
CoReTM 2.0: a Design Study on
Semi-automated Threat Modeling

with STRIDE-per-Interaction

Miro Valentino Vannini
Zürich, Switzerland

Student ID: 18-926-063

Supervisor: Jan von der Assen, Jürgen Messerer, Thomas Grübl
Date of Submission: September 17, 2024

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Cyberangriffe stellen eine erhebliche Bedrohung für Unternehmen und ihre technische In-
frastruktur dar. Um diesen Bedrohungen entgegenzuwirken, setzen Unternehmen verschie-
dene Gegenmassnahmen ein, darunter auch die Bedrohungsmodellierung. Dieser proaktive
Ansatz wird während der Planungsphase eines Systems angewandt, um potenzielle Bedro-
hungen frühzeitig im Entwicklungsprozess zu identifizieren. Auf diese Weise können Unter-
nehmen Strategien entwickeln, um diese Schwachstellen in ihren Systemen zu entschärfen
und letztlich Kosten zu sparen, die mit der Behebung dieser Probleme in einem späte-
ren Stadium verbunden sind. In dieser Arbeit wird die Entwicklung und Implementierung
von CoReTM 2.0 vorgestellt, einem halbautomatischen Tool zur Bedrohungsmodellierung
unter Verwendung der STRIDE-per-Interaction Methode. Um die Herausforderung der
manuellen Identifizierung von Bedrohungen in Systeminteraktionen zu bewältigen, bettet
CoReTM 2.0 Draw.io ein, sodass Benutzer*innen Datenflussdiagramme (DFDs) erstellen
können. Das Tool analysiert diese Diagramme, um strukturierte Bedrohungsmodelle zu
generieren. Diese Generierung umfasst die automatische Erstellung einer Übersichtstabel-
le auf der Grundlage von Bedrohungen ausgesetzten Systeminteraktionen. Nachdem die
Übersichtstabelle manuell ausgefüllt wurde, wird sie vom System analysiert und die Be-
drohungstabellen werden generiert. CoReTM 2.0 reduziert den manuellen Aufwand für
die STRIDE-per-Interaction-Analyse erheblich. Diese Arbeit beschreibt die Architektur,
das Design und die Implementierung von CoReTM 2.0 und hebt seine Fähigkeit hervor,
den Prozess der Bedrohungsmodellierung zu unterstützen. Die mit einem Industriepartner
durchgeführte Evaluierung ergab keine Fehler und eine hohe Benutzerzufriedenheit, was
sich in einer hohen Punktzahl auf der System Usability Scale (SUS) widerspiegelt. Damit
wurde gezeigt, dass die Bedrohungsmodellierung mit der STRIDE-per-Interaction Metho-
de halbautomatisch erfolgen kann und Nutzer*innen effektiv durch den Prozess geführt
werden. Trotz des Erfolgs wurden zusätzliche Funktionen, wie erweiterte Exportoptionen
und eine verbesserte Darstellung von Texteingabefeldern, als notwendig für die Anwen-
dung in der Praxis identifiziert. Der Open-Source-Charakter von CoReTM 2.0 , lizenziert
unter Apache-2.0, fördert künftige Beiträge und Anpassungen und legt damit den Grund-
stein für weitere Fortschritte in der halbautomatisierten Bedrohungsmodellierung unter
Verwendung der STRIDE-per-Interaction Methode.

i

ii

Cyberattacks pose a significant threat to companies and their technical infrastructure.
To mitigate these threats, companies employ various countermeasures, one of which is
threat modeling. This proactive approach is implemented during the system design phase
to identify potential threats early in the development process. By doing so, organiza-
tions can develop strategies to mitigate these vulnerabilities in their systems, ultimately
saving costs associated with fixing these issues at a later stage. This thesis presents the
development and implementation of CoReTM 2.0 , a semi-automated tool for threat mod-
eling using the STRIDE-per-Interaction methodology. Addressing the challenge of manual
threat identification in system interactions, CoReTM 2.0 embeds Draw.io to enable users
to create Data Flow Diagrams (DFDs). The tool then parses these diagrams to generate
structured threat models. This generation involves automatically creating an overview
table based on system interactions exposed to threats. After the user manually fills out
the overview table, the system analyzes it and generates the threat tables. CoReTM 2.0
significantly reduces the manual effort required for the STRIDE-per-Interaction analy-
sis. This thesis outlines the architecture, design, and implementation of CoReTM 2.0 ,
focusing on its ability to simplify the threat modeling process. The evaluation, conducted
with an industrial partner, revealed no bugs and high user satisfaction, as reflected in
a high System Usability Scale (SUS) score. It has been demonstrated that threat mod-
eling using the STRIDE-per-Interaction methodology can be semi-automated, guiding
the user through the process effectively. Despite its success, further features such as en-
hanced report export capabilities, improved text field display, and more are identified as
necessary for real-world application. The open-source nature of CoReTM 2.0 licensed
under Apache-2.0 encourages future contributions and adaptations, laying the ground-
work for further advancements in semi-automated threat modeling using the STRIDE-
per-Interaction methodology.

Acknowledgments

I want to express my gratitude to my supervisors for giving me the opportunity to write
this thesis and for their support throughout the process. I especially want to thank Jan
von der Assen for his guidance and for providing valuable feedback at every stage of the
thesis creation, as well as establishing the initial theoretical framework of CoReTM. This
thesis wouldn’t have been possible without his input. I also want to extend my thanks
to our industrial partner bbv, and particularly to Jürgen Messerer, for their willingness
to evaluate the practical aspects of this work and for providing requirements that greatly
contributed to the definition of the architecture and implementation planning phase.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 1

1.3 Thesis Outline . 2

2 Background 3

2.1 Threats and Vulnerabilities . 3

2.2 Security Engineering . 3

2.3 Threat Modeling . 4

2.3.1 STRIDE . 5

2.3.2 STRIDE-per-Interaction . 7

3 Related Work 9

3.1 Tools . 9

3.2 Comparative Analysis Conclusion . 12

v

vi CONTENTS

4 Architecture 13

4.1 Requirement Analysis for Minimum Viable Product 13

4.1.1 Modeling . 14

4.1.2 System . 14

4.1.3 Threat Analysis . 15

4.2 Architectural Diagram . 16

4.3 Further Features and Changes . 17

5 Design & Implementation 19

5.1 Technology Stack . 19

5.2 Components . 20

5.2.1 Views . 21

5.2.2 Interfaces and Storage . 22

5.2.3 Modeling and Parsing . 26

5.2.4 Tables . 31

5.3 Demonstration . 34

5.4 Second Development Iteration . 37

5.4.1 Minor Changes . 37

5.4.2 Major Changes . 39

6 Evaluation 43

6.1 Questionnaire . 43

6.2 Results . 45

6.3 Findings . 49

7 Summary 51

7.1 Future Work . 52

Bibliography 53

Abbreviations 59

CONTENTS vii

List of Figures 59

List of Tables 61

List of Listings 63

A System Usability Scale 67

B Installation Guidelines 71

C Contents of the CD 73

viii CONTENTS

Chapter 1

Introduction

In today’s digital age, cyber threats are increasingly relevant. The number of cyberattacks
and the damage they cause is rising due to new tools and techniques [1]. According to the
Global Cybersecurity Outlook 2024 report, cyberattacks are not only affecting big compa-
nies but also small businesses. The report states that 29% of the organizations surveyed
experienced some form of cyber incident in the past 12 months, posing a significant risk to
these companies [2]. To address these threats, one approach is through threat modeling,
which is crucial for identifying and mitigating security risks during the design phase of
system development [3]. There are various methodologies for threat modeling, with one
popular one being STRIDE. This methodology allows for security analysis even for indi-
viduals with limited cybersecurity knowledge [4]. Despite its simplicity, threat modeling
using the STRIDE methodology involves significant manual work. This thesis introduces
CoReTM 2.0 , a new tool designed to semi-automate the STRIDE-per-Interaction method-
ology, making threat modeling more accessible and efficient.

1.1 Motivation

The motivation behind this work is to develop a tool that enables the semi-automated
application of the STRIDE-per-Interaction methodology. By creating CoReTM 2.0 , this
thesis aims to simplify the threat modeling process and make it accessible to a broader
audience in an open-source format. A key aspect of this solution is its full transparency,
as it openly discloses all underlying functionalities, allowing users to verify that the threat
modeling processes uphold the rigor necessary for thorough system security evaluations.
This tool is also designed to serve as a foundation or inspiration for future development
and research in the field, encouraging to build upon or extend its capabilities.

1.2 Description of Work

The thesis argues that no tools are currently available that semi-automate the implemen-
tation of the STRIDE-per-Interaction methodology while also being open-source and free

1

2 CHAPTER 1. INTRODUCTION

to use. Once this is validated, the thesis will develop software based on the requirements
from an industrial partner to demonstrate the feasibility of such semi-automation. This
implementation will be based on the prototype of CoReTM [5], [6]. By achieving this, this
work contributes to the threat modeling domain in the form of a new tool that everyone
can use. Furthermore, based on an expert-based evaluation, it showcases that it is possi-
ble to semi-automate some work within threat modeling that used to be done manually,
and thereby might inspire other developers to use it or its underlying logic to craft their
own tools with similar functionality for different methodologies.

1.3 Thesis Outline

This work follows a design study structured to guide the reader through a logical progres-
sion of concepts and findings. In Chapter 2, the reader is introduced to critical background
information essential for understanding the topic and becoming familiar with the relevant
terminology. The existing research in the field is examined in Chapter 3, providing an
overview of current developments and identifying the research gap that this work ad-
dresses. Following this, the author presents the architecture of the software developed as
the core of this study in Chapter 4, offering a high-level explanation of its components
and the overall system flow. Chapter 5 delves into the critical implementation details
of the application. Chapter 6 assesses the application using various evaluation strategies
to determine its performance and effectiveness. The work concludes with a summary in
Chapter 7, reflecting on the contributions and outcomes.

Chapter 2

Background

This chapter explains the foundational concepts and methodologies necessary to un-
derstand this work’s subsequent sections by covering the critical aspects of information
security and the nature of threats and vulnerabilities that challenge IT systems’ integrity,
confidentiality, and availability. This chapter emphasizes the importance of secure soft-
ware development by exploring security engineering principles, including established con-
cepts like Microsoft’s Security Development Lifecycle (SDL) [7]. Furthermore, the chapter
delves into the concept of threat modeling, presenting the STRIDE methodology by using
an example.

2.1 Threats and Vulnerabilities

A threat refers to any action or circumstance that could lead to an undesired impact on
an IT system, including its assets and resources. The impact can take different forms,
such as alteration, destruction, unauthorized disclosure, infiltration, etc. Any scenario
that may affect the CIA triad, which includes Confidentiality, Integrity, and Availability,
is considered a threat [8], [9].

A vulnerability is a defect or weakness in a system – due to design flaws, configuration
errors, or insecure coding practices – that can be exploited by a threat. Vulnerabilities can
occur at any system level, including software, hardware, network, or human actions. This
could include issues like weak input validation, which can lead to attacks. To summarize,
a threat is a potential event that can adversely affect an asset, whereas a successful attack
exploits vulnerabilities in a system [10].

2.2 Security Engineering

According to Microsoft’s SDL, creating secure software is of utmost importance, not
only from a customer’s perspective, who is put at risk of attacks with every security
vulnerability in a system but also for the company/vendor of the software. Creating secure

3

4 CHAPTER 2. BACKGROUND

software is not free; money, time, and effort are needed to develop software following the
SDL guidelines [7], [11]. SDL consists of five different phases, as seen in Figure 2.1. This
work predominantly focuses on the threat modeling that takes place in the Design phase
of the SDL, specifically delving into the STRIDE methodology. It thoroughly examines
STRIDE’s strategies and implications, prioritizing its comprehensive analysis over other
frameworks and methodologies. In contrast, the other four phases of SDL will receive less
extensive coverage.

Figure 2.1: Security Development Lifecycle Process Diagram

2.3 Threat Modeling

Threat modeling is the process of identifying threats and vulnerabilities in a system and
taking measures to prevent threats from occurring. This process is usually carried out
during the design phase but can also be done when the system is already operational [4].
It is highly advantageous to find vulnerabilities early on as it allows for mitigating threats
before they can even occur. Conducting a threat modelization is very cost-intensive since
it requires information security and other departments’ cooperation [12]. Therefore, it
makes sense to do it upfront to ensure the engineers can deliver a better product and to
omit multiple iterations.

Usually, the threat modeling process is divided into three phases [13]: (i) identifying assets
and access points, (ii) listing all potential threats, and (iii) building a mitigation plan.

2.3. THREAT MODELING 5

(i) Identifying assets and access points: Assets refer to valuable possessions owned by
individuals or companies. These can be targeted by malicious actors seeking to gain
access, control, or destroy them. Identifying these assets is a crucial first step in
threat modeling, as they are the primary objectives of potential threats. Access
points, on the other hand, are parts of a system through which attackers can try
to interact with and gain entry into the system to reach these assets. Examples
of access points include login interfaces, file systems, and hardware points. By
identifying these access points, trust boundaries are established within the system.
These boundaries determine the different levels of trust required to access various
components of the system [4].

(ii) Listing all potential threats: Now that the system has been analyzed, it’s time to
use the insights gained and identify potential threats. This involves reviewing all
the assets, entry points, and their interactions. To do this, this work will focus on
the STRIDE model, which will be explained in detail in the next section.

(iii) Building a mitigation plan: Finally, once the threats to which the assets are exposed
have been identified and understood, a mitigation plan is proposed.

2.3.1 STRIDE

STRIDE is a threat-centric modeling methodology developed by Microsoft in the late 90s
that identifies threats using a mnemonic for six different types of threats [14]. It is the
most widely accepted threat modeling process and allows people with little knowledge in
cybersecurity to apply it [4], [13]. Unlike other approaches, STRIDE’s focus shifts from
identifying all possible attacks to the results of such possible attacks. This point of view
allows the user to reason what an attacker aims to achieve by exploiting a vulnerability
rather than thinking about numerous specific attacking strategies and techniques [15].
The six different types of the mnemonic are as follows [4]:

(i) Spoofing: Includes activities in which a person or a program masquerades itself and
pretends to be someone or something else. A common example is email spoofing,
where the attacker sends an email with a forged sender address.

(ii) Tampering: Tampering refers to changing a system, network, or data, including
adding, modifying, or deleting entire components. An example of tampering could
be modifying a file on a server.

(iii) Repudiation: When someone denies having done something or being responsible for
something that happened, this threat falls into the category of repudiation. In some
cases, individuals may try to attack the system logs to prevent verification of their
involvement or the malicious activity.

(iv) Information Disclosure: Is understood as disclosing information to someone who is
not allowed to see it. This can include gaining insights through e.g., error messages,
file names, reading data from a network, etc.

6 CHAPTER 2. BACKGROUND

(v) Denial of Service (DoS): DoS attacks are designed to prevent a resource from func-
tioning normally. This can be achieved by e.g., flooding the network with requests
or filling up a process’s memory. These attacks aim to occupy the resource to the
point where it cannot operate effectively.

(vi) Elevation of Privilege: Similar to information disclosure, threats of elevation of
privilege allow someone to do something they are not authorized to. This can happen
when e.g., authorization checks can be bypassed, and the attacker can execute code
as admin or similar.

Since the STRIDE model is used to identify threats, the user can derive possible struc-
tural vulnerabilities and develop a mitigation plan. According to [13], the system to be
modeled should be assessed by identifying assets and access points in the first step. This
is done using so-called DFDs. DFDs are a graphical way of describing a system, showing
all the inputs and outputs, and representing all the internal logical processes and compo-
nents [16]. It consists of six different symbols: Data Flow (One-way arrow), Data Store
(Two parallel horizontal lines), Process (Circle), Multiprocess (Two concentric circles),
Interactors (Rectangle) and Trust Boundary (Dotted line) [17]. The described symbols
can be observed in Figure 2.2. Secondly, the threats derived by the DFD are discussed.
These threats are then recorded in a table. Once all the threats have been identified, a
mitigation plan is developed to address each of them. The goal of the plan is to build the
system in a way that eliminates or minimizes the identified threats. In the next section,
an example of STRIDE is provided.

Figure 2.2: DFD Symbols extension to [4]

2.3. THREAT MODELING 7

2.3.2 STRIDE-per-Interaction

A variant of STRIDE, also developed by Microsoft, is STRIDE-per-Interaction. This
approach focuses on how threats show up in the interaction of system components rather
than in isolation. Therefore, the focus lies on how the components interact and what
kind of threats could exist in these interactions. To point the threats out, a tuple is
used in the form of (origin, destination, interaction) and the threats are enumerated.
STRIDE-per-Interaction is often realized using an overview table and threat tables [4].

A simplified example from [4] is analyzed to understand how STRIDE-per-Interaction
operates. Assuming a system comprising a browser, a process, and a database as shown
in Figure 2.3.

Figure 2.3: DFD of an Example System

An overview table is used to clarify the threats associated with each interaction. Table 2.1
includes columns for # (number for line reference), Element, Interaction, and applicable
STRIDE threats to the interaction. In this example, we can see that there is a threat
of spoofing in the process component, indicated by the ’x’ in the ’S’ column. Note that
Table 2.1 provides an overview of the threats without going into detail. However, it
should be sufficient to understand the STRIDE-per-Interaction process. Once the user
has created the detailed threat tables with elaborated threats put into words, they can
begin to define a mitigation plan for the identified threats.

Table 2.1: STRIDE-per-Interaction: Threat Applicability Overview

ELEMENT INTERACTION S T R I D E

1 Process Process has outbound data flow to data store. x x
2 Process has inbound data flow from data store. x x x x
3 Process sends output to external interactor (code). x x x x
4 Process sends output to external interactor (human). x
5 Process has inbound data flow from external interactor. x x x
6 Data Flow Crosses machine boundary. x x x
7 Data Store Process has outbound data flow to data store. x x x x
8 Process has inbound data flow from data store. x x
9 External Interactor External interactor passes input to process. x x x
10 External interactor passes input to process. x

8 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

This section discusses and elaborates on different commonly used tools to determine
whether they are suitable for using STRIDE-per-Interaction, as presented in the pre-
vious chapter. The goal is to find a tool that offers the user the most flexibility, meaning
that it fulfills most of the following dimensions:

Q1) Does it allow the creation of a DFD?

Q2) What threat modeling methodologies are applicable within the tool?

Q3) What is the underlying revenue model?

Q4) Where does the software operate?

Q5) Is the tool cross-platform?

Q6) To what degree of openness is the software published?

Generally, the tool that allows for most of these dimensions should win the race. However,
some dimensions are more important than others. Therefore, they are ordered according
to their importance.

3.1 Tools

The following section will introduce various tools closely associated with threat modeling.
These tools will be discussed in detail, highlighting their key features and benefits. Since
many different tools exist, covering all of them would be out of scope for this work; there-
fore, only tools that claim to integrate the STRIDE methodology and allow the creation
of DFDs in a way are reviewed. Furthermore, this analysis only contains well-established
threat modeling tools or ones that originate from an academic background. To conclude
the comparative analysis, Table 3.1 provides the findings of the dimensions, presenting a

9

10 CHAPTER 3. RELATED WORK

Table 3.1: Comparison of Different Threat Modeling Tools
DFD Methodology Revenue Model Operation Cross Platform Openness

CAIRIS ✓ IRIS Free On-Premise ✓ open
CoReTM ✓ SpI*, PASTA Free ? ✓ open
IriusRisk ✓ SpE**, OCTAVE, TRIKE, PASTA Licensing On-Premise & Managed ✓ ?
MTMT ✓ SpE** Free On-Premise ✗ closed
OWASP TD ✓ SpE**, LINDDUN, CIA, DIE, PLOT4ai Free On-Premise ✓ open
Threagile partially rule based Free On-Premise ✓ open

* STRIDE-per-Interaction, ** STRIDE-per-Element

comprehensive and clear overview of the results. Finally, some models allow the applica-
tion of methodologies other than STRIDE. These methodologies will be mentioned but
not elaborated on further.

CAIRIS stands for Computer Aided Integration of Requirements and Information Secu-
rity. It is an open-source platform with many different features. There is a client version
and a deprecated desktop application. Users can manually create DFDs [18] or import
existing ones using their REST API or accepted formats as from e.g., Draw.io [19], [20].
Furthermore, CAIRIS supports other modeling approaches, such as top-down representa-
tions to attack trees [3]. Although explicitly designed for the IRIS framework, CAIRIS
aimed to become methodology agnostic [21]. However, it does not have the functionality
to automatically create the necessary tables for the Stride-per-Interaction methodology
out of the box. But since the software is open-source and free to use, it can be extended
by building this feature one-self [22]. CAIRIS is a self-hosted application and can be run
using Docker or a REST Server [23].

A further tool that relies on DFDs is CoReTM, which is a novel approach to enable
automated threat modeling in an annotation-based collaborative setting. Furthermore,
it allows on-site, remote, or hybrid modeling with synchronous and asynchronous con-
tributions. By wrapping Draw.io into a web application, users can generate DFDs and
automatically create the STRIDE-per-Interaction table. Two prototypical but nonfunc-
tional implementations exist on GitHub [6], [24]. Therefore, further information is derived
from the proposal paper. CoReTM allows the application of various threat modeling
methodologies, such as STRIDE-per-Interaction or PASTA, and is open and accessible to
anyone. When creating a new model, the user is guided according to the chosen method-
ology, which is decided upfront and navigated through a questionnaire afterward. This
ensures usability, even for non-technical users [5], [25]. There is currently no information
available about the deployment and maintenance of the software since there is no produc-
tive application. However, if implemented as described, it would be an open-source web
application meant to be cross-platform and without any operating system dependencies.

In contrast, IriusRisk is a well-established threat modeling tool that has been on the
market for multiple years. It is a pattern-based threat modeling tool that allows the
mapping of discovered threats to a mitigation plan automatically. Although IriusRisk can
suggest countermeasures based on identified threats, users can input and manage their
countermeasures using the platform’s pattern editor [26]. IriusRisk has three different
pricing plans, Community, Enterprise Pro, and Professional, with varying capabilities. In
the open-source community tier [27], users can create one threat model and use analytics
features but cannot collaborate in a team [28]; the other licensing tiers are closed-source.

3.1. TOOLS 11

Therefore the cell in Table 3.1 is marked with a ’?’. Furthermore, IriusRisk offers the
usage of multiple threat-modeling methodologies out of the box [29], including STRIDE-
per-Element, which is applied using a questionnaire [30]. The embedding of Draw.io allows
the creation of custom DFDs. IriusRisk has a threat library covering common knowledge
bases and allowing the user to create self-defined threats [3]. IriusRisk can be obtained
as a managed service or on-premise and is not platform dependent [31].

Another well-established tool in the market is the Microsoft Threat Modeling Tool
(MTMT). It is a free software provided by Microsoft. Several references found in dif-
ferent industries applied this tool to do threat modeling (cf., [13], [32]–[35]). It allows
the creation of detailed DFDs with extensive configuration options and attribute settings
for the elements [36]. It follows an integrated STRIDE-per-Element [37] methodology.
The STRIDE-per-Element approach differs from the one presented by considering each
system component in isolation rather than analyzing the end-to-end scenarios where sev-
eral components interact. The STRIDE-per-Interaction approach is considered to have
a wider scope by considering the threats that might occur in the interaction of different
software components and is, therefore, more informative [38]. Even though STRIDE-per-
Element is supported, the guided analysis provided by MTMT does not fit the STRIDE-
per-Interaction methodology. Microsoft is actively managing and maintaining the software
(last release in October 2023 [39]). Even though earlier versions of MTMT used to be
open-source, the source code of the current application version TMT7 could not be found.
Therefore, it is considered closed-source. Furthermore, a noteworthy mention is that the
software is only available for Microsoft OS and excludes other operating systems.

In comparison, OWASP Threat Dragon (TD) is an open-source threat modeling applica-
tion that supports multiple methodologies. It is available as a web and desktop application
for Linux, Mac OS, and Windows and supports 10 different languages. The application
allows the creation of DFDs and has a built-in rule engine to auto-generate threats and
mitigation strategies [40]. Although STRIDE is a supported methodology, the creation of
the threats is not summarized in the form of the desired tuple, as required in STRIDE-
per-Interaction. Thus, STRIDE-per-Interaction is not integrated fully into OWASP TD.
Due to the simplicity of OWASP TD, the application is very accommodating to less ex-
perienced developers and, therefore, more user-friendly as e.g., MTMT with its extensive
configuration possibilities [36], [41].

Finally, Threagile is an open-source toolkit for agile threat modeling. It was first pub-
lished in 2020 and is still actively maintained [42]. The tool lets users model a system’s
architecture directly through a YAML file. When run, Threagile applies a set of risk rules
to the architecture and generates a report outlining potential risks and mitigation strate-
gies for constructing a DFD. Due to the automatic generation of a risk report, Threagiles
methodology is classified as rule based in Table 3.1. It’s important to note that Threagile
doesn’t support manual DFD modeling; instead, users need to specify it in the YAML
file [43]. Therefore, it is noted as partially given in Table 3.1. Additionally, since the re-
port is automatically generated based on the risk rules, direct application of the STRIDE
methodology is not supported. However, as an open-source project [42], users can cre-
ate their own STRIDE extension, although this would require some familiarity with the
application’s stack and programming skills. Threagile can be executed in various ways,
including via the command line (or Docker) or as a REST-Server [43].

12 CHAPTER 3. RELATED WORK

3.2 Comparative Analysis Conclusion

Based on the conducted analysis of existing tools, the initial questions can be summarized
as follows. Regarding (Q1), it can be observed that DFDs are widely adopted by various
threat modeling tools. Even though only tools with this capability were considered, the
fact that several could be found integrating DFDs as one core functionality is evidence
of the popularity of DFDs. While this does not directly present a new avenue for future
research, it confirms that DFDs are a practical, generic means to capture the architectural
abstractions of systems. Thus, new solutions and methods could rely on this feature since
users are likely familiar with it. Concerning the second question (Q2), the tools adopt
a diverse pool of methodologies. With the pre-condition in the selection of the tools to
review that STRIDE must be applicable in some way, it has been shown that no tool
exists that supports an application of the STRIDE-per-Interaction method in a guided
and semi-automated way. What poses a promising niche for future threat modeling tools.
In many of the tools that have been reviewed, there is a common theme of embracing an
open source (Q6), free (Q3), and cross-platform (Q5) approach. This can be attributed to
several reasons. For example, it may be because the tool is extendable, has the potential to
reach a larger user base by being platform-independent, allows contributions from people
on the internet, or aims to be as transparent as possible to avoid mistrust. Finally, the
trend regarding the deployment and maintenance of the tools (Q4) shows that only the
paid option offers the possibility to run it as a managed service. In contrast, all the free
tools require the user to host the software themselves. This makes sense from a perspective
of trust and also financially since the free ones do not receive any monetary payment, and
hosting servers would possibly not be within budget.

The research findings on various tools show that CoReTM has met most of the criteria set
by other tools, making it the top choice. Although many of the reviewed tools are open-
source and could, therefore, be extended to fulfill the requirements of supporting a semi-
automated STRIDE-per-Interaction methodology by automatically creating the needed
tables after modeling the system in the form of a DFD, this extension of the software comes
with a certain cost. Furthermore, it would be a better contribution to the current situation
if a working implementation of CoReTM is provided, creating a novel tool with inherent
support for STRIDE-per-Interaction instead of STRIDE-per-Element, which is already
present in many tools. The solution presented in this work will differ from the proposal
of CoReTM in a few ways. In the prototype, there will be no synchronicity, which means
that users cannot work on the same model and receive real-time updates. Additionally, the
proposed prototype will only focus on the STRIDE-per-Interaction methodology and not
on other methodologies like PASTA, which is mentioned in the CoReTM proposal [5]. The
next parts of this work will address this matter by guiding the reader through architectural
planning and outlining the essential specifications and requirements for CoReTM 2.0 .

Chapter 4

Architecture

The upcoming chapter will cover the CoReTM 2.0 framework and offer a high-level
overview of the prototype that will be implemented later. It will start with a require-
ment analysis for a Minimum Viable Product (MVP) and highlight differences from the
initial proposal. Then, the findings of the requirement analysis will be summarized in an
architectural diagram, illustrating the major components and interfaces of the prototype.
Specific implementation details and design aspects will be discussed in Chapter 5. This
chapter aims to give the reader a basic understanding of “what the prototype consists
of and what it is capable of doing” rather than “how the prototype is being built and
designed”.

The requirements that will be discussed were gathered from a design study [44] conducted
with an industrial partner. They provided a list of requirements discovered during their
research. Describing a comprehensive tool, including features that may not be feasible for
this project’s scope. As a result, the first step is to identify the fundamental requirements
necessary for the tool to be usable. The evaluation takes place as soon as the MVP is
implemented, followed by a second iteration of requirement analysis for further features.

4.1 Requirement Analysis for Minimum Viable Product

An MVP refers to a prototype that contains just enough features to be used by early
users. Therefore, the focus of the features is clearly shifted onto the main utility the
software must provide. These fundamental features are now discussed as requirements in
the context of CoReTM, or rather CoReTM 2.0 .

The process involves breaking down the requirements into smaller, independent units
within the prototype’s architecture instead of collecting them all simultaneously. This
allows for a better understanding of each component’s specific capabilities and respon-
sibilities. Following the presentation of all essential requirements for the MVP, the out-
comes are consolidated and documented in the subsequent sections and finally gathered
in Table 4.1, which introduces the requirements according to three categories: functional
modeling requirements, system aspects, and threat analysis.

13

14 CHAPTER 4. ARCHITECTURE

Without diving into the specific technical details, the prototype implementation uses an
embedding of Draw.io (also known as diagrams.net) for DFD-related tasks. The actual
implementation of this will be discussed later. On a high level, Draw.io is a powerful and
versatile open-source [45] software for creating various types of diagrams [46]. It offers an
intuitive drag-and-drop interface, allowing users to place and connect shapes, text, and
images easily. The tool supports real-time collaboration, integrates with cloud storage
services like Google Drive, OneDrive, and Dropbox, and provides a variety of templates
and shapes to streamline the diagram creation process. Diagrams can be exported and
imported in various formats for easy sharing and embedding in documents or presenta-
tions [47].

4.1.1 Modeling

The following requirements focus on the essential modeling functionality needed to create
customized DFDs within the CoReTM 2.0 framework. It is crucial to be able to visually
represent the system for threat modeling using the STRIDE-per-Interaction methodology.
Therefore, this capability must be a core feature of the MVP, as it is paramount and
represents the initial step in applying the STRIDE-per-Interaction method.

The prototype must provide several functionalities regarding DFDs. 1) A set of custom
stencils must be provided, consisting of the six different symbols present in DFDs. This is
crucial to ensure the DFD is in the correct form. 2) Users must be able to create elements
within a modeling interface, and 3) delete and move these elements around as needed. 4)
Each element in the DFD must have a unique ID or key to ensure proper identification and
differentiation, which is important for the later diagram processing and table generation.
5) It must be possible to connect already created elements through data flows. 6) Each
stencil element must be labelable, and 7) these labels should be editable to accommodate
any necessary modifications.

4.1.2 System

The system requirements focus on ensuring that the DFD creation and manipulation
within the CoReTM 2.0 framework is robust, user-friendly, and capable of supporting
comprehensive threat modeling. The integration with Draw.io and the capability to man-
age trust boundaries are critical to achieving these goals. These requirements bridge the
modeling and threat analysis requirements, ensuring seamless integration and function-
ality across the entire threat modeling process within the CoReTM 2.0 framework. The
focus is on creating a cohesive workflow from visual DFD creation to detailed threat
analysis and documentation.

To accomplish this role, 1) the system must integrate Draw.io. 2) The system must also
detect when a data flow crosses a trust boundary. 3) It must recognize which elements
are connected by a data flow and understand the orientation of this connection. 4) To
ensure accessibility, the system should be a web-based application, enabling anyone with
internet access to use it. 5) The system should allow users to export the created DFD and

4.1. REQUIREMENT ANALYSIS FOR MINIMUM VIABLE PRODUCT 15

6) tables in a meaningful format. This should happen in a fashion that does not rely on
third-party applications or storage solutions, such that no sensitive data is compromised.

4.1.3 Threat Analysis

Finally, STRIDE-per-Interaction produces several tabular representations, which are then
used to manually describe the threats and vulnerabilities of the system. This task is
addressed within the threat analysis dimension, enabling the automation step in the
CoReTM 2.0 platform by automatically constructing the necessary overview and threat
tables, saving users the effort of creating them manually. These tables support customiza-
tion and note-taking, with text input fields and the option to add additional rows. They
follow a strict design, making them suitable for automated creation and subsequent man-
ual completion. The system requirements, which are responsible for parsing the DFD,
enable the creation of automated tabular representations.

Several requirements must be met for these tables to fulfill their purpose. 1) The generated
overview table must have eight columns: Dataflow ID, Interaction (describing the elements
in the DFD connected by the data flow), and columns for each STRIDE threat (S, T, R, I,
D, E). This format ensures all necessary information is included, as detailed in Table 2.1.
Checkboxes are present within the STRIDE columns. 2) The user can tick and untick
these checkboxes, defining if the corresponding STRIDE threat exists. 3) Within the
interaction column, the elements that are connected by a data flow must be displayed.
4) Users must be able to describe the interaction in words by typing text into a text
field. 5) A threat table is created for each row in the overview table with at least one
ticked cell in the STRIDE section. These threat tables contain columns for Threat ID,
Dataflow ID, STRIDE Type, Threat, Mitigation, and Testing. 6) The first three columns
are automatically defined by the information provided in the overview table, 7) while the
remaining ones require user input. 8) These cells are editable, and additional rows can
be added to accommodate multiple threats, such as more than one possible tampering
threat in a specific interaction.

16 CHAPTER 4. ARCHITECTURE

Table 4.1: Overview Requirements for the MVP Prototype

Modeling

1 Custom stencils must be provided, consisting of DFD symbols.
2 Creation of DFD elements.
3 Deletion of DFD elements.
4 Every DFD element must have a unique ID.
5 Connecting the DFD elements with data flows must be possi-

ble.
6 Each DFD element can be labeled with text.
7 Each label can be edited.

System

1 Embed Draw.io.
2 Must realize when a data flow crosses a trust boundary.
3 Must recognize which elements a data flow connects and its

direction.
4 Should be a web-based application.
5 Created DFDs can be exported in a meaningful format.
6 Created tables can be exported in a meaningful format.

Threat Analysis

1 Automatically generate the STRIDE-per-Interaction overview
table in the described format.

2 Let the user tick and untick the checkboxes in the STRIDE
columns of the overview table.

3 In the interaction column, include the IDs of the two inter-
acting elements. For example, ID-1 → ID-2

4 User can input text after the element IDs to describe the
corresponding interaction.

5 For every data flow that has checked threats, generate a threat
table in the defined format.

6 Automatically fill in the threat ID, data flow ID and STRIDE
Type in the threat table.

7 Let the user input text into the threat, mitigation, and testing
cells.

8 Allow the user to create additional rows in the threat table.

4.2 Architectural Diagram

In Figure 4.1, the MVP requirements are being outlined. The high-level diagram of the
system highlights the main components and illustrates how the application is constructed
by following the flow through the process layer. It seems appropriate to encapsulate the
system requirements as a bridge between modeling and threat analysis. Apart from the
web interface, all subsequent processes should be viewed as actions that the user needs
to complete or that the tool automates. Within the modeling process, the activity of
creating a DFD is addressed. Once this task is finished, the tool generates an overview
table, which the user then needs to complete. Concurrently, threat tables are generated
based on the checkmarks from the overview table. These threat tables also need to be
completed by the user, providing information about the threat, mitigation, and testing.

4.3. FURTHER FEATURES AND CHANGES 17

Figure 4.1: Architectural Diagram of the CoReTM 2.0 MVP

Finally, a document is created and made available for the user to download. It should be
mentioned that the data layer is intentionally kept as simple as possible. Even though
the modeling process will generate a representation of the DFD according to Draw.io, this
representation must be parsed to create the correct overview table. However, how this
parsing process is being achieved is abstracted since it is considered too low-level.

4.3 Further Features and Changes

After presenting the MVP to the industrial partner, some changes and additional features
were discussed, laying the groundwork for the second iteration of the development process.
In this section, these additional features and changes are discussed.

The first change discussed was that the user should always be able to download the ap-
plication’s current state. This means that even unfinished work should be exportable to
allow users to continue their work later. Although this functionality is already partially
integrated into the MVP using local storage, it is valuable for the user to have the option
to export their threat model at any point in the process. Additionally, the import func-
tionality should be provided so that the user can import models and continue working
on them. Another point raised by the industrial partner was that the data flow elements
should have an ID attached. While Draw.io automatically assigns an ID to every element
within the DFD, it is not visible to the user on screen. Since the textual description of the
data flow does not have to be unique, a visible signifier was requested. A third feature dis-
cussed for the second development iteration is the ability for the user to add more rows to
the threat tables manually. This functionality is needed as a specific interaction may have
multiple threats of any STRIDE threat type. Currently, the MVP only creates one row for
each STRIDE threat type present, but allowing the user to customize the dimension of the
threat table after it is generated would solve this. Finally, the industrial partner requested
a change in how the threat tables are built. A threat table was originally generated for
each row in the overview table with at least one STRIDE threat present, following the
STRIDE-per-Interaction methodology. However, the industrial partner asked to deviate
from this and generate threat tables related to the trust boundaries within which threats

18 CHAPTER 4. ARCHITECTURE

can occur. This results in fewer threat tables but more rows per threat table. This change
results in a grouping that bundles all the threats present within a trust boundary without
any loss of threat table rows.

Chapter 5

Design & Implementation

In this chapter, the design decisions, as well as the implementation of the CoReTM 2.0
prototype, are discussed. Since the implementation of CoReTM 2.0 is done in iterations
and conducted with an industrial partner, the following section gives a general overview
of the used technologies rather than a detailed implementation description of these el-
ements used, and Section 5.2 covers the technical implementation of the MVP, which
was discussed in the previous chapter. After each development iteration, the industrial
partner is presented with the current state of the application, and feedback is gathered.
This feedback and further inputs about changed requirements are then considered in the
subsequent development cycle; information about the enhancements from the MVP to
the second iteration can be found in Section 5.4. After the technical details of the MVP
are explained, a demonstration of the MVP is provided, followed by the implementation
details and changes from the second development iteration.

5.1 Technology Stack

The choice of stack and technologies is crucial for ensuring the application’s performance,
scalability, and maintainability. Given that CoReTM 2.0 is a web application, choosing
the correct programming language and framework is crucial.

The decision to use TypeScript as the primary programming language for the CoReTM
2.0 prototype is underpinned by several key factors. TypeScript is a statically typed
superset of JavaScript that enables catching type-related errors at compile time rather
than at runtime [48]. This significantly reduces the likelihood of bugs and improves code
quality. JavaScript remains the most widely used programming language, as highlighted
by the 2024 StackOverflow survey, while TypeScript takes the 5th place [49]. Additionally,
TypeScript offers superior tooling support, including autocompletion, refactoring, and
intelligent code navigation, which boosts productivity and efficiency. The non-functional
prototype of CoReTM was developed using JavaScript. For the development of CoReTM
2.0 , the React framework was added to build a component-based user interface. The
author of this thesis is already familiar with this framework. This familiarity reduces

19

20 CHAPTER 5. DESIGN & IMPLEMENTATION

the learning curve and accelerates the development process. React is used to build the
user interface due to its component-based architecture, which makes it easier to create
dynamic and interactive web applications [50].

As discussed in the architecture section, the modeling part of the MVP is implemented
using Draw.io. This is achieved by embedding the Draw.io editor within an Inline Frame

element (iFrame). How this is accomplished is discussed in Section 5.2. The steps for
embedding and creating a custom shape library, which ensures users build DFDs with
the correct set of symbols, are detailed in [51]. The stencils used for CoReTM 2.0 are
elements already present in other libraries of Draw.io. However, to differentiate between
them, a tag has been manually added to each. This was accomplished by modifying
the XML and adding a “type” attribute to each element, distinguishing the elements
from one another. This facilitates the parsing of the diagram, which is covered later
on. A notable project that aligns with this approach is ThreatFinder.ai [52]. While
detailed information about this application is not provided here, ThreatFinder.ai is open
source and incorporates a Draw.io embedding, allowing certain implementation parts to
be adopted without reinventing the wheel [53].

Material UI (MUI) is utilized for styling the application [54]. MUI is a popular React
component library that implements Google’s Material Design principles, offering a set of
pre-designed and customizable components. This not only accelerates development by
reducing the need for custom CSS but also ensures a consistent and aesthetically pleasing
user interface.

In summary, the combination of TypeScript, React, Draw.io, and Material UI forms
a robust technology stack that supports the development of a dynamic, scalable, and
maintainable web application. The Web Storage API is used since no persistency layer is
present in this application. This allows the storage of necessary objects like strings and
arrays within the browser [55].

5.2 Components

This section delves into the technical implementation details of the various components of
the CoReTM 2.0 MVP. Each component plays a specific role in the application’s overall
functionality, and their design and implementation are crucial for the project’s success.

While Views and Interfaces & Storage give a superficial explanation of how the navigation
through the app is structured, as well as how the internal objects are represented and
stored, the other two subsections, Modeling & Parsing and Tables, offer a deeper insight
into the business logic of the MVPs functionality. Covering the topics of how modeling
is enabled, how changes within the DFD are registered, how the corresponding tables are
calculated, and more.

5.2. COMPONENTS 21

5.2.1 Views

Views are the user-facing parts of the application, responsible for displaying data and
interacting with the user. This subsection discusses the definition of different views within
the CoReTM 2.0 application, focusing on how they are structured and rendered using
React.

Listing 5.1: Showcase different Links to Routes

1 // import statements

2 function Home() {

3 return (

4 <ThemeProvider theme={theme}>

5 <Grid container>

6 <Container>

7 // some typography elements

8 <Stack>

9 <Link to={"/import"}>

10 <Button>

11 Import

12 </Button>

13 </Link>

14 <Link to={"/model"}>

15 <Button>

16 Create

17 </Button>

18 </Link>

19 </Stack>

20 </Container>

21 </Grid>

22 </ThemeProvider>

23);

24 }

25 export default Home;

When accessing the website, users are presented with a landing page where they can
choose to create a new threat model or click on the import button. This can be seen in
Listing 5.1. Although not part of the MVP requirements and therefore non-functional,
the import button has already been designed as a stretch goal. To navigate to a specific
route, users can click on the <Button /> element wrapped within a <Link />, which
eventually redirects them. This functionality is accomplished using react-router version
6.23.1. Despite the availability of later versions for this application, the used version is
sufficient [56]. The implementation of this functionality is detailed below. In the main
component App.tsx, the router is set up with three different routes, with the empty route
(i.e., the path /) serving as the landing page; how this is setup can be seen in Listing 5.2.
Additionally, the landing page includes an error element <NotFound />, which is rendered
if users attempt to access undefined routes. This prevents users from getting stuck in an
invalid route. In the Home.tsx file, the <Link /> elements can be observed that lead to
the other routes. Furthermore, the <Home /> component also includes some intentional
omissions in styling attributes. However, it can be seen that it is wrapped within a
<ThemeProvider> element imported from the MUI library that provides this functionality.

22 CHAPTER 5. DESIGN & IMPLEMENTATION

Listing 5.2: Definition of the Routes within the Application

1 // import statements

2 const router = createBrowserRouter([

3 {

4 path: "/",

5 element: <Home />,

6 errorElement: <NotFound />

7 },

8 {

9 path: "/import",

10 element: <Import />

11 },

12 {

13 path: "/model",

14 element: <Model />

15 }

16]);

17
18 function App() {

19 return (

20 <RouterProvider router={router} />

21);

22 }

23 export default App;

5.2.2 Interfaces and Storage

Interfaces establish contracts between various parts of an application, ensuring that com-
ponents can communicate effectively and that the objects being passed through are based
on a common blueprint. Additionally, the data must be explicitly stored so the user
can export their threat model at the end of the process. This section covers the design
and implementation of these interfaces, emphasizing the importance of clear and consis-
tent communication between different modules and their storage methods. Two different
interface types exist within the MVP of CoReTM 2.0 .

Draw.io Interfaces

In the Draw.io Interfaces, the DFD’s various elements are translated from an external
representation to an internal one. This is achieved by the parsing algorithm, which is
discussed in detail in the next section. Since the external representation contains unnec-
essary data, it’s logical to convert them into a format that allows for better accessibility,
differentiation between the different DFD elements, and concentration of the data by
storing only the relevant information in a structured manner.

The central part of the Draw.io interface consists of three different interfaces: IElement,
ITrustBoundary, IDataFlow. The IElement interface includes all DFD elements that
are 1. part of the CoReTM 2.0 stencil and 2. not of type ITrustBoundary or IDataFlow.
Thus IElements can be e.g., Data Stores, Interactors, Processes or Multi-Processes. The

5.2. COMPONENTS 23

interface is defined as per Listing 5.3. The other two interfaces are treated differently from
the IElements. The main difference between an object of type IElement and one of type
ITrustBoundary is that IElements can be within a (or multiple) ITrustBoundary, the
interface of ITrustBoundary is depicted in Listing 5.4. Which IElements are connected
by a IDataFlow, can be observed when taking a look at the IDataFlow interface 5.5.
Each object that is of type IDataFlow must have a sourceId and a targetId; these IDs
correspond to the IElements that are connected through the IDataFlow. This information
is crucial to distinguish which IDataFlows, connecting the different IElements must be
considered for the threat analysis and which are irrelevant. The reason for this will be
evident when the parser algorithm is explained. Still, for now, it’s sufficient to understand
that those three categories exist and that each diagram constructed within the Draw.io
embedding can be translated into an internal representation using these interfaces.

Listing 5.3: Definition of the IElement Interface
1 export interface IElement {

2 id: number

3 name: string

4 type: string

5 x1y1: { x1: number, y1: number }

6 x2y1: { x2: number, y1: number }

7 x1y2: { x1: number, y2: number }

8 x2y2: { x2: number, y2: number }

9 inTrustBoundary: Array<number>

10 }

Listing 5.4: Definition of the ITrustBoundary Interface
1 export interface ITrustBoundary{

2 id: number

3 name: string

4 type: string

5 x1y1: { x1: number, y1: number }

6 x2y1: { x2: number, y1: number }

7 x1y2: { x1: number, y2: number }

8 x2y2: { x2: number, y2: number }

9 }

Listing 5.5: Definition of the IDataFlow Interface
1 export interface IDataFlow{

2 id: number

3 name: string

4 type: string

5 sourceId: number

6 targetId: number

7 }

24 CHAPTER 5. DESIGN & IMPLEMENTATION

Within the Draw.io Interfaces, two more Interfaces exist: IDiagram and ICrossingEle-

ments. They serve the purpose of creating an accessible object that contains all the
DFD elements as arrays (IDiagram) as per Listing 5.6 and contains all the necessary
information to calculate the dimensions of the overview table, which must be derived
(ICrossingElements). How this is implemented can be seen in Listing 5.7. This can be
observed by having a look at their definition:

Listing 5.6: Definition of the IDiagram Interface

1 export interface IDiagram {

2 dataFlowsArray: Array<IDataFlow>,

3 elementsArray: Array<IElement>,

4 trustBoundariesArray: Array<ITrustBoundary>

5 }

Listing 5.7: Definition of the ICrossingElements Interface

1 export interface ICrossingElements {

2 dataflow: IDataFlow,

3 elements: {

4 sourceElement: IElement,

5 targetElement: IElement

6 }

7 }

TableRow Interfaces

As covered in Chapters 2 and 4, applying STRIDE-per-Interaction requires two different
types of tables. The first table created after the user finishes the modeling phase is
called the overview table. The number of rows is defined by the number of IDataFlows
connecting two elements that are not within the same ITrustBoundary. This information
is derived by parsing the given DFD and analyzing its structure. Therefore, an interface
is created that contains all the information required to represent one row in the overview
table. The implementation of this interface is visible in Listing 5.8. The attributes type,
dataflowId, dataflowName, interaction are derived from the DFD. The user has to
provide a description for each of these interactions and then decide which of the STRIDE
threats is present in this interaction.

Listing 5.8: Definition of the IOverviewTableRow Interface

1 export interface IOverviewTableRow {

2 type: string,

3 dataflowId: number,

4 dataflowName: string,

5 interaction: string,

6 description: string,

7 threat: {

8 S: boolean,

9 T: boolean,

10 // R, I, D, E

11 }

12 }

5.2. COMPONENTS 25

The second type of table in STRIDE-per-Interaction is the threat table. These tables are
created by analyzing the information in the overview table. Originally, a single threat
table was generated for each row in the overview table. However, the industrial partner
wanted to change this so that the threat tables do not correspond to individual rows
but instead group together all the IDataFlows and their associated threats within the
same ITrustBoundary. Although this change was not part of the MVP, it does not affect
the construction of the IThreatTableRow interface, which is defined in Listing 5.9. The
format for each row is already defined in the architecture chapter. A user needs to supply
detailed information about each threat, including its STRIDE type, a mitigation strategy,
and a way to validate the mitigation. The system automatically generates the other
attributes for an object of type IThreatTableRow.

Listing 5.9: Definition of the IThreatTableRow Interface

1 export interface IThreatTableRow {

2 type: string,

3 threatId: string,

4 dataflowName: string,

5 strideType: string,

6 threat: string,

7 mitigation: string,

8 validation: string

9 }

Storage

Storing data effectively is crucial for ensuring the user’s progress is maintained, and the
threat model can be exported for further analysis or sharing. In the CoReTM 2.0 MVP,
local storage is utilized to handle data persistence and changes within the DFD and
tables. This method offers a simple and dependable way to store data on the client’s
browser without needing a backend server. It aligns with the MVP’s lightweight and
self-contained design and enhances security by not depending on third-party applications
or storage solutions.

Local storage in web applications refers to a browser’s ability to store data locally on the
user’s device. This data is persistent across sessions, meaning that if a user closes their
browser or navigates away from the application, their data will still be available when
they return [55]. This persistence is essential for CoReTM 2.0 , where users might spend
considerable time constructing complex threat models and must ensure their work is not
lost. In the CoReTM 2.0 MVP, the data that must be persisted is 1) the DFD data,
2) the overview table, and finally 3) the threat tables. This is done to allow users to
come back and resume their work from the last saved state and to enable downloading
upon completion of their work. Details about the implementation of saving to local
storage, updating current states, and exporting the final result are explained thoroughly
in Section 5.2.3.

To facilitate the export of the threat model, the data is structured in a way that can be
easily converted to JSON (JavaScript Object Notation) format. JSON is a lightweight
data-interchange format that is easy for humans to read and write and for machines to

26 CHAPTER 5. DESIGN & IMPLEMENTATION

parse and generate [57]. By structuring the objects according to the defined interfaces
(IDiagram, IElement, ITrustBoundary, IDataFlow), the data can be exported seam-
lessly. The code snippet below shows how this is achieved 5.10.

Listing 5.10: Exporting Local State to JSON and Invoking Download

1 function downloadLocalStorageAsJSON() {

2 const localStorageData : any = {

3 "Diagram": JSON.parse(localStorage.getItem("DrawioMsg")!).xml,

4 "OverviewTable": localStorage.getItem("OverviewTable") || "[]",

5 "ThreatTables": localStorage.getItem("ThreatTables") || "[]"

6 }

7
8 const jsonString = JSON.stringify(localStorageData, null, 1);

9 const blob = new Blob([jsonString], { type: "application/json" });

10 const link = document.createElement("a");

11
12 link.href = URL.createObjectURL(blob);

13 link.download = ‘${projectName}.json‘;

14 link.click();

15
16 URL.revokeObjectURL(link.href);

17 }

By utilizing local storage for persistence and structuring data for export in JSON format,
the CoReTM 2.0 MVP ensures that users can save their progress, retrieve it across ses-
sions, and export their threat models for further use. This approach provides a robust
and user-friendly way to manage data within the application.

5.2.3 Modeling and Parsing

One of the core functionalities that the MVP provides is that the user can model the sys-
tem in the form of a DFD. This is depicted in Figure 4.1 as “Modeling”. To achieve this,
the Draw.io API is being embedded into CoReTM 2.0 . This embedding is thematized in
this subsection, and how the external representation is analyzed to build the internal rep-
resentation using the interfaces introduced above. The embedding occurs in the <DrawIO>
component. This component’s two most important parts are the useEffect hook and the
iFrame that is returned and rendered. Since the useEffect hook only runs once, after
the initial render of the component, it is being used to initialize the DrawioController

as well as the TablesController. The DrawioController is a class that takes three
parameters in the constructor: 1) a CORSCommunicator that handles the messages from
the Draw.io embedding in both directions, 2) the LocalStorageModel and lastly 3) the
project name the user provided. The constructor is depicted in the Listing 5.11.

Listing 5.11: DrawioController Constructor

1 constructor(drawio: CORSCommunicator, storage: LocalStorageModel, projectName:

string) {

2 this.drawio = drawio

3 this.storage = storage

4 this.diagramAnalyser = new DiagramAnalyser();

5 this.projectName = projectName;

5.2. COMPONENTS 27

6 this.diagramExportPng = "";

7 this.drawio.receive(this.handleIncomingEvents.bind(this))

8 }

The DiagramAnalyser seen within the constructor is part of the parsing functionality and
is covered later. As mentioned, the second and most important thing to be able to model
the system is the iFrame that is rendered within the <DrawIO> component. This defines
the interface that is visible to the user and lets them interact with it to create DFDs, as
seen in Listing 5.12.

Listing 5.12: IFrame of Draw.io embedding

1 <iframe

2 ref={iframeRef}

3 width="100%"

4 height="700"

5 src="https://embed.diagrams.net/?embed=1&...&proto=json&configure=1&..."

6 style={{ border: "none" }}

7 title="draw.io"

8 />

The two most important parts of this iFrame are the ref and src attributes. The ref
attribute is initialized with the useRef hook and a value of null. Still, it will eventually
create a reference to the iFrame element, which is a mutable object that persists for the
component’s lifetime. Once the iFrame is mounted, the iframeRef.current is passed to
the CORSCommunicator to allow it to communicate with the embedded iFrame, enabling
functionalities like sending and receiving MessageEvents. This is crucial for updating the
DFD while the user is editing it.

The src attribute defines the URL of the content to be embedded. The most important
part of this URL is that the query parameters embed and configure are set to 1, and
proto is set to JSON. This allows sending a custom configuration through the CORSCom-
municator. For example, it will enable custom stencils to be used or the CSS properties
of the embedding to be customized. This configuration can be found in the DrawioCon-

troller and is triggered as soon as the CORSCommunicator receives a“configure”message.
Furthermore, the proto attribute specifies that the protocol for communication with the
editor is in JSON format [58].

In the MVP, an important feature is found in the DrawioController class. The private
method handleIncomingEvents is responsible for handling inbound messages from the
CORSCommunicator, as seen in Listing 5.13. This method is bound in the constructor, as
shown in Listing 5.11, and is triggered every time a message is received. Depending on
the type of event within the message, a different flow is initiated. This is achieved by a
switch statement that acts as the control point, distributing the various events to different
methods. Within the switch statement, we can see the “configure” event mentioned above
and others. For example, the “autosave” event is always received when something in
the diagram has changed, triggering an update of the currently saved model in the local
storage. The “init” event is received when the iFrame is loaded. If the user has a stored
model in their local storage, this model is loaded upon receiving this event. Otherwise, a
blank diagram is loaded.

28 CHAPTER 5. DESIGN & IMPLEMENTATION

Listing 5.13: Incoming Events from Draw.io

1 private handleIncomingEvents(message: any) {

2 if (message.data.length <= 0) {

3 return

4 }

5 if (!this.isJsonString(message.data)) {

6 return

7 }

8 const msg = JSON.parse(message.data);

9
10 switch (msg.event) {

11 case "autosave":

12 this.autoSaveDiagram(msg);

13 break;

14 case "export":

15 this.storeDiagram(msg);

16 break;

17 case "init":

18 this.loadDrawio();

19 break;

20 case "configure":

21 this.configureDrawio();

22 break;

23 default:

24 console.error("Unknown event: ", msg.event);

25 }

26 }

After the user completes the DFD, they can trigger the parsing process by clicking the
“Analyse” button. The parsing, or parseXml method, is the only public method in the
DrawioController class and can be triggered from outside the class – in this case, it’s
triggered from the <DrawIO> component where the “Analyse” button is defined.

This method returns two values: an array of objects with the type ICrossingElement as
defined in Listing 5.7 and a boolean called invalidDataflows. The name of the boolean
suggests that the parsing analyzes the DFD and checks for invalid behavior. Since a
custom element library is provided, only elements from this library are expected to be
used in the DFD. Suppose the user decides to use other elements. In that case, a warning
will be displayed, informing the user that any elements not part of the CoReTM stencil
will be ignored in the analysis. This doesn’t prevent the user from using these elements,
but it’s important to note that the resulting overview table may not have the expected
dimensions.

Additionally, the invalidDataflows variable indicates if there are IDataFlows within
the DFD that do not have a source or target point, or both. If any IDataFlows are found
in this state, an alert is displayed, preventing the user from continuing with the threat
analysis process until all the IDataFlows have a valid source and destination.

When the parseXml method is called by clicking the button, the actual work takes place
within the DiagramAnalyser class. However, it is called through the DrawioController,
which holds an instance of DiagramAnalyser. In the first approach, parsing occurred
with every change of the diagram, eliminating the need for the user to trigger it manually.

5.2. COMPONENTS 29

Nevertheless, this approach led to unnecessary time complexity. The entire diagram had to
be parsed for every small change, and the algorithm always had to compare the previous
state with the updated state, resulting in extra computational overload. This became
evident when after deleting an element from an existing DFD, it was still present in the
internal representation. To reduce the computational overhead from O(n2) to O(n), it
was decided to parse the diagram only once, once the user signifies that they have finished
their modeling by clicking the button.

Shifting the focus on the other variable returned by the parsing, which is crossingEle-
ments. Assuming that all the IDataFlows in the DFD have a source and target, and the
other elements used are from the CoReTM stencil, what should the actual output be? Af-
ter some consideration, the conclusion was that it should be a list of the IDataFlow objects
present in the DFD that connect two different IElements which are not within the same
ITrustBoundary; this is represented by the Listing 5.7. For this purpose, all IElement
objects have an attribute inTrustBoundary, which is an array of numbers representing
the IDs of the ITrustBoundary objects the IElement object lies within. If there are two
different IElement objects connected through an IDataFlow, their inTrustBoundary ar-
rays should contain at least one ID that is not in common. However, data engineering
must occur upfront before identifying these elements.

Listing 5.14: Parsing invocation within the DrawioController

1 parseXml() : {crossingElements: ICrossingElements[], invalidDataflows: boolean} {

2 const xmlDataString : string | null = this.storage.read("DrawioMsg");

3 const parsed = JSON.parse(xmlDataString!);

4 const xml = parsed.xml;

5
6 let xmlDoc : XMLDocument;

7
8 if (xmlDataString) {

9 const parser = new DOMParser();

10 try {

11 xmlDoc = parser.parseFromString(xml, "text/xml");

12 }

13 catch (e) {

14 console.log(e);

15 }

16 }

17 const {crossingElements, invalidDataflows} =

this.diagramAnalyser.parseDifferentDfdElementsFromXml(xmlDoc!);

18 if (crossingElements.length > 0) {

19 this.exportDiagram()

20 }

21
22 return {

23 crossingElements: crossingElements,

24 invalidDataflows: invalidDataflows

25 }

26 }

The parseXml method passes an XMLDocument to the DiagramAnalyser, as shown on
line 17 in Listing 5.14. This XMLDocument contains much information; we are specifically
interested in the diagram tag, particularly all the children of the diagram tag called mx-

30 CHAPTER 5. DESIGN & IMPLEMENTATION

Cells. These mxCells are extracted using getElementsByTagName("mxCell") within the
parseDifferentDfdElementsFromXml method in the DiagramAnalyser; this is demon-
strated in the Listing 5.15. Each mxCell represents an element within the DFD and
contains essential information such as ID, value (editable textual description), type, and
coordinates. If the mxCell is of type “Dataflow”, it also includes the source and des-
tination IDs of the connected elements. Some implementation details in the parseD-

ifferentDfdElementsFromXml method are replaced with comments because they would
rather confuse the reader and are not especially important for understanding the following
parsing functionality. After retrieving all the mxCells present in the DFD, the instance
variables of the DiagramAnalyser class are reset. This is important to avoid any data
from earlier parsings that could interfere with and distort the final result. Looping over
all the mxCells, the invalid ones are filtered out, and the valid ones are navigated into
the correct array of the diagramElements instance variable after being translated to the
corresponding interface type on lines 15-17. The diagramElements variable is of type
IDiagram as defined in Listing 5.6. When the loop finishes, the diagramElements in-
stance variable contains all DFD elements in the current model and separates them into
different arrays. Afterward, on lines 20-21, a loop over all the IElements of the DFD is
made to populate the inTrustBoundary attribute. Finally, all DFD elements connected
with another one and cross a trust boundary are returned, along with all invalid data
flows, meaning those that lack a source, target, or both.

Listing 5.15: Parsing the XMLDocument within the DiagramAnalyser Class
1 parseDifferentDfdElementsFromXml(xmlDoc: XMLDocument) : {crossingElements:

ICrossingElements[], invalidDataflows: boolean} {

2 const mxCells = xmlDoc.getElementsByTagName("mxCell");

3
4 this.diagramElements = {

5 dataFlowsArray: new Array<IDataFlow>(),

6 elementsArray: new Array<IElement>(),

7 trustBoundariesArray: new Array<ITrustBoundary>()

8 };

9 this.elementsCrossingTrustBoundaries = new Array<ICrossingElements>();

10 this.notAllowedElements = [];

11 this.dataflowsWithoutSourceOrTarget = [];

12
13 Array.from(mxCells).forEach(cell => {

14 // filter out invalid elements

15 const elementToAdd = this.createElementToAdd(cell, geometryElement, type);

16 if (elementToAdd) {

17 this.navigateElementToCorrectArray(elementToAdd, type);

18 }

19 });

20 this.diagramElements.elementsArray.forEach(element => {

21 this.addInTrustBoundaryAttributeToDfdElement(element);

22 })

23 this.findDataflowsCrossingTrustBoundary();

24 if (this.notAllowedElements.length > 0) {

25 // raise an alert

26 }

27 return {

28 crossingElements: this.elementsCrossingTrustBoundaries,

29 invalidDataflows: this.dataflowsWithoutSourceOrTarget.length > 0

30 }

5.2. COMPONENTS 31

Two-dimensional calculus is needed to determine whether or not two connected elements
lie within the same trust boundary. In Listing 5.16 the coordinates of each element are
compared to the coordinates of each ITrustBoundary that is present within the DFD.
Through this, it is distinguished if the area of the IElement lies within the area of the
respective ITrustBoundary object or not.

Listing 5.16: 2D Calculation to determine if Element is in Trust Boundary
1 private calculateIfElementInTrustBoundary(element: any, trustBoundary: any):

boolean {

2 return

3 element.x1y1.x1 >= trustBoundary.x1y1.x1 && element.x1y1.y1 >=

trustBoundary.x1y1.y1

4 && element.x2y1.x2 <= trustBoundary.x2y1.x2 && element.x2y1.y1 >=

trustBoundary.x2y1.y1

5 && element.x2y2.x2 <= trustBoundary.x2y2.x2 && element.x2y2.y2 <=

trustBoundary.x2y2.y2

6 && element.x1y2.x1 >= trustBoundary.x1y2.x1 && element.x1y2.y2 <=

trustBoundary.x1y2.y2;

7 }

This may seem like a complicated statement, but it’s just comparing the four corner
coordinates defined for each IElement with the four corner coordinates defined for each
ITrustBoundary. If the coordinates lie within the boundary, the statement returns true.
Refer to Figure 5.1 to better understand this method.

Trust Boundary Trust Boundary

x1y1

IElement IElement

x2y1

x1y2 x2y2

x1y1 x2y1

x2y2x1y2

x1y1 x2y1

x1y2 x2y2

x1y1 x2y1

x2y2x1y2

IElement lies within Trust
Boundary

IElement lies outside of
Trust Boundary

Figure 5.1: Visualization of Element’s Calculation Within Trust Boundary

5.2.4 Tables

Once the DFD is parsed and the elements connected by a IDataFlow but crossing a
trust boundary are calculated, it’s time to create the overview table. There is a com-
ponent called <OverviewTable> that takes the calculated crossingElements and a call-
back function onSave. This function is responsible for informing the parent component,

32 CHAPTER 5. DESIGN & IMPLEMENTATION

<DrawIO>, when the save button is clicked within the <OverviewTable> component. The
system must know when the user has finished editing the information in the table. The
information provided by the overview table is needed to generate the threat tables, so it
is essential to establish when the user has finished editing.

Listing 5.17 has two different state variables. The first holds the overview table’s cur-
rent state, while the second waits for the user to click the save button to finish editing
the overview table. After mounting the component, the useEffect hook is run. This
hook initializes the tableData object, which contains all the information needed within
the overview table. After looping over all elements within the crossingElements ar-
ray, the tableData object is set as the current state of the overviewTable using the
setOverviewTable function.

Listing 5.17: Function Definition of the OverviewTable Component

1 export default function OverviewTable({ crossingElements, onSave }: {

crossingElements: ICrossingElements[], onSave: (data: IOverviewTableRow[]) =>

void }) {

2 const [overviewTable, setOverviewTable] = useState<IOverviewTableRow[]>([]);

3 const [saveClicked, setSaveClicked] = useState(false);

4
5
6 useEffect(() => {

7 const tableData = crossingElements.map((element) => ({

8 type: "OverviewRow",

9 dataflowId: element.dataflow.id,

10 dataflowName: element.dataflow.name,

11 interaction: ‘${element.elements.sourceElement.name} ->

${element.elements.targetElement.name}‘,

12 description: "",

13 threat: {

14 S: false,

15 T: false,

16 R: false,

17 I: false,

18 D: false,

19 E: false

20 }

21 }));

22 setOverviewTable(tableData);

23 }, [crossingElements]);

24
25 // more functions that handle changes within the table and update the state

26
27 return (

28 // HTML of the table to be rendered & a button to save the data within the

table

29)

30 }

The visible table contains columns as outlined in Chapter 4. Users must describe each
interaction by entering text in the description column, which is presented as a <TextField
/>. Additionally, users must indicate the presence of any STRIDE threat within an
interaction by checking the corresponding <Checkbox />. By default, all the <Checkbox

5.2. COMPONENTS 33

/> elements are set to false, aligning with the initialization of the overviewTable variable
after the useEffect hook has been executed. When the save button is clicked, the current
state of the overview table is sent to the parent component. From the parent component,
it is passed to the TablesController for parsing. The overview table needs to be parsed
because the threat tables generated later are based on the selected STRIDE threats. In
the MVP, a threat table is generated for each row in the overview table. However, this
requirement changed after the MVP was presented to the industrial partner. The desired
changes will be discussed later. When the overview table is parsed, it is saved in the local
storage, and the structure of the threat tables is defined. This means that even if the
user changes the text in the <TextField /> or the state of the <Checkbox />, it will no
longer affect the threat tables or the saved version in the local storage. This issue needs
to be addressed in the second iteration as well.

The threat tables instantiated by the TablesController are handled similarly to the
overview table. The main difference is that rather than one table, it can be multiple.
This complicates the updating of these tables. Therefore, instead of constantly looping
over all tables and all cells, a LookupMap is generated, where each row is being stored,
and the cells can be accessed and updated much more efficiently. This occurs when the
component is mounted in the useEffect hook, as per Listing 5.18. Since the function
receives the threat tables as input in the correct dimensions and the proper amount of
threat tables, this can be done before the user even changes anything.

Listing 5.18: Function Definition of the ThreatTables Component

1 export default function ThreatTables({ threatTables, onSave } : { threatTables:

IThreatTableRow[][], onSave: (data: IThreatTableRow[][]) => void }) {

2 const [threatTable, setThreatTable] =

useState<IThreatTableRow[][]>(threatTables);

3 const [saveClicked, setSaveClicked] = useState(false);

4 const lookupMapRef = useRef<Record<string, IThreatTableRow>>({});

5
6 useEffect(() => {

7 const generateLookupMap = (table: IThreatTableRow[][]) => {

8 const map: Record<string, IThreatTableRow> = {};

9 table.forEach((rows, index) => {

10 rows.forEach(row => {

11 map[‘${index}-${row.threatId}‘] = row;

12 });

13 });

14 return map;

15 };

16 lookupMapRef.current = generateLookupMap(threatTable);

17 },);

18
19 // more functions that handle changes within the tables and update the state

20
21 return (

22 // HTML of the tables to be rendered & a button to save the data

23)

24 }

After filling in the “Threat,”“Mitigation,” and “Validation” cells, the threat tables can be
saved by clicking on the save button. This will store the threat tables in the local storage,

34 CHAPTER 5. DESIGN & IMPLEMENTATION

and a download button will appear. Clicking on this download button will conclude the
threat modeling process and allow exporting the generated data in JSON format, as shown
in Listing 5.10.

5.3 Demonstration

In this demonstration, the reader is visually guided through the application. This section
shows the discussed views and how the components are rendered on screen. The data and
diagram used in the following Figures are fictitious and serve as placeholders to showcase
the application’s MVP.

Figure 5.2 shows the landing page. It is held as minimal as possible so the user perceives
two possible actions. Namely, clicking on either the “import” or “create”button. Since the
“import” button is not implemented as mentioned, the following figures show the user’s
flow when the “create” button is clicked.

Figure 5.2: Landing Page CoReTM 2.0 MVP

At first, the user must provide a project name, as seen in Figure 5.3. This is not a crucial
functionality but should help the user give a meaningful name, which will finally be used
for the export functionality. The name of the downloaded file defaults to the project
name.

As soon as the project name is submitted, the drawio embedding is rendered. Figure 5.4
shows the iFrame of the Draw.io embedding, where the user can create the DFD using

5.3. DEMONSTRATION 35

Figure 5.3: Define Project Name

the custom stencil. When the diagram is finished, the user is supposed to click on the
“Analyse” button on the bottom right, which will trigger the parsing of the diagram.

Figure 5.4: Drawio Embedding

36 CHAPTER 5. DESIGN & IMPLEMENTATION

Figure 5.5: Overview Table

The parsing algorithm identifies all the data flows that connect two different DFD elements
and cross a trust boundary. Figure 5.5 shows the overview table generated as a result of the
analysis of the DFD. The user must describe each interaction and check the corresponding
STRIDE threats by clicking the checkboxes. When all the fields are filled out and at least
one checkbox per row is activated, the user can save the overview table and head on to
the final step in the STRIDE-per-Interaction threat modeling process.

Figure 5.6: Threat Tables

5.4. SECOND DEVELOPMENT ITERATION 37

By parsing the overview tables’ checkboxes, the threat tables are generated. They can be
partially seen in Figure 5.6. Like the overview table, the user must provide information
by typing it into the text boxes. The application hinders the user from submitting any
table (overview or threat tables) when some fields are not edited.

Finally, when all the information in the threat tables is complete, the user can click the
“Download” button. Now, the user can decide where the file should be stored, as seen in
Figure 5.7. This step completes the walk-through of the CoReTM 2.0 MVP.

Figure 5.7: Download Threat Model

5.4 Second Development Iteration

This section discusses and explains the changes and advancements of the second devel-
opment iteration. This iteration took place after presenting the MVP to the industrial
partner, and additional features and changing requirements were gathered. These can be
found in Section 4.3. Several minor changes and additions were made to the application
in this iteration, but two major ones occurred. These major changes involved creating
the import functionality and refactoring the overview and threat tables. As a result, the
author of this paper chose to examine these major changes thoroughly and only briefly
address the minor ones.

5.4.1 Minor Changes

One minor change that was not part of the feedback from the industrial partner but is
considered to improve the user experience (UX) is that when the user finishes creating

38 CHAPTER 5. DESIGN & IMPLEMENTATION

their DFD and clicks the“Next”button, an image is rendered instead of the drawio editor.
This ensures that when the overview table is shown, the user cannot change things in the
DFD that would invalidate or impact the overview table. This could also be implemented
dynamically, but it would imply that the DFD would have to be parsed for every change
within the diagram, which was decided against due to the computational overhead. To
achieve this, an export event has to be sent via the CORSCommunicator. The response
to this is a Base64 encoded SVG, which can be rendered within an HTML tag.
The result of this adjustment can be seen in Figure 5.8.

Figure 5.8: Rendering SVG after DFD completion

A further improvement to the UX has been implemented, allowing the user to download
the current state of the threat modeling process at any point. In the initial version, the
download feature was only available after the completion of the threat modeling pro-
cess, when the “Download” button would appear. This was achieved through conditional
rendering. The conditional rendering has now been updated, so the button will always
be visible once the user provides a project name. This enhancement increases flexibility
within the application, as users no longer need to finish the entire process to export it.
However, another functionality is required to fully benefit from this feature – the ability
to import an existing model. This will be addressed in the Section 5.4.2.

In the MVP feedback session, a requested feature was to visually distinguish data flows
within the DFD with unique tags. Initially, it was assumed that users could label data
flows, but the labels are not unique or mandatory. The default label is “Dataflow,” which
remains unless edited. Additionally, multiple data flows could have the same label. To
address this, the custom stencil’s metadata has been modified to enumerate data flows
automatically. This enumeration is done dynamically, based on the data flows’ creation
time, with older data flows having lower numbers and newer ones having higher numbers.

5.4. SECOND DEVELOPMENT ITERATION 39

This improvement also enhances the UX by making it easier to find the referenced data
flows in the overview table when reviewing DFD. Additionally, identifying a specific data
flow is now unambiguous, as each data flow is enumerated, ensuring uniqueness. This
behavior can be observed in the Figure 5.8.

Finally, for a last minor change, the <NotFound> component was created. This component
is rendered when a user tries to access a path not defined by the router. The router can be
seen in Listing 5.2. The component used to display a simple text with a button, without
utilizing the MUI library. This was changed to align with the overall application design.

5.4.2 Major Changes

Two significant changes and refactorings were done in the second development cycle. One
of these changes involves an entirely new addition to the code base and requires thorough
coverage. The second change relates to modifications in how tables are generated and the
functionality they provide. Since this deviates from the existing documentation in this
chapter, it is important to mention it for completeness.

Import

The import functionality is being implemented by creating the ImportController class
and the corresponding Import user interface (UI) react component. This allows users to
upload a JSON file containing project data from earlier threat modeling sessions using
CoReTM 2.0 . This data is then parsed and stored in the browser’s local storage. The
ImportController class handles the core logic for parsing and validating the imported
file content. It ensures that the JSON data is correctly formatted. On the other hand,
the Import component provides the user interface for uploading and importing the file.
The structure of the ImportController can be seen in Listing 5.19. The class contains
just one method: parseFile. This method takes a fileContent string as input and
returns a boolean value upon completion. It processes the content of the imported file
step by step using multiple if-statements and writes the content to the local storage.
The method also includes error handling; for example, if the imported diagram data is
not in the correct XML format, an alert is displayed to the user. If any other error occurs
during the method execution, the import process fails, and an error is logged into the
console. Users can view the error using the browser’s built-in developer tools.

If the user provides a valid JSON file with an existing model, all the contents are stored
in the local storage and are loaded in the modeling view. It’s important to note that the
imported model doesn’t need to be complete. Since the user can download the model
they are creating at any point during the modeling process, the import functionality must
adapt to this by supporting the import of partial models. This means that it’s possible
to, for example, import only an existing DFD without overview or threat tables. This
provides the user with maximum flexibility.

40 CHAPTER 5. DESIGN & IMPLEMENTATION

Listing 5.19: ImportController Class Definition
1 export default class ImportController {

2 parseFile(fileContent: string): { success: boolean } {

3 try {

4 const parsedData = JSON.parse(fileContent);

5 if (!parsedData) {

6 alert("Failed to parse the file. Please upload a valid model.");

7 return { success: false };

8 }

9
10 localStorage.clear();

11
12 if (parsedData.ProjectName) {

13 localStorage.setItem("ProjectName", parsedData.ProjectName);

14 }

15
16 if (parsedData.Diagram) {

17 const xmlDoc : XMLDocument = new

DOMParser().parseFromString(parsedData.Diagram, "text/xml")

18 const parseError = xmlDoc.getElementsByTagName("parsererror");

19 if (parseError.length > 0) {

20 alert("Failed to parse the Diagram XML. Please upload a valid

model.");

21 return { success: false };

22 }

23 localStorage.setItem("DrawioMsg", JSON.stringify({ xml:

parsedData.Diagram }));

24 }

25
26 if (parsedData.OverviewTable && parsedData.OverviewTable !== "[]") {

27 const overviewTable = JSON.parse(parsedData.OverviewTable);

28 localStorage.setItem("OverviewTable",

JSON.stringify(overviewTable));

29 }

30
31 if (parsedData.ThreatTables && parsedData.ThreatTables !== "[]") {

32 const threatTables = JSON.parse(parsedData.ThreatTables);

33 localStorage.setItem("ThreatTables", JSON.stringify(threatTables));

34 }

35 return { success: true };

36
37 } catch (error) {

38 console.error("Error parsing file:", error);

39 return { success: false };

40 }

41 }

42 }

The ability to import had a significant impact on the components responsible for the
rest of the threat modeling process. The system now needs to recognize if an existing
model was imported and adjust accordingly. If a complete model is imported and the
user doesn’t change anything, the imported model should be displayed. However, if the
user makes changes to, for example, the DFD after importing a model, it could affect
the overview table and the threat tables. This issue was resolved by introducing state
variables in the <DrawIO> component and the DrawioController class. These variables

5.4. SECOND DEVELOPMENT ITERATION 41

provide information about whether something was imported and if changes were made
after the import. This behavior allows for controlling the logic flow to react to changes,
such as creating a blank overview table when the DFD changes or simply displaying the
imported content. The behavior described can be observed, for example, in Listing 5.20.
First, it checks if an overview table has been imported and whether the DFD did not
change after being imported. If this is the case, the imported table can be displayed.
Otherwise, if the overview table was not imported or if the diagram changed after the
import, the diagram must be analyzed, and a blank overview table must be displayed.

Listing 5.20: Logic for Handling the Next Button Click

1 function handleClickNextButton() {

2 const importedOverviewTable = localStorage.getItem("OverviewTable");

3
4 if (!drawioController!.getChangedAfterImported() && importedOverviewTable) {

5 const parsedOverviewTable = JSON.parse(importedOverviewTable)

6 tablesController!.createOverviewTableFromImport(parsedOverviewTable);

7 setOverviewTableImported(true);

8 setOverviewTable(tablesController!.getOverviewTable());

9 drawioController!.exportDiagram();

10 setShowOverviewTable(true);

11 } else {

12 const {crossingElements, invalidDataflows} = drawioController!.parseXml();

13 if (crossingElements.length > 0) {

14 if (!invalidDataflows) {

15 tablesController!.createOverviewTableFromDrawio(crossingElements);

16 setOverviewTable(tablesController!.getOverviewTable());

17 drawioController!.exportDiagram();

18 setShowOverviewTable(true);

19 }

20 } else {

21 alert("There are no dataflows crossing a trust boundary. Therefore

STRIDE-per-Interaction cannot be applied.");

22 }

23 }

24 }

Table Generation

In the second iteration of development, there were significant changes to the strategy of
how the threat and overview tables are generated, along with adding some new function-
alities. Following feedback on the MVP, the industrial partner requested changes to these
tables as detailed in Section 4.3. Specifically, they asked for the following modifications:
1) The threat tables should be dependent on the trust boundaries rather than the rows
within the overview table, and 2) the threat tables should allow for the addition of more
rows, for example, when multiple threats of the same STRIDE-type exist within a specific
interaction.

The import functionality resulted in certain architectural changes. Specifically, the Ta-

blesController is now responsible for generating different types of tables, which are
then passed down to the UI components (<OverviewTable> and <ThreatTables>). In

42 CHAPTER 5. DESIGN & IMPLEMENTATION

the MVP, the overview table was directly passed down to the <ThreatTables>. The
threat tables were then generated within the UI component. Additionally, after the user
submits the overview table by clicking on the “Save” button, the overview table becomes
disabled, meaning it can no longer be edited. This is important to ensure that the in-
formation and dimensions of the threat tables remain correct after being generated upon
submission of the overview table.

Importing threat tables requires some special considerations. For instance, if a user im-
ports an existing model and makes no changes in the DFD but selects some new check-
boxes (or unselects) within the imported overview table, the normal behavior would be
to generate blank threat tables. As a result, the user would need to provide all the threat
descriptions, mitigation strategies, and validation mechanisms again, even for threats that
did not change at all. However, the author found this behavior undesirable because it
forces the user to repeat already done work. Therefore, a mechanism was implemented to
check if some threats already existed and are still present even though the overview table
changed. When this is the case, the information from the imported threat tables is still
displayed. Additionally, newly checked threats in the overview table will appear as blank
rows within the threat tables. This way, the user does not have to worry about losing
progress when making minor changes to the overview table. This is implemented within
the TablesController and can be seen in Listing 5.21.

Listing 5.21: Update generated Threat Tables from Import Data
1 public updateThreatTable(importedThreatTable: IThreatTableRow[][]) {

2 this.generateThreatTables()

3 importedThreatTable.forEach((table, tableIndex) => {

4 table.forEach((row) => {

5 const existingTable = this.threatTables[tableIndex];

6
7 if (existingTable) {

8 const existingRow = existingTable.find(existingRow =>

existingRow.threatId === row.threatId);

9
10 if (existingRow) {

11 Object.assign(existingRow, row);

12 } else {

13 existingTable.push(row);

14 }

15 } else {

16 this.threatTables[tableIndex] = [row];

17 }

18 });

19 });

20 }

Chapter 6

Evaluation

The evaluation of CoReTM 2.0 took place with the industrial partner after completing the
second development iteration. A“User-Centered Evaluation”methodology [59] was chosen
to assess the software. During a remote meeting, the industry partner ran the software
on his machine and shared his screen. This meeting was recorded, and the evaluation
is based on the analysis of this recording. He was instructed to use the application and
attempt to create a threat model himself. The purpose was to observe his behavior and
assess how intuitive and effective the application was. He was also asked to verbalize
his thought process (i.e., think-aloud) as he interacted with the software, giving insight
into his cognitive processes. The partner’s task was to create a new threat model using
the STRIDE-per-Interaction methodology and download it at the end. If he encountered
difficulties, the evaluator provided hints to prevent any deadlocks.

During the process, the industrial partner provided valuable suggestions for improvements
based on his experience as a software architect. He clearly understood what constitutes
a good application in both UI and UX. Subsequently, the partner was asked to provide
feedback through a questionnaire. This questionnaire allowed the author to gather specific
feedback. It allowed the partner to elaborate on the positive and negative aspects of
using the software, leading to the discovery of potential areas for future work and possible
improvements. The findings of this process are elaborated on in Section 6.2.

6.1 Questionnaire

The questionnaire assesses various aspects of the application, including functionality, com-
pleteness, usability, user interface, and integration/compatibility. By analyzing each of
these aspects, the author aims to determine how well the application fulfills its intended
purpose and performs in real-world scenarios. Additionally, organizing the critique based
on these aspects helps the author identify areas for improvement in future work.

The Functionality dimension evaluates whether the application fulfills the given require-
ments and aligns with the original specifications. It also assesses whether the applica-
tion produces consistent results compared to the manual application of the STRIDE-per-

43

44 CHAPTER 6. EVALUATION

Interaction method, ensuring that the tool’s output is reliable and accurate. This is being
gathered through the following questions.

Q1) Are there discrepancies between the originally defined requirements and the actual
implementation of the application?

Q2) Does the application produce the same results as the manual application of the
STRIDE-per-Interaction method?

Completeness examines whether the STRIDE-per-Interaction methodology is fully sup-
ported by the application, ensuring that all necessary features are implemented. It also
identifies any gaps in functionality, such as missing features that were initially planned
but not implemented, which could impact the overall effectiveness of the application. For
that, the following two questions were posed.

Q3) Is the STRIDE-per-Interaction methodology fully supported by the application?

Q4) Are there any functionalities that were not implemented or are missing?

Another dimension is Usability. It focuses on how easy and intuitive the application is
for users. It includes an assessment using the SUS [60] and evaluates whether any steps in
the threat modeling process are unclear or confusing. Additionally, it considers whether
the application enhances the efficiency of the threat modeling process, reducing the time
and effort required compared to manual methods.

Q5) System Usability Scale

Q6) Were there any steps in the threat modeling process that were unclear or confusing?

Q7) Does the application speed up the threat modeling process compared to manual
execution?

The UI dimension assesses the design and structure of the application’s interface, ensuring
it is well-organized and user-friendly. It also evaluates the effectiveness of feedback mech-
anisms, such as notifications for task completion or errors. It determines if the application
provides adequate support when users make mistakes, guiding them effectively toward the
correct input. This dimension is investigated through the following three questions.

Q8) Is the interface well-designed and well-structured?

Q9) Does the application provide clear feedback during use, e.g., when a task is com-
pleted, or an error occurs?

Q10) Does the application support the user in case of incorrect input? If so, is the
assistance sufficient and informative?

6.2. RESULTS 45

Finally, Integration and Compatibility examines how well the application fits into existing
organizational processes and tools. It also assesses whether the application performs
smoothly across different devices and browsers, ensuring broad accessibility and usability
in various technical environments.

Q11) Does the application allow seamless integration into existing processes or tools of
the company?

Q12) Does the application work smoothly on different devices and across various browsers?

6.2 Results

This section discusses the results from the think-aloud, questionnaire and the SUS score.
Many of the questions were already partially covered when the industrial partner walked
through the application and asked what came into his mind; therefore, some redundancy
existed afterward when he was posed the questions. The following list gathers all the
feedback from the think-aloud part.

1. The CoReTM stencil library should be open by default upon starting the application.

2. Users should only be allowed to modify the label of elements within the library;
other characteristics should remain unchangeable.

3. IDs in the threat tables should begin at 1 rather than 0 for clarity and consistency.

4. The description field in the overview table should always display the label of the
dataflow instead of being left empty.

5. The button beneath the overview table should display “Save” only if changes have
been made after an import; otherwise, it should say “Next”.

6. Adding a button to navigate one step back in the threat modeling process would
enhance user control and flexibility.

7. The backgrounds of all labels within the DFD should be set to transparent to avoid
confusion when the diagram is rendered as an SVG, where labels might resemble
external entities.

8. Text fields within the threat and overview tables should expand when clicked, im-
proving readability beyond the field’s initial size.

9. Increase the whitespace between the threat and overview tables for a cleaner layout.

10. Include a title for the overview table.

11. Add more whitespace between the SVG diagram and the overview table to improve
visual separation.

46 CHAPTER 6. EVALUATION

12. Align the title of the text fields in the threat and overview tables to the left for
better consistency and readability.

13. The checkboxes within the overview table should have a color contrasting more
strongly with the table’s blue background.

14. In the threat tables, the icon for adding a new row should be green, and the icon for
deleting a row should be red. Alternatively, both icons could be white for uniformity.

15. The borders of the main container should have consistent spacing from the sides,
top, and bottom.

16. The menu bar of the Draw.io editor should be hidden to reduce visual clutter.

17. Ensure that all buttons are the same length for a more uniform appearance.

18. Arrange the buttons horizontally rather than vertically for a more streamlined in-
terface.

19. The “Home” button appears unexpectedly after the “Download” button is clicked,
which is confusing. Functions should not be hidden; consider disabling it instead or
providing feedback that clicking “Home” will result in progress loss.

20. The project name should be displayed as a general title rather than within the
iFrame after the DFD is submitted.

21. Upon submitting the overview table, the container loses its top and bottom margins,
expanding to fill the entire screen. This should be adjusted for consistency.

22. Additional export formats, such as HTML, PDF, or Markdown, would be highly
beneficial for utilizing the threat model after its creation.

23. The application could be further enhanced by including a risk assessment feature,
such as DREAD, following the completion of threat modeling.

24. When modeling larger systems, it would be beneficial to be able to collapse the
tables to reduce scrolling.

25. The system alerts when the tables are not completely filled out, but it would be
helpful to highlight the empty fields then.

26. An “Info” button could be useful for new users who have never interacted with the
tool.

Another issue that hasn’t been listed is that the import function didn’t work on the
partner’s Linux-based computer when using the Firefox browser. However, this couldn’t
be replicated on other browsers and machines. It’s worth noting that the application was
developed using Chrome as the browser, and this information has now been included in
the README file for future reference in case someone encounters the same issue.

These points are categorized according to the dimensions outlined in Section 6.1: func-
tionality, completeness, usability, user interface, and integration and compatibility. Each

6.2. RESULTS 47

point is classified within these dimensions and assigned to a specific category. This is
depicted in Table 6.1. The possible categories include:

• UX Improvements : Enhancements that refine the user experience, making the appli-
cation more intuitive, user-friendly, and visually appealing. These are often related
to the user interface or minor tweaks that improve interaction without altering core
functionality.

• Feature: New capabilities or functionalities that the application currently lacks.
These could be additions that provide more value to the users by expanding the
application’s capabilities or addressing unmet needs.

• Bug : Issues where the application does not function as intended or where existing
functionality is broken. Bugs can range from minor visual glitches to significant
errors that hinder the application’s operation or user experience.

Table 6.1: Categorization of the Feedback

Dimension Category

1 UI, Usability UX Improvement
2 Functionality, Usability UX Improvement
3 Usability UX Improvement
4 Completeness, Usability UX Improvement
5 Usability UX Improvement
6 Functionality, UI, Usability Feature
7 Completeness, UI, Usability UX Improvement
8 Functionality, UI, Usability Feature
9 UI, Usability UX Improvement
10 UI, Usability UX Improvement
11 UI, Usability UX Improvement
12 UI, Usability UX Improvement
13 UI UX Improvement
14 UI, Usability UX Improvement
15 UI UX Improvement
16 Usability UX Improvement
17 UI UX Improvement
18 UI UX Improvement
19 Functionality, Usability Feature
20 UI UX Improvement
21 UI UX Improvement
22 Functionality, Integration & Compatibility Feature
23 Functionality, Integration & Compatibility, UI, Usability Feature
24 Functionality, UI, Usability Feature
25 Functionality, UI, Usability Feature
26 Functionality, UI, Usability Feature

48 CHAPTER 6. EVALUATION

Based on the feedback received during the think-aloud process, it was evident that the ap-
plication met the demands of the industrial partner. There is certainly room for improve-
ment and expansion of the application’s capabilities in the future, with 69.2% focusing on
UX improvements (18 out of 26), 30.8% on features (6 out of 26), and 0% on bugs (0 out
of 26). It’s worth noting that no precise UI requirements were specified since the primary
goal of this thesis is to evaluate whether the STRIDE-per-Interaction methodology can
be partially automated and supported. This may be one reason for the numerous issues
in that area, as approximately 73% (19 out of 26) of the problems at least partially target
the UI dimension. This analysis aligns quite well with the questionnaire results, which
are shown in Table 6.2.

Table 6.2: Answers to the Questionnaire Section 6.1
Answer

Q1 Only minimally, the IDs of the elements are represented differently but fulfill the same purpose.
Q2 Yes, the tables are being generated. The user is supported as requested.
Q3 This was answered in the previous question and the think-aloud process.
Q4 Refer to the Table 6.1
Q5 Score: 90/100
Q6 The sudden appearance of the “Home” button was confusing. The rest was exactly as specified.
Q7 Yes, it would be ingenious if the export functionality supported different formats.
Q8 Yes, the overview is given. Theoretically, the tables could be collapsed depending on the step the user is in.
Q9 Sometimes, when filling out the tables, feedback is provided. A “Help” button could be useful.
Q10 Incorrect input is hardly possible. Only in the DFD, but there, the user is informed when using illicit elements.
Q11 No, a DREAD analysis and other export formats would be needed for this.
Q12 The file could not be imported using the Firefox browser.

One key aspect covered in the questionnaire but not during the think-aloud process is the
SUS (i.e., Q5). The SUS evaluation was conducted using a survey, which can be found in
Appendix A. SUS measures three key usability aspects: effectiveness (i.e., whether users
can achieve their goals using the system), efficiency (i.e., how quickly and easily users
can perform tasks), and satisfaction (i.e., how pleasant the experience is) [60]. According
to the industrial partner’s assessment, CoReTM 2.0 achieved a SUS score of 90 out of
100, which is exceptionally high. With this score, the application would be graded as A+
and fall in the “Best Imaginable” category [61]. This suggests that the industrial partner
is highly satisfied with the system and perceives significant value in it. While the SUS
primarily evaluates system usability, the presence of several potential UX improvements
and additional features indicates that there is still substantial room for growth. The
author believes that, rather than seeing only 10 points left to achieve a “perfect” score,
there are broader opportunities for enhancements, which could push the SUS score even
higher if addressed effectively.

6.3. FINDINGS 49

6.3 Findings

The evaluation of CoReTM 2.0 indicates that the industrial partner is delighted with the
product developed in this project. While there remain opportunities for improvement, the
application successfully fulfills its intended purpose and meets the expectations outlined in
the provided requirements. Specifically, the software fully supports the application of the
STRIDE-per-Interaction methodology and semi-automates several time-consuming tasks.
This represents a significant advancement, as discussed in Chapter 3, where it was noted
that no such tool previously existed, to the author’s knowledge. Although the application
is not yet ready for deployment in real-world scenarios – primarily due to the limited
export functionality, which currently only supports JSON – it establishes a strong foun-
dation for future enhancements. The repository has been published under the Apache-2.0
license [62], enabling future developers to contribute to the code, create their own im-
plementations, and even use the tool commercially if desired. This contribution marks
an essential step toward providing a tool that fully supports the STRIDE-per-Interaction
methodology while offering flexibility for community-driven improvements. This thesis
could also inspire the development of tools that semi-automate various methodologies
using a similar approach by demonstrating that threat modeling methodologies such as
STRIDE-per-Interaction can be partially automated. This would benefit the threat mod-
eling domain by significantly reducing the manual effort required, thereby enhancing the
efficiency and scalability of the threat modeling process. This could lead to broader adop-
tion of threat modeling techniques in industries where security is a critical concern but
resources for such activities are limited.

Additionally, the success of this project may encourage further research and development
into automated or semi-automated solutions for other complex security methodologies.
By lowering the barrier for implementation, these tools could make sophisticated threat
analysis more accessible to a broader range of organizations, fostering a more proactive
approach to cybersecurity. Ultimately, this would improve security practices across vari-
ous sectors, as businesses of all sizes could benefit from streamlined threat identification
and mitigation processes. In conclusion, while there are still areas for enhancement, the
developed tool already represents a crucial step forward in the field of semi-automated
threat modeling. It addresses a significant gap, as noted in Chapter 3, and opens new
avenues for future innovations that could revolutionize how threat modeling is conducted
in practice.

50 CHAPTER 6. EVALUATION

Chapter 7

Summary

In summary, this thesis contributes to the domain of threat modeling by delivering a
functional implementation of the CoReTM framework and offering a semi-automated ap-
plication of the STRIDE-per-Interaction methodology. This methodology, which focuses
on identifying security threats arising from the interactions between different system com-
ponents, requires the system to be modeled in a DFD.

This is enabled by embedding Draw.io within CoReTM 2.0 , where users can construct
diagrams using a custom stencil library specifically designed for this purpose. Once the
DFD is created, the software steps in to automate parts of the process. It parses the
diagram and generates an overview table – traditionally a labor-intensive task – by ex-
tracting and organizing key information from the diagram elements, such as metadata
related to coordinates, labels, and connections established through data flows. This inter-
nal representation of the DFD allows the software to deduce the dimensions and structure
of the overview table, thus streamlining the process and minimizing manual input. The
semi-automation extends further by supporting the generation of threat tables after the
overview table has been completed, once again reducing user effort by automating repet-
itive tasks.

The evaluation of CoReTM 2.0 was conducted using a user-centered approach in col-
laboration with an industrial partner. The assessment yielded positive results, with no
bugs identified and a high SUS score indicating a high level of satisfaction. The current
version of the software has made progress, but it is not yet fully ready for deployment
in real-world scenarios. It requires further development to incorporate several important
features that are discussed in the future work section 7.1.

Notably, the industrial partner confirmed that the key requirements were met. However,
some new features emerged during development, such as rendering the DFD as an SVG
upon submission and organizing threat tables based on trust boundaries rather than rows
from the overview table. These additional features, while valuable, were not part of the
original requirements and emerged during the development process, leading the author
to adapt the implementation accordingly. Overall, the thesis lays a strong foundation for
further development, with the semi-automation of threat modeling being a promising step
towards improving efficiency in identifying and addressing security risks.

51

52 CHAPTER 7. SUMMARY

7.1 Future Work

As outlined in Section 6.1, there are several key areas for future improvements to CoReTM
2.0 that were identified during the evaluation phase and are summarized in Table 6.1.
While not all issues in the table are equally important, all of them would enhance or
expand the application’s capabilities. For instance, certain UX improvements, such as
left-aligning some columns in the overview and threat tables, adjusting colors for better
contrast, and ensuring that IDs in the threat tables start at 1 rather than 0, may be
considered non-critical when compared to others. In this section, the focus is on two
enhancements that would significantly improve the usability of the application in a real-
world scenario.

The most critical enhancement suggested by the industrial partner is the ability to export
threat models in more user-friendly formats, such as HTML, PDF, or Markdown. Im-
plementing this functionality would significantly increase CoReTM 2.0 ’s practical utility,
allowing the partner to immediately use the tool for generating client reports. Another
potential improvement is related to text field usability, particularly when importing ex-
isting models. Currently, text fields do not display their full content, making it difficult
to review imported information. A potential solution could involve expanding text fields
or enabling a pop-up text box when clicking on a table cell, allowing for easier reading
and interaction.

In addition to these primary features, there are numerous opportunities to improve the
UX across the application. Beyond functional improvements, the project is designed with
future adaptability in mind. The code has been published under the Apache-2.0 license,
which permits future developers to build upon it without concerns about copyright in-
fringement. This licensing choice aims to foster ongoing development, encouraging others
to refine or extend the application’s core features and functionalities to suit their specific
needs, ensuring the long-term evolution and relevance of CoReTM 2.0 .

Bibliography

[1] A. Bendovschi, “Cyber-Attacks – Trends, Patterns and Security Countermeasures”,
Procedia Economics and Finance, vol. 28, pp. 24–31, Apr. 2015.

[2] Bueermann, Gretchen and Rohrs, Michael, Global Cybersecurity Outlook 2024, Last
Accessed: 09.09.2024, Jan. 2024. [Online]. Available: https://www3.weforum.org/
docs/WEF_Global_Cybersecurity_Outlook_2024.pdf.

[3] Z. Shi, K. Graffi, D. Starobinski, and N. Matyunin, “Threat Modeling Tools: A
Taxonomy”, IEEE Security & Privacy, vol. 20, no. 4, pp. 29–39, Dec. 2022.

[4] A. Shostack, Threat Modeling: Designing for Security, 1st. John Wiley & Sons, Inc.,
Feb. 2014.

[5] J. Von Der Assen, M. F. Franco, C. Killer, E. J. Scheid, and B. Stiller, “CoReTM:
An Approach Enabling Cross-Functional Collaborative Threat Modeling”, in 2022
IEEE International Conference on Cyber Security and Resilience (CSR), IEEE,
Rhodes, Greece, Jul. 2022, pp. 189–196.

[6] Jan von der Assen, Collaborative and Remote Threat Modeling, Last Accessed:
27.05.2024, Jan. 2022. [Online]. Available: https : / / github . com / jvdassen /

coretm.

[7] M. Howard and S. Lipner, The security development lifecycle. Microsoft Press, Jun.
2006, vol. 8.

[8] D. B. Parker, Fighting computer crime: A new framework for protecting information.
John Wiley & Sons, Inc., Aug. 1998.

[9] L. O. Nweke and S. D., “A Review of Asset-Centric Threat Modelling Approaches”,
International Journal of Advanced Computer Science and Applications, vol. 11,
no. 2, 2020.

[10] M. Corporation, Improving web application security: threats and countermeasures.
Microsoft Press, Sep. 2003.

[11] A. Amini, N. Jamil, A. R. Ahmad, and M. R. Zaba, “Threat Modeling Approaches
for Securing Cloud Computing”, Journal of Applied Sciences, vol. 15, no. 7, pp. 953–
967, Jul. 2015.

[12] T. UcedaVelez and M. M. Morana, Risk Centric Threat Modeling: process for attack
simulation and threat analysis. John Wiley & Sons, May 2015.

[13] M. Abomhara, M. Gerdes, and G. M. Køien, “A STRIDE-Based Threat Model for
Telehealth Systems”, Norsk informasjonssikkerhetskonferanse (NISK), vol. 8, no. 1,
pp. 82–96, Nov. 2015.

53

54 BIBLIOGRAPHY

[14] L. Kohnfelder and P. Garg, “The threats to our products”, Microsoft Interface,
Microsoft Corporation, vol. 33, Apr. 1999.

[15] F. Swiderski and W. Snyder, Threat modeling. Microsoft Press, Jul. 2004.

[16] P. Torr, “Demystifying the threat modeling process”, IEEE Security & Privacy,
vol. 3, no. 5, pp. 66–70, Oct. 2005.

[17] Microsoft Inc., Uncover Security Design Flaws Using The STRIDE Approach, Last
Accessed: 27.04.2024, Jul. 2019. [Online]. Available: https://learn.microsoft.
com/en- us/archive/msdn- magazine/2006/november/uncover- security-

design-flaws-using-the-stride-approach.

[18] CAIRIS, CAIRIS: threat modelling with DFDs and attack trees, Last Accessed:
09.05.2024, Aug. 2019. [Online]. Available: https://www.youtube.com/watch?
v=kJ2NUelcM_o.

[19] S. Faily, Designing usable and secure software with IRIS and CAIRIS. Springer,
Apr. 2018.

[20] K. Tan and V. Garg, An analysis of open-source automated threat modeling tools and
their extensibility from security into privacy, Last Accessed: 12.09.2024, Feb. 2022.
[Online]. Available: https://www.usenix.org/publications/loginonline/
analysis-open-source-automated-threat-modeling-tools-and-their.

[21] S. Faily and C. Iacob,“Design as Code: Facilitating Collaboration Between Usability
and Security Engineers Using CAIRIS”, in 2017 IEEE 25th International Require-
ments Engineering Conference Workshops (REW), IEEE, Lisbon, Portugal, Sep.
2017, pp. 76–82.

[22] CAIRIS, Computer Aided Integration of Requirements and Information Security -
Server, Last Accessed: 30.05.2024, May 2024. [Online]. Available: https://github.
com/cairis-platform/cairis.

[23] CAIRIS, Starting CAIRIS, Last Accessed: 30.05.2024, Dec. 2021. [Online]. Avail-
able: https://cairis.readthedocs.io/en/latest/starting.html.

[24] Jan von der Assen, MetaProcess dizmo, Last Accessed: 27.05.2024, Jun. 2022. [On-
line]. Available: https://github.com/jvdassen/coretm-process.

[25] J. von der Assen, M. F. Franco, C. Killer, E. J. Scheid, and B. Stiller, “On collabora-
tive threat modeling”, IFI-TecReport No. 2022.04, Zürich, Switzerland, Tech. Rep.,
Apr. 2022.

[26] Jonny Tennyson, STRIDE and CAPEC with IriusRisk, Last Accessed: 06.05.2024,
Jun. 2022. [Online]. Available: https://www.iriusrisk.com/resources-blog/
stride-and-capec-with-iriusrisk.

[27] IriusRisk, The Open Threat Modeling platform, Last Accessed: 27.05.2024, Sep. 2023.
[Online]. Available: https://github.com/iriusrisk/Community.

[28] IriusRisk, Pricing, Last Accessed: 27.05.2024. [Online]. Available: https://www.
iriusrisk.com/plans.

[29] IriusRisk, Threat Modeling Methodologies, Last Accessed: 27.05.2024. [Online]. Avail-
able: https://www.iriusrisk.com/threat-modeling-methodologies.

BIBLIOGRAPHY 55

[30] David Doughty, Applying STRIDE Methodology to Threat Model a New Compo-
nent, Last Accessed: 27.05.2024, Apr. 2023. [Online]. Available: https://www.
iriusrisk.com/resources-blog/applying-stride-methodology-to-threat-

model-a-new-component.

[31] Rhys McNeill, IriusRisk Installation Guide, Last Accessed: 03.06.2024, Jun. 2024.
[Online]. Available: https://support.iriusrisk.com/hc/en- us/articles/
16491409456541-IriusRisk-Installation-Guide.

[32] E. A. AbuEmera, H. A. ElZouka, and A. A. Saad, “Security Framework for Identi-
fying threats in Smart Manufacturing Systems Using STRIDE Approach”, in 2022
2nd International Conference on Consumer Electronics and Computer Engineering
(ICCECE), Guangzhou, China: IEEE, Jan. 2022, pp. 605–612.

[33] Y. U. Mulla, A. Chavekar, S. Mane, and F. Kazi, “Threat Modeling of Cube Orange
Based Unmanned Aerial Vehicle System”, in 2023 IEEE International Carnahan
Conference on Security Technology (ICCST), Pune, India: IEEE, Oct. 2023, pp. 1–
6.

[34] L. H. Fl̊a, R. Borgaonkar, I. A. Tøndel, and M. Gilje Jaatun, “Tool-assisted Threat
Modeling for Smart Grid Cyber Security”, in 2021 International Conference on
Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), Dublin,
Ireland: IEEE, Jun. 2021, pp. 1–8.

[35] A. Karahasanovic, P. Kleberger, and M. Almgren, “Adapting threat modeling meth-
ods for the automotive industry”, in Proceedings of the 15th ESCAR Conference,
Berlin, Germany, Nov. 2017, pp. 1–10.

[36] E. Bygd̊as, L. A. Jaatun, S. B. Antonsen, A. Ringen, and E. Eiring, “Evaluating
Threat Modeling Tools: Microsoft TMT versus OWASP Threat Dragon”, in 2021
International Conference on Cyber Situational Awareness, Data Analytics and As-
sessment (CyberSA), Dublin, Ireland: IEEE, Jun. 2021, pp. 1–7.

[37] Microsoft Inc., Microsoft Threat Modeling Tool, Last Accessed: 28.05.2024, Aug.
2022. [Online]. Available: https : / / learn . microsoft . com / en - us / azure /

security/develop/threat-modeling-tool.

[38] K. Tuma and R. Scandariato, “Two architectural threat analysis techniques com-
pared”, in Software Architecture: 12th European Conference on Software Architec-
ture, Proceedings 12, Springer, Madrid, Spain, Sep. 2018, pp. 347–363.

[39] Microsoft Inc., Threat Modeling Tool Releases, Last Accessed: 28.05.2024, Jan. 2023.
[Online]. Available: https://learn.microsoft.com/en-us/azure/security/
develop/threat-modeling-tool-releases.

[40] OWASP Foundation Inc., OWASP Threat Dragon, Last Accessed: 28.05.2024, Feb.
2024. [Online]. Available: https://owasp.org/www-project-threat-dragon/
docs-2/about/.

[41] Open Security Summit, Lightning Demo - Threatmodel Tool Demos by Steven Wier-
ckx and Mike Goodwin - 16 Jun, Last Accessed: 28.05.2024, Jun. 2020. [Online].
Available: https://www.youtube.com/watch?v=n6JGcZGFq5o.

[42] Christian Schneider, Agile Threat Modeling Toolkit, Last Accessed: 29.05.2024, May
2024. [Online]. Available: https://github.com/Threagile/threagile.

56 BIBLIOGRAPHY

[43] Christian Schneider, Threagile - Agile Threat Modeling, Last Accessed: 29.05.2024,
2020. [Online]. Available: https://threagile.io/.

[44] M. Sedlmair, M. Meyer, and T. Munzner, “Design study methodology: Reflections
from the trenches and the stacks”, IEEE Transactions on Visualization and Com-
puter Graphics, vol. 18, no. 12, pp. 2431–2440, Dec. 2012.

[45] JGraph Ltd and draw.io AG, Draw.io, Last Accessed: 04.06.2024, Jun. 2024. [On-
line]. Available: https://github.com/jgraph/drawio.

[46] JGraph Ltd and draw.io AG, About draw.io, Last Accessed: 04.06.2024. [Online].
Available: https://www.drawio.com/about.

[47] JGraph Ltd and draw.io AG, Features of draw.io, Last Accessed: 04.06.2024. [On-
line]. Available: https://www.drawio.com/features.

[48] Microsoft Inc., The TypeScript Handbook, Last Accessed: 19.08.2024. [Online]. Avail-
able: https://www.typescriptlang.org/docs/handbook/intro.html.

[49] Stack Exchange, Programming, scripting, and markup languages, Last Accessed:
22.07.2024, Jul. 2024. [Online]. Available: https://survey.stackoverflow.co/
2024/technology#2-programming-scripting-and-markup-languages.

[50] Meta Platforms Inc., The library for web and native user interfaces, Last Accessed:
20.08.2024. [Online]. Available: https://react.dev/.

[51] JGraph Ltd and draw.io AG, Work with custom shape libraries, Last Accessed:
22.07.2024, Apr. 2020. [Online]. Available: https : / / www . drawio . com / blog /
custom-libraries.

[52] Jan, von der Assen, ThreatFinder, Last Accessed: 22.07.2024. [Online]. Available:
https://threatfinder-ai.pages.dev/.

[53] Jan von der Assen, Threat Modeling for AI Systems, Last Accessed: 22.07.2024, Jun.
2024. [Online]. Available: https://github.com/jvdassen/ThreatFinder.ai.

[54] MUI, Material UI: React components that implement Material Design, Last Ac-
cessed: 22.07.2024. [Online]. Available: https://mui.com/material-ui/.

[55] Mozilla Foundation, Web Storage API, Last Accessed: 20.08.2024. [Online]. Avail-
able: https : / / developer . mozilla . org / en - US / docs / Web / API / Window /

localStorage.

[56] Remix Software Inc., React Router, Last Accessed: 23.07.2024. [Online]. Available:
https://reactrouter.com/en/main.

[57] JSON.org, Introducing JSON, Last Accessed: 20.08.2024. [Online]. Available: https:
//www.json.org/json-en.html.

[58] JGraph Ltd and draw.io AG, Embed mode, Last Accessed: 29.07.2024. [Online].
Available: https://www.drawio.com/doc/faq/embed-mode.

[59] J. Karat,“User-Centered Software Evaluation Methodologies”, inHandbook of Human-
Computer Interaction, M. G. Helander, T. K. Landauer, and P. V. Prabhu, Eds.,
Second Edition. North-Holland, 1997, pp. 689–704.

[60] J. Brooke,“SUS: A quick and dirty usability scale”, Usability Evaluation in Industry,
vol. 189, Nov. 1995.

BIBLIOGRAPHY 57

[61] Jeff Sauro, 5 Ways to Interpret a SUS Score, Last Accessed: 09.09.2024, Sep. 2018.
[Online]. Available: https://measuringu.com/interpret-sus-score/.

[62] Apache Software Foundation,Apache License, Version 2.0, Last Accessed: 05.09.2024,
Jan. 2004. [Online]. Available: https://www.apache.org/licenses/LICENSE-2.0.

58 BIBLIOGRAPHY

Abbreviations

CAIRIS Computer Aided Integration of Requirements and Information Security
CSS Cascading Style Sheets
DFD Data Flow Diagram
DoS Denial of Service
JSON JavaScript Object Notation
MTMT Microsoft Threat Modeling Tool
MUI Material UI
MVP Minimum Viable Product
SUS System Usability Scale
TD Threat Dragon
UX User Experience
UI User Interface

59

60 ABBREVIATONS

List of Figures

2.1 Security Development Lifecycle Process Diagram 4

2.2 DFD Symbols extension to [4] . 6

2.3 DFD of an Example System . 7

4.1 Architectural Diagram of the CoReTM 2.0 MVP 17

5.1 Visualization of Element’s Calculation Within Trust Boundary 31

5.2 Landing Page CoReTM 2.0 MVP . 34

5.3 Define Project Name . 35

5.4 Drawio Embedding . 35

5.5 Overview Table . 36

5.6 Threat Tables . 36

5.7 Download Threat Model . 37

5.8 Rendering SVG after DFD completion . 38

61

62 LIST OF FIGURES

List of Tables

2.1 STRIDE-per-Interaction: Threat Applicability Overview 7

3.1 Comparison of Different Threat Modeling Tools 10

4.1 Overview Requirements for the MVP Prototype 16

6.1 Categorization of the Feedback . 47

6.2 Answers to the Questionnaire Section 6.1 48

63

64 LIST OF TABLES

Listings

5.1 Showcase different Links to Routes . 21
5.2 Definition of the Routes within the Application 22
5.3 Definition of the IElement Interface . 23
5.4 Definition of the ITrustBoundary Interface 23
5.5 Definition of the IDataFlow Interface . 23
5.6 Definition of the IDiagram Interface . 24
5.7 Definition of the ICrossingElements Interface 24
5.8 Definition of the IOverviewTableRow Interface 24
5.9 Definition of the IThreatTableRow Interface 25
5.10 Exporting Local State to JSON and Invoking Download 26
5.11 DrawioController Constructor . 26
5.12 IFrame of Draw.io embedding . 27
5.13 Incoming Events from Draw.io . 28
5.14 Parsing invocation within the DrawioController 29
5.15 Parsing the XMLDocument within the DiagramAnalyser Class 30
5.16 2D Calculation to determine if Element is in Trust Boundary 31
5.17 Function Definition of the OverviewTable Component 32
5.18 Function Definition of the ThreatTables Component 33
5.19 ImportController Class Definition . 40
5.20 Logic for Handling the Next Button Click 41
5.21 Update generated Threat Tables from Import Data 42

65

66 LISTINGS

Appendix A

System Usability Scale

67

app.surveylab.com

COUNTRY

en

LANGUAGE

2024/08/28 09:51:36

DATE

26124380

RESPONSE KEY

1 min. 16 sec.

TIME SPENT

Desktop

DEVICE

Windows 10.0

SYSTEM

Chrome 113.0.5666.197

BROWSER

1 I think that I would like to use this system frequently.

1 = strongly disagree, 5 strongly agree

90
0% 100%

SUS

Nazwa Strony

1 2 (1 pts) 3 (2 pts) 4 (3 pts) 5 (4 pts)

2 I found the system unnecessarily complex.

1 = strongly disagree, 5 strongly agree

3 I thought the system was easy to use.

1 = strongly disagree, 5 strongly agree

4 I think that I would need the support of a technical person to be able to use this
system.

1 = strongly disagree, 5 strongly agree

5 I found the various functions in this system were well integrated.

1 = strongly disagree, 5 strongly agree

6 I thought there was too much inconsistency in this system.

1 = strongly disagree, 5 strongly agree

1 (4 pts) 2 (3 pts) 3 (2 pts) 4 (1 pts) 5

1 2 (1 pts) 3 (2 pts) 4 (3 pts) 5 (4 pts)

1 (4 pts) 2 (3 pts) 3 (2 pts) 4 (1 pts) 5

1 2 (1 pts) 3 (2 pts) 4 (3 pts) 5 (4 pts)

1 (4 pts) 2 (3 pts) 3 (2 pts) 4 (1 pts) 5

7 I would imagine that most people would learn to use this system very quickly.

1 = strongly disagree, 5 strongly agree

8 I found the system very cumbersome to use.

1 = strongly disagree, 5 strongly agree

9 I felt very confident using the system.

1 = strongly disagree, 5 strongly agree

10 I needed to learn a lot of things before I could get going with this system.

1 = strongly disagree, 5 strongly agree

1 2 (1 pts) 3 (2 pts) 4 (3 pts) 5 (4 pts)

1 (4 pts) 2 (3 pts) 3 (2 pts) 4 (1 pts) 5

1 2 (1 pts) 3 (2 pts) 4 (3 pts) 5 (4 pts)

1 (4 pts) 2 (3 pts) 3 (2 pts) 4 (1 pts) 5

Appendix B

Installation Guidelines

The installation guidelines as well as the source code can be found at:

https://github.com/mirovv/CoReTM-2.0

71

72 APPENDIX B. INSTALLATION GUIDELINES

Appendix C

Contents of the CD

• Thesis (.pdf)

• Midterm Presentation (.pptx)

• Final Presentation (.pptx)

• Overleaf Project (.zip)

• Source Code (.zip)

73

