
Quantitative Maturity Assessment
of DevSecOps Practices Using

Metrics

Raphael Wäspi
St. Gallen, Switzerland
Student ID: 18-918-938

Supervisor: Jan von der Assen
Date of Submission: August 8, 2024

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

IN
D

E
P

E
N

D
E

N
T

S
T

U
D

Y
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Independent Study
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Declaration of Independence

I hereby declare that I have composed this work independently and without the use of any
aids other than those declared (including generative AI such as ChatGPT). I am aware
that I take full responsibility for the scientific character of the submitted text myself,
even if AI aids were used and declared (after written confirmation by the supervising
professor). All passages taken verbatim or in sense from published or unpublished writings
are identified as such. The work has not yet been submitted in the same or similar form
or in excerpts as part of another examination.

Zürich,
Signature of student

i

ii

Abstract

The transition from a traditional Software as a Product model to a Software as a Service
model has transformed the software development industry. It has enabled continuous
improvement and deployment without the need for repeated deployment on the client
side. However, despite these advances, it remains a challenge to integrate robust security
practices into the DevOps space. Security is often seen as secondary in DevOps, which
leads to potential vulnerabilities.

This study aims to fill this gap by automating the collection and analysis of DevSecOps
metrics through the development of a prototype. The prototype was developed to fulfil the
identified need for a flexible and configurable solution that can be customized to different
DevSecOps environments. A comprehensive literature review was used to analyze key
metrics and existing tools to influence the design of the tool. The prototype has a modular
architecture that is already equipped with the first data collector and enables visualization
by Grafana. This design enables the monitoring and evaluation of security practices and
ensures that security is embedded throughout the development cycle.

iii

iv

Zusammenfassung

Der Übergang vom traditionellen Software as a Product Modell zum Software as a Service
Modell hat die Softwareentwicklungsbranche grundlegend verändert. Das System ermög-
licht eine kontinuierliche Optimierung und Bereitstellung, ohne dass auf Kundenseite wie-
derholte Implementierungen erforderlich sind. Trotz dieser Fortschritte bleibt es jedoch
eine Herausforderung, robuste Sicherheitspraktiken in den DevOps-Bereich zu integrie-
ren. Die Sicherheit wird bei DevOps oft als zweitrangig angesehen, was zu potenziellen
Schwachstellen führen kann.

Diese Studie zielt darauf ab, diese Lücke zu schliessen, indem die Erfassung und Analy-
se von DevSecOps-Metriken durch die Entwicklung eines Prototyps automatisiert wird.
Der Prototyp wurde entwickelt, um den Bedarf an einer flexiblen und konfigurierbaren
Lösung zu erfüllen, die an verschiedene DevSecOps-Umgebungen angepasst werden kann.
Im Rahmen einer umfassenden Literaturrecherche wurden Metriken und bestehende Tools
analysiert, um die Grundlage für die Entwicklung des Prototypen zu schaffen. Der Proto-
typ hat eine modulare Architektur, die bereits mit dem ersten Collector ausgestattet ist
und die Visualisierung durch Grafana ermöglicht. Dieses Design erlaubt die Überwachung
und Bewertung von Sicherheitspraktiken und gewährleistet, dass die Sicherheit in den
gesamten Entwicklungszyklus eingebettet ist.

v

vi

Acknowledgments

First and foremost, I want to thank my supervisor Jan von der Assen for his continuous
effort throughout this study. Thanks to his support and inputs in technical and academic
matters, I was able to complete this Independent Study.

Furthermore, I would like to extend my gratitude to Prof. Dr. Burkhard Stiller who gave
me the opportunity to do this Independent Study at the Communication Systems Group
(CSG).

vii

viii

Contents

Declaration of Independence i

Abstract iii

Acknowledgments vii

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 1

1.3 Study Outline . 2

2 Background 3

2.1 DevSecOps . 3

2.2 DevSecOps Framework . 4

3 Related Work 5

3.1 Methodology . 5

3.2 Analysis of Key Themes in DevSecOps . 6

3.2.1 Metrics . 6

3.2.2 Existing Software . 7

3.2.3 Challenges . 8

3.3 Discussion . 9

ix

x CONTENTS

4 Architecture 11

4.1 High-Level Architecture . 11

4.2 Detailed Component Architecture . 12

4.2.1 Configuration . 12

4.2.2 Collector . 14

4.2.3 Analyzer . 16

4.2.4 Visualizer . 16

4.2.5 MySQL . 17

4.2.6 Grafana . 17

5 Implementation 19

5.1 Technology . 19

5.1.1 Python . 19

5.1.2 Docker . 20

5.1.3 MySQL . 20

5.1.4 Grafana . 20

5.2 Code Structure . 21

6 Evaluation 23

6.1 Methodology . 23

6.2 Execution . 24

6.3 Discussion . 29

7 Summary and Conclusions 31

7.1 Future Work . 31

Bibliography 33

Abbreviations 37

Glossary 39

CONTENTS xi

List of Figures 40

List of Tables 41

A Installation Guidelines 45

xii CONTENTS

Chapter 1

Introduction

DevSecOps, short for Development, Security, and Operations, is an approach for software
development that integrates security practices seamlessly into the DevOps workflow. It
prioritizes security throughout the software development lifecycle, enabling teams to iden-
tify and mitigate risks proactively. DevSecOps fosters collaboration between development,
security, and operation teams, leading to faster delivery of secure software. Research on
metrics for assessing DevSecOps maturity is crucial for organizations to measure their
progress, identify areas for improvement, and strengthen their security posture within
the DevOps framework. This independent study aims to improve DevSecOps practices.
Therefore, the following sections describe the motivation for this independent study and
the scope and structure of this report.

1.1 Motivation

The motivation for this work comes from the realization that there is a significant gap in
the tools available to automate the collection and analysis of DevSecOps metrics. While
the security frameworks of security teams provide valuable guidance, the actual imple-
mentation and tracking of these frameworks is often inadequate. While there are many
tools designed for specific DevSecOps activities, there is no known tool that collects data
from these various tools, analyzes it, and shows which applications are compliant with
security policies.

1.2 Description of Work

This study aims to fill this gap by examining existing tools that attempt to address
this problem and by exploring the common challenges in DevSecOps. The goal is to
develop a prototype that overcomes these challenges and addresses the key requirements
by incorporating the most commonly cited metrics in the literature. Rather than relying
on manual checks, which can lead to inefficiencies and inconsistencies, this research aims

1

2 CHAPTER 1. INTRODUCTION

to create a more comprehensive solution. By exploring the most popular DevSecOps
metrics and the tools currently available, a prototype will be developed that addresses
the shortcomings of existing solutions and provides a more robust approach to automating
the collection and analysis of DevSecOps metrics.

1.3 Study Outline

The first chapter introduces the topic of DevSecOps and emphasizes its importance for
the integration of security into the software development cycle. It contains the motiva-
tion for this study, the objectives and an overview of the work carried out. The second
chapter deals with the basic concepts of DevSecOps. It covers the historical context, the
goals and benefits of DevSecOps and explains the shift-left principle. It also introduces
the DevSecOps framework with its activities and metrics and discusses the benefits of
adopting this framework. Chapter 3 provides an overview of the existing literature and
tools related to DevSecOps. It describes the methodology used for the literature review,
analyzes key topics such as metrics, existing software and challenges in DevSecOps and
concludes with a discussion of the insights gained from this analysis. The fourth chapter
presents the high-level and detailed component architecture of the proposed prototype. It
describes the Configuration, Collector, Analyzer, Visualizer, MySQL and Grafana com-
ponents and outlines their roles and interactions within the system. Chapter 5 focuses
on the implementation details of the prototype. It covers the technologies used, including
Python, Docker, MySQL and Grafana, and provides an overview of the code structure.
This chapter provides a technical foundation for understanding how the prototype was
built. The sixth chapter outlines the methodology used to evaluate the prototype, de-
scribes how the evaluation was conducted, and discusses the results. The final chapter
summarizes the project and provides an overview of the key findings and contributions.
It includes a conclusion derived from the evaluation and suggestions for future work. This
chapter highlights the importance of the study and its potential impact on the DevSecOps
field.

Chapter 2

Background

This chapter introduces the theoretical concepts required to understand this study. The
first section explains DevSecOps in general, including its goals and benefits. The second
part deals with the specifics of a DevSecOps framework and defines key terms such as
DevSecOps activities and metrics.

2.1 DevSecOps

The software industry has shifted from developing software as a product to providing it
as Software as a Service (SaaS) [1]. This transition brought challenges due to lack of
collaboration between development and operations teams. DevOps emerged to address
these challenges by promoting collaboration and aligning priorities across teams. However,
many DevOps programs overlooked security [2]. DevSecOps aims to extend DevOps
by involving security experts from the start, fostering collaboration among developers,
operators, and security professionals. As a new trend, understanding DevSecOps practices
and experiences is crucial for effective integration of security into DevOps processes [1].

The two main benefits of DevSecOps are speed and security, which enables development
teams to deliver secure code faster and more cost-effective [3]. DevSecOps is based on the
principle that everyone is responsible for security and aims to integrate security measures
as early as possible in the software development lifecycle (SDLC). This approach is in
contrast to traditional methods, where security aspects are often added at the end.

The paper [4] shows that addressing security issues in the design phase is much more cost-
effective, as the relative cost of fixing a bug is 100 times lower than in the maintenance
phase. The DevSecOps ’Shift Left’ strategy therefore not only increases security and
speed, but also offers financial benefits. By including security in DevOps, companies can
achieve a more efficient and secure development process.

3

4 CHAPTER 2. BACKGROUND

2.2 DevSecOps Framework

A DevSecOps framework provides a set of baseline requirements for each phase of the de-
velopment lifecycle. The goal is for the security team to define measurable and achievable
requirements for the development teams. An example of such a framework is the Open
Web Application Security Project (OWASP) DevSecOps Verification Standard, an open
source framework that provides baseline requirements for every software project [5].

This study refers to DevSecOps activities as the specific requirements that a framework
has at each stage of the software development lifecycle. In the context of the DevSecOps
verification standard, these are called streams. For example, an activity in the code/build
phase could be Static Application Security Testing (SAST).

Metrics are required to determine whether an application meets the specifications of a
DevSecOps activity. These metrics define the criteria that an application must fulfill in
order to pass the activity. In the case of SAST, for example, a metric could require that
the application has no critical vulnerabilities and no more than five high vulnerabilities.

Maturity levels are often used in DevSecOps frameworks to indicate different levels of
compliance. Metrics with different difficulty degrees can be defined, which are called lev-
els, in order to identify which applications need to meet certain standards in each activity.
The DevSecOps Verification Standard Framework [5] also contains such a maturity level
system. To keep with the SAST example, a level one application could have no criti-
cal vulnerabilities and no more than five high vulnerabilities. In contrast, a level two
application must have no critical or high vulnerabilities, and so and so forth.

Chapter 3

Related Work

This chapter aims to provide an overview of the current research in DevSecOps, par-
ticularly focusing on metrics and existing software in this field. The first part outlines
the methodology applied for literature research and selection, which includes the cate-
gorization of papers into distinct groups based on their common themes. Subsequently,
the identified groups are closely examined, aiming to uncover their distinct features and
contributions to the study. Finally, a discussion is provided to summarize the findings
and highlight key insights.

3.1 Methodology

In order to investigate the relationship between DevSecOps metrics and existing software
solutions within this domain, a literature review was conducted. This search included a
review of literature databases such as Google Scholar, IEEE Xplore, ACM Digital Library.
A combination of keywords, including DevSecOps, Metrics, SSDLC, Measurements, and
Monitoring, was employed to ensure a comprehensive search strategy. Both individual
and combined use of these terms was utilized to maximize the number of relevant articles.

To broaden the scope of the review, the search was extended to include topics related to
security issues in the realm of DevOps. This approach was undertaken to get more papers
addressing this subject matter.

Articles were included in the review if they addressed challenging factors, metrics, or
software solutions within the DevSecOps domain. The inclusion criteria were assessed
based on the title, abstract, and the chapters of the articles. In cases where clarity was
lacking, the full text of the article was consulted to make a determination. Additionally,
articles older than 15 years were excluded from consideration to ensure relevance to current
practices.

At the conclusion of this process, a total of 15 papers were carefully selected, comprising
12 papers and three industry resources. These selections were made based on their sig-
nificant contributions to one of the three primary themes explored in this study: metrics,

5

6 CHAPTER 3. RELATED WORK

challenges, or software within the realm of DevSecOps. Consequently, six papers were
classified under the software theme, four under metrics theme, and five under challenges
theme.

In the final stage of the literature review, the references of each of the 12 selected papers
were examined. The three industry resources were excluded from the process, resulting in
the identification of a total of 613 references. In order to subject the reference to further
analysis, it was necessary for the title to contain either the term ”DevSecOps”or ”Security.”
Subsequently, out of the 613 references, 63 papers underwent further analysis. It is crucial
to acknowledge that a considerable number of the references were duplicates or papers
that had already been included in the initial selection. Consequently, the 613 references
did not represent 613 distinct papers. It is also important to mention that 217 references
originate from one single paper, which increases the total number. The 63 papers that met
all the requirements were then categorized into one of the three main themes. From these
63 papers, 18 papers were finally considered relevant for these categorisations, resulting
in a total number of 33 papers where 6 were classified under the software theme, 14 under
the metrics theme, and 13 under the challenges theme.

3.2 Analysis of Key Themes in DevSecOps

This section provides a more comprehensive examination of the main themes and presents
the findings of the relevant literature in this area. The three themes identified are metrics,
existing software and challenges. Metrics covers the various measures used to evaluate
DevSecOps activities. Existing software discusses the tools currently available to support
these activities, while challenges highlight the hurdles and issues in implementing and
optimising DevSecOps practices.

3.2.1 Metrics

In the field of metrics, it is evident that there is a significant focus on this topic in the
literature, with six papers and eight industry resources specifically addressing metrics in
DevSecOps. Furthermore, one paper which is classified under the challenges main topic
also touches upon metrics. This brings the total to seven papers and eight industry
resources emphasising the importance of metrics in DevSecOps practices.

However, because the term metrics is very broad, there are different interpretations of
what should be measured in the DevSecOps context. Consequently, the literature review
not only found software security metrics, which are discussed in more detail in the Chapter
4, but also general software metrics and business metrics.

For example, one paper [6] does not focus on software security, but on the security busi-
ness in general. For example, this paper defines the metric reduction in hours spent

resolving security issues, which is not directly related to software security, but aims
to improve the security process through automation. This is not bad in principle, but it
is not a metric that was targeted in this context. This also applies to another paper [7]

3.2. ANALYSIS OF KEY THEMES IN DEVSECOPS 7

which focuses on business metrics by establishing metrics for costs. Examples of such
metrics are the mean cost to patch, cost of incidents or the mean incident recovery cost.

However, not only business-related metrics were mentioned, but also software metrics that
are not necessarily part of application security. An example of this is a paper [8] that
defined metrics like number of executable lines of source code, number of lines containing
source code or number of the maximum nesting level of control constructs like if and
while.

In addition, the different types of metrics measurements were also presented in one pa-
per [9]. These include explicit ordinal risk assessments and assessments of several vulner-
ability dimensions as well as metrics based on counts, frequencies and densities.

Although most resources in the literature highlight key metrics for measuring software
security, such as mean time to fix a vulnerability, number of security-related tickets, and
the number of vulnerabilities in an application, it is important to acknowledge the exis-
tence of additional metrics within the field. While these metrics are potentially relevant
to DevSecOps, they were not specifically examined in this independent study.

3.2.2 Existing Software

In terms of existing software, the literature review revealed five papers and one industry
review relating to existing software in the DevSecOps field. This subsection introduces
each tool in the selected publications and explains its core functionality. The aim of this
is to provide a comprehensive overview of the existing software tools in DevSecOps.

The paper by [10] stated that software engineering needs a metric-driven approach to
increase the quality, adaptability and security of a software and to decrease the time-
to-market. It also proposes an architecture of such a metric-driven approach like in the
ITEA3’s MEASURE project [11] and H2020’s MUSA Project where a centralized platform
is dedicated for measuring, analyzing and visualizing metrics to get information about the
software engineering process. This is done with measures using the Structured Metrics
Metamodel (SMM) standard which are automatically collected by the SMM Engine. The
metrics that can be collected are listed on their GitHub wiki [12]. While many metrics are
predefined and fixed, they first define the metric and then specify how it can be collected.
With this approach, you lose variability in the metrics and must use them as they are
defined. After collecting the measures, it analyzes them and then provides a graphical
representation of the information with reports defined by several dashboards. This is done
because it can help managers in their decision-making process. However, it is important
to note that the last update of this tool was in 2019, and most of the repositories are
archived on GitHub, which leads to the assumption that this project is no longer used.

In another paper [13], a literature review found that while DevSecOps metrics such as
deployment rates or lead times provide insight into the progress of software development,
they are not sufficient to replace program control metrics for assessing progress, which
would be possible with interactive visualization dashboards. For this reason the paper
introduces a hypothetical Proof of Concept (PoC) where in a first step they collected data

8 CHAPTER 3. RELATED WORK

automatically from Continuous Integration/Continuous Delivery (CI/CD) tools to track
the planned, actual and projected completion. After that the results were displayed which
should help to explore information gaps, need and data requirements for decision-making.

The paper by [14] proposes a self-service infrastructure for cybersecurity monitoring that
is key to a DevSecOps culture. The paper refers to this as monitoring as code, as the
development and operations teams are able to configure their own monitoring and alerting
services based on security criteria, which should allow the silos between development,
operations and security teams to be broken by opening up access to key security metrics.
The monitoring is based on the detection of threats and anomalies from the application
logs.

The paper [15] brought the state-of-the-art in SDLC and Secure Software Development
Life Cycle (SSDLC). As part of their work, they defined a tool to manage SSDLC because
they argue that in today’s world, many decisions are made by different teams when a
product is brought to market. Therefore, the managing SSDLC tool brings in metrics to
measure the effectiveness of security controls and general security controls. This means
that security activities are integrated into the application development process, such as
code review, penetration testing and others. In addition, the paper points out that the
business criticality of a developed application plays an important role in not unnecessarily
influencing the development of an application that should not have such strict security
controls.

In contrast to the tools mentioned above, the paper by [16] and the online resource [17]
show technologies that should play a role in DevSecOps. Previously, there were tools that
aimed to manage and monitor DevSecOps metrics, but these publications focus more on
how to measure an application and obtain the data to create metrics. For example, the
paper [16] defines that implementing and automating security scanning tools such as Snyk
or StackHawk is an effective approach to secure applications. They suggest including tools
for SAST and dynamic application security testing (DAST) in the CI/CD pipeline of all
applications. The online resource [17] is similar but offers a broader collection of tools
for each phase of the development lifecycle. For example, for the planning phase, he
recommends a threat modelling activity where you can use tools such as the Microsoft
Threat Modelling Tool or OWASP Threat Dragon.

3.2.3 Challenges

In total there were eleven papers and two industry resources that were classified under
the main theme of challenges in DevSecOps. This subsection lists some of the challenges
that were repeatedly mentioned in the publications.

The first challenge in the area of DevSecOps is culture, which is highlighted by several
sources. First and foremost, [18] highlights the importance of creating a security-focused
culture and the negative effects of a lack of management prioritisation and defined respon-
sibilities. It also defines the problem that developers lose their autonomy when security
authorities try to introduce security processes for the development, and that this can lead
to conflicts between developers and security authorities. In addition, [19] highlights the

3.3. DISCUSSION 9

symbiotic relationship between cultural resistance and organizational structure, noting
that the nomination of security champions can be a driver of cultural change as well as
organizational structure change. So, organizational barriers in general is also a challenge,
as discussed in [1] and [20], because it can hinder effective collaboration between secu-
rity teams and the rest of the organization, which results in operational inefficiencies.
However, [21] suggests that while unrestricted collaboration may pose risks, supervised
collaboration with the security team can improve system security. In addition, [22] and [23]
highlight the challenge of integrating individuals into cohesive teams that include devel-
opers, operations personnel, and security professionals. Finally, [3] defined the challenge
that it is often not clear who is responsible for security in an organization and that it
is important in DevSecOps to communicate the responsibilities for process security and
product responsibility. Only in this way can developers and engineers become process
owners and take responsibility for their work.

A key challenge in DevSecOps is the identification and implementation of appropriate
security metrics. Despite that there might be various security metrics already available,
as mentioned in [18], their integration in a DevSecOps team is still limited, possibly due to
the lack of connection between developers and security engineers. Furthermore, [24] points
out the danger of using inappropriate performance metrics for security assessment and
stresses the importance of aligning metrics with the specific security goals of DevSecOps
practices.

The availability and suitability of tools is also a major challenge. One aspect is the lack
of solutions for visualizing security data, which leads to manual inspection at different
stages [25]. In addition, according to [26], it is very important to have a consensus on
the tool selection within the development teams. [27] and [18] describes that the use of
security tools and securing all components with DevSecOps metrics such as secure coding,
counting the number of security issues and various controls is considered a best practice,
but very difficult to implement. Overall, promoting frequent security checks and using
security dashboards, as suggested in [23], can help to track threats and dependencies
effectively. In addition, the lack of automated testing tools, as highlighted in [28], [20]
and [24], is a barrier to efficient security testing within the DevOps pipeline. Here, [20]
states that defining security requirements and metrics such as Mean Time to Resolve
(MTTR) or (Mean Time to Detect (MTTD) can help mitigate the organizational barrier
in the area of automated testing.

3.3 Discussion

There is a lot of research on the theoretical foundations of DevSecOps, explaining what
metrics to measure and how to secure applications within organisations. However, when
it comes to practical implementation, specifically tools or PoCs that automatically collect
and visualize these metrics, the research landscape becomes sparse. While there are
several successful tools in the DevSecOps area, they often specialize in one aspect, such as
automated security testing. This specialization can lead to a distribution of tools across an
organisation, resulting in a loss of visibility into the security maturity of each application.
As a result, there is a lack of solutions that bring together metrics from different tools in

10 CHAPTER 3. RELATED WORK

one central location to give developers and security engineers a comprehensive overview of
the current situation of all DevSecOps activities in all applications within an organisation.
Despite this challenge, some papers have recognized the problem and attempted to develop
software and PoCs to address it. These tools all have very good approaches and do some
things very well, but there is no tool that combines these approaches. For this reason, the
following chapters are about introducing a PoC that does just that.

This PoC is very similar in architecture and principle to the tool from [10]. It should
automatically collect, analyze and then visualize metrics that a security engineer defines.
However, unlike in [13], in this PoC the data should initially be collected centrally by a
security team member and not separately in each CI/CD pipeline by the development
teams. The advantage of this is that the developers only have to say where the data
can be found. A trained security officer is then responsible for collecting the data, which
should be fully automated. The advantage of this is that it is not necessary for several
developers to become familiar with the tool, but only one security officer. This should
prevent the conflict described in [18], since the work does not lie with the development
team. Furthermore, as described in the managing SSDLC tool [15], the PoC should
also be able to categorise applications according to their business criticality, so that not
every application has the same security requirements. It should also be able to represent
multiple security activities for each software development phase, as defined in [17]. These
activities may be different for each organisation. In other words, it should not dictate
activities, but be open to the types of activities that need to be tracked.

The fact that in this PoC it is completely arbitrary what you want to measure means that
it is possible to measure organisational structure metrics, such as security champions.
This is defined as a challenge in [19]. The fact that the metrics are presented visually,
addresses the challenge described in [18] of a lack of management prioritization. Currently,
it is often difficult to illustrate for application teams what they are missing and why this
poses a security risk. By only being able to show it graphically, you can also communicate
faster and better with the management. For example, the lack of automated testing tools
mentioned in [28], [20], [24] should be pointed out as a problem. In addition, this tool
also promotes collaboration between security and DevOps, but not to the level of full
supervision in code and so on, which is also highlighted as a problem in [1]. However, the
problem of the lack of tools cannot be solved with this PoC. This is because the PoC is a
tool, as suggested in [23], that collects and analyzes data from other tools, but does not
generate data for a specific DevSecOps activity as a tool. Nevertheless, it can serve as a
guide to stimulate ideas and provide an overview of tools in DevSecOps.

This PoC is therefore a metrics-driven approach to improving software development pro-
cesses by increasing software quality, adaptability and security, and reducing cost and
time to market [10].

Chapter 4

Architecture

This chapter describes the architecture of the prototype developed in this independent
study. The first section provides an overview of the high-level structure of the prototype
and gives an insight into how the system works as a whole and how the various compo-
nents interact with each other. This overview is intended to illustrate the overall concept
and the data flow within the system. The second section deals with a more detailed ex-
amination of the individual components. Here, the specific functionalities, interactions,
and implementations of the core components of the prototype are analyzed. It also shows
which metrics can be collected in this prototype.

4.1 High-Level Architecture

As shown in Figure 4.1, the prototype consists of three core modules. The first and most
important module is responsible for collecting, analyzing, and serializing the data, which
is then sent to the second module, the database. The final module is then responsible for
visualizing the data stored in the database. The design of these modules illustrates the
intended separation with Docker containers and the interaction between them.

Figure 4.1: High-level Architecture

11

12 CHAPTER 4. ARCHITECTURE

The entire prototype is called CAVE, which stands for collector, analyzer, visualizer and
empower. Figure 4.1 illustrates the concept behind these components. The collector
retrieves data from a specific location and processes it in a standardized format. This
data is then sent to the analyzer which checks whether the data meets certain criteria.
The analyzer’s results are forwarded to the Visualizer, which processes the data for storage
in a SQL database or in JavaScript Object Notation (JSON) format. In the final Empower
step, the data stored in the SQL database is visualized to clearly show which metrics are
met by each item.

It is important to note that the entire architecture is highly configuration-orientated. A
robust configuration is crucial for enabling the functionality. Therefore, the Collector, the
analyzer, and the Visualizer are configured using JSON files. These configuration files
define which and how data is collected, how the analyzer checks the data against certain
conditions, and where the Visualizer stores the results. This configurability makes the
prototype highly customizable, which allows users to define their own metrics and criteria.
This approach addresses some of the challenges discussed in Chapter 3.

4.2 Detailed Component Architecture

In this section, the individual components of the prototype are discussed in detail. This
will illustrate their individual contribution to the overall architecture and how they work
together to achieve the system’s goals. In each subsection, the implementation and the
parameters handled by the components are described in detail to ensure a complete un-
derstanding of their functionality and integration.

4.2.1 Configuration

Listing 4.1: Configuration file in JSON Example
{
”items ”: {

”APP−1”: {
”sca−L1 ”: {

” c o l l e c t o r ”: {
”type ”: ”dependabot sca ” ,
”base ”: ”https : // api . g ithub . com/ repos /sumsumcity/webgoatOutdated ” ,
”params ”: {

”per page ”: 5000 ,
” s t a t e ”: ”open ” ,
” s e v e r i t y ”: ” c r i t i c a l , high ”

} ,
” v e r i f y ”: f a l s e ,
”headers ”: {

”Author i zat ion ”: ”Bearer ${GITHUB PAT}”
}

}
}

}
} ,
”met r i c s ”: {

”sca−L1 ”: {
” l e v e l ”: ”1” ,
”va l i d a t o r ”: [

4.2. DETAILED COMPONENT ARCHITECTURE 13

{
” r e s u l t ”: ” f a i l ” ,
”p r i o ”: 1 ,
”d e s c r i p t i o n ”: ”Vulnerable l i b r a r y with s e v e r i t y c r i t i c a l or high i s used ”

} ,
] ,
”aggregator ”: {

”miss ing ”: {” r e s u l t ”: ”pass ” , ”d e s c r i p t i o n ”: ”There are no dependabots a l e r t s ”}
}

} ,
”sast−L1 ”: {

” l e v e l ”: ”1” ,
”va l i d a t o r ”: [

{
” r e s u l t ”: ” f a i l ” ,
”p r i o ”: 2 ,
”d e s c r i p t i o n ”: ”C r i t i c a l v u l n e r a b i l i t y i s pre sent ” ,
” s t r : r e sponse . s t a t e ”: ”open ” ,
” s t r : r e sponse . r u l e . s e c u r i t y s e v e r i t y l e v e l ”: ” c r i t i c a l | high ”

} ,
{

” r e s u l t ”: ”pass ” ,
”p r i o ”: 3 ,
”d e s c r i p t i o n ”: ”No c r i t i c a l v u l n e r a b i l i t y ”

}
] ,
”aggregator ”: {

”miss ing ”: {” r e s u l t ”: ”pass ” , ”d e s c r i p t i o n ”: ”CodeQL found no vu l n e r a b i l i t y ”}
}

}
} ,
” s e r i a l i z e r ”: {

”type ”: ”mysql ” ,
”host ”: ”1 2 7 . 0 . 0 . 1 ” ,
”database ”: ”caveDB” ,
”port ”: 3306 ,
”user ”: ”root ” ,
”pass ”: ”${MYSQLPASSWORD}”

}
}

As described in Section 4.1, the configuration is the centerpiece of this prototype, as it
enables variability and facilitates extensions. This is the reason that all components must
be configured. The configuration can be divided into three parts: items, metrics, and
serializer. An example of such a configuration is shown in Listing 4.1.

The first part, items, defines all applications. It is called items because it can include not
only applications but also other units, such as development teams. This system allows
flexible definitions. According to Figure 4.1, this part configures the collector for each
metric for each item. Listing 4.1 shows that a collector is defined for the application
metric sca-L1.

The second part, metrics, implements the analyzer, which consists of the validator and
aggregator components. It is important to note that all metrics are used for each relevant
item. Any change to the metrics applies to all items, so metrics can easily be added
without changing the configuration of the individual items. In Listing 4.1, the metric sca-
L1 fails if the collector returns a list of critical and high-risk vulnerabilities. An empty list
results in success. For sast-L1, the collector returns all vulnerabilities and the validator
determines the pass/fail status using tags such as str, date, lt (lesser than), gt (greater
than). The priority key in the validator ensures that the aggregator takes the result with
the lowest priority into account. For example, if there is an open critical or high-risk

14 CHAPTER 4. ARCHITECTURE

vulnerability, the metric will fail. The aggregator can also use a count key to specify the
number of vulnerabilities required for a failed result, which is useful for setting thresholds.
In addition this configuration enables also the definition of DevSecOps activities [14] [17]
with multiple maturity levels which was a key requirement in the paper [15] and [29].
Each activity can be performed multiple times, with different levels and requirements
for the validators/aggregators. The flexibility of this PoC enables the measurement of
organizational structure metrics, such as security officers, which is a challenge described
in [30].

In the third and final part of the configuration, the serializer must be configured. In
the current version of the PoC, users can choose to store the results either in a MySQL
database or in JSON format. This flexibility allows users to select the storage format that
best fits their needs and infrastructure.

4.2.2 Collector

Metric Description References

MTTR Time to resolve a vulnera-
bility

[31] [32] [30] [33] [34] [7]
[29] [35] [36]

Mean Lead-Time (MLT) Time between code commit
and production

[37] [32] [30] [33] [36] [29]
[35]

Number of Security Vulner-
abilities

How many vulnerabilities
does the app have

[37] [31] [33] [34] [7] [9]

Number of Deployments How often code changes are
deployed to production

[31] [32] [30] [33] [36] [29]

Number of security-related
Tickets

Number of tickets with se-
curity label

[32] [30] [6] [36] [29]

Number of Failed Deploy-
ments

How many vulnerabilites
does the app have

[32] [30] [36] [29]

MTTD Time to detect a vulnera-
bility

[31] [30] [36] [35]

Test Coverage Percentage of test coverage [31] [30] [33] [29]

Defect Burn Rate How often vulnerabilities
are deployed in production

[37] [38]

Table 4.1: Key Metrics for Evaluating DevSecOps Practices

The collector component is responsible for retrieving data from third parties and process-
ing it in a standardized format. Each DevSecOps activity should, therefore, have a clear
metric that is analyzed against the data automatically collected by the collector. Given
the limited scope of this independent study, it was decided that the collector should focus
on retrieving data for only a subset of the most important metrics. To identify these key

4.2. DETAILED COMPONENT ARCHITECTURE 15

metrics, a comprehensive literature review was conducted. This review not only focused
on metrics but also covered other relevant aspects as described in Chapter 3. The results
of this literature review considering 33 papers, including the key metrics identified, are
summarized in Table 4.1. However, when looking at the results, it should be noted that
two papers are cross-referenced, meaning they have very similar metrics as they have
taken the information from the other paper. This is due to the literature search described
in Chapter 3.

When analyzing the nine metrics, it is noticeable that they can be divided into two
categories. The first group measures the time between two events and calculates the
average of these times as a metric. This group includes MTTR, MLT and MTTD. As described
in the article [32], these metrics evaluate the stability of an application. The second
group includes all other metrics listed in Table 4.1 that measure a specific variable. These
metrics do not provide information about stability but rather about the current exposure
of an application. This second group of metrics was, therefore, of greater interest for the
first prototype. They allow for faster adjustments as they are binary (true or false) and
do not require calculating average times. In addition, they can be obtained directly from
third-party data without the need for calculating historical data. For this reason, only six
metrics remained for the prototype.

However, it is important to note that almost any DevSecOps activity can have both sta-
bility metrics and current exposure metrics. For example, in patch management, you can
measure the number of vulnerable libraries and the average time to fix these vulnerabili-
ties, which must meet certain thresholds. However, to finalize the selection of metrics, it
is important to consider meaningful DevSecOps activities and determine how these activ-
ities should be measured. The OWASP DevSecOps Verification Framework [5] provides
valuable insights into possible activities. It should be emphasized that multiple activities
focus on security vulnerabilities, with the metric number of security vulnerabilities

playing a crucial role. In addition, the metric number of security-related tickets

is relevant for the activity Security Issues Tracking Design. Therefore, these two
metrics were selected for the first prototype.

Activity Metric Collector
REQ-004 Security Issues

Tracking Design
number of security-related

tickets
Jira

CODE-004 Static
Application Security

Testing (SAST)

number of security
vulnerabilities

codeql sast

CODE-005 Software
Composition Analysis

(SCA)

number of security
vulnerabilities

contrast sca
dependabot sca

TEST-003 Interactive
Application Security

Testing (IAST)

number of security
vulnerabilities

contrast iast

DES-002 Threat Modelling Date, Content, etc HTTP

Table 4.2: Interconnectivity between DevSecOps activities and the CAVE collectors

16 CHAPTER 4. ARCHITECTURE

As in Table 4.2, the prototype contains several collectors that collect data from various
technologies for DevSecOps activities and their metrics. The prototype uses Jira for issue
tracking. It supports Contrast Security and CodeQL for all application security tests
(SAST, IAST). Contrast Security and Dependabot are also used for Software Compo-
sition Analysis (SCA). It is important to mention that CodeQL and Dependabot were
chosen because they are easy to activate on GitHub and, therefore, accessible for many
applications. However, for threat modelling, an Hypertext Transfer Protocol (HTTP)
collector was set up for which there are no reported metrics in this literature review.
This collector was initially created to test whether it is possible to retrieve data with the
planned architecture and analyze it accordingly. The test was successful and has shown
that this is both possible and very useful, as it can collect metrics such as data or other
information from any website. In the case of threat modeling, this HTTP collector can
measure when the threat model was created to determine whether it is still up to date.

4.2.3 Analyzer

The analyzer is a key component of the prototype that is responsible for analyzing and
interpreting the collected data in order to gain meaningful results. It consists of two main
elements: the validator and the aggregator. These elements work together to ensure that
the metrics collected from various sources are accurately evaluated and aggregated, which
enables an analysis of DevSecOps activities.

The validator is used to evaluate the data collected by the collectors using various prede-
fined criteria. It uses a number of tags such as str (for string comparisons with regex),
date (for ISO date formats), lt (less than), and gt (greater than) to analyze the data.
These tags enable flexible and precise validation rules that can be adapted to different
metrics. For example, a metric may fail if a list of critical or high-risk vulnerabilities is
returned, while an empty list would return a positive result. Each validator also contains
a priority key (prio) that determines the importance of the validation result. This priori-
tization system ensures that the most critical validation results are considered first during
aggregation.

The aggregator processes the validation results of the validator. It considers all validation
results and uses the one with the lowest priority to determine the overall result. By
combining the validator and aggregator, the analyzer provides a robust mechanism for
measuring the security and compliance of DevSecOps activities. It enables organizations
to define and enforce validation rules for all phases of the software development lifecycle
to ensure that critical issues are detected and fixed immediately. This flexibility makes
the analyzer an essential part of the prototype that supports the continuous improvement
and maturation of security.

4.2.4 Visualizer

The visualizer is a key component of the prototype that transforms the collected and
analyzed data into visual metrics. This visual representation addresses the challenge

4.2. DETAILED COMPONENT ARCHITECTURE 17

described in [26], which highlights the difficulty of interpreting complex data sets without
a clear and intuitive interface.

The visualizer supports various serializers to meet different data storage preferences.
The JSON-serializer outputs the data in JSON format and provides a flexible and easily
accessible way to view and share metrics. JSON serialization is ideal for integration with
other tools and systems that support or use JSON data. In contrast, the SQL-serializer
stores the data in a MySQL database and enables robust query and analysis capabilities.
SQL serialization is suitable for environments that require structured data storage and
complex query operations.

By visually displaying metrics, the visualizer improves the user-friendliness and acces-
sibility of the prototype. This allows stakeholders to quickly understand the data and
act accordingly. This approach not only makes the metrics easier to understand but also
facilitates better decision-making and continuous improvement in the DevSecOps area.

4.2.5 MySQL

In the architecture, MySQL is provided in a separate Docker container, which enables
isolated and robust data storage. This structure ensures the integrity and scalability of
the data management system and enables efficient handling of large data sets. Within the
database, the metrics and items must be inserted manually. This manual insertion process
provides flexibility and allows users to add custom metrics and elements as needed. Each
metric must have a metricid, and each item must have an itemid that matches the
configuration. This is critical as these IDs serve as foreign keys in the results table and
link the collected data to specific metrics and items.

4.2.6 Grafana

Grafana is integrated into the architecture to provide advanced data visualization func-
tions. When using the SQL-serializer, Grafana can directly access the MySQL database.
This allows Grafana to execute SQL statements to retrieve data. With this setup, users
can create various dashboards and visual representations of the data that provide insights
into metrics and performance. Grafana’s flexibility in creating dashboards and data visu-
alization makes it an invaluable tool for monitoring and analyzing DevSecOps activities,
ensuring that key metrics are easily accessible and understandable for all stakeholders.

18 CHAPTER 4. ARCHITECTURE

Chapter 5

Implementation

This chapter explains the technologies used to create the prototype described in Chapter 4.
It describes not only the technologies used but also the structure of the source code.

5.1 Technology

This section provides an overview of the implementation process. It details the technolo-
gies that were used to ensure a clear understanding of the dependencies of the prototype.
To focus on specific aspects of the implementation, the section is divided into several
subsections.

5.1.1 Python

Python is an interpreted high-level programming language known for its clear syntax and
good readability [39]. It supports modules, classes, exceptions, and dynamic data types,
which simplifies code reuse and modularity. Python is particularly popular as an easy-to-
use scripting language for rapid development, which makes it very attractive for various
applications. For these reasons, Python was chosen for the development of the prototype
in this independent study.

However, it is important to highlight that the prototype also relies on important de-
pendencies and libraries, which are listed in the requirements.txt file on GitHub [40].
One essential dependency is the requests library, which simplifies the sending of HTTP
requests [41]. Since the prototype contains a collector that retrieves data from various
sources, the requests library is fundamental to its functionality. Another important li-
brary is python-dotenv, which reads key-value pairs from the .env file and sets them as
environment variables [42]. The .env.example file shows the variables that the prototype
uses for authentication with different data sources. In addition, the Python library mysql-
client enables the connection to the MySQL database and, therefore, the manipulation of
tables and data [43]. Lastly, the isodate library is essential as it implements the analysis

19

20 CHAPTER 5. IMPLEMENTATION

of date, time, and duration according to the ISO 8601 standard, which is crucial for the
validation component of the prototype [44].

5.1.2 Docker

Docker allows separating applications from infrastructure, which enables faster software
deployment [45]. By allowing to package and run an application in an isolated environment
called a container, Docker ensures isolation and security and allows multiple containers
to run simultaneously on a single host. These containers are lightweight and contain
everything needed to run the application, which removes the dependency on the software
installed on the host.

As shown in Figure 4.1, each block represents a separate Docker container. Therefore, the
prototype contains a docker-compose.yaml file in which three separate containers and
two volumes are defined [40]. The main component of the CAVE tool is not included in a
Docker container, as it is still under continuous development and it is therefore too early
for a continuously maintained container. Instead, the MySQL database, the Adminer tool
for managing the database, and Grafana operate in their own containers. MySQL and
Grafana also use volumes to ensure data persistence even if the containers are restarted.
In future updates, the CAVE tool, along with its collector, analyzer, and visualizer com-
ponents will also be made accessible within a Docker container. This extension will enable
full use of the tool in a Kubernetes environment.

5.1.3 MySQL

MySQL is the most popular open-source SQL database management system developed,
distributed, and supported by Oracle Corporation [46]. It is a relational database that
provides a robust and reliable solution for managing and organizing data. As an open-
source database, MySQL is freely available and widely used in various applications and
industries.

The widespread support of MySQL by various applications is a key factor why the CAVE
tool also supports it, as it integrates seamlessly with Grafana without the need for ad-
ditional plugins. The current database setup includes three tables: metrics, items, and
results. The result table is populated by the serializer component and contains foreign
keys that are linked to the metrics and items tables. It also contains a status field that
shows the result of the analyzer (passed, failed, error, missing) along with a description
and date. The metrics and items tables are not populated by the CAVE tool itself, as
this task should be performed manually or by a separate script.

5.1.4 Grafana

Grafana is an open-source software that allows you to query, visualize, set alarms, and
explore your metrics, logs, and traces wherever they are stored [47]. It provides tools to

5.2. CODE STRUCTURE 21

transform your database data into insightful charts and visualizations. In addition, the
Grafana plugin framework allows you to connect to various data sources, such as NoSQL
and SQL databases, ticketing tools, and continuous integration and deployment tools like
GitLab.

In the CAVE tool, we use Grafana with MySQL as the data source, which allows for
automated querying and visualization of the database. Since MySQL is a built-in core
data source in Grafana, the setup is ideal for environments where downloading additional
plugins is not allowed [48]. Figure 5.1 shows a sample query in Grafana that specifies the
data to be retrieved from the database. Grafana also provides built-in transformation fea-
tures that allow users to customize the visualization of the data, for example by grouping
it into matrices or concatenating fields.

Listing 5.1: Example Query in Grafana
SELECT r .∗ , concat (r . s tatus , ”: ” , r ep l a c e (r . d e s c r i p t i on , ’\n ’ , ’ ’)) AS d
FROM caveDB . r e s u l t s as r
JOIN items AS i ON i . i temid = r . i temid
JOIN metr i c s AS m ON m. met r i c id = r . met r i c id

5.2 Code Structure

Figure 5.1 shows the structure of the code, with the most important files and folders
highlighted. The graphic starts with the folder cave-is-prototype, which can be found
when the repository [40] is cloned.

This folder contains two important files and the src folder. The docker-compose.yaml

file is responsible for starting essential components such as the MySQL instance and
Grafana, which is described in Subsection 5.1.2. The .env file is used to define all secrets
used in the code, such as tokens and passwords. For security reasons, an .env.example

file with non-value keys is provided to be used when the repository is cloned. To use it,
one must create an .env file containing the same keys as the .env.example file, while
also adding the appropriate values.

The src folder contains two files and four subfolders. These subfolders are structured
according to the components shown in Figure 4.1, which are explained in detail in Sec-
tion 4.2. The files metricvisualizer.py and util.py are also included. The metricvi-
sualizer.py file is the main file of the project. Executing this file triggers the main
function. The util.py file contains utility functions that are required for the CAVE tool,
such as loading configuration files and environment variables that are defined in the .env
file.

22 CHAPTER 5. IMPLEMENTATION

Figure 5.1: Code Structure of CAVE

Chapter 6

Evaluation

The focus of this independent study is on the implementation of a prototype for the
automatic collection and analysis of metrics related to DevSecOps activities. This chapter
is dedicated to evaluating the effectiveness and functionality of the prototype. First of
all, it describes the evaluation methodology used. The detailed evaluation process and
results are then presented in Section 6.2. The chapter concludes with a discussion that
highlights the strengths and weaknesses of the prototype and provides a comprehensive
evaluation of its effectiveness.

6.1 Methodology

The prototype is evaluated using a use case analysis, where performance and function-
ality are assessed using DevSecOps activities. This approach helps to observe behavior,
identify issues, and evaluate the effectiveness of collecting and analyzing metrics. A use
case analysis is a methodology for identifying, clarifying, and organizing system require-
ments [49]. It is a sequence of interactions between systems and users to achieve specific
goals. Each use case contains three essential elements: the actor (the system user), the
goal (the successful outcome that completes the process), and the system (the steps and
functional requirements needed to achieve the end goal).

In this use case analysis, it is assumed that the actor is a security engineer with expertise
in DevSecOps and general technical topics. This assumption is based on the design of the
prototype, which is intended for use by security professionals and not the general public.
The security engineer is pictured as the person responsible for DevSecOps in a company
or organization with the knowledge to define relevant activities and the ability to define
typical metrics to evaluate these activities.

23

24 CHAPTER 6. EVALUATION

6.2 Execution

Create Main Configuration File: Creating the configuration file is the most important
task of the prototype. Since the configuration is compiled into a single file, it can be-
come quite large. To handle this complexity, the include tag can be used to split the
configuration into multiple files, which will be merged at the beginning of the CAVE
program.

In the main configuration file, there are three important sections to define: items, metrics,
and serializer (see Figure 6.1). This modular approach helps to organize and manage the
configuration.

Figure 6.1: Main Configuration File

Configuring Metrics: First, all important DevSecOps activities must be configured as
shown in Figure 6.2. Metrics must then be defined to determine whether an activity
was successful or not. This is done by configuring the validator and aggregator. While
configuring the metric, the validator must be set up to determine the criteria for passing
or failing data. In addition, the aggregator must be configured to handle missing data
and define the required number of items that must be passed for the entire activity to
be considered successful. An example configuration is shown in Figure 6.3, where the
SAST-L1 validator and aggregator are configured. The configuration specifies that the
activity will fail if there is one open vulnerability with critical or high severity.

6.2. EXECUTION 25

Figure 6.2: Configuration of all DevSecOps Activities

Figure 6.3: SAST-L1 Configuration for CodeQL

Configuring Items: When configuring items, it is important to know that each item runs
through all predefined metrics and initially fails. To prevent an item from failing, it is
necessary to define its activity with a collector. The collector is responsible for collecting
the required data. As shown in Figure 6.4, the activity sast-L1 contains the collector
codeql sast-collector, which is configured separately with the include key (Figure 6.5).
An important key in the collector configuration is the type key, as the CAVE tool uses
this as the basis for selecting the collector to be used. It can also be observed that the
base key is overwritten in the configuration so that the user can define specific parameters,
such as a URL for the collector.

26 CHAPTER 6. EVALUATION

Figure 6.4: Item Configuration

Figure 6.5: CodeQL Collector Configuration

Setup Database: When setting up MySQL, note that the CAVE tool only fills in the
results table automatically. This table must have exactly the format shown in Figure 6.7,
with the following columns: itemid, metricid, status, description, realDate, and effective-
Date. In addition, itemid and metricid must be foreign keys that refer to the itemid and
metricid columns in the items and metrics tables. Figure 6.6 illustrates the setup of the
items table and the definition of the itemid column. The user can decide which additional
columns are to be included in the items and metrics tables.

6.2. EXECUTION 27

Figure 6.6: Items Table in MySQL

Run CAVE Tool: To run the CAVE tool, ensure that all configurations are set up and
the database is configured correctly to avoid errors during execution. The prototype is
executed using the metricvisualizer script with the main configuration file as a parameter.
The command is as follows:

python src/metricvisualizer.py example/config.json

If everything has been completed correctly, the status of each DevSecOps activity for all
items is saved in the results table of the database, as shown in Figure 6.7.

Figure 6.7: Results Table in MySQL

Setup Grafana: To visualize the gathered data, connect the database to Grafana by adding
a new MySQL data source (Connections - Add new connections). Once the connection

28 CHAPTER 6. EVALUATION

is established, the database can be queried via the Grafana GUI to obtain the desired
data. After retrieving the data, various transformations can be performed, as shown in
Figure 6.8. In the example shown in Figure 6.9, the ”Grouping to Matrix” transformation
was used, where the columns of the matrix contain the metricid, the rows contain the
itemid, and the cell values contain the details that concatenate the status and description
from the database. For a colorful representation, as shown in Figure 6.9, value mappings
can be added in the Grafana GUI that allow specifying regex and corresponding colors.

Figure 6.8: Data Transformation Options in Grafana

6.3. DISCUSSION 29

Figure 6.9: Example Grafana Dashboard

6.3 Discussion

To conclude the evaluation, a number of key points about the prototype should be dis-
cussed. One of its main strengths is its high configurability. The prototype allows adding
numerous items, activities and metrics, providing flexibility to meet different require-
ments. Its architecture allows for the simple integration of additional technologies with a
focus on configuration.

The prototype efficiently collects and analyzes the metrics defined in the Table 4.2. Metrics
defined in the table are analyzed according to user requirements. In addition, the tools
provided offer extensive possibilities. For example, the HTTP Collector can collect data
from various sources and thus enables defining DevSecOps activities that go beyond those
listed in Table 4.2.

Another notable strength is the seamless integration with Grafana, which enables effective
data visualization. Users have the freedom to customize the way data is presented, which
increases the overall usability of the prototype. To summarize, the prototype provides
users with great flexibility to define and manage their DevSecOps activities as they desire.

While the configurability of the prototype is its biggest strength, it also leads to complexity
and potential problems. One such problem is the lack of clarity about where data should
be filtered. In Figure 6.3, the validator checks the status and severity. However, these
elements could also be filtered in the parameters of the collector. This duality can lead to
confusion as the collector could be misused as an analyzer which could lead to problems
later on.

Additionally, as shown in Figure 6.3, the validator relies on the API response to analyze
the data. This dependency complicates using the prototype as users need to understand
how each API responds to requests.

30 CHAPTER 6. EVALUATION

Another issue identified during the evaluation is the confusion between DevSecOps activ-
ities and metrics within the prototype. Currently, the validator validates the metrics of
an activity. Due to the above mentioned issue in the validator, it can only check the API
response key, which leads to the limitation that each activity can only have one collector
to retrieve the data.

Finally, there is a problem with elements that go through all activities and initially fail
if there is no data for a specific metric. The term items suggests that it could also
refer to entities other than applications. However, the prototype currently only supports
applications, as most metrics are designed for them. For example, if a team needs to
be evaluated, it should be measured based on activities and metrics that are specific to
teams, not metrics that apply to applications.

As described in Section 3.3, there is limited literature on the practical implementation of
tools for automatically collecting and visualizing DevSecOps metrics. The aim of this PoC
is to fill this gap by proposing a potential solution, as the literature review in Chapter 3
highlighted the need for such a tool. In addition, this independent study aimed to identify
and implement the most important requirements for such a tool, where the findings from
the literature research served as a basis.

Chapter 7

Summary and Conclusions

The final chapter of this independent study summarizes the different phases of the study,
highlights the key findings and makes suggestions for future research and development.
It begins with a general overview of the work and the specific methods used and draws
conclusions at the end. Finally, possible areas for future work are outlined.

This work aimed to automate the collection and analysis of DevSecOps metrics by re-
searching, designing and implementing a prototype. The aim was to develop an initial
prototype that would enable automated data collection and analysis for a number of key
metrics identified through a literature review.

The project began with a comprehensive literature review of the current landscape of
DevSecOps challenges, metrics and tools. This research highlighted the need for a flexible,
configurable tool that could be adapted to different DevSecOps environments. Based on
these findings, the CAVE tool (Collect Analyze Visualize Empower) was designed and de-
veloped. The CAVE tool was designed to support multiple technologies and metrics, with
a focus on configurability. The prototype was implemented with a modular architecture
that facilitated adding new collectors. The implementation also included integration with
Grafana for advanced data visualization. The methodology used to evaluate the prototype
included a use case analysis. The evaluation demonstrated the flexibility of the tool and
highlighted areas for improvement.

In conclusion, the CAVE prototype represents a major step forward in automating the
collection and analysis of DevSecOps metrics. While there are areas for improvement, the
tool’s flexible and modular design provides a solid foundation for future development and
integration into different DevSecOps environments.

7.1 Future Work

This section outlines approaches for improving the current prototype and adding new
features, addressing the issues mentioned in Section 6.3 and suggesting ideas for future
improvements.

31

32 CHAPTER 7. SUMMARY AND CONCLUSIONS

Many of the problems discussed in Section 6.3 come from the absence of predefined doc-
uments in the prototype. One solution is for collectors to retrieve data from the API and
convert it into predefined document structures, similar to classes. This approach would
resolve three of the four issues highlighted in Section 6.3. Firstly, it would standardize
data storage and eliminate confusion regarding where to apply filters, which would then
be restricted to the validator. Secondly, by utilizing predefined documents, the validator
would no longer depend on API responses, as the necessary keys would be standardized.
The collector would handle API interactions and store the response data in the predefined
document format. Lastly, this solution would enable support for multiple technologies for
a single activity and its metrics, as the collector would ensure data is stored in a stan-
dardized manner.

In addition to these structural changes, an important aspect is the handling of data within
the system, especially if there are predefined documents that facilitate integration into
the code. As depicted in Figure 6.7, there are currently two types of dates: realDate
and effectiveDate, both of which are filled with the same date. However, a planned
functionality for the CAVE tool includes the ability to predict when an activity might
fail in the future. This information will be displayed in Grafana and the owner of the
application will be notified.

After all, the project’s aim is to support a broad range of technologies, given the numerous
security tools available for generating DevSecOps metrics. The prototype’s architecture
facilitates the addition of further collectors without significant challenges. It is essential
that these technologies can be utilized in diverse ways. For instance, Contrast Security
uses an integrated scoring system to identify critical vulnerabilities in libraries. This capa-
bility could be extended beyond third-party libraries for Software Composition Analysis
(SCA) to include patch management activities. Therefore, collectors should be customiz-
able to include tool-specific features and capabilities. Additionally, it is important to
broaden the serialization options. Currently, the CAVE tool can produce JSON output
and store data in a MySQL database. However, to enable a wider range of tools for stor-
ing collected and analyzed data, the implementation of additional serialization formats is
essential.

Bibliography

[1] H. Myrbakken and R. Colomo-Palacios, “DevSecOps: A multivocal literature re-
view”, Sep. 9, 2017, pp. 17–29, isbn: 978-3-319-67382-0. doi: 10.1007/978-3-319-
67383-7_2.

[2] H. P. Enterprise,“Application security and devops”, Technical report, Hewlett Packard
Enterprise, Tech. Rep., 2016.

[3] “What is DevSecOps?”, IBM. (Oct. 6, 2021), [Online]. Available: https://www.
ibm.com/topics/devsecops (visited on 06/01/2024).

[4] M. Dawson, D. Burrell, E. Rahim, and S. Brewster, “Integrating software assurance
into the software development life cycle (SDLC)”, Journal of Information Systems
Technology and Planning, vol. 3, pp. 49–53, Jan. 1, 2010.

[5] “OWASP DevSecOps verification standard | OWASP foundation”, OWASP. (), [On-
line]. Available: https://owasp.org/www-project-devsecops-verification-
standard/ (visited on 06/08/2024).

[6] A. Jerbi.“KPIs for managing and optimizing devsecops success”, InfoWorld. (Nov. 13,
2017), [Online]. Available: https://www.infoworld.com/article/3237046/
kpis- for- managing- and- optimizing- devsecops- success.html (visited on
06/01/2024).

[7] V. Casola, A. De Benedictis, M. Rak, and V. Umberto, “A security metric catalogue
for cloud applications”, Jul. 1, 2018, pp. 854–863, isbn: 978-3-319-61565-3. doi:
10.1007/978-3-319-61566-0_81.

[8] N. Medeiros, N. Ivaki, P. Costa, and M. Vieira, “Software metrics as indicators of
security vulnerabilities”, in 2017 IEEE 28th International Symposium on Software
Reliability Engineering (ISSRE), ISSN: 2332-6549, Oct. 2017, pp. 216–227. doi:
10.1109/ISSRE.2017.11. [Online]. Available: https://ieeexplore.ieee.org/
document/8109088 (visited on 06/01/2024).

[9] H. Zo, D. L. Nazareth, and H. K. Jain,“Security and performance in service-oriented
applications: Trading off competing objectives”, Decision Support Systems, vol. 50,
no. 1, pp. 336–346, Dec. 1, 2010, issn: 0167-9236. doi: 10.1016/j.dss.2010.09.
002. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0167923610001715 (visited on 06/01/2024).

[10] W. Mallouli, A. Cavalli, A. Bagnato, and E. Montes de Oca,“Metrics-driven DevSecOps”,
Jan. 1, 2020, pp. 228–233. doi: 10.5220/0009889602280233.

33

34 BIBLIOGRAPHY

[11] A. Bagnato.“ITEA 4 · project · 14009 MEASURE”, itea4.org. (), [Online]. Available:
https://itea4.org/project/measure.html (visited on 06/08/2024).

[12] “Home”, GitHub. (Jan. 22, 2019), [Online]. Available: https://github.com/ITEA3-
Measure/Measures/wiki/Home (visited on 06/08/2024).

[13] H. Y. William Richard Nichols, C. L. M. Luiz Antunes, and R. McCarthy, “Au-
tomated data for DevSecOps programs”, Acquisition Research Program, Technical
Report, May 2, 2022, Accepted: 2022-05-05T19:18:56Z. [Online]. Available: https:
//dair.nps.edu/handle/123456789/4584 (visited on 06/01/2024).

[14] J. Dı́az, J. Pérez-Mart́ınez, M. López-Peña, G. Mena, and A. Yague, “Self-service
cybersecurity monitoring as enabler for DevSecOps”, IEEE Access, vol. PP, pp. 1–1,
Jul. 19, 2019. doi: 10.1109/ACCESS.2019.2930000.

[15] R. Fujdiak, P. Mlynek, P. Mrnustik, et al., “Managing the secure software develop-
ment”, in 2019 10th IFIP International Conference on New Technologies, Mobility
and Security (NTMS), ISSN: 2157-4960, Jun. 2019, pp. 1–4. doi: 10.1109/NTMS.
2019.8763845. [Online]. Available: https://ieeexplore.ieee.org/document/
8763845 (visited on 06/01/2024).

[16] M. Marandi, A. Bertia, and S. Silas, “Implementing and automating security scan-
ning to a DevSecOps CI/CD pipeline”, in 2023 World Conference on Communi-
cation & Computing (WCONF), Jul. 2023, pp. 1–6. doi: 10.1109/WCONF58270.
2023.10235015. [Online]. Available: https://ieeexplore.ieee.org/document/
10235015 (visited on 06/01/2024).

[17] C. Arunachalam. “Secure SDLC and DevSecOps | LinkedIn”, Linkedin. (Aug. 13,
2021), [Online]. Available: https://www.linkedin.com/pulse/secure-sdlc-
devsecops-chidhanandham-arunachalam/ (visited on 06/01/2024).

[18] N. Tomas, J. Li, and H. Huang, “An empirical study on culture, automation, mea-
surement, and sharing of DevSecOps”, in 2019 International Conference on Cy-
ber Security and Protection of Digital Services (Cyber Security), Jun. 2019, pp. 1–
8. doi: 10.1109/CyberSecPODS.2019.8884935. [Online]. Available: https://
ieeexplore.ieee.org/document/8884935 (visited on 06/01/2024).

[19] R. Mao, H. Zhang, Q. Dai, et al., “Preliminary findings about DevSecOps from
grey literature”, in 2020 IEEE 20th International Conference on Software Quality,
Reliability and Security (QRS), Dec. 2020, pp. 450–457. doi: 10.1109/QRS51102.
2020.00064. [Online]. Available: https://ieeexplore.ieee.org/document/
9282798 (visited on 06/01/2024).

[20] H. Yasar, Overcoming DevSecOps challenges, Apr. 17, 2020. [Online]. Available:
https://apps.dtic.mil/sti/pdfs/AD1110359.pdf.

[21] A. A. U. Rahman and L. Williams,“Software security in DevOps: Synthesizing prac-
titioners’ perceptions and practices”, in 2016 IEEE/ACM International Workshop
on Continuous Software Evolution and Delivery (CSED), May 2016, pp. 70–76. [On-
line]. Available: https://ieeexplore.ieee.org/document/7809439 (visited on
06/01/2024).

[22] Z. Ahmed and S. Francis, “Integrating security with DevSecOps: Techniques and
challenges”, Nov. 1, 2019, pp. 178–182. doi: 10.1109/ICD47981.2019.9105789.

BIBLIOGRAPHY 35

[23] L. Singla. “What is DevSecOps? definition, challenges, and best practices”, Net
Solutions. (Sep. 22, 2022), [Online]. Available: https://www.netsolutions.com/
insights/what-is-devsecops/ (visited on 06/01/2024).

[24] S. Rafi, W. Yu, M. Azeem Akbar, A. Alsanad, and A. Gumaei, “Prioritization
based taxonomy of DevOps security challenges using PROMETHEE”, IEEE Ac-
cess, vol. PP, pp. 1–1, Jun. 1, 2020. doi: 10.1109/ACCESS.2020.2998819.

[25] X. Zhou, R. Mao, H. Zhang, et al., “Revisit security in the era of DevOps: An
evidence-based inquiry into DevSecOps industry”, IET Software, vol. 17, n/a–n/a,
Jul. 26, 2023. doi: 10.1049/sfw2.12132.

[26] R. Rajapakse, M. Zahedi, M. Ali Babar, and H. Shen, “Challenges and solutions
when adopting DevSecOps: A systematic review”, Information and Software Tech-
nology, vol. 141, p. 106 700, Aug. 1, 2021. doi: 10.1016/j.infsof.2021.106700.

[27] R. Desai and T. N. Nisha, “Best practices for ensuring security in DevOps: A case
study approach”, Journal of Physics: Conference Series, vol. 1964, no. 4, p. 042 045,
Jul. 2021, Publisher: IOP Publishing, issn: 1742-6596. doi: 10.1088/1742-6596/
1964/4/042045. [Online]. Available: https://dx.doi.org/10.1088/1742-
6596/1964/4/042045 (visited on 06/01/2024).

[28] M. A. Akbar, K. Smolander, S. Mahmood, and A. Alsanad, “Toward successful
DevSecOps in software development organizations: A decision-making framework”,
Information and Software Technology, vol. 147, p. 106 894, Jul. 1, 2022, issn: 0950-
5849. doi: 10 . 1016 / j . infsof . 2022 . 106894. [Online]. Available: https : / /

www.sciencedirect.com/science/article/pii/S0950584922000568 (visited
on 06/01/2024).

[29] U. G. S. Administration. “DevSecOps guide”, Tech at GSA. (), [Online]. Available:
https://tech.gsa.gov/guides/dev_sec_ops_guide/ (visited on 06/01/2024).

[30] R. Amaro, R. Pereira, and M. Mira da Silva, “DevOps metrics and KPIs: A mul-
tivocal literature review”, ACM Computing Surveys, vol. 56, no. 9, 231:1–231:41,
Apr. 25, 2024, issn: 0360-0300. doi: 10.1145/3652508. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3652508 (visited on 06/01/2024).

[31] M. Thevarmannil. “DevSecOps metrics & KPIs for 2024”, Practical DevSecOps.
(Jan. 11, 2024), [Online]. Available: https://www.practical-devsecops.com/
devsecops-metrics/ (visited on 06/01/2024).

[32] B. Nichols. “The current state of DevSecOps metrics”, Software Engineering In-
stitute Carnegie Mellon University. (Mar. 29, 2021), [Online]. Available: https:
//insights.sei.cmu.edu/blog/the-current-state-of-devsecops-metrics/

(visited on 06/01/2024).

[33] A. Crouch. “DevSecOps: Incorporate security into DevOps to reduce software risk”,
AgileConnection. (Dec. 13, 2017), [Online]. Available: https://www.agileconnection.
com/article/devsecops-incorporate-security-devops-reduce-software-

risk (visited on 06/01/2024).

[34] F. José.“Effective DevSecOps”, Medium. (Jul. 26, 2018), [Online]. Available: https:
//medium.com/@fabiojose/effective- devsecops- f22dd023c5cd (visited on
06/01/2024).

36 BIBLIOGRAPHY

[35] A. Schurr. “Mobile app DevOps metrics that matter - NowSecure”, NowSecure.
(Feb. 27, 2019), [Online]. Available: https://www.nowsecure.com/blog/2019/02/
27/mobile-app-devops-metrics-that-matter/ (visited on 06/01/2024).

[36] T. Longstaff and H. Yasar, “Build secure application with DevSecOps!”, 2018. [On-
line]. Available: https://apps.dtic.mil/sti/tr/pdf/AD1088677.pdf.

[37] L. Prates, J. Faustino, M. Silva, and R. Pereira, “DevSecOps metrics”, in Aug. 8,
2019, pp. 77–90, isbn: 978-3-030-29607-0. doi: 10.1007/978-3-030-29608-7_7.

[38] E. Chickowski. “Seven winning DevSecOps metrics security should track”, Bitde-
fender Blog. (May 1, 2018), [Online]. Available: https : / / www . bitdefender .

com/blog/businessinsights/seven-winning-devsecops-metrics-security-

should-track/ (visited on 06/01/2024).

[39] “FrontPage - python wiki”, Python. (), [Online]. Available: https://wiki.python.
org/moin/ (visited on 06/09/2024).

[40] R. Wäspi, Sumsumcity/cave-is-prototype, original-date: 2024-05-11T10:51:57Z, Jun. 12,
2024. [Online]. Available: https://github.com/sumsumcity/cave-is-prototype
(visited on 06/14/2024).

[41] Requests: Python HTTP for humans. Version 2.32.3. [Online]. Available: https:
//requests.readthedocs.io (visited on 06/09/2024).

[42] Python-dotenv: Read key-value pairs from a .env file and set them as environment
variables, version 1.0.1. [Online]. Available: https://github.com/theskumar/
python-dotenv (visited on 06/09/2024).

[43] Mysqlclient: Python interface to MySQL, version 2.2.4.

[44] Isodate: An ISO 8601 date/time/duration parser and formatter, version 0.6.1. [On-
line]. Available: https://github.com/gweis/isodate/ (visited on 06/09/2024).

[45] “Docker overview”, Docker Documentation. (700), [Online]. Available: https://
docs.docker.com/guides/docker-overview/ (visited on 06/14/2024).

[46] “MySQL :: MySQL 8.4 reference manual :: 1.2.1 what is MySQL?” (), [Online].
Available: https://dev.mysql.com/doc/refman/8.4/en/what-is-mysql.html
(visited on 06/14/2024).

[47] “About grafana | grafana documentation”, Grafana Labs. (), [Online]. Available:
https : / / grafana . com / docs / grafana / latest / introduction/ (visited on
06/14/2024).

[48] “Data sources | grafana documentation”, Grafana Labs. (), [Online]. Available: https:
//grafana.com/docs/grafana/latest/datasources/ (visited on 06/14/2024).

[49] K. Brush. “What is a use case?”, TechTarget. (2020), [Online]. Available: https:
//www.techtarget.com/searchsoftwarequality/definition/use-case (visited
on 06/15/2024).

Abbreviations

CD Continuous Delivery
CI Continuous Integration
HTTP Hypertext Transfer Protocol
IAST Interactive Application Security Testing
JSON JavaScript Object Notation
MLT Mean Lead-Time
MTTD Mean Time to Detect
MTTR Mean Time to Resolve
OWASP Open Web Application Security Project
PoC Proof of Concept
SaaS Software as a Service
SAST Static Application Security Testing
SCA Software Composition Analysis
SDLC Software Development Life Cycle
SMM Structured Metrics Metamodel
SSDLC Secure Software Development Life Cycle

37

38 ABBREVIATONS

Glossary

Agile A software development methodology that emphasizes iterative progress, collabo-
ration and flexibility to adapt to changing requirements.

Continuous Delivery (CD) A practice in software development in which code changes are
automatically prepared for production release.

Continuous Integration (CI) A development practice in which developers often merge
their code changes in a central repository, followed by automated builds and tests.

Defect Burn Rate A metric that indicates how often vulnerabilities are introduced into
production.

DevOps A set of practices that combine software development (Dev) and operations (Ops)
to shorten the development cycle and continuously deliver high-quality software.

DevSecOps Amethodology that integrates security practices into the DevOps process and
ensures that security is a shared responsibility throughout the software development
lifecycle.

Environment Variables Variables that are defined in the operating system and used by
applications to configure settings such as paths, authentication tokens and configu-
ration parameters.

Graphical User Interface (GUI) Graphical user interface of software that facilitates the
interaction with an application.

ISO 8601 An international standard for the presentation of date and time-related data.

JSON Data transfer format for the exchange of data between applications in an easily
readable text form.

Metric A measurement standard.

Modules Reusable code components in Python that can be imported and used in different
parts of a program.

MLT (Mean Lead-Time) The average time between transferring the code to production
and deployment.

MTTD (Mean Time to Detect) The average time it takes to detect a vulnerability from
the time it occurs.

39

40 GLOSSARY

MTTR (Mean Time to Resolve) The average time it takes to fix a vulnerability after it
has been identified.

MySQL An open-source relational database management system used for storing and
managing data.

Number of Deployments A metric that indicates how often code changes are used in
production.

Number of Failed Deployments A metric that counts the number of failed deployments.

Number of Security-related Tickets A metric that counts the number of tickets flagged
with security concerns.

Number of Security Vulnerabilities A metric that counts the total number of vulnera-
bilities present in an application.

Patch Management The process of managing software updates for operating systems,
applications and devices to close security gaps.

Prototype An early sample or model of a product built to test a concept or process.

Shift-Left A principle in software development in which security and testing activities are
carried out at an earlier stage of the development process.

Test Coverage A metric that measures the percentage of code covered by automated
tests.

List of Figures

4.1 High-level Architecture . 11

5.1 Code Structure of CAVE . 22

6.1 Main Configuration File . 24

6.2 Configuration of all DevSecOps Activities 25

6.3 SAST-L1 Configuration for CodeQL . 25

6.4 Item Configuration . 26

6.5 CodeQL Collector Configuration . 26

6.6 Items Table in MySQL . 27

6.7 Results Table in MySQL . 27

6.8 Data Transformation Options in Grafana 28

6.9 Example Grafana Dashboard . 29

41

42 LIST OF FIGURES

List of Tables

4.1 Key Metrics for Evaluating DevSecOps Practices 14

4.2 Interconnectivity between DevSecOps activities and the CAVE collectors . 15

43

44 LIST OF TABLES

Appendix A

Installation Guidelines

All source code developed as part of this thesis can be found on GitHub [40]. A README
is provided for each package, which always includes instructions for installation and local
deployment. There is also a Docker Compose script in the infrastructure repository that
simplifies running a demonstration of the prototype. To run this demonstration, follow
the instructions in the README of this repository.

45

