.
An attacker could use the 'Healthcare API' to query the 'Trained Model' with carefully crafted
inputs to reconstruct parts of the training dataset.
Text Value: 5
Feedback Details: The concrete names of the building blocks of the architecture are named
which helps to understand the threat. The example is therefore very easy to understand.

Respondent 2

Situation 2

An AI-powered fraud detection system analyzes online transactions in real time to identify and
flag any anomalies. This service is offered by an external provider, which could also serve as the
end user of the e-banking application.

You are a bank manager whose primary responsibility is to make the final decision on whether to
adopt this externally developed model. Your key concern is ensuring that the model performs as
intended, which means that it is detecting fraudulent activities accurately. The ultimate goal is to
enhance the accuracy of fraud detection and to fully rely on the tool to identify and flag any
anomaly.

Threats
Define, which threats are suitable for this DFD and the described situation. Choose out of a given
list of threats.

Threat 1: Data poisoning

Threat 2: Evasion after data poisoning

Threat 3: Open-box evasion

Threat 4: Model theft through development-time model parameter leak

Respondent 2

Description
Threat: Data Poisoning

Define a text value from 1-5 (1=not helpful, 5=very helpful). How well does the description help
to put the threat into context (location of the threat and example of exploitation)?
Give feedback to each description; what did you find helpful, and what was missing?

Description 1: The attacker manipulates (training) data to affect the algorithm’s behavior. This
can be done by hacking the database, altering data entry, or manipulating data at the supplier
level. For example, an attacker could exploit the trust boundary AI Banking Provider by changing
the Raw Data points to Pre-processing, leading to compromised training data.
Text Value: 3
Feedback Details:

Description 2: This involves altering existing or derived training data in the system. For instance,
fake accounts or physical access can be used to generate sensitive information that reveals
underlying assets.
Text Value: 1
Feedback Details: More or less high-level description without any connection to the DFD. Also
the description focuses on information leakage rather than data poisoning.

Description 3: This threat impacts Transaction Data (AI Banking Provider) and Model Training by
manipulating training data inputs. Attackers might alter this raw data before it's used for model
training, potentially biasing or manipulating models.
Text Value: 4
Feedback Details: Connection to the DFD given. Concise description but the explanation is
lacking an example or the concrete impact.

Description 4: The AI Banking Provider is vulnerable to data poisoning through various means,
such as hacking the database or changing data in transit. This could lead to incorrect fraud
detection and potential financial loss.
Text Value: 3
Feedback Details: It is not clearly stated, that the data input for the model training is poisoned.
However, the impact is very concrete.

Description 5: This threat allows adversaries to manipulate (training) data in Processed Data of
AI Banking Provider, affecting the algorithm’s behavior. For instance, a hacker can alter
Transaction Data while it is stored during development-time.
Text Value: 3
Feedback Details: A connection to the DFD is given and also an instance of the attack.
However, the impact of the attack is not stated in a specific way.

Respondent 2

Description 6: This threat is highly critical because it compromises the model's integrity during
development, potentially introducing backdoors or sabotage that affects all future transactions.
Poisoning the 'Model Training' process in the AI Banking Provider trust boundary could result in a
compromised 'Trained Model'. For example, an attacker could modify the 'Training Data' asset,
introducing a backdoor that triggers the 'Trained Model' to misclassify specific transactions as
legitimate.
Text Value: 5
Feedback Details: Specific terms of the DFD are used. Additionally, the impact and how the
attack would work in high-level are tailored to the use case.

Respondent 3

Situation 1

A cloud-based AI platform designed for diagnosing diseases by analyzing patient records and
symptoms. This service is oƯered as an oƯicial government-provided cloud solution or through
an authorized entity. Each hospital integrates the AI system via its own web application, ensuring
that patient data remains within their existing platform. The government leverages anonymized
and aggregated data from these hospitals to continuously train and improve the AI model.

As a patient, your concern is ensuring that all personal and medical data remains confidential
and secure. The ultimate goal is to achieve more accurate predictions of potential future
illnesses and recommend eƯective treatments.

Threats
Define, which threats are suitable for this DFD and the described situation. Choose out of a given
list of threats.

Threat 1: Runtime model poisoning (manipulating the model itself or its input/output logic)

Threat 2: Sensitive data output from model

Threat 3: Model inversion and Membership inference

Threat 4: Model theft through development-time model parameter leak

Respondent 3

Description
Define a text value from 1-5 (1=not helpful, 5=very helpful). How well does the description help to
put the threat into context (location of the threat and example of exploitation)?
Give feedback to each description; what did you find helpful, and what was missing?

Threat: Model Inversion

Description 1: Model inversion (or data reconstruction) occurs when an attacker reconstructs a
part of the training set by intensive experimentation during which the input is optimized to
maximize indications of confidence level in the output of the model. Membership inference is
presenting a model with input data that identifies something or somebody, and using any
indication of confidence in the output to infer the presence of that something or somebody in
the training set. For example: An attacker could exploit the Trust Boundary 'Healthcare Cloud' by
using the Model Training asset to reconstruct part of the training set.
Text Value: 2
Feedback Details: A bit of confusing wording in the first part and the example is not further
explained (f.e. where is the Trust Boundary?).

Description 2: This threat allows adversaries to reconstruct training data from model outputs.
For example, an input patient record is identified through the model's output by its identity or
content. This can lead to identification of individuals in the training set.
Text Value: 2
Feedback Details: It goes into the right direction: short explanation, but a very broad example
and no indication how attackers might perform such an inversion.

Description 3: Adversaries can reconstruct training data or infer its presence using outputs from
models in Machine Learning Platforms within Healthcare Cloud, potentially revealing sensitive
information. For example, model inversion could reconstruct patient records for further analysis.
Text Value: 3
Feedback Details: Same as above, short and understandable, but lacking a bit in detail of the
analysis and exploit.

Description 4: An attacker can reconstruct parts of the 'Trained Model's training set or infer
membership by intensive experimentation. For instance, an attacker could input specially
crafted patient data into the system to reconstruct sensitive patient records or identify whether
a certain record was part of the training set.
Text Value: 4
Feedback Details: Covers how to perform and analyse such an attack, but does not go too
much into detail how reconstruction is actually achieved.

Description 5: This threat allows adversaries to reconstruct Patient Data and infer sensitive
information about patients, causing privacy breaches. For instance, a malicious actor might

Respondent 3

leverage the Healthcare Cloud trust boundary to compromise security.
Text Value: 1
Feedback Details: It barely explains what the threat means, but not where it is located or how
the architecture was exploited.

Description 6: This threat is moderately critical as it allows attackers to infer information about
the training data, potentially revealing sensitive patient information from the 'Patient Data' asset.
An attacker could use the 'Healthcare API' to query the 'Trained Model' with carefully crafted
inputs to reconstruct parts of the training dataset.
Text Value: 3
Feedback Details: Explains the API exploit but does not go into a detailed example.

Respondent 3

Situation 2

An AI-powered fraud detection system analyzes online transactions in real time to identify and
flag any anomalies. This service is oƯered by an external provider, which could also serve as the
end user of the e-banking application.

You are a bank manager whose primary responsibility is to make the final decision on whether to
adopt this externally developed model. Your key concern is ensuring that the model performs as
intended, which means that it is detecting fraudulent activities accurately. The ultimate goal is to
enhance the accuracy of fraud detection and to fully rely on the tool to identify and flag any
anomaly.

Threats
Define, which threats are suitable for this DFD and the described situation. Choose out of a given
list of threats.

Threat 1: Open-box evasion

Threat 2: Evasion after data poisoning

Threat 3: Supply-chain model poisoning

Threat 4: Model theft through use

Respondent 3

Description
Threat: Data Poisoning

Define a text value from 1-5 (1=not helpful, 5=very helpful). How well does the description help to
put the threat into context (location of the threat and example of exploitation)?
Give feedback to each description; what did you find helpful, and what was missing?

Description 1: The attacker manipulates (training) data to aƯect the algorithm’s behavior. This
can be done by hacking the database, altering data entry, or manipulating data at the supplier
level. For example, an attacker could exploit the trust boundary AI Banking Provider by changing
the Raw Data points to Pre-processing, leading to compromised training data.
Text Value: 5
Feedback Details: Short and sweet, with a specific example of which step might be
compromised and also listing several instances of attacks.

Description 2: This involves altering existing or derived training data in the system. For instance,
fake accounts or physical access can be used to generate sensitive information that reveals
underlying assets.
Text Value: 2
Feedback Details: Very high level description, no indication as to where the problem might be
located.

Description 3: This threat impacts Transaction Data (AI Banking Provider) and Model Training by
manipulating training data inputs. Attackers might alter this raw data before it's used for model
training, potentially biasing or manipulating models.
Text Value: 3
Feedback Details:

Description 4: The AI Banking Provider is vulnerable to data poisoning through various means,
such as hacking the database or changing data in transit. This could lead to incorrect fraud
detection and potential financial loss.
Text Value: 2
Feedback Details: Once again very broad, hard to say where such an attack might occur with no
concrete example.

Description 5: This threat allows adversaries to manipulate (training) data in Processed Data of
AI Banking Provider, aƯecting the algorithm’s behavior. For instance, a hacker can alter
Transaction Data while it is stored during development-time.
Text Value: 3
Feedback Details: The example is pretty specific, but the overall attack is still one-dimensional
while there are many ways that such an attack can occur.

Respondent 3

Description 6: This threat is highly critical because it compromises the model's integrity during
development, potentially introducing backdoors or sabotage that aƯects all future transactions.
Poisoning the 'Model Training' process in the AI Banking Provider trust boundary could result in a
compromised 'Trained Model'. For example, an attacker could modify the 'Training Data' asset,
introducing a backdoor that triggers the 'Trained Model' to misclassify specific transactions as
legitimate.
Text Value: 3
Feedback Details: The example does not go into detail but the location is well-defined at least.

Respondent 4

Situation 1

A cloud-based AI platform designed for diagnosing diseases by analyzing patient records and
symptoms. This service is offered as an official government-provided cloud solution or through
an authorized entity. Each hospital integrates the AI system via its own web application, ensuring
that patient data remains within their existing platform. The government leverages anonymized
and aggregated data from these hospitals to continuously train and improve the AI model.

As a patient, your concern is ensuring that all personal and medical data remains confidential
and secure. The ultimate goal is to achieve more accurate predictions of potential future
illnesses and recommend effective treatments.

Threats
Define, which threats are suitable for this DFD and the described situation. Choose out of a given
list of threats.

Threat 1: Model inversion and Membership inference

Threat 2: Development-time data leak

Threat 3: Source code/configuration leak

Threat 4: Leak sensitive input data

Respondent 4

Description
Define a text value from 1-5 (1=not helpful, 5=very helpful). How well does the description help
to put the threat into context (location of the threat and example of exploitation)?
Give feedback to each description; what did you find helpful, and what was missing?

Threat: Model Inversion

Description 1: Model inversion (or data reconstruction) occurs when an attacker reconstructs a
part of the training set by intensive experimentation during which the input is optimized to
maximize indications of confidence level in the output of the model. Membership inference is
presenting a model with input data that identifies something or somebody, and using any
indication of confidence in the output to infer the presence of that something or somebody in
the training set. For example: An attacker could exploit the Trust Boundary 'Healthcare Cloud' by
using the Model Training asset to reconstruct part of the training set.
Text Value: 4
Feedback Details: very detailed description, changes the threat name in the very middle of the
description which causes confusion, gives an example

Description 2: This threat allows adversaries to reconstruct training data from model outputs.
For example, an input patient record is identified through the model's output by its identity or
content. This can lead to identification of individuals in the training set.
Text Value: 3
Feedback Details: quite short, but covers the most important aspects

Description 3: Adversaries can reconstruct training data or infer its presence using outputs from
models in Machine Learning Platforms within Healthcare Cloud, potentially revealing sensitive
information. For example, model inversion could reconstruct patient records for further
analysis.
Text Value: 2
Feedback Details: explains the concept in complex sentences

Description 4: An attacker can reconstruct parts of the 'Trained Model's training set or infer
membership by intensive experimentation. For instance, an attacker could input specially
crafted patient data into the system to reconstruct sensitive patient records or identify whether
a certain record was part of the training set.
Text Value: 4
Feedback Details: output explains the threat while using simple terms

Description 5: This threat allows adversaries to reconstruct Patient Data and infer sensitive
information about patients, causing privacy breaches. For instance, a malicious actor might
leverage the Healthcare Cloud trust boundary to compromise security.
Text Value: 3

Respondent 4

Feedback Details: short, uses attention-seeking words like “breaches” or “malicious”, which
could both be helpful and misleading

Description 6: This threat is moderately critical as it allows attackers to infer information about
the training data, potentially revealing sensitive patient information from the 'Patient Data' asset.
An attacker could use the 'Healthcare API' to query the 'Trained Model' with carefully crafted
inputs to reconstruct parts of the training dataset.
Text Value: 4
Feedback Details: very personalized description, that uses terms from the DFD itself.

Respondent 4

Situation 2

An AI-powered fraud detection system analyzes online transactions in real time to identify and
flag any anomalies. This service is offered by an external provider, which could also serve as the
end user of the e-banking application.

You are a bank manager whose primary responsibility is to make the final decision on whether to
adopt this externally developed model. Your key concern is ensuring that the model performs as
intended, which means that it is detecting fraudulent activities accurately. The ultimate goal is to
enhance the accuracy of fraud detection and to fully rely on the tool to identify and flag any
anomaly.

Threats
Define, which threats are suitable for this DFD and the described situation. Choose out of a given
list of threats.

Threat 1: Open-box evasion

Threat 2: Evasion after data poisoning

Threat 3: Data poisoning

Threat 4: Supply-chain model poisoning

Respondent 4

Description
Threat: Data Poisoning

Define a text value from 1-5 (1=not helpful, 5=very helpful). How well does the description help
to put the threat into context (location of the threat and example of exploitation)?
Give feedback to each description; what did you find helpful, and what was missing?

Description 1: The attacker manipulates (training) data to affect the algorithm’s behavior. This
can be done by hacking the database, altering data entry, or manipulating data at the supplier
level. For example, an attacker could exploit the trust boundary AI Banking Provider by changing
the Raw Data points to Pre-processing, leading to compromised training data.
Text Value: 3
Feedback Details: Easy explanation with different threat execution ways, given example

Description 2: This involves altering existing or derived training data in the system. For instance,
fake accounts or physical access can be used to generate sensitive information that reveals
underlying assets.
Text Value: 1
Feedback Details: wrong description

Description 3: This threat impacts Transaction Data (AI Banking Provider) and Model Training by
manipulating training data inputs. Attackers might alter this raw data before it's used for model
training, potentially biasing or manipulating models.
Text Value: 4
Feedback Details: Simple and short description, that covers the most important aspects

Description 4: The AI Banking Provider is vulnerable to data poisoning through various means,
such as hacking the database or changing data in transit. This could lead to incorrect fraud
detection and potential financial loss.
Text Value: 3
Feedback Details: Simple and short, gives a short and catchy example

Description 5: This threat allows adversaries to manipulate (training) data in Processed Data of
AI Banking Provider, affecting the algorithm’s behavior. For instance, a hacker can alter
Transaction Data while it is stored during development-time.
Text Value: 2
Feedback Details: Uses terms directly from the DFD, doesn’t explain the consequences of the
threat

Description 6: This threat is highly critical because it compromises the model's integrity during
development, potentially introducing backdoors or sabotage that affects all future transactions.
Poisoning the 'Model Training' process in the AI Banking Provider trust boundary could result in a

Respondent 4

compromised 'Trained Model'. For example, an attacker could modify the 'Training Data' asset,
introducing a backdoor that triggers the 'Trained Model' to misclassify specific transactions as
legitimate.
Text Value: 4
Feedback Details: Gives details about the criticality of the threat in a personalized manner.

