Communication Systems Group, Prof. Dr. Burkhard Stiller

BACHELOR THESIS

University of
Zurich™

Design and Implementation of a
Threat Modeling Approach for
Al-based Systems

Jamo Sharif
Zurich, Switzerland
Student ID: 11-453-388

Supervisor: Jan von der Assen, Chao Feng
Date of Submission: December 26, 2023

University of Zurich
Department of Informatics (IFI)
Binzmuhlestrasse 14, CH-8050 Zurich, Switzerland —

Bachelor Thesis

Communication Systems Group (CSG)
Department of Informatics (IFl)

University of Zurich

Binzmihlestrasse 14, CH-8050 Zurich, Switzerland
URL: http://www.csg.uzh.ch/

Zusammenfassung

Diese Arbeit konzentriert sich auf die dringende Notwendigkeit, effektive Bedrohungsmodel-
lierungsstrategien im Bereich der Kiinstlichen Intelligenz (KI) und des Maschinellen Lernens
(ML) zu entwickeln. Der Bedarf hierfiir wird besonders deutlich, wenn die Grenzen traditionel-
ler Modellierungsansétze im Kontext von KI- und ML-Systeme betrachtet werden. Diese Systeme
sind omniprisent und haben signifikante Auswirkungen in verschiedenen Lebensbereichen, von
der Problemlésung bis hin zur potenziellen Kontrolle verschiedenster Aspekte. Die einzigarti-
gen Schwachstellen von KI- und ML-Systemen, insbesondere ihre Anfalligkeit fiir Angriffe durch
feindseliges ML sowie herkommliche Cybersicherheitsherausforderungen, unterstreichen die Not-
wendigkeit eines speziell angepassten Bedrohungsmodellierungsansatzes. Diese Arbeit zielt dar-
auf ab, diese Liicke zu schliessen, indem sie einen solchen spezialisierten Ansatz entwickelt und
implementiert.

Diese Arbeit bietet eine eingehende Untersuchung bestehender Literatur, Methoden und Cy-
berangriffe in der ML-Pipeline, um eine wesentliche Liicke in den aktuellen Bedrohungsmo-
dellierungsansétzen fiir KI-Systeme aufzudecken. Diese Liicke bezieht sich auf das Fehlen von
systematischen Prozessen und etablierten Techniken, die speziell darauf ausgerichtet sind, die
Komplexitét von KI-Systemen effektiv zu bewiltigen. Ein grundlegendes Referenzmodell fiir den
Bereich der KI wird als entscheidender Schritt zur Entwicklung eines neuen Bedrohungsmodellie-
rungsansatzes identifiziert. Zusétzlich erlidutert diese Arbeit den herausfordernden Prozess der
Erarbeitung dieses Bedrohungsmodellierungsansatzes fiir Kl-basierte Systeme. Dieser Prozess
basiert auf dem grundlegenden KI-Referenzmodell, das von der Européischen Union Agentur
fiir Cybersicherheit (ENISA) bereitgestellt wird, und modifiziert einen allgemeinen 5-Schritte-
Bedrohungsmodellierungsprozess, um den spezifischen Anforderungen der KI gerecht zu werden.

Ein Prototyp namens ThreatFinder wird entwickelt, um die praktische Anwendung des vorge-
schlagenen Bedrohungsmodellierungsansatzes zu demonstrieren. Die Funktionalitét und Struk-
tur von ThreatFinder werden erldutert, wobei seine zentrale Rolle innerhalb der Sicherheits-
landschaft im Bereich KI hervorgehoben wird. Die Wirksamkeit von ThreatFinder wird durch
ein gezieltes Experiment mit Teilnehmern aus verschiedenen Bildungshintergriinden bewertet,
um Einblicke in seine Effektivitdt und den potenziellen Mehrwert, den es fiir das Themenge-
biet bringt, zu geben. Folglich leistet diese Arbeit einen bedeutenden Beitrag zum Bereich der
KI-Sicherheit, indem sie die Sicherheit und Zuverléssigkeit von KI-Systemen gewiihrleistet, eine
entscheidende Weiterentwicklung angesichts der tiefgreifenden Bedeutung der KI.

i

Abstract

This thesis focuses on the urgent need to develop an effective threat modeling approach in the
field of Artificial Intelligence (AI) and Machine Learning (ML). The necessity for this becomes
particularly clear when considering the limitations of traditional threat modeling approaches in
the context of Al and ML systems. These systems are ubiquitous and have significant impacts
on various aspects of life, from problem-solving to the potential control of diverse aspects. The
unique vulnerabilities of AI and ML systems, particularly against Adversarial Machine Learning
(AML) threats, alongside traditional cybersecurity, underscore the need for a specially tailored
threat modeling approach. This thesis aims to close this gap by developing and implementing
such a specialized approach.

This thesis provides a comprehensive examination of existing literature, methodologies, and cy-
ber attacks in the ML pipeline, revealing a significant gap in current threat modeling approaches
for Al systems. This gap pertains to the lack of systematic processes or established techniques
for effectively addressing the complexities of Al systems. A foundational reference model within
the Al domain is identified as a crucial step for developing a new threat modeling approach. Ad-
ditionally, this thesis outlines the challenging process of designing the threat modeling approach
for Al-based systems using the foundational Al reference model provided by the European Union
Agency for Cybersecurity (ENISA) and modifying a general 5-step threat modeling process.

A prototype tool named ThreatFinder is developed to demonstrate the practical application of
the proposed threat modeling approach. The functionality and structure of ThreatFinder are
explained, highlighting its central role within the AI security landscape. The effectiveness of
ThreatFinder is assessed through a targeted experiment involving participants from various
educational backgrounds, providing insights into its effectiveness and the potential added value
it brings to the field. Consequently, this work makes a significant contribution to the field of Al
security by ensuring the safety and reliability of Al systems, a crucial advancement given the
profound relevance of Al

iii

iv

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisor, Jan von der
Assen, for the continuous support, expert feedback, and interesting discussions throughout this
thesis. Moreover, I would like to thank my co-supervisor, Chao Feng, for his inputs.

I would also like to thank Prof. Dr. Burkhard Stiller for the possibility to complete my Bachelor
thesis at the Communication Systems Group (CSG) of the University of Zurich. Finally, I thank
my friends and family for proofreading this thesis, and for their constant support.

vi

Contents

Zusammenfassung i
Abstract iii
Acknowledgments v
1 Introduction 1
1.1 Motivation e 1

1.2 Description of Work L 2

1.3 Thesis Outline 3

2 Background 5
2.1 Vulnerability 5

2.2 Threats e 5
2.3 Threat Modeling L 6
2.4 CIAA Properties in Threat Modeling 7
2.5 Threat Modeling Methodologies 8
2.5.1 STRIDE and DREAD 8

2.5.2 PASTA . . . e 10

2.5.3 Attack Trees 11

2.6 Al-based systemso 11
2.7 ML: An Overview 12

vii

viii CONTENTS
3 Related Work 15
3.1 AML . . 15
3.2 Cyberattacks in the ML Pipeline 16
3.2.1 Poisoning Attacks 17

3.2.2 Model Inversion Attacks 18

3.2.3 Model Extraction Attacks 18

3.2.4 Inference Attacks 19

3.3 Failure Mode and Effects Analysis 19
3.4 Types of Failuresin ML 20
3.4.1 Unintentional Failures oL 20

3.4.2 Intentional Failures oL L 20

3.5 Frameworks and Approaches for Security Threats in Al and ML, 21
3.6 Threat Modeling for Al-based Systems 22
3.7 Threat Modeling Tools L 24
3.7.1 Diagram-Based Threat Modeling Tools. 24

3.7.2 Text-based Threat Modeling Tools 25

3.7.3 Other Threat Modeling Tools 25

3.7.4 Threat Modeling Tool for Al-Based Systems 26

3.8 Gaps in Literature and Solutions 27

4 Architecture 29
4.1 Al Life Cycle o o e 29
4.2 AT Assets e 30
4.3 ML-based Software System Architecture 31
4.4 Threat Modeling Approach for Al-based Systems 32
4.4.1 Objective Identification oL 33

4.42 Overview/Outline 34

4.4.3 Asset Identificationo 35

4.4.4 Threat Identification L Lo L 36

4.4.5 Vulnerability Identification 0oL 38

CONTENTS

5 Prototypical Implementation
5.1 Diagrams.net in ThreatFinder

5.2 Functionality and Structure of

6 Evaluation

6.1 Use Case AISym4dMED . . .

the ThreatFinder Tool

6.2 Experiment with the AISym4MED Architecture Model

6.2.1 Methodology and Goals

6.2.2 Results of the Experiment

6.2.3 Discussion of the Results

6.3 Reflections and Future Work

7 Summary and Conclusions

Bibliography

Abbreviations

List of Figures

List of Tables

A Additional Tables and Figures

B Threat Lists by Experts

C Installation Guidelines

D Contents of the CD

X

39

39

42

47
47
50
50
52
o7

62

65

67

7

78

80

83

89

93

95

CONTENTS

Chapter 1

Introduction

In recent years, the progress in Artificial Intelligence (AI) techniques has been impressive, mak-
ing Al nearly omnipresent. A notable illustration is the Guardian’s report on AlphaZero Al
[1], which won against a champion chess program after just four hours of self-training. This
exemplifies the current reality where the impact of Al extends beyond imagination, from solving
complex problems to potentially influencing and controlling various aspects of our lives [2].

The application of Al, particularly through various methods such as Machine Learning (ML),
has demonstrated its efficacy in addressing challenges within the cybersecurity field. These
advanced technologies are now tackling problems once effectively considered unsolvable. For
instance, malware detection has traditionally relied on static analysis, examining the contents
of malware artefacts. However, this method is susceptible to evasion through simple obfuscation
techniques, such as changing the source code. In this context, leveraging ML, behavior-based
approaches were able to identify generic patterns of malicious software behavior, even in cases
where the source code is altered [3]. While a large share of companies have transitioned from
research to adopting Al systems in their Information Security Programs, notable challenges
persist [4]. According to a recent study [5], an inadequate threat model is one of the most
prevalent pitfalls of applying AI to the security field. For instance, while an Al system can
identify a server security breach, it might not ensure the safety of its own activities, such as
collecting unfalsified data, conducting model evaluation, and generating reports.

1.1 Motivation

As Al-based systems become increasingly integrated into our daily lives, ensuring their security
is paramount. Especially, ML plays a significant role in a wide range of application domains [6].
These systems, however, while vulnerable to the same threats that plague traditional software
systems without AI components, exhibit additional vulnerabilities to various types of Adver-
sarial Machine Learning (AML) threats (see Sections 3.1 and 3.2). These AML threats also
pose potential severe consequences [7], [8]. Nevertheless, security concerns within AML research
primarily focus on ML models. More precisely, the research in this field examines the com-
plex methods used to compromise ML-based systems during the crucial phases of the learning
process, specifically during training and inference [9], [10]. Hence, there is a notable gap in
exploring a holistic paradigm that concurrently addresses both AML threats and traditional
security concerns in ML systems. This gap remains widely unexplored [10].

2 CHAPTER 1. INTRODUCTION

Threat modeling (see Section 2.3) has emerged as a crucial practice in safeguarding traditional
software systems. Yet, the reason why similar approaches have not been broadly applied to
Al-based systems remains unclear. While threat modeling could offer a valuable overview of
potential threats in Al systems, there is currently no systematic process or established technique
for identifying threats and vulnerabilities across the entire Al pipeline [9].

As previously noted, threat modeling has primarily been employed in the context of traditional
software systems. Nonetheless, it is crucial to acknowledge that Al systems, with their unique
structure, encompass specific assets beyond the conventional elements of information and com-
munication technology, such as data, software, hardware, and communication networks. The
distinctive set of assets in Al, including models, processors, and artefacts, can be susceptible to
compromise or damage, whether intentional or unintentional [11]. Consequently, the significant
challenge lies in adapting threat modeling methods designed for traditional software systems to
address the complexities of Al systems effectively.

This thesis wholeheartedly embraces the challenge. Its objective is to develop a threat modeling
approach for Al-based systems, enabling system implementors to characterize the hostile execu-
tion environment of the Al system. The focus is on identifying and highlighting potential threats
to the system. This endeavour would mark a significant milestone in Al security, ensuring the
safety and reliability of Al systems, a critical advancement given the profound relevance of Al

1.2 Description of Work

As mentioned, this thesis aims to design and develop a threat modeling approach tailored to
Al-based systems, mainly focusing on Al and ML. The absence of an established threat modeling
approach for Al systems requires a comprehensive review of existing literature and methodolo-
gies, followed designing and implementing a tailored threat modeling approach.

The thesis begins by introducing key terms like threat modeling and Al-based systems. A
thorough literature research ensues, encompassing existing cyberattacks in the ML pipeline,
methodologies, and tools for threat modeling. The exploration delves into existing threat mod-
eling approaches, emphasizing challenges and prompting the identification of a novel approach
tailored to AI systems. This comprehensive research not only establishes a robust knowledge
foundation but also highlights a critical gap within this domain that warrants attention and
resolution.

In the next stage, the focus shifts to identifying a foundational reference model within the
AT domain, a crucial step for shaping the new threat modeling approach. This chapter further
outlines the challenging process of designing the threat modeling approach for Al-based systems,
using the foundational Al reference model provided by ENISA and modifying a general 5-step
threat modeling process. Subsequently, the prototype is developed, highlighting the pivotal role
of the diagrams.net tool. Additionally, this part explains the overall functionality and structure
of the newly crafted ThreatFinder tool.

The conclusive phase involves the evaluation of the prototype through a targeted experiment.
Seven participants with different educational backgrounds engage with the newly developed
ThreatFinder tool, providing insights into its effectiveness and the potential added value it
brings to the domain.

1.3. THESIS OUTLINE 3

1.3 Thesis Outline

This report is structured as follows: Chapter 2 establishes the theoretical foundation, introducing
key concepts crucial for comprehending the main topic, the "threat modeling approach for Al-
based systems”. In Chapter 3, comprehensive research explores cyberattacks in the ML pipeline,
failure mode evaluation, and existing threat modeling approaches for Al systems. Additionally,
the selection of the most suitable threat modeling tool for Al systems is considered, laying
the groundwork for the subsequent chapter. In Chapter 4, an appropriate Al architecture
is proposed, and, guided by a general 5-step threat modeling approach, the prototype for a
threat modeling approach tailored to Al-based systems is conceptualized. On this basis, the
development of the approach takes place in Chapter 5. Finally, the evaluation of the implemented
prototype is the focus of Chapter 6, followed by a conclusion in Chapter 7.

CHAPTER 1. INTRODUCTION

Chapter 2

Background

In order to understand the core of this bachelor thesis, it is essential to introduce basic terms and
concepts first. This background section systematically clarifies definitions and nuances related to
vulnerabilities, threats, and some different methodologies used for threat modeling. In addition,
it explains the methodologies applied in threat modeling and the relevance of Al-based systems,
particularly ML.

2.1 Vulnerability

To understand the concept of vulnerability, it is important to define a weakness in this context.
A weakness is an underlying defect that alters behavior or functionality, leading to incorrect
behavior or allowing access to data that is either unauthorized or inaccurately granted [12].
Consequently, vulnerabilities can be comprehended as weaknesses in a system’s architecture
or its design, which permit an invader to execute commands, gain improper access to data,
or carry out denial-of-service attacks [13], [14]. Therefore, exploitable weaknesses constitute a
vulnerability [12].

Vulnerabilities pave the way for an antagonist with malicious intent to inflict a certain level of
damage to a system [12]. In particular, vulnerabilities can be located in the system’s hardware
or software, in the policies and procedures that govern the system, or even amongst the users of
the system themselves [15].

2.2 Threats

A threat is an action or potential action that exploits vulnerabilities in a system, which can
have a negative impact on it [16]. The primary origins of these threats can be traced back to
either humans or nature [17], [18]. It is important to highlight that any entity engaging with
the system capable of causing threats can be termed a threat actor.

Natural threats, such as floods, hurricanes, earthquakes, and fire can seriously harm computer
systems. Few mitigating measures can be implemented against these natural disasters. However,
the natural disasters themselves are ultimately unavoidable. The most effective strategies to se-
cure systems against natural threats are disaster recovery plans like data backup and contingency
plans [19].

6 CHAPTER 2. BACKGROUND

Human threats derive from human actions, such as malicious threats that can be internal.
Internal threats often originate from individuals with authorized access to the system. On
the other hand, external threats are individuals or organizations working outside the network
intending to inflict damage or cause disruption to the system [19]-[21]. Hence, a threat, whether
internal or external, regardless of its intent, is anything that can exploit a vulnerability to impact
the system’s assets [12] negatively.

Threats originating from human actors are categorized into the following [19]: (7) Unstructured
threats, which largely come from inexperienced individuals, utilizing easily available hacking
tools [19] or (ii) structured threats, where the actors know the system vulnerabilities and have
the ability to understand, develop and exploit various codes and scripts [19]. The Advanced
Persistent Threat (APT) is a prominent example of a structured threat [22]. APT represents a
complex network attack targeted at high-value information in business and government organi-
zations, such as financial industries, manufacturing, and national defense, with the aim to steal
data [23]. Additionally, for a comprehensive overview, Figure 1 presents a visually informative
illustration that effectively depicts the relationship between the terms threat and vulnerabil-

ity [24].
Threat] Threat] -) Adverse
Source inftiafes } exploits Vulnerability causing impact
with e with e ith Severity i with Risk
Likelhood of Likelihood of i Dagree
Characteristics [nitiation ~ Sequenceof gy pepce P as a combination of
, e, s
i:;_s-.. ﬁwdﬁl\'jr : xd:rns. acliivities, Impact and Likelihood
] Predisposing)
Conditions producing
with
Inputs from Risk Framing Step Pervasivenass
(Risk Management Strategy or Approach) DRGANZATIONAL RISK
Security Controls o e
Influencing and Potentially Modifying Key Pisened ipdemactsd R, iy shpelaln], craitefionul
eyl - a indivicuals other organizations, and
Risk Factors e
with
Effectivanass

Figure 1: Generic Risk Model With Key Risk Factors [24]

2.3 Threat Modeling

Threat modeling is an analytical and cyclic procedure to look for system vulnerabilities that
come from suboptimal design choices. The activity aims to detect these weaknesses before
they become part of the system through implementation or deployment, thereby enabling early
corrective actions [12]. Threat modeling is a distinct system design activity that must be distin-
guished from other methodologies, such as risk assessment. While risk assessment encompasses a
broader scope, periodically addressing overall risks, threat modeling is more specific. It concen-
trates on identifying and mitigating vulnerabilities through targeted scenarios [25]. Furthermore,
threat modeling is a well-known process for meticulously designing systems, networks, and busi-
nesses [26]. Once potential threats are identified, suitable countermeasures can be considered,
communicated, and implemented [27].

2.4. CIAA PROPERTIES IN THREAT MODELING 7

The threat modeling process consists of five steps, each identifying the following elements [28]:
(i) Assets are valuable components and crucial for operational delivery. Assets can include
hardware, software, services, and data. Moreover, due to their value, they might be targets for
adversaries. 2 Attack surface are the various components of the system vulnerable to unautho-
rized access by adversaries. (i) Adversary model specifies the adversary’s characteristics, such
as their identity, motives, and capabilities. (iv) Vulnerabilities are the weaknesses within the
asset that the adversary can exploit for security compromise (see Section 2.1). Threats, on the
other hand, are events in which the adversary takes advantage of the asset’s vulnerabilities to
initiate an attack (see Section 2.2). (v) Mitigation measures are the security solutions designed
to prevent, detect, or reduce the impact of threats [28]-[30]. However, it is important to note
that these steps serve as a valuable meta-model for considering threat modeling methods. No-
tably, not all steps within this framework are obligatory, highlighting flexibility. These steps are
adaptable and open to modification. For example, step (iii) is occasionally omitted.

2.4 CIAA Properties in Threat Modeling

The security of computer-related systems requires four aspects: (i) Confidentiality, (i) In-
tegrity, (7i) Availability, and (v) Authentication, often referred to as the CIAA process for
threat modeling [31]. The corresponding definitions can be found in Table 1.

Table 1: CTAA Triad Overview [32]
Property Definition

Confidentiality Property that information is not made available or dis-
closed to unauthorized individuals, entities, or processes.

Integrity Property of accuracy and completeness.

Availability Property of being accessible and usable upon demand by
an authorized entity.
Authentication Verifying the identity of a user or system entity.

The associated attacks are explained in more detail along with the various properties: (i) Confi-
dentiality attacks attempt to access information without proper authorization. When attackers
attain administrator-level access to a system, they often have relatively unrestricted access to
the resources. However, it is important to note that attackers can also read information without
illegitimate privilege escalation,for example, as insider attackers [31]. (i7) Integrity attacks,
on the other hand, seek to modify information within a system without proper authorization.
Modification can encompass a range of actions such as creating, changing, appending, writing,
and deleting both data and metadata [31].

Furthermore, there exist (iii) Availability attacks, which aim to make data or services un-
available for some time. These services, including both data and metadata, must be available
on-demand to legitimate parties when requested. Denial-of-service (DoS) attacks are designed
to make data and services unavailable by exhausting resources through legitimate mechanisms,
which makes this attack the hardest to prevent [31]. As a final aspect, (iv) Authentica-
tion attacks occur when an attacker masquerades as a legitimate user identity, often by using
stolen passwords or credentials, or an attack device masquerades as a legitimate device. For
instance, a perpetrator can launch insider attacks to access data/metadata (confidentiality),
modify data/metadata (integrity), or block others from accessing data/metadata (availability),
all based on the legitimate user identity authorization capabilities they have taken over. An-
other way for authentication attacks is man-in-the-middle attacks [31]. The man-in-the-middle

8 CHAPTER 2. BACKGROUND

attack is one of the most well-known attacks in computer security, ranking among the top con-
cerns for security professionals. Here, the attacker aims to compromise the actual data that
flows between endpoints and the confidentiality and integrity of the data itself [33]. Hence, the
man-in-the-middle acts as an invisible intermediary between the communicating parties.

2.5 Threat Modeling Methodologies

Threat modeling methods are used to form an abstraction of the system, create potential attacker
profiles with their corresponding goals and strategies, and generate a catalog of possible threats
that might emerge [34]. Therefore, threat modeling methods enable the identification of critical
areas of the design which need to be protected [27]. Hence, establishing security in software
systems considerably relies on threat modeling methods [27].

Numerous threat modeling methods have been developed so far and are now used to design secure
web applications [27], [34]. Hereby, some threat modeling methods prioritize detailed system
abstraction and granularity, while others are more people-centric, while others emphasize risk
or privacy concerns [34]. In the following sections, various threat modeling methodologies will
be enumerated and explained.

2.5.1 STRIDE and DREAD

The STRIDE method was invented by Loren Kohnfelder and Praerit Garg in 1999 [29]. STRIDE
is an acronym for Spoofing, Tampering, Repudiation, Information Disclosure, DoS, and Elevation
of Privilege (see Table 2) [12], [29], [35]. In the following paragraph, the definitions of these terms
are explained, and some examples are provided as well.

(S) Spoofing is the act of pretending to be someone or something other than oneself. In contrast,
(T) tampering means to modify something on a network, on disk, in memory, or elsewhere.
Changing either the data a program is using or the running program would be a tampering
threat. Meanwhile, (R) repudiation refers to the claim that you did not undertake a certain
action, or were not responsible for it. Repudiation can be truthful or deceitful, and the primary
challenge for system designers here is determining the proof they possess. Repudiation might
manifest claims like, ”I never pressed that red button” or ”I did not place an order for that
car”. It is important to highlight that repudiation is the somewhat odd threat among other
threats. At the same time, many threats focus on technical aspects, repudiation bridges into
the business layer. Another significant concern is (I) information disclosure, which is the act of
providing information to those not authorized to access it. Here, the most obvious example is
allowing access to files, e-mail, or databases. Furthermore, there are (D) DoS threats, focusing
on consuming resources needed for service delivery. For example, a program that can be tricked
into using up all its memory. Finally, (E) elevation of privilege allows someone to do something
even though they are not authorized. As an illustration, allowing a regular user to execute code
with admin privileges [12], [29], [34], [35].

STRIDE analyzes vulnerabilities within each system component that an attacker could manipu-
late to breach the whole system [35]. Hence, STRIDE examines the detailed system design [34].
Due to the absence of a standard methodology, applying STRIDE threat modeling against a
system is carried out in different steps [35].

As a first step, the in-place system is modeled, which means decomposing the system into its
logical or structural components [34], [35]. It is common to use data flow diagrams (DFDs),

2.5. THREAT MODELING METHODOLOGIES 9

which are still a powerful tool for system analysis and design process [36]. A DFD is a fun-
damental artefact in the structured approach, crucial for every system. It offers a hierarchical
structure, providing different abstraction levels essential for system design. The DFD is a graph-
ical representation of the data flow within an information system. Moreover, it illustrates the
movement from one process to another and provides essential information for other system arte-
facts to represent dynamic aspects [37]-[39]. Hence, by creating DFDs, system entities, events,
and boundaries of the system can be identified [40]. The accuracy of the DFDs will determine
how successful the application of STRIDE will be [41]. Nevertheless, using DFDs as the main
input to threat modeling can be restrictive, as they do not offer mechanisms for representing
security-related architectural decisions [42].

The next step involves identifying STRIDE threats within the DFD of every system compo-
nent [35]. As it can be seen in Table 2, STRIDE uses a general set of known threats resulting
from its name [34]. This acronym can serve as a mnemonic for discovering threats while explor-
ing the systems model, which was established in step one [29]. Some resources provide checklists
and tables to facilitate this step, describing threats, property violations, common victims, and
attackers’ actions [29], [34], [43]. At this point, it is important to note that depending on the
functionality of each system component, certain STRIDE threats might not be applicable to
it [35].

After identifying threats for each system component, it is essential to examine the vulnerabilities
that cause them [35]. The final step is formulating effective mitigation strategies according to
the discovered vulnerabilities [35]. Once mitigation strategies to the corresponding threats have
been developed, it is crucial to document and prioritize these findings [41], [42].

Currently, STRIDE is the most well-developed threat modeling method [34]. So far, the appli-
cation of STRIDE has been successful to cyber-only and cyber-physical systems [29], [35], [41],
[43]. Moreover, the STRIDE method is straightforward in traditional software systems but can
be time-consuming [29], [41]. A key challenge with STRIDE is that the number of threats can
grow rapidly as a system’s complexity increases [34]. Furthermore, it has been demonstrated in
a descriptive study that the STRIDE method yields a relatively low rate of false positives but a
relatively high rate of false negatives (e.g., overlooked threats) [43].

There are two different variants for performing STRIDE, namely STRIDE per element and
STRIDE per interaction [12], [29]. Due to its focus on analyzing the behavior and operations
of each system component, STRIDE per element is considered more complex [35]. However,
it might lead to ignoring the holistic approach to the system during the analysis — even if the
system is fully represented — since certain threats are not evident from the DFD [12], [35]. In con-
trast, the STRIDE per interaction approach enumerates threats by considering tuples, including
origin, destination, and interaction, and enumerating threats against them [29]. In comparison,
STRIDE per interaction is easier to execute, and its protection strategies are generally sufficient
for system protection — in particular since cyber attacks commonly involve harmful interactions
between system components [35].

Microsoft developed another modified STRIDE method called DREAD [35]. The DREAD model
serves as a threat evaluation model and is utilized to assign threat severity and priority level
of detected threats [27]. DREAD is also a mnemonic for Damage potential, Reproducibility,
Exploitability, Affected users, and Discoverability [34]. It allots either of three values (0,5,10)
to the first four categories, and one of four values (0,5,9,10) to the last category, enabling the
computation of an average value that represents the risk of the entire system [34], [44].

10

CHAPTER 2. BACKGROUND

Table 2: The STRIDE Threats [29]

Threat Property violated Typical Victims

S Spoofing Authentication Processes, external
entities, people

T Tampering Integrity Processes, data

stores, data flows

R Repudiation Non-Repudiation = Processes

I Information Disclosure Confidentiality Processes, data
stores, data flows

D DoS Availability Processes, data
stores, data flows

E Elevation of Privilege Authorization Processes

2.5.2 PASTA

The Process for Attack Simulation and Threat Analysis (PASTA), developed in 2012, represents
a threat modeling methodology that is risk-centric [34]. Thus, it evaluates the potential risks that
influence a business or a system, starting with contextual references, emphasizing the inherent
importance of an application, its components, the underlying infrastructure, and data on business
operations [12]. PASTA contains seven different stages, each involving several activities depicted

in Figure 2 [12], [45], [46].

.

.

.

.

.

Identify Business Objectives
Identify Security & Gompliance Requirements
Business Impact Analysis

Capture the Boundaries of the Technical Environment
Capture Infrastructure | Application | Soft. Dey

Identify Use Cases | Define App. Entry Points & Trust Levels
Identify Actors | Assets | Services | Roles | Data Sources

+ Data Flow Diagramming (DFDs) | Trust Boundaries

.

.

« Threat Intelli C

Probabilistic Attack Scenarios Analysis
Regression Analysis on Security Events
& Analyti

Queries of Existing Vulnerability Reports & Issues Tracking
Threat to Existing Vulnerability Mapping Using Threat Trees
Design Flaw Analysis Using Use & Abuse Cases

Scorings (CVSS/CWSS) | Enumerations (CWE/CVE)

* Attack Surface Analysis
+ Attack Tree Development | Attack Library Mgt.
* Attack to Vulnerability & Exploit Analysis Using Attack Trees

Qualify & Quantify Business Impact
Countermeasure Identification & Residual Risk Analysis
ID Risk Mitigation Strategies

Figure 2: Risk Centric Threat Modeling Case Studies [47]

The goal of PASTA is to harmonize business objectives with technical requirements [48]. To
achieve this goal, it uses various design and elicitation tools in different stages [34]. For instance,
to identify the technical scope, high-level architectural diagrams are used during stage two, or

2.6. AI-BASED SYSTEMS 11

DFDs are implemented in stage three [34]. In stage six, attack trees are built, and use and abuse
cases are developed for analysis and attack modeling [12], [49].

This approach raises the threat modeling procedure to a strategic level, requiring the partic-
ipation of decision-makers and security inputs from operations, governance, architecture, and
development [50]. Broadly recognized as a risk-centric framework, Pasta maintains an attacker-
centric perspective — the attacker’s point of view is adopted [12], [34]. Ultimately, the process
yields an asset-centric output manifested as enumeration and scoring of threats [49], [50].

2.5.3 Attack Trees

Utilizing attack trees to model threats dates back to one of the earliest and most widely chosen
techniques, applicable to cyber-only, cyber-physical, and physical systems [44]. The initial idea
behind this method — developed by Bruce Schneider in 1999 — was to be applicable as its own.
However, it has been combined with various other methods and frameworks since [34], [44].

Attack Trees offer a structured, methodical way of describing the security of systems by con-
sidering various potential attacks [51]. The attack against a system is represented as a tree
structure, where the root node symbolizes the goal of the attack, while the leaf nodes illustrate
the different ways for achieving that goal [27]. Every node represents a subgoal, and the children
of that node are ways to accomplish that subgoal [51]. Hence, there are multiple ways to reach
the goal. To integrate these various options within the tree, the logical operators AND and OR
are used [34]. OR nodes symbolize alternative options and AND nodes indicate different steps
necessary to achieve the same goal [27].

Once the tree is constructed, usually through a few iterations of decomposing the goal, distinct
values can be assigned to the leaf nodes. These values are subsequently employed to evaluate the
security of the goal [34], [51]. The values are assigned manually and totally dependent on the
security expert and system engineer [27]. Other attributes, such as the time needed to complete
a step, operational expense, and the level of expertise required to initiate an attack can also be
incorporated to attack trees [27]. An Attack Tree aids in design and requirement decisions [51].
If the costs of an attack exceed the benefit of the perpetrator, it is unlikely that the attack will
occur; however, easy attacks that may yield a benefit need defenses [51].

2.6 Al-based systems

Over the past ten years, increased computer processing power, expansive data sets, and refined
algorithms have enabled significant progress in Al [52]. Al is a leading technology in the era of
the Fourth Industrial Revolution (Industry 4.0 or 4IR), possessing the capacity to incorporate
human-like behavior and intelligence into machines or systems. Consequently, Al-based modeling
has become essential in constructing automated, intelligent, and smart systems in order to meet
the contemporary demands of today’s world [53].

The progress of Al has led to an emerging trend of Deep Learning (DL). DL is a subset of ML,
which itself is a subset of AI [53], [54]. The relationship among AI, ML, and DL is illustrated
in Figure 3. The feasibility of DL has enabled ML to become an integral part of many widely
used software services and applications [54]. Such advancements in Al technology have resulted
in many essential applications, like image and speech recognition, as well as autonomous vehicle
navigation, to near-human levels of performance [52].

12 CHAPTER 2. BACKGROUND

Artificial Intelligence

(A1) To incorporate human behavior and

intelligence to machine or systems.

Machine Learning

Methods to learn from data or past
(ML)

\>experience, which automates
' analytical model building.
.Computation through multi-layer

” neural networks and processing.

Deep
Learning
(bL)

Figure 3: Illustration AI Subfields [53].

The recent developments of Al have profoundly impacted the software industry with the increase
of Al-based systems now incorporating Al functionalities, driven by the progress in ML and
DL [55], [56]. Software systems with functionalities enabled by at least one AI component are
considered Al-based. These systems learn while analyzing their environment and make decisions
to showcase intelligent behavior [57]. As stated by the expert group on Al of the European
Commission, Al-based systems can be exclusively software-driven, operating in digital space
like voice assistants, search engines, image analysis software, and speech and face recognition
systems. Alternatively, Al can be integrated into hardware devices, evident in advanced robots,
autonomous cars, drones, or Internet of Things applications [58]. Furthermore, developing,
managing, and maintaining Al-based systems differ from developing and maintaining traditional
software systems. The system’s rules and behavior in Al-based systems are deduced from training
data instead of being explicitly coded [59]. The development and maintenance of Al-based
systems demand interdisciplinary cooperation of data scientists and software engineers [55].
Different quality attributes in these systems must be considered for design and analysis [60].
The evolution of Al-based systems demands attention to large and dynamic datasets, resilient
and adaptable infrastructure, as well as ethics and equity requirements engineering [61]. Not
considering these differences could lead to deficient Al-based systems with technical debt [62].

2.7 ML: An Overview

ML is recognized as the most favorable Al technology, which is commonly the study of computer
algorithms that enable automated analytical model building [63]. ML models generally consist
of a set of rules, processes, or advanced "transfer functions” that aid in identifying interesting
data patterns or predicting behaviors [64].

ML, also referred to as predictive analytics, utilizes data to predict certain unknowns in the
future and addresses many real-world business challenges, such as business risk prediction [53].
Figure 4 illustrates a general framework of an ML-based predictive model, where the model
undergoes training using historical data in the initial phase, and the outcome is generated for
new test data in the second phase [53].

ML modeling has been applied in almost all aspects of our lives, from healthcare, cybersecurity,
and business to education, virtual assistants, recommendation systems, and smart cities, among
others [53]. For instance, in [65], an ML strategy for getting COVID-19 assistance to the most
vulnerable is provided. In the cybersecurity domain, namely in [66] and [67], many cyber
anomalies and attacks detectable via ML techniques are emphasized. As a concluding example,

2.7. ML: AN OVERVIEW 13

in [68], an ML-based approach is described to build an optimal parking pricing system for smart
city environments.

[Phase 1: Model Trammg:

-V.' — 55

Machine Learning Predictive

Historical Algorithms Model
Data

[Phase 2: Model Testing]

‘ ‘ Qutcome
' " [Predictions)

MNew Data Pred |ctw
Madel

Figure 4: ML Based Predictive Model [53]

14

CHAPTER 2. BACKGROUND

Chapter 3

Related Work

As Al-based systems become increasingly integrated into our daily lives, ensuring their security
is of utmost importance. As already known, threat modeling (see Section 2.3) has emerged as
a crucial practice in safeguarding traditional software systems. The question now is to what
extent threat modeling has been applied to Al-based systems and what the current state of
research is in this area. Therefore, this chapter explores the existing knowledge and research in
the field of threat modeling for Al-based systems. This chapter gives a comprehensive overview
of the current landscape by delving into related topics such as AML, failure modes in ML,
categories of attacks, frameworks, approaches, and practical tools. It provides readers with a
foundational understanding of the challenges and solutions in securing Al-based systems, laying
the groundwork for the subsequent exploration of a novel threat modeling approach in this thesis.

3.1 AML

Supervised ML models can be compromised by attackers who manipulate or craft training sam-
ples. Such adversarial exploitation has been well documented across a range of applications,
including antivirus engines, autonomous bots, visual recognition, and social networks [69]-[72].
These attacks have directed research into ML security, leading to the new research field of AML,
a discipline that bridges the gap between ML and computer security [73]-[75]. A comprehensive
review of the progress in active research in this area over the past decade is illustrated in [76].
Here, the authors offer a historical overview of ML security through a technical lens. In essence,
current research on ML security focuses on (i) pinpointing potential weaknesses of ML-based
systems, (i7i) formulating related adversarial strategies, evaluating their impact on the target
system, and (743) suggesting protective measures against the observed attacks [9], [76].

The issue of adversarial attacks has recently attracted considerable interest, leading to the
release of several studies that introduce innovative attack and defense strategies for specific ML
algorithms [77]-[80]. Research in ML security primarily focuses on identifying data-, model-,
and system-oriented attacks and defenses [81]-[83]. Thereby, researchers often focus on specific
security issues, disregarding an in-depth investigation of secure development practices that cover
both ML-specific and traditional system threats [84], [85].

Furthermore, the US National Institute of Standards and Technology (NIST) has recently pub-
lished a taxonomy for AML, enriched with a glossary of essential terms [81]. The goal of the
NIST document is to establish a unified terminology for upcoming standardizations. Meanwhile,

15

16 CHAPTER 3. RELATED WORK

the ISO/IEC JTC 1/SC 42 international standard committee has been exploring various sub-
jects within AT security. For example, the report ISO/IEC TR 24028:2020 [6] addresses threats
that might weaken trust in Al systems and offers a concise discussion on how to cope with them.

Alongside the aforementioned initiatives, research has dug into techniques to prevent undesired
behavior of ML models by proactively managing their training sets and parameters [6]. For
instance, [86] introduced an automated framework for checking the safety of feedforward deep
neural networks focusing on exploring regions around relevant data points to look for partic-
ular adversarial alterations. In [87] the focus of the research is on a technique for producing
certificates of robustness for two-layer neural networks. This approach allows for simultaneous
optimization of the certificates alongside the network during the training process. The research
also proposed a framework designed to practically certify distributed ML powered applications.
The certification process involves statistical observation of the actions performed by ML models
during inference.

3.2 Cyberattacks in the ML Pipeline

Stage AI/ML Pipeline Attacks / Failures

PHYSICAL
WORLD
L

data o
collection t— = Data poisoning
h

DATA
REPOSITORY
°

data
preprocessing

Y
—_

FEATURE
SELECTION
L

Training Time

training
data ~— *Model poisoning

h
LEARNED

MODEL
[] I

Attack Surface

testing
data

h 4

FINAL MODEL

Test Time

unlabeled real-
world data

h J

= Unintentional /
INFERENCE / intentional failures
CLASSIFICATION I~ = Model inversion

= Model extraction
= Inference

Inference
Time

Figure 5: ML Pipeline with Cyberattacks Layout [88]

3.2. CYBERATTACKS IN THE ML PIPELINE 17

To build any ML model, data must be gathered, processed, trained, and then tested before it
can be used to classify new data. This sequence of data collection, processing, training, and
testing can be viewed as a generalized AI/ML pipeline, also referred to as the attack surface.
An attack surface, when exposed to adversarial intrusion, might encounter a poisoning attack,
an evasion attack, and an exploratory attack [89]. These cyberattacks target the three pillars of
information security: Confidentiality, Integrity, and Availability, known as the CIA triad [90].
The integrity of the system is undermined by poisoning and evasion attacks. Its confidentiality
can be compromised by extraction, while its availability is vulnerable to poisoning attacks. A
comprehensive visualization of the entire Al pipeline and the possible attacks at each step is
shown in Figure 5 [88].

3.2.1 Poisoning Attacks

Poisoning attacks arise when the adversary introduces tainted data into the training set. ML
algorithms, like intrusion detection systems, often undergo retraining using the training dataset.
In this type of attack, the adversaries cannot access the training dataset. However, malicious
data samples [74] are introduced during the model training time. Generally, the goal of the
attacker is to manipulate the AI system such that it leads to the misclassification of objects.
Poisoning attacks may arise from poisoning either the training dataset or the already trained
model [88], [91].

Adversaries can target the data source, a platform from which a defender pulls its data, or they
might attack the database of the defender directly. They could substitute an authentic model
with a compromised model. Moreover, poisoning attacks can leverage the limitations of the
underlying learning algorithms [88]. This attack occurs within federated learning scenarios where
the data privacy of individual users is preserved [92]. In these contexts, the adversary exploits
the weakness of federated learning and may take control of both the data and learning algorithm
on a specific user’s device, thereby worsening the model’s performance on that device [93].

Dataset Poisoning Attacks

Dataset poisoning attacks mainly appear as error-agnostic and error-specific attacks. In error-
agnostic attacks, adversaries aim for a widespread impact, similar to a DoS approach, where the
system generates errors randomly. This involves the manipulation of both data point features
and their labels, resulting in common misclassifications and maximizing the loss function of the
learning algorithm. Omn the other hand, error-specific attacks are more targeted, as attackers
prompt the system to produce specific misclassification errors. Here, the hacker focuses on
misclassifying selected data points without compromising the normal system operations, ensuring
that the attack is undetected [88], [94], [95]. The essence of these attacks involves manipulating
the training dataset, which results in a compromised model. When adversaries tamper with a
dataset, they can induce the model to identify and adopt these manipulated patterns, serving
their harmful intentions [88].

There are two main types of dataset poisoning attacks, namely data modification and data injec-
tion [96]. In data modification, the adversaries manipulate existing training data, particularly
labels. For instance, attackers might randomly assign or optimise new labels to cause maxi-
mum disruption. On the other hand, in the case of data injection, the adversaries can inject
new, incorrect data into the dataset, increasing the impact of the attack beyond mere label

18 CHAPTER 3. RELATED WORK

manipulation. This is possible even without having direct access to training data or the learning
algorithm [96].

Model Poisoning Attacks

Poisoning of models resembles traditional cyberattacks. When an Al system is compromised by
attackers, the attackers may replace the original AI model with a poisoned one. Alternatively,
they can perform “A man in the middle” attack [97] to have the wrong model downloaded
while transferring learning [88]. Model poisoning generally happens through Backdoored Neural
Network (BadNet) attacks [98]. BadNets are modified neural networks where the neural model
is trained on a mix of clean and poisoned data. The training mechanism is thereby fully or partly
outsourced. This opens up new security risks, whereby adversaries often observe the training,
embedding covert triggers that lead to intentional misclassifications known only to them. There
exist two main BadNet categories: (i) Outsource training attack, where training is delegated
externally, and (ii) the transfer learning attack, where a pre-trained model is outsourced and
utilized [88], [98].

3.2.2 Model Inversion Attacks

Given the model parameters, the model inversion attack aims to reconstruct the training data.
Such attacks raise privacy concerns, particularly due to the growing number of online model
repositories [88]. To illustrate, in the study [99], the model inversion attack within a blackbox
context has been explored. The objective was to reconstruct an input sample considering the
confidence score vector from the target model. Moreover, it has been successfully shown that it
is feasible to recreate specific input samples from a given model. To accomplish this, an inversion
model has been trained on a supplementary dataset designed to act as the inverse of the given
target model. This inversion model used the confidence scores of the target model as input and
attempted to recreate the original input data. Furthermore, it has been shown that the inversion
model surpassed the performance of earlier models.

In contrast, within a whitebox context, in a study [100], a model inversion attack was introduced
that only yields a representative sample from training data, rather than reconstructing a distinct
input sample, guided by the confidence scores of the target model. Several related studies [100]—
[102] were introduced to infer sensitive features or statistical details about the training data
via inversion models. Furthermore, another study [103] focused on inversion attacks within
federated learning, where the attacker had whitebox access to the model.

3.2.3 Model Extraction Attacks

An attack during which an ML model is extracted arises when an attacker, with only blackbox
access to the target model, successfully duplicates it or reconstructs a model very similar to
it [88]. In [104], the authors investigated the vulnerabilities in specific ML models, especially
Support Vector Machines and Support Vector Regression Machines used in ML as a service.
The research shows that adversaries can make use of these vulnerabilities efficiently, making it
an attractive target for potential malicious attackers. In [105], attacks on neural networks were
examined, demonstrating an approach where adversaries generate queries for simple deep neural
network architectures.

3.3. FAILURE MODE AND EFFECTS ANALYSIS 19

Moreover, in [106], model extraction attacks were introduced, targeting hyperparameters of a
simple architecture similar to a neural network with three layers. A particularly noteworthy
extraction was shown in [107], where the extracted model was more accurate than the original
model. Furthermore, the authors in [108], [109] used a model compression method called distil-
lation, carrying out model extraction attacks on deep neural networks and convolutional neural
networks, focusing on image classification.

3.2.4 Inference Attacks

ML models can accidentally expose information about the specific data entries on which they
were trained [88]. In the study [110], the concept of the membership inference attack was
considered. In this type of attack, an adversary can conclude whether a particular data record
was included in the model’s training dataset, given the data record and blackbox access to the
model. According to this study, such a revelation can be regarded as a privacy breach. If the
adversary can deduce whether the record was incorporated into the training through the model,
then such a model is viewed as disclosing information. The significance of this privacy breach
does not only impact a singular data point but resonates throughout the entire dataset, given
the high correlation between the covered and the uncovered dataset [111]. This is particularly
true when the model is based on statistical facts about the population [88].

Other research studies [112]-[114] focused on attribute inference attacks. In these scenarios, an
attacker gets access to mostly public data about a target user to infer their private details. The
attacker initially gathers data from users who are voluntarily sharing data in public. This data
is then used to train a ML classifier, which uses a user’s public information as input and thus
estimates their private attribute values.

3.3 Failure Mode and Effects Analysis

Failure Mode and Effects Analysis (FMEA) represents a systematic and well-established ap-
proach used to discover potential failures in the design of a product or process [115], [116].
Failure modes refer to the various ways an entity, whether a process, system, or component,
might fail. Effects, on the other hand, are the consequences these failures could have, leading to
waste or harmful outcomes for the end users. The primary goal of FMEA is to identify, rank,
and mitigate the failure modes of manufacturing or engineering processes, products, designs,
or services. This is achieved by evaluating their potential occurrence, understanding the root
causes, and assessing their overall impact [9], [117].

Initially developed for the military, FMEA soon expanded its reach to the aerospace industry
and other manufacturing domains, with various applications in the nuclear electronics and au-
tomotive fields as well [9]. In recent times, the potential of FMEA and other safety engineering
tools have been explored to evaluate the design of AI-ML systems [118], [119]. Applying FMEA
in the context of an AI-ML asset involves several steps, (i) assigning specific functions to the
asset, (1) drafting its structural, functional, and network diagrams, (iii) defining flaws that
might compromise the asset’s functions or networks, and (iv) identifying and analyzing potential
threats to the AI-ML system, and evaluating their impact on functions and networks [9].

20 CHAPTER 3. RELATED WORK

3.4 Types of Failures in ML

There are two modes of failure of ML systems. On the one hand, there exist unintentional
failures, where the Al systems can fail due to the inherent design. On the other hand, there are
intentional failures, which are caused by an adversary [120]. In the following chapters, uninten-
tional and intentional failures will be explored in depth, elucidating their various manifestations.

3.4.1 Unintentional Failures

Unintentional failures occur when AI/ML systems yield an unexpected or undesirable outcome
from a determined action. It predominantly stems from system failures [88]. In this bachelor
thesis, different types of unintentional failures are categorized, particularly reward hacking and
distributed shift.

Reward hacking is a failure mode that arises in AI/ML systems when a reinforcement learning
algorithm is used. In game scenarios, such an issue reveals itself when an agent has unexpect-
edly higher returns as rewards, thereby endangering the system’s safety [88], [121]. In [122], a
new multi-step reinforcement learning approach has been introduced. This method generates a
discounted future reward, diminishing the influence of immediate reward on the current state-
action pair. Such an algorithm creates a defense mechanism to mitigate the consequences of
reward hacking in AI/ML systems. In contrast, the distributed shift appears when an AI/ML
model that previously exhibited strong performance in one setting drastically underperforms in
a different environment [88]. An example is the scenario where the training and test data come
from two distinct probability distributions [123].

3.4.2 Intentional Failures

Intentional failures are caused when adversaries aim to disrupt the system by either introduc-
ing private training data to misclassify the results or extracting the foundational algorithmic
framework [88], [120]. In [89], adversarial objectives are categorized into four distinct classes
based on the ML classifier output. These are: (i) Confidence reduction, in which the predictive
certainty of the target model is reduced to a lower probability of classification. (i) Misclas-
sification, where the result is altered from the original class. (i77) Output misclassification,
wherein the adversary generates inputs to fix the classifier output into a particular class. And
(iv) input/output misclassification, where a particular input is consistently labeled as a specific
class.

In [120], a taxonomy of intentional failures/attacks has been outlined based on the knowledge
of the adversary. This classification deals with the extent of knowledge required to initiate
an attack to make the AI/ML system fail. The more informed an adversary [89] is, the more
effectively an attack can be performed.

There are different types of classified attacks depending on the adversary’s access to knowledge
about the system [88]. For the purposes of this thesis, only whitebox attacks and blackbox
attacks will be considered since they are relevant to the topic under discussion, and a more
detailed explanation would go beyond the scope of this thesis.

In the whitebox attack, adversaries have access to the parameters of the underlying architecture
of the model. Moreover, they have comprehensive knowledge of the training algorithm, weights,

3.5, FRAMEWORKS AND APPROACHES FOR SECURITY THREATS IN AI AND ML21

distribution of the training data, and biases [103], [124]. Due to this information, the adversaries
can find the model’s weak spots within the feature space. Subsequently, the model is manipulated
by altering inputs through crafting methods [88]. Studies in [125], [126] have demonstrated that
training the model with data filled with certain adversarial instances can strengthen the system
against whitebox attacks.

On the contrary, in the blackbox attack, the attacker has no knowledge about the ML system.
The attacker’s knowledge is limited to two types of information. On the one hand, there is the
hard label, wherein the adversary obtains only the classifier’s predicted label. On the other,
there is confidence, where the predicted label is accompanied by its corresponding confidence
score. Additionally, the attacker uses information about the setting or prior inputs to discern
the vulnerabilities of the model [88], [89].

3.5 Frameworks and Approaches for Security Threats in AT and ML

The well-known MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK)
framework [127] was developed by MITRE to catalog adversary tactics and techniques based on
real-world observations. This MITRE framework offers a standardized taxonomy of adversarial
actions, facilitating a shared understanding among both offensive and defensive sides of cyber-
security. Additionally, it can be utilized as a valuable tool to analyze adversary behavior [9].
However, it is essential to note there are certain limitations here. This framework lacks explicit
evidence or functionality designed specifically for modeling AT threats, highlighting a gap in ad-
dressing the primary focus of this thesis. Complementary to the MITRE ATT&CK framework
is MITRE ATLAS (Adversarial Threat Landscape for Al Systems) [128]. This framework serves
as a knowledge repository for adversary tactics and techniques. ATLAS includes demonstra-
tions from red teams and security groups, real-world observations, and findings from academic
research. Notably, ATLAS contains some AI/ML case studies [9]. However, there is a lack of
specific details on how ATLAS incorporates AI/ML case studies and a comprehensive list of
security controls.

Microsoft has made further efforts to understand and address security threats in ML-based sys-
tems. They have released guidelines for mitigating and triaging Al-specific security threats [129],
[130]. The approach of Microsoft is based on STRIDE threat modeling (see Section 2.5). How-
ever, it primarily focuses on a taxonomy that classifies ML failure modes into two categories,
namely intentional and unintentional failures. Intentional failures are further correlated with a
list of attacks reported in the literature [9], [120]. Microsoft’s approach, mainly focusing on cate-
gorizing ML failure modes, does not comprehensively cover the broader spectrum of Al threats.
Additionally, its correlations with reported attacks might miss emerging or less documented
threats.

OWASP has developed comprehensive strategies to understand and address security threats in
AT systems [131]. Their guide contains a number of principles adressing Al security, such as
use limitation, fairness, data minimization, and transparency, as explained in their Al security
section (see OWASP AI Security Guide [131]). These guidelines provide a basic framework for
dealing with Al safety and focus on general principles. However, this thesis seeks a tailored
threat modeling approach for Al-based systems. The guide emphasizes also the importance of
understanding the uniqueness of Al threats and the need for tailored security measures.

The Berryville Institute of ML has introduced an architectural risk analysis for ML security [132].
This is designed to guide developers, engineers, and others in creating applications and services

22 CHAPTER 3. RELATED WORK

that rely on ML models. Notably, the Berryville analysis categorizes 78 risks using a generic ML
system as an organizing concept and then highlights the ten most significant ones [132]. These
analysis provide valuable insights into Al safety, but have their limitations, such as a potentially
narrow focus and a general approach to risk categorization. Moreover, they lack specificity and
adaptability to the diverse and evolving landscape of Al-based systems.

Furthermore, the European Union Agency for Network and Information System Security, also
referred to as ENISA, published a report [133], focusing on a comprehensive analysis of threats
targeting ML-based systems. This analysis includes threats such as data poisoning, adversarial
attacks, and parameter exfiltration. The report also provides a list of security controls doc-
umented in the existing literature. Yet, this report has limited relevance to this thesis, as it
concentrates on specific threats and controls for ML algorithms, without extensively covering
the broader Al security ecosystem. However, another report [11], also published by ENISA,
establishes a foundational comprehension of cybersecurity threats to AI [11], [129]. It highlights
various assets within the Al ecosystem and associates the corresponding threats with them,
considering the different stages of the typical Al life cycle. Therefore, the information presented
in this ENISA report serves as a crucial foundation for the present thesis. The comprehensive
and well-structured lists within these reports provide an ideal basis for further research and
integration into the threat modeling approach.

3.6 Threat Modeling for Al-based Systems

Another rising area of research delves into threat modeling methodologies that can aid security
experts’ comprehension of how AI or ML-based systems may fail. According to [9], only a
few studies have adopted this approach to identify ML security risks. However, these studies
examine how threat modeling methodologies, traditionally used in software engineering, can
be applied to ML-based systems’ security. These investigations link threats to the components
produced at different stages of ML models’ life-cycle, from initial requirements analysis to system
maintenance [6], [9]. The following section examines individual papers that have employed
different threat modeling approaches for ML-based systems.

In [10], a conventional threat modeling approach is applied to a ML system. The methodology
begins with identifying threats using Data Flow Diagrams (DFDs) and the STRIDE approach,
involving five sub-steps: (i) An architectural model is developed for the system utilizing a DFD.
(i) An AML threat taxonomy is crafted based on existing literature and (ii7) mapped to the
DFD. (iv) Conceptual gaps between AML threats and STRIDE are addressed, followed (v) by
the use of STRIDE to pinpoint AML threats in the ML system. In the second step, the impacts
of AML threats are ranked using Microsoft AI/ML bug bar’s [134] threat ranking approach.
Finally, in the third step, AML threat mitigations are elicited by leveraging the Microsoft AT/ML
attack library. The threat taxonomy used in this paper is not comprehensive, as it does not cover
all potential threats. Another challenging aspect is the mapping process, addressing conceptual
gaps between AML threats and the STRIDE approach. This approach is not straightforward,
posing a significant challenge due to its complexity. Specifically, harmonizing AML threats
with the STRIDE model demands careful consideration and presents a non-straightforward and
somewhat cumbersome task within the overall methodology. Moreover, it is important to note
that this approach is still in its early stages.

3.6. THREAT MODELING FOR AI-BASED SYSTEMS 23

On the one hand, it may require manual implementation and lack automation. On the other
hand, the evaluation, based on a single case study without any participants, may not be repre-
sentative. Additionally, the usability of the method has not yet been assessed. It is reportedly
planned for testing by computer science students. In light of these considerations, it becomes
clear that the current state of this threat modeling approach, while being rudimentary good, is
not yet mature enough for practical application in Al systems.

In [135], the focus is shifted to the maintenance phase of ML models. Here, they introduce a
metric based on the notion of a “gold standard” data set to evaluate the degradation of ML
models in production. The maintenance phase indicates that the ML model has already been
deployed. Moreover, as previously discussed in Section 2.3, threat modeling focuses on finding
threats before they become part of the system. On the other hand, the use of a ”gold standard”
dataset metric reflects an approach to evaluate ML model degradation in production. This is
in line with traditional threat modeling principles, where metrics are typically used to quantify
the impact and likelihood of identified risks and vulnerabilities. While this paper focuses on
the maintenance phase of ML models after deployment, the present thesis specifically deals with
threat modeling before the deployment of ML models. The assumption here is that the model
has not been deployed yet, aligning with the traditional principles of threat modeling, which
aim to identify and mitigate risks before they become part of the system.

In another study [136], a systematic ML-oriented threat analysis for the Open Radio Access
Network (O-RAN) architecture has been conducted. They identified potential threat actors
in the O-RAN ecosystem and mapped them to the requisite capabilities for an attack. This
study highlights the need for domain-specific threat modeling approaches that are tailored to
the particular characteristics and challenges of Al systems embedded in specific architectures.
However, the objective of this thesis is to develop a general threat modeling approach where the
particular architecture is not a determining factor.

The paper of [9] stands out as the most recent and arguably the most significant contribution to
designing a threat modeling approach for Al-based systems. This paper advocates for the crucial
integration of threat modeling methodologies in the security analysis of Al systems. Moreover,
it introduces the STRIDE-AI methodology, a tailored adaptation of the STRIDE threat mod-
eling framework specifically designed for ML systems. The methodology introduces ML-specific
interpretations for CIAA security properties discussed in Section 2.4. Assigning these proper-
ties to each asset allows for reference to the corresponding STRIDE threats in Table 2 from
Section 2.5.1. Furthermore, it maps the failure modes of Al assets. By associating these failure
modes with specific STRIDE threats and referencing known attacks, the methodology provides
a framework for identifying and addressing security challenges in ML-based systems. However,
this methodology introduces a complex manual mapping process, requiring the assignment and
mapping of all properties to identify STRIDE threats. Further, the procedure involves associ-
ating failure modes with threats and properties. Managing this complexity can be particularly
challenging, especially for large and complex ML-based systems. The lack of automation hin-
ders scalability and makes the method time-consuming and prone to errors. Automation is of
utmost importance for handling the dynamic nature of ML systems and the continuous updates
required for threat analysis. The present lack of automation in this approach decelerates threat
identification and makes it less adaptive to changes in the system. Additionally, the methodol-
ogy’s effectiveness is evaluated based on a single use case conducted without any participants.
Although this provides insights into the application in a real scenario, it does not cover the entire
spectrum of challenges that can arise in various ML applications.

24 CHAPTER 3. RELATED WORK

3.7 Threat Modeling Tools

3.7.1 Diagram-Based Threat Modeling Tools

As illustrated in Table 3, the landscape of diagram-based threat modeling tools is diverse. The
Table includes both commercial and non-commercial tools, each presenting distinct approaches
to threat categorization. The following section briefly explains the six tools outlined in Table 3.

(i) Microsoft Threat Modeling Tool (TMT) is a mature tool offering a default library and cus-
tomizable elements in diagrams. It excels in threat identification based on the library, supporting
STRIDE categorization. TMT is highly customizable, allowing for personalized threat elements
and properties and benefits from community-contributed libraries. (i7) OWASP Threat Dragon
(TD) is a lightweight tool. TD suggests generic threats, requiring user input for details. It also
has a workflow integration with GitHub. Moreover, it offers limited threat library customization,
making it simple and suitable for development processes. (7ii) Open Weakness and Vulnerability
Modeler (OVVL) identifies threats at both design and operation levels in web applications. It
uses STRIDE for design-level threats and a CVE knowledge base for operational threats. OVVL
features a customizable threat library similar to TMT. (iv) IriusRisk embeds diagrams.net for
DFD’s and provides questionnaires for configuration. It covers CVE and CWE knowledge bases
and provides a comprehensive threat evaluation. Moreover, it offers a comprehensive threat li-
brary, self-defined threats, priority, and cost estimation. (v) Similar to IriusRisk, it uses process
flow diagrams (PFDs) from an attacker’s perspective. It offers a comprehensive threat evaluation
supported by a robust threat library and questionnaires for configuration. (vi) Features Al-
based predictive attack simulations with a potential attacker. It measures time-to-compromise
and identifies high-value assets. However, customization options are limited [137].

Table 3: Overview of Diagram-Based Threat Modeling Tools [137]

Tool Non- . Customization Threat Categorization
commercial

TMT v High Categorized by STRIDE.

TD v Limited STRIDE and additional cate-
gories (LINDDUN and CIA).

OVVL v High STRIDE at design level and
CVE at operation level.

IriusRisk X High CVE, CWE, self-defined
threats (e.g., AWS).

ThreatModeler x High Similar to IriusRisk, but with
process flow diagrams.

SecuriCAD X Limited N/A (Predictive attack simu-

lations. Critical attack paths
and risk evaluation).

3.7. THREAT MODELING TOOLS 25

3.7.2 Text-based Threat Modeling Tools

In this section, two distinct text-based threat modeling tools are introduced. Table 4 provides
an overview of these tools, and the following text explains them in more detail: (i) OWASP
pytm describes the system model using the Python language. Users create Python objects for
system components through predefined Python classes. The tool generates a system diagram
and identifies threats based on the text-based model. Additionally, it offers a comprehensive
threat library with attributes such as condition, likelihood, severity, and mitigation. (i) In
contrast, Threagile is specifically designed for agile threat modeling. In this tool, models are
represented in YAML format. Threagile provides a more concise and abstract format compared
to Python. It rigorously evaluates threats using system model metrics, including relative attacker
attractiveness and data loss probability [137].

Table 4: Overview of Text-based Threat Modeling Tools [137]

Tool Model Representation Threat Evaluation
OWASP pytm Python object-based Comprehensive threat library
Threagile YAML format System model-based metrics

3.7.3 Other Threat Modeling Tools

The landscape of threat modeling tools extends beyond diagram-based or text-based cate-
gories, including both commercial and non-commercial tools, each presenting distinct threat
taxonomies. Table 5 provides an overview of these tools. The subsequent section presents brief
explanations of the five tools outlined in Table 5.

(i) The CAIRIS platform offers a versatile solution for specifying and modeling secure and usable
systems. Supporting manual modeling through Data Flow Diagrams (DFDs) or a top-down
representation similar to attack trees, it provides a customizable threat library and facilitates risk
analysis. Not strictly STRIDE-based, CAIRIS offers flexibility in threat modeling approaches.
(ii) Threatspec, on the other hand, focuses on performing threat modeling directly on the
code. This tool requires threat modeling annotations as comments in the source code and can
generate DFDs and reports based on the annotated code. (i) SD Elements distinguishes itself
by gathering system information through surveys, eliminating the need for system diagrams.
Claiming to identify threats faster than traditional methods, SD Elements relies on survey-based
input for threat identification, offering a speedy approach to threat assessment without the need
for diagrams. (iv) Kenna places a strong emphasis on data-driven threat modeling. Using
data science techniques such as natural language processing and predictive modeling for risk
assessment, Kenna utilizes both data science techniques and user-provided data to quantitatively
evaluate threats, introducing a data-driven approach to threat assessment. (v) Tutamen Threat
Model Automator leverages existing project design diagrams. It allows users to enter metadata
into diagram elements to describe the threat model, making threat modeling more accessible
by utilizing the information present in the project design diagrams. This tool facilitates threat
modeling using the context of existing project diagrams, streamlining the process [137].

26 CHAPTER 3. RELATED WORK
Table 5: Other Threat Modeling Tools [137]

Tool Non- . Configuration Threat Taxonomy

commercial

CAIRIS v Customizable threat library Not strictly
and risk analysis. STRIDE-based.

Threatspec v Source code with threat mod- Focuses on code-
eling annotations in com- based threat model-
ments. ing.

SD Elements X Survey-based input for threat Speedy threat identi-
identification. fication without dia-

grams.

Kenna X Utilizes data science tech- Quantitative threat
niques and user-provided evaluation with
data. data-driven ap-

proaches.

Tutamen Threat x Utilizes project design dia- Facilitates threat

Model Automa- grams with metadata input. modeling using

tor existing project

diagrams.

3.7.4 Threat Modeling Tool for AI-Based Systems

The choice of an appropriate threat modeling tool is a critical decision, and it is pivotal to select a
tool that aligns with the unique requirements and challenges of Al-based systems. Accordingly,
the different types of threat modeling tools are evaluated to determine their suitability for
application in Al-based systems.

Text-based threat modeling tools (see Section 3.7.2) do not seem to be intuitive regarding mod-
eling complex Al-based systems. They also lack specific support for Al-related threats, which
makes them less suitable for solving the challenges of Al-based systems and adapting other
threat modeling tools (see Section 3.7.3) for Al purposes will most likely be time-consuming and
challenging. Generally, these types of threat modeling tools may introduce unnecessary com-
plexity and extra effort when applied to Al-based systems, which is undesirable in the fast-paced
AT development environment. Indeed, it appears that Al-based systems require a visualization-
oriented approach to better understand the threats and vulnerabilities.

Hence, within the context of this thesis, which focuses on developing a threat modeling approach
for Al-based systems, diagram-based threat modeling tools (see Section 3.7.1) are particularly
suitable. They offer an intuitive visual representation of threats and security concerns, which
is favorable when dealing with AI models. Moreover, they are more user-friendly, making them
accessible to a wider audience, including non-security experts, which is essential in the Al do-
main. Although diagram-based tools are not explicitly designed for Al-based systems, they can
be adapted to address Al-specific threats.

Considering Table 3 in Section 3.7.1, only TMT and OVVL are viable options since they are
non-commercial and adaptable. However, both are constrained to a specific threat modeling
methodology making them less flexible. In contrast, diagrams.net, another diagram-based threat
modeling tool, aligns with the criteria for ease of use and flexibility in capturing security concerns
effectively, making it the ideal choice for the present thesis. The comparison in Table 6 confirms

3.8. GAPS IN LITERATURE AND SOLUTIONS 27

the suitability of diagrams.net for Al-based systems. In direct comparison, diagrams.net stands
out as notably more flexible. Moreover, it is assumed that diagrams.net is more widely known,
making it the selected tool for use in this context.

Table 6: Comparison of Diagram-based Threat Modeling Tools for Al-purposes

Solution Al-oriented Non-commercial Al-compatible Agnostic Widely Known
MTMT X v v X X
OVVL X v v X X
diagrams.net X v v v v

3.8 Gaps in Literature and Solutions

The related work chapter has provided a comprehensive overview of existing research, method-
ologies, and tools within the domain of threat modeling and failure mode analysis in AI-ML
systems. It has unveiled a diverse research landscape and demonstrates that threat modeling
for AI-ML systems is a developing and dynamic field, with a growing body of research focusing
on understanding the security challenges associated with these systems. Recently, researchers
have adopted conventional threat modeling approaches, such as STRIDE, and tailored them to
the unique characteristics of AI-ML systems.

However, particularly the discussions of the papers [9] and [10] revealed that this approach is not
straightforward. In particular, the complex and manual mapping process for identifying STRIDE
threats in ML systems lacks automation, hindering scalability and adaptability. Moreover, a
significant drawback of these studies is their reliance on a single case study for evaluation, notably
lacking participant involvement. Hence, there is still no systematic process or well-established
technique for identifying vulnerabilities and threats targeting ML components throughout the
entire Al pipeline [9]. This knowledge gap highlights the need to develop a practical and effective
threat modeling approach for AI-ML systems. A challenge that the upcoming chapters of this
thesis will address.

For this endeavor, the ENISA report from late 2020 [11] emerges as a critical resource. This
report includes an Al asset taxonomy description and an Al threat taxonomy description, which
are invaluable assets for shaping the foundation of the new threat modeling approach. The
AT asset taxonomy description classifies various assets within the Al ecosystem, considering
different stages of the typical Al life-cycle. In contrast, the Al threat taxonomy description
associates threats with these assets. These descriptions, outlined in the ENISA report, will
serve as essential reference points and guidance for the development of a systematic threat
modeling process tailored to AI-ML systems. Moreover, based on the insights gained from 3.7.4,
the process will be further backed by a diagram-based tool, namely diagrams.net.

28

CHAPTER 3. RELATED WORK

Chapter 4

Architecture

This chapter focuses on the architecture of AI and ML systems, laying the groundwork for com-
prehending the structural components and life cycles that support these systems. The discussion
heavily draws upon insights from the ENISA report [11], explaining key components and life
cycles. It is essential to emphasize that this exploration serves as a comprehensive introduction
to the architecture and plays a vital role in the threat modeling approach employed in this the-
sis. Additionally, this chapter introduces an Al architecture strongly inspired by an existing Al
pipeline, integrating fundamental Al and ML concepts for both theoretical understanding and
practical application within the thesis. This sets the stage for an in-depth Al and ML threat
modeling analysis, leveraging architectural fundamentals to identify threats for Al systems sys-
tematically. Such a strategic approach contributes to improving security measures in Al-based
systems, integral to the threat modeling approach outlined in this thesis.

Furthermore, this chapter focuses on the proposed threat modeling approach tailored for Al-
ML-based systems, a notably challenging endeavour. As previously discussed, threat modeling
is essential for identifying, evaluating, and mitigating potential security risks. A specialised
approach is necessary in the context of AI or ML, where data, models, and algorithms are
closely linked. Section 4.4 will introduce this specialized approach in detail.

4.1 Al Life Cycle

In this thesis a generic reference model for common AT systems (see Figure 6) is used [11], elim-
inating the need to construct an Al threat modeling architecture from scratch. This model’s
primary purpose is to establish a conceptual framework that fosters a shared understanding
of the assets of Al systems and their interconnections. It facilitates the assignment of respon-
sibilities to different assets and provides a structured approach to analyzing security threats.
Provided that assets have been defined, threats can be mapped to them, enabling targeted
security measures [11].

Data is a pivotal asset in Al, continuously transforming along the Al life cycle. Figure 7 demon-
strates this data transformation along the various life cycle stages: Data ingestion, data explo-
ration, data pre-processing, feature importance, training, testing, and evaluation. Along the
Al life cycle, data transformation includes a range of assets, including actors, computational
resources, and software. Furthermore, the data transformation encompasses intangible assets
like processes, culture, and the influence of actors’ experience and knowledge, which can bring
potential non-intentional threats, such as a non-intentional bias [11].

29

30

..

Business Data Data
Goals Ingestion Exploration

MODEL TRAINING

v Lo

Model Selection/

Model Training

Building & Testing
-
) -
....... ﬂ .{6
[o
Model Model
Maintenance Deployment

CHAPTER 4. ARCHITECTURE

........

v
llll
=ms
%
Data Feature
Processing Selection

MODEL TUNING

® 40

Model

Model
Validation Evaluation

G

Model Adaptation
(Transfer Learning)

Business
Understanding

Figure 6: Generic Reference Model [11]

01010
11101
-
Raw data Structured data Data Set Reduced
Data Set

Training
Data Set

Testing
Data Set

AUGMENTED
DATA

Evaluation
Data Set

Figure 7: Data Transformation along AI [11]

4.2 Al Assets

In threat analysis, a critical element involves identifying the categories of assets to which threats
can be posed. Assets are defined as anything that has value to an individual or organization,
thereby requiring protective measures. In the realm of Al, assets are also those that are vital to
fulfil the needs for which they are being used. Beyond the generic assets related to information
and communication technology, such as data, software, hardware, and communication networks,
Al encompasses a distinct set of assets. These include models, processors, and artefacts that
can be compromised or damaged either through intentional or unintentional causes [11].

4.3. ML-BASED SOFTWARE SYSTEM ARCHITECTURE 31

An assessment has been conducted for each stage within the AI life cycle to determine the
most relevant assets. This assessment is based on the functional description of specific stages
and aims to include not only the core components of AT but also the assets that facilitate the
development and deployment of Al systems. Assets also encompass Al-related processes given
their crosscutting nature [11]. As shown in Figure 8, assets can be classified into the following
six categories : (i) Data, (i) Model, (iii) Actors, (iv) Processes, (v) Environment/Tools and
(vi) Artefacts. Furthermore, there is an overview of detailed asset taxonomy in Figure 29 in
the Appendix A, providing the corresponding specific assets for each category. This taxonomy
is based on the generic Al life cycle reference model discussed in the previous Section 4.1.

ARTEFACTS

o

ACTORS/
STAKEHOLDERS

©

DATA

Figure 8: AI Assets [11]

4.3 ML-based Software System Architecture

Within the scope of this thesis, the emphasis lies especially on ML systems. To improve the
comprehension and the modeling of these systems, it is valuable to compare them with tradi-
tional software systems and understand their interconnection. Figure 9 illustrates a high-level
view of an ML-based software system, showing the distinct perspectives of a modern software
architect when considering its subsystems. In the ML subsystem, the focus is on data, algo-
rithms, and models. In contrast, the software subsystem deals with components, connectors,
and the interactions between them. The interaction of the two subsystems is as follows: The
software subsystem uses the ML models and continuously generates the required data for the
ML subsystem [138].

Furthermore, each of these subsystems encompasses different stakeholders with their specific
concerns. Therefore, the role of the modern software architect is to coordinate between these
two subsystems, which possess distinct characteristics, properties, and team dynamics. However,
this coordination process raises many questions on the different aspects of architecting, ranging
from standardization of architecting practices to identifying barriers introduced by this unique
architectural setup. [138].

32

CHAPTER 4. ARCHITECTURE

" feeds Mew data
[ata
J
r---~~"=-"="=">"====7==-- a rF---=-==-=="=====-=-= =
[Machine learning Subsystem [I Software Subsystem [
I I I I
I I I I
I Data Algorithm I I C1 cz 1
: :-—feeds—u-: :
I I I I
I I I I
I I I I
e e e e e e e e e e e e e = = = o L -

Stakeholders

o Stakeholders

al5a lafma

Data Ethics

¢ scientist Dm.elvp['r Expert

Concerns

Model

accuracy Model Data UI Design Testing
© Versioning . | .
§ quality Database I Security
Privacy Ethics Choic Availability
Algorithm hoice Technology
Framework Choice Fault tolerance ECINOiOgY

Data | i Frontend Bakend DB Software
Engineer : ! Developer Developer Admin Tester

Concerns

Modern
Software Architect

Figure 9: HighLevel ML based Software System [138]

4.4 Threat Modeling Approach for Al-based Systems

As discussed in Section 2.3, traditional threat modeling refers to the process of systematically
reviewing the security of a system, where critical components are identified and their associated
risks are assessed. Threat Modeling plays a crucial role in the design of information systems as
it allows the identification and prioritization of issues. Furthermore, this process also evaluates
the value of potential mitigation in alleviating threats [9]. A general threat modeling process
comprises five sequential steps, which are listed in Table 7

Table 7: A General 5-Step Threat Modeling Process [9], [28]

Step Goal

Description

U = W N

Objective Identification
Assessment
Decomposition

Threat Identification
Identify Vulnerability

Determine the system’s security properties
Identifies system assets and interactions

Select relevant assets

Categorize threats to system components and assets
Analyze threats and determine vulnerability

4.4. THREAT MODELING APPROACH FOR AI-BASED SYSTEMS 33

The primary objective of the present thesis is to tailor and expand the traditional threat modeling
approach to make it applicable to Al-based systems. In the context of future threat assessments
for specific AI use cases, the general threat modeling methodology needs to be adjusted (see
Table 8). Each step in Table 8 is explained in-depth in the following sections.

Table 8: A 5 Step Threat Modeling Approach for Al-based Systems [11]

Step Goal Description

1 Objectives Identification Identify the security properties the system should have.

2 Overview/Outline Map the system, its components, and their interactions,
as well as the interdependencies with external systems (as
described in Section 4.1 on AI Life Cycle).

3 Asset Identification Determine the critical assets in terms of security that need
protection (as described in Section 4.2 on Assets).

4 Threat Identification Identify threats to assets that will lead to the assets failing
to meet the aforementioned objectives.

5 Vulnerability Identification Determine — usually based on existing attacks — whether
the system is vulnerable with respect to identified threats.

4.4.1 Objective Identification

Applying traditional threat modeling methodologies to Al-based systems is not straightforward
due to the different properties of Al-based systems compared to typical software systems. Al-
based systems exhibit unique characteristics, including ML and dynamic decision-making, which
lead to novel security concerns. Hence, it is crucial to employ CIAA properties, as outlined in
Section 2.4, but with a specific focus on their applicability to Al-based systems. Consequently,
the Al-specific CIAA definition [9], [11] has been adopted in this thesis. This guarantees that
the threat modeling approach for Al-based systems effectively addresses Al-specific security
vulnerabilities and risks, as illustrated in Table 9.

Table 9: Al-Specific Property Definitions [9]

Property Al-Specific Definition

Authenticity The output of the AI model can accurately be attributed to the model
itself, guaranteeing that the model has generated the output.

Integrity All the information which was used or generated along the Al Life Cycle,

remains unchanged and cannot be tampered by unauthorized third parties.

Non-repudiation There is no way to dispute or deny that the AI model’s output was gener-
ated by the model, providing undeniable proof of its authorship.

Confidentiality =~ When utilizing an Al model for inference, it ensures that no information
beyond the model’s input and output is exposed or disclosed.

Availability When provided with inputs, the AT model consistently and reliably com-
putes useful outputs, which are clearly distinguishable from random noise.

Authorization Only authorized parties can submit inputs to the AT model and receive the
corresponding outputs.

34 CHAPTER 4. ARCHITECTURE

As an initial step in the threat modeling approach, studying the Al-based system is pivotal. It
is crucial to comprehend the primary functions of the system and its overarching purpose. Once
the objectives are clear, the appropriate properties that need to be protected can be determined.
This preliminary comprehension lays the groundwork for identifying the system’s key objectives.
With these objectives in mind, the subsequent tasks involve determining the specific properties
that must be protected. This initial step serves as an essential foundation for the subsequent
steps of the threat modeling approach.

4.4.2 Overview/Outline

In the second step, it is important to map the system, its components, their interactions, as
well as the interdependencies with external systems. When engaging in the mapping process, it
would be advantageous to use already beforehand the specific assets listed in the Tables 21-26
in the Appendix A as individual components of the model. Otherwise, these specific assets must
be assigned retrospectively. This is explained in more detail in Section 4.4.3.

If an architectural model of the system already exists, the mapping of the system can be skipped.
Nevertheless, creating a model remains a crucial aspect of the approach, contributing to a deeper
understanding of the Al life cycle from Section 4.1 (see Figure 10). Drawing the model enhances
familiarity with the system, improving comprehension. However, internalizing the Al life cycle
or utilizing the generic Al model as a basis is immensely beneficial in either scenario. Figure 10,
illustrating a high-level Al life cycle, is particularly helpful for individuals unfamiliar with AI.
Here, a specific stage can be assigned to each listed component, e.g., (i) data management, (ii)
model training, (4i) model tuning, and (i) model management, as shown in Table 10. These
overviews help not to lose sight of the big picture and to consistently be aware of the specific
Al stage, regardless of whether or not the model exists.

Business Goals

Definition
(1) Data Management (2) Model Training
(4) Model Management |« } (3) Model Tuning

Figure 10: HighLevel AI Life Cycle

4.4. THREAT MODELING APPROACH FOR AI-BASED SYSTEMS 35

Table 10: AI Life Cycle Stages [11]
Highlevel Overview AI Life Cycle Specific Al Life Cycle Stage

(1) Data Management Business Goals Definition
Data Ingestion
Data Exploration
Data Pre-processing
Feature Selection

(2) Model Training Model Selection / Building
Model Training
Model Testing

(3) Model Tuning Model Validation
Model Evaluation

(4) Model Management Model Maintenance
Model Deployment
Model Adaption (Transfer Learning)
Business Understanding

4.4.3 Asset Identification

Once the big picture of the system is clear, or when it is evident which properties require
protection and the model is mapped, the next crucial step is to identify the critical assets.
Asset identification means determining the assets that pose a potential threat to the determined
properties that require protection. These assets are critical since they can cause system failure.

To begin with, it is crucial to recall the different Al asset categories from Section 4.2. Figure 8
provides an overview of the six different Al asset categories. For each of these categories, specific
assets can be assigned to a category. Moreover, these specific assets belong to a specific Al life
cycle stage, as shown in the Tables 21 to 26 found in the Appendix A. The descriptions of the
specific assets are not listed in the Tables since their detailed descriptions make it impractical to
include all details in this context. For a holistic overview, it is advisable to refer to the ENISA
report[11].

In scenarios with an existing architecture model of an Al system or one that was mapped
without using the specific assets, it becomes obligatory in this step to allocate the corresponding
equivalent specific assets in the critical areas of the model. Upon identifying the critical assets
within the model, it is essential to replace them with the corresponding specific assets listed in
the Tables 21-26 in the Appendix A. This is because the foundation of the new threat modeling
approach for Al-based systems relies on the asset taxonomy and threat taxonomy outlined in the
ENISA report [11]. In this framework, specific assets are assigned to a category, and the threats
can then be determined in a further step by using this category (see Section 4.4.4). Furthermore,
it is evident that in scenarios where the model has been designed with the specific assets, there
is no need to undertake the assignment of these specific assets all over again.

36 CHAPTER 4. ARCHITECTURE

4.4.4 Threat Identification

In alignment with the asset taxonomy, the ENISA report [11] also presents a comprehensive
threat taxonomy. Table 11 illustrates eight distinct categories within this taxonomy, each pur-
suing different objectives. These categories, in turn, encompass various specific threats. Table
12 serves as an illustrative example, presenting details such as threat category, specific threat,
description, potential impact, and affected assets. It is crucial to note that each of the eight
threat categories includes numerous specific threats, although they are not exhaustively listed
here. For a holistic overview of the specific threats, it is advisable to refer to the ENISA re-
port [11]. The extensive nature of these specific threats and their detailed descriptions make it
impractical to include all details in this context.

Table 11: Threat Categories and Descriptions [11]
Threat Category Description

Nefarious activity/abuse Malicious acts targeting ICT systems, infras-
tructure, and networks aiming to steal, alter,
or destroy a specified target.

Unintentional Damage Unintentional actions leading to destruction,
harm, or injury of property or persons, result-
ing in failure or reduced usefulness.

Legal Legal actions by third parties to prohibit or
compensate for losses based on applicable law.

Failures or malfunctions Incomplete or total malfunction of a hardware
or software asset.

Eavesdropping Interception Hijacking Actions aiming to listen, interrupt, or gain
unauthorized control of third-party commu-
nication.

Physical attacks Actions with the aim to harm, expose, al-

ter, disable, steal, or gain unauthorized ac-
cess to physical assets, including infrastruc-
ture, hardware, or interconnection.

Outages Unexpected service disruptions or quality
degradation below required levels.
Disasters Sudden accident or natural catastrophe caus-

ing great damage or loss of life.

The next step involves using the identified assets from Section 4.4.3 to identify potential threats.
As described in Section 4.4.3, there exists a category corresponding to each specific asset. Specif-
ically, data, model, actor, processes, environment/tools, and artefacts. Thus, these categories
can be clearly identified in the asset taxonomy based on the specific assets. Notably, these same
categories are also listed in the threat taxonomy as affected assets. This conformity allows for a
seamless connection between the two taxonomies through the use of categories, as illustrated in
Figure 11. Moreover, this connection enables a comprehensive display of all associated threats.
This implies that specific threats associated with the categories from the asset taxonomy are
systematically presented across all threat categories. In an additional step, threats can be fil-
tered based on the corresponding properties described in Section 4.4.1, listed explicitly under
"Potential impact’ in the threats taxonomy (see Figure 11). This process results in the display of
only those threats that align with the filtered and relevant properties. Hence, the new approach
effectively closes the gap in AI-ML threat modeling by optimizing the complex, mapping process.

4.4. THREAT MODELING APPROACH FOR AI-BASED SYSTEMS

Utilizing the asset and threat taxonomies from the ENISA report, it establishes a systematic link
between specific assets and corresponding threat categories. This method not only simplifies the
intricate process but also ensures a comprehensive and clear display of related threats, thereby

enhancing the effectiveness and clarity of threat identification in AI-ML systems.

Table 12: Threat Taxonomy Specific Example [11]

Threat Cate- Specific Description of the Potential Im- Affected As-
gory Threat Specific Threat pact sets
Nefarious ac- Data poison- Injection of incor- Integrity, Process,
tivity /abuse ing rect data into the Availability Environ-
training or valida- ment /tools,
tion sets, achieved Model
through exploiting
poor authentica-
tion/authorization
mechanisms. The
aim is to adversely
affect the oper-
ation of the Al
system.
Category specific Asset Definition Al Life Cycle Stage
Data
Models
Actor
Processes
Environment /tools
Artefacts
F Y
Linked l
Threat Category | Specific Threat Description of Potential Impact | Affected Assets
the specific
Threat
Filter: Data
Authenticity Models
Integrity Actor
MNon-repudiation | Processes
Confidentiality Environment
Availability [toaols
Authorization Artefacts

Figure 11: Linked Assets and Threats Taxonomy

38 CHAPTER 4. ARCHITECTURE

4.4.5 Vulnerability Identification

Once the critical assets and their corresponding threats are identified, the final step of identifying
vulnerabilities within the Al-based system follows. As explained in Section 2.1, vulnerabilities
are weaknesses in a system’s architecture or in its design that might be exploited by threats. To
detect vulnerabilities, it is crucial to analyze the identified threats meticulously. Each specific
threat exhibits weaknesses in its associated specific assets or the specific Al life cycle stages. As
a possible manual vulnerability identification approach, let’s consider the threat data poisoning
from Table 12 in Section 4.4.4. Due to the description of the threat, it is evident that the system
indicates a vulnerability linked to poor authentication/authorization mechanisms. Furthermore,
the threat manifests during the Al life cycle stages of model training or model tuning. With the
critical assets already identified, the comparison with the corresponding stages facilitates the
identification of potential vulnerabilities within the system.

A more popular and structured technique involves the use of bug bars, presented in the form
of Tables listing the criteria used to classify bugs [9]. Recently, Microsoft has introduced a bug
bar [139] for ranking ML threats, specifically addressing intentional malicious activities against
ML-based systems. However, explaining threat prioritization bug bars to users without security
expertise can be challenging [9].

Another easier-to-apply method for prioritizing threats and identifying vulnerabilities is the
DREAD model, detailed in Section 2.5.1. In Table 13, specific values can be assigned for
each mnemonic element. Calculating the average value for each threat makes prioritization in
descending order feasible. The identified prioritized threats can then be treated as potential
vulnerabilities. As noted in [9], the DREAD system is no longer exclusively recommended due
to its inherent subjectivity in the rating process. However, it is still utilized for rapid preliminary
threat assessments [9].

Hence, vulnerability identification methods might vary based on user expertise. The bug bar
method is particularly designed for ML threats and, therefore, the most suitable one. Combining
the DREAD method with a manual approach, while the latter is aimed more at expert users,
could also be a vulnerability identification strategy. On its own, DREAD remains the most
straightforward method but only provides a superficial evaluation accessible to users. In the
context of this thesis, participants in the experiment outlined in Section 6.2 are not asked to
make this step due to its extensive nature, which would also exceed the scope of this thesis.
However, these methods could be applied in future research.

Table 13: Threats Prioritization DREAD
Damage Potential Reproducibility Exploitability Affected Users Discoverability Average
(0, 5, 10) (0, 5, 10) (0, 5, 10) (0, 5, 10) (0, 5,9, 10)

Chapter 5

Prototypical Implementation

This chapter shows the practical implementation of the theoretical threat modeling approach
for Al-based systems from Section 4.4. The core concept is to develop an automated tool
that recognizes threats based on identified critical assets. The tool is designed to generate a
comprehensive output, displaying the specific identified assets with their corresponding potential
threats. The tool is named ThreatFinder, aligning with its main functionality. The details are
explained in more detail in the following sections.

5.1 Diagrams.net in ThreatFinder

First of all, it is important to have an architecture modeling basis, i.e., to model the Al system
or to modify an existing one. Ideally, the tool chosen for this task should be intuitive and user-
friendly. In this context, diagrams.net is a suitable choice. As previously discussed in Section
3.7.4, diagrams.net, a diagram-based threat modeling tool, aligns with the criteria for ease of
use and flexibility in effectively capturing security concerns. Although not explicitly designed
for Al-based systems or threat modeling, diagrams.net is Al-compatible, making it the optimal
choice as a supportive tool. The Al-based system architecture model can thus be created or
imported into diagrams.net. Moreover, diagrams.net provides various options for importing an
existing model, e.g. using an XML file.

To create the model from scratch or to mark the critical assets within an existing model, it
is crucial to create libraries encompassing the various assets listed in Tables 21 to 26 in the
Appendix A. For this purpose, one XML file was created for each of the six categories, containing
all the specific assets for each category (see Figure 12 as an illustrative example). Each file
contains pertinent information about the assets, such as their object label, asset name, ID,
XML structure, dimensions (width and height), aspect ratio, and title. In addition, distinctive
styling was applied to each XML file to enable clear differentiation between the corresponding
specific assets. Figure 14 depicts the results from applying the distinct styling.

39

40 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

mxGraphModel mxCell id=\"e\"/

"t "fixed",
"Augmented Data Set"

mxGraphModel mxCell id=\"e\"/

": "fixed",
"Evaluation Data"

mxGraphModel mxCell id=\"e\"/

"aspect”: "fixed",
"title": "Labeled Data Set™

Figure 12: Category Data XML File Extract

These XML files can be uploaded to diagrams.net, where each category is associated with a
different symbol. The specific assets within each category are represented by corresponding
symbols, as illustrated in Figure 14. All the specific assets from the asset taxonomy listed in
the ENISA report are available or applicable. When creating an architecture model of an Al
system from scratch, the relevant critical assets from the libraries can be directly utilized. The
architectural model can be created using the standard diagrams.net tools, incorporating critical
components directly from the dedicated library. It is crucial to utilize the specific assets from
the library, especially when they may pose a threat to the system. Such a modeling process
from scratch aligns with the intended approach for the threat modeling process. However, in
the case of an already existing architecture model, the existing critical components need to be
annotated with an equivalent specific asset from the libraries, as depicted in Figure 13, where
the pre-processed data set is placed over the existing model component. Nothing needs to be
deleted with this action, the replacement itself is sufficient.

Thus, diagrams.net is a crucial foundation for modeling the Al-based system and identifying
assets. Therefore, the initial three steps of the threat modeling approach can be executed using
diagrams.net and the mentioned libraries, whereby the first step of identifying the objectives is
carried out independently. The significance of the Al architecture model and the integration of
the specific assets from the library with regard to threat identification will be explained in the
following section.

5.1. DIAGRAMS.NET IN THREATFINDER

Local

Data Anonymization
Toolkit

Pre-processed Data Set

Figure 13: Asset from Library Overwriting Existing Component

= Al_Processes_Assets + & X
R o R RP « R« P
~ Al_Model_Assets + & X

R e« & & D & & . & B
~ Al_EnvTools_Assets + & X

FLH H A A K KA x x XK X KX
><

= Al_Data_Assets + & X

~ Al_Artefacts_Assets & X
E -« m B = s B - | - a
~ Al_Actor_Assets + & X

Figure 14: Imported Assets as XML

41

42 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

5.2 Functionality and Structure of the ThreatFinder Tool

Once the initial three steps have been accomplished, the subsequent and most challenging step,
threat identification, must be mastered. It is important to emphasize that the threats must be
identified based on of the architecture model of the Al system or the specific assets identified. To
address this challenge, the complete asset and threat taxonomy were recorded in separate JSON
files. Each entry in the asset taxonomy JSON file includes "Category”, ”Asset”, "Definition”,
and ”Al Lifecycle Stage”, as shown in Figure 15. In contrast, each entry in the threat taxonomy
JSON file includes "Threat Category”, "Threat”, "Description”, "Potential Impact”, and ”Affected
Assets”, as shown in Figure 16. As previously shown in Section 4.4.4 in Figure 11, the JSON
files can be interconnected through ”"Category” from the asset taxonomy and ”Affected Assets”
from the threat taxonomy.

Figure 15: AssetTaxonomy JSON Extract

Figure 16: ThreatTaxonomy JSON Extract

5.2. FUNCTIONALITY AND STRUCTURE OF THE THREATFINDER TOOL 43

This interconnection enables the exposure of threats based on specific assets. In this process,
the specific assets are assigned to their respective categories, and due to the "Category”, which
can be linked with the "Affected Assets”, all corresponding threats are identified and presented
(the algorithm for this is shown in Figure 21). More specifically, the XML architecture model,
which has been edited with the relevant assets from the libraries, serves as input for the tool.
The assets, represented as objects in the XML file (see Figure 17), are then compared by the
tool with those in the database. If the objects match, corresponding threats are then issued.

label="Evaluation Data" assetname="Evaluation Data" id
style="shape=cube;whiteSpace=wrap;html=1;boundedlLbl=
x="436.5" y="855" width="87" height="50" as="g

label="Augmented Data Set" assetname="Augmented Data S
style="shape=cube;whiteSpace=wrap;html=1;boundedlLbl=

x="152.5" y="985" width="87" height="50" as="g

label="Evaluation Data" assetname="Evaluation Data" id
style="shape=cube;whiteSpace=wrap;html=1;boundedLbl=
x="296.5" y="984" width="87" height="50" as="g

Figure 17: Object Identification in XML

Figure 18 shows the structure and the technologies used by the ThreatFinder tool. The choice
of technologies and the application structure are briefly explained: Developing a web application
was a plausible solution for implementing the ThreatFinder tool. In this context, the front end
is built with React JS, an open-source JavaScript library known for building interactive user
interfaces. React stands out as a leading technology, especially due to its inherent virtual DOM
feature that enhances the overall user experience with its rendering speed. Moreover, React’s
flexibility and modularity make code maintenance effortless and pave the way for potential fu-
ture expansions of the tool [140], [141]. The backend was developed using Python and FastAPI.
Python’s versatility, ease of use, and readability make it an excellent choice for backend devel-
opment. Additionally, the FastAPI web framework adds speed and simplicity to the process.
FastAPI is intuitive and facilitates the creation of robust APIs, ensuring smooth communica-
tion between the frontend and the backend [142], [143]. For data storage, a straightforward
approach has been chosen, saving the taxonomies in two JSON files as databases. JSON files
are easy to read and manage, providing a convenient solution for storing and retrieving data in
the ThreatFinder tool. This choice of technologies guarantees a responsive and interactive user
interface in the front end and also ensures effective data processing and communication with the
backend. In summary, these technologies are well-suited for the implementation of this project.
The open-source repository for the project, along with its installation guidelines, is provided in
the Appendix C.

44 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

React FastAPI Python

:II HTTP II:

Web Browser Web Server

Client Side Server Side

-

JSON
files

Database

Figure 18: ThreatFinder Structure

The client-side interface, depicted in Figure 19, encompasses several interactive elements. Users
have the option to choose and upload an XML file. Furthermore, the exhibited threats can be
dynamically filtered based on various properties. Additionally, users can conveniently download
the displayed threats as a PDF document. On the server side, the FastAPI application defines
an endpoint /upload to handle HTTP POST requests, as illustrated in Figure 20. This endpoint
expects a file to be uploaded, specifically an XML file, and it uses the UploadFile class from
FastAPI’s File module to handle file uploads. The uploaded file content is then read, and the
find_threats function is called to analyze the content and identify threats. Upon processing
the file and identifying threats, the application returns a JSON response containing the threat
results. The response is encoded using jsonable_encoder to ensure compatibility with JSON
format. Overall, this Fast API application serves as a backend service for handling file uploads,
analyzing content, and providing threat information in response to client requests.

Furthermore, on the server-side backend, three key methods collaboratively contribute to iden-
tifying and retrieving information about threats based on the provided asset name. Figure 21
illustrates these three methods. The find_category_for_asset(asset_name) method takes an
asset name as input, converts it to lowercase for case-insensitive matching, and searches the
asset taxonomy. It returns the category of the asset if found. Given an asset category, the
find_threats_for_category(category) method iterates through the threat taxonomy to find
threats associated with the specified category. It returns a list of threat objects, each con-
taining information such as threat category, description, potential impact, and affected assets.
The get_threats_by_asset(asset) method combines the previous two methods. It finds the cat-
egory of a given asset using find_category_for_asset(asset_name), and then retrieves threats
associated with that category using find_threats_for_category(category). The result is a dic-
tionary containing the identified asset, its category, and a list of threat objects associated with
it. The asset taxonomy and threat taxonomy (refer to Figures 15 and 16) are stored in the
database as JSON files.

5.2.

FUNCTIONALITY AND STRUCTURE OF THE THREATFINDER TOOL

ThreatsFinder for Al-based Systems

€ CHOOSE XML FILE

UPLOAD AND IDENTIFY THREATS

Filter by Properties: Integrity Availability Authenticity Non-repudiation Confidentiality Authorization

DOWNLOAD AS A PDF

Figure 19: Frontend ThreatFinder

@app.post()
upload_file(file: UploadFile = File(...)):
content = file.read()

threats_result = find_threats(content)
JSONResponse (=jsonable_encoder(threats_result))

Figure 20: FastAPI handling Files

45

46

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

Figure 21: Identifying and Retrieving Threats Algorithm

Chapter 6

Evaluation

In this chapter, the ThreatFinder tool is evaluated to assess its functionality and usability
in the context of the first-ever effective and automated threat modeling tool for Al systems.
Participants with different educational backgrounds and varying Al expertise levels participated
in an experimental evaluation of the tool. This experiment was conducted within the context
of the AiSym4MED, a scientific project that provided the use case for the evaluation. They
completed predefined tasks that assessed their familiarity with the tool, their understanding of
the AI features, and the overall usability of ThreatFinder. The chapter focuses on the detailed
results, analyzing participant responses, challenges encountered, and the implications for the
tool’s improvement. Furthermore, future work for optimizing the threat modeling approach for
AT systems is explored, providing possible areas for improvement.

6.1 Use Case AISym4MED

AISym4MED strives to create a modern platform aimed at engineers, practitioners, and re-
searchers analyzing healthcare data. This platform is designed to offer a reliable dataset system
enhanced with controlled data synthesis, fostering experimentation and modeling within the
healthcare domain. Furthermore, this platform will improve data privacy and security by in-
tegrating new anonymization techniques, attribute-based privacy measures, and trustworthy
tracking systems [144]. The functionalities and the corresponding components can not yet be
depicted, since it is part of a report that has not been published yet. However, in a few months a
new version of the report [145] will be published, and the Figure with the functionalities can be
found there. Subsequently, the functionalities and the most important components are briefly
and concisely explained to facilitate an understanding of the architecture model’s mechanism.

The main functionalities of the AISym4MED platform can be clustered in ML models through (%)
three main modules: Model Training, Model Auditor and Data Synthesizer (ii) seven support-
ing modules: Data Anonymization Toolkit, Data Uploader, Cross-Borders Database, Dataset
Explorer, Dataset Builder, Dataset Evaluator and Federated Learning, and (7ii) three transver-
sal modules needed to cover all the functionalities and expected requirements: Cyber-Security
Control, User Interface, and Orchestrator [146]. The components essential to the architecture
model are described as follows:

- Data Anonymization Toolkit: The Data Anonymization Toolkit addresses privacy concerns
in healthcare data. This standalone toolkit that can be used outside of the platform ensures

47

48

CHAPTER 6. EVALUATION

that healthcare institutions maintain control over the anonymization process before data
is uploaded to the platform and that sensitive patient data is protected from potential
data breaches right from the start. Employing new anonymization techniques safeguards
against re-identification attacks, where an individual’s identity can be inferred from their
data. The user-friendly and configurable design enables healthcare institutions to tailor
the anonymization process to their specific needs, seamlessly integrating with existing data
processing pipelines and other management systems [146].

Data Uploader: The Data Uploader module facilitates a user-friendly process for entities

to upload anonymized healthcare data to the platform’s secure storage. It enables the
manual selection of data files through an intuitive frontend. Furthermore, the module
includes a Minimum Anonymization Verifier that automatically evaluates uploaded data,
ensuring compliance with AISym4MED’s strict anonymization standards. This verifier
acts as a safeguard against inadvertent breaches or human errors. It notifies the entities
to anonymize data further if personal identifiers are detected. In summary, the Data
Uploader module ensures efficient and secure data contribution while upholding patient
privacy [146].

Cross-Border Database: The Cross-Border Database module is pivotal for integrating mul-

tiple heterogeneous data sources in different regions or countries and converting data for-
mats into a common Data Storage system. Therefore, it must deal with data harmonization
challenges due to the heterogeneity of data sources. It provides a unified view of healthcare
data, supporting quality assessment and training of AT models. The module implements
a Multi-party Data Governance architecture, ensuring data sharing complies with GDPR
and privacy requirements [146].

Dataset Explorer: This module provides support for exploring existing data. It is an

essential tool for healthcare professionals, facilitating easy navigation and search within
large datasets. It features a custom, scalable data mining search engine with innovative
algorithms for accurate and relevant results. The module supports various search types,
including Keyword-based, Context-aware, and Reverse Searches [146].

Dataset Builder: The Dataset Builder is essential for researchers, allowing the building of

a high-quality Meta-dataset for AI model training. Making use of the results from the
Dataset Explorer enables the selection of relevant datasets from various sources, offering
transformation and harmonization techniques for standardization. Furthermore, the Meta-
dataset Creator function allows users to define and specify the attributes of the dataset
they want to utilize [146].

Dataset Evaluator: The Dataset Evaluator is a core component of the platform, provid-

ing insights into data quality and GDPR compliance. It employs state-of-the-art and
project-specific techniques to assess data quality, including performance and fairness met-
rics. The module characterizes datasets of various types, offering different statistics on
data distribution and primary limitations. The evaluation covers both real anonymized
and synthetically generated datasets, requiring a robust big-data workflow. Moreover, it
assists in identifying and addressing errors, inconsistencies, and biases, ensuring the high-
est quality Meta-dataset for Al applications. The Dataset Evaluator is, therefore, crucial
for anyone using medical data in Al applications [146].

Model Training: The Model Training module is crucial for creating and training both

generative and predictive Al models. It includes a Serialized Model Handler for uploading
models in defined formats like HDF5, Pickle, JSON, and others. Furthermore, this module

6.1.

USE CASE AISYM4MED 49

includes the Training Config function, which allows users to configure the ML Operations
scheme (MLOPs), fine-tune hyper-parameters, and configure data sources, utilizing on-
demand deployment with Graphical Processing Unit support for efficiency. Moreover, the
module incorporates an MLOps Database to define and track every experiment, providing
in-depth insights into training configurations, model architecture, and evaluation metrics.
It enables users to monitor the progress of Al models during training, with experiments
that can be compared to select the optimal model [146].

Model Auditor: The Model Auditor module is crucial for the thorough evaluation of trained
models. The main objective of the Model Auditor module is to enable the analysis and
characterization of previously trained models on the Model Training module. It analyzes
model performance, limitations, biases, and compliance. By integrating metrics, it harmo-
nizes model performance, robustness, and fairness. The module provides diverse perfor-
mance metrics, aiding in optimizing models and understanding breakdowns. Furthermore,
it helps users to identify model biases and limitations, aligning with model objectives en-
suring effective and reliable Al solutions. Additionally, it checks models to be compliant
with regulations. Moreover, it generates a Model Card providing a full characterization of
the audited model [146].

Data Synthesizer: The Data Synthesizer module generates artificial data using pre-trained
Generative Models from various medical domains. This covers various data types like tabu-
lar, time-series, image, and unstructured data. The Generative Model Inference allows the
generation of new data instances as needed, expanding the dataset for training Predictive
Al models. The module guarantees quality through a Synthetic Data Validator, employing
both quantitative metrics and human feedback validation. The latter involves comparing
synthetic data with real datasets, providing valuable feedback for fine-tuning Generative
Models using Reinforcement Learning from Human Feedback. This comprehensive evalua-
tion approach ensures high-quality synthetic data and, therefore, can be used for effective
ML tasks [146].

Federated Learning: The Federated Learning module enables cooperative model creation
using data from several entities, facilitating the execution of data processing and model
training tasks. Employing edge computingensures data privacy by keeping original data
in its place of origin and prevents sharing it with other entities. This module supports
model inference to audit models using local data from an external entity. Thereby, this
module uses the Data Loader and Data Harmonizer functionalities for diverse data sources.
To ensure the privacy of input and output data, a Privacy-Preserving functionality uses
cryptographic techniques, verifying encrypted intermediate data access only by authorized
parties, thereby minimizing the risk of data privacy breaches [146].

Cyber-Security Control: This module ensures a holistic defense against various attack vec-
tors, managing user authentication, authorization, and role-based access control. It applies
a Public Key Infrastructure for secure user authentication, enabling tracking and logging
of operations for non-repudiation and ensuring integrity verification in Federated Learn-
ing. Defense against outside threats includes employing a Web Application Firewall for
web-based security. Furthermore, this module includes a vulnerability functionality for
active security weaknesses. Additionally, the module integrates a Policy Engine, coupled
with the Orchestration module, to control user, role, module, and instance aspects on the
platform [146].

50 CHAPTER 6. EVALUATION

- User Interfaces: The Interface module serves as the main entry point to the AISym4MED
platform, offering a web-based graphical user interface (GUI) that allows users to interact
with all the modules and functionalities. Designed to be user-friendly and adaptive, the
GUI also provides a visual representation of the results of the user’s actions. Moreover, it
integrates interactive visualization tools for a deeper comprehension of data. Additionally,
with a user-centric approach, the design incorporates user personas, journeys, and stories
to ensure adaptability to different user roles and tasks [146].

- Orchestrator: The Orchestrator module is pivotal in the AISym4MED platform. This
module is responsible for deploying, scaling, and controlling the various modules across
numerous instances, ensuring smooth operation and effective resource use. It dynami-
cally allocates resources based on user needs. It thereby ensures efficient resource use
and responsiveness to changing user demands. Furthermore, it allows easy monitoring
and integration of new modules, promoting modularity and extensibility due to a central-
ized interface. Additionally, other abilities of the Orchestrator are to automate complex
workflows, improve data processing efficiency and reduce execution time and costs [146].

6.2 Experiment with the AISym4MED Architecture Model

An experiment was conducted to evaluate the effectiveness of the new threat modeling approach
for Al-based systems described in Section 4.4. The AISym4MED architecture model and the
libraries encompassing the various assets were provided to seven participants. In addition, the
participants were given a video tutorial and a guide with step-by-step instructions, including the
description in Section 6.1. The participants had to apply the approach explained in Section 4.4 to
the provided AISym4MED architecture model. Subsequently, they had to upload their modified
model and report and complete a questionnaire on Google Forms. These collected results are
the foundation for the evaluation of the ThreatFinder tool.

6.2.1 Methodology and Goals

The participants commenced by uploading the provided AISym4MED architecture model to dia-
grams.net and importing the asset libraries. Following this, they studied the AISym4MED archi-
tecture model description, referencing Al properties from Table 9 of Section 4.4.1. Participants
selected properties crucial for safeguarding the AISym4MED system’s flawless functionality and
secure environment. Subsequently, they assigned assets to the architecture model, placing equiv-
alent assets in identified critical areas. The final steps included uploading the edited model to
the ThreatFinder tool as an XML file, selecting corresponding properties, and sharing results as
a PDF file. It is important to note that the participants had the opportunity to seek clarifica-
tion during the experiment. Notably, only participants six and seven, both without a computer
science background (refer to Table 14), took advantage of this option. Participant seven, in
particular, raised numerous questions about asset assignments, initially assigning all assets and
later modifying the assignments due to support. In contrast, participant six specifically inquired
about Al focusing on understanding the data flow within the AISym4MED architecture model.

After conducting the threat modeling approach, participants filled out a Google Forms ques-
tionnaire. They were queried about their familiarity with threat modeling tools, including
diagrams.net, TMT, and OVVL, rating their proficiency on a scale of 1 to 5, ranging from
“not familiar at all” to "wery familiar”. Furthermore, participants were surveyed to measure

6.2. EXPERIMENT WITH THE AISYM4MED ARCHITECTURE MODEL 51

their comprehension of Al system structures, including understanding of AI model architec-
ture and overall data flow. Response options allowed participants to indicate their familiarity
at varying levels, ranging from little to no understanding, theoretical knowledge, to practical
hands-on experience. Additionally, participants were asked to evaluate specific processes within
the ThreatFinder tool, focusing on the simplicity of importing the model and libraries and as-
signing assets to the model using the diagrams.net tool. Moreover, they had to evaluate the
clarity of the provided instructions and the description of the AISym4MED architecture model.

Finally, participants rated ten statements based on the System Usability Scale (SUS). SUS is
a performance indicator measuring the long-term usability of a product. SUS serves as a stan-
dardized measure for assessing the perceived usability of computer interfaces [147]. It comprises
ten questions, incorporating both positive and negative orientations, presented to participants
for assessing the ThreatFinder tool. Participants rated these questions on a scale from 1 to 5,
reflecting their agreement level, with 1 indicating strong disagreement and 5 indicating strong
agreement [147]. The questions are as follows:

1. I think that I would like to use ThreatFinder frequently (assuming that you work in the Al
security field).

2. I found ThreatFinder unnecessarily complez.

3. I thought ThreatFinder was easy to use.

4. I think that I would need the support of a technical person to be able to use ThreatFinder.
5. I found the various functions in ThreatFinder were well integrated.

6. I thought there was too much inconsistency in ThreatFinder.

7. I would imagine that most people would learn to use ThreatFinder very quickly.

8. I found ThreatFinder very cumbersome to use.

9. I felt very confident using ThreatFinder.

10. I needed to learn a lot of things before I could get going with ThreatFinder.

In evaluating the results, the diverse educational backgrounds of the participants (shown in Table
14) must also be considered. Six out of seven participants have a scientific background, with five
having a computer science background and two possessing a Master’s degree in Data Science.
In the forthcoming explanations, reference is made to the participant number, as indicated in
Table 14.

Taking into account the gaps identified in Section 3.8, the primary goal of the experiment is
to reliably demonstrate the effectiveness of the novel automated threat modeling approach in
detecting all important threats within an AI system. Another key objective is to demonstrate
the user-friendly nature and inherent straightforwardness of the threat modeling approach. Ad-
ditionally, it is important to note that the deliberate selection of participants aims to encompass
a diverse spectrum of expertise, with the specific intention of identifying suitable participant
groups for future evaluations. Despite the relatively small number of participants, the findings
serve as a valuable foundation for further research.

52 CHAPTER 6. EVALUATION

Table 14: Participants Educational Background

Participant Educational Background

1 Master of Data Science

Master of Data Science

Bachelor of Science (Software Systems)
Bachelor of Science (Software Systems)
Bachelor of Science (Information Systems)
Master of Science ETH in Pharmacy
Master of Law

N O O W N

6.2.2 Results of the Experiment
Familiarity with tools and Al-based systems

The results regarding the familiarity with different tools are shown in Figures 22-24: None of
the participants reported any familiarity with OVVL. The TMT statistics show similar results,
with one participant being “not familiar” instead of "not familiar at all”. This suggests that
the participant may have at least heard the name TMT but possesses no further familiarity. In
contrast, diagrams.net is well-known among the majority of participants. However, participants
six and seven reported no familiarity with diagrams.net. Furthermore, the participants were
surveyed about their familiarity with the structure of Al systems, specifically understanding
the architecture of Al models and the overall data flow within AI systems. As shown in Table
15, two participants have practical hands-on experience, two possess theoretical knowledge, and
three have no knowledge in this domain.

3 (42,9 %)

2(28,6 %)

1 (14,3 %) 1(14,3 %)

0(0 %)

Figure 22: Familiarity with diagrams.net

6.2. EXPERIMENT WITH THE AISYM4MED ARCHITECTURE MODEL

6 (85,7 %)

0(0 %) O(Cll%)

Figure 23: Familiarity with TMT

7 (100 %)

0 (0 %) 0 (0| %)

0(0 %) 0 (Ol %)

Figure 24: Familiarity with OVVL

Table 15: Participants Educational Background and Al knowledge

93

Participant Educational Background Al Knowledge

1 Master of Data Science Practical, hands-on experience
2 Master of Data Science Practical, hands-on experience
3 Bachelor of Science (Software Systems) Theoretical knowledge

4 Bachelor of Science (Software Systems) Theoretical knowledge

5 Bachelor of Science (Information Systems) Little to no understanding

6 Master of Science ETH in Pharmacy Little to no understanding

7 Master of Law Little to no understanding

54 CHAPTER 6. EVALUATION
Experiment Execution

While the import processes were clear to all participants, challenges arose during the assignment
of assets. Participant six encountered content-related challenges during the assignment process,
according to his own statement acknowledging a limited understanding of the AI model as a
layman. Participants one, four, and six faced challenges determining the permissible number of
assets to place and whether placing multiple assets was allowed. Additionally, participants one
and four encountered difficulty in locating their initially placed assets, as they had added multiple
assets per component. Moreover, all participants found the subsequent process of uploading the
modified model in the ThreatFinder tool to be straightforward.

Furthermore, participants provided feedback on the clarity of instructions and documentation
provided in the guide and video for using the tool. Figure 25 indicates that while the majority
found the instructions sufficient, there is room for improvement. Evaluating the AISym4MED
architecture model description, as outlined in the guidelines and presented in Figure 26, yielded
better results. Figure 26 indicates that three out of seven participants found the description to
be very clear and easy to understand, while four participants see room for improvement.

@ Not clear: The instructions and
documentation were difficult to follow.

@ Ok: The instructions and documentation
were sufficient, but there is room for
improvement.

) Clear: The instructions and
documentation were easy to follow.

Figure 25: Clarity of Instruction and Documentation

@ Not clear: The description of the
AlISym4MED Model difficult to
understand.

@ Ok: The description was sufficient, but
there is room for improvement.

@ Clear: The description of the
AISym4MED Model was easy to
understand.

Figure 26: Clarity AISym4MED Architecture Model Description

6.2. EXPERIMENT WITH THE AISYM4MED ARCHITECTURE MODEL 99
Selected AI-Properties and System Usability Scale (SUS)

As discussed in Section 6.2.1, the participants had to choose properties they believed were crucial
for safeguarding the AISym4MED system’s flawless functionality and secure environment. Table
16 displays each participant’s chosen Al properties.

Table 16: Selected AI Security Properties
Authenticity Integrity Non-repudiation Confidentiality Availability Authorization

1 X v X v v v
2 v v X v X v
3 v v v v v v
4 X v v X v v
5 X v X v v X
6 v v X v X v
7 v v v v v v

System Usability Scale (SUS)

Table 17 shows the individual SUS scores and the average of 62.14 across all scores. The SUS
score for each participant was calculated using a formula via Excel derived from their responses.
The ThreatFinder tool’s overall SUS Score corresponds to a good D, as illustrated in Figure 27.

Table 17: Participants SUS Score

Participant Educational Background SUS Score
1 Master of Data Science 55
2 Master of Data Science 70
3 Bachelor of Science (Software Systems) 85
4 Bachelor of Science (Software Systems) 52.5
5 Bachelor of Science (Information Systems) 52.5
6 Master of Science ETH in Pharmacy 75
7 Master of Law 45

Average 62.14

56 CHAPTER 6. EVALUATION

Grade SUS Percentile Adjective

A+ 84.1-100 96-100 Best Imaginable
A 80.8-84.0 90-95 Excellent

A- 78.9-80.7 85-89

B+ 77.2-78.8 80-84

B 741-771 70-79

B- 726-740 65-69

C+ 71.1-725 60-64 Good

C 65.0-71.0 41-59

G 62.7-649 35-40

D 51.7-626 15-34 OK

F 25.1-516 2-14 Poor

F 0-25 0-1.9 Worst Imaginable

Figure 27: SUS Grades [147]

Threats Identification by Experts

The AISym4Med architecture model has undergone expert review, during which the system’s
associated threats were identified. This assessment will serve as a benchmark against which
participants’ threats will be compared. The experts have categorized different potential threats
across different components and layers of the architecture. Each threat is associated with po-
tential threat actors, such as malicious platform users, external threat actors, infrastructure
administrators, and automated external actors like malware. The identified threats encompass
a broad range of security concerns. The extensive list of these threats, each categorized by their
respective system component, can be found in the Appendix B. The experts identified 44 threats
within the whole system, with some threats recurring across multiple components. Although
certain threats appear more than once, this thesis does not delve further into the implications of
such duplication. Furthermore, it should be noted that the database of the ThreatFinder tool,
containing 96 distinct threats, encompasses all the threats identified by the experts, and it even
extends to more specific threats, thus providing a holistic overview.

6.2. EXPERIMENT WITH THE AISYM4MED ARCHITECTURE MODEL o7

6.2.3 Discussion of the Results
Familiarity with tools and Al-based systems

Figures 22 to 24 from Section 6.2.2 can be interpreted as follows: Diagrams.net emerges as
the most recognized tool among the three. Participants six and seven, non-computer scientists,
exhibit unfamiliarity with diagrams.net, most likely attributed to their educational backgrounds.
These results confirm the claim in Section 3.7.4 about diagrams.net’s awareness. Therefore, in
alignment with the comprehensive evaluation in Table 6 from Section 3.7.4, diagrams.net indeed
stands out as the optimal choice for a threat modeling tool. Furthermore, the participants’
familiarity with AT aligns with expectations based on their diverse educational backgrounds (see
Table 15 in Section 6.2.2). This diversity in AT knowledge results from intentional and selective
participant recruitment, aimed at encompassing a broad spectrum of expertise in the field of Al,
which has proven successful, as shown in the results presented in Table 15 in Section 6.2.2.

Experiment Execution

To assess the results in Section 6.2.2 related to experiment execution, each individual process
is examined separately. Importing libraries and the AISym4MED model into diagrams.net and
subsequently uploading the edited model to ThreatFinder proved clear and manageable for all
participants. However, challenges arose during the assignment of assets to the model, aligning
with the third step of the threat modeling approach outlined in Section 4.4 (Table 8). This
step involves identifying critical assets and replacing them with equivalent assets. Yet, this
necessitates a prior study of the AISym4MED architecture model description.

Figure 26 indicates that all participants considered the architecture model description at least
sufficient. While this step serves as an evaluation measure, participants lacking familiarity with
AT are not anticipated to perceive the description as clear. For instance, participant six engaged
in extensive research and reading to establish a fundamental understanding of the Al domain.
Consequently, participants five to seven, characterized by limited or no knowledge in the field of
Al are excluded from the further assessment of the description’s clarity. Interestingly, three out
of four participants with theoretical or practical knowledge found the model description clear.
Participant one, while considering it sufficient, may have preferred alternative formats, such as
videos or images. Nevertheless, on the whole, the architecture description can be considered
clear. Additionally, it is important to emphasize that this aspect is not a concern in real-world
scenarios. The targeted users starting from scratch would not require a description, and in
cases where an existing architecture is used, the targeted users typically possess the necessary
expertise already.

In contrast, the assessment of instruction and documentation clarity, as depicted in Figure
25 from Section 6.2.2, yielded an overall sufficient rating. Many participants criticized the
lack of precise instructions, especially during asset assignment. Questions arose regarding the
placement of several assets per component and the consideration of all components in the model.
Participants one and four noted challenges with a poor model overview when placing multiple
assets per component. Additionally, four participants wanted more context on the task, including
the link between threats and assets and the significance of asset placement. It is crucial to
interpret this result in context. In real-world scenarios, the intended users are likely to grasp
the tasks without requiring detailed instructions. Hence, in these scenarios, extensive guidance
is not necessary.

58 CHAPTER 6. EVALUATION

In hindsight, the instructions could have been more precise, such as illustrating an asset assign-
ment in the tutorial using a different Al architecture model. Additionally, the critical compo-
nents of the architecture could have been annotated with numbers so the participants would
have had support. However, there was an initial assumption that participants would intuitively
assign one and the most suitable asset per component and consider all components. Despite
exceptions like participant one, who assigned all assets from the library, and participant seven,
who initially assigned all assets and later modified the assignment, most participants created
clear architecture models, not overfilled with assets.

Regarding the participants request for more context in the task, it is understandable but was
deliberately not disclosed. As explained in Section 4.4.4, threat identification is not carried
out directly via the specific assets but via the corresponding categories. Therefore, the assets’
placement plays no role in this experiment. If participants were aware of this fact, they could
theoretically place one asset per category anywhere, causing the display of all threats from
the database. However, the threat modeling approach for Al-based systems assumes the user’s
model from scratch, using the libraries. Such a scenario would have been very time-consuming
for the participants and would go beyond the scope of this thesis.

Furthermore, it is important to note that, unlike previous studies, this experiment uniquely
involves participant interaction, marking a significant step forward in practical, user-centric
evaluations of threat modeling in AI-ML systems. This approach not only provides real-world
applicability insights but also identifies practical challenges and user perspectives, filling a critical
gap in the existing literature.

Selected AI-Properties

This task aimed to assess participants’ ability to identify essential properties of an Al system,
particularly those requiring protection. Given AISym4MED’s focus on healthcare data, partici-
pants should have recognized that healthcare data is very private and correspondingly sensitive
and cannot be disclosed or uncovered under any circumstances. That is why confidentiality must
be guaranteed. Ensuring data integrity throughout the entire Al life cycle is equally critical for
maintaining trustworthiness and accuracy in healthcare. Data must remain unchanged and un-
manipulated. Hence, confidentiality and integrity are the most important properties that the
participants should have identified.

As illustrated in Section 6.2.2 in Table 16, six out of seven participants identified integrity and
confidentiality as crucial security properties, suggesting that this recognition is not dependent
on educational background. Notably, participant three, with professional experience in IT se-
curity, chose all security properties, potentially to emphasize a comprehensive protection of the
system. Similarly, participant seven, who has a legal background, advocated for comprehensive
protection, which is plausible given his background. While correct, this approach adds complex-
ity to threat prioritization, as safeguarding all properties entails addressing a broader range of
potential threats. In contrast, participants two and six cleverly addressed the task by selecting
integrity and confidentiality along with authorization and authenticity, recognizing the impor-
tance of these properties in the context of the system. Authorization ensures control over Al
architecture model use, aligning with legal and ethical data access regulations. On the other
hand, authenticity contributes to the credibility and reliability of health data and AISym4MED
models.

At this point, it should be noted that the database, aligned with the ENISA report’s threat
taxonomy, includes only integrity, confidentiality, and availability as potential impact properties.

6.2. EXPERIMENT WITH THE AISYM4MED ARCHITECTURE MODEL 99

Consequently, the selection of authenticity, authorization, and non-repudiation by participants
did not affect threat filtering. While aware of this, participants were intentionally presented
with all properties to observe their choices. However, according to the ENISA report[11], the
properties are interconnected. For instance, authenticity may be compromised with integrity
issues. Authorization may be impacted when both confidentiality and integrity are affected.
Moreover, non-repudiation may be impacted by integrity concerns. This further emphasizes
that the selection of confidentiality and integrity effectively encompasses all crucial aspects,
considering the interconnected nature of properties.

Looking ahead, there is room for improvement in the assignment of properties to threats within
the threat taxonomy. Future work could involve clearly assigning all relevant properties to
specific threats, thereby improving the property filtering process. Additionally, further properties
mentioned in the ENISA report[11] could be considered, such as robustness, trustworthiness,
safety, transparency, explainability, accountability, and data protection. However, introducing
these additional properties requires expert involvement and could lead to overlooking certain
relevant threats due to overly stringent filtering.

System Usability

Table 17 shows an average SUS score of 62.14, which corresponds to a D. This grade indicates
room for improvement, as shown in Figure 27 in Section 6.2.2. Upon closer examination, the
results reveal nuances that mitigate the initial perception of sufficient performance. Further
insights are provided by discussing individual data points below.

Examining participant six, who lacks knowledge of Al or computer science and is unfamiliar
with diagrams.net, reveals the lowest ratings in questions 4, 7, 9, and 10, along with the lowest
individual SUS score. Hence, his score significantly lowers the overall average. In contrast,
participant six, lacking Al expertise but with a scientific background, produced a high SUS
score of 75, particularly positively rating questions 4, 7, 9, and 10. Notably, this participant
invested substantial time in understanding the architecture model and did some research on the
AT life cycle. If we consider only participants one to six, who have a scientific background, for
the SUS score calculation, the average score rises to 65. This significantly alters the outcome,
shifting it up by two grades as indicated in Figure 27. These findings suggest that ThreatFinder
might be challenging for users lacking a scientific background, such as participant seven. How-
ever, individuals lacking a computer science background but possessing a scientific one, such as
participant six, can excel through dedicated effort.

Closely examining participants one to three is intriguing, given their substantial expertise. Par-
ticipants one and two demonstrate proficiency in AI, and participant three stands out as the
sole participant with sound expertise in IT security. Participant two’s ratings resulted in a
good SUS score, participant three’s in an excellent one, while participant one’s responses re-
sulted in a sufficient score. Notably, there are specific observations about participant one’s
answers: For question 4, regarding the need for technical support, participant one responded
with "agree”, reflecting a negative sentiment. Interestingly, participant seven, with distinct pre-
requisites, shared a similar response. In contrast, all other participants answered negatively,
indicating a positive score for this question (see Figure 28). However, this response contradicts
his answer to question 7, where he strongly agrees that people would learn the tool quickly.
Furthermore, participant one gave negative responses to questions 5, 8, and 9, primarily related
to the use of diagrams.net. Notably, his written feedback highlighted an apparent dislike for dia-
grams.net within ThreatFinder and that it also led to confusion for him. However, he positively

60 CHAPTER 6. EVALUATION

acknowledged the user interface of ThreatFinder. Considering these circumstances, adjusting for
inconsistencies, his overall score would likely fall around the "good” range for the ThreatFinder.

3 (42,9 %)

2 (28,6 %)

1(14,3 %) 1 (14,3 %)

0(0%)

Figure 28: Support of a Technical Person needed

Analyzing participant five’s responses proves challenging, given the consistently neutral stance
across all ten questions. This could stem from a lack of prior knowledge in the domain and being
the sole participant perceiving the instructions as unclear (see Figure 25 in Section 6.2.2). As
previously discussed, in a real-world context, considering the targeted user base, such a scenario
is unlikely, as extensive instructions may not be necessary. Moreover, participant five stands
out as the sole contributor without feedback, and his modified architecture model is notably
minimal, with the fewest placed assets. Hence, the outcomes of participant five, like participant
seven, should be treated differently, not being accorded equal weight in comparison to other
results. This also applies to participant four, whose responses revealed several inconsistencies.
While questions 2-4 indicate a perception of ThreatFinder as easy to use without requiring
technical assistance, questions 8 and 9 suggest a contrasting view, expressing difficulty and a
lack of confidence in using the tool.

Considering all factors, the effective average SUS score is expected to be higher than 62.14.
Participants two, three and six consistently demonstrate positive scores without inconsisten-
cies. However, participants five and seven, significantly impact the average, justifying cautious
interpretation due to their limited knowledge in this field and no obvious efforts made. Fur-
thermore, participants one and four introduce complexities with inconsistencies, necessitating
nuanced consideration. Considering each participant’s unique situation is crucial for a more
precise evaluation of ThreatFinder’s usability. However, considering only participants with a
scientific background or Al expertise, the SUS score is notably higher, reflecting a ”"good” rating.
This outcome suggests that the implementation of this approach effectively addresses the liter-
ature’s identified need for a practical and effective threat modeling method for AI-ML systems.

6.2. EXPERIMENT WITH THE AISYM4MED ARCHITECTURE MODEL 61
Threats Identification by Participants

Evaluating the threats identification of the participants presented challenges. The specific asset
selection was not crucial, as the threats are associated with categories. Thus, choosing assets
across all categories without any filter would cover all the threats of the database, including the
relevant 44 threats identified by the experts. Table 18 shows that five out of seven participants
utilized assets from all six categories. Further analysis is required to determine if these five par-
ticipants also chose suitable properties to identify all relevant threats. Based on this assessment,
only participants one, two, three, and six successfully identified all relevant threats. Hence, the
approach’s effectiveness is affirmed, with four out of seven participants identifying all 44 threats.
Participants one through three, who possess the most expertise, effectively identified all threats,
highlighting the advantage of Al knowledge in applying the threat modeling approach. Notably,
participant six, a layperson, also achieved this. However, participant four missed crucial filters,
and participant seven neglected to use assets from the actor category.

With the effectiveness established, it is intriguing to examine the efficiency of participants who
identified all relevant threats. This can be done by comparing the number of identified threats
to that of the experts. Table 19 presents the total threats identified by participants. Participant
one’s results are not indicative due to the use of all available assets, resulting in an inflated threat
count. Similarly, Participant six’s data is excluded from further consideration; the initial use of
all assets, modified later, suggests the high threat identification might be coincidental, especially
when considering previous responses and educational background. Upon examining the results
of participants two and three, who conducted the experiment correctly and possess the required
expertise, a significant number of false positives are still apparent (see Table 19). Although the
experts, with their identification of 44 threats, may not have captured every threat relevant to
the system, the discrepancy between their count and the number of threats identified by these
two participants is notably large. Therefore, this approach comes with a trade-off, generating
numerous false positives and noise in the process. Identifying a larger number of threats can be
beneficial for a thorough analysis of a system. However, the present number of false positives
creates excessive work, making an increase in efficiency indispensable.

Overall, the participants successfully identified all potential threats in the Al system using the
architectural model, demonstrating the approach’s effectiveness. The applied approach addresses
the difficulties noted in Section 3.8 by automating a straightforward threat identification process
in ML systems, enhancing scalability and adaptability. This marks a significant improvement,
effectively addressing the previously identified gaps. However, there remains room for improve-
ment in efficiency, as the threats could be further filtered. The six existing categories could be
further divided, considering that threats are tied to specific categories. Such subdivision would
lead to a more focused association, with each category encompassing a smaller, more manageable
number of threats. Consequently, this would naturally result in a reduction of noise. Further-
more, exploring participants’ prioritization of threats and the vulnerabilities they might have
uncovered would be very insightful. Undertaking such a task was beyond the scope of this study.
However, it presents an opportunity for exploration in future work.

62 CHAPTER 6. EVALUATION

Table 18: Used Categories by Participant

Participant Data Model Artefact Processes Env/tools Actor

1 v v v v v v
2 v v v v v v
3 v v v v v v
4 v v v v v v
5 X v X v v X
6 v v v v v v
7 v v v v v X

Table 19: Comparison of Threats Participants and Experts
Participant Threats Identified Noise

1 1668 1624
2 901 857
3 296 252
6 1232 1188

6.3 Reflections and Future Work

The evaluation of the ThreatFinder tool emphasizes its effectiveness as the first-ever automated
threat modeling approach for Al systems. It confirms the strengths of the novel approach that
addresses key challenges observed in existing threat modeling methodologies for Al-based sys-
tems. In particular, the approach exceeds the limitations found in works such as [10] and [9].
Unlike these papers, this approach employs a comprehensive threat taxonomy, ensuring broader
coverage of potential threats specific to ML systems. Moreover, the mentioned papers rely on
complex manual mapping processes, hindering scalability and adaptability. In contrast, the
proposed new approach leverages automation in threat modeling for Al-based systems. This
automated approach improves the identification and mitigation of security challenges, ensur-
ing a more efficient and error-resistant analysis in the dynamic landscape of ML systems. In
addition, the inclusion of participant feedback not only evaluates usability but also provides
insights into the real-world applicability of the approach. This sets it apart from the evalua-
tions in the referenced papers. Furthermore, the novel approach addresses the concerns raised
in the study [136] by focusing on a general threat modeling framework. It provides a threat
modeling solution applicable to diverse Al system contexts. Overall, the evaluation confirms
that a novel, automated, and user-centric threat modeling approach has been introduced that
effectively addresses the dynamic nature of Al systems.

Participants successfully navigated the processes, demonstrating the tool’s clarity in importing
the architecture model and libraries. Difficulties arose during the assignment of the assets,
revealing areas for improvement in instructions. However, it is important to highlight that
the genuine threat modeling approach demands the careful design of the architectural model
from its inception. Consequently, the assignment of assets would not be applicable within
this context. Additionally, this observation brings to light the added complexity and potential
challenges associated with using an existing architecture model in the context of threat modeling.

6.3. REFLECTIONS AND FUTURE WORK 63

Employing and comprehending an established architecture model may be more difficult and
cumbersome. In contrast, there is a compelling case for constructing the architecture model
from scratch and directly implementing assets with corresponding threats. This approach offers
greater clarity and aligns more seamlessly with the demands of effective threat modeling for Al
systems.

The overall SUS score of 62.14 showed a satisfactory level of user-friendliness. However, a dif-
ferentiated analysis showed that the effective score yields are higher. For instance, considering
the three participants with the highest expertise and accounting for individual response incon-
sistencies, the overall evaluation tends towards the "Good” range. In a nutshell, the simple and
effective approach lays a crucial foundation for future work, providing valuable insights for the
advancement of the first-ever automated threat modeling approach for Al systems. However, it
is important to note that the findings from this evaluation should be approached with caution.
The experiment involved only seven participants, which may not fully represent the broader user
base. This limitation suggests that while the results are promising, they might not be entirely
representative of all potential users. Future studies, therefore, should include a larger and more
targeted participant pool to validate and refine the approach further, ensuring its applicability
and robustness in various real-world scenarios.

Furthermore, as previously discussed, the original threat modeling approach intended users to
model the system from scratch, which would have been beyond the scope of this thesis. Such
an endeavor would necessitate Al architects with expertise to conduct the modeling, leveraging
their familiarity with the subject matter. In future work, a potential direction could be to
guide users in modeling the system based solely on a provided description. The guidance could
be exclusively presented in the form of a video tutorial featuring a simple architecture model
from scratch as an example to ensure clarity and avoid any potential ambiguities in execution.
Moreover, the evaluation highlights that individuals without scientific expertise and a willingness
to invest effort may not be the intended users. Hence, subsequent experiments should exclusively
target individuals with expertise in the field of Al for meaningful insights.

The most crucial point concerning possible improvements to this new approach was the filtering
process. To enhance threat filtering and focus on the most important threats, further subdivision
of asset categories and the comprehensive extension of Al properties in the database could be
considered for a more efficient result. This entails modifying asset and threat taxonomies for
a seamless connection (see Figure 11 in Section 4.4.4). While potentially increasing efficiency
with fewer assets per category, this approach requires significant effort and expertise, and there
is a risk of overlooking threats. Additionally, expanding libraries to encompass a comprehensive
number of assets for modeling Al systems stands as a promising avenue for enriching the tool’s
capabilities and accommodating diverse modeling scenarios. Additionally, future research could
explore methods for prioritizing threats and identifying related vulnerabilities within this threat
modeling approach.

64

CHAPTER 6. EVALUATION

Chapter 7

Summary and Conclusions

The main objective of the thesis was to design and implement an effective threat modeling
approach for Al-based systems. To achieve this, the thesis evolved through a series of carefully
structured chapters, each contributing to this approach’s overall discussion and development.
The first chapter laid the groundwork for the thesis, introducing the core topic and outlining the
study’s motivation, objectives, and structure. In Chapter 2, a solid theoretical foundation was
established for understanding threat modeling in AI and ML systems. This chapter underscored
the importance of recognizing and mitigating vulnerabilities and threats within these systems.
Doing so set the stage for a deeper comprehension of the key concepts underpinning a threat
modeling approach specifically tailored for Al-based systems.

Chapter 3 thoroughly examined the current state of research and methodologies in threat mod-
eling within Al-based systems. This chapter was rich in content, covering related topics such
as AML, cyberattacks in the ML pipeline, FMEA, and various types of failures in ML sys-
tems. Furthermore, it examined various frameworks, focusing on the ENISA report. Moreover,
and most importantly, the chapter provided an insightful review of existing threat modeling
approaches for Al-based systems, highlighting their limitations. Additionally, it included a com-
parison of existing threat modeling tools and evaluated their applicability to Al-based systems.
This evaluation identified diagrams.net as the most suitable tool for modeling in this context.
This extensive research highlights a significant gap in the field. In particular, the lack of a sys-
tematic and well-established threat modeling approach for Al-based systems. This insight laid
the foundation for developing a novel, practical and reliable threat modeling approach.

Chapter 4 focused on the architecture of AT and ML systems, framing an effective threat mod-
eling approach. A general five-step threat modeling methodology was introduced and metic-
ulously adapted for Al-based systems. Each step was thoughtfully tailored to align with the
specific properties and dynamic nature of Al systems, with particular emphasis on the novel and
straightforward process of threat identification.

Chapter 5 marked the transition from the theoretical approach to its practical application,
detailing the development of ThreatFinder. ThreatFinder is an automated tool designed for
threat identification in Al systems. This chapter illustrated the creation and integration of the
tool using different technologies. It covered the use of diagrams.net, the employment of XML
files, and delved into the functionality and structure of the tool, including the aspects of its web
application development.

65

66 CHAPTER 7. SUMMARY AND CONCLUSIONS

The thesis final chapter presented an evaluation of the ThreatFinder tool. The evaluation utilized
the AISym4MED platform as a practical use case. Furthermore, this final chapter gained depth
from contributions by participants from diverse educational backgrounds, whose interactions
with the tool and subsequent feedback were meticulously analyzed. This analysis provided a
detailed assessment of the tool’s effectiveness and user-friendliness, enriching the thesis with
practical insights.

In conclusion, the ThreatFinder tool is a groundbreaking, automated threat modeling approach
tailored for Al-based systems. The tool’s design overcomes the constraints observed in existing
methodologies by integrating a comprehensive threat taxonomy, a straightforward approach,
and automated processes. Thus, it offers a more thorough and effective threat analysis for ML
systems. The evaluation results, derived from participant feedback, underscore the tool’s effec-
tiveness in revealing critical threats and confirming usability and practical relevance. This novel
approach not only optimizes the threat modeling process but also addresses general framework
concerns, positioning it as an adaptable solution for various Al system contexts. Furthermore,
the thesis identifies potential improvement areas, such as enhancing the threat filtering mecha-
nism through refined asset categorization and expanding Al property coverage in the database.
Moreover, future work could include the development of more intuitive modeling guidance, espe-
cially for users less familiar with the Al field. However, it is recommended for future evaluations
to focus on participants with Al expertise for more in-depth assessment. This would allow for
modeling from scratch, ensuring a more profound engagement with the proposed threat modeling
approach and generating more insightful outcomes. Nevertheless, this thesis contributes signif-
icantly to Al security, offering a reliable foundation for advancing threat modeling in Al-based
systems.

Bibliography

D. Silver et al. “Alphazero: Google deepmind ai beats champion program by teaching itself
to play”. Accessed: 2023-12-12. (2017), [Online]. Available: https://www.theguardian.
com/technology/2017/dec/07/alphazero-google-deepmind-ai-beats-champion-
program-teaching-itself-to-play-four-hours.

L. F. Sikos, Al in Cybersecurity. Springer, 2018, vol. 151.

O. A. Aslan and R. Samet, “A comprehensive review on malware detection approaches”,
IEEE access, vol. 8, pp. 6249-6271, 2020.

IBM. “Ai and cybersecurity: A new paradigm”. Accessed: 2023-12-12, IBM Institute
for Business Value. (2022), [Online]. Available: https ://www . ibm . com/ thought -
leadership/institute-business-value/en-us/report/ai-cybersecurity.

D. Arp, E. Quiring, F. Pendlebury, et al., “Dos and don’ts of machine learning in computer
security”, in 81st USENIX Security Symposium (USENIX Security 22), 2022.

L. Mauri and E. Damiani, “Stride-ai: An approach to identifying vulnerabilities of machine
learning assets”, in 2021 IEEE International Conference on Cyber Security and Resilience
(CSR), IEEE, 2021, pp. 147-154.

L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar, “Adversarial
machine learning”, in Proceedings of the 4th ACM workshop on Security and artificial
intelligence, 2011, pp. 43-58.

F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing machine learn-
ing models via prediction {apis}”, in 25th USENIX security symposium (USENIX Security
16), 2016, pp. 601-618.

L. Mauri and E. Damiani, “Modeling threats to ai-ml systems using stride”, Sensors,
vol. 22, no. 17, p. 6662, 2022.

C. Wilhjelm and A. A. Younis, “A threat analysis methodology for security requirements
elicitation in machine learning based systems”, in 2020 IEEE 20th International Con-
ference on Software Quality, Reliability and Security Companion (QRS-C), IEEE, 2020,
pp- 426-433.

European Union Agency for Cybersecurity (ENISA), Ai cybersecurity challenges, threat
landscape for artificial intelligence, 2020.

I. Tarandach and M. J. Coles, “Threat modeling: A practical guide for development
teams”, (No Title), 2021.

P. Shedden, W. Smith, and A. Ahmad, “Information security risk assessment: Towards a
business practice perspective”, 2010.

E. Bertino, L. Martino, F. Paci, and A. Squicciarini, Security for web services and service-
oriented architectures. Springer, 2010, vol. 4.

67

BIBLIOGRAPHY

J. M. Kizza, W. Kizza, and Wheeler, Guide to computer network security. Springer, 2013,
vol. 8.

H. G. Brauch, “Concepts of security threats, challenges, vulnerabilities and risks”, Coping
with global environmental change, disasters and security: Threats, challenges, vulnerabil-
ities and risks, pp. 61-106, 2011.

K. Dahbur, B. Mohammad, and A. B. Tarakji, “A survey of risks, threats and vulnerabili-
ties in cloud computing”, in Proceedings of the 2011 International conference on intelligent
semantic Web-services and applications, 2011, pp. 1-6.

R. Raniner and C. Cegielski, Introduction to information systems: Enabling and trans-
forming business, 2010.

M. Abomhara and G. M. Kgien, “Cyber security and the internet of things: Vulnerabili-
ties, threats, intruders and attacks”, Journal of Cyber Security and Mobility, pp. 65-88,
2015.

A. J. Duncan, S. Creese, and M. Goldsmith, “Insider attacks in cloud computing”, in
2012 IEEE 11th international conference on trust, security and privacy in computing
and communications, IEEE, 2012, pp. 857-862.

P. Baybutt, “Assessing risks from threats to process plants: Threat and vulnerability
analysis”, Process Safety Progress, vol. 21, no. 4, pp. 269-275, 2002.

C. Tankard, “Advanced persistent threats and how to monitor and deter them”, Network
security, vol. 2011, no. 8, pp. 16-19, 2011.

F. Li, A. Lai, and D. Ddl, “Evidence of advanced persistent threat: A case study of
malware for political espionage”, in 2011 6th International Conference on Malicious and
Unwanted Software, IEEE, 2011, pp. 102-109.

NIST. “Guide for conducting risk assessments”. Accessed: 2023-09-05. (2012), [Online].
Available: https://doi.org/10.6028/NIST.SP.800-30r1.

TechTarget. “Risk assessment vs. threat modeling: What’s the difference?” Accessed on:
2023-12-15. (2023), [Online]. Available: https://www.techtarget.com/searchsecurity/
tip/Risk-assessment-vs-threat-modeling-Whats-the-difference.

J. Von Der Assen, M. F. Franco, C. Killer, E. J. Scheid, and B. Stiller, “Coretm: An
approach enabling cross-functional collaborative threat modeling”, in 2022 IEEE Inter-
national Conference on Cyber Security and Resilience (CSR), IEEE, 2022, pp. 189-196.

S. Hussain, A. Kamal, S. Ahmad, G. Rasool, and S. Igbal, “Threat modelling method-
ologies: A survey”, Sci. Int.(Lahore), vol. 26, no. 4, pp. 1607-1609, 2014.

S. Myagmar, A. J. Lee, and W. Yurcik, “Threat modeling as a basis for security require-
ments”, 2005.

A. Shostack, Threat modeling: Designing for security. John Wiley & Sons, 2014.

H. A. Alatwi and C. Morisset, “Threat modeling for machine learning-based network
intrusion detection systems”, in 2022 IEEE International Conference on Big Data (Big
Data), IEEE, 2022, pp. 4226-4235.

R. Hasan, S. Myagmar, A. J. Lee, and W. Yurcik, “Toward a threat model for storage
systems”, in Proceedings of the 2005 ACM workshop on Storage security and survivability,
2005, pp. 94-102.

B. Lundgren and N. Moller, “Defining information security”, Science and engineering
ethics, vol. 25, pp. 419-441, 2019.

BIBLIOGRAPHY 69

33]

[34]

[35]

[36]

M. Conti, N. Dragoni, and V. Lesyk, “A survey of man in the middle attacks”, IFEFE
communications surveys & tutorials, vol. 18, no. 3, pp. 2027-2051, 2016.

N. Shevchenko, T. A. Chick, P. O’'Riordan, T. P. Scanlon, and C. Woody, “Threat model-
ing: A summary of available methods”, Carnegie Mellon University Software Engineering
Institute Pittsburgh United ..., Tech. Rep., 2018.

R. Khan, K. McLaughlin, D. Laverty, and S. Sezer, “Stride-based threat modeling for
cyber-physical systems”, in 2017 IEEE PES Innovative Smart Grid Technologies Confer-
ence Europe (ISGT-Europe), IEEE, 2017, pp. 1-6.

A.Y. Aleryani, “Comparative study between data flow diagram and use case diagram”,
International Journal of Scientific and Research Publications, vol. 6, no. 3, pp. 124-126,
2016.

A. A. Jilani, M. Usman, and A. Nadeem, “Comparative study on dfd to uml diagrams
transformations”, arXiv preprint arXiv:1102.4162, 2011.

A. Dennis, B. Wixom, and D. Tegarden, Systems analysis and design: An object-oriented
approach with UML. John wiley & sons, 2015.

P. Rob, C. Coronel, A. Silberschatz, H. Korth, and S. Sudarshan, “Database systems:
Design, implementation”, Management. Seventh Edition. Course Technology, 2006.

S. Hernan, S. Lambert, T. Ostwald, and A. Shostack, “T'hreat modeling-uncover security
design flaws using the stride approach”, MSDN Magazine-Louisville, pp. 68—75, 2006.

N. R. Mead, F. Shull, K. Vemuru, and O. Villadsen, “A hybrid threat modeling method”,
Carnegie MellonUniversity-Software Engineering Institute-Technical Report-CMU/SEI-
2018-TN-002, 2018.

L. Sion, K. Yskout, D. Van Landuyt, and W. Joosen, “Solution-aware data flow diagrams
for security threat modeling”, in Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, 2018, pp. 1425-1432.

R. Scandariato, K. Wuyts, and W. Joosen, “A descriptive study of microsoft’s threat
modeling technique”, Requirements Engineering, vol. 20, pp. 163-180, 2015.

B. Potteiger, G. Martins, and X. Koutsoukos, “Software and attack centric integrated
threat modeling for quantitative risk assessment”, in Proceedings of the Symposium and
Bootcamp on the Science of Security, 2016, pp. 99-108.

T. UcedaVelez, “Real world threat modeling using the pasta methodology”, OWASP App
Sec EU, 2012.

T. UcedaVelez and M. M. Morana, Risk Centric Threat Modeling: process for attack
simulation and threat analysis. John Wiley & Sons, 2015.

T. UcedaVélez, “Threat modeling w/pasta: Risk centric threat modeling case studies”,
Technical Report. Open Web Application Security Project (OWASP), Tech. Rep., 2017.

ThreatModeler, Threat modeling methodology, Accessed: 2023-07-29, 2023. [Online|. Avail-
able: https://threatmodeler.com/threat-modeling-methodology/.

T. UcedaVelez, Real world threat modeling using the pasta methodology, Accessed: 2023-
07-29, 2012. [Online]. Available: https://owasp.org/www-pdf-archive/AppSecEU2012_
PASTA.pdf.

S. Intelligence, Threat modeling in the enterprise, part 2: Understanding the process,
Accessed: 2023-07-29, 2023. [Online]. Available: https://securityintelligence.com/
threat-modeling-in-the-enterprise-part-2-understanding-the-process/.

70

[51]

BIBLIOGRAPHY

V. Saini, Q. Duan, and V. Paruchuri, “Threat modeling using attack trees”, Journal of
Computing Sciences in Colleges, vol. 23, no. 4, pp. 124-131, 2008.

G. Anthes, “Artificial intelligence poised to ride a new wave”, Communications of the
ACM, vol. 60, no. 7, pp. 19-21, 2017.

I. H. Sarker, “Ai-based modeling: Techniques, applications and research issues towards
automation, intelligent and smart systems”, SN Computer Science, vol. 3, no. 2, p. 158,
2022.

L. Deng, “Artificial intelligence in the rising wave of deep learning: The historical path and
future outlook [perspectives|”, IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 180—
177, 2018.

S. Amershi, A. Begel, C. Bird, et al., “Software engineering for machine learning: A
case study”, in 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), IEEE, 2019, pp. 291-300.

J. Bosch, H. H. Olsson, and I. Crnkovic, “Engineering ai systems: A research agenda”,
Artificial Intelligence Paradigms for Smart Cyber-Physical Systems, pp. 1-19, 2021.

S. Martinez-Fernandez, J. Bogner, X. Franch, et al., “Software engineering for ai-based

systems: A survey”, ACM Transactions on Software Engineering and Methodology (TOSEM),

vol. 31, no. 2, pp. 1-59, 2022.
H. Al, High-level expert group on artificial intelligence, 2019.

F. Khomh, B. Adams, J. Cheng, M. Fokaefs, and G. Antoniol, “Software engineering for
machine-learning applications: The road ahead”, IEEE Software, vol. 35, no. 5, pp. 81-84,
2018.

1. Ozkaya, “What is really different in engineering ai-enabled systems?”, IEEE software,
vol. 37, no. 4, pp. 3-6, 2020.

C. Kastner and E. Kang, “Teaching software engineering for ai-enabled systems”, in Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Soft-
ware Engineering Education and Training, 2020, pp. 45-48.

D. Sculley, G. Holt, D. Golovin, et al., “Hidden technical debt in machine learning sys-
tems”, Advances in neural information processing systems, vol. 28, 2015.

I. H. Sarker, “Machine learning: Algorithms, real-world applications and research direc-
tions”, SN computer science, vol. 2, no. 3, p. 160, 2021.

S. Dua and X. Du, Data mining and machine learning in cybersecurity. CRC press, 2016.

J. Blumenstock, “Machine learning can help get covid-19 aid to those who need it most”,
Nature, 2020.

I. H. Sarker, “Cyberlearning: Effectiveness analysis of machine learning security modeling
to detect cyber-anomalies and multi-attacks”, Internet of Things, vol. 14, p. 100 393, 2021.

I. H. Sarker, A. Kayes, S. Badsha, H. Alqahtani, P. Watters, and A. Ng, “Cybersecurity
data science: An overview from machine learning perspective”, Journal of Big data, vol. 7,
pp- 1-29, 2020.

S. Saharan, N. Kumar, and S. Bawa, “An efficient smart parking pricing system for smart
city environment: A machine-learning based approach”, Future Generation Computer Sys-
tems, vol. 106, pp. 622-640, 2020.

A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images”, in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 427-436.

BIBLIOGRAPHY 71

[70]

[71]

[72]

(78]
[79]

[80]

G. Elsayed, S. Shankar, B. Cheung, et al., “Adversarial examples that fool both computer
vision and time-limited humans”, Advances in neural information processing systems,
vol. 31, 2018.

Q. Wang, W. Guo, K. Zhang, et al., “Adversary resistant deep neural networks with an
application to malware detection”, in Proceedings of the 23rd ACM sigkdd international
conference on knowledge discovery and data mining, 2017, pp. 1145-1153.

I. Rosenberg, A. Shabtai, Y. Elovici, and L. Rokach, “Adversarial machine learning attacks
and defense methods in the cyber security domain”, ACM Computing Surveys (CSUR),
vol. 54, no. 5, pp. 1-36, 2021.

M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar, “Can machine learning
be secure?”; in Proceedings of the 2006 ACM Symposium on Information, computer and
communications security, 2006, pp. 16-25.

M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar, “The security of machine learning”,
Machine Learning, vol. 81, pp. 121-148, 2010.

B. Schneier, “Attacking machine learning systems”, Computer, vol. 53, no. 5, pp. 78-80,
2020.

B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of adversarial machine
learning”, in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, 2018, pp. 2154-2156.

N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman, “Sok: Security and privacy
in machine learning”, in 2018 IEEE European Symposium on Security and Privacy (Eu-
roS€P), IEEE, 2018, pp. 399-414.

N. Papernot, “A marauder’s map of security and privacy in machine learning”, arXiv
preprint arXiw:1811.01134, 2018.

L. Mufnioz-Gonzélez and E. C. Lupu, “The security of machine learning systems”, Al in
Cybersecurity, pp. 47-79, 2019.

X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and defenses for deep
learning”, IEEE transactions on meural networks and learning systems, vol. 30, no. 9,
pp. 28052824, 2019.

E. Tabassi, K. J. Burns, M. Hadjimichael, A. D. Molina-Markham, and J. T. Sexton, “A
taxonomy and terminology of adversarial machine learning”, NIST IR, vol. 2019, pp. 1-
29, 2019.

International Organization for Standardization, “ISO/IEC TR 24028:2020; Information
Technology—Artificial Intelligence—Overview of Trustworthiness in Artificial Intelligence”,
ISO, Geneva, Switzerland, Tech. Rep., 2020.

H. MAMUN and H. MOLYNEAUX, “Towards a robust and trustworthy machine learning
system development”, arXiv preprint arXiv:2101.03042, 2021.

K. Patel, J. Fogarty, J. A. Landay, and B. Harrison, “Investigating statistical machine
learning as a tool for software development”, in Proceedings of the SIGCHI conference on
human factors in computing systems, 2008, pp. 667—-676.

J. Horkoff, “Non-functional requirements for machine learning: Challenges and new direc-
tions”, in 2019 IEEFE 27th international requirements engineering conference (RE), IEEE,
2019, pp. 386-391.

X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification of deep neural
networks”, in Computer Aided Verification: 29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I 30, Springer, 2017, pp. 3—29.

[94]

[95]

[96]

[97]

[100]

[101]

[102]

[103]

BIBLIOGRAPHY

A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against adversarial
examples”; arXiv preprint arXiv:1801.09344, 2018.

R. S. Sangwan, Y. Badr, and S. M. Srinivasan, “Cybersecurity for ai systems: A survey”,
Journal of Cybersecurity and Privacy, vol. 3, no. 2, pp. 166-190, 2023.

A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopadhyay, “Adver-
sarial attacks and defences: A survey”, arXiv preprint arXiv:1810.00069, 2018.

K. Fenrich, “Securing your control system”, in 50th Annual ISA. POWID Symposium/17th
ISA POWID/EPRI Controls & Instrumentation Conference, 2007, p. 11.

M. Comiter, “Attacking artificial intelligence”, Belfer Center Paper, vol. 8, pp. 2019-08,
2019.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-

efficient learning of deep networks from decentralized data”, in Artificial intelligence and
statistics, PMLR, 2017, pp. 1273-1282.

E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to backdoor feder-
ated learning”, in International conference on artificial intelligence and statistics, PMLR,
2020, pp. 2938-2948.

L. Munoz-Gonzélez, B. Biggio, A. Demontis, et al., “Towards poisoning of deep learning
algorithms with back-gradient optimization”, in Proceedings of the 10th ACM workshop
on artificial intelligence and security, 2017, pp. 27-38.

B. Nelson, M. Barreno, F. J. Chi, et al., “Exploiting machine learning to subvert your
spam filter.”, LEET, vol. 8, no. 1-9, pp. 16-17, 2008.

Ilmoi. “Poisoning attacks on machine learning: A 15-year old security problem that’s mak-

ing a comeback”. Accessed: 2023-08-22. (2019), [Online]. Available: https://towardsdatascience.

com/poisoning-attacks-on-machine-learning-1££247c254db.

J. Natarajan, “Cyber secure man-in-the-middle attack intrusion detection using ma-
chine learning algorithms”, in Al and Big Data’s Potential for Disruptive Innovation,
IGI global, 2020, pp. 291-316.

T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnerabilities in the machine
learning model supply chain”, arXiv preprint arXiv:1708.06733, 2017.

Z. Yang, J. Zhang, E.-C. Chang, and Z. Liang, “Neural network inversion in adversarial
setting via background knowledge alignment”, in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp. 225-240.

M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit confi-
dence information and basic countermeasures”, in Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security, 2015, pp. 1322-1333.

X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton, “A methodology for formalizing
model-inversion attacks”, in 2016 IEEE 29th Computer Security Foundations Symposium
(CSF), IEEE, 2016, pp. 355-370.

S. Hidano, T. Murakami, S. Katsumata, S. Kiyomoto, and G. Hanaoka, “Model inversion
attacks for prediction systems: Without knowledge of non-sensitive attributes”, in 2017
15th Annual Conference on Privacy, Security and Trust (PST), IEEE, 2017, pp. 115-
11 509.

B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan: Information
leakage from collaborative deep learning”, in Proceedings of the 2017 ACM SIGSAC con-
ference on computer and communications security, 2017, pp. 603-618.

BIBLIOGRAPHY 73

[104]

[105]

[106]
[107)
[108]
[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117)

[118]

[119]

[120]

R. N. Reith, T. Schneider, and O. Tkachenko, “Efficiently stealing your machine learning
models”; in Proceedings of the 18th ACM Workshop on Privacy in the Electronic Society,
2019, pp. 198-210.

M. Juuti, S. Szyller, S. Marchal, and N. Asokan, “Prada: Protecting against dnn model
stealing attacks”, in 2019 IEEE European Symposium on Security and Privacy (Eu-
roS&P), IEEE, 2019, pp. 512-527.

B. Wang and N. Z. Gong, “Stealing hyperparameters in machine learning”, in 2018 IEEE
symposium on security and privacy (SP), IEEE, 2018, pp. 36-52.

T. Takemura, N. Yanai, and T. Fujiwara, “Model extraction attacks on recurrent neural
networks”, Journal of Information Processing, vol. 28, pp. 1010-1024, 2020.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network”, arXiv
preprint arXiw:1503.02531, 2015.

Y.-C. Hsu, T. Hua, S. Chang, Q. Lou, Y. Shen, and H. Jin, “Language model compression
with weighted low-rank factorization”, arXiv preprint arXiv:2207.00112, 2022.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks against
machine learning models”, in 2017 IEEE symposium on security and privacy (SP), IEEE,
2017, pp. 3-18.

M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart, “Privacy in pharma-
cogenetics: An {end-to-end} case study of personalized warfarin dosing”, in 23rd USENIX
security symposium (USENIX Security 14), 2014, pp. 17-32.

A. Chaabane, G. Acs, M. A. Kaafar, et al., “You are what you like! information leakage
through users’ interests”, in Proceedings of the 19th annual network € distributed system
security symposium (NDSS), Citeseer, 2012.

N. Z. Gong, A. Talwalkar, L. Mackey, et al., “Joint link prediction and attribute infer-
ence using a social-attribute network”, ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 5, no. 2, pp. 1-20, 2014.

M. Kosinski, D. Stillwell, and T. Graepel, “Private traits and attributes are predictable
from digital records of human behavior”, Proceedings of the national academy of sciences,
vol. 110, no. 15, pp. 5802-5805, 2013.

C. Spreafico, D. Russo, and C. Rizzi, “A state-of-the-art review of fmea/fmeca including
patents”, computer science review, vol. 25, pp. 19-28, 2017.

N. R. Sankar and B. S. Prabhu, “Modified approach for prioritization of failures in a
system failure mode and effects analysis”, International Journal of Quality € Reliability
Management, vol. 18, no. 3, pp. 324-336, 2001.

C. Kara-Zaitri, “Disaster prevention and limitation: State of the art; tools and tech-
nologies”, Disaster Prevention and Management: An International Journal, vol. 5, no. 1,
pp- 30-39, 1996.

A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Model poisoning attacks in
federated learning”, in Proc. Workshop Secur. Mach. Learn.(SecML) 32nd Conf. Neural
Inf. Process. Syst.(NeurIPS), 2018, pp. 1-23.

T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating backdooring attacks
on deep neural networks”, IEEE Access, vol. 7, pp. 47 230-47 244, 2019.

R. S. S. Kumar, D. O. Brien, K. Albert, S. Viljoen, and J. Snover, “Failure modes in
machine learning systems”, arXiv preprint arXiv:1911.11084, 2019.

74 BIBLIOGRAPHY

[121] D. Hadfield-Menell, S. Milli, P. Abbeel, S. J. Russell, and A. Dragan, “Inverse reward
design”, Advances in neural information processing systems, vol. 30, 2017.

[122] Y. Yuan, Z. L. Yu, Z. Gu, X. Deng, and Y. Li, “A novel multi-step reinforcement learning
method for solving reward hacking”, Applied Intelligence, vol. 49, pp. 2874-2888, 2019.

[123] J. Leike, M. Martic, V. Krakovna, et al., “Ai safety gridworlds”, arXiv preprint arXiv:1711.09883,
2017.

[124] F. Tramer, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel, “Ensem-
ble adversarial training: Attacks and defenses”, arXiv preprint arXiv:1705.07204, 2017.

[125] C. Szegedy, W. Zaremba, 1. Sutskever, et al., “Intriguing properties of neural networks”,
arXiw preprint arXiww:1312.6199, 2013.

[126] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning
models resistant to adversarial attacks”, arXiv preprint arXiv:1706.06083, 2017.

[127] Mitre attéck (adversarial tactics, techniques, and common knowledge), https://attack.
mitre.org/, Accessed: 2023-09-19.

[128] Mitre atlas (adversarial threat landscape for artificial-intelligence systems), https://
atlas.mitre.org/, Accessed: 2023-09-19.

[129] Microsoft. “Threat modeling for ai/ml systems and dependencies”. Accessed: 2023-08-
11. (2019), [Online|. Available: https://learn.microsoft.com/en-us/security/
engineering/threat-modeling-aiml.

[130] A. Marshall, J. Parikh, E. Kiciman, and R. Kumar, “Threat modeling ai/ml systems and
dependencies”, Security documentation, 2019.

[131] Ai security and privacy guide, Accessed: 2023-12-22. [Online]. Available: https://owasp.
org/www-project-ai-security-and-privacy-guide/#how-to-deal-with-ai-
security.

[132] G. McGraw, H. Figueroa, V. Shepardson, and R. Bonett, “An architectural risk analysis

of machine learning systems: Toward more secure machine learning”, Berryville Institute
of Machine Learning, Clarke County, VA. Accessed on: Mar, vol. 23, 2020.

[133] European Union Agency for Cybersecurity (ENISA), Securing machine learning algo-
rithms, 2021.

[134] A. Marshall, J. Parikh, E. Kiciman, and R. Kumar. “Ai/ml pivots to the security de-
velopment lifecycle bug bar”. Accessed: 2023-08-11. (2019), [Online]. Available: https:
//docs.microsoft.com/en-us/security/engineering/bug-bar-aiml.

[135] L. Mauri and E. Damiani, “Estimating degradation of machine learning data assets”,
ACM Journal of Data and Information Quality (JDIQ), vol. 14, no. 2, pp. 1-15, 2021.

[136] R. Bitton, D. Avraham, E. Klevansky, et al., “Adversarial machine learning threat anal-
ysis in open radio access networks.”, 2022.

[137] Z. Shi, K. Graffi, D. Starobinski, and N. Matyunin, “Threat modeling tools: A taxonomy”,
IEEE Security € Privacy, vol. 20, no. 4, pp. 29-39, 2021.

[138] H. Muccini and K. Vaidhyanathan, “Software architecture for ml-based systems: What ex-
ists and what lies ahead”, in 2021 IEEE/ACM 1st Workshop on AI Engineering-Software
Engineering for AI (WAIN), IEEE, 2021, pp. 121-128.

[139] Microsoft. “Ai/ml bug bar”. Accessed on: 2023-12-10. (2019), [Online]. Available: https:
//learn.microsoft.com/en-us/security/engineering/bug-bar-aiml.

BIBLIOGRAPHY 75

[140]

[141]

[142]

[143]
[144]
[145]
[146]

[147]

“Stack overflow developer survey 2023”. Accessed on: 2023-12-18, Stack Overflow. (2023),
[Online|. Available: https://survey.stackoverflow.co/2023/.

Positiwise. “10 main advantages of react.js development”. Accessed on: 2023-12-20. (2023),
[Online|. Available: https://positiwise.com/blog/10-main-advantages-of-react-
js—development.

Thinkitive. “6 reasons to choose python for backend development”. Accessed on: 2023-12-

19. (2023), [Online]. Available: https://www.thinkitive.com/blog/6-reasons-to-
choose-python-for-backend-development/.

S. Ramirez. “Fastapi documentation”. Accessed: 2023-12-15. (2023), [Online]. Available:
https://fastapi.tiangolo.com/.

“Aisym4med project”. Accessed: 2023-12-03. (2023), [Online|. Available: https://aisym4med.
eu/about-the-project/.

C. Bello, E. Albertin, J. Iliarte, and T. Torrijos, “Platform architecture, requirements,
and feedback loops (version 2.0)”, Tech. Rep., 2024, Version to be delivered.

C. Bello, E. Albertin, J. Iliarte, and T. Torrijos, “Platform architecture, requirements,
and feedback loops (version 1.0)”, Tech. Rep., 2023.

GitLab. “System usability scale (sus)”. Accessed on: 2023-12-04. (2023), [Online|. Avail-
able: https://handbook.gitlab.com/handbook/product/ux/performance-indicators/
system-usability-scale/.

76

BIBLIOGRAPHY

Abbreviations

Al
AISym4MED
AML

API

APT
ATLAS
ATT&CK
BadNet
CAIRIS
CIA
CIAA
CWE
CVE
DFD

DL

DoS
DOM
DREAD

e.g.
ENISA
FastAPI
FMEA
GDPR
GPU
GUI

Artificial Intelligence

Al Systems for Medical Applications

Adversarial Machine Learning

Application Programming Interface

Advanced Persistent Threat

Adversarial Threat Landscape for Al Systems
Adversarial Tactics, Techniques, and Common Knowledge
Backdoored Neural Network

Computer-Aided Integration of Requirements and Information Security
Confidentiality, Integrity, and Availability

Confidentiality, Integrity, Availability, Authentication
Common Weakness Enumeration

Common Vulnerabilities and Exposures

Data Flow Diagram

Deep Learning

Denial of Service

Document Object Model

Damage potential, Reproducibility, Exploitability, Affected users, Dis-
coverability

example given

European Union Agency for Cybersecurity
Fast Asynchronous API

Failure Mode and Effects Analysis
General Data Protection Regulation
Graphical Processing Unit

Graphical User Interface

77

78

HDF5
ICT
ie.

ISO/IEC
JTC 1/SC 42

IT

JSON
MLOps

ML

NIST
O-RAN
OVVL
OWASP
PASTA

SD Elements

STRIDE

SUS
TMT
TD

ABBREVIATONS

Hierarchical Data Format version 5
Information and Communication Technology
id est

International Organization for Standardization/International Elec-
trotechnical Commission Joint Technical Committee 1/Subcommittee
42

Information Technology

JavaScript Object Notation

Machine Learning Operations

Machine Learning

National Institute of Standards and Technology
Open Radio Access Network

Open Weakness and Vulnerability Modeler

Open Web Application Security Project

Process for Attack Simulation and Threat Analysis

Security Compass’s Software Security Requirements Management Plat-
form

Spoofing, Tampering, Repudiation, Information Disclosure, Denial of
Service, Elevation of Privilege

System Usability Scale
Microsoft Threat Modeling Tool

Threat Dragon

List of Figures

10

11

12

13

14

15

16

17

18

19

20

21

Generic Risk Model With Key Risk Factors [24] 6
ThreatModeling with Pasta [47] o 10
Mlustration AI Subfields [53] L 12
General structure ML [53] oo 13
ML Pipeline with Cyberattacks Layout [88] 16
AT Life Cycle Generic Reference Model [11] 30
Data Transformation Along Al Life Cycle Development Stages [11] 30
AT Assets [11] . . . o o oo 31
HighLevel View of an ML based Software System [138] 32
High-level AT Life Cycle i 34
Linked Assets and Threats Taxonomy 37
Category Data XML File Extract 40
Asset from Library Annotating Existing Component 41
Imported Assets as XML 41
AssetTaxonomy JSON Extract 42
ThreatTaxonomy JSON Extract, 42
Objects Identification in XML 43
ThreatFinder Structure 44
Frontend ThreatFinder o 45
FastAPI handling Files 45
Identifying and Retrieving Threats Algorithm 46

79

80

22
23
24
25
26
27

28

29

LIST OF FIGURES

Familiarity diagrams.neto o 52
Familiarity TMT 0. e 53
Familiarity OVVL 53
Clarity of Instruction and Documentation 54
Clarity AISym4MED Architecture Model Description 54
SUS Grades [147] 56
Support of a Technical Person needed 60

AT Asset Taxonomy [11] Lo 83

List of Tables

10

11

12

13

14

15

16

17

18

19

21

22

CIAA Triad Overview [32] o 7
The STRIDE Threats [29] o 10
Overview of Diagram-Based Threat Modeling Tools [137] 24
Overview of Text-based Threat Modeling Tools [137] 25
Other Threat Modeling Tools [137] 26
Comparison of Diagram-based Threat Modeling Tools for Al-purposes 27
A General 5-Step Threat Modeling Process [9], [28] 32
A 5 Step Threat Modeling Approach for Al-based Systems [11] 33
Al-Specific Property Definitions [9] 33
AT Life Cycle Stages [11] o 35
Threat Categories and Descriptions [11] 36
Threat Taxonomy Specific Example [11] 37
Threats Prioritization DREAD 38
Participants Educational Background o000 52
Participants Educational Background and Al knowledge 53
Selected Al Security Properties 55
Participants SUS Score 55
Used Categories by Participant L oL 62
Comparison of Threats Participants and Experts 62
Data Assets and Associated Stages [11] 84
Model Assets and Associated Stages [11] 84

81

82

23
24
25

26

LIST OF TABLES

Actor Assets and Associated Stages [11] oL 85
Processes Assets and Associated Stages [11] 85
Environment/Tools Assets and Associated Stages [11] 86

Artefacts Assets and Associated Stages [11] L. 87

Appendix A

03

« Data Ingestion
» Data Storage

+ Data Exploration/Pre-processing

* Data Understanding
+ Data Labelling

= Data Augmentation
» Data Collection

» Feature Selection

» Reduction/Discretization technique
* Model selection/building, training,

and testing
* Model Tuning

» Model adaptation-transfer
learning/Model deployment

+ Model Maintenance

MODELS

= Algorithms

* Data Pre-processing Algorithms

* Training Algorithms

* Subspace (feature) Selection
Algorithm

* Model

» Model parameters

* Model Performance

* Training Parameters

* Hyper Parameters

* Trained Models

* Tuned Model

ENVIRONMENT/TOOLS
» Communication Networks
+ Communication Protocols
+ Cloud

+ Data Ingestion Platforms

+« Data Exploration Platforms
+ Data Exploration Tools

* DBMS

» Distributed File System

« Computational Platforms

» Integrated Develapment
Environment

* Libraries (with algorithms for
transformation, labelling, etc)

* Monitoring Tools

+ Operating System/Software
+ Optimization Techniques

+ Machine Learning Platforms
* Processors

* Visualization Tools

ACTORS/STAKEHOLDERS
« Data Owner

+ Data Scientists/Al developer
+ Data Engineers

* End Users

« Data Provide/Broker

+ Cloud Provider

+ Model Provider

+ Service Consumers/Model Users

Additional Tables and Figures

ARTEFACTS
* Access Control Lists
« Use Case

* Value Proposition and Business
Madel

» Informal/Semi-formal Al
Requirements, GOM (Goal/
Question/Metrics) model

* Data Governance Policies
* Data display and plots
* Descriptive statistical parameters

+ Mode| framework, software,
firmware or hardware incarnations

+ Compeosition artefacts: Al models
composition builder

* High-Level Test cases

» Made| Architecture

* Maodel hardware design

+ Data and Metadata schemata

« Data Indexes

@

DATA

* Raw Data

» Labelled Data Set

* Public Data Set

* Training Data

+ Augmented Data Set

» Testing Data

» Validation Data Set

* Evaluation Data

* Pre-processed Data Set

Figure 29: Al Asset Taxonomy [11]

83

84 APPENDIX A. ADDITIONAL TABLES AND FIGURES
Table 21: Data Assets and Associated Stages [11]
Category Specific Asset Specific AI-Life Cycle Stage
Data Augmented Data Set Data Pre-processing
Evaluation Data Model Tuning
Labeled Data Set Data Pre-processing
Metric Data Set Feature Selection
Pre-processed Data Set Data Pre-processing
Public Data set Data Exploration; Data Ingestion
Raw Data Data Ingestion
Testing Data Model Training
Training Data Model Selection / Building; Model Training; Transfer
Learning
Validation Data Set Model Tuning
Table 22: Model Assets and Associated Stages [11]
Category Specific Asset Specific Al-Life Cycle Stage
Model Algorithms Model Training
Data Pre-Processing Algorithms Data Pre-processing
Hyper-parameters Model Tuning
Training Algorithms Model Selection/Building
Model Model Training; Model Tuning; Model

Selection/Building; Model Deploy-
ment; Model Maintenance

Model parameters Model Training

Model performance Model Training; Model Tuning

Subspace (Feature) selection Algorithm Feature Selection

Trained models Model Training; Transfer Learning

Training parameters Model Selection / Building; Model
Training

Tuned Model Model Tuning

Table 23: Actor Assets and Associ

85

ated Stages [11]

Category Specific Asset

Specific AI-Life Cycle Stage

Actor Cloud Provider Data Ingestion; Model Training;
Model Tuning
Data Engineers Data Ingestion; Data Exploration;
Data Pre-processing; Feature Selec-
tion; Model Selection/Building, Model
Training; Model Tuning; Model De-
ployment; Model Maintenance
Data Owner Business Goal Definition; Data Inges-
tion; Data Exploration
Data Provider /Data Broker Data Ingestion
Data Scientists/Al designer/Al developer All stages
End Users Business Goal Definition; Data Inges-
tion; Data Exploration; Model Main-
tenance; Business Understanding
Model Provider Transfer Learning
Service consumers/Model users Model Maintenance; Business Under-
standing
Table 24: Processes Assets and Associated Stages [11]
Category Specific Asset Specific Al-Life Cycle Stage
Processes Data augmentation Data Pre-processing; Data

Data Collection

Data Exploration/Pre-processing

Data Ingestion

Data labelling

Data Storage

Data understanding

Feature selection

Model adaptation — transfer learning /
Model deployment

Model Maintenance

Model selection/building;
and testing

training;

Model tuning

Reduction/Discretization technique

Exploration
Data Ingestion

Data Exploration; Data Pre-
processing

Data Ingestion
Data Pre-processing
Data Ingestion
Data Exploration
Feature Selection

Transfer Learning

Model Maintenance
Model Selection / Building

Model Tuning

Feature Selection

86 APPENDIX A. ADDITIONAL TABLES AND FIGURES
Table 25: Environment/Tools Assets and Associated Stages [11]
Category Specific Asset Specific Al-Life Cycle Stage
Environment/tools Cloud Data Ingestion; Model Training; Model Tuning

Communication networks

Data Ingestion

Communication protocols

Data Ingestion

Computational platforms

Data Pre-processing; Feature Selection; Model
Selection/Building; Model Training; Model
Tuning; Transfer Learning; Model Deployment;
Model Maintenance

Data exploration tools

Data Exploration

Data ingestion platforms

Data Ingestion

Database management sys-
tem

Data Ingestion

Distributed File System

Data Ingestion

Integrated Development En-
vironment

Data Pre-processing; Feature Selection; Model
Selection / Building; Model Training; Model
Tuning

Libraries (with algorithms
for transformation, labeling,
ete)

Data Exploration; Data Pre-processing; Fea-
ture Selection; Model Selection/Building; Model
Training; Model Tuning

Machine Learning Platforms

Data Exploration; Data Pre-processing; Feature
Selection; Model Selection / Building; Model
Training; Model Tuning; Model Deployment;
Model Maintenance

Monitoring Tools

Data Pre-processing; Feature Selection; Model
Selection/Building; Model Training; Model
Tuning, Transfer Learning; Model Deployment;
Model Maintenance

Operating System /software

Model Deployment; Model Maintenance

Optimization techniques

Model Tuning

Processors

All Stages

Visualization tools

Data Exploration

87

Table 26: Artefacts Assets and Associated Stages [11]

Category

Specific Asset

Specific Al-Life Cycle Stage

Artefacts

Access Control Lists

Data Ingestion

Composition artefacts: Al
models compositions

Data Pre-processing; Feature Selection; Model
Selection/Building; Model Training; Model
Tuning; Model Deployment; Model Mainte-
nance

Data and Metadata

schemata

Data Ingestion; Data Exploration; Data Pre-
processing

Data displays and plots

Data Exploration

Data Governance Policies

Data Ingestion

Data Indexes

Data Ingestion; Data Exploration; Data Pre-
processing

Descriptive Statistical Pa-
rameters

Data Exploration

High-Level Test Cases

Business Goal Definition; Model Deployment

Informal/Semi-formal

AT Requirements, GQM
(Goal/Question/Metrics)
model

Business Goal Definition

Model Architecture

Model Selection/Building, Model Deployment

Model Hardware Design

Model Selection/Building; Model Deployment

Model Frameworks, Soft-
ware, Firmware or Hardware
Incarnations

Transfer Learning; Model Deployment; Model
Maintenance

Use Case

Business Understanding

Value Proposition and Busi-
ness Model

Business Understanding

88

APPENDIX A. ADDITIONAL TABLES AND FIGURES

Appendix B

Threat Lists by Experts

Threats by System Component

Data Anonymization and Backend

Component Threats
Data Anonymization Spoof, Tamper, Disclose or Leak Data Before Deanonymiza-
Toolkit tion (Locally)
Backend Credential Theft
Backend Membership Attack
Backend Linkage Attack
Backend Differential Attack
Frontend
Component Threats

Frontend (GUI)
Frontend (GUI)

Frontend (GUI)
Frontend (GUI)
Frontend (GUI)

Spoof, Tamper, Disclose or Leak Data in Frontend

A malicious user can repudiate that low-quality /deceptive
data was uploaded

Remote Code Execution based on Injected Data
Cross-site Scripting

Cross-site Request Forgery

89

90

APPENDIX B. THREAT LISTS BY EXPERTS

Data Transit (Browser Backend)

Component

Threats

Data Transit

Data Transit

Data Transit
Data Transit

Data Transit
Data Transit
Data Transit

Data Transit

Spoof, Tamper, Disclose or Leak Data in Transit

Unauthorized Platform Access: Access syn-
thetic/anonymized data

Unauthorized Platform Access: Leverage compute resources

Unauthorized Platform Access: Inject Data (leading to Data
Poisoning)

DoS of Platform Interface
Data is uploaded to impersonated platform
Unfair usage by malicious/greedy user (rate limiting)

Unauthorized Platform Access: Inject Data (leading to RCE
in backend or frontend)

Dataset and ML Engine

Component

Threats

Dataset Engine

Dataset Engine

ML Engine
ML Engine
ML Engine

Insecure design

Credential Failures (Dataset Explorer give access to unau-
thorized users)

Synthetic dataset bias
Balance of real/generated dataset

Low performance on synthetic dataset risks (Low represen-
tativity)

Federated Learning

Component

Threats

Federated Learning
Federated Learning
Federated Learning
Federated Learning
Federated Learning

Federated Learning

Model Privacy Attack (Federated Learning)
Parameter (Hyperparameter) theft

Model Auditing Failure

Algorithm Bias (Fairness risk)

Model Generalization risk

Model Training Overfitting (Sandbox code)

91

Cross-Border Database (Logic) and Model DB Instance

Component Threats

Cross-Border Database Federated learning Poison Attack

(Logic)

Cross-Border Database Parameters (weights/gradients) leakage in communications
(Logic)

Model DB Instance Privacy inference attack (inverse inferences)

Orchestrator, Multi-Cloud, and Containerized Architecture

Component Threats

Orchestrator Multi-cloud communication failure

Monitoring & Logging

Component Threats
Monitoring Log Deletion/Obfuscation by attacker
Logging Accessing Log Data (Inferring Privacy-sensitive data, cre-

dentials etc)

Logging Insufficient Logging (i.e., unintended threat/design weak-
ness)

Cloud-Based Database Instances

Component Threats

Cloud-Based DB Instances Spoof, Tamper, Disclose or Leak Anonymized Data on
Database Level

Cloud-Based DB Instances Database or Sample Unavailability

Cloud-Based DB Instances Data Injection leading to Remote Code Execution

92

Infrastructure Level

APPENDIX B. THREAT LISTS BY EXPERTS

Component Threats

Infrastructure Spoof, Tamper, Disclose or Leak Anonymized Data on In-
frastructure Level

Infrastructure Spoof, Tamper, Disclose or Leak Models on Infrastructure
Level

Infrastructure Infrastructure Service Unavailability

Infrastructure Cloud Credential Theft (Spoof, Tamper, Disclose, Leak,
Fraud, Impersonate)

Infrastructure Spoof, Tamper, Disclose or Leak Anonymized Data or Mod-

els by other tenants

Appendix C

Installation Guidelines

This appendix provides the necessary steps to install and run the ThreatFinder prototype. These
instructions have been tested in various environments, including MacOS, Windows and Linus,
ensuring compatibility with a broad range of environments.

Prerequisites

Before installation, ensure the following prerequisites are met:

1. Access to the ThreatFinder Project Source Code:

e The source code is available on GitHub. Ensure you have access to the repository
https://github.com/JSha91l/AiThreats.

2. Required Libraries and Tools:

e Node.js: A JavaScript runtime built on Chrome’s V8 JavaScript engine.

e npm (Node Package Manager): Used for installing dependencies.

Python: Preferably version 3.11.7 for backend development.
FastAPI: A modern, fast web framework for building APIs with Python.

React JS: For frontend development.

Additional Python Libraries: Such as (jsonableencoder)

Build and Run Prototype

Setting up the Backend

1. Navigate to the Backend Project Directory:

cd path/to/solution-backend

93

94 APPENDIX C. INSTALLATION GUIDELINES

2. Install Python Dependencies:

pip install -r requirements.txt

3. Running the Backend Server:

uvicorn main:app --reload

Setting up the Frontend

1. Navigate to the Frontend Project Directory:

cd path/to/solution-frontend

2. Install Node Dependencies:

npm install

3. Running the Frontend Application:

npm start

Connecting the Components

1. Import necessary libraries in the threat modeling tool in ThreatFinder.

2. Draw your architecture model from scratch in ThreatFinder via the threat modeling tool
in the frontend interface.

3. Export the architecture model as an XML file.
4. Upload XML file to ThreatFinder via the frontend interface.
5. Display, filter, download, and analyze identified threats.

By following these guidelines, users can successfully set up and utilize the ThreatFinder tool for
automated threat modeling in Al-based systems.

Appendix D

Contents of the CD

1. This thesis as PDF

2. This thesis as LATEX source in a .zip file
3. Midterm presentation slides as PDF

4. The source code of this thesis

5. The responses from the participants used for the evaluation, in a directory called responses

95

