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Zusammenfassung

Die zunehmende Verbreitung von IoT-Geräten bietet Hackern neue Angriffsmöglichkei-
ten. Darüber hinaus erhöht die Konnektivität von IoT-Geräten das Schadenspotenzial von
IoT-Systemen. Daher ist die Erkennung von Malware auf solchen Systemen entscheidend
für die Schadensbegrenzung. Vor einigen Jahren hat das maschinelle Lernen in Kombina-
tion mit behavioral fingerprinting, bei dem Informationen vom Zustand des Geräts, wie
z.B. die Speichernutzung oder Systemaufrufe genutzt werden, die dateibasierte Malware-
Erkennung abgelöst. Diese Arbeit konzentriert sich auf die Erkennung von Malware auf der
Grundlage von Systemaufrufen und enthält die folgenden Hauptbeiträge: Erstens, erwei-
tert sie die Malware-Erkennung, indem sie die Klassifizierung spezifischer Angriffsphasen
von Malware ermöglicht. Zweitens, wird das Potenzial von Deep-Learning-Modellen im Be-
reich der systemaufrufbasierten Erkennung von Angriffsphasen in IoT-Geräten evaluiert
und mit einem neuronalen Netzwerk verglichen, das als Basismodell dient. Schließlich, wird
in dieser Arbeit eine auf TF-IDF basierende, angepasste Preprocessing-Methode (TF-DF )
für Systemaufrufe bewertet, die eine verbesserte statistische Zuordung der aussagekräf-
tigsten Systemaufrufe anstrebt. Zu diesem Zweck wurde ein Datensatz erstellt, der aus
Systemaufrufen besteht, die von einem Raspberry Pi stammen, das mit einem Hochfre-
quenznetzwerk verbunden ist. Aus den Systemaufrufen dieses Datensatzes wurden elf ver-
schiedene Angriffsphasen, die von vier Malware-Typen (Backdoor, Botnet, Ransomware
und Rootkit) stammen, und eine gutartige Phase abgeleitet. Die Klassifizierungsergebnis-
se des Neuronalen Netzwerkes haben die Ergebnisse der implementierten DL-Modelle in
signifikanter Weise übertroffen. In Kombination mit der vorgeschlagenen Preprocessing-
Methode TF-DF wurde bei dem Preprocessing von Systemaufrufsequenzen mit unter-
schiedlichen Längen ein F1-Score von 99,2% erzielt. In einem letzten Schritt, wurden die
Modelle mit gleich langen Systemaufrufsequenzen evaluiert, wobei die TF-IDF Methode
TF-DF übertraf und einen F1-Score von 78,42% erzielte.
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Abstract

The spreading of IoT devices yields new attack vectors for hackers. In addition, the
connectivity of IoT devices increases the potential damage to IoT systems. Therefore,
detecting malware on such systems is crucial to limit the damage. Some years ago, Ma-
chine Learning combined with behavioral fingerprinting which takes information from the
devices’ state has superseded file-based malware detection. This thesis concentrates on
system call based malware detection and entails the following main contributions: Firstly,
it extends malware detection by enabling the classification of specific attack phases of mal-
ware. Secondly, it evaluates the potential of Deep Learning models in the area of system
call based attack phase detection in IoT devices and compares it with a Neural Network
serving as a baseline model. Finally, the thesis assesses a TF-IDF based adapted pre-
processing technique (TF-DF ) for system calls, that seeks an enhanced representation of
the most expressive system calls. For these purposes, a dataset consisting of system calls
coming from a Raspberry Pi connected to a radio frequency network has been created.
From the system calls of this dataset, eleven different attack phases stemming from four
malware types (backdoor, botnet, ransomware, and rootkit) and one benign phase have
been deducted. The classification results of the Neural Network model have significantly
outscored the results of the implemented DL models. In combination with the proposed
preprocessing technique TF-DF, an F1-score of 99.2% has been achieved when applying
it on system call sequences with differing lengths. In a final step, the models have been
evaluated with receiving equal length system call sequences where TF-IDF outperformed
TF-DF and yielded an F1-score of 78.42%.
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Chapter 1

Introduction

The number of IoT devices is rising constantly. According to the authors of [27], there
have been 12.2 billion active devices at the end of 2021 which involves an increase of 8
percent in comparison to the previous year. There are a lot of interesting areas where IoT
devices can be used, as integral parts of e.g. smart homes, smart gardening, or soon smart
grids. Although there are many ways IoT devices could positively influence our lives, one
has to be aware of the security risks that they bring along. On one hand, IoT devices
create new attack vectors e.g. an attacker could shut down the electricity of a homeowner
and demand ransom. On the other hand, IoT devices have fewer resources than standard
PCs which makes them more vulnerable in comparison to standard PCs [38]. Moreover,
due to the fact of limited resources anti-malware programs need to be lightweight and
therefore might not deliver full protection.

As the installation of malware cannot always be prevented it is important to detect when
a system is under attack. Further, not every infected system can be restored in the
same way since the removal of malware differs in the type of malware that was executed.
Therefore, knowing the installed malware type helps to be able to fastly repair a system.
Furthermore, the connectivity of devices in the IoT world involves the danger of spreading
malware to further devices. Therefore, the effectiveness of repair in the IoT realm is key.

It is indicated that the rise of artificial intelligence and natural language processing could
improve the automatic detection of infected systems, especially when dealing with new
malware programs [24]. Older static detection techniques were efficient in detecting al-
ready known malware by e.g. matching signatures (bytes or string specific to malware)
with the current system state. But, finding malware that is not part of the signature
database is often unsuccessful with such an approach since one of the strings respectively
bytes have to map at least partly with the string or byte of the observed malware [1].
Combining AI models with dynamic and behavioral features yield a less strict detection.
Therefore, this approach might increase the chance of correctly classifying systems that
are infected by new malware programs. This could be achieved, by training a model with
different traces of system calls that perform requests from the user space to the kernel
space of a system [8]. In conclusion, it is not only important to detect malware in a
non-whitelist approach but also to detect which malware infected a system to efficiently
remove malware.
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2 CHAPTER 1. INTRODUCTION

1.1 Motivation

In research of AI malware detection based on system calls the focus naturally lies on
detecting if malware is installed on a system or not. The malware type detection based
on system calls is still rarely researched especially in the realm of IoT devices. In addition,
malware type classification on other devices was focusing on finding out which malware
is installed on a system while not including a benign state of the system. This solution
would therefore need a preliminary step to detect if the examined system is being under
attack or not.

Furthermore, novel AI models such as Autoencoders and Transformers haven’t been eval-
uated in the realm of system call based malware detection. Especially, Transformers seem
to be promising as they are known to put different kinds of attention on pixels when it
comes to classifying pictures [49]. Similarly, focusing on various aspects of system call
traces could also help when classifying a system state. The further implemented LSTM
model, an adaptation of the RNN model, also goes in a similar direction but focuses more
on the importance of a given word within a specific sequence [20]. The third sequence
model that has been implemented is the Convolutional Neural Network which especially
puts attention to differences between neighboring pixels in a picture. Similarly, in this
work, the CNN is applied to neighbouring arrays where an array consists of TF-(I)DF
values of a system call sequence. Last but not least, a simple neural network has been im-
plemented with a well-known (TF-IDF) and a newly established preprocessing (TF-DF)
technique for natural language.

1.2 Description of Work

This work follows four different goals: First, it yields to do a summary of existing works
using system calls to detect anomalies and malware on IoT devices and other systems
(Windows, Linux & Android). Secondly, this thesis wants to extend the research of
malware detection based on system calls by focusing on classifying malware-specific attack
phases. By not only detecting the malware installed but also the attack phase of it the
repairment of the system can be started with more detailed information and therefore
could be done more efficiently. Thirdly, the mentioned research field is extended with
new Machine Learning and Deep Learning models such as Autoencoders or Transformers
and the TF-DF preprocessing technique that are evaluated and compared with existing
malware classification results based on system calls. Whereas an Autoencoder is used
to reduce the input to the most salient features the goal of using this model is to have
a fast classification process, the sequence models (LSTM, Transformer & CNN) shall be
used to learn the importance of a system call within a specific sequence. Further, a
Neural Network is implemented to work as a baseline. The goal of the newly created
TF-DF preprocessing technique is to map the distribution of system call frequencies more
precisely than the TF-IDF method which is more optimal in the realm of natural language.
Lastly, the detection of attack phases while detecting anomalies is evaluated in this work
by adding a benign class to the classification process. Therefore, there would be no need
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to have running an anomaly detection model and a malware or attack phase detection
model at the same time.

1.3 Thesis Outline

In the first section background information on various topics of interest to the underlying
thesis is discussed: First, several malware types are briefly presented. Then, the necessity
of system calls and their possible collection is discussed. After that, preprocessing tech-
niques for natural language processing (NLP) are discussed followed by the explanation
of Machine Learning models implemented in this and related work. The first chapter is
concluded with a short presentation of the ElectroSense platform which is the provenance
of the data used to classify malware in this work.

The second chapter is dedicated to the related work focusing on anomaly and malware
detection based on system calls of IoT devices but also android smartphones or standard
PCs. Also, it is discussed how Deep Learning models have been implemented in the
related work. Based on this, the third chapter consists of implementation details of
models, and preprocessing techniques are presented right after a thorough exploration of
the underlying data. Given the implementation details, the fourth chapter is evaluating
the results of the different implemented ML models including some experiments with
adversarial attacks. Next, results are discussed in the fifth chapter whereas limitations
are presented and translated into future steps that could be taken. In the last chapter,
the results are summarized.
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Chapter 2

Background

The background is focused on six main topics, namely: system calls, malware types,
preprocessing techniques, Machine and Deep Learning models, the dataset used in this
thesis, and the ElectroSense platform where the latter was gathered. The former topic
is chosen as system calls are the basis for the thesis’ malware detection. This strategy is
a subcategory of behavioral fingerprinting which can also be executed on other systems’
data such as resource consumption (e.g. CPU or memory usage). In addition, file-based
malware detection exists but it has been pointed out that it has some flaws. The observed
metadata of files including IP addresses or URLs that the file will connect to provide
information on the good nature of a program. As this is sometimes known by attackers
they mostly mask those strings to make the anti-malware program ineffective. Therefore,
this thesis is focused on system calls and the use of its behavior-based method of malware
detection.

2.1 Malware

New malware programs are created each day. To better understand newly created malware
it is categorized into a malware types category. By comparing potential attacks but also
the ways of installation one can divide the malware programs into malware types. Further,
the programs can be divided into malware families where a malware family not only shares
its malware type but also other characteristics (e.g. package names). Therefore, malware
families can be system-specific whereas malware types can not.

In this chapter, four widespread malware types that are also present in the dataset used
in this thesis and additional malware types are introduced. Table 2.1 shows the different
installation procedures and strategies that attackers choose when making use of the four
main malware types. However, the first contact of an attacker with a potential victim is
mostly independent of the malware type. There are two widespread ways to gain access
to a victim’s computer: Either through social engineering or by delivering malicious code
onto the system by taking advantage of its vulnerability e.g. insufficient security in the
current version of the installed operating system [16].

5



6 CHAPTER 2. BACKGROUND

Malware Type Malware Example Infection Further Strategies Possible Attacks while Malware is Active
Backdoor [10] TheTick Download and installation of backdoor Obfuscation of future access via remote

access tools or through the use of Tor
browser

Accessing system to e.g. steal data

Botnet [16] Bashlite - Download and Installation of bot bi-
nary
- Joining botnet with authentication
and connection to Botmaster server

Connection to DNS Server to hide IP - Botmaster connects to bot to give
commands
- Performing HOLD, UDP or TCP
floods

Ransomware [41] RansomwarePoC - Connection to control server to get
encryption key
- Encryption of system or files

- Search of valuable files
- Hindering user from restoring and re-
booting the system

Improving locking after first installa-
tion

Rootkit [69] Bdvl Replacing UNIX utilities
or installing automated script

- Hiding of running processes by open-
ing TCD/UDP ports, registry keys,
and stored files
- Protection from its deletion

- Network scanning and sniffing etc.
- Running script
- Obfuscation processes

Table 2.1: Overview of installation and attack procedures of different malware

2.1.1 Backdoor

A backdoor is a malware program that is installed on a victim’s computer or network to
provide unauthorized access to the attacker. For IoT devices, authorized access is probably
installed by the seller of the devices to be able to handle technical issues remotely [23].
Therefore, an attacker can either exploit this already installed access or install a backdoor
via a network connection to the target system whereas usually, files are to be modified.
The authors of [10] argue that in the installation phase the chances are the highest to
detect a backdoor as future access by the attackers is often obfuscated.

Thetick - A simple embedded Linux backdoor

Thetick was created by an internet security company called NCCGroup. In their GitHub
account, they published the malware [48] together with a short installation instruction.
Interestingly, they report that the backdoor includes a command and control console
whereas the command and control structure is also an inherent part of botnets.

2.1.2 Botnet

The authors of a paper in which a survey on botnets is conducted[16] a Botnet is defined
as follows: ”Network of compromised computers called Bots under the remote control of a
human operator called Botmaster.”Further, they describe the installation of such a Botnet
as follows: Typically a script is executed to download the bot binary mostly from a bot
that initially exploited the victim’s system. Then the binary is installed on the machine.
To successfully join the botnet the system needs to contact the botmaster’s server. As
the botmaster usually tries to hide his IP address behind a DNS name the system first
needs to find out its DNS name by connecting to a DNS server. Finally, the system can
connect to the botnet which consists of three authentication steps: First, the bot needs
to send a PASS message to authenticate itself to the server. Then, the botmaster asks
the bot to provide a password that is contained in the bot binary. As the last step, the
botmaster is required to provide a password to the bot. Hence it can be prevented that
an unfamiliar botmaster can take control of a bot.
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After an installation as described above a botmaster can attack systems with its swarm.
With the help of its bots, he/she can execute e.g. Distributed Denial of Service (DDoS)
attacks. These attacks can e.g. lead to economical damages as it potentially overloads a
web server which can result in an inaccessible company/customer website.

Bashlite vs. Mirai - Malware programs designed for DDoS attacks

The Bashlite malware and its derivative Mirai ”infect IoT devices (e.g., broadband modems
and surveillance cameras) accessible with vulnerable, known authentication credentials”
[45]. It can consist of multiple command and control servers. In contrast to Mirai, the IPs
of Bashlites’ servers are static and don’t make use of obfuscation through DNS. Another
advantage of Mirai is that all versions of it come with a built-in scanner which allows bots
to search for vulnerable devices whereas only some types of Bashlite malware provide this
feature as an extension. Both malware programs prevent the bots from being added to
other botnets by disabling their communication capabilities.

2.1.3 Ransomware

In general, Ransomware is divided into two types: One blocks access to files on the
attacked system by encrypting them and the other locks the system such that the victim
cannot log into it. The way of its distribution is often through phishing as indicated by the
authors of [41]. Looking at the setup of advanced ransomware attacks sometimes includes
techniques to prevent a user from e.g. restoring or rebooting his/her system or hiding the
attack from the user. For a successful blocking of the access of files respectively of the
system, the malware must induce a connection between the victim’s system and the attack
system to receive the encryption key. Whereas by now the system would already be locked
the encryption of the file ransomware could be extended by searching for important files or
renaming and/or relocating files before the encryption. Often a mechanism is established
through which a victim can restore his files. Depending on the encryption technique which
can be asymmetric, symmetric, or hybrid (a combination of symmetric and asymmetric)
the decryption key to the encrypted files is handed out when the ransom has been paid.

The ransomware attack can be trickier to execute as long as the IoT device under attack
doesn’t include a display where the attack message can be shown to the victim. Before
installing malware an attacker first needs to find a device that is controlled by a human
operator. Therefore, the attacker needs to have or gain information about the topology
of the network the IoT device is a part of [26]. On one hand, such an attack is more
complex than an attack on systems that have displays but on the other hand, the impact
of an attack on IoT devices results often in higher damages because of its connectivity to
multiple devices. Due to the importance of such systems ransoms could potentially be set
higher than in traditional attacks. All in all, as stated by the authors of [26], the number
of ransomware attacks on IoT devices has been marginal so far due to its complexity
but attackers who have chosen ransomware attacks on IoT devices would mostly target
systems of high importance e.g. smart railway systems or cars, which retains the defence
of such attacks essential.
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RansomwarePoC - Extending educational purpose ransomware

The RansomwarePoC malware is a ransomware that encrypts files on a system. The
RansomwarePoC [29] malware extends the simple CriptSky [11] malware by adding the
RSA encryption which is an asymmetric encryption mechanism. The public key with
which the file is encrypted is provided to the victim whereas the private key is stored in
the command and control server of the attacker. When the attacker gets the ransom he
can send the private key to the user who then can use it to decrypt the encrypted files.

2.1.4 Rootkit

According to the author of [69] a rootkit is ”some kind of hacking toolset (sniffers, net-
work scanners etc.) combined with one of a number of Trojan horses”. The latter are
programs that try to impersonate normal programs such that the victim respectively its
anti-malware program doesn’t find them. Once a rootkit is installed, attacks are performed
via automated tasks or are hidden behind UNIX utilities. By producing unnecessary pro-
cesses (opening TCP/UDP ports, registry keys, and stored files) and disabling malware
file access attackers try to prevent the detection by anti-virus software. Finally, attackers
might try to hinder the deletion of the programs.

Bdvl (bedevil)

The Bdvl malware is a rootkit malware but it also comes with backdoor functionalities [15].
As introduced before it has a wide range of functionalities such as keylogging, stealing files,
and even passwords whereas it operates in the user space it tries to ”intercept calls from
binaries to libraries” to load the malware’s functionalities into the libraries [9]. Further,
the malware includes a function that hides files and processes that stem from the rootkit.
The Bdvl rootkit offers additional functionalities such as hiding ports and the logging of
system logins that occur through an ssh connection.

2.1.5 Further IoT Malware/Attack Types

There exist further malware types that are not found in the database and that therefore
haven’t been used to classify malware in this thesis. Still, an incomplete selection is
shortly discussed in the following sub-sections as they can have an impact on IoT network
attacks.

Virus

Viruses are programs that can spread across different systems in a network [65]. Contin-
uing, they ”can be used to steal information, harm the host system and build botnets”.
Further, in comparison to worms, viruses would need some human involvement to be
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replicated. As human involvement is limited in the IoT world it could be argued that
worms pose a bigger threat than viruses in this area.

Worms

Similarly, to viruses worms spread themselves without the active involvement of attackers.
In difference, they try to find weaknesses of a system to propagate themselves and don’t
rely on the help of the systems’ user [65]. In addition to that, worms would be often used
to slow down the processes of a system or to damage it. Therefore, they are especially
dangerous for IoT devices due to their already limited resources and their high level of
connectivity to other IoT devices.

Hacking tools: Network Scanner, Spyware and Keylogger

Sniffers can be further divided into network scanners and spyware programs. Whereas
spyware mostly focuses on the users’ activities keyloggers specialise in the user’s keyboard
activity [65]. Further, network scanners focus on listening to the network activity of a
system. Especially, the latter sniffer type can be crucial for an attacker to investigate the
IoT topology. As already stated above, sniffers can come in combination with a rootkit.

Zero-day exploits

Especially dangerous for IoT devices are zero-day exploits as most of these devices only
consist of only a handful of software due its limited resources. Therefore, if one of these
softwares have a bug that can be exploited by attackers often a major part of the system’s
use case or functionality could be broken. As such an attack is often custom to a specific
software vulnerability it seems to be hard to differentiate such an attack from a benign
system’s behavior.

2.2 System Calls

A system call is a request from the user space to the kernel which has control over the
system [8]. Further, it is indicated that the amount of system calls is limited by the size of
the systems’ sys call table which usually would be 256. In Unix systems, for each system
call exists a wrapper routine in the C library which a programmer can use to perform a
system call and by that access the CPU, memory, and disks in the kernel space.

The authors of [56] outline that when running a program that copies data from one file
to a new file several system calls are performed in the background (see below). Also,
each system call could be grouped into six different categories: Process control, file man-
agement, device management, information management, communication, and protection.
Table 2.2 shows an overview of the tasks of the system calls depending on their categories
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combined with some examples of system calls. Further, it is pointed out by the authors
of [56] that sometimes the names of system calls of file and device management have a
big similarity. Some operating systems such as UNIX would have even chosen to combine
system calls that stem from different categories into uniquely named system calls.

2.2.1 Example of system call steps for a simple task

In the following ordered list, we find the system calls needed to copy data from one file
to a new file. Depending on the success of the copying process between around eight and
15 system calls (although a loop of reading & writing text lines could produce multiple
system calls) need to be executed. The system calls were described and generalized by the
authors of [56] such that it can be understood independently from the underlying system.
Further, depending on the system, there could be additionally required system calls.

1. Acquire filename of input file which will be copied

2. Write prompt to screen (of the input file)

3. Accept input respectively input path

4. Acquire the filename of the destination file

5. Write prompt to screen (of destination file)

6. Accept destination filename, respectively its path

7. Open input file

8. If the input file does not exist, abort

9. Create destination file

10. If the destination file already exists, abort

11. Read from input file

12. Write to the destination file (loop with 11. until read fails)

13. Close destination file

14. Write a completion message to the screen

15. Terminate process
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Example of UNIX system calls Tasks of system calls
Process Control fork(), exec(), exit(), wait() System calls that handle the (abnor-

mal) termination of processes,
creation of new processes or the control
of their execution

File Management open(), read(), write(),
close(), getxattr(), setx-
attr()

- Creation (open()) and deletion of files
or folders
- Read, write, and close a file/folder
- Getting and setting of file attributes
(e.g. type or name)
- Some systems include system calls for
copying or moving files/folders, other
systems implement these as APIs con-
sisting of different system calls and
code

Device Management ioctl(), read(), write() Managing resources/devices (e.g. main
memory, disk drives, and access to files)
by granting or temporarily prohibit-
ing control until enough resources are
free. In the case of a multi-user system,
this would include requesting a resource
for exclusive use and releasing it when
done.

Information maintenance getpid(), alarm(), sleep() Returning information from the oper-
ating system to the user program. The
information can reach from showing the
time or date to printing information
about the memory and disk space etc.
Further system calls provide dumping
memory e.g. in case of abnormal termi-
nation of a process for debugging pur-
poses.

Communication pipe(), shmget(), mmap() Message-passing model: Opening and
accepting connections, internal system
communication between processes, or
inter-system communication via a net-
work.
Shared-memory model: Creation and
allocation of memory owned by other
processes. This requires that processes
agree to remove the memory access re-
strictions of the operating system.

Protection chmod(), umask(), chown() Restricts access to the resources that
a system provides. Manipulation of
access restrictions can be achieved
through system calls that set and get
permissions for files or folders. Further,
access for different kinds of users can be
managed (allow/deny user).

Table 2.2: System calls overview based on information from [56]
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2.2.2 System Tracing

For Linux systems, the linux-tools-common package includes the perf program which en-
ables the system call collection by the perf-trace command (see command documentation
[33]). Figure 2.1 shows the output when executing perf trace -S -T -a on a Raspberry
Pi that has been performed to retrieve system calls for the underlying dataset. While
the first entry on each line shows the uptime of the system in milliseconds the time in
the brackets is the time that shows how long the system call was executed. The system
call is shown between program id (PID) and a bracket consisting of system call function
parameters. The last line entry after the equal operator is the returned value. While
a return value of -1 can indicate that an error occurred a 0 can stand for a successful
operation.

Figure 2.1: Screenshot from system tracing output

2.3 Preprocessing Techniques

The most widely used preprocessing techniques, especially in Host-Based Detection Sys-
tems, are also used in Natural Language Processing [44]. In the following sub-sections,
some NLP preprocessing techniques will be outlined.

2.3.1 N-Grams/Bag-of-Words

Whereas single words are referred to as Unigrams (n=1) in the realm of n-grams, higher
numbered n-grams are a bag-of-words representation consisting of multiple consecutive
(except skip-grams see subsection 2.3.1) words or letters. The n-gram approach increases
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the amount of the input dimension of a model in comparison to single words (Unigrams)
depending on the potential number of combinations of words. According to the authors
of [67] the feature space could therefore grow exponentially with Ln where L is the num-
ber of unique system calls. For a dataset of 200 distinct system calls the 4-gram could
theoretically produce up to 1.6 billion different n-grams.

Sliding windows

Sliding windows is a preprocessing technique where a special focus is put on the context of
words. The size of the window is mostly odd as there is a focus word in the middle and an
amount x which represents the distance from the focus word to the first respectively the
last word in the BOW. This results in a total window size of 2*x + 1 [20]. This approach
helps encode the meaning of a word depending on its context. A word can have different
meanings depending on its context (e.g. ”type”).

Skip-Grams

Another way of refining the N-Gram approach is by creating n-grams where not the
words which are directly after each other are put into a bag-of-word representation but by
ignoring one or more consecutive words in a sequence. On one hand, following performing
this technique information about neighboring system calls gets lost. On the other hand,
longer contexts can be taken into account.

2.3.2 One-Hot-Encoding

Words need to be converted into numeric values or vectors as most machine learning
algorithms require numbers as input. As words or letters can occur in nearly unlimited
combinations they don’t have an absolute ordering. Therefore, a meaningful ordering
could be achieved by e.g. taking the number of occurrences of each system call in a specific
sequence as input or their relative amounts of occurrences in a sequence with respect to the
number of occurrences in the other sequences with the help of Term Frequency-Inverse
Document Frequency (see section 2.3.4). Another way of encoding yields the one-hot-
encoding by making a binary vector representation of a word or an n-gram. Per word or
n-gram a vector with length L is created which has L-1 zeros and a single one. The one
represents the position of the word or the letter in the input dictionary. Therefore, the
first one-hot-encoding of a word within a vocabulary with length five would be [1,0,0,0,0]
and the last word would be represented by [0,0,0,0,1]. This approach makes it possible to
directly input the words or letters into a model where then the model needs to interpret
the order of the words.
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2.3.3 Term Frequency

To calculate more than one term frequency per word the dataset needs to be split into
different sequences. E.g. books are already naturally split into chapters that could be
used as sequences whereas chapters themselves could be split based on sentences. When
being served with such split sequences one can either count the occurrences of each word
per sequence or calculate the relative term frequency by taking the term frequency of
a sequence and dividing it by the term frequency of the word over all sequences. The
following TF-formula is also used to compute the Term Frequency-Inverse Document
Frequency (TF-IDF) which is explained in the next section (see 2.3.4).

TF =
TermFrequencyInSequence

TermFrequencyOverAllSequences

2.3.4 Term Frequency-Inverse Document Frequency

The TF-IDF-formula expands the relative term frequency approach and multiplies it
with the inverse document frequency (IDF) which takes into account how many docu-
ments/sequences a term occurs. The IDF is the logarithm of the number of documents
(here called sequences) divided by the number of sequences a term is occurring.

TF-IDF = TF · log(
NumberOfSequences

NumberOfSequencesWithTermOccurrence
)

Therefore, a word that occurs in every sequence results in a TF-IDF value of zero
(log(1)=0) whereas the lower the number of document occurrences of a word, keeping
the term frequency constant, the higher the TF-IDF value.

2.3.5 Odds ratio (OR)

The odds ratio preprocessing methods’ ”basic idea is that the distribution of features on
the relevant documents is different from the distribution of features on the nonrelevant
documents” [70]. The Odds Ratio value of term t and category ci consists of two de-
pendent probabilities and their complementary probabilities: First, the probability of a
term appearing in a document or sequence if it is a member of the category ci (P(t|ci))
and second, the probability of t occurring if it is not part of ci (P(t|!ci)). Therefore, the
complementary probabilities (1-P(t|ci) and (1-P(t|!ci))) are the probabilities of a term not
appearing in a document or sequence if it is a member of a category respectively the term
not occurring in a sequence if it is not part of a specific category. It is defined by the
following equation:

OR(t, ci) = log(
P (t|ci)(1 − P (t|!ci))
P (t|!ci)(1 − P (t|ci))

)
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2.3.6 Positional Encoding

The positional encoding is a special preprocessing technique for the Transformer model to
preserve relative and absolute position information of embeddings [62]. The founders of
the model achieve it by adding the positional encodings to the embeddings. The positional
encodings (PE) are calculated through the following sinus and cosinus functions where i
is the index of the term in the dictionary, pos its absolute position in a sequence, and
dmodel the size of the input dictionary. Therefore, a word in a dictionary that has an
odd index is calculated by the cosinus and a word with an even index is positioned by the
sinus function.

PE(pos, 2i) = sin(pos/100002i/dmodel)

PE(pos, 2i + 1) = cos(pos/100002i/dmodel)

2.4 AI Models

In the following sections, different artificial intelligence models are explained. Starting
with the standard neural network and ending with deep learning models such as Trans-
formers or Convolutional Neural Networks. Not all models are implemented in this thesis
but are at least used in related work.

2.4.1 Neural Network

The author of [63] defined the structure of a neural network as follows: ”An artificial neural
network (or simply neural network) consists of an input layer of neurons (or nodes, units),
one or two (or even three) hidden layers of neurons, and a final layer of output neurons.”
Figure 2.2 illustrates an example of a neural network. The lines between the nodes show
the weights of each layer. The input of a node ai of the hidden layer is calculated by the
input node x1 and the weights w1,x which is shown in the following formula whereas D is
the height dimension of the current layer (D=4 in the input layer of this example):

a1 =
D∑

d=1

xd · w1,d

2.4.2 Support-Vector-Machine (SVM)

A Support-Vector-Machine is often used to classify data points in two classes in a super-
vised fashion. The datapoints are often represented on an x-y-scale and the datapoints
stemming from two distinct classes are then tried to be separated by a so-called decision
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Figure 2.2: Figure of a(n) (Artificial) Neural Network based on the figure of the author
of [63]

boundary which is constructed by a hyper-plane [18]. Further, the SVM can also be used
as multi-class classifier when repeating the hyperplane search multiple times whereas for
each class the binary classification of an SVM is performed where the datapoints of the
one class are compared against all other classes’ datapoints that are put together into one
class.

2.4.3 Random Forest

Random Forest is another form of a rather simple decision model which consists of different
so-called decision trees. A decision tree mostly consists of multiple decisions where while
training each decision step is assigned a comparison value of a feature x e.g. x < 2. If x
is either smaller or greater equal two the corresponding path is chosen. According to the
authors of [18], at the end of such a tree consisting of multiple decisions, the input is then
assigned to a class. Further, they state that a random forest is a combination of multiple
decision trees whereas normally, they are implemented in that each tree gets a vote for
one class and then the class with the highest amount of votes is chosen.

2.4.4 Recurrent Neural Network

Recurrent Neural Networks (RNNs) are neural networks that consist of interlinked neural
networks. It can be used to model sequences of words whereas each word is represented by
a network whereas the last network combines the results of every network in a sequence
[20]. The networks are interconnected through an additional input layer which was coined
state by the author of [14]. In Figure 2.3 a representation of an RNN over a sequence
with length four is shown. The θ-symbol represents the shared parameters over the whole
connected network [20]. However, the recurrence enables the network to learn sequence
information the connectivity often produces vanishing gradients which possibly neglects
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the information of the first networks of a sequence as indicated by the authors of [50]
and therefore words placed at the beginning of a specific sequence have little influence on
the sequence network. As long-term information of a sequence gets lost a new model was
found to address this problem. The so-called Long Short-Term Memory (LSTM) model
is an adaptation of the RNN. It will be discussed in the next section.
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Figure 2.3: RNN shown in an unrolled fashion based on the figure in the book [20]

2.4.5 Long Short-Term Memory (LSTM) model

The idea of the LSTM model is based on knowledge about the human brain. The brain
memorizes new information for a short period of a few seconds [19], and only if the new
information is important enough it will be memorized for a longer time. This idea is
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captured in the so-called ”gates” of an LSTM cell (depicted in Figure 2.4). There are
three types of gates: input, forget and output gate. The LSTM model is a recurrent
neural network that consists of multiple LSTM cells.

Figure 2.4: Depiction of an LSTM cell based on a figure of the authors of [61]

First, we focus on the input step and its activation function (see black arrows in Figure
2.5): The input gate (see i in Figure 2.4 ) decides on how much of the input should be
contained in the memory cell at the end. According to the authors of [61], the inputs of
the input gate are updated in this step which is shown in the following equation where the
current input xt is combined with the output of the last LSTM cell yt and the value of the
last cell ct−1. Their parameters Wi respectively wi are their weight matrices respectively
ct−1’s weight vector and bi is the bias vector:

it = sigmoid(Wixt + Wiyt−1 + wi ⊙ ct−1 + bi)

Figure 2.5: Depiction of an LSTM cell based on a figure of the authors of [61] with focus
on input gate it and its activation function zt

The input gate it is then point-wise multiplied with the result of the activation function
zt in which the weights of the vectors xt and yt−1 and the vectors itself are summed up
with the bias vector:

zt = tanh(Wzxt + Wzyt−1 + bz)
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In the forget step respectively the forget gate, ft decides how much information of the
previous cell should be kept by taking the same input (xt, yt and ct−1) as in the input step
for the sigmoid function in equation it but with different weights and without activation
function zt (see Illustration 2.6). By adding the forget gate and the input gate which are
multiplied with the previous cell state respectively with the block input zt we receive the
cell state ct of the current cell:

ct = zt ⊙ it + ct−1 ⊙ ft

Figure 2.6: Depiction of an LSTM cell based on a figure of the authors of [61] with focus
on the forget gate ft

The output gate ot again combines the cell inputs and puts them into a sigmoid function
with their weights. The result of this is then multiplied with the activation of the cell
state which results in the output yt of the cell (see the following equation):

yt = tanh(ct) ⊙ ot

2.4.6 Deep Belief Network

As standard neural networks also struggle with vanishing gradients when having multiple
hidden layers Deep Belief Networks (DBN) have been constructed that consist of so-called
Restricted Boltzmann machines (RBMs). Summarized RBMs are 2-layer networks where
the nodes have a probabilistic dependency, although the dependency is restricted to take
place between nodes of distinct layers [25]. The values of the nodes are learned in an
unsupervised fashion to be either 0 or 1 depending on these probabilities. It is reported
that in this way the learning can be done more efficiently. By stacking RBMs one receives
a Deep Belief Network. Enabling a DBN to classify data based on labels the output of a
DBN must be extended with a suitable classifier such as e.g. softmax.
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2.4.7 Autoencoder

An Autoencoder network can be described as being a combination of two neural networks
where the output layer of the encoder network is used as the input layer of the decoder
network. It can be used to reduce the dimensionality of given data e.g. by ignoring
insignificant pixels of a photo, by encoding the data into a feature representation and
after that decoding it into a data representation with lower complexity [64]. Further,
Autoencoders can be used to separate unlabeled data into different groups but apparently,
they can also be used to classify labeled data while finding ”the latent variables that explain
the input” [21].

2.4.8 Convolutional Neural Network

Like in the basic neural network a convolutional neural network (CNN) consists of different
layers that perform matrix multiplications. Contrary, to the basic neural network so-called
convolutions are performed during these multiplications. Additionally, a CNN mostly
consists of multiple hidden layers where the convolutions are performed. A convolution
is carried out by doing multiple multiplications on a matrix with the help of a filter that
is chosen to be smaller than the original matrix to enable the multiple multiplications.
The term convolution describes the calculation of one matrix entry of the next layer that
consists of an aggregated value based on calculations on multiple entries of the previous
layer [2]. Controlling the output size of a given layer is key to receiving a working model
as at the end of the network the current layer must be mapped to a linear layer. The
output size of a convolutional layer can be influenced by different factors, namely filter
size (F), amount of filters (K), stride (S), and the amount of zero paddings (P) but also
depends on the dimensions of the input matrix. For a 2-dimensional matrix with width
W1 and height H1 the resulting matrix receives the W2 and height H2 according to the
authors of [12] as follows:

H2 = ⌊H1F + 2 · P
S

⌋ + 1

W2 = ⌊W1F + 2 · P
S

⌋ + 1

Stride

The stride is the step size of the filter moving over the matrix doing the calculations.
Figure 2.7 depicts this movement when having a stride of two and a matrix of dimension
10x5 and a filter of dimension 3x3. Two observations can be done: First, not only the
movement of the filter on the horizontal line surpasses one dimension but also the move-
ment in the vertical direction. Secondly, the last column of the matrix is not considered
with the given dimension. When using the above formulas the resulting height of the next
layer matrix would be 2 whereas the width of it would be 4.



2.4. AI MODELS 21

Figure 2.7: Convolution on 10x5 matrix with stride = 2 and kernel dimension 3x3

Zero-Padding

Zero-Padding or Padding can help prevent that a column of a matrix is ignored during
a convolution as in the prior example. Padding of length 1 sets a frame consisting of
entries that are set to zero around a matrix before the convolution happens (see Figure
2.8). This can also become necessary when the goal is to keep the same dimensions or
even to increase the dimension size of the resulting matrix [12].

Figure 2.8: Matrix of dimension 8x8 without (left) and with padding of 1 (right)

Pooling

Whereas a normal convolution takes aggregate values max-pooling e.g. is done by choosing
the biggest value in the given filter region. This pooling strategy augments the importance
of entries with a high value in the original matrix. Therefore, in image classification e.g.
this strategy lays importance on more visible/darker pixels. Further, average pooling
yields another pooling strategy by taking the average of all values being looked at by the
filter during one step of convolution.
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2.4.9 Transformer

In comparison to the LSTM model the Transformer model does not rely on a Recurrent
Neural Network but puts attention on the most important parts of a specific sequence
[62]. Further, the model lies importance on three different types of (self-)attention are
implemented in the original model of the authors of [62]. These are briefly outlined below:

1. Self-attention in the encoder layers: Self-Attention is the attention of a word put on
every other word in a sequence and itself respectively its positional encodings of a
previous encoder layer.

2. Self-attention in the decoder layers: Similarly the decoder positions put attention on
its position and the other words’ positions. In comparison to the encoder following
words of a sequence need to be masked such that the decoder not directly learns the
order of the words in the output language.

3. Encoder-Decoder attention: For each word in an output sequence with the corre-
sponding input sequence its attention concerning all the words of the input sequence
is computed.

Attention in this model is calculated by computing the activation with softmax of the keys
and queries respectively their weights (Q and K) which are scaled by the root of the key
dimension (see following equation [62]). Further, the embedding vectors of the words of a
sequence are put together into a matrix. For each word the matrix is used to be calculated
with the already mentioned query and key (and value) layers which result in the matrices
Q and K (and V). As V is the matrix that is not multiplied by another matrix inside
the softmax whereas Q and K are not. As the correct or the most important feature is
not necessarily learned automatically this is carried out multiple times in parallel. This
process is called multi-head attention [62].

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

2.5 Dataset

The underlying dataset for this thesis stems from the author of [58] and was published on
the IEEE Dataport website [59]. According to the author of [59] the dataset ”models the
internal behavior of an IoT spectrum sensor” constructed with a Raspberry Pi that has
been connected to the ElectroSense platform while the devices’ system calls have been
recorded during attacks respectively no attack. The attacks can be categorized into four
different malware types while some of them were also sub-categorized into different attack
phases, e.g. the system’s behaviour when the Bashlite malware is or has been installed
is split into four sub-phases, namely the installation phase and into three different attack
respectively flooding techniques (UDP, TCP and HOLD). Further details on the attack
phases and the dataset are discussed in the Data Exploration sub-section in chapter 4. In
the following section, some characteristics of the ElectroSense platform and the connected
Raspberry Pi from which the system calls were collected are presented.
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2.6 ElectroSense - Radio Frequency Platform

The ElectroSense crowdsourcing platform was established to monitor electromagnetic
waves that could e.g. stem from cognitive radios or electronic devices [52]. An origi-
nal unit for collecting radio frequency data would consist of a Raspberry Pi as already
indicated in combination with a radio frequency front-end, a radio antenna, a GPS mod-
ule, and a radio signal receiver called RTL-SDR. The Raspberry Pi used in the creation
of the dataset serving as a basis for this thesis was ”a Raspberry Pi 4 with an ARMv7
rev 3 processor and 4 GB of RAM” [58]. While the IoT device was an active part of the
ElectroSense platform different malware types were installed and attacks were performed
on it. In the meantime, the behavior of the system was recorded by collecting system
call traces. Further, the collection of system calls from the Raspberry Pi would happen
while it receives radio frequency data and sends it to the ElectroSense platform [58]. As
the ElectroSene platform is an open-accessible network it is a good example of potential
dangers in the IoT realm.
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Chapter 3

Related Work

3.1 Malware Detection through ML models based on Sys-

tem Calls

There seem to be two major strategies to train a model for malware detection in the
research community: Whereas some (e.g. [42]) only train their model with malware
samples e.g. others (e.g. [28]) additionally take samples of a system that has no malware
installed. While in the former case the classifier can’t decide if a system was attacked or
not with the help of multi-class classification, such a model can still be used to determine
which type of malware was installed on a system. In the detection strategy where the
benign system state is included anomalies can either be found via binary or multi-class
classification. If there would be a perfect multi-class classifier it would render binary
classifiers unnecessary. As a perfect model doesn’t exist yet we have a look at binary and
malware classification separately in the following section. Table 3.1 gives an overview of
the stated and additional related work and their classification results.

3.1.1 Binary Classification

Binary malware detection in Linux IoT devices based on system calls has already been
conducted [55]. The authors of the conference paper were able to successfully classify IoT
Malware (98.7 Accuracy) with the help of an RNN. The author of [17] achieved an F1-
Score of 96.4 percent with the SVM model whereas the system calls where preprocessed
into term frequencies. Eight different SSDF attacks were carried out on IoT spectrum
sensors. The authors of [6] used the Odds Ratio (explained in section 2.3.5) preprocessing
technique and reached combined with the Random Forest method an accuracy of 97.3
percent.

Similarly to IoT devices, the system calls of an Android device can also be used to deter-
mine if a system is under attack or not. In contrast to the Linux realm, the system calls
aren’t collected based on the system but from the apps installed on the device. These
system calls are called API calls and permission logs can be extracted from the APK

25
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files of android apps. Those were used in the following papers to detect malware. The
authors of [53] established a Bidirectional Gated Recurrent Unit (BiGRU) model based
on a combination of an RNN and a CNN. The so-called DexCRNN BiGRU yielded to-
gether with the preprocessing technique Nearest Neighbor Interpolation an accuracy and
F1-score of 95.8 percent. The authors of [66] implemented the LSTM model with four
hidden layers to detect anomalies on an android system. As in the previously mentioned
DexCRNN BiGru approach used by the authors of [53] the dataset was only preprocessed
by a straight-forward splitting of system calls into equally long sequences. In this case,
an accuracy of 93.7 percent was reached. But, also simpler models can get good results
in binary classification: The authors of [51] e.g. used a Support Vector Machine based on
the system calls which classified benign and malicious apps with an accuracy of 95.75%
percent. In combination with permission types, the score was 96.88%. The authors of [68]
reached an accuracy score of 96.76% with a much more complicated architecture based on
a Deep Belief Network (DBN) and Boltzman Machines. Dynamic and static features were
used for that classification. When only using the static features where API calls belong
to the system state was classified correctly with an accuracy of 89.03%. The authors of
[40] used an SGDclassifier to evaluate if Windows API call sequences are malicious or
benign and yielded an F1-score of 95 percent. The binary classification seems to work on
different systems with similar success rates.

3.1.2 Categorical Classification

As malware classification in IoT devices based on system calls is a rather new field of re-
search there aren’t that many publications about it yet. Still, the following two research
papers executed classifications of malware programs within the botnet malware type based
on Unix system calls. The authors of [39] used the 2-gram preprocessing technique to-
gether with a PCA algorithm and then fed multiple one-class Support-Vector-Machines
with it. This approach yielded an F1-score of 98.46 percent on six datasets consisting
of five different botnet malware. Using the same technique the authors of [3] reached an
accuracy of 100% on a dataset stemming from routers consisting of the Botnet classes
MrBlack and Mirai. The Mirai class was additionally split into Mirai versions 1 to 4.
100% was also achieved when using the TF-IDF technique together with 1-gram inputs.

The authors of [28] used API calls of an android system which are related to system calls
to evaluate different models. The best model which was Multiple-Detection Naive Bayes
combined with the Rete algorithm reached a precision of 88.7 percent on their dataset.
The authors of [42] used a Convolutional Neural Network in combination with an LSTM.
Particularly, they preprocess their data such that recurring system calls are deleted from
the dataset and then they perform a one-hot encoding of the system calls. Finally, ten
different malicious malware data were collected and then classified by the model with an
accuracy of 89.4 percent and 89.2 percent without the LSTM (with the CNN only). Only
one malware called Mikey was not classified at all which accounts for up to 10 percent of
the accuracy score. Mikey was often mixed-up with another Trojan called Zusy. All other
malware types had an accuracy rate of 96.6 percent or above. The authors of [54] tried a
similar approach with several different DL/ML models where the CNN yielded the best
result. The windows system call dataset they used included eight different malware types.
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With the help of the TF-IDF preprocessing technique, an accuracy of 91.0 percent was
achieved. The authors of [60] used network traffic features in combination with system
call features, although they indicate that the network-flow features alone would only have
a precision of 49.9 percent on malware categorization. With the help of the n-grams of
the system calls and the random forest model, they yielded a precision of 83.3 and a recall
of 81 percent on an android malware dataset.
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3.1.3 Effects of Deep Learning model parameters on classification re-
sults

CNN

Whereas the authors of [42] implemented a CNN model with Max-Pooling convolution
layers, the authors of [54] made use of Average-Pooling convolution layers. This prob-
ably stems from the fact that the authors of the two papers implemented two different
preprocessing approaches: While in [42] the One-Hot-Encoding preprocessing technique
was used, in [54] the input system call sequences have been restructured with the help
of TF-IDF. The same applies to the two different dimensions of the Pooling mechanisms:
As the input of TF-IDF sequences are 1-dimensional arrays the pooling layers are also
one-dimensional whereas in the One-Hot-Encoding of the authors of [42] the Pooling layer
is of dimension two.

LSTM

The authors of [66] report that having longer sequences of system calls doesn’t necessarily
lead to better classification results. In their approach, where an LSTM model was im-
plemented, the highest accuracy was reached when using 100 system calls per sequence,
although the next higher amount of system calls per sequence was 500. Further, they tried
out different amounts of hidden layers and hidden neurons. Keeping the other parameters
constant four hidden layers and 1000 hidden neurons yielded the best results. For the
latter, it showed that a higher number of hidden neurons tends to reach better results at
least when looking at the number of neurons increasing until 1000. Although these in-
sights are interesting they can only be seen as a tendency but not as absolute values. The
parameters might need to be changed according to the total number of system calls and
the classification task. In this case, the total number of system calls the model receives
lies at 71’030 with 129 different system calls and it needs to perform binary classification.

Transformer

As the Transformer model is a rather new model it was only used in combination with
the LSTM for system call based malware classification. The authors of [22] have chosen
the following parameters for their transformer: 5 heads, the number of hidden dimensions
equal to 64, and a dropout of 0.1 whereas their input had the size of 310.

3.1.4 Effects of adversarial samples on classification results

[4] elaborated on what happens if an android system call based machine learning model
would be provided with manufactured malware samples in the test phase by adding system
calls that only occur in the benign programs and add those to the malware samples. With
manufactured samples consisting of only one percent benign system calls, the performances
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of all of its evaluated models declined drastically (e.g. recall dropped from 98.68% to
50.4% with Linear Regression). Although, the authors have used models with limited
complexity such as Linear Regression or Random Forest this attack vector will also be
shortly discussed and evaluated with chosen models.



Chapter 4

Implementation Details

In this chapter, first, the data distribution is explored and checked for consistency. Then,
the implementation specifics of the preprocessing techniques are discussed whereas a focus
is put on the altered TF-IDF preprocessing technique which was named TF-DF and its
differences from the TF-IDF technique are stated. Further, a pseudo-code extract is shown
to see how this technique was implemented in the thesis. After that, model details and
two different classification approaches are presented. In the end, it is explained how some
experiments with adversarial attacks were conducted.

4.1 Data Exploration

The provided dataset consists of five different system states including four types of mal-
ware affecting the system and one where the system isn’t affected by any malware. In
all system states the devices’ (Raspberry Pi) resources were used for collecting radio fre-
quency data and forwarding it to a server. In the benign system state, no additional
processes such as e.g. installations or updates are carried out. Below, the executed pro-
cesses while carrying out attacks or the malware were installed on the system are shortly
outlined based on the work of the authors of [58] and [59]:

1. Bashlite (Botnet): The Bashlite dataset starts with the installation of the Bashlite
malware which results in the fact that the system can connect itself to a Botnet.
After connecting to the botnet, the botmaster executes different kinds of flooding
attacks (HOLD, TCP, and UDP) through the bot which are performed separately
and consecutively.

2. Bdvl (Rootkit): The Bdvl dataset is divided into four attack parts. The first two
parts handle the installation of the malware which is divided as follows: The first
step consists of an install&&make command and in the second step, the malware is
built. After the installation, an ssh login is performed by the rootkit user. Finally,
the bdvl-specific attack loop is performed which consists of stealing files and the
creation and deletion of directories.

31
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3. RansomwarePoC (Ransomware): As the name suggests, the RansomwarePoC mal-
ware belongs to the ransomware malware type. The dataset only captures one state,
namely the encryption of directories.

4. TheTick (Backdoor): TheTick is a Backdoor malware. In the given dataset, two
states are differentiated: On one hand, the infection of the system and on the other
hand the execution of attacks. During the infection phase, the backdoor is installed
on the victims’ machine. In the attack phase, files are altered and moved between
the system of the attacker and the system of the victim.

Whereas the whole dataset consists of roughly 1 Terabyte of data the classification tasks
in this work made use of only around 1 Megabyte (the size of the smallest attack state file)
of data per class. The main reason for this is that some attack phases haven’t required
more data to be completed. Further, results of some experiments indicate that using more
data doesn’t necessarily improve the performance of a model (see section 5.2).

As a first data exploration step, the different states per malware, e.g. installation of
malware weren’t considered when differentiating between them. Further, only the first
step of each malware infection was explored. For a first impression, the 15 most occurring
system calls per malware were picked to show potential differences in the number of
system call occurrences per malware. The fractional numbers in Figure 4.1 show the
relative amount of system call occurrences per dataset. The Figure shows that the system
call open only appears in one of the five datasets (Normal). Figure 4.2 takes the data
of the beforementioned Figure 4.1 but abolishes the most occurring system and context
calls, nanosleep and nanosleep*, to better show the relative differences of system call
occurrences between the different system states.

If we additionally remove the outliers nanosleep and nanosleep* we see even more differ-
ences between the different amounts of chosen system call types (see Figure 4.2) although,
the differences of the chosen system calls between Bdvl, Normal and Thetick seem to be
minimal.

In a later stage, it was also differentiated between different kinds of attacks. There the
focus lies on the distribution of different kinds of system calls. They have been split into
three observed groups: First, regular system calls that were executed and ended without
being interrupted by other processes. Secondly, context system calls are system calls that
are interrupted by another process before they are completed. The context system calls
are marked with an asterisk (e.g. nanosleep*) in this work. Lastly, the system calls are
irregular as their start time is not in the correct order.

Figure 4.3 shows the distribution of these different types of system calls over the attack
datasets (including one benign dataset). It shows that irregular system calls stemming
from the perf-trace Unix command don’t occur often. Their relative amount to the total
number of system calls is invisible to the human eye compared to the other two types.
Therefore, they are determined to be insignificant and are not excluded from the dataset.
At the same time, context system calls are found to occur on a regular scale. In addition,
Figure 4.3 indicates that different malware and attacks have different effects on the number
of context system calls. As this evaluation was only done within 10 seconds of data for each
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Figure 4.1: Relative Differences Between Top24-Most-Occurring System Calls

attack type next we try to confirm this with an analysis of a bigger dataset. As already
stated Figure 4.1 shows the distribution of the 24-most occurring system calls including
nanosleep*. This context call makes up 97 percent of all context calls in the analysis over
all classes of more than one hour of system calls (per minimum 446’370 system calls per
malware) which were randomly selected. Although, the randomness had to be limited
to randomly picking sequences in periods of 15 minutes to one hour as some malware
hasn’t been active any longer (after the activity of the malware the system state can go
back to normal again and then cannot be used as evidence for above hypothesis). This
shows that the stated hypothesis has to be rejected when comparing the occurrence of
nanosleep* in Figure 4.1 with all the context system calls in the smaller dataset in Figure
4.3 as the ranking of the amount of context system calls per malware changed slightly.
Where Bashlite has the 3rd place in nanosleep* occurrences it climbed to have the second
highest amount of context system calls when looking at a bigger amount of system calls.
So the hypothesis that attacks or malware can be solely found by looking at the amount
of context system calls has to be rejected because the amount differs depending on how
many system calls are studied.

Further data exploration was done to find out if there are system calls that only occur
in one attack phase dataset. A first observation was done by looking at 10 seconds
of each attack phase (see NormalBenign10s in Table 4.4). This yielded nineteen single
system or context calls. To find out if these single system calls have a direct connection
to the system state half of the datasets were enlarged. The datasets to be increased
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Figure 4.2: Relative Differences Between Top22-Most-Occurring System Calls (nanosleep
and nanosleep* removed)

were manually chosen by looking at how long specific attacks endured. For attacks that
minimally take one minute, so mostly the attacks that include attack loops, the data
size was enlarged to 50 seconds which results in 114’015 system calls per those attacks.
This enlargement modified the results of the single system call observation such that the
number of system calls that only occur during one specific attack dropped from nineteen
to nine (see NormalBenign50s in Table 4.4). Following these system calls are enlisted:

• RansomwarePoC –> getpgrp & unlinkat

• Bdvl install&&make –> symlink

• Bdvl ssh login –> setgid32

• Normal –> open, open*, lseek, lseek* & getdents*

Still, as in Figures 4.1 and 4.2 we see that the open system call has only been executed in
the normal dataset. In addition, the normal dataset uniquely consists of the open context
call, the lseek system and context call, and the getdents context call. Those system and
context calls are mainly used for file management, e.g. getdents is used to get directory
entries as stated by the author of [32]. Therefore, these operations could stem from the
collection of radio frequency data. Thus, inferring from this the collection of data is
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Figure 4.3: Distribution of irregular, context, and regular system calls over different attack
types

impeded or interrupted once the malware is installed or attacks are carried out. Next, we
look at system calls occurring in the Bdvl malware dataset only. The symlink system call
creates symbolic links which create a placeholder of a file in a specific directory and from
there enable opening the original file which is located in a different directory [36]. The
setgid32 (can handle up to 32-bit IDs) system call sets the group id of the calling process
whereas the related system call getpgrp has been executed uniquely in the ransomware
dataset [34]. The system call returns the process group of the calling process [30]. The
other single system call which is also only executed during the Ransomware malware is
called unlinkat and is used to remove directories [37]. Concluding, the unique system
calls of malware datasets are mostly performing advanced file management and process
management when comparing them to the benign state where the file management system
calls are rather simple.

System Call Normal Thetick_attacks Bashlite_HOLD Bashlite_UDP

capset nan 3.0 3.0 3.0

tgkill nan 1.0 nan 1.0

fadvise64_64 4.0 6.0 6.0 6.0

sendmmsg* nan 1.0 1.0 1.0

setitimer* nan 1.0 1.0 1.0

setuid32* nan 1.0 1.0 1.0

statfs64 nan 3.0 3.0 3.0

Figure 4.4: System Calls shared in Bashlite, Thetick and Normal in NewNormalBenign50s

Now, let’s have a look at system calls that are shared across malware programs whereas
the amount of them stays nearly constant (see Figure 4.4). One of these is sendmmsg*
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which appears in two of the four varying malware types (Bashlite and Thetick) and in
three of the twelve attack datasets (for more details see column NormalBenign50s in
Table 4.4). The sendmmsg system call is known to send multiple messages on a socket
[31]. These system calls might stem from the Command & Control system structure
that is shared between the Bashlite botnet and the Thetick backdoor. Figure 4.4 shows
the appearance of some further system calls that occur in Bashlite and Thetick but are
also part of the Normal dataset when looking at another 50 seconds system state of
the Normal dataset (see NewNormalBenign50s in Table 4.4). These system calls might
also be part of the standard radio frequency collection system as they occur in a similar
frequency independent from the system state. When comparing the NormalBenign50s and
NewNormalBenign50s in table 4.4 one can observe that there are further system calls that
do only occur in the second system phase of the normal dataset (NewNormalBenign50s).
Another system respectively context call that occurs in two malware datasets is setpgid
respectively setpgid* which are responsible for setting the process group id of a process.
The process can be added to an existing group id or a new group id can be created [35].

4.2 Shuffling consistency

Before passing the data to the models, the n-gram sequences respectively the one-hot-
encodings are shuffled. Additionally, after each epoch of training and testing the data is
shuffled again to keep the models from learning the order of the target labels. Following
it is explained how it was checked that the data is consistent after shuffling. Although the
time when the system calls are executed is not used for classifying attacks in the following,
it is used to show that mixing the dataset and then splitting it into training and test sets
doesn’t lead to unbalanced data. The histograms of Figure 4.5 illustrate the randomness
of the mixed data provided to the models by adding up the times of the first entries of
each sequence in TF-(I)DF or one-hot-encodings whereas the left histogram shows the
distribution over the time of the training set and the right histogram shows the number of
datapoints occurring in different periods within the test data. Each histogram produces
a total of five bars. This is due to the collection of the data which was performed, on one
hand, while the system was used in its normal behaviour and on the other hand, while the
system has been influenced by four different malware programs. The variety in the height
of the bars can be explained by the number of attack phases per malware or benign state.
On one hand, there is the leftmost and the bar second to last that stem from the benign
state and the system state of the time when the system is infected by the RansomwarePoC
malware. In both cases, only one phase was provided in the original dataset. On the other
hand, the highest two bars represent the datapoints from the malware Bdvl and Bashlite
that have been divided into four attack phases. Lastly, the rightmost bar stems from the
data of the Thetick malware which has been split into two attack phases. The distribution
of the bars of the two histograms is slightly different, but only to a small degree which
can be explained by the randomness of the shuffling process.

Figure 4.7 shows the histograms when the shuffling process of the data is executed ten
times on the TF-(I)DF. It shows that when repeating the process and taking the average
results the differences between the training and testing sets get smaller. Further, the
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Figure 4.5: Figure shows two histograms with the data distributions in time after shuffling
the dataset once (with tensor.randperm()) and splitting it into training and testing data

shuffling seems to work as the distributions of the training and test set to approach the
distribution of the original dataset. Still, it is refrained from shuffling the input data ten
times as the time is not a feature that is used for classifying an attack phase the argument
goes that mixing the dataset once is enough such that the models won’t learn wrong time
dependencies. Another distribution that needs to be checked is the number of samples
per attack phase and training set respectively testing set. Figure 4.6 shows the number of
samples per attack phase and training respectively test set in an example of a randomly
split dataset consisting of TF-(I)DF sequences. The red lines indicate the upper and the
lower bounds of training set occurrences. It shows that the target classes are also balanced
with smaller irregularities. The difference between the smallest and the biggest amount of
data per attack phase of the training set in this example is at 2.27 percent. For the testing
set, the difference of 8.95% is substantially higher but is ignored because in testing no
model adjustment happens and therefore no overfitting is possible. The imbalancedness
of the training set is neither treated as the difference is low and therefore in all likelihood,
no model will overfit the targets which occur slightly more often in the dataset.

4.3 Preprocessing

The overall preprocessing is done by reading in the datasets of the different malware and
balancing out the amount of data per dataset by taking the number of system call samples
of the second smallest dataset (=19’645) and reducing the amount of data of the other
datasets to this number except the smallest dataset (number of system calls=18’008). The
main reason for this approach was to reduce the risk of overfitting which can occur when
using imbalanced datasets [57]. Further, only one column (system call) of the datasets of
a total of four columns (Time, Program, PID, & System Call) is considered. The columns
Time, PID, and Program are ignored. This was done to build a more generalizable model
which does not depend on a program name that can but mustn’t be different from the
observed malware programs in this dataset.

In total four different preprocessing techniques have been applied: N-grams, One-hot-
encoding, TF-IDF, and positional encoding. In the following sub-sections, the implemen-
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Figure 4.6: Distribution of system call sequences per attack phase after shuffling
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Figure 4.7: Figure shows two histograms with the data distributions sorted by time after
shuffling the dataset ten times (with tensor.randperm()) and splitting it into training and
testing data
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Index Original entry (system call) 3-gram
0 clock gettime* clock gettime*:timerfd settime:ioctl
1 timerfd settime timerfd settime:ioctl:nanosleep*
2 ioctl ioctl:nanosleep*:poll
3 nanosleep* -
4 poll -

Table 4.1: Example of turning a small dataset of system calls with length 5 into a dataset
consisting of 3-grams

tation specifics of each of them are shortly described. After applying those techniques the
different data samples need to be labeled according to the chosen learning goal; malware
family or attack types classification. Finally, each of the datasets is randomly divided
into a training and a test set. The training respectively the test set are split into parts
consisting of 80% respectively 20% of the original data.

4.3.1 N-grams

System calls and n-grams are handled similarly as unique system calls can be interpreted
as unigrams (1-grams). To prevent mixing up the sequence of n-grams a new dataframe
is created where for each index instead of a system call the n-gram is saved. This is done
by adding n-1 system calls to the original system call separated by a ”:” (Example of
a dataset of length 5 is shown in Table 4.1). When applying the n-gram preprocessing
method the length of each sequence reduces by n-1 n-grams (can be seen in table 4.1).
Thus, it might be needed to consider that when splitting a dataset into small sequences
the number of system calls within a sequence could be reduced by half or more. E.g.
when splitting the datasets into 1’000 sequences one sequence consists of 18 system calls
whereas a transformation into 10-grams would render each sequence consisting of only 9
n-grams.

4.3.2 One-Hot-Encoding

For the one-hot-encoding of n-grams, a dictionary needs to be created. To avoid an
extensive dictionary size and with unnecessarily long one-hot-encodings only system calls
or n-grams existing in one of the malware or benign system state were considered in the
dictionary. After collecting the present system calls, it is looped through the dictionary
where for each term an array with the length of the dictionary size is created. These
arrays are first filled with zeros. Then, with the help of the enumeration of the n-gram
dictionary, a 1 is placed at the position at which index the system call has been saved in
the dictionary.
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4.3.3 TF-(I)DF

In addition to the TF-IDF which has been introduced in chapter 2.3.4 another formula
was implemented whereas only the idf part of the equation has been changed. As the
additional implementation doesn’t make use of an inverse function it is hereafter called
TF-DF respectively df :

df = log(NumberOfSequences− 1

NumberOfSequencesWithTermOccurrence
)

When comparing the results of the two different functions within an input range of 1 to
1000 and the variable NumberOfSequences being fixed at 1000 one can observe two major
differences in the curve shape (see Figure 4.8): On one hand, as indicated before the df(x)
increases with higher numbers of x (=NumberOfSequencesWithTermOccurrence) while
idf(x) sinks with bigger x. On the other hand, the df(x) curve is much steeper than the
idf(x) curve.
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Figure 4.8: df(x) (left Figure) and idf(x) graph (right Figure)

Looking closer with the help of the log scale Figure 4.9 it shows that for the DF-function
the biggest value differences arise between 100 to 101 whereas the graph nearly stagnates
for x values between 102 to 103. Simultaneously, the curve in the IDF-function is linear
when transforming the x-axis into the log scale for all x values.
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Figure 4.9: df(x) (left Figure) and idf(x) graph (right Figure) with log-scale on x-axes

As indicated at the beginning of the section the dataset needs to be split into sequences
first. This makes it possible to calculate the importance of a term in a specific se-
quence with the help of the TF-(I)DF value. The sequences are called entities in the
pseudo code (see Algorithm 1) where the calculation of the TF-DF is implemented for
a dataset dictionary where each dataset is the data of one specific system state (see tar-
gets dict) consisting of benign or malware data:

4.4 Models’ specifics

The models used in this work have already been briefly explained in 2.1. The models
have been implemented with the help of the PyTorch Library. Before going into the
implementation details of each model the similarities in the implementations of the models
are shortly discussed here. All implemented models make use of the same optimizer and
the same amount of input and output neurons. The chosen optimizer is the Stochastic
Gradient Descent respectively Batched Stochastic Gradient Descent optimizer for the
models that require batch processing. This results in two ways of training the models:
While the Neural and the Autoencoder network has been run for 10’000 epochs the LSTM,
CNN, and Transformer models are run for 100 epochs. System calls have been split into
several sequences which are in the following called tf idf seq len. The batch size is chosen
equivalently to the sequence length of given inputs if the TF-(I)DF preprocessing method
is performed. Else, in the one-hot-encoding preprocessing sequence lengths respectively
batch sizes between 25 and 150 are selected whereas models that have made use of TF-
DF preprocessed inputs have been trained with sequence lengths respectively batch sizes
ranging between 10 and 40. Additionally, the sequence length is utilized to decide how
many system call steps between two sequences are ignored (step size=round(seq len/10)).
Therefore, when having twenty system calls and the step size would be chosen to be two
which would result in ten sequences. This was done to diminish training time by hindering
the processing of all data. The number of training steps can therefore be computed by
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Algorithm 1 TF-DF value collection example

1: inputs = []
2: targets = []
3: targets dict = {”Normal”:0,”Bashlite”:1,”Bdvl”:2,”RansomwarePoC”:3,”Thetick”:4}
4: for dataset name in dataset dictionary do
5: nr of entities term appears = {”ioctl”: 0, ”poll”: 0, . . . , ”nanosleep”: 0}
6: term frequencies dict = {”ioctl”: [], ”poll”: [], . . . , ”nanosleep”: []} ▷ at the end

of this loop each array will have the length of the amount of entities
7: for all entities do
8: Count occurrences of the term in entity
9: for all terms t over all entities do
10: if if term t in current entity then
11: tf = term frequency of entity/overall term frequency
12: Append tf to the list of term t in term frequencies dict
13: Increase count of the current t entry of nr of entities term appears
14: else
15: Append 0 (=tf) to the list of term t term frequencies dict
16: end if
17: end for
18: end for
19: for i in range(0, amount of entities) do
20: tf idf scores list = []
21: for all terms t that exist in the datasets do
22: tf = term frequencies dict [t][i] ▷ gets the correct term frequency of term t

and current entity
23: if nr of entities term appears[term] != 0 then
24: idf = Log((amount of entities) -1 /nr of entities term appears[t])
25: else
26: Set idf to zero
27: end if
28: end for
29: tf idf val = tf*idf
30: Append tf idf val to tf idf scores list
31: end for
32: Append tf idf scores list to inputs
33: Choose target of targets dict with the help of dataset name and append its numeric

representation to the targets list
34: end for
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the following formula:

training steps = round(
amount of datapoints ∗ 0.8 · number of targets · nr epochs

tf idf seq len · step size · batch size
)

In that way, the training of the network is repeated at minimum around 500 times and
at most up to 4’000 times in the TF-IDF case respectively when using one-hot-encoding
the training repetition lies between around 760 and 6’900 times. Therefore, the number
of training steps of the regularly processed models is at a higher number than the number
of training steps of batch-processed models. Another difference between the two types of
models is implemented in the TF-(I)DF preprocessing technique. As the batch processing
models are sequence models the TF-IDF arrays have been preprocessed such that a se-
quence of TF-(I)DF arrays are assigned to a target class and given to each batch training
step together with TF-(I)DF arrays of other classes. Whereas the standard processing
takes in the TF-(I)DF arrays of each sample per epoch there is only one TF-(I)DF array
that is handed to the model per target class.

Further, the Stochastic Gradient Descent brings two caveats: On one hand, the order of
the samples matters especially when training with batches which requires shuffling the
data after each epoch, on the other hand, the gradient directions may alternate. This
caveat can be partly eliminated by adding to the matrix of the standard weight update
a momentum learning variable which is multiplied by the difference of the weights of the
previous steps. In this way, the direction of the last weight update can be remembered
and is then accumulated. The best-fitting momentum value is in some of the models found
by hyperparameter-tuning. Another mutual hyperparameter variable is the learning rate.
Generally, a learning rate defines the speed of convergence of the gradient descent method.
However, if the learning rate is set too high the minimum of the loss function might not
be reached due to divergence.

Whereas the number of input neurons is always the size of the dictionary set over all
datasets the number of output neurons depends on the loss method and the number
of targets. Two loss methods have been implemented: Binary Cross Entropy (BCE)
Loss was used for Binary Classification and Categorical Cross Entropy (CCE) Loss for
Categorical Classification. The BCE loss produces one value between -1 and 1 which
can be interpreted similarly to a probability value. If the value is lower than 0 class A
was classified and if it is higher or equal class B was classified. As this approach only
produces one output also one output neuron is used for all models. In the case of the CCE
loss, a probability for each possible output is computed so the output neurons must be
reduced to the number of targets. In the end, only CCE has been evaluated as it also has
yielded promising results for binary classification after reducing the results to a binary
classification problem.

In the following sub-sections, the models that were used in this thesis are revisited and
implementation details are discussed. Further, it is indicated which hyper-parameters
were tested. Table gives an overview over the tested hyper-parameters.
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Models NN Autoencoder CNN LSTM Transformers
Learning rate 0.1,0.05,0.01,0.001,0.0001 0.1,0.01,0.001

Number of sequences (for TF-(I)DF) 400,550,700,850 and 1000 850 400 850
Number of embeddings N.A. 7

Hidden neurons 10,30,50 700 50, 70 & 700
Hidden layers N.A. 3, 4 & 5 N.A.

Dropout N.A. 0.1
MultiAttentionHeads N.A. 5

Sequence length / Batch size N.A. 10,20,30,40 (TF-(I)DF) resp. 25,50,100,150 (1-Hot)
Encoder Dimension N.A. 1,3,5,7 N.A.

Momentum 0.5,0.8,0.9,0.99,1 0.99
Epochs 10000 100

Table 4.2: Overview of datasets and attack phases used for categorical classification tasks

4.4.1 Neural Network

Apart from the given input and output neurons, the number of hidden neurons of the
neural network was chosen through hyperparameter-tuning. Sometimes, the ultimately
selected amount of hidden neurons also depends on the preprocessing technique used and
other input parameters such as tf idf seq len.

4.4.2 Convolutional Neural Network

The implementation of the CNN is done depending on the given preprocessing technique.
Average-Pooling was used independently from the preprocessing technique, although in
related work there have been seen different approaches. However, the preprocessing with
TF-(I)DF conducted in this work differentiates from the one used by the authors of [54]
as in comparison to this thesis where it was chosen to stack the TF-IDF arrays to 2-
dimensional matrices whereas in the latter work they weren’t stacked and therefore given
to the model as 1-dimensional arrays. Further, two pooling layers with dimension 2x2
were chosen that halve the given input dimensions whereas the convolutional layers each
have a kernel size of (3,3) and padding and stride equal to 1. Given these convolutional
layers, the input dimension equals the output dimensions. Therefore, considering only the
pooling layers the last linear layer must be of the following dimension (lin dim, O) (see
following equation) where lin dim is computed with the Q1 and Q2 input dimensions and
height dimension O is equal to the output dimension:

lin dim = ⌊(Q1/4)⌋ · ⌊(Q2/4)⌋

4.4.3 Autoencoder

The Autoencoder was implemented with a total of six layers of which the encoder com-
prises four, the decoder consists of a single layer and lastly, one layer is shared by the
encoder and the decoder. The different numbers of neurons of the in-between layers of the
encoder are selected to be in accordance with the input dimension (I). Going into deeper
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layers of the encoder the number of neurons decreases. The first inbetween layer has
round(I/2) input neurons and round(I/4) output neurons. The last layer of the encoder
has round(I/8) input neurons and its output parameter is the encoder output dimension
shortened E D. This dimension is chosen through hyperparameter-tuning. Finally, the
decoder takes those E D output neurons and linearly transforms the pre-defined output
dimension.

4.4.4 LSTM

The only LSTM-specific parameter is the number of hidden layers the model shall consist
of. In this thesis 3, 4, and 5 have been evaluated as amount of hidden layers.

4.4.5 Transformer

Whereas the LSTM model requires sequence lengths to function the Transformer (respec-
tively the class TransformerEncoderLayer torch) demands the embedding dimension to
be divisible by the number of heads chosen for the MultiheadAttention. As the embed-
ding dimension is the input dimension of the Transformer model it is again chosen to be
the length of the dictionary of the input. With different n in the n-grams this length
changes. Therefore, in the original implementation, it is made sure that the input dimen-
sion is changed according to the number of heads such that the requirement is fulfilled.
Unfortunately, experiments, where the n of n-grams is higher than 1, have shown that
the memory resources of the training infrastructure have been too little to train sequence
models with 2-grams or higher. As has been stated, the model needs to be adaptable to
enable the hyper-parameter tuning of the number of heads. This is achieved by taking
the modulo from the following expression and then subtracting the remainder from the
dictionary length. The resulting value is set to be the input dimension.

remainder = dictionary length mod num heads

The author of [46] proposes that more heads are generally better, but that they can get
redundant, therefore it is refrained from testing a different number of heads in hyper-
parameter tuning. Additional hyper-parameters are the embeddings’ length and the
dropout probability of the Transformer. However, due to time constraints, it is also
forgone to evaluate those parameters. Equivalently to the number of encoder and decoder
layers that were chosen by the authors of [62] in this thesis the amount of encoder layers
has been chosen equally whereas the decoder layer has been implemented as a linear layer
for simplicity.

4.5 Classification Approaches

Implementing categorical malware classification was executed in two ways: First, only
the initial attacks of malware have been used to classify if malware is installed on an IoT
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Attack Phase Original Dataset Attack Dataset Name Initial Attack
No attack Normal Normal -

Connection of Bot to Botnet Bashlite Bashlite Botconnect yes
HOLD flood Bashlite Bashlite HOLD no
UDP flood Bashlite Bashlite UDP no
TCP flood Bashlite Bashlite TCP no

install and make Bdvl Bdvl install&&make yes
build super.b64: Installation of Backdoor Bdvl Bdvl b64 no

SSH login Bdvl Bdvl ssh login no
Stealing files and un-/hiding directories Bdvl Bdvl attack loop no

Encryption of directories RansomwarePoC RansomwarePoC yes
Installation of backdoor Thetick Thetick infection yes

File Transfers Thetick Thetick attacks no

Table 4.3: Overview over datasets and attack phases used for categorical classification
tasks

device or not (see Greedy Categorical Classification). Second, more attack phases were
introduced to the classification process (see sub-section Bottom-Up Categorical Classifi-
cation). Table 4.3 gives an overview of what happened in the different attack phases and
which phases were considered initial attacks. Latter attacks were used to find out what
malware is installed on the system (see Greedy Malware Classification).

4.5.1 Greedy Malware Classification based on initial attacks

The initial approach for malware classification was to only consider malware data while it
was installed on the target’s device. The intuition behind the greedy malware classification
is that one could use it in real-time to encounter the first attack of a system. This approach
is referred to as greedy as it only cares if the malware was installed on a system or not
and doesn’t consider in which installation/attack phase the program is. Reasoning that it
could be of interest in which attack phase a program is a further approach has established.
This approach is explained in the next section.

4.5.2 Attack Classification based on different attack phases

The attack classification based on different attack phases takes into consideration which
phase of attack malware respectively the attacker is executing. Based on the chosen
dataset this results in twelve different attack phases including a bening case. As indicated
in ”Data Exploration” the original dataset consists of different stages of attacks within the
malware datasets. Figure 4.3 shows an overview of the attacks of the different malware.
The attack phase classification is used mainly in this thesis. However, starting the work
the main focus was lying on malware detection. Therefore, the results of the attack
classification are in this work also used to show the performance of a malware detection
classification of the underlying model. This is reported reduced to show to some extent
how the models could perform in malware detection however a model might learn malware
specifics better if the model would only need to learn the malware behavior.



4.5. CLASSIFICATION APPROACHES 47

System Call/Dataset NormalBenign10s NormalBenign50s NewNormalBenign50s
getdents* Normal Normal Normal
getpgrp RansomwarePoC RansomwarePoC RansomwarePoC

lseek Normal Normal Normal
lseek* Normal Normal Normal
open Normal Normal Normal
open* Normal Normal Normal

setgid32 Bdvl ssh login Bdvl ssh login Bdvl ssh login
symlink* Bdvl install&&make Bdvl install&&make Bdvl install&&make
symlink Bdvl install&&make Bdvl install&&make Bdvl install&&make
unlinkat RansomwarePoC RansomwarePoC RansomwarePoC

exit Bashlite TCP
Bashlite TCP &

Normal
Bashlite TCP &

Normal

setpgid RansomwarePoC
RansomwarePoC&

Thetick attacks
RansomwarePoC&

Thetick attacks

setpgid* RansomwarePoC
RansomwarePoC&

Thetick attacks
RansomwarePoC&

Thetick attacks

gettid Bdvl attack loop
Bdvl attack loop&
Bashlite UDP &
Thetick attacks

Bdvl attack loop&
Bashlite UDP &
Thetick attacks&

Normal

tgkill* Bdvl attack loop
Bdvl attack loop&
Bashlite UDP &
Thetick attacks

Bdvl attack loop&
Bashlite UDP &
Thetick attacks&

Normal

perf event open* Bdvl attack loop

Bdvl attack loop&
Bashlite UDP &
Bashlite HOLD&
Thetick attacks

Bdvl attack loop&
Bashlite UDP &
Bashlite HOLD&
Thetick attacks&

Normal

perf event open Bdvl attack loop

Bdvl attack loop&
Bashlite UDP &
Bashlite HOLD&
Thetick attacks

Bdvl attack loop&
Bashlite UDP &
Bashlite HOLD&
Thetick attacks&

Normal

statfs64* Bashlite TCP

Bashlite TCP &
Bashlite UDP &
Bashlite HOLD&
Thetick attacks&

Bdvl b64

Bashlite TCP &
Bashlite UDP &
Bashlite HOLD&
Thetick attacks&

Bdvl b64&
Normal

kill* Bdvl b64

Bdvl b64 &
Bashlite UDP&

Bashlite HOLD&
Thetick attacks&

Normal

Bdvl b64 &
Bashlite UDP&

Bashlite HOLD&
Thetick attacks&

Normal

getpeername* Bdvl attack loop

Bdvl attack loop &
Bashlite UDP &
Bashlite HOLD&
Thetick attacks

Bdvl attack loop &
Bashlite UDP &
Bashlite HOLD&
Thetick attacks&

Normal

Table 4.4: Overview over occurrences of system calls within different attack phases when
looking at different types of datasets
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4.5.3 Adversarial attack

For evaluating an adversarial attack the following code was implemented that modifies
the test data X val such that system calls that only occur in the benign system state
are added to the malware samples according to its original distribution (see Algorithm
2). A similar approach was implemented by the authors of [4] where only a fixed fraction
(1-3%) of unique system calls was added to the test data. In the following pseudo-
code of the implementation of this work, X val is a tensor of shape [amount of samples,
amount of system calls].

Algorithm 2 Unique normal Syscalls Attack

1: benign syscalls dict = {”syscall1”:(tf idf array index, avg frequency), ...}
2: for index, tf idf array in enumerate(X val) do
3: if if target, not a benign system state then
4: for syscall, tuple value in benign syscalls dict do
5: tf idf array index, avg frequency = tuple value
6: probabilities list = []
7: Creating probability distribution with avg frequency
8: counter = 0
9: amount of occurrences list = []
10: while counter < amount of entities do
11: Choosing amount of occurrences based on probability distribution
12: Append amount of occurrences to amount of occurrences list
13: counter += 1
14: end while
15: Computing tf idf value based on amount of occurrences list
16: X val[index,tf idf array index] += tf idf value
17: end for
18: end if
19: end for



Chapter 5

Evaluation

For the evaluation of the models, a train-test-split of 80/20 was performed on the data.
Five models were trained and tested with hyperparameter tuning to find the best param-
eter configuration of the models. The number of hyperparameters tested depended on
the training time of the models whereas some types of hyperparameters are unique to one
model e.g. the number of attention heads in the Transformer model.

5.1 Results depending on models and preprocessing tech-

niques

Table 5.1 shows an overview of the results of evaluating the models in combination with dif-
ferent preprocessing techniques when performing hyper-parameter tuning in attack phase
classification. Also, it shows the best hyper- and preprocessing parameters such as the
optimal Number of sequences that are generated from the input data before its sequence
values are transformed into TF-(I)DF arrays. The first observation that can be done is that
the simple Neural Network model with the TF-DF preprocessing technique significantly
outperforms every other model that was evaluated independently from their preprocessing
techniques and the sequence models (CNN, LSTM & Transformer). When looking closer,
Table 5.1 shows that the sequence models classify all attacks as being from one single
attack phase which results in a very low F1-score. Older experiments have shown, that
LSTM can yield an accuracy of 52.88% if instead of the attack phase classification task
malware detection is performed where only five classes are considered and the input data
is narrowed down to the initial attack phase of each malware dataset (greedy method).
Whereas Neural Network and Autoencoder weren’t evaluated with one-hot-encoded in-
puts method the best model that is served one-hot-encoded features is the CNN, although,
only yielding an F1-score of 7.75% which is even slightly worse than randomly choosing a
class. Although the Autoencoder (AE) seems to have a high score it is unfortunately un-
stable. After repeating the attack phase classification task with the best hyper-parameter
configuration it F1-score decreased to 27.61%. Still, the Autoencoder and especially the
Neural Network with the TF-(I)DF preprocessing techniques perform significantly better
than the sequence models which sometimes even perform worse than choosing the attack

49



50 CHAPTER 5. EVALUATION

NN AE CNN LSTM Transformer
Preprocessing technique TF-IDF TF-DF TF-DF TF-DF 1-Hot TF-DF 1-Hot TF-DF 1-Hot

N-gram 1-gram 2-gram 3-gram 1-gram 2-gram 3-gram 1-gram 1-gram
Momentum 1 0.9 1 0.8 0.99 0.8 0.5 0.99

Number of sequences (TF-(I)DF) 700 550 700 700 550 1000 850 850 N.A. 400 N.A. 850 N.A.
Learning rate 0.001 0.1 0.001 0.05 0.1 0.1 0.001 0.001 0.01 0.1 0.1 0.01 0.01

Sequence Length / Batch Size N.A. 20 100 20 50 30 25
Hidden dimension 30 10 50 50 10 10 50 700 700 700 700 70 50
F1-score (in %) 61.0 61.28 64.13 100 93.64 7.31 7.75 2.17 1.32 4.11 3.68

Table 5.1: Results overview with the best hyper-configurations with unequal length input
sequences

phase randomly. The fact that the Term Frequency-Document Frequency (TF-DF) sig-
nificantly outperforms the TF-IDF is surprising but can be explained when looking at the
distribution of the frequencies of the different system calls. The differences between these
methods are introduced in the chapter Implementation Details and the argumentation for
the performance differences is stated in the next chapter Discussion.

The performance stability of a model is evaluated with the example of the Neural Network
model combined with the Term Frequency-Document Frequency (TF-DF) and 1-gram
data preparation method by repeating the classification in five independent iterations.
Whereas this experiment yielded an average F1-score of 99.23% all five classifications
resulted in an F1-score of at least 99.13% and at most 99.62%. Now let’s consider another
type of stability, by looking for a pattern of misclassifications occurring over multiple
iterations. Figure 5.1 shows that in ten cases of a total of 18 different confusion errors a
misclassified sequence only occurred in one of the five iterations. Apart from those cases
where the confusion value is 1 a confusion between Bashlite HOLD (predicted class) and
the RansomwarePoC (true class) attack occurred, which is marked with the value 3, is
the only example wherein a single iteration of more than one sequence was misclassified
but hasn’t been confused in any other iteration. Simultaneously, seven misclassifications
happened in at least two of the five iterations. Therefore, one needs to partly reject the
stated stability hypothesis. Therefore, now it must be observed closely to see if at least
a tendency of the model can be reasoned. Beginning with a closer look, it can be seen
that the benign system state was never confused with an attack phase which leaves the
accuracy at 100% if the result would be reduced to binary anomaly detection. Further,
it can be observed that except between the two attack phases of Thetick the confusion
appears to happen across malware types only which can be explained by the reasoning
that there are more similarities within two system states if in both states e.g. two different
malware are installed in comparison to the case where in one state an installation and in
another and an attack of only one specific malware is carried out.

By reducing the beforementioned confusion matrix from an attack phase classification
to a malware detection problem which is shown in Figure 5.2 is produced where can be
seen that, apart from two confused samples between RansomwarePoC and Bdvl, there only
happened confusions between Bashlite and the other malware but not in between the other
malwares. The confusion with Bashlite and the other malwares and the confusion between
Bdvl and RansomwarePoC could arise because every malware has been executed through
another device and therefore each malware can be seen as having a command and control
structure. Therefore, it suggests that the model would randomly guess the malware when
an attack through the command and control structure needs to be classified. Continuing,
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Figure 5.1: Added up Confusion matrix of five iterations of attack phase classification
with the help of the best-performing Neural Network configuration with the preprocessing
techniques TF-DF and 1-gram

the argument that the model makes decisions that can be explained seems to hold true
according to the beforehand reasoning when neglecting the small confusion between the
two Thetick attack phases whereas the confusion between Bdvl and RansomwarePoC
could also be explained by the shared command and control structure.

While the confusion matrix of five iterations showed the stability of the model in this
paragraph the results of one such iteration are discussed. With the help of Table 5.2 the
confusion matrix of the NN-model combined with 1-gram and TF-DF preprocessing is
shown but also the F1-scores per each class are illustrated. Further, the F1-scores of the
deducted malware classification (see column F1-score over 5 classes) and the anomaly de-
tection (see column F1-score over 2 classes) are reported per class. As has been expected
from the above 5-iteration model performance the score that classifies if the systems state
is benign or not reaches again a F1-score of 100% whereas the macro F1-score for mal-
ware detection is 99.4% which has been calculated by taking the mean from the values
captured in the F1-score over 5 classes column. Although, the amount of samples per
malware hasn’t been balanced the weighted average F1-score matches with the macro F1-
score both are at 99.4%. Figure 5.5 shows the reduced confusion matrix which illustrates
the distribution of confused samples for malware detection. Whereas it also shows that
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the system call sequences stemming from the Thetick malware’s system state were never
confused with any other malware nor the benign system state. Overall, the attack phase
classification yielded an average macro and a weighted average F1-score of 99.2 percent.
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Figure 5.2: Added up Confusion matrix of five malware classification iterations with
the help of the best-performing Neural Network configuration with the preprocessing
techniques TF-DF and 1-gram

Comparing the 1-gram performance of the best-configured parameters of the Neural Net-
work model combined with the TF-IDF preprocessing technique shows a significantly
worse classification performance with an F1-score of 53.33%. Although, the F1-score is
worse the True Negative Rate is 96.66% which means there is a very low amount of false
positives in comparison to the fraction of true negatives. Therefore, e.g. an attack se-
quence is much more often classified as not belonging to attack type A whereas the actual
class is not A than it is falsely classified as being of attack type A whereas the actual
class is different from class A. Still, looking at the confusion matrix (see Figure 5.3) we
see that the model is not able to differentiate between benign and infected states as often
the normal class is predicted although the class under evaluation belongs to an attack
phase of mostly Bdvl malware but also other malware types. Consequently, this attack
phase classification can’t be reduced to an anomaly detection classification. Further, it is
analyzed if the TF-IDF preprocessing technique could be a technique that is usable for
malware detection. Therefore, we have a look at the malware confusion matrix (also in
Figure 5.3) that again has been deducted from the attack phase classification confusion
matrix. It shows that apart of the confusion of the normal phase with other malware the
confusion is not very high between the malware themselves. Still, this result needs to be
put in perspective as the normal behaviour was often confused which could have prevented
confusion between the malware types. Further, the apparent misclassification towards the
normal behaviour might not be constant as the model might overclassify an attack phase
instead of the benign phase in another run. An indication of that is presented in Figure
5.4 where the TF-IDF preprocessing approach was combined with 3-grams. It can be
observed that instead of the seen multiple misclassifications of the normal system state



5.1. RESULTS DEPENDINGONMODELS AND PREPROCESSING TECHNIQUES53

Predicted class
F1-score over
12 classes

F1-score over
5 classes

F1-score over
2 classes

Normal Bashlite Bdvl RansomwarePoC Thetick

- Botconnect HOLD UDP TCP install&&make b64 ssh login attack loop - infection attacks

Normal 89 0 0 0 0 0 0 0 0 0 0 0 1.000 1.000 1.000

Bashlite Botconnect 0 74 0 0 0 0 0 0 0 0 0 0 0.993

0.993

1.000

Bashlite HOLD 0 1 77 0 0 0 0 0 0 1 0 0 0.987

Bashlite UDP 0 0 0 104 0 0 0 0 0 1 0 0 0.995

Bashlite TCP 0 0 0 0 79 0 1 1 0 0 0 0 0.981

Bdvl install&&make 0 0 0 0 1 93 0 0 0 0 0 0 0.995

0.994
Bdvl b64 0 0 0 0 0 0 93 0 0 0 0 0 0.995

Bdvl ssh login 0 0 0 0 0 0 0 70 0 1 0 0 0.986

Bdvl attack loop 0 0 0 0 0 0 0 0 92 0 0 0 1.000

RansomwarePoC 0 0 0 0 0 0 0 0 0 85 0 0 0.983 0.983

Thetick infection 0 0 0 0 0 0 0 0 0 0 95 1 0.995
1.000

Thetick attacks 0 0 0 0 0 0 0 0 0 0 0 88 0.994

Table 5.2: Confusion matrix of Neural Network 1-gram & TF-DF attack phase classifica-
tion with eleven benign states

the model often classifies a system call sequence as being part of the ssh login which is
performed while the Bdvl malware is active. Still, the 3-gram approach performs slightly
better than the 1-gram approach when looking at the attack phase classification where in
the 3-gram approach an F1-score of 55.58% is reached.
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Figure 5.3: TF-IDF confusion matrices with NN model and 1-gram: Attack phase classi-
fication (left) and Malware classification (right)

Figure 5.4: TF-IDF confusion matrices with NN model and 3-grams: Attack phase clas-
sification (left) and Malware classification (right)
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Figure 5.5: Confusion matrix of malware classification deducted from the attack phase
classification confusion matrix from Table 5.2

5.2 Results of different datasets

As could be seen in the Implementation Details chapter the occurrence of system calls
depends partly on how much data the model is provided with. In this subsection, we
want to find out if the models’ classification performance changes when different and/or
more data is provided. To achieve this the Neural Network is trained with data from four
different datasets:

• Dataset 1: Each attack phase is recorded for 10 seconds and a balanced amount of
data is given to the model.

• Dataset 2: Also each attack phase is recorded for 10 seconds, but the benign state
dataset is changed to another period. Also balanced amount of data.

• Dataset 3: Half of the attack phases are recorded for 10 seconds and a half is recorded
for 50 seconds. Therefore, the model receives an unbalanced amount of data.

• Dataset 4: The same distribution of unbalancedness as in Dataset 3 but the benign
data is changed to another time window.

The above datasets are first preprocessed into unigrams and then transformed into sequen-
tial vectors with the help of the TF-IDF technique. Table 5.3 shows the best configurations
and classification results for the four different datasets. The two values separated by a
slash in the number of sequences row stem from the fact that the length of the sequences
is not changed throughout a dataset and therefore attacks recorded for fifty seconds have
more sequences (value on the right side of the slash) than when the attack phase was
collected for ten seconds (value on the left side of the slash). Datasets 1 & 2 only have
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Dataset 1 Dataset 2 Dataset 3 Dataset 4
Date of benign state recording 16.03.2022 07.04.2022 16.03.2022 07.04.2022

Time of system recording 10 seconds 10 seconds 10/50 seconds 10/50 seconds
Learning rate 0.001 0.001 0.001 0.001

Number of sequences (10s/50s) 755 595 935/5’429 436/2’533
Sequence Length 26 33 21 45

Hidden Dimension 30 50 90 50
Momentum 1 1 1 0.99

F1-score 61.0% 56.4% 61.46% 59.11%

Table 5.3: Evaluation of different datasets and their classification results with TF-IDF
and 1-gram preprocessing

one amount of sequences as the maximum period of its attacks stay 10 seconds throughout
all attacks. All in all, the table shows that the classification results measured with the
F1-score stay relatively constant despite changing datasets. Especially, it stands out that
changing the benign dataset seems to have a bigger influence than increasing the dataset
of half of the attack phases. However, as the classification only has been performed once
per the best hyper-parameter configuration the absolute performance values have to be
put into perspective. Throughout the thesis Dataset 1 has been used for evaluating the
different models.

5.3 Results of benign phase classification

To make sure that including the context system calls doesn’t result in a lack of general-
ization it was tested how well the model performs when being served with twelve different
datasets of the benign system state instead of eleven different attack phase data one be-
nign phase data. The result of classifying benign phases with NN and TF-DF gives an
F1-score of 94.09% which is only slightly worse compared to the result of the before-
hand discussed attack phase classification (99.2%). This might indicate that the model
also to some degree learns the time-depending system state. The confusion matrix 5.6
illustrates the benign system states that the system couldn’t differentiate. The misclas-
sifications have probably occurred due to a repeating system’s behaviour. However, the
chosen benign sequences (Normal0 to Normal11 ) all stem from a different hour and/or
day period.

Evaluating, if the confused datasets are similar is done by looking at the system call
occurrences of different system calls. The Figures 5.7 show the distribution of system call
occurrences in an ordered manner where the lowest occurring system call is the first value
on the x-axis. The left Sub-Figure illustrates these occurrences of all system calls found
in the four benign phases. There it seems that the confused benign phases Normal3 and
Normal6 are not very similar although they have been confused the most. The right Sub-
Figure within Figure 5.7 again shows the same distribution but focuses on the 61 lowest
occurring system calls. Further, it can be noticed that the two confused phases are farther
apart in this region than compared with the right Sub-Figure, where the distribution of
every system call has been plotted. Therefore, one could infer that the similarity between
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Figure 5.6: Added up Confusion matrix of five iterations of attack phase classification
with the help of the best-performing Neural Network configuration with the preprocessing
techniques TF-DF and 1-gram

the distribution of low-occurring system calls determines the classification of a NN with
the TF-DF preprocessing technique. This will be further discussed in the next chapter.
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Figure 5.7: Distribution of system call occurrences in benign phases

Continuing, in the original classification, all but one of the evaluated benign system states
were added to the attack phase classification task. Next, a newly built attack/benign phase
classification is analyzed to show if the classification would also be successful with more
(benign) classes. This approach leads to an F1-score of 93.16%. The confusion matrix that
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entails 22 classes is shown in Table 5.4 and illustrates that the most confusion happens
within the benign system phase classes (Normal0 to Normal10). Further, the macro F1-
scores of malware detection respectively anomaly detection of 98.1% respectively 99.4%
indicate that increasing the number of training classes only slightly decreases the overall
classification results.
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5.4 Results with adversarial attacks

Adversarial attacks on machine learning models can happen during the training or test
phase of the model. When attacking during the training phase an attacker often tries to
alter the dataset such that the classification is still good but the model is trained on data
that is different from data in the real world. In image-based classification, this can be
done by adding pixels to the pictures which can’t be seen by a human eye. Equivalently,
unnecessary system calls could be added to the dataset. Despite not being recognizable
by the eye, in the case of image classification data could be checked for integrity by
comparing the pixels of the original images with the ones that are in the training set.
Similarly, before distributing the AI for malware detection it needs to be checked that
the underlying data comes from unaltered data. Another attack during training is called
logic corruption where the parameters of a model are changed such that the classification
is less successful. In difference to the latter attack, this attack could be detected when
looking at the classification performance of the model. The problem therein is that when
the model is used in the field it is cumbersome to check for model performances.

Attacks while testing or in the field are called evasion attacks. In such attacks, mostly
testing data is modified. In the scenario of malware detection based on system calls, the
testing data comes directly from the behavior of a system. In the case of malware detection
based on system calls, such an attack could be performed by first observing and collecting
system calls from the benign system state and then replicating these system calls into the
malware. As learned in the background chapter, Unix systems provide for nearly every
system call a corresponding function in the C programming language. Therefore, it can
be argued that such adversarial attacks are possible.

The results of the attack that was introduced in 3.1.4 where system calls unique to the
benign system state were added to the malware samples can be seen in the row Unique
normal Syscalls in table 5.5. Such an attack was simulated by taking the TF-(I)DF
values of the system calls that are only occurring in the normal dataset and adding these
to the TF-(I)DF arrays of the malware samples. The TF-(I)DF values were computed
by simulating a random choice of the occurrences of those system calls in the sequences
based on their probability distribution which were calculated based on the fraction of how
often they occur in the original dataset (for more details see pseudo code in section 4.5.3).
This approach was executed with the TF-DF and TF-IDF preprocessing approach and
the Neural Network model receiving unigrams as input. In Table 5.5 the classification
results of the standard scores and the adversarial scores show that the F1-score stay more
or less constant across both preprocessing techniques.

After performing the adversarial attack mentioned above, one could argue that the NN
model combined with TF-(I)DF is resilient against such an attack but unfortunately, there
exist other attacks that are harder to defend. The next adversarial attack that was carried
out, is again based on the distribution of the benign system calls but now includes not only
the system calls that are unique to the benign state. In this attack simply the array of the
TF-(I)DF values from benign test data was taken and then added to the TF-(I)DF arrays
of the attack phases. The results (see Adversarial Attack Full copy of normal syscalls in
Table 5.5 show that TF-DF is not robust against such an attack as its classification scores
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Adversarial Attack Preprocessing method
TF-IDF TF-DF

None F1: 53.33% F1: 99.04%
Unique normal Syscalls F1: 41.86% F1: 99.03%

Full copy of normal syscalls F1: 42.37% F1: 21.37%
75 percent normal F1: 50.63% F1: 18.48%
50 percent normal F1: 53.95% F1: 19.97%

50% normal/50% malware F1: 33.99% F1: 8.53%

Table 5.5: Overview of the results of classification with adversarial attacks with keeping
the model constant (Neural Network)

decline drastically. Continuing, further scenarios are added. Let’s consider two attack
cases consisting of a similar attack as the latter but where instead of the full values of the
TF-(I)DF arrays only fractions of 50 and 75 percent of the values of the benign feature
array are added. In table 5.5 their results are shown with the names 50 percent normal
respectively 75 percent normal. A further experiment was done by taking the TF-(I)DF
values from benign and malware samples and multiplying both by 0.5 trying to show what
happens when half data comes from malware and the other half from benign system calls
(see 50% normal/50% malware).

Although, we can see that TF-DF and to some extent also TF-IDF can’t handle these
changes in the data the results must be put in perspective. The attacks apart from the
one where unique system calls are added cannot be easily performed. Although, carrying
out an attack that consists of producing system call sequences that consist of benign
and malware system calls with a 50/50 ratio could be possible this wouldn’t halve the
underlying TF-(I)DF values as the TF-(I)DF value also consists of other factors than the
term frequency. Therefore, such attacks would only be possible if an attacker could change
the active classifier respectively the code that handles the input system call traces and
transforms them into TF-(I)DF arrays. When considering the more probable adversarial
attack that includes system calls that are unique to the benign system state the table
shows that the TF-DF preprocessing technique is more stable against such an attack in
comparison to the TF-IDF method.

5.5 Resource consumption

Table 5.5 shows the time consumption of training and testing the different models. The
time consumption was measured on a 12-core Linux server with 98 Gigabytes of RAM.
Not only because different models used different kinds of preprocessing approaches but
also because they have been evaluated with different amounts of training strategies the
time consumption is compared based on the best parameters of each model. As this
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NN AE CNN LSTM Transformer
Data preprocessing time (in sec) 0.004356 0.01983 0.00941 0.00466 0.03

Model Loading time (in sec) 0.00856 0.00653 0.05615 0.452 1.1552
Classification process time (in sec) 0.000096 0.000189 0.000109 0.000077 0.00055

Total testing time of 10seconds system call trace (in sec) 0.013 0.027 0.066 0.457 1.186
Training time (in min) 59.72 40.3 18.84 45.65 50.22

Table 5.6: Overview over time consumption of different models with the same preprocess-
ing technique TF-DF

doesn’t yield a perfect comparison the number of datapoints and the number of batches
per model are also indicated in the table.

5.6 Results of equal length input sequences

Regarding the TF-(I)DF calculation in the former sections it was made use of different
length input sequences. As through this the results of TF-(I)DF might be misleading some
experiments now some experiments are evaluated where the input system call sequences
have been of the same length. Table 5.7 illustrates the classification results of whereas the
best hyper-parameters are listed. In addition, to the hyper-parameters shown in the Table
4.2 the number of sequences of 100 and 250 have been tested which seem to sometimes
outperform the higher number of sequences when the input sequence length is equal.
As indicated, surprisingly here the TF-DF is outperformed by TF-IDF preprocessing
technique. Interestingly, the momentum parameters is shared to be at 0.99 throughout
every model and preprocessing technique.

NN AE CNN LSTM Transformer
Preprocessing technique TF-IDF TF-DF TF-IDF TF-IDF 1-Hot TF-IDF 1-Hot TF-IDF 1-Hot

N-gram 1-gram 2-gram 3-gram 1-gram 2-gram 3-gram 1-gram 1-gram
Momentum 0.99

Number of sequences (TF-(I)DF) 400 100 100 100 100 100 850 250 N.A. 400 N.A. 100 N.A.
Learning rate 0.1 0.05 0.1 0.1 0.1 0.1 0.001 0.001 0.01 0.1 0.1 0.1 0.01

Sequence Length / Batch Size N.A. 10 100 20 50 30 25
Hidden dimension 30 10 10 50 50 30 30 700 700 700 700 70 50
F1-score (in %) 99.48 100 100 88.45 94.22 93.64 60.6 6.08 7.75 1.96 1.32 2.05 3.68

Table 5.7: Results overview with the best hyper-configurations with equal length input
sequences

5.6.1 Results throughout repeated classifications with best-configurations

The model that has the best result when having 1-grams as input is the Neural Network
combined with the TF-IDF preprocessing technique. In Figure 5.1 the model with its
hyper-parameter configuration is reevaluated with five repetitions. Following this, the
F1-score of the single classification process has shown a decrease from 99.48% (see Table
5.7) to an average F1-score of 77.11%. Therefore, it seems that e.g. the NN has been
learning throughout the hyper-parameter tuning with different configurations. This will
be discussed in the next chapter.
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The summed-up results of classifications from the above-stated hyper-parameter config-
uration of the Neural Network model throughout five iterations are illustrated in Figure
5.8. Whereas the left Sub-Figure shows the confusions of attack phase classifications the
right Sub-Figure shows the number of confused samples when reducing the results to a
malware classification problem. Although, the amount of confused samples is significantly
higher than when the model receives system call sequences with variable lengths for TF-
DF preprocessing the malware classification Sub-Figures show a similar confusion pattern.
Namely, the most confusions happen between Bashlite malware type and the other mal-
ware types that potentially occur due to the shared command and control structure. Also,
anomaly detection still performs with a high success rate.

Table 5.8 shows the confusion matrix of one iteration alongside the F1-scores of each class
of the attack phases, the malware types, and the anomaly classes Normal and Attack
phase (see F1-score over 2 classes). As stated before, anomaly detection is still high
with an F1-score of detecting the benign case respectively an infected case of 98 percent
respectively 99.8 percent. By looking at the F1-scores of the malware types it is clear
that the RansomwarePoC malware gets confused the most (F1-score of 57.5%). Still, it
is mostly confused with attack phases from the Bashlite malware. Therefore, it could
add up to the command and control structure hypothesis. The overall F1-score of this
classification has been 76.67% percent whereas the highest classification score of the total
five iterations has been 78.42%.
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Figure 5.8: TF-IDF confusion matrices with NN model and 1-gram with equal length
input sequences: Attack phase classification (left) and Malware classification (right)

The malware type classification has also shortly been experimented with to see if the
results change when the model only receives five input classes keeping the input constant.
The hyper-parameter tuning for the Neural Network model and the TF-IDF preprocessing
technique has shown that the best configuration yields an F1-score of 77.4%. Even though
the amount of input samples per class entails imbalancedness the confusion matrix in
Figure 5.9 proposes that similar features have been learnt than when having attack phase
classification as the confusion pattern is again similar.
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Predicted class
F1-score over
12 classes

F1-score over
5 classes

F1-score over
2 classes

Normal Bashlite Bdvl RansomwarePoC Thetick

- Botconnect HOLD UDP TCP install&&make b64 ssh login attack loop - infection attacks

Normal 75 0 0 0 0 0 0 1 0 0 0 0 0.980 0.980 0.980

Bashlite Botconnect 0 50 7 10 1 1 0 0 0 17 2 1 0.606

0.871

0.998

Bashlite HOLD 0 3 79 3 0 0 8 0 1 3 0 0 0.819

Bashlite UDP 0 3 5 60 0 0 0 0 0 11 10 3 0.698

Bashlite TCP 1 0 1 0 93 0 0 0 1 0 0 1 0.964

Bdvl install&&make 0 0 0 2 0 68 21 0 0 0 0 0 0.805

0.968
Bdvl b64 0 0 2 0 0 8 69 0 0 0 0 1 0.767

Bdvl ssh login 0 1 0 0 0 0 1 89 0 0 0 0 0.983

Bdvl attack loop 0 0 0 0 2 0 0 0 78 0 0 0 0.975

RansomwarePoC 1 10 0 4 0 1 0 0 0 46 8 5 0.575 0.575

Thetick infection 0 8 2 1 0 0 1 0 0 5 55 22 0.582
0.859

Thetick attacks 0 1 0 0 0 0 0 0 0 3 20 61 0.682

Table 5.8: Confusion matrix of Neural Network 1-gram & TF-IDF attack phase classifi-
cation with eleven benign states (equal length input sequences)
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Chapter 6

Discussion

As introduced in the ”Evaluation” chapter, sequence models (CNN, LSTM, Transformer)
perform unexpectedly badly when referring to attack phase classification based on system
calls. Therefore, one could argue that either the sequence models didn’t learn the sequence
information well enough or that sequence information is not as important for system call
traces as it can be in Natural Language. Vice versa, the distribution of irregular system
calls in the evaluated part of the dataset indicates that the sequence models might have
learned the wrong sequences. Another reason for this outcome could be that the sequence
models have been trained with a smaller amount of training steps, although experiments
with a similar amount of training steps have shown no significant performance increase.
Further, the training of the sequence models does not include the whole data per training
step. Continuing, batch processing might be the bigger driver for the low-performance
results as in batch processing after evaluating only a small portion of data the loss and
the matrices are updated. Especially, the former might be crucial as this could lead to not
finding a minimum in the gradient, although momentum is used to prevent the gradient
from going up and down. Another reason could be that bigger models tendentially need
more data but also more time to increase their performance [47].

It seems that sequence models perform moderately when being trained with fewer classes
which were evaluated shortly with the greedy method where only the initial attacks of
each malware and the benign case were used as the base for malware classification. There,
the LSTM model with one-hot-encoded unigrams and a sequence length of 10 yielded an
accuracy of 52.88 percent. Still, the model has been unable to cope with more diverse data
and more classes. Therefore, it is advised to work with a simple Neural Network in system
call based malware detection as a malware detection program should be able to handle
diverse system call data. When training the network with arrays of TF-(I)DF consisting
of values stemming from sequences with different lengths the TF-DF outperforms the TF-
IDF preprocessing technique whereas when it is done with equal length sequences the TF-
IDF outweighs the TF-DF preprocessing method. In the following two sub-sections, the
results of the different preprocessing techniques stemming from the former (unbalanced)
method are discussed. After that, the results of the balanced method are discussed while
starting to compare them to related work.

65
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6.1 TF-IDF vs. TF-DF

The classification results have shown differences when comparing the two related pre-
processing techniques TF-IDF and TF-DF. Interestingly, the NN model seems to have
problems with detecting attack phases when using TF-IDF although in related work it
is a well-established preprocessing technique. This could stem from the fact that in this
thesis the TF-(I)DF values of context system calls have been given to the models in the
same fashion as the values from regular system calls whereas other works haven’t made
use of context system calls as additional features. Adding up the context system calls with
the regular system calls of the same system call might lead to a better representation of
the TF-IDF curve. However, Figure 6.1 shows that this distribution doesn’t show a big
difference to the distribution where regular and context system calls have been handled
uniquely.

Figure 6.1: Comparison of system call occurrence distributions between original approach
where regular system calls and context calls have been summed up together (right) and
where they have been summed up together (left)

An explanation of why the performance differences between the TF-IDF and TF-DF data
preparation methods are big could lie in the nature of the data. Term Frequency-Document
Inverse Frequency (TF-IDF) was originally used as the name suggests in documents that
consist of Natural Language which can include thousands of different words where some
words can have several meanings depending on their contexts, e.g. bank account and
river bank. Although there also exist system calls with the same name having different
functionalities, the amount of different system calls reaches only 209 in this analysis,
whereas the English dictionary consists of hundreds of thousands of words. As seen in
Figure 4.9 (Figure log) TF-DF on one hand, has the most variance between one and
ten occurrences of a system call in sequences of the attack phase datasets. After that,
the differences between the output values of the DF-function sink drastically. TF-IDF
on the other hand has a softer slope at first, reaches its change from decline to incline
at around 100 occurrences, and has a constant gradient. This leads to the assumption
that TF-IDF better represents general distribution variance whereas TF-DF focuses on
distributions of low-occurring system calls. Therefore, the results indicate that in attack
phase classification rare system calls are more expressive for a given system state.

Following it is further elaborated on the distribution of the given data and its implications
on the TF-DF values. With the chosen preprocessing technique where context system calls
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have been equally handled as being normal system calls there have been a total of 209
different system calls where the median system call (clone*) has occurred 29 times in
216’096 system calls. Further, the TF-(I)DF values have been computed based on the
sequences of specific attack phases datasets’ which had 18’008 system calls in it which
results in an average occurrence of the system call clone* of 2.42 times per attack phase.
For this distribution, the probability to occur in more than 10 sequences of an attack
phase lies between 0.000167% and 0.438% depending on the chosen amount of sequences
(nrseqs) and the sequence length (seq len) (see Implementation Details). The probability
of clone* being part of more than 10 sequences is computed with the help of the probability
x that it occurs in a sequence as follows:

x = 1 − (1 − distribution of clone∗)seq len

Pin seqs(clone
∗ > 10) = 1 −

10∑
i=0

[xn ·
(
nrseqs

n

)
· (1 − x)nrseqs−n]

Even more, this probability computation method disregards the deduction of the proba-
bility of x after clone* has been chosen once or a couple of times the true probability would
be even lower. Therefore, it is suggested that around half of the system calls that occur
rarely in more than 10 sequences and are therefore well represented by the TF-DF curve.
For system calls occurring 10 times more than the median system call which applies to
the 175th lowest occurring system call ugetrlimit of in total 209 different system calls the
probability of its occurring in more than 10 system call sequences rises to 99.99%. Still,
those system calls are represented distinguishably by the TF-DF function as the chance
of occurring more often than 100 times (for nrseqs=1000) is only 3.33 * 1012 percent.
Despite the fact, that the variety decreases when the amount of occurrences is in between
101 and 102 in comparison to the range of 100 and 101 differences between the number
of occurrences are still distinguishable. Finally, Figure 6.2 illustrates the little differences
between the number of occurrences until the 175th system call least occurring system
call and even further by showing the fractional occurrences of the system calls that are
ordered from least occurring to most occurring.

6.2 TF vs. TF-(I)DF

The fact that especially Document Frequency (DF) is nearly a constant factor as it changes
its value only at the fourth decimal place when occurring in many documents could lead
to the assumption that the Term Frequency by itself is a good enough feature for an
ML model as it would behave like the TF-DF value where DF is constant (=1). This
hypothesis has been rejected in a greedy malware classification experiment where the
model yielded an accuracy of 46.4% where sequences of unigrams have been preprocessed
into arrays of term frequency values while being optimized with the limited amount of
hyper-parameters (e.g. number of sequences). Concurrently, TF-IDF outperformed the
term frequency preprocessing method yielding an accuracy of 86.47%.
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Figure 6.2: Ordered (from least to most occurring) system call occurrences where 175th
least occurring system call ugetrlimit is marked

6.3 Comparison of results with related work

The authors of [9] also have conducted a multi-class classification where different attack
phases are classified with rather simple Machine Learning models, such as the Random
Forest or Support Vector Machine models, whereas their input features stemmed from
monitoring various resource usage types including events collections such as tcp or udp
for network usage or measures of CPU usage (including rpm, ipi, and clk). Having more
distinct classes they yielded an F1-score of 96 percent and with that outperformed the
simple Neural Network implemented in the work of this thesis when the model of this
thesis receives a similar amount of classes as input (see 5.3). However, a part of the better
performance could be explained due to the proportional bigger amount of similar benign
phase input data in this thesis. Another reason might be the big amount of features used
in the mentioned work which can make a model more robust for classifying similar system
states.

In difference to the related work, in this thesis the sequence models have not been com-
bined as the benefits of this seem to be minimal. The authors of [42] e.g. tried to combine
a Convolutional Neural Network with a Long-Short Term Memory model which only re-
sulted in a 0.2% accuracy increasement in comparison with having a Convolutional Neural
Network alone. Equivalently, in the work [22] a Transformer model has been combined
with an LSTM model. This resulted in the same performance increase (0.2%) whereas it
was measured in precision. Due to these minimal improvements the results of this work
are solely compared with the works that use single models.

Whereas the work [42] yielded good results with the CNN the results of the CNN model
implemented in this thesis are weak when looking at the attack phase classification. Al-
though, both classification problems have a similar amount of classes a reason for the
drastic performance differences might stem from the differing detection tasks. Whereas
the mentioned work tried to classify malware from different malware families, in this work
the focus was put on detecting different attack phases. Another reason for the perfor-
mance variations might come from the underlying dataset that is structured differently.
Whereas in this work the context system calls were treated as additional system calls
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without connection to the system call category, in the mentioned work system calls and
context system calls weren’t differentiated at all. Furthermore, the already stated amount
of training steps and limited hyper-parameter tuning could also have had effects on the
models’ performance. A further difference is found in the preprocessing whereas in this
work one-hot-encoding is performed on 1-grams of system calls without further modifica-
tion of the data the authors of [42] remove identical API calls when they arise more than
twice one after another. However, such an experiment with the underlying dataset was
performed and didn’t outperform the original result.

Finally, revisiting the distribution of (see Figure 6.3) irregular system calls concerning
the system calls of the evaluated data (NormalBenign10s) used in this thesis could be a
further cause for the mal-performance of the sequence models, especially when using one-
hot-encoding as preprocessing technique. Since the Figure illustrates that some classes
have a high amount of irregular system calls it is indicated that system calls are quite often
ordered incorrectly which potentially misleads a sequence model. Still, such irregularities
might also occur in the field. Therefore, a model must be able to also handle unordered
system call sequences.
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Figure 6.3: Distribution of irregular, context, and regular system calls over different attack
types within NormalBenign10s dataset

6.4 Robustness against adversarial attacks

Security also needs to be considered when implementing Artificial Intelligence. Attackers
can tamper with the prediction of Machine Learning models by introducing adversarial
samples. In the case of system call sequences, adversarial samples would correspond to
extra system calls that try to obfuscate that an attack is happening. Such an attack would
need a moderate understanding of how to install unnecessary system calls into existing or
new malware.
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On one hand, the experiments with adversarial attacks have shown that the implemented
neural network and the preprocessing technique TF-DF are robust against the unique
system call attack which has been based on the implementation of the authors of [4]. On
the other hand, when executing an adversarial attack that not only takes unique benign
system calls but takes all system call occurrences and translates the term frequencies of
the system calls into TF-(I)DF arrays and adds those to the already existing TF-(I)DF
malware arrays the Neural Network can be misled. The former adversarial attack method
would need knowledge of the distribution of the system calls of the benign dataset or the
benign state of the target system. Although an attacker could access the benign state or
dataset, these attacks still might be hard to execute as malware might hinder the system
from performing these benign system calls. Also, a real-time attack could be less harmful
if it is done based on real-time data not stemming from the dataset the model was trained
with. Additionally, the attacks where the TF-(I)DF values are directly altered are less
straightforward because an attacker would first need to find the code where the live system
calls are split into sequences and then transformed into TF-(I)DF arrays and change the
code as presented in the beforehand chapter. Still, the possible unrobustness of malware
detection algorithms needs to be addressed by hiding the code that processes field data.

Further, it is advised to use a system call based malware detection system in combination
with a model that uses other behavioral features such as changes in usage of CPU and/or
memory as used in the work [9] where many behavioral features were used. Those make
adversarial attacks more difficult because it is very unlikely that an attacker can find
out which feature is the most influential for the model’s classification. And even if, the
feature might be hard to influence. Still, for companies or private persons that can’t have
both protection mechanisms, it could be elaborated if given system call based malware
detection models perform similarly by introducing benign system calls into the malware
system call samples without reducing the performance of the model to a relevant extent.
Another way of preventing adversarial attacks could be found when including additional
features such as the return messages of system calls, the time they are active, and a
boolean indicating if the system call is executed in an irregular period.

6.5 Practical considerations

Implementing a model which is combined with a TF-IDF or TF-DF preprocessing needs
to take into consideration that in the field the preprocessing would need to be handled
similarly. TF-(I)DF methods need to look at multiple sequences first before being able
to provide a reasonable TF-(I)Df value. In this work, the TF-(I)DF values of each attack
were calculated based on 18’008 system calls. Depending on the attack phase the time
that passed between the first and the last system call in between the whole training and
test data spans from between 0.28 seconds in the benign state and 10 seconds in the
Bashlite Hold attack phase. Therefore, the question arises of how long a system needs
to collect data before classifying the data. E.g. if orientating on the attacks where the
system takes the longest time to produce 18’008 system calls one would need to wait for
ten seconds before being able to classify the current data. In this case, one would need to
enable the parallelization of preprocessing and classifying data when wanting to be able
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to classify the system’s behaviour in a faster fashion. If no parallelization is possible due
to scarce system resources one might want to train the model with less data although that
might weaken its performance.

6.6 Limitations

Comparing the hyper-parameter tuning results with the classification results of the best-
configured hyper-parameters of the Neural Network model the classification results show
a big difference between their F1 scores. Repeating the models’ classification several times
with the best hyper-parameter configuration hasn’t shown any improvement. Therefore,
the higher scores of hyper-parameter tuning might stem from the model learning through-
out different parameters although the gradients are zeroed before and the order of the
training samples is shuffled after every training step. This might have led to suboptimal
best hyper-parameter configurations.

Beyond this, the overall good results of the neural network model are only based on
one dataset and therefore, the overall performance of the implemented Neural Network
and Autoencoder need to be further justified. Since the models’ performances haven’t
been evaluated when attack phases of related malware families need to be distinguished.
Neither, are the models’ behaviors known when including different malware types such
as Worms or Viruses. Another limitation is the number of training steps performed
in the sequence models which has been limited to 100 epochs due to time constraints.
Furthermore, memory constraints of the used training system impeded the evaluation of
the sequence models’ performance with higher numbered n-grams (n>1).

6.7 Future Steps

As a next step, it is proposed to try to find out the reason for the models’ learning
throughout the hyper-parameter tuning. If that can be solved it is advised to reevaluate
the hyper-parameter tuning that might lead to different and probably better fitting pa-
rameters. It could be further evaluated how well the model performs when it is trained
on malware types instead of attack phase classes.

Another promising direction is to further evaluate the performance of the Neural Net-
work and the Autoencoder model combined with different n-grams but also with broader
datasets as indicated before. Therefore, producing more data or applying the models to
unknown system call sequences would be necessary. In the latter strategy, the accuracy
of the classification potentially decreases. Therefore, one would have to adapt the model
to enable handling the unknown malware system call sequences. Unfortunately, one can’t
simply threshold the confidence values of the output layer and let that decide on the new
data being part of the unknown class or not, because the confidence value can’t be seen
as an absolute certainty value but is relative to the input and the similarity of classes.
This brings us to the open set problem is an unresolved issue in machine learning. It can
be described as a model being unable to classify data that is part of a class that is not
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contained in the training data. The similarity of classes was used by the authors of [7] as
a suggestion to solve the open set problem by calculating an additional output neuron to
the output layer based on the distances between the values of the original output layer.
The advantage of this approach is that there is no need for additional unknown data in
the training phase. Still, it would be needed to evaluate if this approach also works for
the dataset studied in this thesis. Producing more data alone would increase the accuracy
but might only alleviate the open set problem datasets in the attacking realm as totally
new attacks including e.g. a zero-day attack could arise. Another reason why introducing
an unknown malware class could make sense is that misclassifications could be prevented
when malware of other malware families are classified. Possibly, generative networks could
be used to produce data for the unknown malware class. Further, such an approach could
also increase the stability of the model against adversarial attacks. Concluding, evaluat-
ing the open set problem can be key for the model to recognize system state anomalies
stemming from unknown malware classes and/or newly created malware programs.

The second limitation would need to be addressed by increasing the number of epochs to
1’000 for the sequence models in which case the number of total training steps would be
balanced out with the total number of epochs of 10’000 in the Neural Network and the
Autoencoder model. However, some first experiments with the same amount of training
steps in all models have shown no major performance improvements. But, this might
not be enough as the authors of [47] indicate that Deep Learning models such as CNNs,
ResNets, and Transformers underly the Double-Descent phenomenon which means that
they generally need an extensive amount of training time to reach good performance
results respectively e.g. finding the global minimum of the gradient. Therefore, the
sequence models would need to be evaluated with an even higher amount of training
steps to find the best performance results of these models. Furthermore, another way
the limited performances of the sequence models could be addressed is by reordering the
irregular system calls and reevaluating the models’ performances. This is expected to at
least improve the results of classifying sequences of one-hot-encoded system calls. Finally,
running the sequence models with higher n-grams on a machine with an extensive size of
RAM could improve the classification of preprocessed sequences of system calls by both
one-hot-encodings and TF-(I)DF transformations.
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Summary and Conclusions

Altogether, several models with different hyper-parameter combinations have been eval-
uated to do attack phase classification and detection based on system calls. The dataset
building the foundation of this thesis contained different cleaned system call traces that
have been collected while the system has been benign or infected by four different mal-
ware programs. Although, some attack/installation phases only comprise less than twenty
thousand system calls the NN model has been able to successfully classify not only the
malware type but also the attack phases of the evaluated malware types.

The model with the highest performance but also with the fastest training time was the
Neural Network with the TF-DF (Term Frequency Document Frequency) preprocessing
technique when using imbalanced input data. The worse performance of the sequence
models has been widely discussed, whereas different potential factors have been depicted
such as: the limited number of training steps, standard vs. inferior batch processing,
and dataset irregularities. Further, the amount and characteristics of classes of attack
phase classification and the novel way of including context system calls as unique features
might have impeded the performance of the sequence models. Another aspect of this
thesis was to better capture the distribution of expressive system calls with the help of
an adapted preprocessing technique TF-DF based on the well-known TF-IDF method
to better capture the distribution of the system calls occurring in the dataset. The
proposed TF-DF seems to outperform the TF-IDF preprocessing approach used in Natural
Language Processing that also has already been successfully used for anomaly and malware
detection based on system calls when serving the model with unbalanced input data.
Whereas the classification experiments and some data analysis have shown that TF-DF
maps the data distribution of the underlying system calls better than the well-known
TF-IDF preprocessing technique introducing balanced sequence lengths has shown that
a result in another direction. However, when the models receive equal length system
call sequences as input the TF-IDF preprocessing technique has performed better than
TF-DF.

When training the Neural Network with preprocessing technique TF-DF and 1-gram com-
bined with the best-fitting hyperparameters stemming from imbalanced input sequences
yielded an F1-score of 99.2 percent whereas when using balanced data the same model
with the TF-IDF preprocessing technique reached an F1-score of 78.42 percent. When

73



74 CHAPTER 7. SUMMARY AND CONCLUSIONS

reducing the former result from imbalanced attack phase classification to an anomaly clas-
sification an accuracy of 100% was achieved whereas the latter had an accuracy of 99.04%.
Therefore, the goal of this work to have malware detection or attack classification while
in parallel evaluating if the system is behaving anomalously or not was reached. Even
more, the model seems to be able to differentiate between different attack phases of the
malware. Still, the model’s performance evaluating unknown malware attack samples and
measures to keep the stability against adversarial attacks need to be discussed. In this
direction, it could help to have additional features of the system’s behavior included in a
malware detection program such as CPU or memory usage. Further, it was discussed that
the non-existence of installation procedures in the normal data could be the reason why in
the best-performing model the benign case was never confused with an attack phase. At
the same time, in IoT devices, it is not unusual to have such behaviour as the devices are
not under active use and therefore some devices’ most similar activities to installations
are limited to security patches and other updates which might neither be confused with
the installations of malware.

Concluding, the good performances of a few models seem to be promising results some
further considerations have to be made. As seen, some first experiments with adversarial
attacks have shown that they can to some degree harm the detection of attacks. Contin-
uing, the well-performing models would need to be tested on different datasets and with
malware types and families that haven’t been evaluated in this work yet.
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