
Detection and Classification of
Malware using File System
Dimensions for MTD on IoT

Róbert Oles
Zurich, Switzerland

Student ID: 17-736-653

Supervisor: Dr. Alberto Huertas Celdrán, Jan von der Assen,
Chao Feng

Date of Submission: May 3, 2023

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Zusammenfassung

Das Ziel dieser Masterarbeit ist der Entwurf und die Implementierung eines Systems, das
dynamisch Ransomware basierend auf der Dateisystemaktivitäten erkennt. Die Imple-
mentierung eines Overlay-Dateisystems hat es ermöglicht, die Dateisystemaktivität aller
Prozesse in Form von einer kommaseparierten Datei (CSV) zu erfassen. Merkmale wie die
Entropie von Schreibvorgängen, Anzahl von Lesevorgängen und die Anzahl von Schreib-
operationen werden verwendet, um die Klassifizierungsmodelle zu trainieren. Weiter dient
das Overlay-Dateisystem auch dem Zweck, den Angriff abzuschwächen. Sobald das Mo-
dell böswillige Aktivitäten erkennt, initiiert das Overlay-Dateisystem eine Moving Target
Defense Strategie (MTD), die den Namen einer Datei ändert, nachdem die Datei von ei-
nem Prozess gelesen wurde. Dadurch werden Änderungen an der Datei verhindert, was
die Ransomware davon abhält, weitere Benutzerdaten zu verschlüsseln. Zusätzlich werden
die gesammelten Daten in Bezug auf die Entropie von Schreibvorgängen sowie die Anzahl
der Lese- und Schreibvorgänge von unterschiedliche Arbeitslasten analysiert. Die Datei-
systemoperationen für bösartige und gutartige Workloads werden interpretiert. Weiter
wurde das Erkennungssystem auf einem Raspberry Pi bereitgestellt. Die vorgeschlagene
Lösung demonstrierte eine hohe Leistung in Bezug auf Erkennungsgeschwindigkeit und
Genauigkeit. Schliesslich wurde der Leistungsaufwand des Erkennungssystems analysiert.
Bei laufendem Erkennungssystem hat sich die Geschwindigkeit der Schreiboperationen
verdoppelt, im Vergleich zur laufenden Maschine ohne Erkennungssystem.

i

ii

Abstract

The aim of this thesis is the design and implementation of a system that dynamically
detects Ransomware based on file system activity. Implementation of custom overlay file
system has made possible to log the file system activity of all processes in a form of comma-
separated values (CSV) file. Features such as entropy of write operations, number of reads
and number of write operations are used to train the classification models. Further, the
overlay file system also serves the purpose of mitigating the attack. As soon as the model
detects malicious activity, the overlay file system initiates a moving target defense strategy
(MTD), which changes the name of a file after the file has been read by any process.
This renders making any changes to the file impossible, which prevents the Ransomware
from encrypting further user data. Additionally, the collected raw features are analyzed
with respect to entropy of write operations as well as the number of reads and writes of
different workloads. The file system operations for both malicious and benign workloads
are put into perspective. The detection system has been deployed to a Raspberry Pi
machine and has shown high performance in terms of speed of detection and accuracy of
detection. Finally, the performance overhead of the detection system has been analyzed.
With the detection system running, the speed of write operations has decreased two-fold
in comparison to the machine running without the detection system.

iii

iv

Acknowledgments

I would like to express my gratitude to Dr. Alberto Huertas Celdrán, Jan von der Assen
and Chao Feng for their continuous support and guidance throughout the writing of the
thesis. I have learned a lot from their expertise and insights. I would like to thank
Prof. Dr. Burkhard Stiller and the Communication Systems Group for giving me the
opportunity to write my thesis on a topic which I was highly interested in. My studies at
the University of Zurich have been a long run. I would like to thank my family and my
friends for their patience and support during my studies.

v

vi

Contents

Zusammenfassung i

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Description of Work . 2

1.2 Thesis Outline . 3

2 Background 5

2.1 Ransomware . 5

2.2 Machine Learning Techniques . 6

2.2.1 Supervised Machine Learning . 6

2.2.2 Unsupervised Machine Learning . 6

2.3 Moving Target Defense . 7

2.4 Entropy with Relation to Encrypted Files 8

2.5 Filesystem in Userspace . 8

3 Related Work 11

3.1 Ransomware Detection . 11

3.2 Moving Target Defense Mechanisms for Ransomware 12

3.3 Discussion . 13

vii

viii CONTENTS

4 Data 15

4.1 Data Corpus . 15

4.2 FUSE Data Collection . 15

5 System Design 19

5.1 Setup . 19

5.2 Ransomware Samples . 19

5.2.1 Benign Traffic Simulation . 20

5.2.2 Ransomware Behavior Collection 21

5.3 Ransomware Detection System . 21

5.3.1 Data Aggregation . 23

5.3.2 Training and Model Deployment . 24

5.4 MTD Implementation . 26

5.5 Interaction between Detection System and FUSE 26

6 Evaluation 29

6.1 Ransomware Behavior Analysis . 29

6.1.1 Raw Data . 29

6.1.2 Amount of Reads/Writes of workloads 30

6.1.3 Entropy Analysis . 30

6.2 Classification Accuracy . 43

6.3 Speed of Detection . 45

6.4 Performance Considerations . 46

7 Summary and Conclusions 49

7.1 Limitations . 49

7.2 Conclusions . 49

7.3 Future Work . 50

Abbreviations 53

CONTENTS ix

List of Figures 53

List of Tables 56

List of Algorithms 57

A Files Collected from Data Corpus 61

B Packages Used 63

x CONTENTS

Chapter 1

Introduction

In recent years, Internet of Things (IoT) devices have been growing in popularity and
the numbers are constantly increasing. The number of devices is predicted to be 75
billion by 2025 [1]. IoT devices serve many purposes and have found applications in
various fields, such as smart homes, health sector and smart cities [2]. Many IoT products
were not designed with security in mind, as they were initially created as stand-alone
devices, without access to the internet [3]. In addition, it is not trivial to invent an
efficient malware detection framework, as such devices are heterogeneous in nature and
are resource-constrained, hence the use of conventional protection mechanisms is limited.
With the growing number of IoT devices, cyberattacks on IoT devices have become more
prevalent. Noteworthy is the Mirai botnet which in 2016 took control over hundreds of
thousands IoT devices and performed a distributed denial-of-service (DDoS) attack of
over 600GBps [4]. The massive increase in the number of IoT devices requires better
security measures, which need to be adapted so that the limited processing power of IoT
devices is taken into consideration.

In recent years, Ransomware has become a prevalent attack vector and has caused finan-
cial losses across the globe. For instance, it is estimated that CryptoLocker has caused
losses of around 42 millions USD [5]. Although CryptoLocker’s target was the Windows
operating system, with the rising significance of IoT devices, it is crucial to develop effec-
tive protection mechanisms against ransomware.

To respond to these threats, the detection is a key activity. Numerous approaches have
been proposed to detect different families of malware, including Ransomware. Based on
the entropy of files and file extensions, one can fairly accurately classify whether a file
has been encrypted or otherwise. Using entropy as features for machine learning (ML)
models, accuracy close to 100% was achieved [6]. However, there is no literature that
would create a real-time detection system for Linux-based IoT devices that combines the
classification of Ransomware and immediate mitigation techniques that would prevent
any further harm to the device.

1

2 CHAPTER 1. INTRODUCTION

1.1 Description of Work

This thesis aims to create an end-to-end Ransomware detection and mitigation framework
that is effectively deployed on Raspberry Pi devices. For collection of malicious and non-
malicious behavior, this work uses the Filesystem in Userspace (FUSE) to create a virtual
file system. Utilizing FUSE, the file system operations are being monitored and logged in
real-time.

Since Ransomware is usually encrypting files greedily, the amount of file writes is expected
to be high. Therefore, the number of file writes performed by processes is an important
feature to keep track of. In case of write operation, additionally the entropy of data that
is being written to a file is logged - if a file write has a high amount of randomness (i.e.,
high entropy close to 8), it is likely that the file write is containing encrypted information.
In addition, the file extension of each file write/read are stored, as different file types have
various entropy. For instance, a text file’s entropy is on average below 5, whereas the
entropy of images or compressed files in general is on average approaching 8.

For the simulation of benign workloads, the Raspberry Pi has been set up as a File
Transfer Protocol (FTP) server. To simulate client behavior, Apache JMeter was used to
simulate traffic. The file system operations have been collected to have a baseline, in order
to further distinguish between malicious and non-malicious behavior. Three Linux-based
Ransomware have been selected to collect malicious behavior, namely Ransomware-PoC,
Roar and DarkRadiation. While each Ransomware was running, JMeter was also initiated
to simulate real-world settings, where the Ransomware will encrypt data in parallel while
serving FTP requests.

The collected data was split up into time periods (2s, 5s, 10s), where in each time period
the data has been aggregated so that in the end the sum of all writes and reads in that
period is obtained. On the other hand, in case of entropy, the minimum, maximum
and average entropy for each time period was calculated. However, the statistics were
calculated only based on file extensions that had average entropy below 5.5. Files that have
on average high entropy were ignored, since this would not provide any useful information.
In the end, for each time window there was one aggregated row which was then fed into
ML models.

Random forest classifier has shown highest accuracy for both benign and malicious work-
loads, reaching accuracy close to 100%. Logistic regression was inaccurate (30% accuracy)
in case of testing on unseen Ransomware, specifically DarkRadiation. Finally, isolation
forest was trained on benign (non-anomalous) dataset and has produced high accuracy
rate in case of malicious behavior (close to 100% in case of Ransomware PoC and DarkRa-
diation). However, the benign dataset has been classified correctly only in 80% of cases,
which implies high false positive rate.

Finally, MTD was applied after the behavior has been classified as malicious. Namely,
after each file read the name of the read file is changed, so that the Ransomware is unable
to write to the file after read. Additionally, a design of a buffering strategy has been
proposed. For a given time period window (2s, 5s, 10s), files are buffered in memory until
the next batch of file system operations is evaluated as malicious or non-malicious. In the

1.2. THESIS OUTLINE 3

case of non-malicious classification, buffered data is finally stored into memory, otherwise
the original, non-edited version of the file is retained.

1.2 Thesis Outline

In Chapter 2, the significance of Ransomware is introduced, including the financial harm
caused by Ransomware in the past. Further, an introduction into supervised and un-
supervised machine learning is provided. MTD paradigm is briefly explained as well as
FUSE which was utilized in this thesis to implement MTD on file system level.

Chapter 3 gives an overview over related work on which this thesis builds. Different types
of Ransomware detection approaches from previous works are shown. The chapter shows
MTD techniques used for the mitigation of Ransomware. Finally, previous works are put
in relation with this thesis and the contribution of this thesis is highlighted.

After that, Chapter 4 shows the files obtained from data corpus which were used as target
to the different Ransomware samples. The methodology of data collection that was used
for model training is shown. The features extracted from Ransomware behavior are and
their relevance are introduced.

Further, Chapter 5 gives an overview over the Ransomware samples used in this thesis.
Additionally, the Chapter introduces the MTD design, its architecture, as well as the
data cleaning and data aggregation. For the training of models, non-malicious data is
needed. The chapter shows the methodology of obtaining the benign dataset. Finally,
the interaction between the detection system and the overlay file system and the final
architecture which was used is shown.

Chapter 6 shows the results of this thesis. The raw data collected that was obtained by
logging the file system operation is analyzed. Further, the performance of each model
considered is shown. Additionally, performance overhead and speed of detection of the
deployed system is shown.

Finally, Chapter 7 summarizes this thesis and gives further directions which future works
could follow, which include improving the robustness of the model and prevention of
further file encryption using buffering. Main limitations of the detection system are dis-
cussed.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

For this thesis, the behavioral aspects of Ransomware and the Moving Target Defense
(MTD) paradigm are critical. Therefore, they are introduced to the reader in the following
sections. In addition, since substantial part of this thesis is detection and classification of
Ransomware, definitions of supervised and unsupervised machine learning algorithms, as
well as concrete algorithms that were used are introduced.

2.1 Ransomware

Ransomware is a type of malware which limits victims’ of access to their machine by
encrypting victims’ valuable files and asks for ransom for decryption, whereas the attacker
is the only person that holds the decryption key with which the encrypted data can be
decrypted. Only after the ransom has been paid, the attacker may consider restoring
encrypted data.

The usual payment method of ransom is Bitcoin [7] which offers the attackers pseudo-
anonymity. It has been estimated that in a 2-year period, 16 million USD have been
tracked to Bitcoin addresses that were likely receiving ransoms on BTC-e platform [8].

Well-known example of this kind of Ransomware is WannaCry, which was responsible
for one of the largest attacks in history and caused harm to devices that were running
on Windows operating system. Among others, it was reported that several hospitals,
infecting and encrypting machines such as MRI devices [9].

Noteworthy is also non-encrypting Ransomware, also called locker-ransomware. Such
Ransomware is locking user’s machine and demanding ransom in return for unlocking the
machine. Examples of this type of Ransomware are Reveton and Winlocker.[10]

Dynamic and Static Analysis are two main approaches for detecting Ransomware, as
well as other types of malware. As Encrypting Ransomware are actively encrypting user
data, classification algorithms can be utilized to detect whether there is a process running
that behaves differently compared to other non-malicious processes. The operations that

5

6 CHAPTER 2. BACKGROUND

Ransomware performs during runtime can be used as features to train and deploy a
machine learning model that will detect Ransomware.

2.2 Machine Learning Techniques

Classification algorithms are a type of machine learning algorithms that, based on some
data points, attempt to predict their class. Such machine learning algorithms have found
usage in many different applications. For instance, in medicine, predicting cardiovas-
cular diseases [11]. Unsurprisingly, classification algorithms have also found usage in
security world [12], where the main goal of such algorithms is to predict malicious and
non-malicious software or activity based on various features.

In contrast to anomaly detection, classification algorithms belong under supervised learn-
ing. In case of a classification task, the machine learning algorithm makes predictions
of data points belonging to a set of pre-defined classes. Ransomware detection can be
used in the context of a binary classification framework, where each data point is either
malicious or non-malicious and the goal is for the algorithm to correctly predict the class
of each sample.

2.2.1 Supervised Machine Learning

Supervised machine learning is a type of machine learning where the algorithm is trained
on a labelled dataset. This means that during training phase, in addition to each sample’s
features, also the correct class of the data point is fed to the model.

Example: Decision Tree

A decision tree is a tree-like structure consisting of nodes and edges. Each node represents
a decision, based on which the data is further partitioned. Starting at the root node, the
tree is traversed until a leaf of the tree is reached, where the leaf represents the predicted
label in case of classification. In 2.1 an example of a decision tree is depicted. One of
the advantages of decision trees is that they can be easily interpreted - the tree splits
and finally, upon reaching a leaf, the predicted label is obtained. Decision trees may
be used both for classification and regression tasks. Decision tree is a basis for other
more advanced ML algorithms, such as random forest classifier, which has been used for
Ransomware detection in this thesis.

2.2.2 Unsupervised Machine Learning

Unlike supervised learning algorithms, unsupervised algorithms are not provided the labels
and should instead actively be able to separate between classes based on patterns during

2.3. MOVING TARGET DEFENSE 7

Figure 2.1: Decision Tree [13]

training phase [14]. Such algorithms are especially useful when having dataset without
explicitly defined labels.

Anomaly detection is a technique used to identify instances that deviate from standard
behavior or patterns. Typically, Anomaly Detection techniques belong to unsupervised
machine learning. In ransomware detection, anomaly detection algorithms look for be-
havior or characteristics that do not match the typical behavior of a legitimate process.
During evaluation, samples that are malicious might be provided, and the model should
correctly predict these samples as anomalies, since the samples do not conform with the
usual behavior [15]. For anomaly detection to be successful, the malicious samples need to
be sufficiently different from non-malicious samples, so that the model can correctly dis-
criminate between both. There exist both supervised and unsupervised machine learning
algorithms for Anomaly Detection.

2.3 Moving Target Defense

The ideology behind MTD (Moving Target Defense) is that it is virtually impossible to
have perfect protection against malware. MTD is a mechanism that keeps changing the
system to reduce the time window of potential attacks [16]. The aim is to make eventual
attacks much more difficult, so that the amount of harm caused is minimized. Three main
elements of MTD have been described by [17]:

• What to move: there are multiple attack surfaces through which the attacker may

8 CHAPTER 2. BACKGROUND

compromise the system. Each attack surface consists of parameters that are to be
changed (i.e. moved) to evade the attack. Examples of parameters include software,
hardware, IP address or the operating system itself

• How to move: which parameter of the attack surface should be moved. The param-
eter of the attack surface is moved either randomly [18], or based on behavior of the
attack [19].

• When to move: defines when to move the parameter of the attack surface as well as
the frequency of the move.

2.4 Entropy with Relation to Encrypted Files

Entropy is measuring randomness. There are different ways how Entropy can be calcu-
lated, but one of the commonly used Entropy is Shannon Entropy, which is defined by
the following formula

H = −K
m∑
i=1

pilog(pi) (2.1)

Since encrypted data appears to be random, entropy value of a file is a useful metric in
detecting whether some data have been encrypted or not. However, since there exist file
types that have high entropy by default, entropy alone is not sufficient for detection of
encrypted files. Thus, one approach for encryption detection is comparing the entropy of
a specific file to the average entropy of its file type.

2.5 Filesystem in Userspace

FUSE is a file system running in user-space. Using FUSE, the development of custom file
system is less complex compared to creation of file system in kernel, since FUSE provides
a simple API for modifications of file system. FUSE consists of two parts: kernel part
and user-level daemon. After a request to file system, FUSE’s daemon then processes the
request and returns the control back to the VFS (Virtual Filesystem) [20]. 2.2 shows a
high-level architecture of FUSE.

2.5. FILESYSTEM IN USERSPACE 9

Figure 2.2: FUSE architecture [20]

10 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

This chapter introduces relevant literature that served as a basis for this thesis, rang-
ing from detection mechanisms for Ransomware through analysis of relevant behavior to
monitor, up to Ransomware mitigation techniques. Finally, an overview table is provided
where previous works are summarized and the contribution of this thesis is highlighted.

3.1 Ransomware Detection

Cryptolock [21] aims to protect against Windows-based Ransomware by raising a warning
to the user that an encryption might be taking place on the system. Every process is
scored by a reputation score that indicates how suspicious the process is over time. The
reputation score is calculated based on features such as Shannon Entropy that indicates
how much randomness is present in a file. Similarity between the original version of
the file and the updated version after write is measured using a similarity hash function
sdhash [22]. Instead of collecting the behavior through monitoring of API calls, the
reputation score is calculated after a file write has already been performed.

Redemption [23] intercepts every write and instead redirects the write operation to a
”reflected” file, which is a copy of the original file. The original file is thus preserved and
in case of suspicious activity the user is notified, and the original files can be restored.
This was made possible by implementing a kernel that is able to intercept file system
operations. Entropy ratio between the new and old data blocks are calculated. High ratio
might indicate that encryption is taking place. Since Ransomware usually overwrites the
data with an encrypted content, File Content Overwrite is used as an additional feature
and represents the amount of data that is being overwritten with relation to the original
file. Additionally, time aspect is also considered by calculating access frequency, which is
a time window between two file write calls requested by the same process. Those features
are then aggregated and a ”malice score” is calculated for each process. Upon reaching a
certain threshold, the process is flagged and reported to the user.

A detection system called RansomSpector [24] monitors both file system as well as network
activities in order to provide more accurate results. The system is split into two parts,

11

12 CHAPTER 3. RELATED WORK

namely Monitor and Detector. Monitor captures the system calls via Hypervisor and
checks whether the system call is related to file system or network operation. If it is, the
system call is then sent to the Detector which then performs pattern matching and if both
file system and network operations match the malicious pattern, the process is identified
as malicious. Otherwise, if there is only file pattern match and the write entropy is above
certain threshold, the user is notified about suspicious activity. In the case the system
call is neither file system nor network related, it is returned to the guest operating system
and is executed normally. RansomSpector has been evaluated on Windows 7.

ShieldFS [25] For the data collection, I/O file system sniffer has been developed that
in addition to raw IRP (I/O request packets) also adds additional information, namely
entropy, process identifier (PID) and timestamp. The main features collected are write
entropy, number of files renamed, number of files written, folder listing and number of
files read. ShieldFS splits data accessed by a process into intervals called Ticks. Tick
represents a proportion of files that have been accessed in relation to all files present. For
instance, one Tick may represent 2% of all files. For every Tick, a classifier is evaluated
on this subsection of file operations. In addition, there is a hierarchy of Ticks (e.g., 2%,
5%, 10%) and there is a separate classifier for each level of Tick. This ensures that the
long-term behavior of a process is monitored as well. ShieldFS can recover the encrypted
files in the case of malicious activity, since the original version of files is copied.

[6] have used different measures of entropy to mitigate the problem that various file types
have various distribution of entropy value. The results of the calculated entropy are
used as features for classification of encrypted files. On those features, machine learning
models such as KNN, Decision Tree, Neural Networks were trained. The paper has not
been deployed and tested on real-world machines.

3.2 Moving Target Defense Mechanisms for Ransomware

[26] has proposed a framework of MTD mechanisms which aim to mitigate Ransomware
attacks and prevent data encryption on Raspberry Pi devices. The thesis makes use of
FUSE to make adjustments to file system behavior. In total, five MTD mechanisms were
proposed, out of which three of them were implemented.

Infinite Directory Depth MTD is a design where on every directory listing, a new empty
directory is created. This causes the Ransomware to infinitely traverse through directories
with no content and thus, under the assumption that the Ransomware enters directories
in alphabetical order, no encryption takes place.

Given that some Ransomware may only encrypt specific file types, File Type Identification
Change MTD changes the file extension so that the Ransomware does not encrypt the file
with a different file extension, as the file is of no interest for encryption purposes.

The final MTD that was implemented is reducing read and write speed. By itself, this
does not fully protect against Ransomware, but the amount of files that will be encrypted
is significantly reduced.

3.3. DISCUSSION 13

Table 3.1: Categorization of Surveyed Related Work

Paper Mitigation Detection OS Entropy Evaluation Data Collection

[21] user notification, yes Windows yes yes changes in
process termination user data

[6] none yes none yes no none
[24] user notification yes Windows yes yes system calls,
[24] network traffic
[23] process termination yes Windows yes yes I/O system
[25] discard writes yes Windows yes yes IRPLogger
[26] MTD techniques none Debian no yes none
This filename change yes Raspbian yes yes FS interception

The first MTD that was proposed but not yet implemented is File Identification Change.
After every file read, the file name is changed so that the Ransomware is unable to write
to the file, since the file with the associated file name that was read is no longer existent.

Directory Name Change is the second MTD that is yet to be implemented. Since some
Ransomware actively searches for specific directories, the proposed design is to change
the directory name, so that the directories relevant for the Ransomware will no longer be
present.

3.3 Discussion

Substantial amount of research has been done on detection of Ransomware on file system
level. Most of the aforementioned papers use entropy as a possible indicator of encrypting
behavior. However, to our best knowledge, no related works designed a system that
would collect in FUSE. [25] have created a sniffer which captures IRPs (I/O request
packets) and enriches them with additional metadata, such as entropy. [24], on the other
hand, used hypervisor to capture system calls to watch file system operations. Most of
the techniques that were evaluated on real-world machines were running on Windows
operating system. No previous work has been done that would combine Ransomware
detection and mitigation and finally evaluate the performance and feasibility on resource
constrained IoT devices, such as Raspberry Pi.

In addition, most of the mitigation techniques were either terminating the malicious pro-
cess or notifying the user. Dynamic mitigation after malicious activity detection, such as
changing filenames to prevent encryption, has not yet been implemented. In this thesis,
an end-to-end detection and mitigation system on Raspberry Pi was proposed and im-
plemented. For the mitigation part, file name change MTD has been implemented, as
proposed in [26]. In Table 3.1 the related work is summarized.

14 CHAPTER 3. RELATED WORK

Chapter 4

Data

In this chapter the data corpus and its content which was used throughout the thesis is
introduced. The methodology on how the file system operations have been collected from
within the FUSE and the different features that have been extracted is shown.

4.1 Data Corpus

To collect the behavior of Ransomware, a set of files have been collected from digital-
corpora.org [27]. The collection contains large amount of various type of files, including
images, text files, compressed files which makes it ideal for our use case. In total, around
20GB of files were downloaded and used as a target for encryption on the Raspberry Pi
device.

4.2 FUSE Data Collection

The FUSE Go library [28] has been used to create a file system that would be able to
collect file system related operations in real-time. The logs of file system operations were
used both in training of the models and in evaluation.

The aim was to store the file system operations to a file which can then be further analyzed.
The following information is logged:

• File writes - as Ransomware tends to access and overwrite files greedily, file writes
are an important factor in determining if the activity is malicious or non-malicious

• File reads - similarly to file writes, high number of reads is an indicator of Ran-
somware greedily accessing files

• Entropy of file writes - for every file write operation, the corresponding entropy of
the data that is being written to a file is recorded. High entropy is an indicator of
possible encryption taking place

15

16 CHAPTER 4. DATA

• PID - every file write/read is associated with the corresponding PID of the pro-
cess that requested the operation. This makes it possible to differentiate between
malicious and benign processes

• Timestamp - delta in seconds from the initial mount of FUSE and the file system
operation. Timestamp is used to aggregate the records into time windows at a later
point. For example, given a time window of 5 seconds, records with timestamps 1,
2, 3, 4 will be bucketed into a single time window.

• File Extension - different file types have different average entropy. Thus, it is im-
portant to differentiate the file type that is being written to. For instance, the write
entropy to compressed file types is expected to be high, since those file types have
high entropy by default.

For raw data collection, the overlay file system is structured as shown in Figure 4.2. The
root folder of the overlay file system has two children, namely ”Malicious Folder” and
”Benign Folder”. The files from data corpus are stored in the malicious folder, which is
also the target for the Ransomware. Folders within the malicious folder are structured
based on names of the zip files downloaded from the data corpus. The benign folder
is where the files from FTP traffic are being uploaded and downloaded. Since FTP is
also actively listing the directory and downloading files, the goal of this layout is to not
contaminate the FTP traffic with encrypted files. Otherwise, the encrypted files could
circulate in the FTP traffic and the benign dataset would no longer be representative of
benign FTP workload. However, this structure is only relevant for obtaining the training
datasets. As soon as the trained model is deployed, even if there are encrypted files
circulating in the FTP, high entropy would indicate that the file has been encrypted at
some point in time in the past.

The file type of the log is a CSV and has a schema as depicted in Figure 4.1. All the
features were collected after the interception of the file system operation in the overlay
system. Finally, after logging of the specific file system operation, FUSE returns the
control to the kernel, which then writes the data on disk. For training purposes, only one
CSV file with logs has been created for the whole data collection period. However, for
evaluation, a new CSV file is generated for every time window which is then consumed
by the detection system.

In addition, the number of writes and reads were aggregated for each time window and
PID. Ransomware usually encrypts files greedily, therefore a high number of reads and
writes is to be expected.

4.2. FUSE DATA COLLECTION 17

Figure 4.1: Collected Data

Figure 4.2: Overlay file system architecture

18 CHAPTER 4. DATA

Chapter 5

System Design

In this chapter, the setup that has been used in this thesis with regard to hardware is in-
troduced. Additionally, the methodology of detection system is introduced and explained
how the MTD interacts with the detection system.

5.1 Setup

A Raspberry Pi 4B with 2 GB of memory has been used with Raspberry Pi operating
system installed. An FTP server has been set up on the device and continuous FTP
traffic consisting of files obtained from (DL or also upload?) DigitalCorpora.org [27] is
present on the device to simulate benign behavior. The FTP server scenario was chosen
since frequent FTP traffic is arguably the closest behavior resembling Ransomware, since
FTP traffic consists of frequent file writes and reads. There is a dedicated folder for FTP
on the device where the files are being uploaded and downloaded via FTP. In addition,
this folder also contains around 20 GB of files from DigitalCorpora.org [27]. The overlay
file system is mounted on the mentioned FTP folder and is also a target to the various
Ransomware’s samples.

The FUSE Go library [28] has been used to create a file system that would be able to
collect file system related operations in real-time. The logs of file system operations were
used both in training of the models and in evaluation. The second requirement is to
have the FUSE setup such that MTD can be initialized if a file system activity has been
flagged as malicious. For the model training, Python programming language has been
used, utilizing the scikit-learn library.

5.2 Ransomware Samples

In this thesis, three Linux-based Ransomware samples have been selected, on which the
data has been collected and models trained. More specifically, DarkRadiation, Ran-
somware PoC and Roar.

19

20 CHAPTER 5. SYSTEM DESIGN

• Ransomware PoC: Ransomware that is written in Python programming language.
When running the python script, user can specify which directory is to be encrypted
by changing the corresponding argument. Ransomware PoC is changing the file
extension after a file has been encrypted to .wasted.

• DarkRadiation: This Ransomware is written purely in shell scripts. DarkRadia-
tion encrypts home directory by default, but in our use-case this was changed to
only encrypt the corresponding root folder of the overlay file system. Similarly to
Ransomware PoC, DarkRadiation changed the file extension after encryption.

• Roar: Similar to Ransomware PoC, Roar has been written in Python. Roar has
been specifically designed to evade dynamic detection by utilizing Reinforcement
Learning. Compared to the other two Ransomware samples, Roar’s encryption rate
is considerably slower. Roar changes the file extension to .wasted after encryption
[29].

5.2.1 Benign Traffic Simulation

JMeter [30] has been used to simulate FTP traffic on the Raspberry Pi. Although JMeter
is mainly used in the stress testing of servers domain, it fits the use-case, as peaks of
traffic can be configured, as well as how many threads are actively creating the traffic on
the FTP server, which makes the FTP traffic more realistic. The JMeter User Interface
is depicted in Figure 5.1 and in Figure 5.2 the interface is shown where files are being
actively uploaded to the FTP server. In Figure 5.3, the implementation of downloading
files from the FTP server back to the user is shown. JMeter lists the directory and
randomly chooses a file to download from the server. In addition to FTP upload, the
goal is to also simulate the user listing through directories and downloading files. The
JMeter client was active on a different machine, connecting to the FTP server via local
network. All the file system operations caused by FTP traffic have been logged, and the
collected benign data is further used during training of Ransomware detection models.
In order to distinguish whether an operation was benign or malicious, every file that has
been uploaded via FTP to Raspberry Pi has ”benign” as a prefix in the file name, so that
in the training phase can easily be distinguished and the corresponding label is added (1
for non-malicious and 0 for malicious) based on the filename on which the operation was
performed.

The JMeter configuration was set up as follows:

• Files from DigitalCorpora.org [27] were residing on a local machine and were actively
being uploaded to a Raspberry Pi folder with mounted FUSE. In this way, FUSE
can log the operations. For this, two threads were used with a ramp-up period of
30 seconds.

• The content of the FTP directory was actively listed to get a list of all the avail-
able files. A random file has been chosen to download from a Raspberry Pi FTP
folder back to the local machine. Again, 2 additional threads were dedicated to the
downloading process.

5.3. RANSOMWARE DETECTION SYSTEM 21

The attempt was made to add more threads, but more than 2 threads caused the Rasp-
berry Pi to freeze after a while and no further files were downloaded or uploaded. Thus,
in total 4 threads for downloading and uploading was the maximum the Raspberry Pi was
able to serve.

Figure 5.1: JMeter User Interface

5.2.2 Ransomware Behavior Collection

On an FTP server, Ransomware will hardly be the only process running in real world
settings. Therefore, for training and evaluation of classification models, Ransomware was
running inside the mounted folder concurrently with benign FTP traffic. Secondly, solely
for data exploration and analysis, each Ransomware has been run separately without the
benign traffic running in the background. The purpose was to have the Ransomware sam-
ples separated from any other input/output-heavy processes running in the background
that would in any way affect the speed of reads, writes or the encryption in general.
The target of the Ransomware was the mounted overlay file system root folder. In total,
three different Linux-based Ransomware samples have been used to collect malicious ac-
tivity. Each Ransomware has been running separately, so that in the end three datasets
were obtained, where each dataset contains a combination of benign activity and specific
Ransomware sample’s activity.

5.3 Ransomware Detection System

After the collection of data via FUSE, two classification models and one anomaly detection
model have been trained. This chapter introduces what pre-processing steps were required

22 CHAPTER 5. SYSTEM DESIGN

Figure 5.2: JMeter uploading to FTP server

5.3. RANSOMWARE DETECTION SYSTEM 23

Figure 5.3: JMeter download from FTP server

and finally how the models have been trained.

5.3.1 Data Aggregation

As a part of pre-processing, the original CSV file with raw data has been aggregated by
timestamp and by PID. Firstly, the timestamp was put into buckets, so that all operations
that were performed within the same time window belong to the same bucket. In total
there are three buckets, specifically 2, 5 and 10 seconds buckets. An illustration of this
can be seen in Figure 5.4, where time_id column represents the corresponding bucket.
The dataset was then grouped by the ”time id” column and ”pid” column. In the end,
a dataset was generated where there is a separate record for the operations performed
by each process in a specific time window. For each record the number of writes have
been aggregated and the number of reads as well as calculated aggregate statistics of
write entropy, namely minimum entropy of write operation, maximum entropy of write
operation and mean entropy of all write operations. The entropy has been calculated
according to the Algorithm 1.

The statistics of entropy were calculated only on file types that have on average entropy
below 5.5, as according to entropy analysis in evaluation (see Section 6.1.3) this threshold
separated binary and compressed files well from the remaining low entropy file formats.
The average entropy of each file type has been calculated based on collected data from
benign traffic. The reasoning is as follows: if a process is writing to a file that has high
entropy by default (e.g., jpg, zip) the write entropy will likely also be high, even though

24 CHAPTER 5. SYSTEM DESIGN

Algorithm 1 Entropy Calculation Algorithm

1: DataLength← Length(DataBlock)
2: Entropy ← 0
3: for byte← 1 to 256 do
4: ByteCountMap[byte]← 0
5: end for
6: for byte in DataBlock do
7: ByteCountMap[byte]← ByteCountMap[byte] + 1
8: end for
9: for byte in GetKeys(ByteCountMap) do
10: if ByteCountMap[byte] == 0 then
11: continue
12: end if
13: p← ByteCountMap[byte]/DataLength
14: Entropy ← Entropy − p ∗ log2(p)
15: end for
16: return Entropy

the operation is not malicious, and no encryption is taking place. If high entropy values
would also be included in the entropy statistics calculation, aggregated entropy would be
higher on average, which would make it more difficult to classify correctly as malicious or
benign. Figure 5.4 shows the final structure of the aggregated data.

Figure 5.4: Data Aggregated by Time Window and PID

5.3.2 Training and Model Deployment

The aggregated data has been used to train random forest classifier [31], logistic regression
[32] and isolation forest [33]. There were two approaches to model training for the men-
tioned classification models. The first approach was to train the models on data collected
from all three Ransomware as well as benign traffic. The data was split in a way where
80% of the data was used for training and 20% for testing the trained model. As all mod-
els have shown high accuracy, there was no need to have validation split for parameter
tuning. The second approach was to train the models only on 2 Ransomware datasets

5.3. RANSOMWARE DETECTION SYSTEM 25

and benign dataset to test the accuracy on behavior of unseen Ransomware sample. This
exercise of leaving out one Ransomware sample was done on all three Ransomware sam-
ples, so that in the end, for each time period, there were three models, each trained on
2 Ransomware samples. Both of the approaches were repeated for all data grouped by
different time window, namely 2, 5 and 10 seconds.

The same aggregated data has been used to train the isolation forest anomaly detection
model. Different to classification models, isolation forest has been trained only on benign
dataset and based on that the model should correctly predict whether the data sample
is anomalous (malicious) or non-anomalous (benign). Similarly to Classification models,
isolation forest has been trained on 2, 5 and 10 seconds time windows.

The models have been trained and evaluated on a local machine on the collected datasets.
For deployment on the Raspberry Pi device, the random forest classifier model has been
used, as in both approaches the random forest classifier has outperformed both logistic
regression and isolation forest in terms of detection accuracy (false positive as well as
false negative). The deployed model has been trained on a 5 seconds aggregation level,
since the model provides higher accuracy on unseen Ransomware samples compared to
2 seconds time window, as well as providing potentially faster response compared to 10
seconds aggregation level and hence less user data will be encrypted in the 5 seconds time
period. The deployed model that has been trained according to the first approach, where
all 3 Ransomware samples have been used for training.

On the Raspberry Pi machine, the model is running in an endless loop and evaluating
the CSV files outputted by FUSE. As soon as the model evaluates some data sample
as malicious, the endless loop of evaluation is terminated and the process writes ”true”
into a separate log file, which indicates that there is malicious activity in the file system.
Otherwise, the log file contains ”false” standing for no malicious activity detected by the
model (see Algorithm 2). The log file is then read by overlay file system whenever there
is a write/read request to determine whether the MTD is to be initiated or to perform
the write/read operation in the standard way.

Algorithm 2 Detection System Algorithm
while True do

2: if log.csv exists then
PreProcessedLog ← PreProcess(log.csv)

4: Predictions← Predict(PreProcessedLog)
if malicious in Predictions then

6: Write(”true”, classifier.log)
break

8: end if
else

10: Wait(time window)
end if

12: end while

26 CHAPTER 5. SYSTEM DESIGN

5.4 MTD Implementation

The file name change MTD technique proposed by [26] has been implemented in this
work. After a file is read, the file name of the file is changed, so that the process that is
attempting to write to that file will be unable to do so, as the file name has been changed.
The MTD is activated after the classification system has detected malicious activity. A
prefix ” ” to the original file name is added, so that the new file name is ” example.txt”
instead of ”example.txt”. The workflow is illustrated in Figure 5.5.

In addition, buffering strategy (Algorithm 4) has been designed, however not implemented
in this thesis. The data from write requests is buffered into memory, as long as there is
no output from the model. As soon as the file into which the model writes changes, the
overlay file system reads the file. If the file contains ”true”, the buffered data is dropped
and the MTD is initiated. Otherwise, the buffered data is persisted to disk.

Figure 5.5: File Name Change MTD

5.5 Interaction between Detection System and FUSE

The final setup combines the logging functionality of FUSE, File Name Change MTD and
detection system. Initially, the FUSE file system is activated, which collects file system
operations into CSV logs. After every time period (time window specified by user), a new
CSV file is created in which the logs are stored corresponding to that time span. Secondly,
a model for detection that has been trained and deployed to Raspberry Pi machine is
continuously watching the logs created by FUSE and classifies whether the activity based
on the log file is malicious or not. If the model evaluates the activity as malicious, the
flag ”True” is written into a separate classifier.log file. In case of non-malicious activity,
”False” is outputted. Then, the FUSE file system reads this file and as long as the flag
is ”False”, the file system continues performing the standard activity - logging file system
operations and handling requests. As soon as the model outputs ”True”, FUSE activates
the File Name Change MTD, at which point no process will be able to write to the file
system. The process is depicted in Figure 5.6.

5.5. INTERACTION BETWEEN DETECTION SYSTEM AND FUSE 27

Algorithm 3 MTD and Logging Algorithm
while True do

if FSRequest exists then
3: log.timestamp← CurrentT ime− InitT ime

log.pid← FSrequest.pid
if FSrequest.op == ”write” then

6: log.op← ”write”
log.entropy ← CalculateEntropy(FSrequest.data)

end if
9: if FSrequest.op == ”read” then

log.op← ”read”
log.entropy ← −1

12: end if
if ”true” in classifier.log then

rename(FSrequest.filename, ” ” + FSrequest.filename)
15: end if

Write(log, log.csv))
end if

18: end while

Algorithm 4 Buffering Algorithm
while True do

if FSRequest exists then
if FSRequest == ”write” then

4: Buffer.Enqueue(FSRequest.data)
end if

end if
if HasChanged(classifier.log) then

8: if ”true” in classifier.log then
for in Buffer.length do

Buffer.dequeue()
end for

12: InitiateMTD()
else

for in Buffer.length do
Data← Buffer.dequeue()

16: Write(Data)
end for

end if
end if

20: end while

28 CHAPTER 5. SYSTEM DESIGN

Figure 5.6: Detection System with MTD

Chapter 6

Evaluation

After implementing the detection system, the system was evaluated with regard to model
classification accuracy. After deployment of the detection system to a Raspberry Pi
machine, the speed of detection of different Ransomware samples has been measured.
Apart from that, the number of encrypted files while the Ransomware sample is running
undetected was measured. Finally, benchmarks of resource usage such as CPU usage and
RAM have been monitored while the detection system is running and compared with the
same machine without the detection system running.

6.1 Ransomware Behavior Analysis

In this section, the differences between benign workload and Ransomware are outlined and
analyzed. This is especially important, since the accuracy of models depend on how well
they can differentiate between the different data samples. Firstly, sample of the collected
raw data for all three Ransomware are shown to observe differences in activity between
them. Then the number of reads and writes of different workloads are visualized. Finally,
entropy of write operations of Ransomware and benign workload is analyzed.

6.1.1 Raw Data

Raw data has been collected in a form of tabular format via the logging system imple-
mented in FUSE. Before analyzing aggregated data, it is interesting to first look at sample
raw data, as some Ransomware features may be observed that are no longer visible after
aggregation. In the case of DarkRadiation (Figure 6.1), the most apparent trait is that
there are different PIDs performing writes and reads, which indicates that DarkRadiation
is spawning multiple processed for encryption. The write entropy is close to 8 for txt file
extension. In addition, DarkRadiation is changing the file extension of all encrypted files.
On the other hand, Ransomware PoC (Figure 6.2) has only one process running through-
out the whole dataset. Similarly to DarkRadiation, Ransomware PoC is also performing
high entropy writes to txt file type, however in addition to that, every high entropy write

29

30 CHAPTER 6. EVALUATION

operation also has a corresponding low entropy write, having the entropy value of around
4. Finally, Roar (Figure 6.3) exhibits similar behavior to Ransomware PoC, having only
one process running throughout the observed period, as well as having alternating high
and low entropy writes. The cause of this is likely the fact that both Ransomware PoC
and Roar are using Python functionality to write encrypted content into files, whereas
DarkRadiation is written in a shell script. Looking at the timestamp column (representing
seconds since the initialization), the apparent difference is that the records are much less
frequent in Roar compared to Ransomware PoC. This is expected, since Roar is encrypting
files at a low encryption rate to evade detection [29]. Additionally, in figures 6.7 and 6.6
the average number of reads and writes per second respectively are visualized. DarkRadi-
ation has the highest number of writes per second, followed by Ransomware PoC. On the
other hand, FTP traffic performs relatively low amount of writes, possibly bottlenecked
by network. Roar shows the lowest amount of writes per second. In all workloads, write
operations are more frequent compared to read operations. Interestingly, Ransomware
PoC shows the fastest read rate, followed by DarkRadiation, FTP traffic and Roar.

6.1.2 Amount of Reads/Writes of workloads

Three Ransomware samples have been selected for this thesis, namely Ransomware PoC,
DarkRadiation and Roar. From the datasets obtained during data collection phase, the
different number of writes and reads of each Ransomware as well as benign FTP traffic
can be analyzed and compared. All three samples have shown different behavior with
regard to file writes and reads. As can be seen in Figure 6.6, DarkRadiation Ransomware
has the highest number of writes, followed by Ransomware PoC. The higher number of
writes for DarkRadiation may be either due to multiprocessing (Figure 6.1), or a different
encryption algorithm compared to Ransomware PoC. Roar on the other hand shows the
lowest amount of file writes, also compared to the benign FTP traffic. Thus, file writes
are clearly insufficient to separate malicious behavior from benign. Figure 6.7 shows the
number of reads for each workflow. Number of reads and writes show similar patterns,
namely if there is downfall of writes, decrease in reads can be observed and vice versa.

6.1.3 Entropy Analysis

Entropy is an important feature when training Ransomware classifiers, as entropy mea-
sures randomness in data, thus it is worth investigating the entropy of file writes of
Ransomware as well as benign traffic. For the model training and evaluation, all file types
that have on average entropy higher than 5.5 are disregarded and only the records with
a file extension lower than 5.5 are fed into the models. In Figure 6.8 the file types with
entropy below 5.5 threshold are displayed, which are mostly file extensions that store plain
text data, such as csv, java and log. On the other hand, in Figure 6.9 all the remaining
file extensions having entropy higher than the threshold are shown. The entropy of the
files in the two Figures were calculated based on benign activity writing into the mounted
file system.

6.1. RANSOMWARE BEHAVIOR ANALYSIS 31

Figure 6.1: Sample Data Collected From DarkRadiation

32 CHAPTER 6. EVALUATION

Figure 6.2: Sample Data Collected From Ransomware PoC

6.1. RANSOMWARE BEHAVIOR ANALYSIS 33

Figure 6.3: Sample Data Collected From Roar

34 CHAPTER 6. EVALUATION

Figure 6.4: Average number of reads per second

6.1. RANSOMWARE BEHAVIOR ANALYSIS 35

Figure 6.5: Average number of writes per second

36 CHAPTER 6. EVALUATION

Figure 6.6: Number of Writes for each workload every 10 seconds for 10 minutes

Figure 6.7: Number of Reads for each workload every 10 seconds for 10 minutes

6.1. RANSOMWARE BEHAVIOR ANALYSIS 37

In Figure 6.10 DarkRadiation’s write entropy for different file types is depicted. For
DarkRadiation, the entropy value is relatively constant at around 8 across all file types.
On the other hand, Ransomware PoC and Roar the entropy is consistently around 6 for all
extensions (Figure 6.11 and Figure 6.12). The Ransomware PoC and Roar average entropy
is thus significantly lower compared to DarkRadiation. This behavior can be explained
by looking at the raw data in Figure 6.2 and 6.3, where in addition to high entropy writes
slightly below 8, both Ransomware PoC and Roar perform write operations with entropy
of around 4. Averaging the entropy then results in entropy value of around 6.

38 CHAPTER 6. EVALUATION

F
ig
u
re

6.
8:

A
ve
ra
ge

en
tr
op

y
of

fi
le

ty
p
es

b
el
ow

5.
5
-
b
en
ig
n
tr
affi

c

6.1. RANSOMWARE BEHAVIOR ANALYSIS 39

F
ig
u
re

6.
9:

A
ve
ra
ge

en
tr
op

y
of

fi
le

ty
p
es

ab
ov
e
5.
5
-
b
en
ig
n
tr
affi

c

40 CHAPTER 6. EVALUATION

F
ig
u
re

6.
10
:
D
ar
k
R
ad

ia
ti
on

av
er
ag
e
w
ri
te

en
tr
op

y
fo
r
al
l
fi
le

ty
p
es

6.1. RANSOMWARE BEHAVIOR ANALYSIS 41

F
ig
u
re

6.
11
:
R
an

so
m
w
ar
e
P
oC

av
er
ag
e
w
ri
te

en
tr
op

y
fo
r
al
l
fi
le

ty
p
es

42 CHAPTER 6. EVALUATION

F
ig
u
re

6.
12
:
R
oa
r
av
er
ag
e
w
ri
te

en
tr
op

y
fo
r
al
l
fi
le

ty
p
es

6.2. CLASSIFICATION ACCURACY 43

6.2 Classification Accuracy

Firstly, the accuracy has been evaluated by leaving out one dataset of a specific Ran-
somware. This how the model performs on samples that it has not seen and has not
been trained before.This exercise was done on each individual Ransomware, so that in the
end three models were trained and were have evaluated separately for each time period.
Taking into consideration 3 time windows, in the end there were nine models trained in
total. The models trained in this way were logistic regression and random forest classifier.

Figure 6.13: Feature Importance of Random Forest Classifier

As can be seen from Table 6.4, the accuracy of random forest classifier was the highest in
time windows 5 and 10 seconds. At 10-second time window, the accuracy for Ransomware
PoC and Roar has reached 100% and DarkRadiation 96.92%. As expected, the accuracy
was the lowest on 2-second time window, albeit with only a marginal difference compared
to other two time windows. This may be explained by the fact that on 2 seconds aggre-
gation level, there were not enough file system operations to correctly predict whether
there is malicious activity taking place. 5-second time window has shown slightly higher
accuracy compared to 2-second time window. Although in 5-second time period, the de-
tection of Roar is lower compared to 10-second time window, it is likely that evaluating
the 5-second time window 2 times over 10 seconds would provide accuracy close to the 10-
second time window model. The lower accuracy in the case of DarkRadiation compared
to other two Ransomware samples is possibly because DarkRadiation is running multiple
processes, whereas Ransomware PoC and Roar only one. During aggregation, grouping
by PID and time window will result in one record per time window for Ransomware PoC
and Roar, whereas for DarkRadiation multiple records will be present for each time win-
dow. This may result in different patterns present in the aggregated dataset, and the
classifier might have difficulties correctly classifying DarkRadiation malicious samples.
Another possible explanation is that the average entropy of Ransomware PoC and Roar
is 6 (Figure 6.11 and Figure 6.12), whereas in the case of DarkRadiation it is around 8

44 CHAPTER 6. EVALUATION

(Figure 6.12). However, random forest classifier is relatively robust to these differences,
as the accuracy is above 94% for all time windows considered. Additionally, the trained
random forest classifier has shown accuracy of 100.0% across all time windows and across
all left-out Ransomware samples (Table 6.1).

Table 6.1: Accuracy of Benign Workload Detection - Random Forest Classifier

Left-Out Ransomware
Time Window PoC DarkRadiation Roar

2s 100.0% 100.00% 100.0%
5s 100.0% 100.0% 100.0%
10s 100.0% 100.0% 100.0%

In the case of logistic regression (Table 6.2), Ransomware PoC has been correctly classified
in 100% of the cases. On the other hand, for DarkRadiation and Roar it has consistently
underperformed compared to random forest classifier. For DarkRadiation moving only at
around 38% accuracy and for Roar ranging from 41% up to 85% accuracy. Similarly to
random forest classifier, the classifier has shown the lowest performance on DarkRadiation.
The reasoning is in essence also the same, where the average entropy is much higher in
case of DarkRadiation compared to Ransomware PoC and Roar. However, in the case of
logistic regression, the degradation in performance is much more prevalent compared to
random forest classifier. Unseen benign workload has been consistently around 100% for
all time windows and all left-out Ransomware datasets (Figure 6.1)

Table 6.2: Accuracy for unseen Ransomware - Logistic Regression

Time Window Ransomware PoC DarkRadiation Roar

2s 100.0% 38.85% 85.09%
5s 100.0% 44.31% 41.49%
10s 100.0% 33.61% 56.41%

Training the models for anomaly detection using isolation forest, all three Ransomware
samples are unseen, as the model has been trained only on non-anomalous (benign)
dataset. For All time windows, the results are very similar, moving around 100% for
both Ransomware PoC and DarkRadiation, whereas reaching approximately 83% on Roar
sample across all 3 time windows. The benign workload has been correctly predicted as
benign around 80% of the time (Table 6.3). This is suboptimal, since if the model should
be deployed on a real machine, low accuracy for benign workload would raise many false
positives and the MTD would be falsely initiated frequently. Similarly to random forest
classifier, logistic regression has also shown high accuracy in correctly classifying benign
workload across all time windows.

The last approach was to concatenate all Ransomware and benign datasets together and
split them into 80% train and 20% test set. Both logistic regression and random forest
classifier have shown high accuracy - close to 100% (Figure 6.6). In Figure 6.13 the feature
importance is depicted for random forest classifier. Sum of reads is the most important

6.3. SPEED OF DETECTION 45

feature for random forest classifier, followed by mean entropy. Minimum entropy and sum
of writes are not that significant, likely because the feature sum of writes is correlated
with the sum of reads and minimum entropy with the rest 2 Entropy measures.

6.3 Speed of Detection

Even though the prediction accuracy is high, it is also important to consider the speed at
which the detection system can classify whether malicious activity is present or not. This
is especially crucial, since the more time is needed for detection, the higher the number
of irreversibly encrypted files.

The random forest classifier model trained on 5 seconds time window has been deployed on
Raspberry Pi. The time for the end-to-end detection system to detect the Ransomware
and initiate MTD has been measured. The speed of detection was measured on all 3
Ransomware samples. In total, for each sample, the Ransomware has been run five times
and measured the time it took to detect. The minimum, average and maximum detection
time have been measured. Similar amount of time has elapsed for Ransomware PoC and
DarkRadiation to be detected, where minimum was 4 seconds and maximum 10 seconds
for both samples. The longest time needed for detection was in case of Roar, where the
average time is 19 seconds, minimum 8 seconds and maximum 44 seconds. This can be
explained by the fact that Roar has a much slower encryption rate than the other two
Ransomware samples (Table 6.7).

Although it may take a few seconds to detect the Ransomware, another interesting metric
is how many files have been encrypted during until the Ransomware has been finally de-
tected. Although Roar on average needed the longest time for detection, it has encrypted
the least amount of files, namely 3 files. In comparison, DarkRadiation encrypted 35 files
before detection and Ransomware PoC 18 files (Table 6.8). This is consistent with the
speed of writes of each Ransomware, as can be seen in Figure 6.6. DarkRadiation has
managed to encrypt the highest amount of files and at the same time has the highest
encryption rate. On the other hand, Roar has very low encryption rate and has encrypted
only 3 files in the timespan where the Ransomware ran undetected.

Table 6.3: Anomaly Detection Accuracy - Isolation Forest

Time Window Ransomware PoC DarkRadiation Roar Benign Workload

2s 99.9% 99.98% 82.8% 76.2%
5s 100.0% 100.0% 83.57% 80.61%
10s 100.0% 100.0% 83.71% 81.57%

46 CHAPTER 6. EVALUATION

6.4 Performance Considerations

Benchmarks were made to compare how many resources different states of the system
take with both with and without the detection system running. In the two result tables
(Table 6.9 and 6.10) different metrics can be observed, namely CPU time spent in user
space, CPU time spent in kernel space as well as RAM usage. There are 4 different states
of the Raspberry Pi machine. The machine can either be in idle state, FTP traffic present
on the machine, Ransomware running on the machine and finally FTP traffic running
concurrently with Ransomware.

In the idle state, it is expected that both with and without running the detection system,
the usage is similar, as there are no entropy calculations taking place and no model
predictions taking place if there is no file system activity present. From the tables there
is no obvious difference visible for all metrics and all states.

However, resource usage itself may not directly show how much overhead is present by
having the detection system running in the background. The detection system might take
up resources at the cost of lower speed of reads or writes. To test this, three zip files
have been selected, having size in total 1.1GB and copied the zip files into the mounted
directory with detection system running. Secondly, the same files have been uploaded to
arbitrary directory without the detection system. Writing of zip files took without MTD
4 minutes and 4 seconds, whereas the same files took 8 minutes and 40 seconds, thus
increasing the time needed for writing two-fold.

Table 6.4: Accuracy for unseen Ransomware - Random Forest Classifier

Time Window Ransomware PoC DarkRadiation Roar

2s 100.0% 94.71% 99.43%
5s 100.0% 95.55% 99.65%
10s 100.0% 96.92% 100%

6.4. PERFORMANCE CONSIDERATIONS 47

Table 6.5: Accuracy of Benign Workload Detection - Logistic Regression

Left-Out Ransomware
Time Window Ransomware PoC DarkRadiation Roar

2s 99.95% 100.00% 99.95%
5s 99.98% 100.0% 99.98%
10s 99.98% 100.0% 99.98%

Table 6.6: Train Test Split Accuracy

Algorithm 2s 5s 10s

Logistic Regression 99.53% 99.76% 99.87%
Random Forest Classifier 99.93% 99.97% 99.98%

Table 6.7: Average Time Elapsed Before Detection (5s model)

Ransomware Sample Minimum Average Maximum

Ransomware PoC 4 seconds 6 seconds 10 seconds
DarkRadiation 4 seconds 8 seconds 10 seconds
Roar 8 seconds 19 seconds 44 seconds

Table 6.8: Number of Files Encrypted Before Detection

Ransomware PoC DarkRadiation Roar

18 files 35 files 3 files

Table 6.9: Resource Usage Without Detection System
Resource Type Idle FTP Traffic only Ransomware Only FTP Traffic with Ransomware

CPU user space 8%-10% 21%-42% 33%-36% 57%-67%
CPU kernel space 14%-17% 28%-34% 16%-20% 30%-32%

RAM used 253MB 314MB 284MB 311MB
RAM free 850MB 531MB 824MB 705MB

RAM buffer/cache 741MB 1022MB 722MB 798MB

Table 6.10: Resource Usage With Detection System
Resource Type Idle FTP Traffic only Ransomware Only FTP Traffic with Ransomware

CPU user space 7%-10% 32%-48% 32%-34% 56%-60%
CPU kernel space 13%-17% 27%-32% 18%-22% 30%-32%

RAM used 303MB 375MB 284MB 320MB
RAM free 740MB 516MB 824MB 877MB

RAM buffer/cache 945MB 1022MB 860MB 662MB

48 CHAPTER 6. EVALUATION

Chapter 7

Summary and Conclusions

The content of this thesis is summarized in this chapter. The limitations of the imple-
mented system are discussed and possible directions of future work are proposed.

7.1 Limitations

In case of file formats that have high entropy on average (above 5.5), the model ignores
that write operation. In case of a Ransomware that focuses only on high entropy file
types, such as images, videos, compressed files, the detection system would no longer be
effective. In this case, the model will never make any predictions, since those records are
filtered and the MTD will not get initiated. Additionally, although the detection and
mitigation system does not show any significant increase in CPU and memory usage, it
significantly slows down the speed of writing into the overlay file system. The time needed
to write into the file system was doubled. Although the Ransomware activity is detected
within few seconds, certain amount of user data loss is still present, as the model evaluates
the activity at specific time intervals. Finally, the overlay file system has been running in
a specific FTP folder. However, Ransomware usually encrypts the user’s home directory.
In such case, all files except the specific directory in which the overlay system is running
would be encrypted by the Ransomware.

7.2 Conclusions

In this thesis, a real-time Ransomware detection and mitigation system has been proposed,
designed and evaluated. Overlay file system has been designed to log all raw file system
operations into a CSV file. The behavior of three Ransomware samples have been analyzed
with regard to entropy of file writes, as well as the amount of reads and writes. The
Ransomware behavior was put in contrast with benign workload, which was in this case
FTP traffic. JMeter has been utilized to simulate benign file system activity. Varying rate
of FTP uploads and downloads was used to mimic real-world settings of an FTP server.

49

50 CHAPTER 7. SUMMARY AND CONCLUSIONS

Additionally, the same overlay file system has been used to mitigate a Ransomware attack
by changing the file name after the file has been read by a process, rendering it impossible
for the Ransomware to successfully perform encryption of user data.

Three different ML algorithms have been used to dynamically detect Ransomware based
on the file system operations. All three algorithms have shown high accuracy, with random
forest classifier having superior detection rate, where both Ransomware behavior as well
as benign behavior classification has shown accuracy close to 100%.

The random forest classifier model trained on 5 seconds aggregation period has been
deployed on the Raspberry Pi device. The final detection and mitigation system interact
together to prevent the encryption of user data. Overlay file system is logging all file
system operations, which are then fed into the model that evaluates whether the file
system activity is benign or malicious. After detection, the overlay file system is informed
and initiates the MTD strategy.

Finally, the speed of detection and performance overhead of the deployed detection system
has been monitored and evaluated. The benchmark was the system running without an
overlay file system and detection system. No significant differences between the detec-
tion/mitigation system and the benchmark have been detected with regard to CPU and
memory usage. However, the speed of write operations has been significantly decreased
with the detection and mitigation system running. Although the detection system is
highly accurate, the Ransomware samples have encrypted from 3 up to 35 files before the
system detected any malicious activity.

7.3 Future Work

Future work could further improve the detection system by making the system robust
against Ransomware encrypting specifically high entropy file formats. For instance, in-
stead of filtering out high entropy file extensions, a dummy entropy value could be set. In
that case, the model would still evaluate the batch of records, however the model would
rely only on the number of write and read operations. Inventing new features for the
model could also increase the robustness of the model. For instance, similarity measure of
the file before the write operation and the modified file after the write operation. Another
aspect to consider is the data buffering strategy. Assuming the model is robust against
the encryption of high entropy file formats, implementation of buffering as proposed in 4,
the system could in theory prevent any file encryption altogether. Finally, adjusting the
overlay file system to initiate the root directory in user’s home directory would protect
all files and directories of the user.

Bibliography

[1] Internet of things (iot) connected devices installed base worldwide from 2015 to 2025,
https://www.statista.com/statistics/471264/iot-number-of-connected-

devices-worldwide/, Accessed: 2023-04-01.

[2] A. Ifran, M. Niazy, R. Ziar, and K. S., “Survey on iot: Security threats and appli-
cations”, Journal of Robotics and Control (JRC), vol. 2, no. 1, pp. 1–2, 2021.

[3] M. F., C. M. Z. D., P. M., and Z. A., “Iot: Internet of threats? a survey of practical
security vulnerabilities in real iot devices”, INTERNET OF THINGS JOURNAL,
vol. 6, no. 5, pp. 8182–8201, 2019.

[4] A. M., A. T. B. M., B. M., et al., “Understanding the mirai botnet”, USENIX
security symposium, vol. 26, no. 17, pp. 1093–1110, 2017.

[5] G. A. Conti M. and R. S., “On the economic significance of ransomware campaigns:
A bitcoin transactions perspective”, Computers Security, vol. 79, pp. 162–189, 2018.

[6] L. K., L. S.Y., and Y. K., “Machine learning based file entropy analysis for ran-
somware detection in backup systems”, IEEE Access, vol. 7, pp. 110 205–110 215,
2019.

[7] O. G. and G. McDonald, “Ransomware: A growing menace.”, Arizona, AZ, USA:
Symantec Corporation, 2012.

[8] D. Huang, V. Aliapoulios M.M.and Li, L. Invernizzi, et al., “Tracking ransomware
end-to-end”, IEEE, pp. 618–631, 2018.

[9] G. S., K. S., H. K., G. Martin, D. A., and A. P., “A retrospective impact analysis of
the wannacry cyberattack on the nhs”, NPJ digital medicine, vol. 2, p. 98, 1 2019.

[10] A. M. and R. A., “A note on different types of ransomware attacks”, Cryptology
ePrint Archive, 2019.

[11] S. Alty, S. Millasseau, P. Chowienczyk, and J. A.,“Cardiovascular disease prediction
using support vector machines”,Midwest Symposium on Circuits and Systems, vol. 1,
pp. 376–379, 2003.

[12] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classification: A sur-
vey”, Journal of Information Security, 2014.

[13] K. S.B., “Decision tree methods: Applications for classification and prediction”,
Shanghai archives of psychiatry, vol. 27, pp. 130–135, 2 2015.

[14] Z. L., B. T.R., and C. R., “Lessons from infant learning for unsupervised machine
learning”, Nature Machine Intelligence, vol. 4, pp. 510–520, 6 2022.

51

52 BIBLIOGRAPHY

[15] C. V., B. A., and K. V., “Anomaly detection: A survey”, ACM computing surveys,
vol. 41, pp. 1–58, 3 2009.

[16] Z. R., D. S.A., and O. X., “Towards a theory of moving target defense”, Proceedings
of the first ACM workshop on moving target defense, pp. 31–40, 2014.

[17] C. G., W. B., and W. T., “Moving target defense: State of the art and characteris-
tics”, Frontiers of Information Technology Electronic Engineering, vol. 17, pp. 1122–
1153, 11 2016.

[18] J. J.D., A.-S. E., and D. Q., “Openflow random host mutation: Transparent moving
target defense using software defined networking”, Proceedings of the first workshop
on Hot topics in software defined networks, pp. 127–132, 2012.

[19] J. Q., S. K., and S. A., “Motag: Moving target defense against internet denial of
service attacks”, 22nd International Conference on Computer Communication and
Networks (ICCCN), pp. 1–9, 2013.

[20] V. B.K.R., T. V., and Z. E., “To fuse or not to fuse: Performance of user-space file
systems”, FAST, vol. 17, pp. 59–72, 2017.

[21] S. N., C. H., T. P., and B. K.R.B., “Cryptolock (and drop it): Stopping ransomware
attacks on user data”, IEEE 36th international conference on distributed computing
systems, pp. 303–312, 2016.

[22] R. V., “Data fingerprinting with similarity digests”, Advances in Digital Forensics
VI: Sixth IFIP WG, pp. 207–226, 2010.

[23] K. A. and K. E., “Redemption: Real-time protection against ransomware at end-
hosts”, Research in Attacks, Intrusions, and Defenses: 20th International Sympo-
sium, pp. 98–119, 2017.

[24] T. F., M. B., L. J., Z. F., S. J., and M. J., “Ransomspector: An introspection-based
approach to detect crypto ransomware”, Computers Security, vol. 97, p. 101 997,
2020.

[25] A. Continella, A. Guagnelli, G. Zingaro G. amd De Pasquale, A. Barenghi, Z. S., and
F. Maggi, “Shieldfs: A self-healing, ransomware-aware filesystem for ransomware de-
tection in backup systems”, Proceedings of the 32nd annual conference on computer
security applications, vol. 7, pp. 336–347, 2016.

[26] S. R., “Design and implementation of a virtual file system for hostbased moving
target defence in iot devices”, 2022.

[27] Digital corpora data corpus, http://digitalcorpora.org/, Accessed: 2023-04-14.

[28] Go fuse library, https://github.com/hanwen/go-fuse/, Accessed: 2023-04-14.

[29] L. J., “Ai-powered ransomware to optimize its impact on iot spectrum sensors.”,
2023.

[30] Jmeter, https://jmeter.apache.org/, Accessed: 2023-04-14.

[31] B. L., “Random forests”, Machine Learning, pp. 5–32, 2001.

[32] H. D.W. and L. S., Applied Logistic Regression. John Wiley Sons, 2013.

[33] L. F.T., T. K.M., and Z. Z., “Isolation forest”, eighth ieee international conference
on data mining, pp. 413–422, 2008.

Abbreviations

CSV comma-separated values
FUSE filesystem in userspace
FTP file transfer protocol
IoT Internet of Things
IRP I/O request packet
ML machine learning
MTD Moving Target Defense
PID process identifier
RAM random-access memory

53

54 ABBREVIATONS

List of Figures

2.1 Decision Tree [13] . 7

2.2 FUSE architecture [20] . 9

4.1 Collected Data . 17

4.2 Overlay file system architecture . 17

5.1 JMeter User Interface . 21

5.2 JMeter uploading to FTP server . 22

5.3 JMeter download from FTP server . 23

5.4 Data Aggregated by Time Window and PID 24

5.5 File Name Change MTD . 26

5.6 Detection System with MTD . 28

6.1 Sample Data Collected From DarkRadiation 31

6.2 Sample Data Collected From Ransomware PoC 32

6.3 Sample Data Collected From Roar . 33

6.4 Average number of reads per second . 34

6.5 Average number of writes per second . 35

6.6 Number of Writes for each workload every 10 seconds for 10 minutes . . . 36

6.7 Number of Reads for each workload every 10 seconds for 10 minutes 36

6.8 Average entropy of file types below 5.5 - benign traffic 38

6.9 Average entropy of file types above 5.5 - benign traffic 39

6.10 DarkRadiation average write entropy for all file types 40

55

56 LIST OF FIGURES

6.11 Ransomware PoC average write entropy for all file types 41

6.12 Roar average write entropy for all file types 42

6.13 Feature Importance of Random Forest Classifier 43

List of Tables

3.1 Categorization of Surveyed Related Work 13

6.1 Accuracy of Benign Workload Detection - Random Forest Classifier 44

6.2 Accuracy for unseen Ransomware - Logistic Regression 44

6.3 Anomaly Detection Accuracy - Isolation Forest 45

6.4 Accuracy for unseen Ransomware - Random Forest Classifier 46

6.5 Accuracy of Benign Workload Detection - Logistic Regression 47

6.6 Train Test Split Accuracy . 47

6.7 Average Time Elapsed Before Detection (5s model) 47

6.8 Number of Files Encrypted Before Detection 47

6.9 Resource Usage Without Detection System 47

6.10 Resource Usage With Detection System . 47

57

58 LIST OF TABLES

List of Algorithms

1 Entropy Calculation Algorithm . 24
2 Detection System Algorithm . 25
3 MTD and Logging Algorithm . 27
4 Buffering Algorithm . 27

59

60 LIST OF ALGORITHMS

Appendix A

Files Collected from Data Corpus

This chapter references all files from Digital Corpora [27] that have been used for collection
of Ransomware as well as benign behavior.

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/000.zip

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/001.zip

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/002.zip

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/003.zip

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/004.zip

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/005.zip

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/006.zip

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/007.zip

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/008.zip

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/009.zip

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/010.zip

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/011.zip

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/012.zip

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/013.zip

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/014.zip

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/015.zip

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/016.zip

61

62 APPENDIX A. FILES COLLECTED FROM DATA CORPUS

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/017.zip

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/018.zip

• https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs1/zipfiles/019.zip

Appendix B

Packages Used

All the GitHub links to the relevant packages that have been used throughout the thesis
are listed below.

• https://github.com/hanwen/go-fuse

• https://github.com/scikit-learn/scikit-learn

• https://github.com/matplotlib/matplotlib

• https://github.com/pandas-dev/pandas

• https://github.com/numpy/numpy

63

