
AI-powered Ransomware to Stay
Hidden

Sandro Padovan
Zurich, Switzerland

Student ID: 17-721-291

Supervisor: Dr. Alberto Huertas Celdrán, Jan von der Assen
Date of Submission: January 1, 2024

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

This master thesis explores the usage of Reinforcement Learning (RL) to improve the
chances of a ransomware to remain undetected applied on a Raspberry Pi 3 target device.
It is extending a framework called RansomAI presented in a previous work [1]. The ap-
proach is explored in an Internet of Things (IoT) scenario using radio frequency spectrum
sensors as targeted devices with a ransomware configurable at runtime. In the previous
work several limitations were identified which this work aims to partially cover. Firstly, a
different approach is explored using system calls (syscalls) as the basis of device behavi-
oral fingerprinting. This is used during the training of the RL model to detect anomalies.
Secondly, additional benign behaviors are introduced to the scenario in order to test the
adaptability of the approach.

The evaluations in this work show that the syscall-based approach has advantages at
detecting anomalous behavior compared to the resource usage approach of the previous
work. Furthermore, the proposed RL agent is able to select the optimal ransomware con-
figuration with an accuracy of above 90 % after less than two minutes of training, which
is slightly faster than in the previous work. Regarding the second extension, it is shown
that the additional behavior makes it significantly harder to detect the ransomware. Thus,
a syscall-based defense approach in this scenario works better with devices having more
uniform behavior patterns. The RL agent is able to learn the optimal configuration also
with the additional benign behavior, however with less consistency. Nevertheless, it is able
to reach an accuracy of above 90 % after less than eight minutes of training.

To further optimize the RL model and the anomaly detection, as well as to evaluate the
generalizability of this approach in other scenarios, future studies are necessary.

i

Zusammenfassung

Diese Masterarbeit untersucht die Verwendung von Reinforcement Learning (RL) um die
Chancen einer Ransomware zu erhöhen unentdeckt zu bleiben, angewendet auf einem
Raspberry Pi 3 Zielgerät. Es wird ein Framework namens RansomAI erweitert, welches in
einer früheren Arbeit vorgestellt wurde [1]. Der Ansatz wird in einem Internet of Things
(IoT) Szenario erforscht, bei dem Radiofrequenz Spektrumsensoren benutzt werden als
Zielgeräte einer während Laufzeit konfigurierbaren Ransomware. In der vorhergehenden
Arbeit wurden mehrere Einschränkungen identifiziert, welche in dieser Arbeit teilweise
adressiert werden. Erstens wird ein anderer Ansatz erforscht, bei dem Systemaufrufe (Sys-
calls) als Grundlage dienen für die Erstellung von Fingerabdrücken des Geräteverhaltens.
Dies wird benutzt während des Trainings der RL-Modells um Anomalien zu erkennen.
Zweitens werden zusätzliche gutartige Verhaltensweisen in das Szenario eingeführt, um
die Anpassungsfähigkeit des Ansatzes zu testen.

Die Auswertungen dieser Arbeit zeigen, dass der Syscall-basierte Ansatz Vorteile bei der
Erkennung von abnormalem Verhalten im Vergleich zum Ansatz basierend auf Ressour-
cennutzung der vorherigen Arbeit hat. Darüber hinaus ist der vorgeschlagene RL-Agent in
der Lage, die optimale Ransomware-Konfiguration mit einer Genauigkeit von über 90 %
nach weniger als zwei Minuten Training auszuwählen, was etwas schneller ist als in der
vorherigen Arbeit. Bezüglich der zweiten Erweiterung wird gezeigt, dass das zusätzliche
Verhalten die Erkennung der Ransomware erheblich erschwert. Daher funktioniert ein
Syscall-basierter Verteidigungsansatz in diesem Szenario besser bei Geräten mit einheitli-
cheren Verhaltensmustern. Der RL-Agent ist in der Lage, die optimale Konfiguration auch
mit dem zusätzlichen gutartigen Verhalten zu erlernen, allerdings mit weniger Konsistenz.
Dennoch ist er in der Lage, nach weniger als acht Minuten Trainingszeit eine Genauigkeit
von über 90 % zu erreichen.

Sowohl um das RL-Modell und die Erkennung von Anomalien weiter zu optimieren, als
auch um die Verallgemeinerbarkeit dieses Ansatzes in anderen Szenarien zu evaluieren,
sind zukünftige Forschungen erforderlich.

ii

Acknowledgments

I would like to express my sincere gratitude to the supervisors of my thesis, Dr. Alberto
Huertas Celdrán and Jan von der Assen. Their suggestions, tips, and feedback during the
process of writing my thesis helped a lot. Moreover, the great and fast communication in
the last months was greatly appreciated.

Additionally, I would like to thank Prof. Dr. Burkhard Stiller for enabling me to write my
master thesis at the CSG. After the many courses and seminars I attended over the last
years which were taught by Prof. Stiller and the CSG team, I could apply and connect
many of the concepts and insights in this thesis.

Finally, I want to thank my family and significant other for their unconditional support
and patience.

iii

iv

Contents

Abstract i

Zusammenfassung ii

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 2

1.3 Thesis Outline . 3

2 Background 5

2.1 Spectrum Sensing . 5

2.1.1 Electrosense . 5

2.2 Ransomware . 7

2.2.1 Definition and Relevance . 7

2.2.2 Ransomware Lifecycle . 7

2.2.3 Types of Ransomware . 8

2.2.4 Ransomware in IoT . 9

2.2.5 Countermeasures . 9

2.3 Artificial Intelligence . 10

2.3.1 Reinforcement Learning . 10

2.4 Behavioral Fingerprinting . 13

2.4.1 Device Identification . 13

2.4.2 Anomaly Detection . 14

v

vi CONTENTS

3 Related Work 17

3.1 AI in Malware . 17

3.1.1 Surveys . 18

3.1.2 Applications of RL in Malware . 19

3.2 Summary . 20

4 Scenario 25

4.1 Environment . 25

4.2 Client . 26

4.2.1 Ransomware . 26

4.2.2 Fingerprint Collection . 28

4.2.3 Benign Behavior Execution . 28

4.3 C&C Server . 29

4.3.1 System Call Feature Extraction . 29

4.3.2 Anomaly Detection . 30

4.3.3 RL Reward Function . 30

4.3.4 RL Agent . 30

5 System Architecture and Implementation 33

5.1 Anomaly Detection . 33

5.2 RL Environment . 34

5.3 RL Agent . 36

5.4 RL Reward . 36

5.5 Additional Benign Behaviors . 38

5.5.1 Behavior 1: Data Compression . 39

5.5.2 Behavior 2: Libraries Installation 39

5.6 Experiment Setup . 40

CONTENTS vii

6 Evaluation 47

6.1 Performance of Prototypes . 47

6.1.1 Simple Q-Learning Prototype . 47

6.1.2 Improved Q-Learning Prototype with Performance Rewards 48

6.1.3 Improved Q-Learning Prototype with Ideal AD 50

6.2 Comparison with Resource Usage Fingerprints 54

6.3 Evaluation of Additional Benign Behaviors 56

6.3.1 AD with Additional Benign Behaviors 57

6.3.2 Reward Function with Additional Benign Behaviors 59

6.3.3 RL Agent Performance with Additional Benign Behaviors 60

7 Limitations 67

8 Future Work 69

9 Summary and Conclusions 71

Bibliography 75

Abbreviations 81

List of Figures 83

List of Tables 85

List of Listings 87

List of Algorithms 89

A Codebase 91

viii CONTENTS

Chapter 1

Introduction

1.1 Motivation

The last 20 years have seen a huge surge in devices connected to the internet with the
advent of the Internet of Things (IoT). The number of IoT devices has almost doubled
within the last four years and is expected to keep growing to almost 30 billion devices
by 2030 [2]. Given the embedded nature of many IoT devices, resources are often con-
strained which complicates the design of effective security methods. Furthermore, the
development of security-by-design mechanisms is hindered by the large heterogeneity of
the IoT space [3]. Oftentimes, IoT devices are shipped with low password protection such
as default passwords, or even without any passwords making it easy for hackers to gain ac-
cess to a device. With low security, the user’s privacy and critical infrastructure is at risk.
Furthermore, an IoT device can become part of a botnet targeting some other service in a
large-scale Distributed Denial of Service (DDoS) attack without the device’s owner notic-
ing. Adding to the above named reasons for security vulnerabilities, manufacturers often
do not have an incentive to build secure devices given the wide availability of low-cost
low-security devices on the market. Additionally, usually manufacturers do not manage
security patching and system upgrades once the devices are sold [4]. All these factors
show the importance and relevance of cyber security in IoT, given the omnipresence of
IoT devices in our daily lives.

Another field which has seen a large surge in activity in academia as well as in industry
is Artificial Intelligence (AI), leading to the application of AI algorithms in various fields
having an increasingly deep impact on human life. Especially in the recent years, AI
has become more and more disruptive and is seen as the driver in a new technological
revolution [5]. Naturally, AI algorithms have also been applied to cyber security in general
and also specifically to the security of IoT devices with promising results. For instance,
AI has been used in IoT for device authentication, Denial of Service (DoS) and DDoS
attack defense, intrusion detection and malware detection [6].

However, AI has not only been used for cyber attack defense and Intrusion Detection
Systems (IDS), but also in attacks and malware itself [7], [8]. Similarly, a previous work

1

2 CHAPTER 1. INTRODUCTION

concluded by the Communication Systems Group (CSG) at the University of Zurich used
Reinforcement Learning (RL) to minimize the detection of a dynamic defensive system
while maximizing the encryption rate of a ransomware targeting IoT devices applied as
spectrum sensors. To this end, the authors introduce a RL framework called Ransomware
Optimized with AI for Resource-constrained devices (ROAR) [9]. The findings show that
it is possible to optimize ransomware attacks using AI, however some shortcomings were
identified regarding optimizing the RL model and the ransomware implementation. Specif-
ically, the correct detecting of behaviors was listed as a possible limitation of the proposed
solution. Using a different source of data for this detection mechanisms could further im-
prove the performance. Moreover, ideas for potential future work were listed, one of which
being the incorporation of additional benign behaviors such as data compression in order
to fool the detection mechanisms [1].

While at first sight it might seem unethical to try to improve malware with advanced
techniques such as RL, the goal of works such as [1] and also this thesis is to create
a better understanding of the threats that are inevitably coming. With this knowledge,
new and more sophisticated defense mechanisms can be built, better prepared for malware
attacks powered by AI.

1.2 Description of Work

This master thesis extends the above named previous work [1] concluded about adapting
a ransomware sample with RL techniques in order to optimize its impact on resource-
constrained spectrum sensors applied in a crowdsensing platform called Electrosense [10].

The first extension performed is the implementation of a system call (syscall) based device
behavioral fingerprinting approach. Using the syscall data collected on the target device,
fingerprints are generated. It is then decided by an Anomaly Detection (AD) based
on the fingerprints whether the device is behaving normally or might be infected by a
ransomware. This approach is executed on the Electrosense spectrum sensor running on a
Raspberry Pi 3 as well as on a separate Command and Control (C&C) server running on a
portable laptop. The ransomware used is a publicly available ransomware sample, adapted
to be configurable at runtime. It listens for configuration changes during its operation
sent by the C&C server. A RL model is trained using behavioral data collected from the
target device to learn the optimal configuration that is not detected by a defensive AD
assumed to also be based on syscall monitoring. This RL model is trained for different
numbers of episodes and then evaluated regarding its accuracy, training time required,
rewards received and steps taken per episode. Moreover, to highlight the influence of
the AD on the model performance, evaluations are performed using an idealized version
of the AD, which manually determines whether a configuration’s behavior is detected or
not. The results of this experiment are discussed and compared to the previous results.
Furthermore, the results obtained are compared to the results of the previous work, to
gain a better understanding of the advantages or disadvantages of the different approaches.
With this in mind, many variables (e.g., the ransomware configurations) were thus adopted
from the previous work, in order to get comparable results.

1.3. THESIS OUTLINE 3

The second extension focuses on another limitation of the previous work. The addition
of other benign behaviors apart form the normal sensor behavior is suspected to have
an influence on the detectability of a ransomware and thus also on the performance of
a RL model as described above. To explore this, two additional benign behaviors are
implemented and executed on the target device. As the scenario is built around the
spectrum sensors, the behaviors are chosen be a conceivably realistic behavior used on
such a device. A data compression behavior and a Python package installation both fit
this narrative, and are thus used for this purpose. As in the previous case, behavioral data
from the target device is collected and subsequently evaluated. The AD results regarding
the additional behaviors are presented and discussed. Based on these results, the reward
function used in the RL model is revised, making sure that the rewards incentivize the
desired behavior of the RL agent. Furthermore, the RL agent is evaluated using the
additional benign behavior, allowing to compare the new results with the results obtained
without any additional behaviors. Finally, conclusions are drawn from the main findings,
limitations are listed and discussed, and ideas for future studies given.

1.3 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 aims to cover the the-
oretical foundations of the concepts touched upon in this thesis. It first introduces the
concept of Spectrum Sensing through the example of Electrosense. Secondly, it introduces
ransomware with its history and current relevance. Furthermore, the Chapter gives an in-
troduction to AI and more specifically elaborates on RL. Finally, behavioral fingerprinting
is explained with its different purposes and approaches.

In Chapter 3, a survey of existing literature is performed regarding the field of AI applied
in malware. After a general overview of the related work, special attention is given to
applications of RL in malware. The chapter concludes with an overview of the covered
works comparing key dimensions.

Next, in Chapter 4, the scenario of this work is presented, highlighting the main idea and
setup of the implementation. The concept of all key components used for the experiments
is explained in detail.

While Chapter 4 focuses on the conceptual part, Chapter 5 gives insights into the detailed
implementation of the system architecture and components. The technical specifics of each
system module are highlighted, how they interact with each other, and what algorithms
were explored and decided for.

Subsequently, in Chapter 6, the results and findings of the different experiments are
presented, evaluated, and discussed. This includes the evaluation of the implemented
prototypes, a comparison of the prototype performance with the previous work, as well
as the evaluation of the experiments performed using additional benign behaviors.

Concluding this work, in Chapter 7, the limitations of this work are presented, possible
ideas for future work are given in Chapter 8, and finally, in Chapter 9, a summary and
conclusion are presented, reiterating the main findings of this work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this Chapter, the fundamental concepts used in this thesis are explained. The inten-
tion is to give a comprehensive understanding of the theoretical landscape, necessary for
following the practical applications and scenario as well as interpreting the results pre-
sented in the subsequent chapters. Section 2.1 gives an introduction to spectrum sensing,
exemplified by the description of Electrosense. Next, Section 2.2 delves into the topic
of ransomware including an analysis of ransomware in IoT. Moving on, the field of AI is
touched upon in Section 2.3, with a more detailed introduction to reinforcement learning.
Finally, Section 2.4 covers behavioral device fingerprinting and its applications.

2.1 Spectrum Sensing

As a consequence of the massive increase in mobile communication usage, more Radio
Frequency (RF) bands are in use today and the spectrum use is fragmented, bursty and
diverse. To efficiently use the spectrum, understanding and having knowledge about the
spectrum usage patterns is becoming increasingly important. The solution to this chal-
lenge is what spectrum sensing proposes, by continuously monitoring the electromagnetic
space and processing the collected data. There are a number of solutions proposed, how-
ever this thesis will focus on Electrosense which is introduced in the subsequent section
with greater detail [10].

2.1.1 Electrosense

Electrosense is a crowdsourcing solution for efficient, safe, and reliable spectrum monitor-
ing in different regions of the world. To this end and to enable a wide adoption in the
crowdsourcing scenario, the framework uses low-cost hardware, such as Raspberry Pi sen-
sors equipped with inexpensive Software-Defined Radio (SDR) front-ends and a general
purpose antenna. The authors introduced Open Spectrum Data as a Service (OSDaaS)

5

6 CHAPTER 2. BACKGROUND

by implementing an open API over which the spectrum data can be retrieved, as well as
offering spectrum aggregation tools.

The architecture of the Electrosense framework is composed of the following three com-
ponents [10]:

1. Sensor: The sensor consists of simplistic, low-cost hardware and can measure from
20 MHz to 6 GHz. Optionally, the sensor can be equipped with a GPS device for
time synchronization between sensors. There are two signal pre-processing pipelines
implemented on the sensors: (i) the Power Spectral Density (PSD) and (ii) the
In-phase and Quadrature components of raw signals (IQ). In the PSD mode, the
sensors send only squared magnitude Fast Fourier Transforms (FFT) converting the
data to the frequency domain, resulting in a lower bandwidth (around 50-100 Kb/s)
compared to the IQ mode, where the sensors send compressed raw measurements
(up to 50 Mb/s).

2. Controller: The controller is used to communicate with the sensors via the MQTT
protocol. The controller can influence the scanning strategy of the sensors, e.g.,
the scanned frequency range or the frequency hopping strategy. Furthermore, the
controller offers an interface for administrators to manage measurement campaigns.

3. Backend: To collect and process the data, Electrosense uses a four-layered service.
In the ingestion layer, the data is received and inserted into a distributed queueing
system. Next, the data is simultaneously processed in the batch layer and the speed
layer. In the batch layer, the raw data is stored and long-running workloads are
executed, whereas in the speed layer continuous computations on a small window
of recent data are performed. Finally, in the serving layer, an open RESTful API
offers query results and data to end-users and other applications.

A number of security and privacy concerns have been addressed in the Electrosense frame-
work, such as using secure Transport Layer Security (TLS) channels for data transmis-
sion [10]. However, as [11] shows, spectrum sensors are still vulnerable to some cyber
security threats, especially in the context of Internet of Battlefield Things (IoBT), namely
identity focused attacks where malicious sensors impersonate legitimate sensors, malware
such as rootkits, botnets or ransomware, and Spectrum Sensing Data Falsification (SSDF)
attacks where the sensed spectrum data is modified. To mitigate these threats, the au-
thors of [11] introduce a framework to detect heterogeneous attacks on IoBT spectrum
sensors using behavioral fingerprinting and Machine Learning (ML) / Deep Learning (DL)
and demonstrate that the framework is able to detect malware in Electrosense spectrum
sensors. In a further development, the authors of [12] propose a novel approach of using
syscall-based behavioral fingerprinting for detecting SSDF attacks using Electrosense de-
vices. Furthermore, in [13], the approach of using device behavioral fingerprinting based
on resource usage was extended to classify a broad range of malware samples, including
botnets, rootkits, backdoors, ransomware, and cryptojackers. The case of cryptojackers
on Electrosense sensors was further explored in [14] and showed that behavior data can
be used in order to detect malicious behavior in such a scenario.

2.2. RANSOMWARE 7

2.2 Ransomware

”This section introduces ransomware basics, explaining what it is, how it operates through
its lifecycle stages, and the different types it can take. In the context of our increasingly
interconnected world, a focused examination is given to how ransomware affects IoT,
uncovering potential disruptions to essential services and connected devices. The section
emphasizes the changing tactics employed by attackers in the ransomware landscape.
To address these challenges, practical countermeasures are discussed, encompassing user
training, secure backup practices, and the adoption of advanced cybersecurity solutions.”1

2.2.1 Definition and Relevance

Ransomware is a sub-class of malware (i.e., malicious software) designed to acquire rev-
enue, with its name consisting of a combination of the two words ”ransom” and ”ware”,
meaning malware that demands some amount of money in exchange for hijacked or inac-
cessible data [15]–[18]. In general, the evolution of malware can be divided into five phases
starting in 1949 with the development of the first worms, viruses or self-propagating pieces
of code. Over the years, many new types of malware have been created and malware has
developed into a profitable field for cyber-criminals, but is also used by governments e.g.,
for espionage or sabotage. In the fourth phase of malware evolution starting in 2005,
ransomware was introduced [17]. Although the first documented ransomware attack hap-
pened in 1989 with a ransomware called AIDS, usage of ransomware attacks remained
low, as the cryptography, distribution, and payment methods were rather limited before
the invention of the internet and digital currencies [16]. Today, ransomware is a large
threat to individuals and corporations with huge sums invested to counter the risk [17].
However, the use of targeted ransomware is still increasing with the numbers of attacks
almost doubling in 2022 in comparison to the year before [19]. With the emergence of a
new business model in cybercrime called Ransomware-as-a-Service (RaaS), the topic is as
relevant as never before [18].

2.2.2 Ransomware Lifecycle

The lifecycle of a ransomware attack can be divided into different steps and there are
multiple ways and number of steps to describe such attacks, also depending on the type
of ransomware. A ransomware attack starts with the distribution of the malware, e.g.,
through a malicious email, drive-by downloads or code dropper. Oftentimes, social engi-
neering techniques are employed to lure a victim into downloading and starting a mali-
cious program. After the distribution, the ransomware infects the host system by various
different actions such as disabling backup technologies. Furthermore, the ransomware
communicates with a C&C server, e.g., to retrieve an encryption key. As a next step,
different user-related files of interest are searched. Usually, files with specific file exten-
sions such as .pdf, .jpg, .docx, etc. are selected. Next, the files are locked or encrypted,

1This text was generated using generative artificial intelligence

8 CHAPTER 2. BACKGROUND

depending on the type of attack. This often includes renaming and moving the files. Fi-
nally, after the victim’s data is hijacked, a ransom message is displayed demanding for a
payment [15].

2.2.3 Types of Ransomware

Ransomware comes in different types and flavors, thus multiple taxonomies were put
forward with the intent to classify different ransomware. In general, the literature differ-
entiates between two high-level types of ransomware: (i) cryptographic ransomware and
(ii) locker ransomware. Cryptographic or simply crypto-ransomware encrypts the victim’s
files and demands a ransom for the decryption. On the contrary, locker ransomware does
not use encryption of files, however it prevents the victim from accessing its system or
data, i.e., locking it out [18]. Furthermore, there exists a type of malware called scareware,
which only mimics the presence of a ransomware attack and tries to exploit the victim’s
fear for financial gain. In a taxonomy based on severity, crypto-ransomware is the most
severe, followed by locker ransomware and finally scareware [15].

Ransomware can also be differentiated by the target of the attack. On the one hand, there
are different types of victims, namely end-users vs. organizations (e.g., governments,
enterprises, hospitals, etc.). The main differences between an attack on end-users and
on an organization are that (i) end-users often have a lack of security expertise and
resources, (ii) the demanded sum is significantly lower for end-users as for organizations
and (iii) an attack on an organization is more targeted against a single organization,
whereas an attack on end-users can affect thousands of victims. On the other hand, there
are different platforms on which the attacks take place, e.g., PCs, mobile devices or IoT
devices. PCs are the most common target of ransomware with crypto-ransomware being
the main threat. As mobile phones have become more and more popular in the last 15
years, they have also become a target for ransomware attacks. Due to the openness of
the environment, Android-based devices are much more prone than devices running on
iOS with its hard-controlled ecosystem [18]. Regarding ransomware targeting IoT devices,
Section 2.2.4 provides a more in-depth analysis of this issue.

Crypto-ransomware can also be distinguished by the method of encryption. In symmetric
encryption, only one key is used both for encryption and decryption. This makes the
encryption faster and it uses less resources, thus there is a lower chance of early detection
and less time to react. However, there is a higher risk of key disclosure which would
enable the victim to decrypt the files. The most used algorithm for symmetric encryption
ransomware is AES (Advanced Encryption Standard). In asymmetric encryption, a pair
consisting of a public and a private key is used. The public key is used for the encryption
and can either be generated on the victim’s device itself or be provided by the C&C
server, in which case a connection to the C&C server would be necessary to start the
attack. For the decryption, the private key is necessary. This solves to some degree
the problem of key disclosure (unless of course the private key is disclosed). The most
used algorithm for asymmetric key ransomware is RSA (Rivest-Shamir-Adleman). In
hybrid encryption ransomware, the advantages of symmetric and asymmetric encryption
are combined. First, symmetric encryption is used to quickly encrypt the victim’s data.

2.2. RANSOMWARE 9

Then, the symmetric key is encrypted using the public key of an asymmetric key pair [15],
[18].

2.2.4 Ransomware in IoT

With the enormous increase in IoT devices, the risk of ransomware attacks in the IoT
space has also grown in the last years and will likely continue to grow significantly in the
future [18]. Although IoT devices are not typically used to store data, they can still be
affected by an attack, causing serious harm such as interruptions of manufacturing pro-
cesses, power outages, losing access to surveillance systems, etc. Wearable devices such as
smart watches have also been affected by ransomware, coining the term ”ransomwear” [15].
Generally, the focus so far of ransomware attacks in IoT is not on tiny devices, but on
mission critical and real-time systems [20]. As discussed in Section 1.1, cyber security
in IoT is a major challenge getting more and more important the more omnipresent IoT
devices become in out daily lives.

As IoT devices usually have constrained resources, traditional security mechanisms to
prevent ransomware attacks will not be applicable due to increased resource requirements.
In comparison to regular PCs or mobile devices, IoT devices have several key differences
when it comes to executing a ransomware attack. The distribution methods have to be
adapted, as for instance malicious email attachments cannot be applied on IoT devices.
An attacker thus has to be aware of the topology of the IoT network under attack, such
that the attack can be focused on devices that control or manage other devices. A further
challenge is determining the owner of IoT devices to whom the ransom demand has to be
sent. Moreover, many IoT devices do not have a screen, requiring a different method of
communicating the ransom demand [20].

2.2.5 Countermeasures

To counter a ransomware attack, there are several approaches, for instance (i) attack
prevention, (ii) attack detection, or (iii) attack recovery [15], [18]. In order to prevent
an attack from happening in the first place, there are approaches that try to stop the
malicious program from executing the attack (i.e., proactive approaches) and approaches
that try to mitigate the effects (i.e., reactive approaches) [15]. In addition, increasing end-
user security awareness can prevent ransomware, especially in the distribution phase of
an attack. A promising countermeasure against ransomware is the detection of an attack,
especially using ML techniques. The ML-based detection of ransomware attacks can be
performed using structural features coming from static analysis of the attack binaries, or
using behavioral features from dynamic analysis of ransomware [18]. Section 2.4 delves
more into the approach of generating a behavioral fingerprint to detect anomalies in a
device’s behavior. Attack recovery on the other hand tries to recover the hijacked data
with three approaches: (i) recovery of keys, (ii) recovery of files via hardware, or (iii)
recovery via a (cloud) backup [18].

10 CHAPTER 2. BACKGROUND

2.3 Artificial Intelligence

With the term ”artificial intelligence” being coined in 1956, there have since been many
definitions and new developments. However at the core, the idea of AI is to simulate,
extend and expand human intelligence and behaviors with the help of computers [5], [21].
The development of the research field of AI can be roughly split into multiple phases [22]:

• 1950s - 1970: Birth of AI

Although the first neural networks were developed in the 1940s, the 1950s are re-
garded as the incubation period of AI. Works that still today are important were
developed, such as the Turing Test or the Perceptron model [5], [22].

• 1970s: First AI winter

After nearly two decades of success in the field of AI, in the 1970s the high spending
on research for AI was criticized, also because of the failure to deliver to inflated
expectations and over-confidence. This caused a decrease in funding leading to the
first AI winter [5].

• 1980s: New wave of interest

After the first AI winter, a new wave of interest triggered more active development
in the 1980s [5].

• late 1980s - 1990s: Second AI winter

With a shift of interest to other new technologies came a new AI winter with de-
creased funding and lowered expectations [5].

• 2000s - present: AI boom

Since the early 2000s until today, the field of AI has seen many breakthroughs and
rapid development. There are multiple catalysts for this, such as the success of ML,
the increase in compute power, and the availability of huge amounts of data [5], [21].

Within AI, ML is seen as a vital paradigm which fueled the progress of AI in the last
decades [5]. ML can be divided into three different types: (i) supervised learning, (ii)
unsupervised learning, and (iii) reinforcement learning (RL). In supervised learning, a
model learns from a labeled dataset, e.g., for categorization problems. In unsupervised
learning, the goal is typically to find hidden structures and patterns in unlabeled data [23].
The following section will give a more detailed introduction into RL.

2.3.1 Reinforcement Learning

The concept of RL is based on the idea of learning by interacting with an environment,
similar to the way humans or other animals learn. Originally, RL was inspired by biological
learning systems and the psychology of animal learning during some of the earliest work
in AI.

2.3. ARTIFICIAL INTELLIGENCE 11

In RL, the central element is an agent which interacts with an environment and learns
from its experience. This agent is able to collect information about the state of the
environment and thus learn about the effects of his actions without receiving instructions
from the outside, making it a closed-loop system. The actions performed by the agent
may also have a long-lasting effect, influencing all future situations. Furthermore, the
agent has a goal concerning the state of the environment [23].

Typically, a RL system consists of four elements [23]:

• Policy

A policy defines the actions taken by the agent in a given state and by that is the
core of the agent as it defines its behavior. It may involve complex computations or
be a simple function or lookup table.

• Reward Signal

At each step, the agent receives a number (i.e., the reward signal) from the environ-
ment, which defines good or bad events for the agent. The agent wants to maximize
the total reward over the long run, making a high reward the sole objective.

• Value Function

In contrast to the reward, the value function defines what is good in a long-term
sense. The value of a state is defined as the total reward which is expected taking
into account states that are likely to follow. Since values have to be estimated based
on observations of the environment, they are much more complex to determine
compared to rewards and thus efficient value estimation is a central problem in RL.

• Environment Model (optional)

In model-based methods, the behavior of the environment is modeled which can
be used for planning, i.e., taking possible future situations into consideration when
making decisions. There are also model-free methods, in which the agent learns in
a trial-and-error fashion.

At a given state, the agent is faced with a choice of different actions. For each action,
the agent knows the estimated value of the actions, however not the exact value with
certainty. In order to decide for one action, there are different strategies, for example the
agent could always choose the action with the highest estimated value. This is exploiting
the agent’s current knowledge and is called greedy. However, since the agent does not know
the actions with certainty, it could be that some other action has actually a higher value,
although its estimate is lower. Therefore, exploring other nongreedy actions is improving
the agent’s knowledge and may lead to a greater total reward long term. There is thus
a need to balance between exploitation and exploration. One such strategy is to use a
parameter ϵ ∈ [0, 1] giving a probability with which nongreedy actions are explored [23].

To formalize the notion of sequential decision making, Markov Decision Processes (MDP)
can be used, also to have more mathematical tractability and be able to make precise
theoretical statements. In finite MDPs, there is an agent, an environment, and rewards

12 CHAPTER 2. BACKGROUND

which the agent tries to maximize, with the set of states, actions and rewards being finite.
The probabilities for each state and reward at some point in time depend only on the
preceding state and action, but not on earlier ones. This is called the Markov property.
As the agent’s goal is not to maximize the immediate rewards, but to maximize the
expected value of the cumulative reward over the long run, the future rewards have to be
discounted to find their present value. This is accomplished with a parameter γ ∈ [0, 1]
called the discount rate:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑
k=0

γkRt+k+1, (2.1)

where Gt is the expected return and Rt denotes the reward received at time step t. The
closer γ is to 1, the stronger future rewards are valued.

For deciding on which action to take, the value of performing each given action needs
to be defined, which is accomplished by a policy π mapping states to probabilities of
selecting actions. In so-called Monte Carlo methods, the agent is following a policy and
maintains an average of the actual returns received. By the law of large numbers, this
sample average will converge to the actual values as the sample size approaches infinity.
This is important as the agent can learn directly from experience by interacting with
the environment, without the need of a model of the environment. This also makes it
possible to learn from simulated samples. In order to improve a policy, a concept called
Dynamic Programming (DP) can be applied, assuming there is complete knowledge of
the environment. This assumption together with the high computational demand are
limiting factors of DP. In DP methods, iterations over the state set are performed with
the value of each state being updated based on the values of possible successor states and
their probabilities. This concept of updating estimates based on other estimates is called
bootstrapping.

Another method which uses bootstrapping, however contrary to DP does not require
a perfect model of the environment is Temporal-Difference (TD) learning. It is thus a
combination of DP and Monte Carlo methods. Equation 2.2 shows the simplest form of
a TD update:

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)] (2.2)

where V () is the value estimate, α is the step-size parameter, Rt is the reward at time t,
γ is the discount factor and St gives the state at time t.

One example of such a TD algorithm is Q-learning. In the field of RL, Q-learning was an
early breakthrough being put forward by [24] in 1989 and is now among the most widely
used methods in RL. As the name suggests, the action-value function Q is learned in order
to approximate the optimal action-value function q∗, independent of the policy used. As
long as all state-action pairs keep being visited and thus updated, the method will reach
correct convergence. The update of the Q function is given by Equation 2.3:

2.4. BEHAVIORAL FINGERPRINTING 13

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
α

Q(St+1, α)−Q(St, At)]. (2.3)

Algorithm 2.1 shows the pseudocode representation of the Q-learning algorithm over mul-
tiple episodes. The algorithm takes a step-size (or learning rate) parameter α as well as an
exploration balancing parameter ϵ as input. After initialization, it loops over the episodes
and steps for each episode while applying Equation 2.3 to update its estimation of the Q
function [23].

Algorithm 2.1 Q-Learning Algorithm (Pseudocode) [23]

Require: α ∈ (0, 1], γ ∈ [0, 1], small ϵ > 0
1: Initialize Q(s, a), for all s ∈ S+, a ∈ A(s) arbitrarily except that Q(terminal, ·) = 0
2: for each episode do
3: Initialize S
4: for each step in episode do
5: Choose A from S using policy derived from Q (e.g., ϵ-greedy)
6: Take action A
7: Observe reward R
8: Observe next state S ′

9: Q(S,A)← Q(S,A) + α[R + γmaxa Q(S ′, a)−Q(S,A)]
10: S ← S ′

11: end for
12: end for

2.4 Behavioral Fingerprinting

The field of device behavioral fingerprinting has in recent years developed into an increas-
ingly crucial solution to various problems in IoT. On the one hand, behavioral fingerprint-
ing is used to identify device types as well as individual devices. On the other hand, it
is also applied to detect anomalies in the device behavior due to faults or cyber attacks.
Generally speaking, the goal of device behavioral fingerprinting is to create device behav-
ior patterns (i.e., fingerprints) by monitoring the device’s behavior and collecting data.
This data is then in a next step processed resulting in a behavior fingerprint ready to be
applied as needed. To this end, there are various different data sources, data collection
methods, data processing approaches, and application scenarios [25].

2.4.1 Device Identification

Behavioral fingerprinting is used for device type identification (i.e., device category such as
general computer, mobile device, IoT sensor, etc.), device model identification (i.e., devices
of the same type but different hardware or software configurations) as well as individual

14 CHAPTER 2. BACKGROUND

device identification (i.e., differentiate devices of the same model). For device model
identification, the data source usually is based on network communication such as packet
headers statistics or network flow statistics. For individual device identification on the
other hand, the data sources are on a much lower level related to slight hardware variations
such as data from clock skew, electromagnetic signals, system processors, system circuits,
or resource usage. For instance, [26] uses behavioral device fingerprinting to identify single-
board computers of the identical model. The authors identified seven properties that
such a fingerprint needs to consider: uniqueness, stability, diversity, scalability, efficiency,
robustness and security.

To process and analyze the collected data, most solutions for device identification (both
model and individual) rely on some sort of classification algorithm based on ML. These
algorithms are trained using a labeled dataset (i.e., a supervised learning algorithm),
creating the need for large amounts of data to train as well as extensive compute re-
sources. Overall, using behavior fingerprinting for device identification on various levels
has proven successful in contributing among other fields to security, network optimization
and network analysis [25].

2.4.2 Anomaly Detection

The application scenarios for AD using device behavior fingerprinting are twofold: (i)
malfunction and fault detection and (ii) attack detection. Generally speaking, for AD,
the usual approach is to model a normal behavior of a device using fingerprinting and
then detect deviations from that normal behavior.

Assuming that a fault or malfunction of some component affects the behavior of the whole
device, such AD techniques can identify these situations. Causes for this can be anything
from hardware failures, service or hardware overload or network issues. Depending on the
type of application scenario, the data source used for generating fingerprints is different.
For instance in systems with more resources such as cloud systems, resource usage and
system logs are more prevalent, whereas in IoT and other embedded environments network
and sensor-based data sources are more common [25].

Today’s IDSs often rely on static features such as previously known attack signatures
stored in a repository. This is problematic as it does not consider so-called zero-day at-
tacks, meaning attacks that are unknown or have never been seen before. Signature-based
IDSs have proven successful in detecting known attacks, provided that the attack reposi-
tories are regularly maintained. In contrast, anomaly-based IDSs are also able to produce
strong capabilities for zero-day attack detection [27]. Device behavior fingerprinting can
be used to detect anomalies in a device’s behavior due to attacks. The most used data
source for attack detection is network data, however also sensor data, syscalls, logs, soft-
ware signatures, hardware events, or resource usage can be used to generate a fingerprint.
To process the data, two main approaches have developed: (i) modeling normal behavior
and detecting anomalies or (ii) collecting a labeled dataset of normal and abnormal data
and performing classification of input data [25].

2.4. BEHAVIORAL FINGERPRINTING 15

The work which this thesis is extending as well as several other works applied behavioral
fingerprinting on Electrosense devices with the goal of detecting anomalies inflicted by
a ransomware or other types of malware infection. The fingerprint is based on resource
usage data using the Linux command top to collect data on CPU and memory usage
and running tasks. Furthermore, the command perf was used to select 75 different
Performance Monitor Unit (PMU) events. The data was periodically collected and the
fingerprint generated on the device itself, while the data analysis and anomaly detection
was performed on a separate system environment [1], [11], [13], [14].

16 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

”For this chapter, a literature review was conducted to examine existing research on the
incorporation of AI in malware. Google Scholar1 was employed to search for relevant
literature using key terms such as ”AI malware”, ”RL malware”, ”ML malware”, and ”DL
malware”.

The subsequent section of the chapter presents an overview of related work in the field,
focusing on four surveys that provide a comprehensive understanding of the topic. Addi-
tionally, applications that specifically utilize RL in the context of malware are explored
in Section 3.1.2.

The section aims to present the findings of the literature review in a clear and concise
manner, offering insights into the different aspects of AI’s role in the development and
enhancement of malware. By summarizing the surveys and examining applications us-
ing RL in malware, readers gain a practical understanding of the advancements in this
specialized area.

To conclude the chapter, Section 3.2 serves as a summary of the related work, bringing
together key insights, overarching themes, and notable contributions discussed throughout
the chapter. This synthesis provides readers with a comprehensive overview of the current
state of AI-infused malware research, laying the groundwork for subsequent sections that
delve into methodologies, experimental setups, and novel contributions in this evolving
field.”2

3.1 AI in Malware

Generally, a majority of the available literature uses AI to defend some system or device
from malware. Often, AI algorithms, e.g., ML or DL, are employed with the goal of
detecting malicious software. This can be performed using static databases of known
malware samples where the defensive system compares the software in question with this

1https://scholar.google.com/
2This text was generated using generative artificial intelligence

17

18 CHAPTER 3. RELATED WORK

database. It is thus crucial that this database is kept up to date. This approach however
does not cope well with new and unknown attacks, so-called zero-day attacks [27].

On the contrary, this section focuses on the use of AI for the offensive side to enhance
malware or avoid detection. As will be shown, the field of AI-powered malware is fairly
new, however rapidly evolving and supported by the immense developments of AI in the
last years. In academia, the research field is also gaining more traction and interest, as
the number of available publications has risen significantly in the last years. This only
shows the increasing importance and threat level of AI-powered malware.

In the next section, a general overview of AI used in malware is presented using works
that surveyed the existing literature. To dive deeper into applications of RL in malware,
Section 3.1.2 presents some specific works and how and for which purpose RL was applied
there.

3.1.1 Surveys

Four different surveys on the topic of AI in malware were selected with the first having
been written in 2008 [8], one in 2019 [7], one in 2020 [28], and the most recent one in
2022 [29].

In [8], the authors surveyed the existing literature using AI for malware as well as defense
from malware attacks. Four different use cases of AI in malware were defined: (i) mal-
ware incorporating AI technologies, (ii) malware exhibiting intelligent-like behavior, (iii)
malware behaving like biological equivalents, and (iv) malware behaving like humans or
intelligent behaviors. Of these, especially categories (i), (ii) and (iv) are of relevance for
this work.

One example of a malware using AI technologies given in [8] is Zellome, which was called
”an unusual example of self-compiling malware and a novel misapplication of artificial
intelligence” [30]. This virus used a genetic algorithm for a polymorphic decryptor, which
is not an obvious application for a genetic algorithm, as the same could have been achieved
with less complex techniques such as hash tables [30].

Furthermore, the authors of [8] mention in their survey the use of AI techniques to im-
personate humans in social engineering attacks. In such attacks, the victim is contacted
by the AI bot giving the impression of another person with the intention of infection with
a virus by clicking a link.

In a more recent survey, the authors of [7] describe four ways in which malware can take
advantage of AI techniques: (i) evasion techniques, (ii) autonomous operation, (iii) AI
against AI-powered malware defense and (iv) bio-inspired computation and swarm intel-
ligence. Evading detection is important, since the longer it takes to detect malware, the
more time it has to perform malicious activities. There are multiple different approaches
to avoid detection, such as dodging sandbox detection where the malware recognizes its
environment and acts as a benign program in sandbox environments, and only acts mali-
ciously when running on an actual target device. Furthermore, malware can adapt to its
environment by taking contextual information into account.

3.1. AI IN MALWARE 19

To attack a system using AI-powered defense techniques, adversarial attacks can be used
to provoke false predictions. In adversarial attacks, the input into a model is designed to
give an incorrect output, e.g., the malware could behave in a way that is wrongly classified
as benign [7]. This concept has been applied in several different works such as [31]–[35]

In their survey from 2020, [28] describe five categories of AI-based cyber attacks: (i) next-
generation malware, (ii) voice synthesis, (iii) password-based attacks, (iv) social bots, and
lastly (v) adversarial training. For this work, the first category holds the greatest level of
interest. One example of such next-generation malware is DeepLocker, a targeted malware
which uses the lack of understanding in the decision making of AI models in order to evade
detection. The malware identifies its target taking into account the geolocation or voice
and facial recognition. If the target was not recognized, the malware remains inactive.
DeepLocker uses a Deep Neural Network (DNN) both for concealment and unlocking of
the malicious payload. The black-box characteristics of such DNNs makes DeepLocker
impossible to detect with traditional techniques [36]. Another example given is a self-
learning malware that uses monitoring data of the target system to learn attack strategies
with maximal impact. The malicious actions are disguised as accidental failures, reducing
the detection likelihood. Furthermore, the malware code is divided into logical modules
using independent threads. Each module then removes the traces of the previous module
in order to avoid detection [37].

In the most recent survey on the topic from 2022, the authors of [29] aim to show the
state of the art of AI-enhanced malware as well as the techniques used to evade and attack
defensive systems which also use AI. Five uses of AI in malware are identified: (i) Hiding
malware from detection, (ii) evading traffic detection, (iii) attacking defensive AI, (iv)
attacking authentication factors on mobile devices, and lastly (v) other use cases includ-
ing improved phishing attacks and cyber-physical sabotage. In order to hide malware,
multiple different approaches are mentioned, e.g., hiding the malicious code inside of un-
suspicious AI models, code perturbation, code generation using Generative Adversarial
Networks (GAN), adversarial attacks on detection systems and lastly, sandbox detection.
A further relevant use of AI in malware mentioned in the survey is the evasion of network
traffic detection. Using unsupervised learning techniques, malware has been shown to
evade IDSs while hiding probing, infiltration and C&C network traffic.

3.1.2 Applications of RL in Malware

In this section, related work will be presented with a specific focus on the use of RL
in malware. Again, the literature search was performed using Google Scholar using the
search term ”RL malware”.

A group of works have been conducted with a similar goal of using RL for modifying
Windows Portable Executable (PE) files in order to evade detection by a ML classifier.
Usually, to create a more realistic scenario, the classifier used was a binary black-box
classifier, i.e., no information about the inner workings was available, only the binary result
(malicious / benign). For instance, in [32], [38]–[42] a Deep Reinforcement Learning (DRL)
approach such as deep Q-learning was used to evade detection. In such an approach, the
RL agent is interacting with a malware sample and selects a sequence of actions, which are

20 CHAPTER 3. RELATED WORK

reasonable, functionality-preserving modifications of the malware PE file. One example
for such an action would be the addition of a new redundant section. After the training
phase, the agent is able to specify the optimal order of actions, such that the malware
evades detection by a ML model. This approach has proven successful, with high evasion
rates being achieved against different ML classification models and commercial antivirus
software.

[43] uses a more classical RL approach, regarding the adversarial attack as a multi-armed
bandit problem. When modifying a PE file with a certain action, the content of the
modification is as important as the type of action. Thus, the action and its content are
treated as a unit and the action-content pair is modeled as an independent slot-machine
in the multi-armed bandit problem. It was found that the result was influenced by only
a small number of actions and by identifying these essential actions, the root cause of the
evasion can be explained. The results show that evasion rates of 74 % - 97 % against ML
classifiers and 32 % - 48 % against commercial antivirus software are achieved.

Some RL approaches are limited when it comes to large action-space problems such as
opcode level obfuscation. Thus, in a work from 2021, the authors of [31] proposed AD-
VERSARIALuscator which stands for Adversarial Deep Reinforcement Learning based
obfuscator and Metamorphic Malware Swarm Generator with the goal of creating meta-
morphic instances of malware samples by introducing machine language obfuscations and
with that evading detection. A Proximal Policy Optimization (PPO) approach is taken in
order to deal with the large action-space of opcode obfuscation, possibly including thou-
sands of opcodes. The work demonstrated a 33 % success rate of metamorphic malware
evading IDS.

In [44], the authors use another RL approach called Variational Actor-Critic (VAC) for
creating adversarial malware that evades detection by ML classifiers. The agent applies
actions to the malware which are additive (i.e., adding content to the malware) as well
as editing existing content while keeping functionalities intact. VAC performs very well
for large action-spaces, however, it cannot be directly applied to discrete action-spaces
such as in the case of generating adversarial malware. Therefore, the authors propose
an extension which enables the application of VAC for this purpose. Furthermore, the
proposed technique allows for further analysis on understanding the weaknesses of the
detector.

What is interesting is that no works were found which applied RL during the attack itself,
instead RL was applied to modify the malware in some way before the actual attack with
the intent of evading detection. On the contrary, this work and the one which this work is
based upon use RL to dynamically change the behavior of the malware during the attack,
responding to changes of the environment. Also, no works were found which applied RL
to malware targeting specifically resource constrained devices such as IoT devices.

3.2 Summary

To summarize the related work presented in the previous sections, Table 3.2 gives an
overview over all the covered works. The works are sorted to first list the four surveys,

3.2. SUMMARY 21

and otherwise sorted in chronological order. These five different aspects of the works are
highlighted:

1. AI technique: the employed technique used in the malware, e.g., generative adver-
sarial networks (GAN), deep reinforcement learning (DRL), machine learning (ML),
deep learning (DL) or variational actor-critic (VAC).

2. AI application: where the AI technique is applied, e.g., Windows OS, PDF files,
cyber-physical systems (CPS), or Windows portable executable files (PE).

3. Evasion: the type of defensive mechanism trying to detect the malware which in
turn is being evaded by the malware, i.e., static (without executing the malware)
or dynamic (the malware is executed by the defensive system e.g., in a sandbox
environment) detection.

4. Adversarial: whether the AI technique is used to generate an adversarial attack
against another AI system on the defensive side.

5. Phase: at what point in time the AI technique is employed, i.e., before or during
the attack.

Looking at Table 3.2, it can be observed that only two works published before the year
2016 were covered, one work in 2005 and one survey in 2008. However, since 2016 almost
every year there were multiple publications made. This speaks for the fast development
and increasing importance of the topic.

Many works employing some form of AI in malware are focused on generating some
variation of an existing malware sample using AI. This modification often has the goal
of evading detection by some ML/DL classifier, making it an adversarial attack. Of the
reviewed works belonging to this group, all are modifying Windows PE files with only one
exception modifying the opcode. This can be observed in Table 3.2 by the multiple works
applying the AI to PE files, evading a static detection mechanism, and being classified as
an adversarial attack.

This process of generating an undetectable variation has to happen before the actual
attack, which explains the small number of works that use AI techniques during the attack
itself. Apart from this work and its predecessor, only two other works were found applying
AI during the attack phase. Firstly, DeepLocker acts as a wrapper around some malware
payload, which is decrypted if a specific victim has been identified, i.e., the AI is not really
active in the damage phase of the attack. Moreover, DeepLocker is evading both static
and dynamic detection, however it is not adversarial as no ML system is targeted [36].
Secondly, in [37], attack strategies are learned from system monitoring data, injecting
strategic failures at critical time and location. This approach is the only work found truly
using AI techniques during an attack. Although no specific detection system is described,
this work evades dynamic detection by disguising the malware’s operation as accidental
failures and with approaches such as trace minimization.

Looking at the use of RL in malware, the only applications found were in malware sample
modifications against a detection system. Thus, there still exists a research gap regard-
ing the application of RL in a dynamic environment, applied during the attack phase

22 CHAPTER 3. RELATED WORK

T
ab

le
3.1:

O
verv

iew
an

d
C
om

p
arison

of
R
elated

W
ork

.
R
eferen

ce
Y
ear

S
u
rvey

A
I
T
ech

n
iq
u
e

A
I
A
p
p
lication

E
vasion

A
d
versarial

P
h
ase

[8]
2008

yes
[7]

2019
yes

[28]
2020

yes
[29]

2022
yes

[30]
2005

gen
etic

algorith
m

W
in
d
ow

s
O
S

-
n
o

b
efore

[33]
2016

gen
etic

algorith
m

P
D
F
fi
les

static
yes

b
efore

[34]
2016

G
A
N

d
om

ain
gen

eration
static

yes
b
efore

[39]
2017

D
R
L

P
E

static
yes

b
efore

[35]
2017

G
A
N

P
E

static
yes

b
efore

[32]
2018

D
R
L

P
E

static
yes

b
efore

[36]
2018

D
L

m
aliciou

s
p
ay
load

en
cry

p
tion

static
/
d
y
n
am

ic
n
o

d
u
rin

g
[38]

2019
D
R
L

P
E

static
yes

b
efore

[37]
2019

M
L

C
P
S

d
y
n
am

ic
n
o

d
u
rin

g
[41]

2021
D
R
L

P
E

static
yes

b
efore

[43]
2021

R
L

P
E

static
yes

b
efore

[44]
2021

R
L
(V

A
C
)

P
E

static
yes

b
efore

[31]
2021

D
R
L

op
co
d
e

static
yes

b
efore

[40]
2022

D
R
L

P
E

static
yes

b
efore

[42]
2023

D
R
L

P
E

static
yes

b
efore

[1]
2023

R
L

ran
som

w
are

b
eh
av
ior

d
y
n
am

ic
yes

d
u
rin

g
th
is
w
ork

2024
R
L

ran
som

w
are

b
eh
av
ior

d
y
n
am

ic
yes

d
u
rin

g

3.2. SUMMARY 23

directly influencing the behavior of the malware. Furthermore, the application of such
AI-enhanced malware in the realm of IoT is also not covered extensively by the existing
literature. Especially regarding the rapid rise of IoT, it can be seen that there is a need
for further advancements in the research of AI-powered malware used in devices with
constrained resources. To this end, this work is aimed at helping to bridge this gap in the
research.

24 CHAPTER 3. RELATED WORK

Chapter 4

Scenario

In this chapter, the key components and actors of the attack scenario are described, giving
context to the idea of the development of this work. First, the overall idea of the scenario
is explained, followed by a description of the environment used to execute the scenario,
with the main components firstly on the client side and secondly on the server side being
covered in detail.

The overall goal of this scenario was to develop a RL agent selecting different ransomware
configurations in order to remain undetected. In this scenario an IoT device was targeted
by a ransomware. On the device, a defensive system was employed which recognizes
anomalous behavior of the device. This defensive system was treated as a black-box
making the scenario more realistic. The RL agent also employed such an AD using the
device behavior in order to learn which actions result in being detected or remaining
hidden. Furthermore, additional benign behaviors were executed on the client device in
parallel to the ransomware’s encryption, in order to explore the influence on the detection
rates of the ransomware.

Figure 4.1 shows the overall system architecture and the setup of the environment used
with all the main components. In the remainder of this chapter, the environment and
its components are described in more detail, both on the client side as well as the C&C
server side.

4.1 Environment

The environment used in this work had two main components:

1. Client: IoT device targeted in a ransomware attack

2. C&C Server: Device taking the role of a command and control server, managing the
attack

25

26 CHAPTER 4. SCENARIO

Figure 4.1: System Environment / Architecture

Specifically, for the client device, this work used a Raspberry Pi 3 Model B Rev 1.2
device running the Electrosense software on a Linux based operating system (Raspbian
GNU/Linux 9 (stretch)). The client device was equipped with an antenna used for the
Electrosense functionalities, as well as a SDR module connected via USB to the device.
The device was connected via Ethernet cable to a Local Area Network (LAN).

A device running the C&C software was deployed in the same network as the Raspberry
Pi. On this device, everything regarding the fingerprint analysis, RL model, and attack
coordination was executed. This work used an Acer Aspire E5 running with 16 GB of
memory, an Intel i7-8550 CPU, and a NVIDIA GeForce MX150, using Windows 10 Home.

4.2 Client

On the client side, three main components were active:

1. Ransomware

2. Fingerprint collection

3. Benign behavior execution

4.2.1 Ransomware

The ransomware’s main task is, as discussed in Section 2.2, to render unavailable (usually
encrypting) the victim’s data. In this scenario, the targeted IoT device had already been

4.2. CLIENT 27

infected with the ransomware, which had full access to the device’s data storage. Further-
more, the ransomware had an established way of communicating with the C&C server, on
the one hand to receive different configuration settings regarding (i) the algorithm used for
encrypting the files, (ii) the rate of encryption, (iii) the duration of an encryption burst,
and lastly (iv) the pause between encryption bursts. On the other hand, the ransomware
communicated to the C&C server once the encryption had concluded and successfully
encrypted all specified files in the targeted settings. One part of traditional ransomware
which was left out of scope in this work is the delivery of the ransom message to the
device’s owner, as well as everything regarding the anonymous payment of the ransom
fee. The focus lied solely on the encryption part of a ransomware attack while not being
detected.

The ransomware used in this work was the same as in [1], an extended version of Ran-
somware PoC [45]. Implemented in Python, this ransomware sample starts by recursively
searching for files with configurable extensions for encryption (e.g., .pdf, .png, .docx,
etc.). In a second step, using hard coded keys, these files are then encrypted on a binary
level in place in order to not use any additional disk space and are renamed with a custom
file extension .wasted. For the purpose of [1], the ransomware was extended with several
additional capabilities. The main extension involved making the ransomware configurable
during runtime, allowing adjustments for using different encryption algorithms, encryption
rate, and burst settings including the burst duration and burst pause. The encryption al-
gorithms included (i) AES-CTR, (ii) Salsa20, and (iii) ChaCha20. The encryption burst
settings involve a burst duration specified either in seconds (e.g., s10) or a number of files
(e.g., f1), and a burst pause in seconds. Furthermore, the extension of Ransomware PoC
encompasses communication with a C&C server. This enables a C&C server to update
the ransomware’s configuration during runtime. Additionally, the ransomware reports the
achieved encryption rate to the server.

The different configurations of the ransomware used are shown in Table 4.1. The six
different configurations were adopted from [1], in order to be able to compare the results.
The first configuration (Config 0) has a very low encryption rate while encrypting one file
per encryption burst. In practice, such a low encryption rate would not be very effective
in the context of a ransomware, as it would take a very long time to encrypt a realistic
amount of a victim’s data. The next two configurations (Config 1 and Config 2) are
the most aggressive configurations with unlimited encryption rates and no pause between
bursts. These two configurations form the control group to verify that the AD module
is working effectively. The fourth configuration (Config 3) has a rather high encryption
rate and short burst pause, making this the fastest configuration apart from the control
group. Config 4 and Config 5 have the same encryption rate with different burst settings,
Config 4 has a relatively short burst duration of 20 s with a burst pause of 40 s, while
Config 5 has a burst duration of 120 s and a burst pause of 30 s.

As a data corpus for the encryption, a dataset of .pdf files was used provided by [46].
Analogous as in [1], to select a smaller part of the whole dataset for the purpose of the
experiments, the following command was used:

find /root/corpus/data/ -size -6 -exec cp "" /root/test_ransomware/data/

This selected 11 files with a total size of 32’519 bytes to be used for the encryption process.

28 CHAPTER 4. SCENARIO

Table 4.1: Ransomware Configurations

Config Encr. Algorithm Encr. Rate (B/s) Burst Duration Burst Pause (s)

Config 0 ChaCha20 16 f1 60

Config 1 AES-CTR 565566* s0 0

Config 2 Salsa20 632835* s0 0

Config 3 AES-CTR 500 s10 5

Config 4 ChaCha20 200 s20 40

Config 5 Salsa20 200 s120 30

*Unlimited by configuration, value computed from average rates in [1]

4.2.2 Fingerprint Collection

Another component which acted in parallel to the ransomware was the fingerprint data
collection. Here, data of the device’s behavior forming the basis for the creation of fin-
gerprints was collected. Once collected, the data was sent to the C&C server, where the
data was further processed. The decision not to preprocess the data on the client side
was made since the resources of the IoT device were constrained and the observing of the
device’s behavior should only influence the behavior itself in a minimal way.

In the previous work, the data was collected from observing the system resources. In this
work however, the data collection module was extended to collect data from observing
syscalls. Syscalls are the interface of an Operating System (OS) between the user space
(i.e., applications) and the kernel space. The specification and thus the available syscalls
depend on the OS, however the main idea remains the same [47]. As every action per-
formed using a device is using some specific syscalls, collecting data from the usage of
system calls from all processes running on the device should give a very detailed picture
of the device behavior. The syscalls were continuously monitored and written to a file.
Every 5 seconds (plus some delay from processing the data), the collected data was then
sent to the C&C server for further processing, together with the collected resource usage
data from [1]. After the request was sent, the next monitoring cycle was started.

4.2.3 Benign Behavior Execution

In order to investigate the adaptability of the model and the influence of the device’s
normal behavior on the detectability of the ransomware, different benign behaviors were
executed on the client device. Until now, the scenario included only the normal behavior
of the Electrosense device, which shows very uniform device behavior, as it is a single
purpose device. Nevertheless, also on a device like in this scenario different benign be-
haviors were conceivable and those behaviors should also have been classified as normal
by a defensive AD system. To this end, different behaviors were executed in parallel to
the other components described in the sections above. The hypothesis here was that de-
pending on the underlying normal device behavior it might make it harder to detect an
ongoing ransomware attack. In other words, an AI-powered ransomware could use this as

4.3. C&C SERVER 29

an advantage to find configurations that remain undetected. Two different benign behav-
iors were explored and tested: (i) a data compression behavior and (ii) a Python package
installation behavior. These two behaviors were selected as they both are a reasonable
behavior in the case of an Electrosense sensor. Furthermore, both behaviors access the
file system, while the second behavior also uses the network to download packages, re-
sulting in different behavior patterns. The AD was then trained with the normal sensor
behavior plus the additional benign behaviors. The ransomware configurations, also with
the same benign behavior running in the background were then evaluated to see whether
the ransomware detection changed.

4.3 C&C Server

On the server side, there were the following main components:

1. Fingerprint data feature extraction

2. Anomaly detection

3. RL reward function

4. RL agent

The remainder of this section explains each of the main components in detail, what the
objective was and how they interacted with each other.

4.3.1 System Call Feature Extraction

The collected fingerprint data was sent from the client device to the C&C server via a
RESTful API. Using a POST request, the attached data files were received and stored on
the server. As the amount of data from collecting syscall data was relatively large and
text-based, feature extraction was needed to gain relevant data in numerical form in order
to be used by the AD.

As the syscall data consisted of text, Natural Language Processing (NLP) techniques had
to be used for feature extraction. Furthermore, the input data was of variable length, while
algorithms for AD usually expect input of a fixed length. Unlike a text in natural language,
in the syscall data the order of the tokens / words was not as critical for extracting useful
information. For this reason, the frequencies of the individual word occurrences were used
as features, as different behavior was thought to show different frequencies of the used
syscalls.

30 CHAPTER 4. SCENARIO

4.3.2 Anomaly Detection

As covered in Section 2.4.2, in device behavior fingerprinting AD can be used for attack
detection. In this scenario, the client device was employing such an AD module on the
defensive side, to recognize anomalous behavior due to attacks on the basis of syscall data.
Furthermore, the ransomware was also using AD on the offensive side in order to train its
RL agent. For this work however, the focus lied on the offensive side, thus the defensive
AD was not implemented or explored.

Taking the extracted features of the syscall data as input, the AD module produced a
binary classification into normal and anomalous. In a later step, the output of the AD
was used for the reward computation for the RL model. Depending on the experiment,
the AD was trained with different data regarded as normal behavior. First, the AD was
trained with the data collected from the device’s normal behavior. Secondly, the AD was
trained with a training dataset comprising both the normal sensor behavior, as well as
additional behaviors executed on the device. It was then explored whether the training
data had an influence on the detection rates of infected data.

4.3.3 RL Reward Function

As covered in Section 2.3.1, in RL the learning agent receives a reward signal after each
step with the main goal of maximizing the rewards received over the long run. The reward
function thus is responsible for determining the reward given to the agent after each step
according to the state that the environment is in.

Deciding what comprises a good state or a bad state can be tricky, as there can be
multiple variables playing a role and these variables have to be weighted accordingly. In
this case, there was the AD output saying whether the previous action had been detected
or remained hidden. Thus, in a first prototype, a simple reward function was implemented
only using the AD output. In a second enhanced prototype, a reward function was used
that in addition to the AD output also used the encryption rate of the selected action for
determining the reward. For a detailed description of the used reward functions and their
implementation, refer to Section 5.4.

4.3.4 RL Agent

This work used a Q-learning agent to learn the best configuration to select. The concept
of Q-learning was covered in Section 2.3.1. For this, an estimation of the Q function had
to be implemented, in this case using a simple neural network adopted from [1], depicted
in Figure 4.2. This network consisted of three fully-connected layers. The number of
input neurons depended on the number of features of the dataset. After that, a logistic
activation function was used, followed by the hidden layer with a configurable number of
hidden neurons. Finally, a second activation function like Rectified Linear Unit (ReLU)
or Sigmoid Linear Unit (SiLU) was used followed by the output layer with its size cor-
responding to the number of ransomware configurations (i.e., 6). Moreover, the neural

4.3. C&C SERVER 31

Figure 4.2: Neural Network for Q-Learning from [48] with Logistic and ReLU Activation

network used a learning rate α (also called step-size) to configure the rate at which the
agent adapts its learned weights. The higher the learning rate, the faster the weights
are learned, however the risk of overshooting the optimum also increases. The lower the
learning rate the higher the accuracy, however it also increases the risk of getting stuck
at a local maximum as well as requiring more time.

To handle the tradeoff between exploitation and exploration, the agent followed an ϵ-
greedy strategy. With a probability of ϵ ∈ [0, 1], the agent selected a random action.
Over the course of the training, the epsilon was decreased with a decay rate δ to have
higher exploration in the beginning and higher exploitation towards the end of the training.
Furthermore, a discount factor γ ∈ [0, 1] was used to balance the weights of future rewards
versus more immediate rewards.

32 CHAPTER 4. SCENARIO

Chapter 5

System Architecture and Implementation

This chapter introduces the implementation and architecture of the system and scenario
described in the previous chapter. It starts with the AD module in Section 5.1, including
a comparison of different algorithms and their performances. Subsequently, the different
RL components are presented. In Section 5.2, the environment of the RL model is out-
lined with a detailed description of the feature extraction from the syscall data. Then, in
Section 5.3, the implementation of the RL agent including the neural network is presented.
Next, Section 5.4 gives insight into the reward function used, as well as other reward func-
tions which were explored during the process of this work. Finally, the chapter concludes
with the description of the additional benign behaviors in Section 5.5 and the experiment
setup in Section 5.6.

5.1 Anomaly Detection

In order to reliably detect anomalous and benign behavior of the client device, AD tech-
niques were used. In the scenario of this work, there were conflicting objectives regarding
the AD: on the one hand, from a defensive point of view, the ransomware’s activities
should be reliably detected in order to have a robust defensive system. On the other hand
however, the ransomware is trying to find configurations which are not being detected,
thus an AD system not being able to detect certain malicious behavior would be favoured.
To this end, different AD algorithms were tested with different hyperparameter settings.
Namely, the following algorithms were evaluated:

• Isolation Forest (IF)

• Local Outlier Factor (LOF)

• One-Class Support Vector Machine (OCSVM)

Table 5.1 shows the True Negative Rate (TNR) and the False Negative Rate (FNR)
respectively of different AD algorithms with different hyperparameter settings. Being

33

34 CHAPTER 5. SYSTEM ARCHITECTURE AND IMPLEMENTATION

classified as normal was considered a negative, which is why for the normal behavior
dataset, the values in Table 5.1 correspond to the TNR, while for columns C0 to C5
they show the FNR. OCSVM classifiers were also evaluated with different kernels and
hyperparameter settings, but appeared to not be able to capture the differences between
normal and infected behavior. Finally, it was decided to use an IF classifier with a
contamination factor of 0.03, as it was able to correctly classify normal behavior, the
infected control groups C1 and C2, as well as showing detection rates reflecting the settings
in the respective configurations. Furthermore, IF classifiers appeared to have a faster
training time and detection time on new samples compared to LOF classifiers.

Table 5.1: Performance Comparison of Different AD Algorithms (TNR for Normal, FNR
for C0-C5, in Percentage)
Algorithm Hyperparameters Normal C0 C1 C2 C3 C4 C5
IF contamination=0.05 93.99 83.24 0.21 0.24 8.23 55.45 13.53
IF contamination=0.04 95.05 86.70 1.13 0.66 9.62 58.82 15.04
IF contamination=0.03 96.19 89.78 2.18 1.74 11.79 62.24 18.04
IF contamination=0.02 97.65 94.14 4.7 4.59 17.5 70.32 25.81

LOF
n neighbors=1500
contamination=0.05

94.89 81.79 4.81 3.45 17.18 64.31 31.12

LOF
n neighbors=1500
contamination=0.04

95.37 84.34 5.17 3.77 17.98 66.76 34.42

LOF
n neighbors=1500
contamination=0.03

96.67 87.14 5.39 4.25 19.41 70.34 38.33

5.2 RL Environment

As discussed in Section 2.3.1, a central part of RL is that the learning agent is able to
collect information about the state of the environment. In this scenario, the agent used
two pieces of information about the environment: (i) the output of the AD module, and
(ii) the encryption rate reported by the client device.

For the AD module, the syscall data was used. The raw data collected from the IoT
device was stored in .csv files on the C&C server in the format displayed in Listing 5.1.
In order for a RL agent being able to use data as state information from its environment,
the AD module has to classify the state information into normal or anomalous. As the
syscall data was in text form, there was a need for feature extraction using techniques
from the field of NLP.

This work used a Bag-of-Word (BoW) representation of the syscall column of the raw
data (cf. Listing 5.1), containing the name of the syscall used. Owing to the fact that
neither the order of the syscalls used nor the temporal aspects are of importance in this
scenario, the timestamp as well as the time_cost columns were left out. The pid column
was used during the development and data collection to get insights into what processes
were running during the experiment, however it was not used for feature extraction pur-
poses.

5.2. RL ENVIRONMENT 35

Listing 5.1 Example of Raw Syscall Data Collected from the Client Device

pid , timestamp , s y s c a l l , t ime cos t
e s s e n s o r /1076 ,223893 .750 , i o c t l , 0 . 0 1 1
e s s e n s o r /1076 ,223893 .778 , t imer fd se t t ime , 0 . 0 1 4
e s s e n s o r /1076 ,223893 .802 , i o c t l , 0 . 0 2 7
e s s e n s o r /1076 ,223893 .841 , po l l , 0 . 7 4 0
systemd−journa /104 ,223894 .581 , getpid , 0 . 0 0 9
systemd−journa /104 ,223894 .581 , f t runcate64 , 0 . 0 5 4
systemd−journa /104 ,223894 .652 , getpid , 0 . 0 0 9
systemd−journa /104 ,223894 .673 , getpid , 0 . 0 0 9
systemd−journa /104 ,223894 .692 , getpid , 0 . 0 0 9
systemd−journa /104 ,223894 .716 , t imer fd se t t ime , 0 . 0 1 4
systemd−journa /104 ,223894 .741 , getpid , 0 . 0 0 9
e s s e n s o r /1076 ,223893 .841 , po l l , 2 . 0 2 7
systemd−journa /104 ,223894 .761 , epo l l wa i t , 1 . 1 3 3
e s s e n s o r /1076 ,223895 .894 , i o c t l , 0 . 0 1 8
e s s e n s o r /1076 ,223895 .924 , t imer fd se t t ime , 0 . 0 1 3
e s s e n s o r /1076 ,223895 .947 , i o c t l , 0 . 0 1 1
e s s e n s o r /1076 ,223895 .981 , t imer fd se t t ime , 0 . 0 1 4
e s s e n s o r /1076 ,223896 .006 , i o c t l , 0 . 0 3 3
e s s e n s o r /1076 ,223896 .052 , po l l , 2 . 0 7 3
e s s e n s o r /1076 ,223898 .140 , i o c t l , 0 . 0 1 6
e s s e n s o r /1076 ,223898 .177 , t imer fd se t t ime , 0 . 0 1 4
e s s e n s o r /1076 ,223898 .201 , i o c t l , 0 . 0 1 1
e s s e n s o r /1076 ,223898 .232 , t imer fd se t t ime , 0 . 0 1 4
e s s e n s o r /1076 ,223898 .256 , i o c t l , 0 . 0 3 1
e s s e n s o r /1076 ,223898 .301 , po l l , 0 . 0 1 0
SCTP,223889 .182 , t imer /766 , (10 .083
web−ui /433 ,223898 .312 , po l l , 0 . 9 6 9
e s s e n s o r /1076 ,223898 .301 , po l l , 2 . 0 7 8
SCTP,223899 .280 , t imer /766 ,1 .113
e s s e n s o r /1076 ,223900 .393 , i o c t l , 0 . 0 1 6
e s s e n s o r /1076 ,223900 .431 , t imer fd se t t ime , 0 . 0 1 3

36 CHAPTER 5. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Using the BoW of syscalls, the individual occurrence frequency of each token (i.e., syscall)
was used as features. This was achieved using a CountVectorizer of the scikit-learn
Python library [49]. During the feature extraction, this vectorizer was fitted to the nor-
mal dataset, such that the vectorizer built a vocabulary of the occurring words. This
vocabulary then determined the number of features extracted. The dataset then had the
structure of a matrix with one row per fingerprint and one entry per token giving the
number of occurrences. Using this dataset, the AD module could then be trained. If
new data had to be classified, the dataset had to be transformed using the same fitted
instance of the CountVectorizer class, ensuring that the same vocabulary was used and
the number of resulting features were thus the same.

Furthermore, the encryption rate was used as state information of the environment. The
encryption rate was reported by the client device, together with the resource usage fin-
gerprint. Together with the syscall frequency features, the encryption rate was used as
information about the state of the environment in the reward signal computation and the
selection process of the agent.

5.3 RL Agent

As outlined in Section 4.3.4, the agent’s task was to learn the best ransomware config-
uration to select based on its interactions with the environment. In order to learn the
Q function, a simple three-layer neural network was used. The implementation of the
neural network is depicted in Listing 5.2 and was adopted from [1]. It performs a forward
pass through the neural network in order to predict the next action to select based on the
current state of the environment. Afterwards, the agent performs a backward pass (i.e.,
backpropagation) in order to update the weights of the model accordingly.

As described in [1], the used neural network encountered the so-called dying ReLU problem
when using a ReLU activation function. This is an issue where the learned Q-values
become zero and ”die out”. This problem was resolved by using a SiLU activation function,
which in contrast to ReLU allows for negative values. Thus, to avoid this issue from the
beginning, the SiLU activation function was used in combination with a Logistic activation
function, both of which are depicted in Figure 5.1.

5.4 RL Reward

The main objective of a reward function is to give high rewards to a state which is
deemed good for the agent, and penalize bad states. To this end, in a first prototype, a
simple reward function was developed giving rewards based on the outcome of the AD.
If the selected action of the agent remained undetected, a fixed reward of +20 was given,
whereas if it was detected, a negative reward of -20 was given. If full encryption was
reached, a bonus reward of +50 was given. Table 5.2 shows the expected rewards for each
configuration based on the detection rates of the AD.

5.4. RL REWARD 37

Figure 5.1: Activation Functions Used in Neural Network

Table 5.2: Expected Rewards of Simple Reward Computation
Configuration Expected Average Rewards

Config 0 0.8978 ∗ 20 + (1− 0.8978) ∗ (−20) = 15.912
Config 1 0.0218 ∗ 20 + (1− 0.0218) ∗ (−20) = −19.128
Config 2 0.0174 ∗ 20 + (1− 0.0174) ∗ (−20) = −19.304
Config 3 0.1179 ∗ 20 + (1− 0.1179) ∗ (−20) = −15.284
Config 4 0.6224 ∗ 20 + (1− 0.6224) ∗ (−20) = 4.896
Config 5 0.1804 ∗ 20 + (1− 0.1804) ∗ (−20) = −12.784

As can be seen in Table 5.2, Config 0 has the highest expected reward, followed by
Config 4. All other configurations have a negative reward, as they are more often classified
as anomalous than as normal. Thus, a RL agent using this reward function is expected
to learn to select Config 0 as the best action to take.

In reality however, Config 0 would not be a very effective ransomware, as the encryption
rate of 16 B/s is very low and encrypting a realistic amount of data would take very
long. For this reason, a second reward function was developed which also included the
encryption rate in addition to the AD output. The idea was that a higher encryption
rate should also yield a higher reward. Several different variants of reward functions were
explored as can be seen in Table 5.3. The expected average rewards were calculated using
the following formula, where FNRC is the AD’s FNR of the respective configuration, Rh

is the reward function output for the hidden case, and Rd the reward function output for

38 CHAPTER 5. SYSTEM ARCHITECTURE AND IMPLEMENTATION

the detected case:

R =
FNRc

100
∗Rh + (1− FNRc

100
) ∗Rd (5.1)

When looking at the detection rates and encryption rates of the different configurations,
it is obvious that Config 4 should be considered the best, as it is classified as normal with
62.24 % while still having an encryption rate of 200 B/s. All other configurations except
Config 0 and Config 4 were detected far too easily. The different variants of the reward
functions all contain two functions, one for detected actions and one for hidden actions.
Both functions include the encryption rate r, to give higher rewards to higher encryption
rates. The constants h and d were used to control the reward given for hidden actions and
deducted for detected actions respectively. Furthermore, in variants 4-6 a scaling constant
s was introduced to the hidden reward function in order to better distinguish between
low and medium encryption rates, such as is the case for Config 0 and Config 4. This is
visualized in Figure 5.2, where the reward function variants 1 and 5 are compared. It can
be seen that variant 5 gives a lower reward for low encryption rates and more strongly
rewards higher encryption rates. On the contrary, variant 1 quickly becomes flat and thus
differentiates less between high and low encryption rates. Finally, variant 5 was selected
for its ability of rewarding undetected behavior as well as penalizing having an encryption
rate which is prohibitively low. As a consequence, Config 4 has the highest expected
reward of 60.79 and was thus deemed the best configuration, followed by Config 0 with an
expected reward of 11.15. The bonus reward for reaching full encryption was significantly
increased compared to the simple reward to +1’000, in order to more strongly incentivize
a faster encryption.

5.5 Additional Benign Behaviors

As described in Section 4.2.3, the idea of this experiment was to evaluate the performance
of the proposed solution in the presence of additional behaviors on the client device which
are classified as benign. For this, two additional behaviors were evaluated: (i) a data
compression behavior and (ii) a libraries installation behavior. The AD module was then
trained using collected fingerprints of these behaviors in combination with the normal
sensor behavior and then evaluated. In the following, the implementation of the benign
behaviors is presented.

Both behaviors were implemented as Bash scripts which were executed in parallel to the
data collection process. To run the behavior, the following command could be used as an
example:

nohup ./benign_behaviors/compression.sh &

This command is using nohup, a utility to execute commands immune to hangups, i.e.,
the behavior kept being executed even if the Secure Shell (SSH) connection was termi-
nated [50].

5.5. ADDITIONAL BENIGN BEHAVIORS 39

Figure 5.2: Comparison of Performance Reward Functions Variant 1 and Variant 5

5.5.1 Behavior 1: Data Compression

In this behavior, a data corpus is continuously compressed. Afterwards, the compressed
files are removed and the loop starts again. For the compression, tar (tape archive) is
used, which is a command-line utility for compressing and archiving files and directories
in linux [51].

The Bash script is listed in Listing 5.3. The tar command is used with the options -czf,
which creates a new archive, uses gzip, and specifies a file name for the archive.

5.5.2 Behavior 2: Libraries Installation

For the second behavior, libraries are being downloaded and installed using pip, the
package manager for Python [52].

The following five Python libraries were installed for the purpose of this behavior:

• numpy

• pandas

• matplotlib

40 CHAPTER 5. SYSTEM ARCHITECTURE AND IMPLEMENTATION

• requests

• flask

The decision was made to use five commonly used libraries. With each package requiring
other dependencies, the final list of installed packages is shown in Listing 5.5. As can be
seen in Listing 5.4, before the packages are installed, a virtual environment is created and
activated, such that the behavior does not interfere with the system-wide list of installed
packages. Afterwards, the package installation is started using the requirements.txt

file shown in Listing 5.5. Once the installation terminated, all installed packages are
uninstalled and the loop starts again.

5.6 Experiment Setup

In order to run the experiments, behavioral datasets first had to be collected. To this end,
the respective behavior was executed on the device, including the ransomware with the
corresponding configuration, as well as additional behavior in some cases. The fingerprints
were then collected on the client device and periodically sent via REST API to the C&C
server, where the data was stored. In this data collection scenario, the C&C server
did not run the RL agent, nor did it send any configuration updates. This collection
process was performed for the normal behavior datasets over a time frame of 24 hours.
Some ransomware configuration datasets were collected over a shorter amount of time as
it became clear that less data would also suffice, however at minimum, six hours were
collected.

To allow for a faster execution of the experiments and their evaluation, a simulated en-
vironment was implemented in which there was no need for a client device. Instead, the
operation of the API was simulated to select a random fingerprint from the previously
collected fingerprint datasets.

5.6. EXPERIMENT SETUP 41

Listing 5.2 Neural Network Implementation Using Log - SiLU Activation Functions

import numpy as np

class ModelQLearning(object):

def __init__(self , learn_rate, num_configs):

self .learn_rate = learn_rate

self .allowed_actions = np.asarray(range(num_configs))

def forward(self , weights1, weights2, bias_weights1,

bias_weights2, epsilon, inputs):

inputs = inputs[0].reshape(-1, 1)

adaline1 = np.dot(weights1.T, inputs) + bias_weights1

hidden1 = 1 / (1 + np.exp(-adaline1)) # logistic activation

adaline2 = np.dot(weights2.T, hidden1) + bias_weights2

q = adaline2 / (1 + np.exp(-adaline2)) # SiLU activation

possible_a = self .allowed_actions # epsilon-greedy policy

q_a = q[possible_a]

if np.random.random() < epsilon: # explore randomly

sel_a = possible_a[np.random.randint(possible_a.size)]

else: # exploit greedily

argmax = np.argmax(q_a)

sel_a = possible_a[argmax]

return hidden1, q, sel_a

def backward(self , q, q_err, hidden, weights1, weights2,

bias_weights1, bias_weights2, inputs):

inputs = inputs[0].reshape(-1, 1)

delta2 = 1 / (1 + np.exp(-q)) * (1 + q * (1 - (1 /

(1 + np.exp(-q))))) * q_err # derivative SiLU

delta_weights2 = np.outer(hidden, delta2.T)

delta1 = hidden * (1 - hidden) * np.dot(weights2, delta2)

delta_weights1 = np.outer(inputs, delta1)

weights1 += self .learn_rate * delta_weights1

weights2 += self .learn_rate * delta_weights2

bias_weights1 += self .learn_rate * delta1

bias_weights2 += self .learn_rate * delta2

return weights1, weights2, bias_weights1, bias_weights2

42 CHAPTER 5. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Table 5.3: Reward Computation for Performance Rewards
Variant Functions Constants Expected Avg. Rewards

1
Hidden: 10 ∗ ln(r + 1) + h

Detected: −d
max(r,1)

− d

h=0
d=20

C0: 23.26
C1: -16.68
C2: -17.33
C3: -10.35
C4: 25.42
C5: -6.91

2
Hidden: 10 ∗ ln(r + 1) + h

Detected: −d
max(r,1)

− d

h=0
d=10

C0: 24.35
C1: -6.89
C2: -7.50
C3: -1.51
C4: 29.21
C5: 1.33

3
Hidden: 10 ∗ ln(r + 1) + h

Detected: −d
max(r,1)

− d

h=-10
d=0

C0: 16.46
C1: 2.67
C2: 2.15
C3: 6.15
C4: 26.78
C5: 7.76

4
Hidden: s ∗ ln(r

s
+ 1) + h

Detected: −d
max(r,1)

− d

h=0
d=10
s=10

C0: 7.49
C1: -7.40
C2: -7.90
C3: -4.20
C4: 15.15
C5: -2.74

5
Hidden: s ∗ ln(r

s
+ 1) + h

Detected: −d
max(r,1)

− d

h=0
d=20
s=100

C0: 11.15
C1: -0.73
C2: -4.42
C3: 3.45
C4: 60.79
C5: 3.35

6
Hidden: s ∗ ln(r

s
+ 1) + h

Detected: −d
max(r,1)

− d

h=0
d=100
s=100

C0: 2.47
C1: -78.98
C2: -83.03
C3: -67.26
C4: 30.43
C5: -62.55

5.6. EXPERIMENT SETUP 43

Listing 5.3 Bash Script for Behavior 1

#!/bin/bash -u

path_to_compression_files="./benign_behaviors/compression_files/"

compressed_files="compressed_files.tar.gz"

while true; do

compress all files in directory with compression files using tar

tar -czf "$compressed_files" "$path_to_compression_files"

if [$? -ne 0]; then

echo "Compression failed"

fi

rm -f $compressed_files

sleep 0.2

done

44 CHAPTER 5. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Listing 5.4 Bash Script for Behavior 2

#!/bin/bash

path_to_requirements="./benign_behaviors/requirements.txt"

create and activate virtual environment

echo "activating venv..."

python3 -m venv ./benign_behaviors/venv

source ./benign_behaviors/venv/bin/activate

echo "done"

while true; do

install requirements without caching

echo "installing requirements..."

pip install -r $path_to_requirements --no-cache-dir --quiet

echo "done"

uninstall all packages

echo "uninstalling everything..."

pip freeze | xargs pip uninstall -y --quiet

echo "done"

done

5.6. EXPERIMENT SETUP 45

Listing 5.5 Listed Python Packages Used for Behavior 2 in requirements.txt File

c e r t i f i ==2022.5.18
chardet ==4.0.0
c l i c k ==7.1.2
c y c l e r ==0.10.0
Flask==1.1.4
idna==2.10
i t sdange rous ==1.1.0
J in j a2 ==2.11.3
k iw i s o l v e r ==1.1.0
MarkupSafe==1.1.1
matp lo t l i b ==3.0.3
numpy==1.18.5
pandas==0.25.3
pypars ing ==2.4.7
python−da t e u t i l ==2.8.2
pytz==2023.3. post1
r eque s t s ==2.25.1
s i x ==1.16.0
u r l l i b 3 ==1.26.9
Werkzeug==1.0.1

46 CHAPTER 5. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Chapter 6

Evaluation

In this chapter, the results and main findings of the experiments performed are presented,
compared, and evaluated. Starting with Section 6.1, the performance of the different
implemented prototypes is described, including the simple Q-learning prototype, the im-
proved Q-learning prototype, as well as the improved Q-learning prototype with ideal
AD. Following, in Section 6.2, the achieved results are compared in detail to the results of
experiments performed using resource usage fingerprints from [1]. Finally, in Section 6.3,
the results of the experiments using additional benign behaviors are shown and discussed.

6.1 Performance of Prototypes

At first, an experimental prototype (Prototype 11) was implemented in order to show the
feasibility of the experiment (i.e., a Proof of Concept (PoC)). The naming and numbering
of the prototypes was adopted and continued from [1], thus starting with number 11.
Prototype 11 was the first implementation using syscalls and is equivalent to the imple-
mentation of Prototype 1 of [1]. The prototype does not implement an intelligent agent
yet, the agent merely selects every ransomware configuration once and then terminates.
Nevertheless, this prototype was useful to show the feasibility and adaptability of the
architecture when used with syscall-based fingerprints. However, the prototype did not
produce any results worth evaluating.

In the remainder of this section, the performance results of the subsequent prototypes
and prototype configurations are evaluated, namely the simple Q-learning prototype, the
improved Q-learning prototype, and finally the improved Q-learning prototype with ideal
AD.

6.1.1 Simple Q-Learning Prototype

After the first PoC prototype, the simple Q-learning prototype (Prototype 12) was de-
veloped. This was the first prototype implementing the Q-learning techniques described

47

48 CHAPTER 6. EVALUATION

in Section 2.3.1. It is a progression of Prototype 11, applying the Q-learning algorithm
for a single episode over multiple steps using the simple reward computation described in
Section 5.4. After the configured number of steps is reached, the execution is terminated
and the reward for reaching full encryption is given.

The prototype was evaluated using different settings and values for the following hyper-
parameters:

• Exploration rate ϵ ∈ [0, 1]: The agent selects a random action with probability of ϵ

• Learning rate α: Step size parameter for the neural network to learn the Q-function
(cf. Section 4.3.4)

• Discount factor γ ∈ [0, 1]: Used to handle how much importance is given to rewards
that lie far in the future.

Finally, the hyperparameters were set at ϵ = 0.2, α = 0.0005, and γ = 0.75. Using
these values, Figure 6.1 and Figure 6.2 show the results of Prototype 12 run over 500 and
1’000 steps respectively. In the plots, the absolute rewards and the Exponential Moving
Average (EMA) of the rewards are visualized. As one can see, over time the agent was
able to increase the rewards it receives, i.e., it was able to learn which actions to select in
order to collect higher rewards. This shows that it is feasible to use syscalls as the basis
of a RL agent to learn actions which result in fewer detections by a defensive AD system
and thus remain hidden.

In spite of the promising plots, when looking at the accuracy results of the agent trained
after 10’000 steps shown in Table 6.1, some issues become visible. First of all, according
to the reward function used in this prototype, Configuration 0 had the highest expected
rewards and should thus be selected. However, Configuration 4 had the highest accuracy
with 83.58 %, while Configuration 0 only achieved 3.44 % after training. One explanation
for this is that the agent was merely able to learn which configurations to avoid, rather
than finding the most optimal one. When looking at the final Q-values, one can see that
Configuration 0 achieved the highest values.

Looking these results, such a prototype using a reward system only incorporating the
output of the AD had obvious shortcomings, as was also mentioned in [1]. The fact that
the reward system only incentivized not being detected is sub-optimal, since the main
goal of a ransomware is encrypting files in a timely manner while not being detected.
Thus there was a need for incorporating the encryption rate into the reward system.
Moreover, the ϵ parameter should be adjusted using a decay rate parameter, such that
the exploration probability is gradually decreased over the course of multiple episodes.

6.1.2 Improved Q-Learning Prototype with Performance Rewards

As discussed in the section above, the simple Q-learning prototype had several shortcom-
ings, therefore, an improved version (Prototype 13) of the simple prototype was developed.

6.1. PERFORMANCE OF PROTOTYPES 49

Figure 6.1: Results for Prototype 12 over 500 Steps with ϵ = 0.2, α = 0.0005, γ = 0.75

Figure 6.2: Results for Prototype 12 over 1’000 Steps with ϵ = 0.2, α = 0.0005, γ = 0.75

Here, the reward function was extended to also incorporate the encryption rate, as de-
scribed in Section 5.4. With this, the secondary goal of reaching encryption as fast as
possible was handled and the different configurations could be differentiated more easily.

Furthermore, Prototype 13 was run over a configurable amount of episodes. In each
episode, the encryption process was calculated by using the encryption rate, assuming
that one step takes one second. After the artificial corpus was encrypted, the episodes
were terminated and the bonus reward was given. A configurable corpus size is used to
determine whether the encryption had finished and the final reward should be given. In
this case, 2000 bytes was used for the experiments which for instance resulted in 10 steps
to full encryption for Configuration 4.

Another improvement made was the introduction of a decay rate for the epsilon parameter,
in order to have higher exploration at the beginning and gradually decrease it towards
the end. For this, another hyperparameter δ was introduced. The epsilon calculation was
done as follows with n denoting the episode number:

ϵn =
ϵ

1 + δ ∗ n
(6.1)

Figure 6.3 shows the results of running the improved Q-learning prototype (Prototype
13) for 10’000 episodes. Furthermore, Table 6.2 presents the accuracy result of the same
prototype. As can be seen in the plots, the agent was able to increase the rewards

50 CHAPTER 6. EVALUATION

Table 6.1: Accuracy for Prototype 12 after 10’000 Episodes with ϵ = 0.2, α = 0.0005, γ =
0.75
Configuration Initial Accuracy Trained Accuracy Final Q-Values

Percentage # Samples Percentage # Samples

Config 0 03.47 % 297 / 8552 03.44 % 294 / 8552 72.92186305

Config 1 03.64 % 311 / 8552 03.23 % 276 / 8552 5.50346083

Config 2 03.33 % 285 / 8552 03.30 % 282 / 8552 30.36052495

Config 3 83.10 % 7107 / 8552 02.99 % 256 / 8552 38.32739379

Config 4 02.99 % 256 / 8552 83.58 % 7148 / 8552 30.76325477

Config 5 02.99 % 296 / 8552 03.46 % 296 / 8552 13.37773805

it receives, especially in the first approximately 4’000 episodes. When looking at the
number of steps taken in each episode, one can see that the average appears to remain
almost constant, indicating that there was not really any development throughout the
course of the training. Also, the number of steps show high fluctuations. Taking into
consideration the detection rates of the AD shown in Table 5.1, it seems that the agent
is not able to reach a high number of steps and thus full encryption because the optimal
Configuration 4 is still detected with a probability of 37.76 %. This was an issue as the
agent would receive negative rewards in more than a third of its decisions, although the
most optimal configuration was learned and selected.

In contrast to the previous prototype, this improved prototype was able to learn the best
Configuration 4, as is shown in Table 6.2. After 10’000 episodes of training, the agent
selected the optimal configuration with an accuracy of 99.61 %. In addition to the high
accuracy, the final Q-values also show that Configuration 4 predominated over the others
with a value of 156.67, followed by Configuration 0 with a value of 33.36.

Besides the accuracy results presented above, Table 6.3 shows the accuracies of the pro-
totype for the optimal Configuration 4 when trained for different numbers of episodes.
As one can see, already after around 50 episodes of training, which corresponds to about
1.5 minutes of training time, the agent reached an accuracy of above 90 %. In less than
10 minutes of training, the agent achieved accuracy levels of above 97 %. These values
demonstrate that a system such as the one presented in this work is able to learn a ran-
somware configuration that evades detection in a short amount of time with promising
accuracies.

6.1.3 Improved Q-Learning Prototype with Ideal AD

As the high fluctuations in the AD was identified as a limiting factor in the model’s per-
formance, to verify the learning capabilities of the proposed model, an ideal version of
the AD was implemented. This ideal AD did not rely on an AD algorithm as before,
but manually decided whether an action is detected or not based on prior knowledge. By
the use of a configurable set of actions that are not detected, this version computed the

6.1. PERFORMANCE OF PROTOTYPES 51

Figure 6.3: Results for Prototype 13 over 10’000 Episodes with ϵ = 0.4, δ = 0.01, α =
0.0005, γ = 0.75

52 CHAPTER 6. EVALUATION

Table 6.2: Accuracy for Prototype 13 after 10’000 Episodes with ϵ = 0.4, δ = 0.01, α =
0.0005, γ = 0.75

Configuration Initial Accuracy Trained Accuracy Final Q-Values

Percentage # Samples Percentage # Samples

Config 0 07.32% 626 / 8552 00.07% 6 / 8552 3.33625127e+01

Config 1 06.58% 563 / 8552 00.07% 6 / 8552 -1.10514655e-14

Config 2 65.96% 5641 / 8552 00.05% 4 / 8552 -5.78874988e-37

Config 3 06.50% 556 / 8552 00.12% 10 / 8552 7.38995201e+00

Config 4 06.85% 586 / 8552 99.61% 8519 / 8552 1.56667436e+02

Config 5 06.78% 580 / 8552 00.08% 7 / 8552 -1.71861340e-01

Table 6.3: Accuracies of Selecting Config 4 and Training Times of Improved Q-Learning
Prototype

Episodes Accuracy (in %) Training Time

50 90.41 % 1.5 min

100 94.63 % 3.4 min

200 97.32 % 6.9 min

500 98.61 % 17.5 min

1000 99.23 % 35.9 min

reward leading to a consistent reward given for each action. Considering the output of
the AD model, Configurations 0 and 4 were classified as hidden, while all other configu-
rations would be detected by the ideal AD. Table 6.4 shows the expected rewards of each
configuration using the reward function described in Section 5.4.

Table 6.4: Expected Rewards Using Ideal AD

Configuration Detection Rate Expected Reward

Config 0 0 % 14.84

Config 1 100 % -20.00

Config 2 100 % -20.00

Config 3 100 % -20.04

Config 4 0 % 109.86

Config 5 100 % -20.10

The results of running the prototype with the ideal AD configuration are shown in Fig-
ure 6.4. The other hyperparameters were equal to those in the experiment described in
Section 6.1.2. It is visible that the EMA of all plots clearly converges towards an optimal
action taken by the agent. When looking at the expected rewards in Table 6.4, the ex-
pected optimal path is selecting Configuration 4 for ten steps until full encryption. This

6.1. PERFORMANCE OF PROTOTYPES 53

exact pattern is recognizable in Figure 6.4 where the rewards converge towards approxi-
mately 2’000 (reward of configuration 4 for ten steps plus the bonus reward for reaching
full encryption of 1’000). Also, the number of steps converges towards ten and thus the
average reward converges towards approximately 200.

In addition to the plots, Table 6.5 presents the accuracy results for the ideal AD prototype.
Configuration 4 has the highest accuracy by far with 99.71 %, confirming the result that
the agent learned the optimal configuration.

Due to these results, the conclusion can be made that the performance of the RL agent
heavily relies on the performance of the AD model used. When used with an ideal AD,
the agent exhibited a much more ideal and consistent learning performance compared to
when used with the real AD model.

Figure 6.4: Results for Prototype 13 with Ideal AD over 10’000 Episodes with ϵ = 0.4, δ =
0.01, α = 0.0005, γ = 0.75

54 CHAPTER 6. EVALUATION

Table 6.5: Accuracy for Prototype 13 with Ideal AD after 10’000 Episodes with ϵ =
0.4, δ = 0.01, α = 0.0005, γ = 0.75

Configuration Initial Accuracy Trained Accuracy Final Q-Values

Percentage # Samples Percentage # Samples

Config 0 07.32% 626 / 8552 00.05% 4 / 8552 4.76353773e+002

Config 1 06.58% 563 / 8552 00.06% 5 / 8552 -4.64321204e-155

Config 2 65.96% 5641 / 8552 00.04% 3 / 8552 -3.83546470e-137

Config 3 06.50% 556 / 8552 00.13% 11 / 8552 -1.24895980e-179

Config 4 06.85% 586 / 8552 99.71% 8527 / 8552 5.86183749e+002

Config 5 06.78% 580 / 8552 00.02% 2 / 8552 -1.07854263e-164

6.2 Comparison with Resource Usage Fingerprints

This section is dedicated to comparing the results presented in the previous section to
those obtained in [1], [48], where device behavioral fingerprinting based on resource usage
was performed. Key findings and performance metrics will be compared in the following.

To begin with, because the underlying source of behavior data is different, it is natural
to expect differences in the detection rates of the different behaviors. Table 6.6 presents
the comparison between the TNR and FNR respectively of the previous work and this
work for the different behaviors. Although there are some differences, it can be seen
that both approaches also share similarities. Unsurprisingly, both classifiers recognize the
normal behavior largely as normal, as they were trained with this behavior. Furthermore,
both classifiers seemingly do not detect Configuration 0 well, as both show a FNR of
around 90 %. The second highest FNR is reached by Configuration 4 in both cases.
Moreover, the classifiers seem to consistently detect the control group Configuration 1
and Configuration 2. On the other hand, there are some striking differences when looking
at the detection rates of Configuration 3 and Configuration 5. Using fingerprints based
on resource usage, the AD classifies Configuration 3 as normal with 80.18 % while with
syscall-based fingerprints, only 11.79 % is classified as normal. Similarly, Configuration 5
is classified as normal with 77.38 % for the resource-based case and 18.04 % for the
syscall-based case. The encryption rate cannot be the only explanation for this data, as
Configuration 4 and 5 both have the same encryption rate but very different detection
rates. It seems that the detection rates for resource-based fingerprints correlate more
with the encryption rate of the configurations, while the detection rates of syscall-based
fingerprints seem to show a stronger influence from the encryption burst settings. One
possible explanation for this is that syscalls-based fingerprints capture data on a much
lower level compared to resource usage data, and thus are able to capture more differences
between the behaviors.

Based on the AD results, the expected rewards were calculated and the optimal con-
figuration was determined. Using the simple reward function which only considers the
output of the AD module, Configuration 0 was considered the best for both resource-
based fingerprints as well as for syscall-based fingerprints [48]. However, when using a

6.2. COMPARISON WITH RESOURCE USAGE FINGERPRINTS 55

Table 6.6: TNR and FNR Comparison of Resource-based and Syscall-based Fingerprints

Behavior Resource-based FP [1] Syscall-based FP

Normal 88.94 % 96.19 %

Config 0 91.62 % 89.78 %

Config 1 0.62 % 2.18 %

Config 2 0.21 % 1.74 %

Config 3 80.18 % 11.79 %

Config 4 82.05 % 62.24 %

Config 5 77.38 % 18.04 %

reward function that also considers the encryption rate of the configurations, there is an
interesting difference. For resource-based fingerprints, Configuration 3 is considered the
most optimal configuration, as it has an encryption rate of 500 B/s while being classified
as normal in 80.18 % of cases [48]. Using syscall-based fingerprints however, Configura-
tion 4 is considered the most optimal. Essentially, because more fingerprints are being
detected by the AD when using syscall-based data, the ransomware cannot use as fast of
a configuration compared to resource-based data.

Table 6.7: Expected Rewards Comparison of Resource-based and Syscall-based Reward
Functions

Configuration Resource-based Reward [48] Syscall-based Reward

Config 0 24.18 11.15

Config 1 -19.05 -0.73

Config 2 -19.68 -4.42

Config 3 45.87 3.45

Config 4 39.91 60.79

Config 5 36.49 3.35

The expected rewards of the two approaches are shown in Table 6.7. Since different reward
functions were used, the absolute values of the rewards cannot be directly compared with
each other. Nevertheless, the expected rewards can be compared in relation to the other
configurations of each approach. For instance, it can be seen that Configuration 4 in
the syscall-based (i.e., the optimal configuration) has a much higher reward than any
other configuration. In contrast, although the optimal configuration in the resource-based
case (i.e., Configuration 3) of course also has the highest expected reward, the expected
reward is much more similar to other sub-optimal configurations such as Configuration 4
or Configuration 5.

Additionally, the RL agent’s performance metrics can be compared. Table 6.8 shows the
accuracy values achieved by the resource-usage-based prototype and the training times
for different numbers of episodes. When comparing these values to the ones reported
in Table 6.3, some performance improvements can be noticed. The prototype presented

56 CHAPTER 6. EVALUATION

in this work achieved an accuracy of above 90 % in just 50 episodes or 1.5 minutes of
training. After 100 episodes, an accuracy of 94.63 % was achieved, while the prototype
reported in [1] achieved an accuracy of 91.43 %. However, the resource-based prototype
reached 100 episodes in 2 minutes, while this work’s prototype took 3.4 minutes for 100
episodes. Although the agent proposed in this work takes more time to train to a certain
number of episodes, it appears to be learning faster and thus reaches higher accuracy
scores in a shorter amount of time.

A possible explanation for the faster learning might lie in the reward functions. As dis-
cussed above and shown in Table 6.7, this work used a reward function in which the
optimal configuration achieved distinctly higher rewards than any other sub-optimal con-
figuration. On the contrary, the reward function used in [1] did not differentiate as strongly
between the rewards given to the optimal configuration and other configurations. This
reward function design might be the cause of the differences in learning speed and number
of episodes necessary for the agent to achieve a high accuracy.

Table 6.8: Accuracies of Selecting the Optimal Configuration and Training Times of
Resource-based Prototype [1]

Episodes Accuracy (in %) Training Time

100 91.43 % 2.0 min

200 94.86 % 5.1 min

300 96.32 % 6.5 min

400 96.21 % 8.1 min

1000 98.61 % 23.9 min

2000 99.07 % 66.4 min

5000 99.71 % 172.2 min

6.3 Evaluation of Additional Benign Behaviors

After successfully showing the feasibility of implementing a RL agent that uses syscall-
based behavioral fingerprinting, to test the adaptability of the agent, further developments
were necessary. Thus, as described in Section 4.2.3, the scenario was extended to include
additional normal, benign behaviors on the client device. Using this extended scenario,
the RL model was tested and evaluated, adapting the AD as well as the reward function
to the changed behavior monitored on the device. The remainder of this section presents
the results and findings of these experiments.

For all normal behaviors described in Section 5.5, a dataset of behavioral data based
on syscalls was collected. Furthermore, for each ransomware configuration a dataset
was collected with the additional behaviors executed in parallel to the encryption of the
ransomware.

Consequently, there were three datasets of behaviors classified as normal:

6.3. EVALUATION OF ADDITIONAL BENIGN BEHAVIORS 57

1. No Additional Behavior (NAB), i.e., the normal behavior of the Electrosense sensor

2. Additional Behavior 1 (AB1), i.e., the data compression behavior

3. Additional Behavior 2 (AB2), i.e., the packages installation behavior

6.3.1 AD with Additional Benign Behaviors

The same IF AD classifier used in the previous experiments was then trained using these
three datasets. As the training data consisted of three different concatenated datasets and
not one uniform dataset as in the cases before, the training data had to be shuffled. This
prevented the classifier from learning any ordering properties of the dataset. However, it
was observed that the detection rates showed a rather high variability depending on the
shuffling of the training dataset. To counter this, for the AD evaluation, the process was
repeated 100 times and the mean was taken. The FNRs of this classifier are shown in
Table 6.9.

Table 6.9: FNRs for IF AD Trained with All Three Benign Behaviors

Config No Additional Behavior Additional Behavior 1 Additional Behavior 2

Config 0 98.92 % 96.96 % 90.70 %

Config 1 72.10 % 15.77 % 76.61 %

Config 2 70.82 % 28.05 % 71.41 %

Config 3 88.94 % 46.08 % 80.00 %

Config 4 97.39 % 88.09 % 89.10 %

Config 5 94.07 % 71.40 % 75.83 %

These values show some surprising behavior of the AD. Firstly, when looking at the FNRs
of the ransomware without any additional behavior, one can see that the AD struggled
to detect the ransomware and for most configurations classified it as benign. Secondly,
the FNRs of AB1 shows much lower values than NAB however still higher than when the
classifier was not trained with additional benign behaviors. Finally, AB2 shows very high
FNRs, similar to NAB. This is very surprising, especially that the ransomware without
additional behavior (i.e., NAB) was not detected while AB1 apparently was more easily
detectable. Additionally, the differences between AB1 and AB2 are remarkable.

Due to the results of the AD, it was suspected that the AB2 dataset introduced a sig-
nificant amount of noise to the classification. In order to test this hypothesis, the IF
classifier was trained with NAB and AB1, leaving out the AB1 dataset. The results of
this evaluation is presented in Table 6.10.

Evidently, compared to when the classifier is also trained with AB2, it was able to detect
the ransomware’s behavior much better here. Especially when looking at the FNRs of
NAB, the differences are striking. Configurations 1 and 2 (i.e., the control group with
unlimited encryption rate) were both classified as normal with over 70 % when trained

58 CHAPTER 6. EVALUATION

Table 6.10: FNRs for IF AD Trained with No Additional Behavior and Additional Be-
havior 1

Config No Additional Behavior Additional Behavior 1 Additional Behavior 2

Config 0 93.25 % 96.53 % 64.17 %

Config 1 24.01 % 13.73 % 47.00 %

Config 2 22.40 % 21.12 % 43.77 %

Config 3 50.13 % 33.44 % 45.57 %

Config 4 89.01 % 84.99 % 61.98 %

Config 5 77.23 % 63.38 % 42.55 %

with all three behaviors, while they were classified as normal in less than 25 % of cases
when AB2 is left out. Unsurprisingly, the classifier was not able to correctly detect the
AB2 dataset, as it had not been trained with it. These results support the hypothesis that
the AB2 dataset introduced too much noise and thus deteriorated the AD capabilities to
detect the ransomware’s behavior. As for the reasons why AB2 introduced too much noise
while apparently AB1 did not, only speculation can be made without further investigation.
As a consequence of this added noise of AB2, only NAB and AB1 were considered going
forward.

Moreover, with the new datasets also other AD algorithms were explored other than the
IF classifier used for the previous experiments. The same classifiers as in Section 5.1
were explored, namely LOF and OCSVM in addition to IF. It was found that with the
additional normal behaviors, a LOF classifier actually works better than the IF classifier.
The FNRs of the LOF classifier when trained with NAB and AB1 is shown in Table 6.11.

Table 6.11: FNRs for LOF AD Trained with No Additional Behavior and Additional
Behavior 1

Config No Additional Behavior Additional Behavior 1

Config 0 98.33 % 89.87 %

Config 1 8.93 % 8.10 %

Config 2 8.72 % 14.14 %

Config 3 32.93 % 19.84 %

Config 4 86.83 % 73.01 %

Config 5 71.32 % 43.69 %

As can be observed, the LOF classifier was much better able to detect the ransomware
for most configurations. Especially the control group (i.e., Configurations 1 and 2) were
classified as normal in below 9 % of cases. Configuration 0 was still very hard to detect.
Interestingly, if the ransomware executed the benign behavior in parallel to the encryption
process, the ransomware was actually more detected than if the ransomware does not
execute any additional behaviors.

However, it is apparent that the ransomware’s behavior was less detected in the presence

6.3. EVALUATION OF ADDITIONAL BENIGN BEHAVIORS 59

Table 6.12: FNRs Comparing the AD Trained only with NAB vs. Trained with NAB and
AB1

Config AD Trained with NAB AD Trained with NAB and AB1

Config 0 89.78 % 98.33 %

Config 1 2.18 % 8.93 %

Config 2 1.74 % 8.72 %

Config 3 11.79 % 32.93 %

Config 4 62.24 % 86.83 %

Config 5 18.04 % 71.32 %

of additional benign behaviors. This is highlighted in Table 6.12, since the FNRs of
all configurations was higher when the AD was trained with additional behaviors. For
instance, the FNRs of the control group increased from approximately 2 % to almost
9 %, or Configuration 4 increased from 62.24 % to 86.83 %. Remarkably, Configuration 0
increased from 89.78 % to 98.33 %, making Configuration 0 almost undetectable. It can
thus be concluded that the presence of additional benign behaviors drastically improved
the ransomware’s ability to remain undetected.

Devices with a more uniform behavior pattern are therefore easier to protect in such a
scenario. This often is the case for IoT devices, as oftentimes, these are single-purpose
devices such as sensors. If such devices are attacked, the behavior is likely to change
significantly and this could be detected by an AD based for instance on syscall monitoring.
On the other hand, if a device has multiple different purposes such as a PC or smartphone,
the normal behavior is much more diverse. A defensive AD system would likely struggle
more to detect malicious behaviors in multi-purpose devices compared to devices with a
uniform behavior.

6.3.2 Reward Function with Additional Benign Behaviors

Based on the results of the AD presented in the section above, the expected rewards of
the reward function could be determined. Recall that the following reward function was
used with the constants s = 100, d = 20, and h = 0:

Hidden: s ∗ ln(r
s
+ 1) + h (6.2)

Detected:
−d

max(r, 1)
− d (6.3)

Using this reward function and the AD results of the classifier trained with NAB and
AB1, the expected rewards are shown in Table 6.13. As one can see, Configuration 4 was
still the most optimal here. However, there were some issues with this reward function.
Configuration 0 had the lowest expected reward, although it was not detected in more

60 CHAPTER 6. EVALUATION

Table 6.13: Expected Rewards with Additional Behaviors

Config Expected Rewards

Config 0 14.24

Config 1 58.95

Config 2 58.07

Config 3 45.56

Config 4 92.75

Config 5 72.59

than 98 % of cases. Moreover, the unlimited Configurations 1 and 2 achieved medium to
high expected rewards, while still being detected in more than 90 % of cases. Even though
Configuration 0 is very slow, in light of the very high evasion rate it could be argued that
this should actually be considered the most optimal configuration. Therefore, for these
AD results a different reward function had to be used to better represent the effectiveness
of the configurations.

After some experimentation, the following revised reward function was used with h = 50
and d = 50:

Hidden: ln(r + 1) + h (6.4)

Detected:
−d

max(r, 1)
− d (6.5)

With this revised reward function, the expected rewards turned out as shown in Table 6.14.
Additionally, the revised reward as well as the previous reward functions are depicted in
Figure 6.5. As can be observed, the previous reward function had a much steeper curve
for the hidden cases, thus higher rates were more heavily rewarded. Furthermore, the
penalty for being detected was larger in the revised case. Combining the hidden and the
detected case, this reward function put more weight into not being detected, and less into
achieving a high encryption rate. Thus, Configuration 0 was the most optimal choice
using the revised reward function.

6.3.3 RL Agent Performance with Additional Benign Behaviors

Using the adjusted AD using the LOF classifier as well as the revised reward function,
the RL agent could now be evaluated using the additional benign behavior. For this,
the same Q-learning prototype as before was used, except for the mentioned adjustments
which could be set using options in the configuration file. The remainder of this section
presents the results and interpretation of these experiments.

It was quickly discovered that the learning process of this RL agent took more time to
reach a certain number of episodes compared to previous experiments. There are three

6.3. EVALUATION OF ADDITIONAL BENIGN BEHAVIORS 61

Table 6.14: Expected Rewards for Revised Reward Function with Additional Behaviors

Config Expected Rewards

Config 0 0.9833 ∗ 52.83 + (1− 0.9833) ∗ −53.13 = 51.06

Config 1 0.0893 ∗ 63.25 + (1− 0.0893) ∗ −50.00 = −39.89
Config 2 0.0872 ∗ 63.36 + (1− 0.0872) ∗ −50.00 = −40.12
Config 3 0.3293 ∗ 56.22 + (1− 0.3293) ∗ −50.10 = −15.09
Config 4 0.8683 ∗ 55.30 + (1− 0.8683) ∗ −50.25 = 41.40

Config 5 0.7132 ∗ 55.30 + (1− 0.7132) ∗ −50.25 = 25.03

possible explanations for this phenomenon. Firstly, since the classifier was trained with
the additional behavior, the feature space was much larger. Before, the CountVectorizer
extracted 1’071 features from the training data, while with the additional behavior, the
number of features reached 2’307, i.e., more than twice as much. Secondly, as Config-
uration 0 was the optimal choice and the AD usually does not detect this, the number
of steps per episode was much higher. Before, the optimal configuration took 10 steps
until full encryption of the simulated data corpus of 2’000 bytes, while in this case, 125
steps were needed. The more steps were taken per episode, the longer was the duration
of the episode. Thirdly, the LOF classifier was, although it performed better on the addi-
tional behavior dataset regarding the detection rates, slightly slower compared to the IF
classifier.

Figure 6.6 depicts the result plots of the RL agent trained over 2’000 episodes using the
AD trained with NAB and AB1. This training run for 2’000 episodes took 506 minutes,
i.e., more than eight hours. Compared to the agent’s training runs before, without the
additional behavior, this was considerably higher. When looking at the plots, it can be
observed that the agent, like before, was able to increase the rewards it received, thus it
was able to show learning capabilities. Also, the optimal reward of approximately 7’550
(= 124 ∗ 52.83 + 1′000) is more and more often achieved, when selecting Configuration 0
until full encryption, i.e., for 125 steps. The number of steps taken in each episode was
also rising to an average of around 40 steps. Compared to the previous experiments this
was much higher, as the number of steps without the additional behavior seldomly was
higher than 5 steps. This fact also serves as an explanation of the much longer training
time needed in this case.

After around 1’800 episodes, one can observe a drop in the rewards achieved, as well as
in the number of steps taken. A possible explanation for this behavior is that the agent
may have learned a sub-optimal configuration due to some fluctuations in the AD. If the
agent chose the optimal action however still was detected multiple times in a row, it may
have influenced the agent to choose a sub-optimal configuration instead. In this case, it
looks like Configuration 4 was learned, as the rewards achieved correspond to choosing
Configuration 4 ten times until full encryption. Supporting this hypothesis, the number
of steps are grouped around ten in this part of the training process.

Table 6.15 presents the accuracy evaluation of this experiment of the RL agent tested with
additional benign behavior over 2’000 episodes. The optimal Configuration 0 achieves an

62 CHAPTER 6. EVALUATION

Figure 6.5: Revised Reward Function in Comparison with Previous Reward Function

accuracy of 99.63 %, which substantiates the RL agent’s learning capabilities. Further-
more, Configuration 0 has the highest Q-values after training.

Additionally, the experiment was then performed with 5’000 episodes, to test whether
more training would further improve the results. The resulting plots are shown in Fig-
ure 6.7. The training of the RL agent for 5’000 episodes took 1’385.9 min, i.e., more than
23 h. Overall, the plots seem to show a consistent behavior compared to the agent trained
for 2000 episodes. The rewards, the average rewards, as well as the number of steps are
rising fast in the beginning and then slowly seem to converge to some value.

However, certain periods during the training are visible where the agent apparently
changed its course and diverted from the optimal configuration. One such period is clearly
visible at around 2’500 episodes where the rewards and the number of steps take a sudden
drop. As described above, the suspected reason for this is the imperfect AD resulting in
optimal actions still being detected. The agent then updated its learned weights, possibly
ending up giving a sub-optimal configuration too much weight.

This issue is further exposed when looking at the accuracy evaluation of the RL agent
trained over 5’000 episodes shown in Table 6.16. The values show that after the training,
the agent selected Configuration 4 with an accuracy of 99.82 % while the supposedly
optimal Configuration 0 only achieved an accuracy evaluation value of 0.07 %. Going
back to the plots in Figure 6.7, looking closely one can see that at the very end of the
training the rewards as well as the number of steps take a small drop. Apparently, in
this very moment at the end of the 5’000 episodes of training, the agent switched to

6.3. EVALUATION OF ADDITIONAL BENIGN BEHAVIORS 63

Figure 6.6: Results for Prototype 13 with Additional Benign Behavior over 2’000 Episodes
with ϵ = 0.4, δ = 0.05, α = 0.0005, γ = 0.75

Configuration 4 from Configuration 0, resulting in the accuracy results described above.
One reason for this could also be the similarity of the expected rewards and the detection
rates between Configuration 0 and 4, since both configurations were not well detected. In
the previous experiments without additional behavior, the optimal configuration had the
highest reward by far, here the gap between the optimal and the second-best configuration
was much closer, possibly making it harder for the agent to differentiate the two.

To test the accuracy of the prototype with additional benign behavior for different training
times, the experiment was repeated for different numbers of episodes. The resulting
accuracies and their training times can be seen in Table 6.17. The agent was able to reach
an accuracy of above 90 % in less than 10 minutes. Compared to the agent tested without
additional benign behavior, the accuracy levels reached with a certain number of episodes
was very similar. However, the training times were much higher as discussed previously,
approximately five times longer.

In conclusion, after the experiments run with additional benign behavior, it can be stated
that the agent showed similar learning capabilities as without the additional benign behav-
ior. Due to the AD struggling more with detecting the ransomware configurations, some

64 CHAPTER 6. EVALUATION

Table 6.15: Accuracy for Prototype 13 with Additional Benign Behavior after 2’000
Episodes with ϵ = 0.4, δ = 0.05, α = 0.0005, γ = 0.75

Configuration Initial Accuracy Trained Accuracy Final Q-Values

Percentage # Samples Percentage # Samples

Config 0 65.77% 5625 / 8552 99.63% 8520 / 8552 2.09840300e+02

Config 1 06.75% 577 / 8552 00.11% 9 / 8552 4.64193451e+00

Config 2 07.30% 624 / 8552 00.05% 4 / 8552 -5.51316332e-43

Config 3 06.38% 546 / 8552 00.06% 5 / 8552 1.40514306e+01

Config 4 06.98% 597 / 8552 00.05% 4 / 8552 8.59115417e+01

Config 5 06.82% 583 / 8552 00.12% 10 / 8552 6.35431035e+01

Table 6.16: Accuracy for Prototype 13 with Additional Benign Behavior after 5’000
Episodes with ϵ = 0.4, δ = 0.05, α = 0.0005, γ = 0.75

Configuration Initial Accuracy Trained Accuracy Final Q-Values

Percentage # Samples Percentage # Samples

Config 0 65.77% 5625 / 8552 00.07% 6 / 8552 7.43793487e+01

Config 1 06.75% 577 / 8552 00.01% 1 / 8552 -9.68197237e-26

Config 2 07.30% 624 / 8552 00.04% 3 / 8552 -4.33260042e-92

Config 3 06.38% 546 / 8552 00.02% 2 / 8552 -1.77811110e-17

Config 4 06.98% 597 / 8552 99.82% 8537 / 8552 5.67962778e+01

Config 5 06.82% 583 / 8552 00.04% 3 / 8552 2.22276496e+01

configurations were hardly detectable. This resulted in Configuration 0 being deemed the
optimal configuration using the revised reward function. Possibly due to the expected
rewards of Configurations 0 and 4 not having a large difference, the agent sometimes
struggled to decide between the two.

6.3. EVALUATION OF ADDITIONAL BENIGN BEHAVIORS 65

Figure 6.7: Results for Prototype 13 with Additional Benign Behavior over 5’000 Episodes
with ϵ = 0.4, δ = 0.05, α = 0.0005, γ = 0.75

Table 6.17: Accuracies of Selecting Config 0 and Training Times of the Improved Q-
Learning Prototype with Additional Benign Behavior

Episodes Accuracy (in %) Training Time

50 90.01 % 7.6 min

100 94.46 % 16.2 min

200 95.29 % 35.1 min

500 98.62 % 101 min

1000 99.39 % 238.6 min

66 CHAPTER 6. EVALUATION

Chapter 7

Limitations

”A thorough evaluation of any research endeavor involves acknowledging and addressing
potential limitations. This chapter delves into the known constraints of the research pre-
sented in this thesis, recognizing their significance in interpreting the findings and deter-
mining the generalizability of the results. Despite the substantial contributions made by
the research, several areas warrant further exploration to enhance its comprehensiveness
and applicability.

The limitations identified in this chapter stem from various aspects of the research process,
including study design, fingerprint data collection methods, and analytical techniques.
These constraints may influence the interpretation of the results and limit the ability to
generalize the findings to broader contexts or environments. Nevertheless, acknowledging
these limitations allows for a more informed understanding of the research’s strengths
and weaknesses, paving the way for future research that addresses these shortcomings
and expands the knowledge base in the field.”1

As this work is extending previous work, only a select set of its limitations could be
addressed in this work. Thus, there are several limitations that still remain present in
this work. For instance, the performance of the ransomware as well as the efficiency of
fingerprint retrieval was not addressed or further optimized in this work. As mentioned
in [48], there might still be room for improvement regarding the speed of operations.

Moreover, this work and its findings are limited to the specific scenario and problem de-
scribed in previous chapters. Although efforts were made to show the adaptability of the
approach by incorporating additional benign behaviors, the scenario was still limited for
instance by the device type or the type of malware used. As shown, the normal device
behavior has a significant impact on the detectability of a ransomware, however, different
devices most likely show different behavior patterns and thus different detection rates of
ransomware. Furthermore, as this work did only use ransomware with different config-
urations, other malware samples such as botnets, rootkits, backdoors, or cryptojackers
possibly have different results regarding the AD.

1This text was generated using generative artificial intelligence

67

68 CHAPTER 7. LIMITATIONS

As discovered, the performance of the RL agent largely depends on how well the AD
classifier is able to detect the ransomware. This was shown by using an ideal version
of the AD. With the AD used here, the sometimes large fluctuations mean that the RL
agent’s learning is hindered.

To be able to compare the results achieved with syscall-based fingerprints with the pre-
vious approach of resource usage-based fingerprints, the same ransomware configurations
were adopted from [1]. This might be a limiting factor, as there might be even more opti-
mal configurations further improving the balance between encryption speed and stealthi-
ness.

Additionally, to explore the adaptability of the RL agent, two different benign behaviors
were added. However, one of the two appeared to add a significant amount of noise to the
AD, harshly limiting its ability to differentiate between normal and malicious behavior.
The cause of this limitation needs to be further explored, e.g., by testing a larger set of
additional behaviors.

Finally, the revised reward function described in Section 6.3.2 might be further improved.
The revised reward function presented in this work lead the RL agent used with additional
benign behavior to sometimes struggle between the two best configurations. Due to this
limitation, the agent sometimes randomly changed course and selected the second-best
configuration for a period of time, before switching back to the optimal configuration.

Chapter 8

Future Work

”Chapter 7 discussed the limitations of the research presented in this thesis, identifying
known constraints that may affect the interpretation and generalizability of the findings.
Building upon this foundation, this chapter explores potential future directions for re-
search, aiming to extend the knowledge base and address these limitations.

Beyond refining the research approach, this chapter delves into new research questions and
methodologies that could further advance the field. These future directions encompass
exploring previously unexamined aspects of the research topic, employing advanced data
collection methods, and leveraging advanced analytical techniques. By pursuing these
avenues, the field can continuously evolve and provide insightful advancements in our
understanding of the research topic.”1

In order to further investigate the effects of different normal behaviors, more work is
necessary in the future. By exploring a more diverse set of behaviors, one could examine
the cause of the phenomenon experienced in this work, where the AD did not respond
well to a certain behavior. Furthermore, this could be combined with testing if different
fingerprint data sources perform differently when used with different benign behaviors.

For the purpose of testing the generalizability of the work presented, the approach could
be used in different environments, i.e., with different types of devices. This would allow
to draw conclusions regarding the question whether this approach also works for different
classes of devices, possibly not even in the IoT space.

Since the AD is a central component influencing the performance and accuracy of the RL
agent, improving the AD’s classification could prove worthwhile. To this end, other fea-
ture extraction methods from the field of NLP could be explored, such as Term Frequency
- Inverse Document Frequency (TF-IDF) [49]. To improve the performance of the AD
model, Principle Component Analysis (PCA) could be used to reduce the dimensionality
of the features. The two approaches of resource usage fingerprinting and syscall finger-
printing could also be combined such that the positive aspects of both approaches could
be leveraged.

1This text was generated using generative artificial intelligence

69

70 CHAPTER 8. FUTURE WORK

Moreover, other malware types could be explored, rather than focusing only on ran-
somware. Especially in the field of IoT, malwares such as botnets, backdoors, or crypto-
jackers could be an interesting use case to explore. It would be compelling to see whether
it is feasible to use RL to hide a configurable version of such malware samples.

Finally, instead of training the RL agent to select the most optimal ransomware configu-
ration from a prewritten set of configurations, it could be interesting to test the feasibility
of training the agent to write a new optimal configuration. The agent would then test
different values for the encryption rates, different encryption burst durations and different
burst pauses. By interacting with the environment, the agent could possibly find more
optimal configurations than it could when selecting from prewritten configurations.

Chapter 9

Summary and Conclusions

In this thesis, an extension to RansomAI [1] is presented in several aspects. The pro-
posed and extended framework leverages RL to dynamically alter the configuration of a
ransomware in order to avoid being detected by a defensive AD. The scenario in which
this framework was applied uses a client device targeted by the ransomware and a C&C
server, on which the RL agent as well as any other component necessary for the operation
is running.

Device behavioral fingerprinting is used to monitor the behavior of the device. The target
device is assumed to use an AD system based on the fingerprint data for defensive pur-
poses. On the attacker side, this AD system is imitated and used to train the RL agent to
stay undetected in such an environment. Although this attack is targeting a ML model,
it is not an adversarial attack in the classical sense, since the input to the ML model (i.e.,
the behavior data) can only be influenced indirectly via the ransomware configurations.
As the defensive AD is treated as a black box, the scenario becomes more realistic.

A configurable version of an existing ransomware sample called Ransomware PoC [45] was
developed in [1] and was adopted in this work. This ransomware can be configured at run-
time regarding the encryption algorithm used, the encryption rate, and encryption burst
settings including burst duration and burst pause. With this, six different ransomware
configurations were used for the evaluation. The ransomware is listening for configuration
changes from the C&C server via a RESTful API during its operation.

To measure the state of the environment for the RL agent, device behavioral fingerprinting
is used. As a first extension to the previous work, the fingerprints are generated from
syscall data. Periodically, the syscalls of all processes running on the client device are
collected and sent to the C&C server. There, the occurrence frequency of the individual
syscalls is extracted and used as the set of features. This serves as input to the AD,
deciding based on the input whether the device is behaving normally or might be infected.
As a second measure on the state of the environment, the encryption rate is periodically
reported by the ransomware running on the client device to the C&C server. The output
of the AD and the encryption rate are fed into a reward function, giving a positive or
negative reward signal to the agent depending on how good the state of the environment
is.

71

72 CHAPTER 9. SUMMARY AND CONCLUSIONS

The scenario was implemented using a device with constrained resources, namely a Rasp-
berry Pi 3 running as an Electrosense sensor [10]. Such a device is used to monitor the
radio frequency spectrum as a crowdsourcing solution. Various data sets were then col-
lected using this setup, including normal behavior data and infected behavior data for each
ransomware configuration. With these precollected data sets, a simulated environment
was implemented to speed up the development and RL agent training. The developed
prototypes were also evaluated using this simulated environment.

Initially, a first PoC prototype was implemented, showing the viability of the approach
using syscall data for device behavior fingerprinting in combination with a RL agent. This
prototype did not apply any real RL concepts yet, thus there are no results available.

Next, a simple prototype was developed which applied Q-learning using a neural network
over a single episode. While this prototype showed promising results in that the agent
learned to select actions that receive higher rewards, it was not able to find the most
optimal configuration yet according to the expected rewards. Also, the reward function
only considered the output of the AD and not the encryption rate.

In the next improved version of the prototype, the agent was trained for multiple episodes
also using Q-learning. An artificial data corpus was used for a more realistic setting for the
ransomware to encrypt in the simulated environment. Furthermore, a reward function was
used that also incorporated the encryption rate, thus not only incentivizing the stealth-
iness, but also the speed of encryption. This prototype was shown to reach an accuracy
of above 90 % in less than two minutes of training time. Additionally, the prototype was
evaluated using an ideal version of the AD, in which certain ransomware configurations
were detected manually, while others remained hidden. This was done in order to test the
agent’s learning capabilities under ideal conditions, without the fluctuations of the AD.
These results showed that indeed the agent is able to learn the optimal configuration with
increasing accuracy over time.

In comparison with the prototype presented in [1], there were significant differences found
when using syscalls as the basis of fingerprints. Most configurations were more easily
detected by the AD when using syscalls, which also had an influence on the configuration
that was deemed the most optimal. While in [1] Configuration 3 was the most optimal,
here it was Configuration 4 due to the AD being much better able to detect Configura-
tion 3. Furthermore, the reward function used in this work was better able to distinguish
between the best configuration and other sub-optimal ones. This serves as a potential
explanation of a small decrease in the learning time needed to reach certain accuracy
levels. The RL agent using syscall data was able to reach an accuracy of above 90 %
slightly faster than the RL agent using resource usage data.

A major contribution of this work was the introduction of additional benign behaviors
to the scenario. Two additional behaviors of the client device that should be classified
as non-malicious behavior by the AD were implemented. Firstly, a data compression be-
havior was developed that continuously compresses a data corpus. Secondly, a package
installation behavior was implemented, that uses pip to install Python packages. Sub-
sequently, behavioral data was collected for the two additional behaviors, including data
for the ransomware in conjunction with the additional behaviors. Testing the AD trained
with all benign behaviors (i.e., normal device behavior plus the two additional behaviors)

73

gave some surprising results. It was discovered that apparently the package installation
behavior introduced significant noise to the detection, which left the AD unable to differ-
entiate between normal and infected behavior. When the package installation behavior
was left out however, the AD was again able to detect the malicious behavior.

It was shown that the presence of additional benign behavior executed on the client device
significantly improved the ransomware’s stealthiness. All configurations used in this work
were less detected, with Configuration 0 only being detected in 1.67 % of cases. This leads
to the conclusion that devices with more uniform behavior patterns are easier to protect
in such a scenario.

Due to the changed AD results when using the additional benign behavior, a revised
reward function was designed, to better reflect the effectiveness of the configurations
under these new circumstances. With this, Configuration 0 was deemed the most optimal
configuration, despite the fact that it has a very low encryption rate. Next, the RL model
was evaluated with additional benign behavior. In general, the agent was able to learn
the configuration also with the additional benign behavior. However, possibly due to the
reward function design, the agent was less consistent such that in certain periods during
the training, the second-best configuration was learned. Moreover, the agent’s training
took significantly longer compared to without additional behavior. This may in part be
explained with the increased number of steps taken per episode as the configurations were
much less detected. Nevertheless, the agent achieved an accuracy of above 90 % in less
than eight minutes.

74 CHAPTER 9. SUMMARY AND CONCLUSIONS

Bibliography

[1] J. von der Assen, A. H. Celdrán, J. Luechinger, et al., RansomAI: AI-powered Ran-
somware for Stealthy Encryption, 2023. arXiv: 2306.15559 [cs.CR]. [Online]. Avail-
able: https://arxiv.org/abs/2306.15559.

[2] L. S. Vailshery, Number of Internet of Things (IoT) connected devices worldwide
from 2019 to 2021, with forecasts from 2022 to 2030, Last Visit 11.07.2023, 2022.
[Online]. Available: https://www.statista.com/statistics/1183457/iot-
connected-devices-worldwide/.

[3] F. Meneghello, M. Calore, D. Zucchetto, M. Polese, and A. Zanella, “IoT: Internet of
Threats? A Survey of Practical Security Vulnerabilities in Real IoT Devices”, IEEE
Internet of Things Journal, vol. 6, no. 5, pp. 8182–8201, 2019. doi: 10.1109/JIOT.
2019.2935189.

[4] R. Ahmad and I. Alsmadi, “Machine learning approaches to IoT security: A system-
atic literature review”, Internet of Things, vol. 14, p. 100 365, 2021, issn: 2542-6605.
doi: https://doi.org/10.1016/j.iot.2021.100365. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2542660521000093.

[5] Y. Jiang, X. Li, H. Luo, S. Yin, and O. Kaynak, “Quo vadis artificial intelligence?”,
Discover Artificial Intelligence, vol. 2, no. 1, 2022, issn: 2731-0809. doi: 10.1007/
s44163-022-00022-8.

[6] H. Wu, H. Han, X. Wang, and S. Sun,“Research on Artificial Intelligence Enhancing
Internet of Things Security: A Survey”, IEEE Access, vol. 8, pp. 153 826–153 848,
2020. doi: 10.1109/ACCESS.2020.3018170.

[7] C. Thanh and I. Zelinka, “A Survey on Artificial Intelligence in Malware as Next-
Generation Threats”, MENDEL, vol. 25, no. 2, pp. 27–34, 2019. doi: 10.13164/
mendel.2019.2.027.

[8] J. Pan and C. Fung, Artificial intelligence in malware - cop or culprit?, University
of Western Australia, 2008.

[9] J. Lüchinger, RansomAI, Last Visit 16.12.2023, 2023. [Online]. Available: https:
//github.com/jluech/RansomAI/tree/master.

[10] S. Rajendran, R. Calvo-Palomino, M. Fuchs, et al., “Electrosense: Open and Big
Spectrum Data”, CoRR, vol. abs/1703.09989, 2017. arXiv: 1703.09989. [Online].
Available: http://arxiv.org/abs/1703.09989.

75

76 BIBLIOGRAPHY

[11] P. M. S. Sánchez, A. H. Celdrán, G. Bovet, G. M. Pérez, and B. Stiller, “SpecForce:
A Framework to Secure IoT Spectrum Sensors in the Internet of Battlefield Things”,
IEEE Communications Magazine, vol. 61, no. 5, pp. 174–180, 2023. doi: 10.1109/
MCOM.001.2200349.

[12] A. H. Celdrán, P. M. Sánchez Sánchez, C. Feng, G. Bovet, G. M. Pérez, and B.
Stiller, “Privacy-Preserving and Syscall-Based Intrusion Detection System for IoT
Spectrum Sensors Affected by Data Falsification Attacks”, IEEE Internet of Things
Journal, vol. 10, no. 10, pp. 8408–8415, 2023. doi: 10.1109/JIOT.2022.3213889.

[13] A. H. Celdrán, P. M. S. Sánchez, M. A. Castillo, G. Bovet, G. M. Pérez, and B.
Stiller, “Intelligent and Behavioral-Based Detection of Malware in IoT Spectrum
Sensors”, International Journal of Information Security, vol. 22, no. 3, pp. 541–
561, Jun. 2023. doi: 10.1007/s10207-022-00602-w. [Online]. Available: https:
//doi.org/10.1007/s10207-022-00602-w.

[14] A. H. Celdrán, J. von der Assen, K. Moser, et al., “Early Detection of Crypto-
jacker Malicious Behaviors on IoT Crowdsensing Devices”, in NOMS 2023-2023
IEEE/IFIP Network Operations and Management Symposium, 2023, pp. 1–8. doi:
10.1109/NOMS56928.2023.10154392.

[15] B. A. S. Al-rimy, M. A. Maarof, and S. Z. M. Shaid, “Ransomware threat suc-
cess factors, taxonomy, and countermeasures: A survey and research directions”,
Computers & Security, vol. 74, pp. 144–166, 2018, issn: 0167-4048. doi: https:
//doi.org/10.1016/j.cose.2018.01.001. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S016740481830004X.

[16] M. Humayun, N. Jhanjhi, A. Alsayat, and V. Ponnusamy, “Internet of things and
ransomware: Evolution, mitigation and prevention”, Egyptian Informatics Journal,
vol. 22, no. 1, pp. 105–117, 2021, issn: 1110-8665. doi: https://doi.org/10.
1016/j.eij.2020.05.003. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1110866520301304.

[17] M. Alenezi, H. Alabdulrazzaq, A. Alshaher, and M. Alkharang, “Evolution of mal-
ware threats and techniques: A review”, International Journal of Communication
Networks and Information Security, vol. 12, p. 326, Dec. 2020. doi: 10.17762/
ijcnis.v12i3.4723.

[18] H. Oz, A. Aris, A. Levi, and A. S. Uluagac, “A Survey on Ransomware: Evolution,
Taxonomy, and Defense Solutions”, ACM Comput. Surv., vol. 54, no. 11s, Sep. 2022,
issn: 0360-0300. doi: 10.1145/3514229. [Online]. Available: https://doi.org/
10.1145/3514229.

[19] AO Kaspersky Lab, Targeted ransomware doubled in 2022, new techniques and
groups emerge, Last Visit 22.07.2023, Dec. 2022. [Online]. Available: https://www.
kaspersky.com/about/press-releases/2022_targeted-ransomware-doubled-

in-2022-new-techniques-and-groups-emerge.

[20] I. Yaqoob, E. Ahmed, M. H. ur Rehman, et al., “The rise of ransomware and emerg-
ing security challenges in the Internet of Things”, Computer Networks, vol. 129,
pp. 444–458, 2017, Special Issue on 5G Wireless Networks for IoT and Body Sen-
sors, issn: 1389-1286. doi: https://doi.org/10.1016/j.comnet.2017.09.003.

BIBLIOGRAPHY 77

[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1389128617303468.

[21] C. Zhang and Y. Lu, “Study on artificial intelligence: The state of the art and
future prospects”, Journal of Industrial Information Integration, vol. 23, p. 100 224,
2021, issn: 2452-414X. doi: https://doi.org/10.1016/j.jii.2021.100224.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2452414X21000248.

[22] M. Haenlein and A. Kaplan, “A Brief History of Artificial Intelligence: On the
Past, Present, and Future of Artificial Intelligence”, California Management Re-
view, vol. 61, no. 4, pp. 5–14, 2019. doi: 10.1177/0008125619864925. [Online].
Available: https://doi.org/10.1177/0008125619864925.

[23] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd Ed.
The MIT press, 2018, isbn: 978-0-262-19398-6.

[24] C. J. C. H. Watkins,“Learning from delayed rewards”, Ph.D. dissertation, University
of Cambridge, 1989.

[25] P. M. S. Sánchez, J. M. J. Valero, A. H. Celdrán, G. Bovet, M. G. Pérez, and
G. M. Pérez, “A Survey on Device Behavior Fingerprinting: Data Sources, Tech-
niques, Application Scenarios, and Datasets”, CoRR, vol. abs/2008.03343, 2020.
arXiv: 2008.03343. [Online]. Available: https://arxiv.org/abs/2008.03343.

[26] P. M. Sánchez Sánchez, J. M. Jorquera Valero, A. Huertas Celdrán, G. Bovet, M. Gil
Pérez, and G. M. Pérez,“A methodology to identify identical single-board computers
based on hardware behavior fingerprinting”, Journal of Network and Computer Ap-
plications, vol. 212, p. 103 579, 2023, issn: 1084-8045. doi: https://doi.org/10.
1016/j.jnca.2022.103579. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S108480452200220X.

[27] R. Ahmad, I. Alsmadi, W. Alhamdani, and L. Tawalbeh,“Zero-day attack detection:
A systematic literature review”, Artificial Intelligence Review, 2023, issn: 1573-7462.
doi: 10.1007/s10462-023-10437-z. [Online]. Available: https://doi.org/10.
1007/s10462-023-10437-z.

[28] N. Kaloudi and J. Li, “The AI-Based Cyber Threat Landscape: A Survey”, ACM
Comput. Surv., vol. 53, no. 1, Feb. 2020, issn: 0360-0300. doi: 10.1145/3372823.
[Online]. Available: https://doi.org/10.1145/3372823.

[29] L. Fritsch, A. Jaber, and A. Yazidi, “An Overview of Artificial Intelligence Used in
Malware”, in Nordic Artificial Intelligence Research and Development, E. Zouganeli,
A. Yazidi, G. Mello, and P. Lind, Eds., Cham: Springer International Publishing,
2022, pp. 41–51, isbn: 978-3-031-17030-0.

[30] P. Ferrie and H. Shannon, “It’s zell(d)ome the one you expect”, in Virus Bul-
letin, May 2005, pp. 7–11. [Online]. Available: https://cryptohub.nl/zines/
vxheavens/lib/apf50.html.

[31] M. Sewak, S. K. Sahay, and H. Rathore, “ADVERSARIALuscator: An Adversarial-
DRL based Obfuscator and Metamorphic Malware Swarm Generator”, in 2021 In-
ternational Joint Conference on Neural Networks (IJCNN), 2021, pp. 1–9. doi:
10.1109/IJCNN52387.2021.9534016.

78 BIBLIOGRAPHY

[32] H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth, Learning to Evade
Static PE Machine Learning Malware Models via Reinforcement Learning, 2018.
arXiv: 1801.08917 [cs.CR]. [Online]. Available: https://arxiv.org/abs/1801.
08917.

[33] W. Xu, Y. Qi, and D. Evans, “Automatically Evading Classifiers: A Case Study on
PDF Malware Classifiers”, Network and Distributed Systems Symposium 2016, Feb.
2016. [Online]. Available: https://evademl.org/docs/evademl.pdf.

[34] H. S. Anderson, J. Woodbridge, and B. Filar, “DeepDGA: Adversarially-Tuned Do-
main Generation and Detection”, CoRR, vol. abs/1610.01969, 2016. arXiv: 1610.
01969. [Online]. Available: http://arxiv.org/abs/1610.01969.

[35] W. Hu and Y. Tan, “Generating Adversarial Malware Examples for Black-Box At-
tacks Based on GAN”, CoRR, vol. abs/1702.05983, 2017. arXiv: 1702.05983. [On-
line]. Available: http://arxiv.org/abs/1702.05983.

[36] D. Kirat, J. Jang, and M. P. Stoecklin, DeepLocker: Concealing Targeted Attacks
with AI Locksmithing, presented at Black Hat USA 2018, Las Vegas, NV, Aug. 2018.
[Online]. Available: https://i.blackhat.com/us-18/Thu-August-9/us-18-
Kirat-DeepLocker-Concealing-Targeted-Attacks-with-AI-Locksmithing.

pdf.

[37] K. Chung, Z. T. Kalbarczyk, and R. K. Iyer, “Availability Attacks on Computing
Systems through Alteration of Environmental Control: Smart Malware Approach”,
in Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical
Systems, ser. ICCPS ’19, Montreal, Quebec, Canada: Association for Computing
Machinery, 2019, pp. 1–12, isbn: 9781450362856. doi: 10.1145/3302509.3311041.
[Online]. Available: https://doi.org/10.1145/3302509.3311041.

[38] Z. Fang, J. Wang, B. Li, S. Wu, Y. Zhou, and H. Huang, “Evading Anti-Malware
Engines With Deep Reinforcement Learning”, IEEE Access, vol. 7, pp. 48 867–48 879,
2019. doi: 10.1109/ACCESS.2019.2908033.

[39] H. S. Anderson, A. Kharkar, B. Filar, and P. Roth, “Evading Machine Learning
Malware Detection”, Black Hat USA,White Paper, 2017. [Online]. Available: https:
//www.blackhat.com/docs/us-17/thursday/us-17-Anderson-Bot-Vs-Bot-

Evading-Machine-Learning-Malware-Detection-wp.pdf.

[40] T. Quertier, B. Marais, S. Morucci, and B. Fournel, MERLIN -- Malware Evasion
with Reinforcement LearnINg, 2022. arXiv: 2203.12980 [cs.CR]. [Online]. Avail-
able: https://arxiv.org/abs/2203.12980.

[41] R. Labaca-Castro, S. Franz, and G. D. Rodosek,“AIMED-RL: Exploring Adversarial
Malware Examples with Reinforcement Learning”, in Machine Learning and Knowl-
edge Discovery in Databases. Applied Data Science Track, Y. Dong, N. Kourtellis,
B. Hammer, and J. A. Lozano, Eds., Cham: Springer International Publishing, 2021,
pp. 37–52, isbn: 978-3-030-86514-6.

[42] S. Pandey, N. Kumar, A. Handa, and S. K. Shukla, “Evading malware classifiers
using RL agent with action-mask”, International Journal of Information Security,
Jul. 2023, issn: 1615-5270. doi: 10.1007/s10207-023-00715-w. [Online]. Available:
https://doi.org/10.1007/s10207-023-00715-w.

BIBLIOGRAPHY 79

[43] W. Song, X. Li, S. Afroz, D. Garg, D. Kuznetsov, and H. Yin, MAB-Malware: A
Reinforcement Learning Framework for Attacking Static Malware Classifiers, 2021.
arXiv: 2003.03100 [cs.CR]. [Online]. Available: https://arxiv.org/abs/2003.
03100.

[44] M. Ebrahimi, J. Pacheco, W. Li, J. L. Hu, and H. Chen, “Binary Black-Box Attacks
Against Static Malware Detectors with Reinforcement Learning in Discrete Action
Spaces”, in 2021 IEEE Security and Privacy Workshops (SPW), 2021, pp. 85–91.
doi: 10.1109/SPW53761.2021.00021.

[45] Jimmy, Ransomware-PoC, Last Visit 11.12.2023, 2021. [Online]. Available: https:
//github.com/jimmy-ly00/Ransomware-PoC.

[46] Library Of Congress Web Archiving Program, .gov PDF dataset, Last Visit 18.12.2023,
2019. [Online]. Available: https://www.loc.gov/item/2020445568/.

[47] A. S. Tanenbaum and H. Bos, Modern Operating Systems, 4th ed. Boston, MA:
Pearson, 2015, isbn: 978-0-13-359162-0.

[48] J. Lüchinger, AI-powered Ransomware to Optimize its Impact on IoT Spectrum
Sensors, University of Zurich, 2023.

[49] scikit-learn developers, Feature Extraction, Last Visit 16.12.2023, 2023. [Online].
Available: https://scikit-learn.org/stable/modules/feature_extraction.
html#text-feature-extraction.

[50] Free Software Foundation, nohup(1p) — Linux manual page, Last Visit 18.12.2023,
2010. [Online]. Available: https://linux.die.net/man/1/nohup.

[51] Free Software Foundation, tar(1) - Linux man page, Last Visit 18.12.2023, 2010.
[Online]. Available: https://linux.die.net/man/1/tar.

[52] The pip developers, pip, Last Visit 19.12.2023, 2020. [Online]. Available: https:
//pip.pypa.io/en/stable/.

80 BIBLIOGRAPHY

Abbreviations

AB1 additional behavior 1
AB2 additional behavior 2
AD anomaly detection
AES advanced encryption standard
AI artificial intelligence
API application programming interface
BoW bag-of-word
C&C command and control
CPS cyber-physical system
CPU central processing unit
DDoS distributed denial of service
DL deep learning
DNN deep neural network
DoS denial of service
DP dynamic programming
DRL deep reinforcement learning
EMA exponential moving average
FFT fast fourier transform
FNR false negative rate
GAN generative adversarial network
IDS intrusion detection system
IF isolation forest
IoBT internet of battlefield things
IoT internet of things
IQ in-phase and quadrature
LAN local area network
LOF local outlier factor
MDP Markov decision process
ML machine learning
NAB no additional behavior
NLP natural language processing
OCSVM one-class support vector machine
OS operating system
OSDaaS open spectrum data as a service
PCA principal component analysis
PE portable executable

81

82 ABBREVIATONS

PMU performance monitor unit
PoC proof of concept
PPO proximal policy optimization
PSD power spectral density
RaaS ransomware as a service
ReLU rectified linear unit
REST representational state transfer
RF radio frequency
RL reinforcement learning
ROAR ransomware optimized with AI for resource-constrained devices
RSA Rivest Shamir Adleman
SDR software-defined radio
SiLU sigmoid linear unit
SSDF spectrum sensing data falsification
SSH secure shell
TD temporal difference
TF-IDF term frequency - inverse document frequency
TLS transport layer security
TNR true negative rate
VAC variational actor critic

List of Figures

4.1 System Environment / Architecture . 26

4.2 Neural Network for Q-Learning from [48] with Logistic and ReLU Activation 31

5.1 Activation Functions Used in Neural Network 37

5.2 Comparison of Performance Reward Functions Variant 1 and Variant 5 . . 39

6.1 Results for Prototype 12 over 500 Steps with ϵ = 0.2, α = 0.0005, γ = 0.75 . 49

6.2 Results for Prototype 12 over 1’000 Steps with ϵ = 0.2, α = 0.0005, γ = 0.75 49

6.3 Results for Prototype 13 over 10’000 Episodes with ϵ = 0.4, δ = 0.01, α =
0.0005, γ = 0.75 . 51

6.4 Results for Prototype 13 with Ideal AD over 10’000 Episodes with ϵ =
0.4, δ = 0.01, α = 0.0005, γ = 0.75 . 53

6.5 Revised Reward Function in Comparison with Previous Reward Function . 62

6.6 Results for Prototype 13 with Additional Benign Behavior over 2’000 Episodes
with ϵ = 0.4, δ = 0.05, α = 0.0005, γ = 0.75 63

6.7 Results for Prototype 13 with Additional Benign Behavior over 5’000 Episodes
with ϵ = 0.4, δ = 0.05, α = 0.0005, γ = 0.75 65

83

84 LIST OF FIGURES

List of Tables

3.1 Overview and Comparison of Related Work. 22

4.1 Ransomware Configurations . 28

5.1 Performance Comparison of Different AD Algorithms (TNR for Normal,
FNR for C0-C5, in Percentage) . 34

5.2 Expected Rewards of Simple Reward Computation 37

5.3 Reward Computation for Performance Rewards 42

6.1 Accuracy for Prototype 12 after 10’000 Episodes with ϵ = 0.2, α = 0.0005, γ =
0.75 . 50

6.2 Accuracy for Prototype 13 after 10’000 Episodes with ϵ = 0.4, δ = 0.01, α =
0.0005, γ = 0.75 . 52

6.3 Accuracies of Selecting Config 4 and Training Times of Improved Q-Learning
Prototype . 52

6.4 Expected Rewards Using Ideal AD . 52

6.5 Accuracy for Prototype 13 with Ideal AD after 10’000 Episodes with ϵ =
0.4, δ = 0.01, α = 0.0005, γ = 0.75 . 54

6.6 TNR and FNR Comparison of Resource-based and Syscall-based Fingerprints 55

6.7 Expected Rewards Comparison of Resource-based and Syscall-based Re-
ward Functions . 55

6.8 Accuracies of Selecting the Optimal Configuration and Training Times of
Resource-based Prototype [1] . 56

6.9 FNRs for IF AD Trained with All Three Benign Behaviors 57

6.10 FNRs for IF AD Trained with No Additional Behavior and Additional
Behavior 1 . 58

85

86 LIST OF TABLES

6.11 FNRs for LOF AD Trained with No Additional Behavior and Additional
Behavior 1 . 58

6.12 FNRs Comparing the AD Trained only with NAB vs. Trained with NAB
and AB1 . 59

6.13 Expected Rewards with Additional Behaviors 60

6.14 Expected Rewards for Revised Reward Function with Additional Behaviors 61

6.15 Accuracy for Prototype 13 with Additional Benign Behavior after 2’000
Episodes with ϵ = 0.4, δ = 0.05, α = 0.0005, γ = 0.75 64

6.16 Accuracy for Prototype 13 with Additional Benign Behavior after 5’000
Episodes with ϵ = 0.4, δ = 0.05, α = 0.0005, γ = 0.75 64

6.17 Accuracies of Selecting Config 0 and Training Times of the Improved Q-
Learning Prototype with Additional Benign Behavior 65

List of Listings

5.1 Example of Raw Syscall Data Collected from the Client Device 35
5.2 Neural Network Implementation Using Log - SiLU Activation Functions . . 41
5.3 Bash Script for Behavior 1 . 43
5.4 Bash Script for Behavior 2 . 44
5.5 Listed Python Packages Used for Behavior 2 in requirements.txt File . . 45

87

88 LIST OF LISTINGS

List of Algorithms

2.1 Q-Learning Algorithm (Pseudocode) [23] 13

89

90 LIST OF ALGORITHMS

Appendix A

Codebase

The codebase used for this master thesis is split into two parts, one intended to be used on
the client device and one on the C&C server. Both parts are publicly available including
the respective installation guidelines at the following URLs:

• C&C server: https://github.com/SandroPadovan/extended_roar_server

• Client device: https://github.com/SandroPadovan/extended_roar_client

91

