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Abstract Deutsch

Das Internet of Things (IoT), ein expandierendes Netzwerk bestehend aus miteinander
verbundenen Geräten, gewinnt in verschiedenen Branchen immer mehr an Bedeutung.

Diese Technologie kann unser Leben positiv beeinflussen und erhebliche wirtschaftliche
Vorteile mit sich bringen. Beispielsweise Crowdsensing-Plattformen wie ElectroSense,
welche IoT-Geräte mit Sensoren zur Frequenzüberwachung verwenden, haben sich als ef-
fizient, kostengünstig und skalierbar erwiesen. Obwohl diese ressourcenbeschränkten IoT-
Geräte mit zahlreichen Vorteilen verbunden sind, sind sie oft anfällig für Cyberangriffe.
Demnach könnte Ransomware eine ernsthafte Bedrohung für das IoT-Ökosystem darstel-
len. Die ElectroSense Plattform, welche IoT-Sensoren verwendet, um Funkfrequenzdaten
zu sammeln und auszutauschen, könnte einem solchen Angriff zum Opfer fallen. Dies
würde zu schwerwiegenden Sensorausfällen führen, welche den Zugang zu Sensordaten
erheblich beeinträchtigen könnten.

Algorithmen für maschinelles und tiefes Lernen, welche Geräteverhaltensdaten nutzen,
wurden als vielversprechende Ransomware-Erkennungs- und Klassifizierungstechniken iden-
tifiziert. Die meisten Erkennungsframeworks, die diese Technologien nutzen, wurden je-
doch für Windows-basierte Systeme entwickelt, die im Allgemeinen über mehr Ressourcen
verfügen als IoT-Geräte. Diese Lösungen sind oftmals nicht geeignet für Crowdsensing-
Plattformen, welche ressourcenbeschränkte Systeme verwenden. Neben maschinellem Ler-
nen haben sich Ransomware Richtlinien (Policies) als eine ressourceneffiziente und effekti-
ve Methode zur Erkennung und Klassifizierung von Ransomware erwiesen, bringen jedoch
gewisse Einschränkungen mit sich.

Daher wird in dieser Arbeit ein Ransomware Erkennungs- und Klassifikationsframework
basierend auf maschinellen und tiefen Lernen entwickelt und getestet. Dieses Framework
nutzt drei unterschiedliche Geräteverhaltens-Quellen zur Erkennung bzw. Klassifikation
von Ransomware, welche ressourcenbeschränkte ElectoSense-Sensoren angreift. Das ent-
wickelte Tool präsentiert eine effiziente, skalierbare und datenschutzfreundliche Lösung
zur Identifizierung von Zero-Day-Ransomware Angriffen und zur Klassifizierung verschie-
dener Ransomwaretypen. Darüber hinaus werden reale Ransomware-Angriffsszenarien
verwendet, um die Effektivität des Systems zu testen.

i



ii



Abstract English

The Internet of Things (IoT), a network of interconnected devices, has been growing and
gaining traction in various industries. This technology can impact our lives while also
providing significant economic benefits. For example, crowdsensing platforms such as
ElectroSense that use sensor-equipped IoT devices to collect and share spectrum moni-
toring data have proven efficient, cost-effective, and scalable. However, although these
resource-constrained IoT devices provide numerous benefits, they are also vulnerable to
cyberattacks. As a result, ransomware could severely threaten the IoT ecosystem. Elec-
troSense, which employs IoT device sensors, may fall victim to such an attack, resulting
in operational problems and sensor data unavailability.

Machine and deep learning algorithms using behavioral data have been identified as
promising ransomware detection and classification techniques. However, most detection
frameworks that utilize these technologies have been developed for Windows-based sys-
tems, which generally have more resources than IoT devices. As a result, these solutions
may not be well-suited for crowdsensing platforms which utilize resource-constrained com-
ponents. In addition, while ransomware policies are effective and resource efficient in
detecting and classifying ransomware, they do have some limitations.

This thesis, therefore, proposes to develop and test a machine and deep learning-based
framework that utilizes three different behavioral sources to detect and classify ran-
somware impacting resource-constrained ElectoSense sensors. This framework will employ
an efficient, scalable, and data-protective approach to identify zero-day ransomware at-
tacks and classify various ransomware strains. In addition, real-world ransomware attack
scenarios are utilized to test the platform’s effectiveness.
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Chapter 1

Introduction

1.1 Motivation

The Internet of Things (IoT) has received a great deal of attention in recent years. This
expanding network of resource-constrained devices will significantly affect our daily lives
and positively impact the economy and society. By 2022, over 18 billion IoT devices
are predicted to be in use, bringing benefits to transportation, manufacturing, health
care, retail services, and other industries [60, 55, 43]. With the rapid adoption of IoT,
crowdsensing platforms have gained traction by allowing users to share data acquired
through sensor-equipped machines [16].

Spectrum sensing, the process of monitoring the electromagnetic environment with sen-
sors, has grown in prominence due to its broad applicability in consumer, regulatory, and
military applications. An example of a crowdsensing activity that uses IoT sensors is the
ElectroSense platform, which offers an inexpensive and reliable way of measuring and an-
alyzing spectrum data. To contribute to this project requires the purchase of a low-cost,
resource-constraint radio sensor. Spectrum data collected from the sensors are sent to
a central backend server and displayed to users on the ElectroSense website for further
analysis [24, 46].

The use of IoT devices, however, is not without its drawbacks. Poor security, lax device
management procedures, and software-level vulnerabilities are common and can be ex-
ploited by cybercriminals. As such, ransomware, a type of malware that encrypts files to
extort money from victims, poses a severe threat to the IoT ecosystem [33, 28].

Two emerging ransomware families that target different systems, including Linux servers,
are Hive and LockBit. Leveraging a ransomware-as-a-service model, they have caused
havoc in various industries, including healthcare, technology, and education. An example
of such an attack occurred on August 15, 2021. The Hive ransomware disrupted the daily
operations of three hospitals by encrypting their IT infrastructure, forcing them to cancel
essential surgical procedures and examinations [49, 50].

1



2 CHAPTER 1. INTRODUCTION

The ElectroSense platform developed around IoT devices running a distribution of Linux
could fall victim to such a ransomware attack. Infected sensors would have their data en-
crypted and not function properly, significantly impacting the platform’s overall operation
and accessibility to spectrum data.

Only a few options are available today to effectively identify a ransomware infection on
these systems. Using manually defined state-of-the-art policies for their detection is one
example. However, while offering a lightweight solution for detecting ransomware at-
tacks on resource-constrained devices, specific limitations exist with this approach. For
instance, the process of creating policies is time-consuming and requires specialized ex-
pertise [17]. In addition, the following challenges and obstacles remain when evaluating
related ransomware detection research papers:

• Only a limited amount of research focuses on detecting and classifying ransomware
on resource constraint devices running Linux. Furthermore, most papers only ex-
amine detection performance and ignore the issue of resource utilization.

• Few research studies assess the effectiveness of detecting and classifying ransomware
using different device behavioral sources.

• There appears to be insufficient research comparing the performance of a policy-
based method versus a Machine Learning anomaly-based strategy in ransomware
detection/classification and resource utilization.

• Although various ransomware detection and classification frameworks have been
proposed, the majority of these do not address issues such as data protection, re-
source utilization, and distribution. Thus, there is the need to invest additional
resources to design, develop and implement the ransomware detection and classifi-
cation framework.

With the ever-increasing use of Machine Learning (ML) and Deep Learning (DL) in cy-
bersecurity, there is an opportunity to utilize these tools in the IoT technology space.
Furthermore, device behavioral fingerprinting, a technique for analyzing the behavior of a
device, has been identified as a valuable way of recognizing cyberattacks [54]. This thesis
will therefore focus on detecting and classifying ransomware on the ElectroSense platform
with ML and DL using three different behavioral sources.

1.2 Description of Work

To address the previously mentioned challenges, an ML/DL-based framework to detect
and classify ransomware was designed and implemented as a proof-of-concept. This frame-
work monitors three different behavioral dimensions of an ElectroSense sensor for detect-
ing and classifying heterogeneous ransomware. In addition, this solution is suitable for
IoT spectrum sensors, integrates into the ElectroSense architecture, and does not impact
the sensor’s normal spectrum data monitoring process.



1.3. THESIS OUTLINE 3

As part of this work, several experiments were carried out to evaluate the framework’s
ransomware detection and classification capabilities, as well as its resource utilization.
These experiments were performed by utilizing an ElectroSense sensor (Raspberry Pi 3
Model B) infected with three different ransomware samples: DarkRadiation, RAASNet,
and Ransomware-PoC.

DarkRadiation targets Linux-based systems using the Telegram messaging application as
its command-and-control server. RAASNet is a cross-platform ransomware-as-a-service
allowing users to create customized ransomware payloads easily. Finally, Ransomware-
PoC is a Python based proof-of-concept ransomware that can be deployed on different
operating systems.

The frameworks’ effectiveness and feasibility were determined by comparing the obtained
results to a policy-based ransomware detection approach. Furthermore, a detailed analysis
of the detection/classification performance using different behavioral sources and ML/DL
algorithms is provided in this thesis.

1.3 Thesis Outline

This thesis is structured into topic-specific chapters. Chapter 2 introduces the reader to
the concept of ransomware, ML, and anomaly detection. This background knowledge will
assist the reader in comprehending the current status of research in ransomware detection,
as provided in Chapter 3. Chapter 4 will then introduce the reader to the Electrosense
platform and its configuration as used in this thesis. In addition, a description of the three
ransomware samples is provided. Chapters 5 and 6 outline the ransomware detection and
classification framework and give insight into its implementation. Chapter 7, Experiment
and Analysis, will present the thesis findings, which are summarized and concluded in the
last chapter of this document.
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Chapter 2

Background

Ransomware has evolved greatly since its first appearance in 1989. Disguised as a ques-
tionnaire about the Acquired Immunodeficiency Syndrome Virus (AIDS) and distributed
by mail via floppy disks, the Trojan horse AIDS, attempted to extort money from unwit-
ting computer users [11]. With the advent of the Internet, ransomware became much more
common, giving hackers a tool for wider distribution and leading to higher profit mar-
gins [53]. Recent trends such as cryptocurrencies, the use of IoT devices, the increasing
interconnectivity of systems, and the growing use of social media platforms that expose
sensitive personal data are leading to new types of ransomware attacks as they provide
hackers with new attack opportunities [66].

This chapter will briefly introduce malware and ransomware. Then, the different methods
used to detect ransomware and the concept of behavioral fingerprinting are presented.
Finally, an introduction to Machine Learning (ML) and Deep Learning (DL) and their
application in cybersecurity is given.

2.1 Malware

Malware is software that has a malicious purpose. It generally refers to any piece of
code that has been intentionally modified, added, or removed. Its primary goal is to
cause harm by altering the functionality of a system [37]. Cybercriminals usually develop
this malicious software to steal user data or significantly damage or destroy the target
system. There are many different types of malware with a variety of nefarious purposes.
These include computer viruses, spyware, worms, adware, Trojan viruses and ransomware,
among others [65].

2.1.1 Classification of Malware

As malware becomes more sophisticated, it becomes more difficult to classify. Traditional
malicious software typically had a specific function (i.e., encrypting files). Current mal-
ware, however, can have multiple negative characteristics at the same time and employs

5



6 CHAPTER 2. BACKGROUND

strategies to conceal itself. This fact makes detecting modern malware far more complex
[6]. A simple approach suggested by [57] is to categorize malware based on two different
features: Propagation and Payload.

Propagation refers to the mechanism malware uses to spread in order to achieve its goal.
After gaining access to the system, the malicious software will deploy its payload. The
payload is the part of the malware that causes the intended malicious behavior on the
system. The different ways malware spreads include social engineering attacks, exploiting
vulnerabilities in software, and infection by viruses that spread to other systems. Stealing
information, corrupting files, hiding its presence, or hijacking the server to join a botnet
are examples of payload actions performed.

2.2 Ransomware

Ransomware, as the name suggests, combines two words: ransom and malware. It is a
type of malicious software demanding a ransom in exchange for some system functionality
that has either been removed or disabled maliciously. Most ransomware use file encryption
on the victim’s device as a form of extortion [28].

2.2.1 Types of Ransomware

Yaqoob et al. [66] suggest a classification of three different ransomware types:

• Crypto ransomware

• Locker ransomware

• Hybrid ransomware

Crypto ransomware scans the infected system for relevant files and encrypts them using
symmetric, asymmetric, or hybrid key cryptography algorithms such as AES, RSA, or a
combination of both [9, 10]. Locker ransomware, on the other hand, employs a different
attack methodology, restricting access to or altering system functionalities. Finally, Hybrid
ransomware combines the two methods mentioned above, using encryption and a locking
mechanism for a more devastating attack [66].

In all cases, the victim must pay a ransom to return their system to its ’pre-attack’
configuration.
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2.2.2 Stages of a ransomware attack

All three ransomware types can affect the system differently. However, as noted earlier,
file encryption is modern ransomware’s most prevalent attack behavior. A typical attack
procedure found during a Crypto ransomware infection is discussed in a threat report by
Exabeam [61].

The report divides the attack into six different stages, namely

1. Campaign phase

2. Infection phase

3. Staging phase

4. Scanning phase

5. Encryption phase

6. Payday phase

Figure 2.1: Main Stages of the Ransomware Kill Chain [61]

The goal of the (1) Campaign phase is to spread and distribute a malicious dropper.
This code can be initiated in various ways, including exploiting system- and application-
level vulnerabilities, a drive-by download, or unknowingly downloading from an email
attachment.

In the (2) Infection phase, after gaining access to the system, the dropper communicates
home to a command-and-control server (C2) operated by the cybercriminals. From there,
it downloads a hidden malicious executable. The server then sends a command to remove
the dropper from the target system and executes the payload.

In the (3) Staging phase, the ransomware prepares itself before encrypting any files. Ver-
ifying user privileges, configurations, proxy settings, moving to a different folder, etc., are
some actions the ransomware performs to ensure a seamless operation in the later stages of
the attack. Finally, the ransomware communicates with the C2 server to evaluate whether
the infected system is suitable for encryption and to negotiate the public key.

In the (4) Scanning phase, files from system directories, network file shares, and cloud
storage repositories are scanned and mapped based on a list of file extensions. Depending
on the volume of data available, the scanning and mapping can take several minutes or
even hours to complete.
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The (5) Encryption phase is a three-step process for each targeted file. First, the ran-
somware has to obtain the file from the system. It then encrypts its content and uploads
it to the original location. Only the encrypted version remains on the system, as the
original file is deleted in the third step.

Each encrypted directory also contains a ransom note with payment instructions. De-
pending on the number of files to be encrypted, this process can take a significant amount
of time.

In the last phase, also known as the (6) Payday phase the victim is presented with a
pop-up window containing the payment instructions. Some ransomware variants include
a timer or a countdown to create a sense of urgency. A decryption program or a key is
sent to the victim if he chooses to pay the ransom.

2.2.3 Linux ransomware

This thesis deals with devices running a distribution of Linux. As such, the following
properties relevant to most Linux ransomware attacks will be reviewed [21]:

• Exploitation of vulnerabilities

• Privilege escalation

• Open-source nature of the operating system

Linux ransomware, in general, exploits vulnerabilities and flaws in the operating system
and application software to obtain access to the device and its files. These exposures
include vulnerabilities in outdated versions of the Linux operating system, application
software (i.e., Exim), SQL injections, and deficiencies in middleware software such as
WordPress or Drupal CMS systems. Linux ransomware often can escalate system privi-
leges (i.e., obtain root privileges) on the infected device. Escalated privileges can lead to a
more impactful attack, as the ransomware can access more parts of the system. Addition-
ally, since Linux is open-source, anyone can contribute to the project and view its source
code. Fortunately, the user community quickly finds and patches most security flaws
before cybercriminals can exploit them. However, systems remain vulnerable if security
patches are not applied regularly.

2.2.4 Ransomware in IoT

The Internet of Things (IoT) describes a network of devices/things that collect and ex-
change data with other devices. They are usually embedded with other technology, such
as sensors or communication hardware [64]. The devices that make up this network are
usually resource-constrained in terms of their processing capabilities, memory, and power
consumption [55]. Due to the rapid adoption of IoT in different fields, discussions of poten-
tial ransomware attacks have attracted more attention. Ransomware can be a significant
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problem as efficient device management becomes more complicated with the introduction
of more IoT devices. New vulnerabilities in IoT software and weak IoT security processes
provide possible entry points for different malware types. Outdated legacy systems con-
nected to the network can also be a potential source of attack. In addition, as connectivity
between devices and systems increases, there is a risk of ransomware spreading to more
critical parts of the infrastructure [33].

2.3 Malware detection methods

2.3.1 Classification of malware detection

While there are various ways to classify malware detection, the authors of [31] and [35]
provide a simple, straightforward approach. The method they employ determines the
malware classification by differentiating between two general methods for malware detec-
tion (Anomaly-based and signature-based detection). Note, Specification-based detection
is a specialized subset of anomaly-based detection. Dynamic, static, and hybrid analysis
are the three subcategories/approaches for each technique.

Figure 2.2: Malware detection classification [31]

Signature-based malware detection

A signature refers to some feature of the malware that uniquely identifies it [6]. These sig-
natures can be encountered in the malware’s source code, commonly represented by some
sequences of bytes. Signature-based malware detection is an approach where malware
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scanners (i.e., antivirus systems) use a knowledge base of viral signatures to determine if
a program is hazardous or not [63, 31, 67].

As signatures are mainly created by humans and take a long time to develop, this approach
is not ideal for all types of malware detection. For example, zero-day attacks present a
significant issue, as they cannot be detected due to the missing signatures [31].

Anomaly-based detection

Anomaly-based detection employs a different technique for recognizing malware. This
approach utilizes a two-step process: The first step is to create a baseline model of the
device’s typical normal behavior in a training/learning phase. Then, in the second phase
(the monitoring/detection phase), a potential malware attack is recognized if the device’s
behavior significantly differs from the previously established model. The ability to identify
zero-day attacks is a significant benefit of anomaly-based detection. However, a lengthy
data collecting phase, high false-positive rates triggered by normal unseen device behavior,
and determining the relevant features to be monitored, are some of the disadvantages of
this method [31, 34].

Specification-based detection

Specification-based malware detection is similar to anomaly-based detection. However, it
uses a set of rules to determine if a program is malicious or not. These rules are developed
by manually specifying the normal/valid behavior of the system. This technique mitigates
the typical high false-positive rate experienced by anomaly-based detection. It is, however,
time-consuming to approximate all legitimate behaviors a system can exhibit [52, 31, 39].

Static, Dynamic and Hybrid Analysis

Static analysis is analyzing a piece of software without running it on the system. On the
other hand, dynamic analysis is performed by observing and analyzing a program during
its execution [22]. Hybrid analysis is a combination of both static and dynamic analysis
[20].

An example of static analysis would be to examine the malware source code for indications
of malicious behavior. In dynamic analysis, on the other hand, the malware must be exe-
cuted to determine its impact on the system. For example, the system call log generated
during the execution cycle can be reviewed to identify abnormalities. Finally, to improve
the malware identification process, hybrid analysis can be applied. An example would be
measuring resource usage, combined with a code review of the malicious executable.

Many ransomware types use compression, obfuscation, and encryption strategies to evade
detection by static analysis approaches [1]. Thus, this thesis chooses a dynamic anomaly-
based ML / DL approach.
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2.4 Behavioral Fingerprinting

Gathering device information in order to classify it is known as device fingerprinting.
This technique creates a so-called device fingerprint that summarizes the device-specific
observable attributes [41].

Device behavioral fingerprinting, focusing on modeling the device’s behavior, has been
recognized as an emerging and viable method for the identification and the detection of
cyberattacks through dynamic analysis [13, 14, 54].

The authors of [54] provide a very detailed overview of the current research conducted in
behavioral fingerprinting and its usage in attack detection. The following five behavior
sources have been identified to be the most promising in regard to detecting malicious
attacks:

• Resource Usage: By monitoring different aspects of the device, such as the current
memory consumption, the Central Processing Unit (CPU) & disk usage, etc., a
behavioral profile of the device can be created. Monitoring resource usage is a
prevalent technique for gathering behavioral data. However, it can consume a lot of
resources by itself.

• Hardware events (HPC): Another source of behavioral data are Hardware events.
These create an accurate representation of the device’s low-level behavior. However,
these events are CPU specific and can vary depending on the device.

• Software and Processes: Behavioral data is also acquired by monitoring each ap-
plication running on the device in an isolated manner. This data can then be
combined to construct a behavioral model. Software signatures, process properties,
system calls, and logs are the main features used to model the device’s behavior.

• Network communications: A common approach that can be applied to almost any
device is monitoring the network traffic. Monitoring network packets can yield a
broad range of behavioral features that can accurately represent the device’s behav-
ior.

• Device Sensors and Actuators: Sensors and actuators gather data to model the
device’s behavior. Some expertise may be required to properly understand and
interpret this data, as these sensors and actuators are device-specific.

Besides presenting a thorough overview of device behavioral fingerprinting, the authors
of [54] suggest that ML and DL are the most common techniques employed for anomaly
detection. Furthermore, they are gaining more traction due to their adaptability and
excellent performance when dealing with larger data sets.



12 CHAPTER 2. BACKGROUND

2.5 ML & DL

ML & DL techniques for detecting ransomware have garnered a lot of attention due to
their ability to identify zero-day threats successfully [27]. This section briefly introduces
what ML is and its use in ransomware detection.

2.5.1 What is ML?

There are many different definitions in the literature on what ML is and entails. However,
they all share a common idea of training computers to intelligently perform activities by
gaining knowledge about their environment through repetition. This acquired knowledge
can then be used to produce the desired output from newly evaluated data. ML can be
classified into three distinct categories based on data labeling [23]:

1. Supervised ML

2. Unsupervised ML

3. Semi-Supervised ML

Supervised ML

In supervised learning a model is trained to produce the desired output from an input.
This is accomplished by training a model on sample data with known inputs and defined
outputs [23]. Supervised ML thus uses labeled data. Classification and Regression are the
two categories of supervised ML. In Classification ML, an algorithm is trained to classify
sample data into different output classes correctly. The algorithm makes an educated
guess on how the data should be labeled by identifying specific patterns in the data
set. An example would be classifying documents into specific categories such as sports,
business, or weather. Linear classifiers such as Decision Trees, Support Vector Machines,
k-Nearest Neighbor, and Random Forest are typical algorithms used for classification.
However, regression algorithms have a different purpose. They explore the relationship
between dependent and independent variables in the data. Predicting a future stock
value or forecasting the yearly business revenue are some examples where Regression can
be applied. Linear Regression and Polynomial Regression represent typical regression
algorithms that are widely used [58, 40].

Unsupervised ML

Unlike supervised ML, unsupervised ML algorithms are trained with data only containing
known inputs. The training and testing data does not include the outputs [23]. Typical
unsupervised ML approaches are Clustering and Dimensionality Reduction.
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Clustering, which is applied to larger data sets, divides unlabeled raw data into homoge-
neous groupings with the same structure. An example would be to group communities
on a social media platform into clusters with similar interests (i.e., Photography, Travel,
etc.). Typical Clustering algorithms include K-Means Clustering, Hierarchical Clustering
algorithms such as Average linkage or Wards linkage, and Probabilistic clustering meth-
ods such as the Gaussian Mixture Model. Clustering algorithms are primarily used in
pre-processing data tasks. Dimensionality Reduction is a technique for reducing the num-
ber of dimensions or features in a sample dataset while keeping some of the properties
of the original representation. Typical examples of Dimensionality Reduction algorithms
include Singular Value Decomposition, Principal Component Analysis, and Autoencoders
using Neural Networks [62, 40].

Semi-Supervised ML

Semi-Supervised ML uses a training data set containing partially labeled data. This
approach can be used to increase performance over supervised learning by exploiting the
algorithm’s access to labeled and unlabeled data [23, 40].

Figure 2.3: ML algorithm categories based on training data [23]

2.5.2 ML and Malware detection

There are various ways in which ML can be leveraged in the context of malware detection.
An in-depth review of concrete examples can be found in Chapter 3, which compares
different ransomware detection techniques.
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Malware can either be detected through static analysis or by executing it on the system
and assessing its impact with dynamic analysis. Applying supervised ML in the context of
malware detection can be achieved by training/fitting a model with labeled training data
(features X with output label Y). For example, the features X might represent specific
characteristics of a device’s behavior, while the labels Y could indicate if the behavior is
malicious or benign. The training goal is to find the optimal parameters for a mapping
X to Y that help detect future unseen malware attacks. In unsupervised ML, only the
input is provided. The goal is to identify the data’s structure or how the output data is
generated. For this, algorithms, such as Clustering, can be employed in helping to label
new data samples [36].

Figure 2.4: Malware detection algorithm life cycle (supervised learning) [36]

2.5.3 ML and DL Algorithms for Anomaly/Novelty Detection

As this thesis focuses on detecting anomalies, specific ML/DL algorithms and techniques
are more applicable than others. Novelty detection algorithms can be used to detect
anomalies.

In novelty/anomaly detection (unsupervised ML), the goal is to identify if a new data
sample is an outlier, referred to as a novelty in this situation. Therefore, to train an
anomaly detection algorithm, training data devoid of outliers must be provided [42].

Common ML/DL algorithms that can be utilized in this context include:

• One-Class Support Vector Machine

• Isolation Forest
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• Local Outlier Factor

• Autoencoders

One-Class Support Vector Machine (One-Class SVM)

A One-Class SVM is an unsupervised ML algorithm. As the name suggests, it is a
Support Vector Machine fitted with training data (not containing anomalies) belonging
to only one class. A new data point is then classified as either an outlier or an inlier by
the decision boundary. This algorithm works well with higher dimensional data and data
sets containing several inlier centers. It is, however, sensitive to outliers, meaning the
training set should not include multiple outliers [42, 19]. Figure 2.5 shows the decision
boundary and two inlier centers where the regular/normal data is situated. The yellow
points represent the new anomalous observations.

Figure 2.5: One-Class SVM [42]

Isolation Forest (IF)

IF is an unsupervised ML algorithm that tries to isolate outliers from regular data points.
As anomalies makeup only a tiny proportion of the entire data set and significantly differ
from ”normal” instances, they can easily be isolated. The IF algorithm builds so-called
isolation trees, which isolate each data point in the data set separately. Isolation trees
are created iteratively by picking a random feature and choosing a random split value
(between the min. and max. values of the selected feature). As ”normal” data points
are similar (feature similarities), it takes more splits to isolate them from each other. On
the other hand, anomalies differ significantly from the rest of the data, requiring fewer
splits. The path length from the tree root to the leaf node reflects the anomaly score of a
data sample. A shorter path length indicates a higher probability of the sample being an
anomaly. Isolation Forest is a suitable algorithm for higher-dimensional data. A training
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set with a small number of features may not perform as well, as the number of splits is
limited [42, 19].

Figure 2.6: IF [42]

Local Outlier Factor (LOF)

LOF is another popular novelty detection method that also falls under unsupervised ML.
The algorithm calculates the so-called LOF for each data point in the training set. The
LOF is a number that indicates the degree of isolation of a data point related to its
surroundings, namely a point’s local density compared to its k-neighbors. An anomaly
is thus a point whose local density is much lower (high LOF score > 1) than that of
its closest neighbors. Compared to distance-based approaches, which are suitable for
detecting global outliers, this algorithm can also detect local outliers: (the algorithm also
compares density among its local neighbors). In each cluster of data points, different
conditions apply to what can be considered an outlier. Furthermore, the algorithm works
well with lower and higher-dimensional data and can handle outlier contamination in the
training set [15, 19].

Figure 2.7: LOF [42]
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Autoencoders

Autoencoders (unsupervised ML/DL) are a type of artificial neural network trained to
output a reconstruction of the input data. The autoencoder achieves this by learning a
compressed input representation, thus prioritizing the critical aspects of the training data.
Its two main components are the encoder and the decoder [29]. The encoder takes the in-
put data and encodes it into a lower-dimensional representation. The decoder then takes
this hidden representation and tries to decode it back into its original input dimensions.
The overall goal is to reconstruct as accurately as possible the input data by minimiz-
ing the reconstruction errors (difference between output and input). By determining a
threshold for this error, anomalies can be detected. The trained autoencoder will struggle
to reconstruct anomalous data, resulting in increased reconstruction errors. If this error
exceeds the threshold, the data sample will be considered an anomaly [18]. ML algorithms
often rely on carefully selected features. On the other hand, Deep Neural Networks yield
the best results when given a large number of raw features, thus potentially removing the
work-intensive process of feature engineering [19]. Figure 2.8 shows an autoencoder rep-
resented as a feed-forward Deep Neural Network. It is configured with 8-4-2-4-8 neurons.
The layer in the middle with two neurons (bottleneck) represents the latent/compressed
representation of the input data.

Figure 2.8: Example of an Autoencoder

2.5.4 Feature extraction using NLP

This thesis uses three different behavioral sources to create a behavioral model for the
device. ML & DL algorithms require the input data for training and evaluation to be
expressed as numbers. However, it is impossible to directly map all of these behavioral
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sources to numerical values (i.e., log files). Thus, three different feature extraction meth-
ods for textual data are used.

Bag-of-Words (frequency)

A simple natural language processing method is to represent textual data in the so-called
bag-of-words representation. This technique converts a textual document or a sentence
into a vector of word counts. This feature vector represents how often certain words from
a defined vocabulary appear in a sentence/document. The vocabulary includes all possible
words appearing in the training sentences/documents. This approach of calculating the
frequency of words appearing in textual documents ignores grammar and word order;
however, it retains the multiplicity of the words [69].

Example: Assume the two sentences: ”This is my thesis.” and ”It is about detecting
ransomware.” as training sentences/documents. The vocabulary would then consist of the
following words with randomly assigned indexes: {’this’: 7, ’is’: 2, ’my’: 4, ’thesis’: 6,
’it’: 3, ’about’: 0, ’detecting’: 1, ’ransomware’: 5}. Now assume a third sentence should
be expressed as a vector of word counts, using the given vocabulary: ”My thesis detects
ransomware.”. It’s feature vector [0 0 0 0 1 1 1 0] represents how many times each word
in the vocabulary appears in the sentence:

’about’ ’detecting’ ’is’ ’it’ ’my’ ’ransomware’ ’thesis’ ’this’
0 0 0 0 1 1 1 0

Tf-idf

Term frequency-inverse document frequency (Tf-idf) is another method for feature ex-
traction. In this approach, rather than just counting the occurrence of each word, Tf-idf
uses a normalized word count, which is based on the following simplified calculation:

tf-idf(w, d) = bow(w, d) * log(N / # documents in which word w appears)

Bow(w,d) is the term frequency, referring to the number of times a word w appears in
document d. The fraction inside the logarithm is the inverse document frequency, with
N representing the total number of documents. The Tf-idf score will be low for a word
appearing in multiple documents and high for a word appearing in hardly any documents
[69].

Example: Imagine the word ”thesis” appearing in every document of our corpus (i.e., ten
documents). The inverse document frequency would then be log(10/10) = 0, leaving us
with a total Tf-idf score of 0.
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Hashing Approach

The hashing approach is another feature extraction method similar to bag-of words.
Rather than just storing a dictionary of tokens (vocabulary), this method creates a sparse
matrix with the token occurrence counts, utilizing hashing. This hashing trick can be
memory efficient when dealing with large data sets, as this extraction method does not
require holding a large vocabulary in memory. However, one of the downsides is that the
actual token can no longer be retrieved by the column position [30].
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Chapter 3

Related Work

3.1 Ransomware detection

This section introduces the reader to 16 recently published scientific papers on ransomware
detection. A summary of each, including their most important findings, is included.

Table 3.1 provides an overview of the operating system, the type of analysis, the approach,
the domain, the algorithms used, and the ransomware detection accuracy achieved in each
work.

Overview of Ransomware Detection Techniques

Ahmed et al. propose in [1] an Application Programming Interface (API) based ML in-
dustrial IoT framework for detecting ransomware in the early stages of infection. System-
specific API calls were collected by running benign and ransomware samples in a virtual
sandbox environment. For further data refinement WEmRmR, an enhanced version of the
Maximum Relevance — Minimum Redundancy (mRmR) algorithm, was utilized together
with Tf-idf to distinguish the most relevant features and rank them according to their
importance. Six different ML classifiers were employed, achieving a maximum accuracy
of 98.64% with a low false positive rate of 1.7%.

Another API and ML-based ransomware detection framework is proposed by Almousa
et al. [5]. Two hundred forty-nine different ransomware-specific system API calls and
229 benign API calls were extracted by running 58 ransomware and 66 benign samples
in a sandboxed environment for 10 minutes each. Before training the ML algorithms,
standardization and dimensionality reduction were performed on the extracted data to
reduce noise and improve the overall detection performance. As a result, the highest
ransomware detection accuracy of 99.18% was achieved using the k-nearest neighbors
(kNN) algorithm.

By extracting Windows API invocation sequences, the authors of [8] created a framework
that could distinguish between ransomware, malware, and benign files. This feat was

21
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achieved using six different ML algorithms for multi-class classification and yielded an
accuracy of 98.65%.

Poudyal and Dasgupta [44] used a hybrid reverse engineering technique to extract ran-
somware features from three different levels. These features include a list of the Dynamic
Link Libraries (DLLs) called by the ransomware code, function calls, and the assembly
instructions utilized by the malicious software. The ransomware detector combines a data
mining approach with Natural Language Processing (NLP) to create a feature database
and uses ML for classification. The highest ransomware detection accuracy of 99.72%
with a 0.3% false positive rate was achieved with supervised learning using Support Vec-
tor Machine (SVM).

Almomani et al. [4] extracted API and permission features from decompiled Android
package (APK) files containing ransomware. For classification, the SVM algorithm was
deployed alongside an oversampling technique. The optimization approach known as
particle swarm optimization (PSO) was then utilized to enhance the feature selection, im-
proving the overall identification process. As a result, an accuracy of 97.5% was reported.

In [32] Imtiaz et al. compared the effectiveness of detecting malware, including ran-
somware, on smartphones, using DL and ML malware detection approaches. The model
data set included dynamic features such as API calls and power usage and static features
such as intents and permissions. The results showed that DeepAMD outperformed other
ML techniques in detecting and identifying malware on a static and dynamic layer.

Another technique to detect ransomware by monitoring the energy consumption of smart-
phones was proposed by Azmoodeh et al. [7]. By subsampling the collected power con-
sumption data and applying the kNN algorithm with dynamic time warping (DTW), a
detection rate of 94.27% was achieved.

Rhode et al. [51] tried to identify 3000 ransomware samples by employing a behavior-
based model analyzing a snapshot of performance counter benchmarks such as memory
and CPU usage in the early stages of infection. Based on recurrent neural networks, this
approach correctly identified ransomware with a 94% detection rate in the first 10 seconds
of file execution.

A dynamic analysis detection approach was proposed by [47] monitoring the changes
regarding system resources, the retention state of applications, and file operations/move-
ment. Finite State Machine (FSM), a model based on state changes and transitions, was
created and utilized for detecting ransomware. A state change is triggered whenever an
anomaly in the monitored features is identified. Reaching one of three final states indi-
cates a ransomware infection on the system. The paper achieved a breathtaking 99.5%
accuracy and 0% false positive rate.

RAPPER is a two-step ransomware detection approach introduced by Alam et al. [2].
First, a Deep Neural Network (DNN) was trained to detect anomalies with time-series
data of monitored HPC events representing normal device behavior. Fast Fourier Trans-
formation (FFT) was applied for transforming the time domain values into frequency
domain values. This was done to help identify repetitive patterns triggered by a ran-
somware infection, such as opening, encrypting, and closing a file. In the last step, the
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transformed data was fed into a second DNN. The proposed framework was able to detect
the WannaCry ransomware in 5.313 seconds.

Berrueta et al. [12] compared the ransomware detection effectiveness of three ML algo-
rithms by searching for specific read and write patterns in the network communication
(encrypted and clear-text file sharing) between clients and file servers. The data collected
to train the models include both traffic generated by benign programs and ransomware
while accessing and operating on shared network file servers. An astonishing detection
accuracy of 99.8% and a low false-positive rate of 0.004% was reported using neural net-
works.

Another network-based approach was proposed by [3], where packet and flow-based net-
work traffic was monitored to detect ransomware. For this, a multi-classifier detection
framework based on ML was created, consisting of two parallel operating classifiers. With
an accuracy of 97.92% percent, the Random Tree algorithm was found to be the most
accurate in detecting packet-based ransomware network activity. At the same time, the
Bayes Network model provided the highest scores in flow-based ransomware network de-
tection with 97.08%.

Faghihi & Zulkernine [26] proposed RansomCare, a hybrid analysis system detecting novel
crypto-ransomware on smartphones and recovering lost data from an attack. The proposed
framework identifies known ransomware types in a signature-based static analysis com-
ponent by their hashes (SHA256). At the same time, zero-day crypto-ransomware strains
were detected by looking for anomalies in file modification and deletion I/O events. This
was accomplished by calculating the entropy of files that were modified or deleted and
comparing it to a predefined threshold. As encrypted files are usually unstructured and
contain a large amount of random data, they will also have a high entropy score, indi-
cating a ransomware infection. An accuracy of 99.24% was observed with a false positive
rate of 0.49%.

Tang et al. [59] introduced RansomSpector, a policy-based dynamic crypto-ransomware
detection approach that uses virtual machine introspection (VMI) to monitor file I/O
and network activities. RansomSpector is unique compared to other detection techniques
because it is hidden in the hypervisor layer, thus making it undetectable for ransomware.
With a zero false-positive rate, the paper claims to have successfully identified 771 crypto
ransomware strains from a dataset containing 2,117 malware samples.

Using reverse engineering, Sharma et al. [56] extracted different ransomware features.
These included permissions, images, intents, etc., from a total of 2076 ransomware and
2000 benign APKs. Using Gaussian Mixture Model (GMM), an unsupervised clustering-
based ML technique as a classifier, Ransomdroid achieved a detection accuracy of 98.08%.

Huertas et al. [17] analyzed ransomware affecting resource-constraint devices used as
spectrum sensors in the crowdsensing platform Electrosense. Ransomware was identified
by finding anomalies in Memory usage, CPU usage, I/O activities, HPC, and kernel events
of the device. The administrator’s policies would then classify the device’s behavior as
malicious or normal. Anomalies generated by two different ransomware samples were
correctly identified with an 89.80% true positive rate.
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Table 3.1: Overview of Ransomware detection techniques

Paper OS Analysis Approach ML/DL Algorithms Domain Accuracy
[1] (2022) Windows dynamic ML LR, DT, kNN, SVM,

AD, RF, mRmR
Software &
Processes

98.64%

[5] (2021) Windows dynamic ML RF, SVM, kNN Software &
Processes

99.18%

[8] (2020) Windows dynamic ML RF, LR, NB, SGD,
KNN, SVM

Software &
Processes

98.65%

[44] (2021) Windows hybrid ML, DL LR, AD, SVM, NN,
RF, NLP

Other 99.72%

[4] (2021) Android static ML SVM Other 97.50%
[32] (2021) Android hybrid DL DNN Ressource

Usage,
Other

[7] (2018) Android dynamic ML, DL kNN, SVM, NN, RF Resource
Usage

94.27%

[51](2018) Windows dynamic DL RNN Resource
Usage

94.00%

[47](2020) Windows dynamic anomaly-based Resource
Usage

99.50%

[2] (2020) Linux dynamic DL DNN (LTSM) HPC
[12] (2022) Windows dynamic ML,DL DT, TEs, NN Network 99.80%
[3] (2019) Windows dynamic ML RT,BN Network 97.92

97.08%
[26] (2021) Android hybrid data-centric Software &

Processes,
Other

99.24%

[59] (2020) Windows dynamic policy-based Network,
Software &
Processes

[56] (2021) Android static ML GMM Other 98.08%
[17] (2022) Linux dynamic policy-based HPC, Re-

source Us-
age

89.80%

Summary of Related Work

The following points represent the findings from the literature:

• Most of the research in regards to ransomware detection has been conducted on
platforms running Windows.

• There seems to be very little research into detecting ransomware affecting resource
constraint devices. The only one mentioning resource constrain devices is [17].
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• Dynamic and hybrid analysis appear to be the most popular approaches in the
reviewed literature.

• ML and DL approaches were mostly used for ransomware classification/detection.

• Different behavioral data domains have been used for detecting ransomware. Re-
source Usage and Software & Processes are the most popular. However, there aren’t
many papers comparing their efficiency in regard to detection and classification.

• None of the papers compare a policy-based approach with an ML & DL approach

• Most ransomware detection frameworks seem to be a proof of concept and do not
cover aspects such as data protection, resource usage, and distribution.
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Chapter 4

Scenario

This chapter will provide the reader with an overview of ElectroSense platform and the
hardware/software configuration used as the basis for this thesis. In addition, a high-level
summary of the different ransomware samples and their functionalities is provided.

4.1 ElectroSense

Measuring electrosmog, boosting home WiFi connectivity, or finding and locating con-
cealed signals are some use cases where spectrum resource monitoring is crucial. Due
to the growth in wirelessly connected devices, spectrum usage has increased consider-
ably over time. As a result, an effective, secure, and dependent method of monitoring
spectrum data is needed. ElectroSense, a crowdsourced network, provides a credible and
cost-effective solution to this problem [46].

ElectroSense is an open initiative and crowd-sourcing project that employs affordable ra-
dio sensors to gather spectrum data for further analysis. Becoming part of this network
requires the purchase of a single-board computer such as a Raspberry Pi with a stable
internet connection linked via a dongle (Radio Frontend) to an antenna. The data col-
lected by the different sensors can then be accessed either through an API or by visiting
the member area on their website [24]. As the project is open source, the software used
to run the sensors is available on Github [25].

Figure 4.1: Spectrum Decoder for FM Radio on ElectroSense platform

27
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4.1.1 Thesis Setup

For this thesis, the resource-constrained spectrum sensor is a Raspberry Pi 3 Model B
with 1 GB of RAM and a Quad-Core 1.2GHz Broadcom BCM2837 64bit CPU. The Elec-
troSense Software, which is based on Raspbian, is utilized as an operating system. The
Raspberry Pi is connected via a Radio Frontend (RTL-SDR Silver v3) to an antenna, cre-
ating a suitable sensor for the ElectroSense platform. To guarantee a continuous internet
connection, the device must be connected via Ethernet cable to a Broadband internet
provider (such as UPC Cablecom).

Figure 4.2: Sensor for thesis

4.2 Ransomware

This section provides a brief overview of the three ransomware samples used for this thesis
and outlines their functionality.

4.2.1 Ransomware-PoC

Ransomware-PoC is a proof of concept open-source Python ransomware payload that can
be downloaded from the following GitHub repository [48]. This software allows a user to
encrypt or decrypt files by providing a starting directory. The ransomware scans the ’start’
directory and its sub-directories for files with the proper extensions (list of file extensions
in the source code). It then encrypts an AES (256-bit) key with an RSA public key, which
is used for file encryption. As this ransomware allows the user to decrypt their files after
encryption, the private RSA server key is also hardcoded into the payload. The source
code was modified slightly to display the starting and ending timestamp of the encryption
phase.
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1 # Recursively go through folders and encrypt/decrypt files

2 print("Starting encryption/decryption...{}".format(round(time.time())))

3 for currentDir in startdirs:

4 for file in discover.discoverFiles(currentDir):

5 if encrypt and not file.endswith(extension):

6 print("Encrypting file {}".format(file))

7 modify.modify_file_inplace(file, crypt.encrypt)

8 os.rename(file, file + extension)

9 print("File changed from " + file + " to " + file + extension)

10 if decrypt and file.endswith(extension):

11 modify.modify_file_inplace(file, crypt.encrypt)

12 file_original = os.path.splitext(file)[0]

13 os.rename(file, file_original)

14 print("File changed from " + file + " to " + file_original)

15 print("Finished encryption/decryption...{}".format(round(time.time())))

Listing 4.1: Main encryption/decryption function of Ransomware-PoC

4.2.2 DarkRadiation

DarkRadiation is a type of ransomware that attacks Linux-based systems. This sophis-
ticated ransomware is implemented entirely in bash, using Telegram, a messaging appli-
cation, as its command-and-control server. DarkRadiation employs an SSH worm that
downloads the ransomware payload after establishing a successful connection with the
victim’s device. The ransomware communicates with the attackers using the Telegram
API and encrypts files using the OpenSSL AES algorithm (256-bit key length). As a first
step, the ransomware checks to determine if it has root privileges and then downloads all
the needed dependencies (curl & OpenSSL). Next, changes in user activity (new logins,
log-outs) are transmitted to the C2 server [68].

Three different file encryption functions are present in the DarkRadiation ransomware.
Encrypt grep files() is the first function to be run. As its name implies, the grep command
searches the file system for files with the extensions (.txt,.py, and .sh) and encrypts them.
After that, it deletes the original file and uploads the encrypted version to the original
location.

Both encrypt home() and encrypt db() operate similarly. The /home directory or database-
specific files are the targets of these functions. During each phase, the malware updates
the attackers on its progress. Timestamps have been added to the different encryption
methods to see when each function started and ended.
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Figure 4.3: Telegram DarkRadiation Bot

4.2.3 RAASNet

As ransomware attacks have become more lucrative and prevalent in recent years, a new
type of service, ’Ransomware-as-a-Service (RaaS), has appeared on the darknet. This
service is offered as a franchise model and is marketed toward attackers with little or
no previous programming experience. This new way of selling a tool to commit a crime
enables ordinary (non-technical) individuals to participate in the ransomware economy
[38].

An open-source Ransomware-as-a-Service written in Python called RAASNet shows how
simple it is to create and deploy ransomware and can be downloaded from GitHub [45].
This cross-platform tool offers an intuitive graphical user interface, allowing any user to
develop customized ransomware. In addition, it includes a built-in command and control
server for receiving private encryption keys.

This tool offers different ransomware payload customization options. These include defin-
ing:

• The targeted directories and sub-directories

• The ransom message with the payment instructions

• The file encryption method and file extensions for encryption
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• The IP address of the command and control server

Furthermore, it offers the option to compile the payload and decryption program as an
executable. This creates a ransomware payload that can be deployed to targeted machines.
A decryption key is generated and forwarded to the attacker during machine infection.

Figure 4.4: RAASNet graphical user interface for customizing Ransomware payload

Thesis specific RAASNet payload

As Ransomware-PoC already uses the pycrypto Python package for encryption, pyaes
was selected for this specific ransomware variant. To encrypt files, the ransomware firstly
creates a 32-byte key (256 bit) and sends it to the attacker’s command and control server.
It then scan the defined directories and subdirectories(/home, /mnt) for files based on a
list of file extensions. The following Linux-specific file extensions have been selected:

[’.txt’, ’.py’, ’.html’,’.sh’,’.asc’,’.awk’,

’.bak’,’.bz2’,’.c’, ’.C’,’.cc’, ’.dat’,’.doc’,

’.dvi’,’.el’,’.elc’,’.f’,’.f77’,’.log’,’.info’,

’.jpeg’,’.tar’,’.tar.gz’,’.tgz’,’.zip’]

After the scanning phase, the ransomware encrypts the files with AES’s encryption algo-
rithm. The GUI option was selected for compiling the payload as there was an issue
generating ransomware for the Command-Line Console. Deployment via the command
line is possible by manually removing all GUI-specific elements.

1 def encrypt_file(file_name, key):

2 aes = pyaes.AESModeOfOperationCTR(key)

3
4 with open(file_name, ’rb’) as fo:

5 plaintext = fo.read()

6 enc = aes.encrypt(plaintext)

7
8
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9 with open(file_name, ’wb’) as fo:

10 fo.write(enc)

11 os.rename(file_name, file_name + ’.DEMON’)

Listing 4.2: Main encryption function of RAASNet



Chapter 5

Framework Design

This chapter introduces the reader to the design of the framework used for ransomware
detection on resource-constrained devices. It includes an overview of the components that
make up the framework and key design decisions adopted in its development. The reader
may refer to Chapter 6 for a more detailed presentation of the framework’s implementa-
tion.

5.1 Purpose and Intended Audience

Incidences of ransomware attacks have become ever more frequent and lucrative. With
increased connectivity among devices and the internet as a means of distribution, cy-
bercriminals are now finding it easier to infect machines and their networks. Growing
concerns about ransomware targeting IoT devices have emerged due to their rapid adop-
tion, high inter-connectivity, and poor maintenance. In addition, customized ransomware
such as DarkRadiation has started to appear, explicitly targeting Linux-based systems.
The ElectroSense platform, which uses resource constraint sensors that run a distribution
of Linux, could fall victim to ransomware attacks. Sensors infected with ransomware will
have their data encrypted and thus not operate correctly. This would, in turn, signifi-
cantly impact a platform’s overall operation. The framework developed in this thesis can
detect ransomware infections on resource constraint devices.

5.2 Requirements

The ElectroSense Pi (sensor) collects spectrum data and sends this information to the
ElectroSense ’data collection’ backend for analysis and processing.

The ransomware detection framework has been designed to integrate into the ElectroSense
system architecture. While gathering and understanding all user requirements is impossi-
ble, the framework design has tried to anticipate stakeholder needs. These were reviewed
and confirmed with the university project sponsors.

33
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For this thesis, a distributed system architecture was adopted with one component running
on a Raspberry Pi and another on a data collection/processing server. As the Raspberry
Pi sensor is a resource-constrained device running Linux, processing limitations on this
platform exist.

The following functional requirements were defined for the framework.

5.2.1 Data Collection/Monitoring Requirements R1 (On the Raspberry
Pi)

R1.1: The data collection process should not interfere with the regular operation of the
sensor.

R1.2: The data collected should be safely sent to the server and only briefly stored on
the sensor because of its limited storage capacity.

R1.3: Specific data protection mechanisms must be in place to securely collect and
transfer the data.

R1.4: The framework must be able to monitor multiple behavioral dimensions on the
ElectroSense Pi (sensor) and identify the best algorithms and features for anomaly
detection and classification.

R1.5: The monitoring service should be easy to deploy and use on the sensor.

R1.6: The service should be standardized for each behavioral source and expandable to
manage new behavioral dimensions.

R1.7: The user should be able to customize how the device is monitored.

R1.8: The framework architecture needs to support both online and offline data capture
and analysis.
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5.2.2 Data Pre-processing, Training and Evaluation Requirements R2
(On the Server or Raspberry Pi)

R2.1: The application running on the server must be able to clean the data automatically
without user intervention.

R2.2: Training/Evaluating ML and DL algorithms should be applied without user in-
teraction.

R2.3: The framework should be able to detect anomalies and classify ransomware cor-
rectly.

R2.4: Evaluation metrics must be stored in a database.

R2.5: The application must be able to handle requests from multiple sensors.

R2.6: The framework should be easily extendable with other ML/DL algorithms.

R2.7: The application should be user-friendly and easy to deploy.

R2.8: The application should be able to detect other malware types.

5.2.3 Graphical User Interface Requirements R3 (On the Server or
Raspberry Pi)

R3.1: Access to the Graphical User Interface is protected and only accessible to autho-
rized users.

R3.2: The user can access different evaluation metrics by selecting: a sensor device, a
monitoring script, and the required ML/DL models.

R3.3: Live monitoring evaluation of classification and anomaly detection must be graph-
ically displayed to the user.

5.3 Design Overview

The proposed ransomware detection framework utilizes a distributed architecture. The
design decision ensures the workload on the Electrosense sensor remains as low as possible,
given the resource-constrained nature of the device itself. As a result, only a small subset
of the framework’s features is deployed on the Electrosense sensor. The following diagram
5.1 presents an overview of the system design chosen for the thesis. It consists of two
components:

1. A middleware Monitor Controller running on the Raspberry Pi.

2. A Data Analysis Application running on the server, consisting of a pre-processing
layer, detection layer, and visualization layer.
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Figure 5.1: Design Overview of the Framework
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5.3.1 Data Gathering Layer

The data gathering layer resides on the Raspberry Pi sensor. At its heart are three
monitoring scripts (Resource Consumption Monitor, Kernel Monitor, and System Call
Monitor) that capture specific behavioral data. A separate tool, the Monitor Controller,
controls the three monitoring scripts. This program is an intermediary between the Rasp-
berry Pi sensor and the server. Its primary function is to initiate, halt, and control the
various monitoring scripts while they are running. With this application, the user can
customize different monitoring elements, including the time to monitor, which scripts to
run in parallel, the server address to send the data, and the type of monitoring (i.e.,
capturing training or evaluation data). A secure data exchange connection is established
between the two machines using public key authentication. Data collected from the three
monitoring scripts are sent every ten seconds to the server to avoid any data loss during
ransomware execution. The Monitor Controller provides three main functions:

1. Command Collect: This function allows the user to collect training and evaluation
data for anomaly detection or classification. In addition, the user can define how
long the chosen monitoring scripts will run. Collected monitoring data is sent to
the server every ten seconds.

2. Command Send: Sends information (metadata) about the gathered data from the
Command Collect process to the server to initiate training or testing. This informa-
tion includes the path where the data is stored, the monitors used for the monitoring
session, etc.

3. Command Live: Allows the user to start a live (online) monitoring session on the
sensor. This process will collect evaluation data for a defined time frame and forward
it to the server for evaluation on a per sample basis.

The text below provides more detailed descriptions of the three monitoring scripts man-
aged by the Monitor Controller on the Raspberry Pi sensor.

Resource Consumption Monitor (RES Monitor)

This script was developed by Huertas et al. [17] as part of a bachelor thesis. It offers
specific customization options to the administrator. In addition, it tracks specific behav-
ioral metrics every 5 seconds linked to the device’s hardware. These include information
on CPU & memory usage, disk utilization, kernel tracepoint events, and HPC. The table
below highlights the various metrics that the RES Monitor tracks.
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Table 5.1: Features Monitored RES Monitor

time
ioread
iowrite
ioreadbytes
iowritebytes
ioreadtime
iowritetime
iobusytime
read merge
write merge
memory
net in
net out
pkt in
pkt out
err in
err out
drop in
drop out
cpu
cpu-migrations
minor-faults
page-faults
L1-dcache-load-misses
L1-dcache-loads
L1-dcache-store-misses
L1-dcache-stores
L1-icache-load-misses
L1-icache-loads
LLC-load-misses
LLC-loads

seconds
block:block bio frontmerge
block:block dirty buffer
block:block split
block:block touch buffer
ext4:ext4 es lookup extent enter
ext4:ext4 ext load extent
ext4:ext4 writepages result
ext4:ext4 journal start
filemap:mm filemap add to page cache
jbd2:jbd2 handle stats
ext4:ext4 da update reserve space
ext4:ext4 sync file enter
jbd2:jbd2 checkpoint stats
ext4:ext4 free inode
ext4:ext4 evict inode
ext4:ext4 releasepage
ext4:ext4 unlink enter
block:block bio remap
LLC-store-misses
LLC-stores
branch-load-misses
branch-loads
dTLB-load-misses
dTLB-store-misses
iTLB-load-misses

filemap:mm filemap delete from page cache
gpio:gpio value
irq:softirq exit
pagemap:mm lru activate
rpm:rpm return int
fib:fib table lookup
raw syscalls:sys enter
random:credit entropy bits
kmem:kfree
kmem:kmem cache alloc
kmem:mm page alloc zone locked
kmem:mm page free
mmc:mmc request done
writeback:global dirty state
writeback:sb clear inode writeback
writeback:wait on page writeback
napi:napi poll
tcp:tcp probearmv7 cortex a7/br immed retired/
armv7 cortex a7/br mis pred/
armv7 cortex a7/br pred/
armv7 cortex a7/bus cycles/
armv7 cortex a7/cpu cycles/
armv7 cortex a7/exc return/
armv7 cortex a7/exc taken/
armv7 cortex a7/inst retired/
armv7 cortex a7/l1d cache/
armv7 cortex a7/l1d cache refill/

net:netif rx
timer:tick stop
sched:sched process exec
sched:sched waking
task:task newtask
sched:sched stat runtime
timer:timer cancel
timer:timer init
timer:timer start
workqueue:workqueue execute start
branch-instructions
branch-misses
bus-cycles
cache-misses
cache-references
cpu-cycles
instructions
context-switches
armv7 cortex a7/l1d cache wb/
armv7 cortex a7/l1d tlb refill/
armv7 cortex a7/l1i cache/
armv7 cortex a7/l1i cache refill/
armv7 cortex a7/l1i tlb refill/
armv7 cortex a7/l2d cache/
armv7 cortex a7/l2d cache wb/
armv7 cortex a7/ld retired/
armv7 cortex a7/mem access/
armv7 cortex a7/pc write retired/
armv7 cortex a7/st retired/
armv7 cortex a7/unaligned ldst retired/
armv7 cortex a7/cid write retired/

Kernel Monitor (KERN Monitor)

The KERN Monitor is another monitoring script developed by Dr. Alberto Huertas. It
monitors specific aspects of the device every 5 seconds and tracks events related to disk
I/O, CPU, kernel memory, and system calls. Features tracked by the KERN Monitor are
shown below:

Table 5.2: Features Monitored KERN Monitor

time
timestamp
seconds
connectivity
alarmtimer:alarmtimer fired
alarmtimer:alarmtimer start
block:block bio backmerge
block:block bio remap
block:block dirty buffer
block:block getrq
block:block touch buffer
block:block unplug
cachefiles:cachefiles create
cachefiles:cachefiles lookup
cachefiles:cachefiles mark active
clk:clk set rate
cpu-migrations
cs
dma fence:dma fence init
fib:fib table lookup
filemap:mm filemap add to page cache
gpio:gpio value
ipi:ipi raise

irq:irq handler entry
irq:softirq entry
jbd2:jbd2 handle start
jbd2:jbd2 start commit
kmem:kfree
kmem:kmalloc
kmem:kmem cache alloc
kmem:kmem cache free
kmem:mm page alloc
kmem:mm page alloc zone locked
kmem:mm page free
kmem:mm page pcpu drain
mmc:mmc request start
net:net dev queue
net:net dev xmit
net:netif rx
page-faults
pagemap:mm lru insertion
preemptirq:irq enable
qdisc:qdisc dequeue

random:get random bytes
random:mix pool bytes nolock
random:urandom read
raw syscalls:sys enter
raw syscalls:sys exit
rpm:rpm resume
rpm:rpm suspend
sched:sched process exec
sched:sched process free
sched:sched process wait
sched:sched switch
sched:sched wakeup
signal:signal deliver
signal:signal generate
skb:consume skb
skb:kfree skb
skb:skb copy datagram iovec
sock:inet sock set state
task:task newtask
tcp:tcp destroy sock
tcp:tcp probe
timer:hrtimer start
timer:timer start

udp:udp fail queue rcv skb
workqueue:workqueue activate work
writeback:global dirty state
writeback:sb clear inode writeback
writeback:wbc writepage
writeback:writeback dirty inode
writeback:writeback dirty inode enqueue
writeback:writeback dirty page
writeback:writeback mark inode dirty
writeback:writeback pages written
writeback:writeback single inode
writeback:writeback write inode
writeback:writeback written
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System Call Monitor (SYS Monitor)

The third monitor collects system call data for the entire device to properly monitor the
requests made from the device to the OS kernel. These system calls are collected every
10 seconds. As the data collected is relatively large, the system call files are only stored
temporarily on the Raspberry Pi and then sent to the server.

Usability of the Monitoring Service

The following two pictures 5.2 and 5.3 show the middleware Monitor Controller deployed
on a device and activated by a user. The monitoring table allows tracking of previous
monitoring events and their current status. The second image depicts an active monitoring
session demonstrating the many customization possibilities.

Figure 5.2: Table with all tasks monitored

Figure 5.3: Monitoring session

5.3.2 Data Pre-Processing Layer

After transmitting the monitored data, the server application will start pre-processing
data tasks. For the RES Monitor and KERN Monitor scripts, raw data is stored as a
simple file containing only numerical values.

On the other hand, the system call data (from the SYS Monitor) consists of multiple files
(one for every 10 seconds of monitoring) and contains both strings and numbers. Pre-
processing is necessary, as ML and DL algorithms rely on numerically expressed data.
Additionally, processing the data before the training and evaluating phase can dramat-
ically increase the overall performance and accuracy of the model. Although there are
variations in the input data, a general pre-processing procedure can be defined as follows:
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1. Data Cleaning

2. Feature Extraction / Selection

3. Standardization

Data Cleaning

Data cleaning aims to remove unwanted data and transform it into a form usable for
ML/DL algorithms. As mentioned before, the steps vary depending on the monitored be-
havioral sources. The following procedure is applicable for the RES and KERN monitoring
scripts:

• Rows containing duplicate or empty values are removed.

• Unwanted features and temporal features such as timestamps are dropped.

Preparing the system call data is a more work-intensive process. Files containing system
call information can be several megabytes in size and have thousands of rows. As a first
step, all system call names are extracted from each of the files. These are then stored as a
string (separated by spaces). The final step is to create an array of the individual strings
extracted in the previous step. This array represents the corpus (body) of all system call
entries. For example, if we had two files, each containing five system call entries, our
corpus would consist of an array of two strings, with each string having five values.

Feature Extraction & Feature Selection

It is not necessary to extract features from the RES and KERN monitoring scripts, as the
data is already expressed as numeric values. Feature selection, however, becomes necessary
as this thesis used the unmodified versions of the monitoring scripts and ran them in
parallel (RES, KERN, and SYS). As these can influence each other during the monitoring
process, certain features exhibit substantial deviations when establishing a baseline. In
the graph below, the green region measures the device’s normal behavior, whereas the blue
reflects subsequent monitored behavior. As can be seen, there are significant differences
between the two data samples. These should theoretically be similar.

Plot 5.4 shows the values of a feature over time.

Figure 5.4: Highly fluctuating feature
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In a separate processing step, all features having high fluctuations between measurements
were removed. Not removing them would lead to high false positive rates when evaluating
”normal” data.

Since the system call data is still in textual form, feature extraction is necessary. Extrac-
tion techniques such as Bag-of-words, Tf-idf, and hashing are used to construct unigram
feature vectors. These vectors are then utilized to train or evaluate ML/DL algorithms.

Standardization

Standardization is a standard data pre-processing step used in data science. The method
involves rescaling the data to have a standard deviation of 1 and a mean of 0, thus
preventing issues later during ML training due to features having a diverse range of values
[19].

This process of normalizing/standardizing the data for ML training involves three steps.
As a first step, the cleaned data is split into two parts. For this thesis, 90% of the data is
used for ML training, while the remaining 10% is utilized for validation.

The standardization scaler is then fitted/trained with the 90% data portion. This prevents
information from the validation data set from influencing the trained model (data leakage).
Next, the validation and ML training data are converted into a normalized format. Finally,
the trained scaler is saved and can be reused to convert new testing data.

5.3.3 Detection Layer

The detection layer is where the actual ML and DL training/evaluation takes place. This
layer is split into two parts, with the first component covering anomaly detection and the
second one covering classification. The anomaly detection component can detect zero-day
ransomware attacks, while the classification component identifies the ransomware family
and its behavior. Anomaly detection and classification algorithms are evaluated in parallel
during live monitoring to determine the sensor’s health (infected / not infected).

Anomaly Detection Component

The component that detects anomalies determines whether the observed behavior is nor-
mal or abnormal. For this purpose, the framework employs both ML and DL algorithms.
For ML / DL training, the training data represents the sensor’s ”normal”state. Evaluation
data, on the other hand, can contain both ”normal” and ”under attack” scenarios.

The ML algorithms used include One-Class SVM, LOF, and IF. For DL anomaly detection,
Autoencoders are utilized.
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This thesis compares the raw performance of these algorithms. Thus, no specific hyper-
parameter tuning was performed (i.e., with cross-validation). Furthermore, future mon-
itoring sessions may generate divergent data, i.e., when using a different Raspberry Pi
computer or customizing the monitoring. As a result, the ideal parameters would differ.

Classification Component

The classification component’s primary function is to classify a data sample appropri-
ately. Normal behavior, Ransomware-PoC, DarkRadiation, and RAASNet are the pos-
sible classes to which a data sample can be assigned. Compared to anomaly detection,
this method requires training data from each class. Furthermore, this data should be
labeled and balanced. For multi-class classification, the supervised machine learning algo-
rithms Support Vector Machine, Logistic Regression, Decision Tree, and Random Forest
are utilized.

Evaluation

Specific metrics help evaluate the ML and DL algorithms. Depending on the category of
training (supervised, unsupervised & semi-supervised), different performance indicators
are employed. In this thesis, the ”confusion matrix” is used as a basis for the evaluation.
Diagram 5.5 shows the confusion matrix used for anomaly detection. The true positives
(TP) refer to the number of ransomware infections correctly identified by the ML & DL
algorithms, while the true negatives (TN) reflect correctly identified instances of normal
behavior. False positive (FP) and false negative (FN) values indicate the number of
incorrect predictions.

Figure 5.5: Confusion matrix in ransomware detection

In regards to anomaly detection, the following two performance metrics can be calculated:

1. The True Positive Rate (TPR), indicating the proportion of correctly predicted
ransomware infections from all actual ransomware infections:

TPR =
TP

TP + FN
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2. The True Negative Rate (TNR), indicating the proportion of correctly predicted
instances of normal behavior from all actual instances of normal behavior:

TNR =
TN

TN + FP

Similarly, one can build a confusion matrix for multi-class classification. Matrix labels
would indicate different classes instead of the state of infection. In classification problems,
the TPR also known as recall indicates the number of correct class predictions divided
by the actual total number of class instances.

Example: Assume you have ten data samples with the known class DarkRadiation. The
ML algorithm classifies five of these samples correctly and the other five incorrectly (into
different classes). DarkRadiation’s recall value would then be 5

5+5
= 0.5.

The following further performance metrics were used to evaluate classification perfor-
mance:

1. Accuracy a metric comparing the accurate predictions compared to all predictions:

ACC =
TP + TN

TN + TP + FP + FN

2. Precision measures the overall precision of correctly predicting a class out of all
predictions of this class:

PPV =
TP

TP + FP

Example: Assume you have eight data samples. You know that each class (Nor-
mal, DarkRadiation, RAASNet and Ransomware-PoC) has two samples assigned to
them. The algorithm now determines, that five out of the eight samples belong to
the Normal class. It’s precision would then be calculated as follows: 2

2+3
= 0.4.

3. F1-Score combines the recall and precision metrics:

F1-Score =
2TP

2TP + FP + FN
= 2 ∗ Precision ∗Recall

Precision+Recall

5.3.4 Visualization Layer

As noted earlier, the application contains a small ”proof-of-concept” graphical user inter-
face for presenting live evaluation data. The user can choose the algorithm and monitoring
data they wish to see. Graphs help display this live evaluation data. A more detailed
architectural overview, together with screenshots, is provided in the following chapter.
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Chapter 6

Framework Implementation

This chapter reviews the implementation of the ransomware detection framework. As
noted earlier, the framework utilizes a distributed architecture comprising two key compo-
nents. The first is the Monitor Controller component which manages the three monitoring
scripts. The second component is a Flask web application (Data Analysis Application)
used for data pre-processing, ML training, and evaluation. In addition, REST API calls
with HTTP Basic Authentication facilitate client-server (Monitor Controller-Flask web
app) communication.

Note that installing both components on the Raspberry Pi platform is possible, but a
number of prerequisites need to be full-filled. These include upgrading the Python ver-
sion and ensuring machine resource consumption does not negatively impact spectrum
monitoring.

6.1 Monitoring Scripts

In order to capture behavioral data on the Raspberry Pi sensor, three different monitor-
ing scripts are utilized. Each of these scripts captures different aspects of the sensor’s
operation. In addition, each of the monitors utilizes the Linux Perf performance analysis
tool to define the relevant machine features to monitor.

RES Monitor

This monitoring script tracks the resource consumption and device-specific events from
the Raspberry Pi sensor. The program, written in Python, utilizes the library Psutil and
the Linux utility Perf. The main code logic is split into classes, each tracking specific
sensor metrics. There are two customization options for data output: CSV file creation
or asynchronous messaging. The code snippet 6.1 shows the main monitoring loop, which
executes every five seconds. Every data sample represents five seconds of monitoring data.

45
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1 def start(self):

2 while self.monitor:

3 self.log.verbose(’Measuring...’)

4 data = self.monitorService.monitor()

5 if (data == 0):

6 self.monitor = False

7 self.log.log(’END’)

8 self.graceful_shutdown()

Listing 6.1: Code snippet from main monitoring loop of monitor RES

KERN Monitor

The KERN Monitor script monitors events related to disk I/O, CPU, kernel memory, and
system calls and is written in bash. The code snippet 6.2 shows the body of the main
monitoring loop. This code is executed every five seconds. A DNS server is pinged as a
first step to confirm the sensor’s connection to the internet. Perf will then monitor the
user-defined events for the specified time window. In the case of the thesis, this was set
to a five-second interval.

1 # Checks the internet connection of the sensor:

2 if ping -q -c 1 -W 1.5 8.8.8.8 >/dev/null; then

3 connectivity="1"

4 else

5 connectivity="0"

6 fi

7
8 timestamp=$(date +%s)

9 if [ "$resourceMonitor" = true ]

10 then

11 oldNetworkTraffic=$(ifconfig | grep -oP -e "bytes \K\w+" | head -n

4)

12 fi

13
14 # Perf will monitor the events:

15 perf stat -e "$targetEvents" --o "$tempOutput" -a sleep "

$timeWindowSeconds"

Listing 6.2: Code snippet from main monitoring loop of monitor KERN

SYS Monitor

The SYS Monitor bash script records system call information repeatedly over a ten-second
interval. The Perf utility uses the command ”trace” to capture all system calls executed
on the sensor and saves these in a log file.
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1 echo "Time now: " "$Unix_time_current"

2 echo "Gathering Syscalls"

3 UPTIME=$(cat /proc/uptime | awk ’{print $1}’)

4 EPOCH=$(date +%s.%3N)

5 Date_Hourly=$(date +%s)

6 perf trace -S -T -o "$RESULTS_PATH/""${Date_Hourly}".log -e !nanosleep -a

-- sleep "$SLEEP"

7 echo -e "EPOCH: $EPOCH \nUPTIME:$UPTIME" >> "$RESULTS_PATH/""${

Date_Hourly}".log &

8 Unix_time_current=$(date +%s)

9 counter=$((counter+1))

Listing 6.3: Code snippet from main monitoring loop of monitor SYS

6.2 Monitor Controller

The Monitor Controller is installed on the Raspberry Pi sensor. It provides multiple
customization possibilities while controlling the entire monitoring process. It also manages
and records the status and elapsed time of current and past monitoring sessions. This
command-line interface tool is written in Python 3.5 and uses an SQLite database for data
persistence. In addition, the Python module ”click” is utilized for argument parsing and
allows for simple user commands to be supplied, such as show, collect and send. Finally,
the ”requests” Python package facilitates communication with the server via REST API
calls. A simple installer script was also developed to download and install the required
dependencies automatically.

The monitoring scripts (RES, KERN, and SYS) are controlled by the Monitor Controller
and implemented as ”systemd” services. For example, the code snippet 6.4 shows the
”systemd” service implemented for the KERN Monitor script. The following identifies the
key benefits of deploying the scripts as a service:

1. Provides a simple way to start, stop and control the monitoring scripts.

2. Provides the ability to manage the monitoring scripts as services with systemctl.

3. Allows for defining the behavior after a program failure or reboot of the device.

4. Streamlines the integration of the monitoring scripts into the Monitor Controller.

1 [Unit]

2 Description=Monitor HPC & Ressources Dr.Huertas

3 After=multi-user.target

4
5 [Service]

6 Type=simple
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7 Restart=on-failure

8 User=root

9 ExecStart=/bin/bash /root/BA_Thesis_PI/monitors/monitor2/

new_sampler_50tmp.sh

10
11 [Install]

12 WantedBy=multi-user.target

Listing 6.4: systemd service of the KERN Monitor

6.2.1 Monitoring Procedure

Flow diagram 6.1 illustrates the procedure of collecting training or evaluation data with
the Monitor Controller. As a first step, the user calls the endpoint ”collect.”Here, they can
define the parameters for monitoring, such as the time, the server address, and the mon-
itoring services they wish to use. The Monitor Controller then validates these arguments
and tries to establish an SSH connection to the server.

Figure 6.1: Monitoring procedure of Monitor Controller

Finally, the main loop 6.5 is executed after creating the monitoring directories on both
the device and the server and starting the specified monitoring services.

1 start = time.perf_counter()

2 with click.progressbar(range(seconds)) as progress:

3 for value in progress:
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4 time.sleep(1)

5 if (total % 10 == 0) and (total != 0):

6 t1 = threading.Thread(target=thread_work, args=(server,

active_services, total))

7 t1.start()

8 total += 1

9 finish = time.perf_counter()

Listing 6.5: Main loop Monitor Controller

The main monitoring loop runs every second for the specified duration. Services are
restarted if necessary during their execution, and newly collected monitoring data is sent
to the server. After exiting the main program loop, the Monitor Controller will stop all
services and save the monitoring task data in the database.

6.3 Data Analysis Application

This application was developed using the Flask open-source web microframework for
Python. Flask utilizes a Model-View-Controller (MVC) design pattern as its architec-
tural foundation. It is a well-documented and user-friendly framework that integrates
well with ML/DL-specific Python packages.

The following diagram 6.2 provides an overview of the MVC design architecture. A more
detailed description of each component is shown below.

Figure 6.2: Overview of the MVC Model including the View component

6.3.1 MVC Controllers

The controllers are the REST endpoints through which the sensor’s Monitor Controller
and user can communicate with the Data Analysis Application. The controller’s primary
function is to manage the request flow by acting as an intermediary between the view
and the model. The controller can accept requests from the sensor’s Monitor Controller
or the user. The received data is then validated and transformed into a format usable by
the program and sent to the model for further processing.
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The sensor and the user each have their own controllers. Sensor-specific controllers forward
incoming request data to the model in a background thread. A response is then directly
sent back to the sensor Monitor Controller middleware.

User controllers, on the other hand, handle user input from the Flask graphical user
interface (Visualization Layer). Data is exchanged between the controller, the model, and
the view in this instance. The data is presented to the user via the application View. The
following represent the main controllers of the application:

Sensor-specific controllers:

• /rest/main Main endpoint for training & evaluating ML models

• /rest/live Handles the evaluation of live data (all 5 seconds)

• /rest/test Controller to check, if the Flask application is running on the server

User-specific controllers:

• /live Graphical representation of classification and anomaly detection evaluation.
Endpoint for accessing the GUI.

6.3.2 MVC Model

The model contains the core application logic, including ML training/evaluation, data
pre-processing, and interactions with the database. Service classes, each with specific
functionality, manage the application’s core logic. This design allows for future expansion
of the web framework and simplifies code maintenance. The following service classes are
implemented in the framework and cover the main functionalities:

1. KERN/RES/SYS: Pre-process data for monitor RES, KERN and SYS

2. KERNlive/RESlive/SYSlive: Pre-process data for the tree monitors (live monitor-
ing)

3. anomalyml/anomalydl: Train & evaluate anomaly detection algorithms

4. classificationml: Train & evaluate classification algorithms
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Training Procedure Diagram

The following diagram 6.3 displays the main steps and class interactions implemented
within the Flask application, as part of the training process.

Figure 6.3: Interaction between service classes in training
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Live Evaluation Procedure Diagram

Figure 6.5 documents the live evaluation process.

Figure 6.4: Interaction between service classes during live evaluation

Anomaly Detection and Classification

Pyod and Tensorflow are the two main Python packages employed for ML and DL. After
pre-processing the incoming data, the ML/DL models are run in either training or evalu-
ation modes. The following sub-sections will introduce the main training procedures for
anomaly detection and classification.

ML Anomaly Detection

The following code snippet 6.6 shows a part of the training loop used for ML anomaly
detection (service class anomalyml). As a first step, the anomaly detectors are defined.
The fraction of outliers present in the training data set, also known as the contamination
factor, is set to 5% in the code.
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Next, a training session is initialized for each pre-processed monitoring data set.

After this, the input data is split into a training data set (90%) and validation data set
(10%), and both are standardized. The program will then perform the following processing
steps:

1. Using the training data set, the detectors are trained. This results in trained models
which can detect anomalies.

2. Next, the validation data is evaluated with the trained models to predict its anomaly
scores (normal=0/abnormal=1)

3. The accuracy of the model is determined by comparing the predicted and actual
anomaly scores. As only the TN’s and FP’s can be determined, the accuracy equals
the TNR in this case.

1 #Defined contamination + algorithms to train:

2 contamination_factor = 0.05

3 detectors = {

4 ’IsolationForest’:IForest(random_state=42, contamination=

contamination_factor),

5 ’OneClassSVM’:OCSVM(kernel=’rbf’,gamma=0.0001, nu=0.3, contamination=

contamination_factor),

6 ’LocalOutlierFactor’: LOF(n_neighbors=50, contamination=

contamination_factor)

7 }

8 # Checking all paths:

9 ...

10 for featurename, corpus in features[2].items():

11 y = [0 for i in range(0,len(corpus))]

12 # Split the data into training and testing:

13 X_train, X_test, y_train, y_test = train_test_split(corpus, y,

test_size=0.1, random_state=42, shuffle=True)

14 # Scaling the data:

15 scaler = StandardScaler()

16 scaler.fit(X_train)

17 X_train = scaler.transform(X_train)

18 X_test = scaler.transform(X_test)

19 # Save the scaler:

20 ...

21 # Save preprocessed data:

22 ...

23 # Train Loop:

24 for detector_name, dectector in detectors.items():

25 start_train = time.time()

26 dectector.fit(X_train)

27 end_train = time.time()

28 ...
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29 # Save the model:

30 ...

31 # Predict the test data:

32 start_prediction = time.time()

33 y_pred = dectector.predict(X_test)

34 end_prediction = time.time()

35 ...

36 # Calculate the accuracy:

37 accuracy = accuracy_score(y_test, y_pred)

38 # Save the metrics in db:

39 ...

Listing 6.6: Anomaly detection training loop

DL Anomaly Detection

Training for DL anomaly detection is performed in a similar manner. Code snippet 6.7
presents the Autoencoder class used for detecting anomalies.

1 class AnomalyDetector(Model):

2 def __init__(self, input_dim, layer_one, layer_two, layer_three,

layer_four):

3 super(AnomalyDetector, self).__init__()

4 self.encoder = Sequential([

5 Dense(layer_one, activation="relu"),

6 Dense(layer_two, activation="relu"),

7 Dense(layer_three, activation="relu"),

8 Dense(layer_four, activation="relu")])

9
10 self.decoder = Sequential([

11 Dense(layer_three, activation="relu"),

12 Dense(layer_two, activation="relu"),

13 Dense(layer_one, activation="relu"),

14 Dense(input_dim, activation="sigmoid")])

15
16 def call(self, x):

17 encoded = self.encoder(x)

18 decoded = self.decoder(encoded)

19 return decoded

Listing 6.7: DL Autoencoder

After splitting and standardizing the training data into the 90%-10% split, the Autoen-
coder is ready to be trained. As the number of features can vary depending on the
training data set, the dimensions of the Autoencoder layers are calculated before instan-
tiation. In addition, the TensorFlow ”Early Stopping Callback” prevents overfitting the
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model by stopping the training procedure when the validation error (mean absolute error)
no longer decreases.

After training the Autoencoder, the validation data set is processed and its reconstruction
errors calculated. The Autoencoder uses two different thresholds for detecting anomalies.
The first threshold is specified by the interquartile range rule, while the second is defined
as two standard deviations away from the mean of the reconstruction errors. The anomaly
detection thresholds and reconstruction errors are then used to assign the anomaly scores
to the validation data (0=normal, 1=abnormal). From this, the TNR can be determined.

1 # Check paths:

2 ...

3 for featurename, corpus in features[2].items():

4 y = [0 for i in range(0,len(corpus))]

5 X_train, X_test, y_train, y_test = train_test_split(corpus, y,

test_size=0.1, random_state=42, shuffle=True)

6 # Load scalers and scale data:

7 ...

8 # Define hidden layers:

9 ...

10 # Train Model:

11 model = AnomalyDetector(input_dim, layer_one, layer_two, layer_three,

layer_four)

12 early_stopping = EarlyStopping(monitor="val_loss", patience=10, mode="

min")

13 model.compile(optimizer=’adam’, loss="mae", metrics=["mae","accuracy"

])

14 start_training = time.time()

15 model.fit(X_train, X_train, epochs=500, batch_size=120, shuffle=True,

validation_data=(X_test, X_test), callbacks=[early_stopping],

verbose=0)

16 end_training = time.time()

17 ...

18 # Calculate the thresholds for anomaly detection:

19 start_prediction = time.time()

20 IQR_lower, IQR_upper, STD_lower, STD_upper, train_loss = anomalydl.

find_threshold(model, X_test)

21 end_prediction = time.time()

22 ...

23 # Anomaly score using standard deviation:

24 y_pred_STD = anomalydl.append_labels(train_loss, STD_lower, STD_upper)

25 accuracy_STD = accuracy_score(y_test, y_pred_STD)

26 # Anomaly score using interquartile range rule:

27 y_pred_IQR = anomalydl.append_labels(train_loss, IQR_lower, IQR_upper)

28 accuracy_IQR = accuracy_score(y_test, y_pred_IQR)

29 # Save model + metrics:

30 ...
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Listing 6.8: Main DL training function calls

Classification

The following classification algorithms are used as part of multi-class classification:

1. Logistic Regression

2. SVM

3. Random Forest

4. Decision Tree

Unlike anomaly detection, classification algorithms require labeled and balanced data
from all classes. Code snippet 6.9 shows the main training steps. The procedure is
similar to that used in training ML anomaly detection algorithms. Each pre-processed
incoming data set is split and standardized. After this, the classifiers are trained (using
the training data with its respective class labels). In this scenario, the labels are the class
names (Normal, DarkRadiation, Ransomware-Poc, and RAASNet).

A classification report is generated by comparing the actual class labels with the predicted
labels of the validation data. This report contains the overall classification accuracy as
well as the recall, precision, and F1-Score values of each class.

1 classifiers = {

2 ’LogisticRegression’: LogisticRegression(solver=’saga’,

multi_class=’ovr’, max_iter=5000),

3 ’DecisionTreeClassifier’: DecisionTreeClassifier(),

4 ’SVC’: SVC(gamma=’auto’, kernel=’rbf’),

5 ’RandomForestClassifier’: RandomForestClassifier()

6 }

7 for featurename, corpus in features[2].items():

8 # Behavioral features:

9 y = features[1]

10
11 # Create a train-test split:

12 X_train, X_val, y_train, y_val = train_test_split(corpus, y,

test_size=.1, shuffle=True, random_state=42)

13
14 # Standardize the data:

15 scaler = StandardScaler()

16 scaler.fit(X_train)

17 X_train = scaler.transform(X_train)

18 X_val = scaler.transform(X_val)
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19 corpus = scaler.transform(corpus)

20 # Save the scaler:

21 ...

22 # Create a datatframe:

23 ...

24 # Train the models:

25 for name, clf in classifiers.items():

26 clf.fit(X_train, y_train)

27 # Save the model:

28 ...

29 # Evaluate the model:

30 y_pred = clf.predict(X_val)

31 # Create and save classification report:

32 ...

Listing 6.9: Logistic Regression Training

6.3.3 MVC View

The MVC View dynamically presents data to the user (Visualization Layer). User in-
puts are processed by the view and sent to the controller to generate an appropriate
response. This thesis has implemented a small ”proof-of-concept” graphical user interface.
Its primary function is to process user input and visually present the results of anomaly
detection and classification (from live/online monitoring). This tool uses the following
technologies:

• Jinja2 as the templating engine

• JQuery for DOM manipulation

• Bulma CSS for styling

• Chart js for graphing data

The following is a sample screenshot from the Flask GUI:
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Figure 6.5: Proof of Concept Flask GUI



Chapter 7

Experiments & Analysis

This chapter introduces the reader to the different anomaly detection and classification
experiments conducted as part of this thesis, together with the results obtained and
associated resource utilization. In addition, observations and associated recommendations
are provided. Finally, this chapter compares ML/DL and policy-based anomaly detection
and classification.

7.1 Anomaly Detection Experiment

The goal of the anomaly detection experiment was to evaluate and compare the perfor-
mance and effectiveness of varying ML/DL algorithms in identifying ransomware. Fur-
thermore, this experiment attempted to distinguish the best algorithms and features for
detecting ransomware.

7.1.1 Experimental Setup

The first stage of this experiment was to gather the required training data. Anomaly
detection algorithms need large volumes of training data devoid of outliers (normal be-
havior). The Monitor Controller and the monitoring scripts were deployed on the sensor
to achieve this. The monitoring session was then run for 15 hours to ensure an adequate
training data sample size. Next, the three monitoring scripts (RES, KERN, SYS) were
run in parallel by executing the command ”Collect” on the Monitor Controller. Once this
data gathering process was completed, the ”Send” command was called to initiate the
server’s training procedure.

The server used for this experiment was a Lenovo ThinkPad with an Intel i7-8750H
processor and 32 GB of RAM running EndeavourOS Linux.

Before executing each of the ransomware samples on the sensor, the following tasks were
completed:

59
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1. A fresh copy of the ElectroSense software was installed alongside the Monitor Con-
troller.

2. Data partition three of the Raspberry Pi was resized to extend its limited storage
capacity.

3. Sample files with specific file extensions were generated using a file creation script
in a specified directory.

RAASNet and Ransomware-PoC begin the file encryption process shortly after execution
starts (after approximately two seconds). The DarkRadiation ransomware, on the other
hand, first installs several prerequisite dependencies before starting the file encryption
process. To compare the three ransomware strains, the monitoring procedure of DarkRa-
diation was initiated after receiving the ”encrypt home files began” notification.

Each ransomware monitoring session ran for 15 minutes, with all monitoring scripts run-
ning in parallel. This data was then used to evaluate the detection capabilities of the
ML/DL algorithms.

Ransomware-PoC was utilized in a second attack scenario to test the capability of en-
crypting the entire sensor. It took only 2 minutes and 27 seconds for the ransomware to
crash the sensor due to the encryption of system and library files.

7.1.2 Results & Findings

The first step in the analysis process was to verify the ML/DL algorithms to identify
normal behavior on the sensor correctly. As the collected data should reflect the normal
state of the sensor, a TNR close to 100% was expected. The results received from the
10% validation data sample were as anticipated.

A smaller ”normal” data sample was monitored and validated two hours later. It was
expected to return similar results. This is where the first deviation was observed. LOF,
One-Class SVM, and the Autoencoders trained with hashed system call features predicted
the normal behavior to be anomalous (0.00% TNR). As these algorithms were unable to
detect normal sensor behavior, their ransomware detection performance should be ignored.
This can be seen in the column TNR Val in table 7.1.

Training time seems to be dependent on the ML/DL model and the number of features
used. DL Autoencoders showed the most extended run-times, followed by the One-Class
SVM algorithm. As more features were included in the extracted system-call data, the
processing time required increased.

ML and DL models trained with system call monitoring data (Monitor SYS) detected the
ransomware DarkRadiation without issue. However, most of these ML algorithms failed
to identify a Ransomware-PoC or RAASNet infection. Deep Learning seems to be more
promising. The DL Autoencoder with an interquartile-based threshold using the Tf-idf
system call features were able to recognize all of the ransomware samples (TPR >50%).
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Similarities emerge when comparing the detection performance of algorithms trained with
the RES and KERN monitoring data. Both DarkRadiation and Ransomware-PoC were
detected accurately. However, a RAASNet ransomware infection appeared to be more
challenging for the algorithms to identify. This is most likely due to its slow encryption
process (slowest out of the ransomware samples).

The best performing algorithm for KERN and RES seems to be LOF, having a good
TNR, the fastest training time, and the best ransomware detection accuracy of 100% over
all ransomware samples.

Table 7.1: Anomaly Detection Results

Monitor Features
Algorithm
(ML/DL)

Training
Time
(s)

Testing time
per sample

(s)

TNR
Val
(%)

TPR Dark
(%)

TPR PoC
(%)

TPR RAAS
(%)

RES Monitor

114 IF 0.79 0.030 98.10 95.88 96.94 75.78
114 One-Class SVM 2.05 0.001 96.19 100.00 100.00 94.53
114 LOF 0.19 0.240 93.33 100.00 100.00 100.00
114 Autoencoder STD 16.49 0.160 97.14 100.00 100.00 38.28
114 Autoencoder IQR 16.49 0.160 96.19 100.00 100.00 80.47

KERN Monitor

77 IF 0.62 0.033 98.21 94.74 93.52 55.30
77 One-Class SVM 2.20 0.001 94.64 100.00 100.00 90.90
77 LOF 0.16 0.009 90.17 100.00 100.00 100.00
77 Autoencoder STD 17.49 0.083 98.21 100.00 100.00 30.30
77 Autoencoder IQR 17.49 0.083 98.21 100.00 100.00 56.06

Hashing 1-gram SYS

1024 IF 7.81 0.032 96.29 91.89 67.57 52.69
1024 One-Class SVM 8.72 0.002 0.00 100.00 100.00 17.20
1024 LOF 0.51 0.016 0.00 100.00 100.00 19.35
1024 Autoencoder STD 7.04 0.102 0.00 100.00 100.00 12.90
1024 Autoencoder IQR 7.04 0.102 0.00 100.00 100.00 27.96

Frequency 1-gram SYS

2443 IF 9.36 0.038 96.29 86.49 56.76 41.94
2443 One-Class SVM 24.03 0.004 100.00 100.00 2.70 15.05
2443 LOF 0.93 0.029 100.00 62.16 0.00 6.45
2443 Autoencoder STD 36.82 0.098 100.00 100.00 37.84 30.11
2443 Autoencoder IQR 36.82 0.098 97.53 100.00 59.46 64.51

TF-IDF 1-gram SYS

2443 IF 9.68 0.051 96.29 89.18 67.57 51.61
2443 One-Class SVM 24.49 0.005 100.00 100.00 8.11 17.20
2443 LOF 1.00 0.038 100.00 56.76 1.35 9.68
2443 Autoencoder STD 36.27 0.092 100.00 100.00 51.35 26.88
2443 Autoencoder IQR 36.27 0.092 96.29 100.00 71.62 79.57

7.1.3 Recommendations

After completing the experiments and reviewing the results, the following recommenda-
tions can be made for future investigation.

• As noted above, the 15-hour monitoring time was appropriate for this experiment.
Still, in a production environment, optimal results would be achieved by having a
more representative (more significant) data sample of normal sensor behavior.

• The RES and KERN Monitor generally achieved the most accurate ransomware
detection results. However, as system call monitoring tends to be more inaccurate,
it is recommended not to use these for future ransomware detection.
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7.2 Classification Experiment

The goal of the classification experiment was to evaluate and compare the performance
and effectiveness of different ML algorithms in the classification of ransomware. For this
experiment, four behavioral classes were defined. These include:

• The sensor’s normal behavior

• DarkRadiation infection

• RAASNet infection

• Ransomware-PoC infection

7.2.1 Experimental Setup

The first step of this experiment was to collect four separate samples of training data.
These reflect the different states of the machine and are the aforementioned behavioral
classes.

Classification algorithms need training data from each class and perform best when sample
sizes are comparable. Each of these data collection sessions ran for approximately four
hours. Note that the standard storage capacity of the sensor was insufficient to provide
the required number of target files for encryption. Therefore, an external solid state drive
(SSD) containing 100 gigabytes of sample ”dummy” files was used to achieve a four-hour
monitoring session. These include files of varying sizes and file types.

As part of the pre-processing, the server application labeled each monitored sample with
the appropriate behavioral class label and combined these into a single file. Then, the
data was prepared for training by randomly shuffling, splitting, and normalizing. The
classification label is also required for training as this is supervised ML. The server for this
experiment is the identical Lenovo laptop utilized in the anomaly detection experiment.

7.2.2 Results & Findings

Exceptional classification results were observed for all monitoring scripts (SYS, RES, and
KERN) with an overall accuracy of 90-100%. However, it is not known whether the short
monitoring periods impacted the outcome of this experiment (only 4 hours per class).
Table 7.2 presents the macro and weighted average F1-scores calculated for the different
classification algorithms. Note that the reports on table 7.3 reflect only the results from
the Decision Tree Classifier algorithm (Best performance to training time). Training
duration appears to be linked to the number of extracted features. Moreover, the training
period for logistic regression is the longest for all data sets (RES, KERN & SYS).



7.2. CLASSIFICATION EXPERIMENT 63

Table 7.2: F1-Scores Classification

Monitor Features Algorithm
Training Time

(s)

Testing time
per sample

(s)
Macro avg F1-score Weighted avg F1-score

RES Monitor

114 Logistic Regression 50.00 0.0001 0.99 0.99
114 Decision Tree 0.27 0.0003 0.99 0.99
114 Support Vector Machine 0.22 0.0006 0.99 0.99
114 Random Forest 1.50 0.0130 0.99 0.99

KERN Monitor

77 Logistic Regression 34.94 0.0002 0.99 0.99
77 Decision Tree 0.15 0.0002 0.99 0.99
77 Support Vector Machine 0.26 0.0004 0.98 0.98
77 Random Forest 1.15 0.0120 0.98 0.98

Hashing 1-gram SYS

1024 Logistic Regression 124.93 0.0001 1.00 1.00
1024 Decision Tree 0.18 0.0001 1.00 1.00
1024 Support Vector Machine 3.03 0.0013 0.93 0.93
1024 Random Forest 0.69 0.0159 1.00 1.00

Freq. 1-gram SYS

2084 Logistic Regression 349.24 0.0003 1.00 1.00
2084 Decision Tree 0.21 0.0002 1.00 1.00
2084 Support Vector Machine 7.99 0.0082 0.99 0.99
2084 Random Forest 0.65 0.0130 1.00 1.00

TF-IDF 1-gram SYS

2084 Logistic Regression 326.19 0.0004 1.00 1.00
2084 Decision Tree 0.25 0.0003 1.00 1.00
2084 Support Vector Machine 7.88 0.0029 0.99 0.99
2084 Random Forest 0.81 0.0120 1.00 1.00

Table 7.3: Classification Reports of Decision Tree Classifier algorithm

Monitor Accuracy Classes Precision Recall F1-score

RES Monitor 0.99

DarkRadiation 0.99 0.98 0.98
Normal 0.97 0.99 0.98
Ransomware-PoC 1.00 1.00 1.00
RAASNet 0.99 0.99 0.99

KERN Monitor 0.99

DarkRadiation 0.99 0.98 0.98
Normal 0.98 0.98 0.98
Ransomware-PoC 1.00 1.00 1.00
RAASNet 0.99 1.00 0.99

Hashing 1-gram SYS 1.00

DarkRadiation 1.00 1.00 1.00
Normal 1.00 1.00 1.00
Ransomware-PoC 1.00 1.00 1.00
RAASNet 1.00 1.00 1.00

Freq. 1-gram SYS 1.00

DarkRadiation 1.00 1.00 1.00
Normal 1.00 1.00 1.00
Ransomware-PoC 1.00 1.00 1.00
RAASNet 1.00 1.00 1.00

TF-IDF 1-gram SYS 1.00

DarkRadiation 1.00 1.00 1.00
Normal 1.00 1.00 1.00
Ransomware-PoC 1.00 1.00 1.00
RAASNet 1.00 1.00 1.00
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7.2.3 Recommendations

The experiment yielded excellent results. However, it raises the question of why anomaly
detection was not as accurate, specifically with system calls. Therefore, it is recommended
to conduct further study in this area.

As with the anomaly detection experiment, it is felt that using a more significant ”normal”
data sample would improve the accuracy of the classification results. This would, of
course, place additional demands on the sensor’s resources, specifically data storage and
processing time.

7.3 Performance Metrics Experiment

This experiment aimed to determine the resource utilization of the entire framework when
deployed on a standard sensor. The objective was to decide whether the Raspberry Pi sen-
sor has the CPU and memory capacity to perform spectrum monitoring and successfully
run the framework in parallel.

7.3.1 Experimental Setup

This thesis defines a standard sensor as a Raspberry Pi 3 Model B with 1GB of RAM
and a Quad-Core 1.2GHz Broadcom BCM2837 64bit CPU with a 16 gigabyte SD card
for storage.

The analysis established a baseline by measuring the sensor’s CPU and memory consump-
tion during normal operation (10 minutes) and averaging the results.

Similarly, resource consumption data was obtained while running the Monitor Controller
and the Flask application separately on the sensor. By subtracting baseline values from
the new measurements, the resource consumption of the framework’s components were
isolated.

Code snippet 7.1 shows the main monitoring loop of the resource consumption monitoring
script. It tracks the CPU and memory utilization for every 0.01-second interval.

1 while True:

2 cpu_usage = psutil.cpu_percent(percpu=False)

3 memory_usage = psutil.virtual_memory().percent

4 # If a keyboard interrupt is received, break the loop

5 try:

6 # Write the current ressources to the .csv file

7 file.write(str(time.time()) + "," + str(cpu_usage) + "," + str(

memory_usage) + "\n")

8 # Sleep for 0.01 seconds

9 time.sleep(0.01)
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10 except KeyboardInterrupt:

11 break

Listing 7.1: Main Loop Resource Consumption Script

7.3.2 Resource Usage of the Monitor Controller

The resource consumption of the Monitor Controller was assessed for four distinct mon-
itoring configurations, shown in table 7.4. The results were obtained by performing ten-
minute monitoring sessions and subtracting them from the baseline.

Table 7.4: Monitor Controller Resource Usage

Monitor configuration in MC CPU consumption Memory consumption
Monitor Controller + RES Monitor 2.02% 2.80%
Monitor Controller + KERN Monitor 4.47% 2.37%
Monitor Controller + SYS Monitor 13.58% 11.90%
Monitor Controller + KERN + RES + SYS 29.50% 13.24%

7.3.3 Resource Usage of Data Analysis Application

The resource consumption of the Flask application on the sensor was evaluated by running
a classification and anomaly detection training procedure for each monitor (KERN,RES
& SYS). In addition, timestamps were employed to track specific events such as the
pre-processing, training, and evaluation phases. Only the performance metrics of pre-
processing the data for anomaly detection were measured, as the classification data pre-
processing procedure is almost the same. The values indicated by ”nan” mean that no
resource metrics could be determined for the given interval. It was observed that the
RES and KERN Monitors produced data volumes manageable on the sensor. The SYS
Monitor, on the other hand, resulted in significantly larger data samples. Given the
duration of monitoring performed during the experiments and the thesis recommendation
to extend these, it is felt that the sensor’s machine resources would be inadequate for
processing system call data.

Resource Usage Training/Evaluation of RES

The goal of this experiment was to measure the resource utilization of the sensor when
training/evaluating ML/DL algorithms using RES monitoring data. For anomaly detec-
tion, 2133 data samples were used and 4266 for classification. 10% of the data was utilized
for evaluation. The following table 7.5 summarizes the findings:
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Table 7.5: Training & Evaluation of RES

Category Task
CPU
(%)

Memory
(%)

Seconds
(s)

Pre-Processing Pre-processing RES 17.74 50.90 1.01

Anomaly detection ML

Training IF 31.19 52.40 3.75
Evaluating IF 27.22 52.40 1.04
Training One-Class SVM 26.48 52.45 1.11
Evaluating One-Class SVM 39.74 52.50 0.52
Training LOF 31.18 52.69 0.85
Evaluating LOF 56.05 53.18 0.20

Anomaly detection DL
Training Autoencoder 38.41 54.59 98.40
Evaluating Autoencoder 30.40 55.37 1.41

Classification ML

Training Logistic Regression 29.38 55.38 198.87
Evaluating Logistic Regression 47.37 55.40 0.07
Training Decision Tree 29.00 55.40 2.40
Evaluating Decision Tree nan nan 0.006
Training Support Vector Machine 30.84 56.99 13.67
Evaluating Support Vector Machine 30.60 55.60 6.61
Training Random Forest 29.35 56.05 13.45
Evaluating Random Forest 11.26 57.60 1.32

Resource Usage Training/Evaluation of KERN

The same experiment was performed with an equal number of data samples from the
KERN Monitor. Table 7.6 shows the results of the experiment:

Table 7.6: Training & Evaluation of KERN

Category Task
CPU
(%)

Memory
(%)

Seconds
(s)

Pre-Processing Pre-processing KERN 25.19 45.58 0.90

Anomaly detection ML

Training IF 37.20 46.56 3.72
Evaluating IF 33.90 46.6 1.05
Training One-Class SVM 31.60 46.74 0.87
Evaluating One-Class SVM 33.75 46.8 0.38
Training LOF 35.29 47.09 0.77
Evaluating LOF 63.15 47.48 0.15

Anomaly detection DL
Training Autoencoder 35.26 48.98 110.72
Evaluating Autoencoder 4.18 49.50 42.09

Classification ML

Training Logistic Regression 29.38 53.70 104.14
Evaluating Logistic Regression 8.13 53.73 0.04
Training Decision Tree 27.67 53.7 1.29
Evaluating Decision Tree nan nan 0.005
Training Support Vector Machine 33.12 55.63 10.30
Evaluating Support Vector Machine 30.17 53.80 4.91
Training Random Forest 30.89 54.17 9.52
Testing Random Forest 28.42 56.00 0.35
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Resource Usage Training/Evaluation of SYS

Performing the same experiment with system call data was more complicated. Only
twelve data samples (log files) could be assessed for anomaly detection and classification
due to the sensor’s limited memory and storage capacity. Furthermore, training the DL
Autoencoder with extracted system call features crashed the Flask application. Table 7.7
and 7.8 present the findings:

Table 7.7: Training & Evaluation of Anomaly Detection SYS

Category Task
CPU
(%)

Memory
(%)

Seconds
(s)

Pre-Processing

Cleaning log files 51.63 45.30 89.27
Creating Corpus 55.34 48.08 11.02
Creating Count Vectorizer (Frequency) 52.13 48.21 8.58
Applying Count Vectorizer (Frequency) 51.41 48.46 8.22
Creating TF-IDF Vectorizer 51.29 48.11 8.20
Applying TF-IDF Vectorizer 51.44 48.58 8.20
Creating Hashing Vectorizer nan nan 0.0005
Applying Hashing Vectorizer 52.7 50.37 9.43

Anomaly Detection ML

Training IF Frequency 53.84 47.76 2.40
Evaluating IF Frequency 52.43 47.80 0.46
Training IF TF-IDF 53.66 47.80 2.25
Evaluating IF TF-IDF 51.65 47.80 0.46
Training IF Hashing 53.28 48.08 2.80
Evaluating IF Hashing 53.38 47.90 0.55
Training One-Class SVM Frequency 54.13 47.8 0.01
Evaluating One-Class SVM Frequency nan nan 0.003
Training One-Class SVM TF-IDF 47.03 47.80 0.01
Evaluating One-Class SVM TF-IDF nan nan 0.002
Training One-Class SVM Hashing 45.03 47.90 0.07
Evaluating One-Class SVM Hashing nan nan 0.003
Training LOF Frequency 48.6 47.8 0.04
Evaluating LOF Frequency 53.68 47.8 0.03
Training LOF TF-IDF 72.03 47.8 0.02
Evaluating LOF TF-IDF 63.73 47.8 0.03
Training LOF Hashing 55.43 47.93 0.91
Evaluating LOF Hashing 54.96 47.7 0.05
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Table 7.8: Training & Evaluation of Classification Algorithms SYS

Category Task
CPU
(%)

Memory
(%)

Seconds
(s)

Classification ML

Training Logistic Regression Frequency 47.03 51.40 0.06
Evaluating Logistic Regression Frequency nan nan 0.001
Training Logistic Regression TF-IDF 24.53 51.40 0.05
Evaluating Logistic Regression TF-IDF nan nan 0.001
Training Logistic Regression Hashing 33.99 51.41 0.50
Evaluating Logistic Regression Hashing 17.03 51.40 0.03
Training Decision Tree Frequency nan nan 0.006
Evaluating Decision Tree Frequency nan nan 0.001
Training Decision Tree TF-IDF 63.73 51.40 0.005
Evaluating Decision Tree TF-IDF nan nan 0.003
Training Decision Tree Hashing 15.69 51.40 0.07
Evaluating Decision Tree Hashing nan nan 0.002
Training Support Vector Machine Frequency nan nan 0.006
Evaluating Support Vector Machine Frequency 57.03 51.40 0.002
Training Support Vector Machine TF-IDF 57.03 51.40 0.007
Evaluating Support Vector Machine TF-IDF nan nan 0.002
Training Support Vector Machine Hashing 25.03 51.40 0.06
Evaluating Support Vector Machine Hashing nan nan 0.002
Training Random Forest Frequency 26.13 51.40 0.94
Evaluating Random Forest Frequency 28.88 51.40 0.10
Training Random Forest TF-IDF 26.89 51.40 1.05
Evaluating Random Forest TF-IDF 29.36 51.40 0.11
Training Random Forest Hashing 27.21 51.40 1.10
Evaluating Random Forest Hashing 27.53 51.40 0.12

Time Assessment of ML/DL per Sample

This subsection illustrates the time-related performance metrics per sample for each mon-
itoring script (RES, KERN, and SYS). The experiment was carried out on the Lenovo
Laptop to show the real-time performance of live/online evaluation. It considers the time
required by the framework to:

1. Pre-process a single data sample.

2. Evaluate the sample with the best anomaly detection algorithm.

3. Evaluate the sample with the best classification algorithm.

Table 7.9 shows the findings. The pre-processing column refers to pre-processing the data
for anomaly detection. The pre-processing for classification is omitted, as it is almost the
same procedure and requires around the same amount of time. Furthermore, the pre-
processing for the SYS monitor is the time needed to clean the data, create the corpus +
apply the appropriate vectorizer.
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Table 7.9: Time evaluation of a single data sample

Monitor Pre-Processing (s) Best Anomaly Algorithm Evaluation Time (s) Best Classification Algorithm Evaluation Time (s)
RES 0.015 LOF 0.240 Decision Tree Classifier 0.0003
KERN 0.011 LOF 0.009 Decision Tree Classifier 0.0002
SYS Hashing 0.531 IF 0.032 Decision Tree Classifier 0.0001
SYS Frequency 0.524 Autoencoder with IQR 0.098 Decision Tree Classifier 0.0002
SYS Tf-idf 0.519 Autoencoder with IQR 0.092 Decision Tree Classifier 0.0003

7.3.4 Recommendations

The experiments demonstrated that training and evaluation are possible on the sensor
for monitoring data KERN and RES. However, it is advised that the training/evaluation
be performed on the server. This ensures ”normal” sensor operation and decreases the
evaluation and training time.

It is not recommended to train ML/DL algorithms with extracted system-call data (SYS
Monitor) on the sensor. As only storage capacity is limited and a large amount of memory
is required, the training/evaluation should only take place on a high-powered machine.

Online evaluation appears to be a viable method for live anomaly detection and classi-
fication because it does not require a significant amount of time to pre-process the data
and evaluate the ML/DL algorithms.

7.4 Comparison of Ransomware Detection Approaches

This work has focused on ML and DL for detecting and classifying ransomware. In
addition to this approach, human-defined policies can also be used. One of the objectives
of this thesis was to compare the detection performance and resource utilization of both
detection techniques and identify the strength and weaknesses of each. The policy-based
approach introduced in the Related Work chapter [17] only used Monitor RES for its
evaluation. Therefore, only the metrics for the RES Monitor can be used for comparison.
Furthermore, three different policies were created by Huertas et al.:

• Policy 1: For detecting the normal/abnormal sensor behavior

• Policy 2: For identifying a Ransomware-PoC infection

• Policy 3: For identifying a DarkRadiation infection

The monitoring RES script includes the pre-defined policies for ransomware detection.
Creating these policies, however, requires an upfront investment to identify the various
levels between the normal and ransomware infection behaviors. A key advantage of this
approach is that it requires fewer system resources than ML/DL algorithms, which need
training.
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The policies correctly identified the anomalous behavior of Ransomware-PoC with a
94.91% TPR and DarkRadiation with 89.80% TPR. For classification, a 93.22% TPR
(recall) was achieved in terms of classifying Ransomware-PoC and a 55.10% TPR for
classifying DarkRadiation.

In terms of the overall anomaly detection accuracy, all ML/DL algorithms from the thesis
experiments outperformed the policy approach (see 7.1).

95.88% ≤ TPR DarkRadiation ≤ 100%

96.94% ≤ TPR Ransomware-PoC ≤ 100%

Regarding classification, a similar observation can be made when looking at the recall
values of the Decision Tree Classifier in table 7.3.

As noted above, the ML/DL results might have been impacted by the shorter duration
of training data captured (15 hours for anomaly detection and 4 hours/class for classifi-
cation).

Both solutions are feasible regarding anomaly detection and ransomware classification.
For the given ransomware samples, Huertas policies allow for a higher level of control
and tuning. However, ML/DL training is less labor intensive and can be easily applied
to sensors with differing hardware configurations. Therefore, it is felt that better results
could be obtained by combining both detection and classification strategies.



Chapter 8

Summary, Conclusions and Future Work

This chapter summarizes the main achievements of the thesis and outlines its key findings.
A section covering possible areas for future research is also included.

8.0.1 Summary and Conclusion

In summary, this thesis designed and developed a distributed anomaly detection and
classification framework. Different behavioral data sources were monitored and ML/DL
algorithms were selected to analyse and compare their performance in detecting and clas-
sifying ransomware. A variety of experiments related to anomaly detection, classification,
and resource utilization were conducted and analyzed to demonstrate the framework’s ca-
pabilities and limitations. These results were then compared to a policy-based approach.
In conclusion, the following are the thesis’s most significant findings:

• ML and DL can assist in ransomware detection and classification.

• Anomaly detection algorithms yielded the best results (over all ransomware sam-
ples), when trained with RES and KERN monitoring data.

• The LOF algorithm was identified to be the most promising regarding anomaly
detection when using RES and KERN monitoring data. It can, however, also be
very CPU demanding during evaluation and training.

• DL outperformed ML in anomaly detection, when trained with extracted system
call features (Tf-idf).

• SYS, KERN and RES monitoring data is suitable for ML classification.

• The decision tree classifier yielded the best overall classification results (performance
and training time) for RES, KERN, and SYS.
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• System call monitoring produces a large volume of data. Gigabytes of data can
be accumulated over a short period of time, which can quickly overwhelm available
storage capacities. In addition, processing of this data is very time and memory
intensive. The question then arises, given the less then optimal anomaly detection
results observed, is this a viable option for ransomware detection? I believe not.

• The implemented ML/DL algorithms outperformed the policy-based approach re-
garding anomaly detection and classification.

• Live evaluation of the sensor’s health seems to be a viable and fast technique for
identifying zero-day attacks and classifying different ransomware strains.

• A larger training data sample for classification and anomaly detection could improve
performance of the algorithms.

• The network connection appeared to have a negative impact on monitoring behavior.

8.0.2 Future Work

As noted in the thesis, there are several areas where further investigation could prove
beneficial in improving ransomware detection and classification. These include assessing
the impact of network activity on the monitoring results and isolating those factors which
negatively influence the process. Another future area of research could be identifying the
optimal balance between training data size/monitoring duration and ML/DL ransomware
detection accuracy.

Finally, testing the framework’s detection and classification performance with various
types of malware and devices could be an exciting research topic.
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Abbreviations

AIDS Acquired Immunodeficiency Syndrome
APK Android Package
API Application Programming Interface
BN Bayes Network
C2 Command-And-Control
CPU Central Processing Unit
CMS Content Management System
DL Deep Learning
DLLs Dynamic Link Libraries
DNN Deep Neural Network
DT Decision Tree
DTW Dynamic Time Warping
FFT Fast Fourier Transformation
FN False Negative
FP False Positive
FPR False Positive Rate
FSM Finite State Machine
GMM Gaussian Mixture Model
GUI Graphical User Interface
HPC Hardware Performance Counters
IF Isolation Forest
IoT Internet of Things
KERN Kernel Monitor
kNN K-Nearest Neighbors
LOF Local Outlier Factor
LSTM Long-Short-Term-Memory
ML Machine Learning
mRmR Maximum Relevance — Minimum Redundancy
MVC Model-View-Controller
NB Naive Bayes
NLP Natural Language Processing
NN Neural Network
PSO Particle Swarm Optimization
RaaS Ransomware-as-a-Service
RES Resource Consumption Monitor
RF Random Forest
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RNN Recurrent Neural Networks
SGD Stochastic Gradient Descent
SSD Solid State Drive
SVM Support Vector Machine
SYS System Call Monitor
TEs Three Ensembles
Tf-id Term frequency-inverse document frequency
TN True Negative
TNR True Negative Rate
VMI Virtual Machine Introspection
WEmRmR Weighted Enhanced Maximum Relevance and Minimum Redundancy



Glossary

Zero-Day Attack Zero-day malware attacks are caused by malware that exploits software
security weaknesses yet to be fixed/patched. It can also refer to an attack that
deploys novel, unseen malware.
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Appendix A

Installation Guidelines

This chapter provides the installation and deployment instructions for the Monitor Con-
troller, the Flask Web framework, and the three ransomware samples. Before proceeding
with these instructions, it is assumed that the user has deployed a Raspberry Pi Elec-
troSense sensor. Furthermore, running a Linux-based distribution on the main comput-
er/server (i.e., Ubuntu) is recommended. Finally, the user should define a separate folder
on the server/desktop to store training/evaluation data.

A.1 Monitor Controller

A.1.1 Installing the Monitor Controller on the Raspberry Pi

Prior to installing the Monitor Controller on the Raspberry Pi, SSH needs to be enabled
on the server/desktop. The following code presents the installation on a server/desktop
machine running Ubuntu:

sudo apt-get install openssh-server

sudo systemctl enable ssh

sudo systemctl start ssh

After SSH has been enabled, the following commands need to be run on the Raspberry
Pi sensor:

# Update the packages on the sensor:

apt-get update

# Install git on the sensor:

apt-get install git

# Clone the repository:

git clone https://github.com/dennisshushack/BA_Thesis_PI.git
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Installing the Monitor Controller is straightforward, as an installer script is provided
which downloads all dependencies and creates a passwordless SSH connection between
the Raspberry Pi sensor and the server. As shown below, the script takes the username
and server/desktop IP address as a command argument.

The following commands illustrate the procedure:

# Change Directory into the Git Repo:

cd BA_Thesis_PI

# Give access to the installer script:

chmod +x install_source.sh

# Run installer script (User will be prompted to enter his password)

./install_source.sh -s username@serveripaddress

Note use the ’ipconfig’ command to find the ip-address of the server if it is not known.

A.1.2 Collecting Data, Sending Data and Live Monitoring

Prior to starting the Monitor Controller, the following commands need to be run on the
Raspberry Pi sensor:

# Change Directory to Monitor Controller:

cd BA_Thesis_PI/middleware

# Enable Virtual Environment:

source env/bin/activate

The Monitor Controller middleware has four commands available to control the function-
ality of the program. These include, Collect, Show, Send, and Live. These will be used as
a command argument when starting the Monitor Controller on the Raspberry Pi sensor.

Collect Command

The Collect command, as the name suggests, is for collecting training or evaluation data.
The monitored data is sent every 10 seconds to the server automatically. To start the
data collection, the following command has to be run:

# Start collecting:

python3 cli.py collect

The user is then prompted to enter some additional information to start the collection
process:
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• Description: A short description of the monitoring session i.e. normal data collec-
tion

• Ransomware Type: Either normal (Normal Behavior), poc (Ransomware-Poc),
dark (DarkRadiation) or raas (RAASNet) i.e. normal

• Training or Evaluation: Is it training or evaluation data? i.e. training

• Time: The time to monitor in seconds i.e. 3600

• Server Path: Path on the server/desktop, where the data will be stored i.e. user-
name@serverip:/home/username/Desktop/data

Note: Reuse the same path for all monitoring sessions!

• ML/DL Type Classification or anomaly detection i.e. anomaly

• Monitors: Which monitors to run in parallel (If more than one separate by commas)
i.e. RES,KERN,SYS

Show Command

The show command displays all past monitoring sessions (from the collect command) in
a table. It can easily be executed by running:

python3 cli.py show

The following shows a sample output of the command. The # column is the index of the
monitoring session.

A.1.3 Send Command

The send command sends the metadata (from the collect command) to the server to
initiate the training/evaluation procedure. Before executing this command, it is necessary
to ensure the Flask application is running on the server (next section).

Note, if the user wishes to train classification algorithms with multiple classes/datasets
(i.e., normal, poc, dark, and raas), it is sufficient to send only the metadata of one mon-
itoring session (i.e., normal). After this, the Flask application automatically combines
the datasets (normal, raas, poc, and dark). Furthermore, the monitoring configurations
for training and evaluation must be the same. I.e., when collecting training data with
monitors KERN and RES, the evaluation data should also be collected with KERN and
RES. Lastly, the ML/DL algorithms must be trained before starting the evaluation. A
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script emulating the send command is also provided in the middleware folder called testre-
quest.py.

The following code executes the send command on the Monitor Controller:

python3 cli.py send

The user will then be prompted to add the following information:

• Flask Application: Where the Flask application is running i.e. 127.0.0.1:5000

• Task Index: Index of the monitoring session (# from the show command) i.e. 1

If there are issues with the Monitor Controller-Flask application communication over the
Local Area Network, the following debugging steps may help:

1. Ensure that the firewall is not blocking the requests (port).

2. Check the IP address of the Flask application (it should be the same as the server
IP).

A.1.4 Command Live

The live command starts a 60-minute live evaluation monitoring session. Before executing
this command, the anomaly detection and classification algorithms must be trained. This
command combines the aforementioned collect and send command for evaluation on a per
sample basis. To start a live monitoring session, the following command must be run:

python3 cli.py live

The required user inputs are similar to those of the collect and send command.

A.2 Flask Web-framework

The Flask application does the data pre-processing, training, and evaluation of the ML/DL
algorithms. This installation instruction assumes that the framework will be deployed on
the server/desktop.
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A.2.1 Installing the Flask Application

A modern Python version is required to run the application (min. Python 3.6). The
following commands install the framework together with its dependencies:

# Get Virtual Environment:

apt install python3-venv

# Get Git:

apt-get install git

# Clone Repository:

git clone https://github.com/dennisshushack/BA_Thesis_Flask.git

# Change Directory:

cd BA_Thesis_Flask

# Create Virtual Environment:

python3 -m venv env

# Activate the Environment:

source env/bin/activate

# Install python packages

pip install flask numpy pandas pyod tensorflow

A.2.2 Running the Flask Application

The following commands start the Flask Web application:

# Activate Virtual Environment:

source env/bin/activate

# Set App Folder Location:

export FLASK_APP=app

# Set development mode:

export FLASK_ENV=development

# Initalize the database (Has to be run only once)

# Deletes all entries in db:

flask init-db

# Start the server

flask run --host=serverip
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Offline training and evaluation of ML/DL algorithms does not require any user interaction.
The Flask application uses an SQLite database for data persistence. It contains the
anomaly detection evaluation metrics. These can be accessed via the command line or
graphically using a tool such as DB Browser for SQLite.

The following are the tables with the evaluation metrics:

• ML Training Anomaly: Contains the ML training evaluation metrics (TNR).

• ML Testing Anomaly: Contains the ML evaluation metrics produced from testing
data (TPR).

• DL Training Anomaly: Contains the DL training evaluation metrics (TNR).

• DL Testing Anomaly: Contains the DL evaluation metrics produced from testing
data (TPR).

Classification reports are saved as text files in the defined monitoring data directory on
the server/desktop.

The metrics from a live monitoring session are graphically displayed through the Flask
GUI. It can be accessed through a browser with the url: http://flaskip:port/. It is pass-
word protected with the default username: admin and password:admin

A.3 Ransomware Samples

The ransomware samples are not accessible through GitHub and must be provided by the
university project sponsors. The following subsections illustrate the deployment proce-
dure.

A.3.1 DarkRadiation

The DarkRadiation ransomware source folder contains three files, namely bash.sh, bot.sh
and supermicro.sh.

This ransomware requires a Telegram Bot for communication. To create a Bot, the user
can follow the official instructions (https://core.telegram.org/bots) section 6: BotFather.
This should generate a unique Telegram Token. The Chat ID can be retrieved with the
following tool (https://sean-bradley.medium.com/get-telegram-chat-id-80b575520659)

In the next step, the user will have to replace all instances of <TELEGRAM TOKEN>
and <CHAT ID> appearing in the ransomware source files with his newly generated
values. Furthermore, lines 59 and 53 of supermicro.sh have to modified with the correct
path (location where the ransomware will be saved on the sensor).

The DarkRadiation ransomware can be executed using the following command:
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cd DarkRadiation

./supermicro_cr.sh testpassword

A.3.2 RAASNet

RAASNet is a ransomware-as-a-service Python program that allows users to create cus-
tomized ransomware payloads. This thesis uses a specific payload configuration (see Chap-
ter Scenario).

If needed, a new payload can be created by following the installation instructions here
(https://github.com/leonv024/RAASNet)

The RAASNet source folder contains two files, payload.py, and requirements.txt. Before
deploying the ransomware, the file payload.py has to be modified (lines 57 & 64) to the
proper path for file encryption. The provided configuration would encrypt the /root/home
directory and its sub-directories.

Two options for deploying the ransomware on the Raspberry Pi (source or binary) are
available. The following commands executed on the Raspberry Pi Illustrate the procedure:

# Change Directory into RAASNet folder:

cd RAASNet

# Create Virtual Environment:

python3 -m venv env

# Install dependencies:

pip install -r requirements.txt

# Compile as binary:

pyinstaller payload.py --onefile

# Execute from source:

python3 payload.py

# Execute as binary:

cd dist

./payload

A.3.3 Ransomware-PoC

Ransomware-PoC is written in Python and allows users to encrypt a specific directory and
its sub-directories. It contains the three source files: discover.py, main.py, and modify.py,
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and can be downloaded from (https://github.com/jimmy-ly00/Ransomware-PoC). In ad-
dition, a compiled binary is provided, which can directly be executed on the Raspberry
Pi Sensor. Assuming the user uses the binary version, the following commands execute
the ransomware payload:

# Change Directory into RAASNet folder:

cd Ransomware-PoC/binary/dist

# Execute payload (Info: -e = encrypt, -p = path)

# Encrypt the folder /root/home/electrosense

./main -e -p /root/home/electrosense



Appendix B

Contents of the CD

The CD contains the following:

1. The Midterm presentation of this thesis.

2. The LATEXsource code of this thesis and the PDF.

3. Links to the Flask-Application’s and Monitor Controller’s GitHub repositories.

4. The three Ransomware samples (RAASNet, DarkRadiation, and Ransomware-PoC).

5. The pre-processed data-sets for training/evaluating anomaly detection and classifi-
cation algorithms.

6. Evaluation Metrics (Classification, Anomaly Detection and Resource Utilization)
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