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Abstract

Die Entwicklung von Schadprogrammen und das Absichern von Software-Systemen ist
im ständigen Wettlauf gegeneinander. Während Entwickler stets bestrebt sind, Sicher-
heitslücken zu schliessen und Programmfehler zu beheben, entstehen fortlaufend neue An-
griffswege, welche von Angreifen gesucht und ausgenutzt werden. Ein wichtiges Werkzeug
zur Verteidigung ist die dynamische Analyse von aktiv genutzten Schadprogrammen, bei
welcher das Programm in einer kontrollierten Umgebung ausgeführt und sein Verhalten
beobachtet wird. Während Analyseprogramme traditionell virtuelle Maschinen einsetzen,
um eine solche Umgebung zu schaffen, stellt sich mit dem Aufkommen von Containern
die Frage, ob diese alternative Form der Virtualisierung sich ebenfalls dazu eignet. In die-
sem Analyseverfahren ist es unabdingbar, dass das Schadprogramm im Unwissen darüber
bleibt, dass es analysiert wird. Ist es jedoch in der Lage, die Umgebung zu erkennen, hat
es die Möglichkeit seine Funktion zu deaktivieren und sich so der Analyse zu entziehen.

Diese Arbeit nimmt die Position eines Schadprogrammentwicklers ein, der beabsichtigt
seine Programm gegen diese Form der Analyse zu wappnen, um im Anschluss aufzuzei-
gen, wie ein Analyseprogramm unerkannt bleiben kann. Der Fokus liegt hierbei auf der
gehärteten Container-Sandbox, gVisor.

The development of and defense against malware are in a constant race against each
other. While developers constantly strive to close vulnerabilities and fix bugs, new ways
of attacks are constantly emerging. An important tool for defense is the dynamic analysis
of malware that is actively being used in the wild. In this analysis the malware is executed
in a controlled environment to observe its behavior. While analysis tools traditionally use
virtual machines to provide such an environment, the emergence of containers raises the
question of whether this alternative form of virtualization is suitable for this purpose as
well. In dynamic analysis, it is essential that the malicious program remains unaware that
it is being analyzed. If it is, however, able to do so, it could deactivate its functionality
in an attempt to hide its malicious nature and thus evade the analysis.

This work takes the position of a malware developer who intends to protect his program
against this form of analysis, in order to subsequently show how an analysis program can
remain undetected. The focus of the investigation is the hardened container sandbox,
gVisor.
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Chapter 1

Introduction

The development of and defense against malware is an arms race. As malicious actors
continuously attempt to find new vulnerabilities and attack vectors, developers strive to
prevent this, by securing their software and systems.

1.1 Motivation

A crucial resource for developers aiming to secure programs, infrastructure, and software
systems against attacks is knowledge about malware that is actively being used in the
wild. Analyzing such malicious software provides insights into which vulnerabilities are
presently being exploited and the attack vectors available to threat actors.

Gaining this knowledge about existing malware is done in different ways. While static
analysis does not execute the malware, but rather attempts to reason about the program
by, for example, reverse engineering the binary to human-readable code, dynamic analysis
executes the malicious software in a controlled and isolated environment. This, on the one
hand, prevents the malware to cause any harm on the host system it is being executed on,
and on the other hand, allows for a more detailed analysis of its behavior. By monitoring
its resource usage, like CPU, network, I/O, etc., or its request to the kernel in the form
of system calls, valuable information about the malware can be inferred [1].

Since the analysis of the malicious code helps finding and closing vulnerabilities that the
malware exploits, it is contrary to the interest of the developer of the malware. Therefore,
a developer may attempt to prevent this by programming the malware to detect such a
controlled environment and, if detected, shut down its functionality in an attempt to hide
its malicious nature and effectively evading the analysis. To achieve this, the malware
may search for artifacts of a hypervisor of a virtual machine (VM), or use side-channels
like timing differences of certain operations within the environment [2].

Traditionally virtual machines have been used to create secure environments for malware
analysis. However, they come with certain downsides, particularly the computational cost.
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2 CHAPTER 1. INTRODUCTION

Despite efforts of hardware manufactures to increase the efficiency of VMs by implement-
ing hardware virtualization features in modern CPUs, and OS developers including kernel
modules, like KVM, to provide these features to the virtual machines [3], there remains a
significant overhead in terms of CPU and memory usage, as well as startup time.

With the emergence of more lightweight forms of virtualization, such as containers, re-
placing virtual machines in various areas, the question arises of whether this is a potential
alternative in the field of malware analysis as well. Containers require less resources, as
they use many isolation features directly provided by the kernel [4]. They also do not have
any virtualized devices and consequently often approach near-native performance with a
slim overhead. Yet, they are by their nature less isolated, as they share more components
with their host system.

1.2 Description of Work

This work aims to provide a contribution to solving this question by focusing on the
hardened container sandbox gVisor. Unlike most common forms of containerization, such
as Docker, gVisor provides an own kernel running in user space to intercept system calls
made by applications running within the container [5]. With this additional layer of isola-
tion, gVisor is a suitable candidate to provide secure environments for dynamic malware
analysis.

To approach this question, this thesis assumes the role of a malicious developer, who
attempts to write a malware that avoids being analyzed in a gVisor-based malware analysis
tool. First, in the fourth chapter, Architecture, detection mechanisms for more traditional
forms of virtualization, like virtual machines and standard Docker containers, will be
explored. Next, the design and architecture of gVisor will be studied in order to examine
to which degree the found mechanisms are applicable to gVisor as well. Additionally,
gVisor-specific characteristics that potentially allow it to be detected, will be discussed.

Based on these findings, a malware will be implemented and its design will be laid out in
the fifth chapter, Implementation. Finally, in the sixth chapter, Evaluation, the malware
will be tested in different environments to assess its effectiveness in an overview. Following
thereafter, a more in-depth analysis of the individual detection mechanisms implemented
by the malware, will allow for more insight on the theoretical reliability. Based on this
analysis, mitigation techniques will be proposed and discussed for each mechanism. These
techniques will be subdivided in ways to defend against the detection in the current state
of gVisor (i.e., configuration, preparation of the environment) and potential changes that
gVisor or the Linux kernel would need to implement in order to achieve proper isolation.



Chapter 2

Background

This chapter introduces relevant technical terms and explains the essential concepts re-
quired to understand the following chapters.

2.1 Types of Virtualization

Virtualization is widely used across the IT industry; Especially in fields like cloud com-
puting it has been ubiquitous. When used in reference to virtual machines or containers,
the term virtualization describes the technique that allows the creation of multiple virtual
computers on the same physical machine. Each virtual computer operates as if it were a
stand-alone physical machine, capable of running programs isolated from processes run-
ning on the host machine or in other virtualized computers on the same host [6]. That
is, a program running in an ideal virtualized environment, does not behave any different
from being executed natively, nor is it be able to detect that is running virtualized.

While the form of virtualization that is commonly used in the industry has changed, i.e.,
migrating from virtual machines to containers, its importance is not declining [7]. Below,
the relevant types of virtualization are presented and explained briefly.

2.1.1 Virtual Machines

VMs provide virtualization by virtualizing actual hardware components, such as their
CPU. By virtualizing these hardware devices, VMs are able to execute programs or run
operating systems, that require a CPU architecture that is different from the host [5].

The virtualization is orchestrated by the hypervisor. The hypervisor, also called Virtual
Machine Monitor (VMM), is a program that sits between the actual hardware and the
guest system, as depicted in Figure 2.1 It’s purpose is to take care of providing an interface
to its guests resembling a real machine [5].

3



4 CHAPTER 2. BACKGROUND

Application

Host Kernel

VMM

Virtual Hardware

Hardware

System calls

System calls

Guest Kernel
Independent

kernel

Strong

isolation

Figure 2.1: Machine-level Virtualization [5]

Virtual machines are categorized into two
types. While in type II VMs, the hypervi-
sor is a program running on the operating
system of the host, in type I the hypervi-
sor does not require a host OS at all and
instead runs directly on the hardware [6].

Generally, virtual machines come with a
high computational cost, as virtualizing in-
dividual hardware components adds a sub-
stantial overhead, e.g., in terms of CPU
and memory usage. While modern CPUs
usually support hardware-assisted virtu-
alization, e.g., via Intel VT or AMD-V,
running a program within a virtual ma-
chine still requires substantially more re-
sources [8]. The advantage is, however, a
strong isolation between the host and the
guest.

2.1.2 Containers

Containers attempt to provide a more lightweight form of virtualization, by virtualizing
on an application-level, instead of a hardware-level. While VMs virtualize their hardware
and run a complete, separate operating system with its own kernel, containers typically
share the host’s kernel rather than having their own. In order to isolate processes from the
host and from each other, they rely on isolation mechanisms implemented in the kernel
of the host [7]. The isolation mechanisms that the Linux kernel provides which are taken
advantage of by container technologies, like Docker, are explained in the following.

Control Groups The Linux kernel feature control groups (cgroups) allows processes to
be assigned to groups, whose resources can be monitored and limited [9]. In cloud com-
puting this feature can be used to charge customers on the basis of their actual resource
usage instead of setting a fixed price per container [7]. Additionally, it can serve as pre-
cautionary measure to prevent a single container to disproportionally consume resources
and consequently negatively affecting co-resident containers [10].

Namespaces The Linux kernel implements eight different namespaces. The purpose of
each namespace is to isolate a process along a certain dimension.

• Control Group

• IPC

• Mount

• Net

• PID

• Time

• User

• UTS

More specifically, when two processes are member of different namespaces of the resource
X, the interactions of each process with resource X are hidden from the other process [11].
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For instance, the user namespace ensures isolation of the system users. In containers this
can be used to make it seem as if, on the one hand, the process running in the container is
running as the root user with user ID 0, and on the other hand, ensure that other system
users present on the host or in different containers are invisible this process [7]. Similarly,
the other namespaces isolate other resources, like mount points, process IDs, networks,
etc.

Capabilities On certain operations, like accessing or modifying a file, or executing a
program, the Linux kernel carries out permissions checks to determine whether the process
requesting the operation is qualified to do so. In the traditional permission mechanism
as inherited from UNIX, the kernel will distinguish between the two permission levels,
privileged (i.e., root user, superuser) and unprivileged (i.e., regular users). The first will
simply bypass any subsequent checks while the latter request will be evaluated based on
its user ID and group ID, respectively the group and owner of the object of the request
(i.e., the file to be read, written or executed). The kernel feature capabilities adds a
more fine-grained mechanism to assign and check permissions of operations, which can be
enabled and disabled on a per-thread basis [12].

2.1.3 gVisor

Hardware

Application

Host Kernel

gVisor

Limited system calls

System calls

Independent

kernel

Strong

isolation

Figure 2.2: gVisor Sandboxing [5]

Similar to regular Docker containers, gVi-
sor uses the kernel isolation features to pro-
vide a virtualized environment. However,
unlike Docker it does not rely on the ker-
nel features alone, but additionally provides
an application-level kernel, Sentry. While in
VMs the guest kernel is running on virtual-
ized hardware, Sentry runs on the host as
an application in user space (See figure 2.2).
Compared to VMs, this comes with a smaller
overhead. When a process, running in a
gVisor-backed container, makes a system call,
Sentry will intercept it and respond to the
caller instead of passing the it on to the host’s
kernel [5]. This provides an additional layer
of isolation.

Since gVisor provides an OCI1-compatible
runtime runsc, it can be used in combination with Docker to run containers based on reg-
ular Docker images. In this case runsc will be used instead of Docker’s runc as runtime,
launching the container in gVisor’s sandbox [5].

1Open Container Initiative
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Chapter 3

Related Work

This chapter provides an overview of related work, relevant for the objective of this the-
sis: the detection of container-based virtualization and its mitigation. While in many
applications of containers, the detectability has no negative impact — and may even be
desired — there are use-cases where hiding the presence of virtualization is crucial. To get
a better understanding of such use-cases and assess their requirements and restrictions
on possible defenses against detection, two container-based malware analysis systems are
presented.

Next, works on defensive container security mechanisms will be examined to provide an
overview of possible techniques to prevent information leaks, virtualization detection, and
other attacks. This will include security mechanisms built into containerization software
or the Linux kernel, past container runtime vulnerabilities, and methods for detecting
attacks on containers.

Finally, the chapter will conclude with an exploration of methods for virtualization de-
tection and infromation leaks. This section will focus more on the offensive view and will
cover the detection of traditional forms of virtualization, i.e., virtual machines, and meth-
ods used to gather information from containers for coordinating attacks. An overview of
relevant papers is given in table 3.1.

3.1 Container-based Malware Analysis

In a recent work [13] created a malware analysis tool based on containers. For improved
security, the hardened container sandbox, gVisor, was chosen to provide a secure isolated
environment to perform dynamic malware analysis in. By monitoring both the resource
usage of the container and the system calls made by processes the sandbox, and con-
strasting it with the behavior of an uninfected container with the same configuration,
the dynamic analysis of malicious code is made possible. To facilitate the analysis, the
metrics of the infected and the healthy container are depicted in real time on a local web
interface. Through this interface the containers can be managed and controlled by sending
commands to the containers while they are running. When a malicious program is to be

7



8 CHAPTER 3. RELATED WORK

analyzed, its executable binary is downloaded from a malware database and started in
the container.

Here, a reason to hide virtualization becomes evident. Were a malware to detect that
it is running in SecBox’s controlled environment, it could decide to disable its malicious
function to avoid being analyzed. Without modifying the malware or preventing the
detection of the environment, this would make the dynamic analysis impossible. Yet,
since SecBox has a lot of control over the environment, it offers several opportunity to
add mechanisms against detection.

On the one hand, the container environment can be modified. This can be done in two
ways. Firstly, SecBox already offers the functionality to choose different container images
for the execution of the malware. Adding custom images that extend the existing ones
by applying mitigation techniques can therefore be done without much effort. Secondly,
SecBox starts its gVisor-backed container through Docker via the Docker Python library,
and thus, controls when the malware is executed and could possibly run commands to
prepare the environment within the container before the malware is executed.

On the other hand, the runtime can be swapped out. In SecBox’s code two different
runtime configurations, one for the healthy and one for the infected are already present.
While this currently serves the purpose of monitoring of the infected container, additional
runtimes could be added or the existing one could be replaced by a patched version of
runsc, that was modified to counter certain mechanisms of detection.

In a different project, [14] made use of containerization to set up a honeypot, aimed at
getting insights on container-specific attack vectors. In their experiments, [14] exposed
containers to the internet, that were either susceptible to known vulnerabilities, or that
were intentionally misconfigured. The containers were then kept running until an attacker
identified the vulnerability and infected the container with malicious code. During the
execution of the malware, the host would then collect logs about events in the guest
container, which then were subsequently traced back to the activities in the individual
container by utilizing OSQuery and eBPF. Since the monitoring of the malicious code is
done on the host, instead of in the container, the risk of the malware tampering with the
logs is averted. Yet, the honeypot still relies on the fact that the malware does not detect
that it is running in the honeypot. While the detection of the honeypot by identifying the
monitoring software is avoided by running it outside of the container, a malware could
still detect the honeypot by detecting the containerized environment. If the malware is
able to do so, it can prevent being found and analyzed. The experiments showed that
vulnerable containers are quickly found by attackers and infected rapidly. On average,
only five hours passed until a vulnerable container was infected, in one case just requiring
a few minutes. This highlights the importance of investigating container security.

3.2 Defensive Container Security

Much research has been done on container security. To complement prior research that
usually focused on vulnerabilities caused by container misconfiguration or Linux kernel
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bugs, [15] surveyed 59 known CVEs caused by container runtime vulnerabilities. Of these
59 they focused on 28 for which exploits were publicly available. These were then studied
and categorized to get a more high-level picture of what attacks are common.

They found that one of the most common attacks were aimed towards container escapes,
in which an attacker attempts to break out of the isolated environment provided by the
container: 13 out of the 28 vulnerabilities (46 %) enable this kind of attack. Their
investigation of the cause that made the attacks possible showed that in most cases host
information leaked into the guest container. This highlights the importance of proper
isolation.

One method to defend against general information leaks in containers was proposed by
[16]. While the vulnerabilities used by exploits investigated by [15] were caused by run-
time vulnerabilities, [16] looked into avoiding information leaks into containers caused by
sharing the host’s kernel. By using a moving target defense (MTD) that deploys decep-
tive configurations, their proposed method hinders malicious actors to gather information
without requiring regular applications to be modified. While this gives an insight on possi-
bly information leakage channels, it is also worth investigating whether hardened runtimes
with an own kernel, such as gVisor, are vulnerable too, and if the leakage channels can
be isolated properly.

While [15] focused on runtime vulnerabilities, and [16] proposed a possible defense, [17]
and [18] present techniques to detect the infection of containers. By using the relation
of PIDs of processes on the host and within the container, [17] demonstrate a method
to detect the occurrence of a container escape. Based on cAdvisor and Prometheus they
built a monitoring system which automates this task. In a productive environment such
an alert system could be used to control the damage a malware that succeeded in escaping
the container can cause.

In contrast to [17] who focus on container escapes, [18] investigate how neural networks
can be used to detect malicious workloads, such as coin miners or encrypting ransomware,
within a container. In their research they extend the method of analyzing the distribution
of system calls that applications within the container make, by including the arguments
of the system calls. Their experiments, in which this analysis was used to distinguish
containers with benign workloads from containers with malicious workloads, demonstrated
that the inclusion of the arguments results in an improved effectiveness, specifically against
mimicry attacks.

3.3 Virtualization Detection and Information Leaks

While containerization is generally considered to have weaker isolation, as it shares more
components with the host, the more traditional form of virtualization, virtual machines,
has been subject to many vulnerabilities as well. Even though, a stronger isolation is
present, often the virtualization is not properly hidden from the applications running
within it either. [2] describe four methods to detect whether a program runs in a virtual
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machine based on the cpuid instructions, the kernel and driver logs, VM BIOS informa-
tion, or the base load address of the global descriptor table. In an experiment on three
industry-standard cloud providers, Amazon EC2, GCE, and Microsoft Azure, they found
that all of them were vulnerable to all of their presented detection methods. While many
of these techniques can potentially be mitigated through countermeasures, new methods
such as using the GDT base load address can always arise.

Complementing this, [19] demonstrates how data from a timing analysis can be fused with
data from a characteristic analysis. While [2] showed four detection methods based on
a characteristic analysis, they outlined how most of them can be prevented by the VM’s
hypervisors. Combining this data with a timing analysis as demonstrated by [19] could
allow for the detection of VMs in those cases in which the suggested countermeasures
have been applied, while still not entailing the higher time cost of doing a timing analysis
in the general case.

While [7] also investigate incomplete isolation of virtualization from the offensive view of a
malware, it focuses on containers instead of VMs, and uses the information gained from the
lack of isolation for coordination, rather than detection. Specifically, their investigation
shows how improper isolation of Intel’s RAPL, a technology allowing for monitoring power
usage of physical hardware, can be used to detect co-residency in data centers which can
effectively be used to coordinate a, synergistic power attack, in which a power spike is
provoked, resulting in an outage.

To mitigate the information leakage channels, the paper suggests two options. Firstly,
information that is not necessary for legitimate applications to run, could simply be hidden
by restricting access, for example with AppArmor profiles. Secondly, for preventing the
information leakage through Intel’s RAPL, a power-based namespace is proposed which,
similarly to other Linux namespaces, provides an identical RAPL interface to processes
within the container but changes the provided information by calculating the share of the
host’s power usage that was caused by processes running within the container.
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Table 3.1: Overview of Related Papers
Paper Virtualization Summary Orientation Attack Implemented View

[13] gVisor Malware analysis tool Defensive -
Dynamic
analysis tool

Host

[14] Docker Container honeypot Defensive -
Container
honeypot

Host

[16] Container
Moving target defense
against information
leaks

Defensive
Information
leaks

Configuration
movement

Host

[18] Container
NN analysis of syscalls
to detect malicious con-
tainers

Defensive Mimicry NN analysis Host

[15] Container

Investigation of con-
tainer security mecha-
nisms and vulnerabili-
ties

Both
Container
escapes

- -

[17] Docker
Detecting container es-
capes using relation of
PIDs

Defensive
Container
escapes

Monitor and
alert system
for escapes

Host

[2] VM
Virtualization detection
using CPUID, syslog,
DMI, GDT

Offensive Detection - Guest

[19] VM
Virtualization detection
by fusion of characteris-
tics and timing

Offensive Detection - Guest

[7] Docker, LXC
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Chapter 4

Architecture

This chapter investigates gVisor’s architecture and behavior to discover distinctive charac-
teristics that allow to detect its sandboxing. It will do so by first examining the detection
methods discussed in the related work in the previous chapter that target virtual machines
or standard Docker. In combination with the insight on gVisor’s architecture this chapter
will determine whether gVisor is susceptible to these detection methods as well, and if
not, whether other methods can be derived. Afterwards, this section will continue by
investigating these derived methods and exploring entirely gVisor-specific methods that
were not discussed in the related work.

In this chapter, unless specified otherwise, Docker will refer to running a container with
the default runtime runc and default settings1 while gVisor refers to using the runsc

runtime2. By default, while this should not influence the results, the guest OS will be
Debian Bookworm.

4.1 VM Detection

This section investigates the VM detection methods and whether they can be used or
adapted to detect either regular Docker containers or gVisor’s sandboxed containerization.

4.1.1 BIOS Information

As [2] mention, one method to detect virtualization based on virtual machines is to investi-
gate the information stored in the System Management BIOS (SMBIOS). The SMBIOS is
a commonly used standard to provide system management information [20]. The dmide-
code program can be used to access this information in guest operating systems. In the
fields for “Manufacturer”, “Product name” and “Version” dmidecode returns information
about the virtualized environment for many hypervisors. So, for instance, in the Google

1docker run --rm -it --entrypoint bash debian:bookworm
2docker run --rm -it --entrypoint bash --runtime=runsc debian:bookworm

13
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Compute Engine dmidecode returned “Google” as manufacturer and “Google Compute
Engine” as product name [2].

Docker To verify whether this approach can be used in a containerized environment,
an initial experiment was conducted. When running dmidecode in Docker, it fails in the
default configuration with the error:

Scanning /dev/mem for entry point.

/dev/mem: No such file or directory

This is because dmidecode first attempts to access the DMI table from sysfs and if this
fails, it will attempt to read it from memory [21]. dmidecode’s first mechanism to retrieve
BIOS information which functions through the sysfs filesystem, attempts to access the files
/sys/firmware/dmi/tables/smbios_entry_point and /sys/firmware/dmi/tables/DMI
and reads the BIOS information from there [22]. By default, Docker simply disables ac-
cess to these files by not mounting the entire /sys/firmware/dmi/ directory. No other
isolation mechanisms are used here: By simply mounting the directory into the container
with -v /sys/firmware/dmi:/root/dmi it will become available and readable3.

The (device) file /dev/mem/ provides an interface to the main memory, allowing it to be
accessed as if it were a regular file. The fallback mechanism of dmidecode, if the DMI
table cannot be read from the sysfs files, attempts to read the BIOS information from
this memory image [23].

In the default Docker configuration, there are two mechanisms preventing this attempted
access. The first is that Docker does not mount the /dev/mem device of the host into the
guest container. The second is Docker’s use of the kernel feature capabilities. Different
actions require processes to hold certain capabilties in order to be allowed by the kernel to
perform them. The relevant capability in this case is CAP_SYS_RAWIO, which is required
if a process wants to open /dev/mem which dmidecode attempts to do [12].

Without additional configuration, Docker disables all capabilities except a minimal set of
necessary ones [24]:

• CAP_CHOWN

• CAP_DAC_OVERRIDE

• CAP_FSETID

• CAP_FOWNER

• CAP_MKNOD

• CAP_NET_RAW

• CAP_SETGID

• CAP_SETUID

• CAP_SETFCAP

• CAP_SETPCAP

• CAP_NET_BIND_SERVICE

• CAP_SYS_CHROOT

• CAP_KILL

• CAP_AUDIT_WRITE[25]

The first mechanism can be circumvented by mounting the mem-device into the con-
tainer by adding the flag --device /dev/mem:/dev/mem. This takes the device at path
/dev/mem and mounts it to the same path in the guest, making the device visible in the
container (ls /dev/mem lists it). However, attempting to access it, will still fail:

3The directory was mounted outside of the container’s sysfs filesystem to not cause conflicts with
Docker’s handling of pseudo filesystems
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root@b4ee41e86f33:/# head --bytes=1 /dev/mem

head: cannot open ’/dev/mem’ for reading: Operation not permitted

This happens because of the second mechanism: When the process (head) in the un-
privileged container requests from the host kernel to read from the device, it checks its
capabilities and denies access because it does not hold the CAP_SYS_RAWIO capability.
With the flag --cap-add CAP_SYS_RAWIO the container will receive this capability, and
the device can be successfully accessed. Now dmidecode also succeeds in reading the DMI
table, which is the host’s real BIOS information. Its output is shown in listing 4.1.

Listing 4.1: Output of dmidecode in Docker After Granting Capability

# dmidecode 3.4

Scanning /dev/mem for entry point.

SMBIOS 3.0.0 present.

Handle 0x0001 , DMI type 1, 27 bytes

System Information

Manufacturer: Dell Inc.

Product Name: Latitude 7280

Version: Not Specified

[...]

While the VM-detection method used dmidecode to read the BIOS information and eval-
uate its content to decide whether the current environment is a virtualized one (i.e., when
the BIOS information contains information about the hypervisor), this is not a feasible
option in containers, as containers do not have separate BIOS from the host, unlike VMs.
However, the investigation of how dmidecode works, presents two possible mechanisms to
detect a containerized environment. While an unprivileged user or process cannot expect
to run dmidecode or read /dev/mem or the respective files in /sys/firmware/dmi/, it
can expect the respective files to be present. When they are not, this is an indicator of
containerization:

• /dev/mem

• /sys/firmware/dmi/tables/smbios_entry_point

• /sys/firmware/dmi/tables/DMI

gVisor The same experiment was conducted on gVisor. Just as in standard Docker, the
whole /sys/firmware/dmi directory is not mounted in the container but it also can
be mounted with the -v option. By default gVisor also does not mount the device
/dev/mem. Adding the flag --device also makes it visible but not accessible in gVi-
sor. However, instead of failing with Operation not permitted, it fails with No such

device or address and adding the CAP_SYS_RAWIO does not suffice to allow reading the
device file.

In conclusion, the absence of each of the three paths that can be used to detect Docker
containerization can also be used as an indicator for gVisor’s sandboxing.
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4.1.2 Kernel and Driver Logs in the Kernel Ring Buffer

Another method to detect VM-based virtualization demonstrated by [2] makes use of
the dmesg command to display logs from the kernel and drivers stored in the kernel ring
buffer. The dmesg command accesses the buffer and prints the messages. Virtual machines
have virtual devices and therefore virtual devices drivers. These drivers usually print log
messages containing the name of the device or a description of it, which frequently contains
keywords such as virtual. Searching the logs for these keywords allows for detection of
the virtual machine. In their research [2] found that the virtualization of all three public
cloud providers that they examined can be detected using this method.

While containers do not have virtualized devices with own drivers, it is still worth investi-
gating whether the kernel ring buffer access is properly isolated in Docker and gVisor. To
get a better understanding about Docker’s and gVisor’s ring buffer isolation, this section
investigates how the method that [2] chose (dmesg), works in detail and examines how
Docker and gVisor respond to it.

Generally, dmesg is a tool to interact with the kernel ring buffer. It has three different
methods to access the buffer: using the device file /dev/kmesg, using the SYSLOG system
call or using a memory mapped file [26]4. In addition to the access method, dmesg has
different actions. By default, dmesg accesses the kernel ring buffer using the kmsg-device
and executes the action SYSLOG_ACTION_READ_ALL [26]5. This action does not modify or
clear the buffer and simply returns all messages stored in it.

Figure 4.1: Output of dmesg in gVisor

An initial experiment yielded that neither Docker nor gVisor mount the /dev/kmsg/

device. While Docker prohibits dmesg from accessing the kernel ring buffer altogether,
gVisor falls back to the SYSLOG system call and display a short log (Figure 4.1). The log
in gVisor appears to be properly isolated as it neither completely prohibits access like
Docker does, nor does it print any actual messages from the host’s kernel ring buffer.
However, the first line consistently indicates gVisor’s presence.

4sys-utils/dmesg.c lines 174 - 178
5sys-utils/dmesg.c lines 1640 - 1648
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Listing 4.2: gVisor Parsing Arguments and Actions of syslog System Call [27]

1 func Syslog(t *kernel.Task , sysno uintptr , args arch.SyscallArguments) (

uintptr , *kernel.SyscallControl , error) {

2 command := args [0]. Int()

3 buf := args [1]. Pointer ()

4 size := int(args [2]. Int())

5
6 switch command {

7 case _SYSLOG_ACTION_READ_ALL:

8 if size < 0 {

9 return 0, nil , linuxerr.EINVAL

10 }

11 if size > logBufLen {

12 size = logBufLen

13 }

14
15 log := t.Kernel ().Syslog ().Log()

16 if len(log) > size {

17 log = log[:size]

18 }

19
20 n, err := t.CopyOutBytes(buf , log)

21 return uintptr(n), nil , err

22 case _SYSLOG_ACTION_SIZE_BUFFER:

23 return logBufLen , nil , nil

24 default:

25 return 0, nil , linuxerr.ENOSYS

26 }

27 }

In its fallback method to access the kernel ring buffer, dmesg executes the syslog sys-
tem call with the action SYSLOG_ACTION_READ_ALL given as argument. The source code of
gVisor gives further insight on how gVisor’s application level kernel Sentry handles the re-
quests that dmesgmakes. As seen in Listing 4.2, the only two actions of the syslog system
call that are implemented are SYSLOG_ACTION_READ_ALL and SYSLOG_ACTION_SIZE_BUFFER.
If any other action is specified, Sentry will return a linuxerr.ENOSYS indicating a missing
implementation [27]6.

On the SYSLOG_ACTION_READ_ALL action that dmesg requests, gVisor returns the syslog
of its kernel by calling t.Kernel().Syslog().Log(). This function returns the log if it
was already initialized before or otherwise artificially generates a log [27]7.

The generation of the syslog messages (See Figure 4.2) simply chooses messages randomly
from a hard-coded list of possible messages. The first and the last three messages are hard-
coded (This is why the first line always indicates gVisor’s sandboxing) and in-between
ten random messages are chosen from the allMessages list seen in Figure 4.3. The
timestamps are generated randomly as well. While the first message always has timestamp
0, the timestamps of each subsequent message increases continuously by a randomized
amount [27]8.

6pkg/sentry/syscalls/linux/sys_syslog.go lines 35 - 61
7pkg/sentry/kernel/syslog.go lines 42 - 47
8pkg/sentry/kernel/syslog.go lines 49 - 118
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Figure 4.2: Generation of an Artificial Syslog [27]

Figure 4.3: Bucket of Syslog Messages gVisor
Chooses from [27]

To summarize, similar to virtual
machines, the kernel ring buffer
can be used to detect gVisor’s
sandboxing. Since the log does not
contain actual log messages from
virtual device drivers but simply
a selection from known fake mes-
sages, some of which even with
a hard-coded position, this detec-
tion mechanism is even more reli-
able. While the ring buffer is not
accessible in Docker, the absence
of the device /dev/kmsg is an indi-
cator for containerization in both
Docker and gVisor. Although gVi-
sor’s syslog initially appeared to
be isolated properly, a more in-
depth investigation of the source
code of dmesg and gVisor, revealed
the following indicators that can
be used to detect gVisor’s pres-
ence:
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• Absence of /dev/kmsg

• 14 syslog messages in buffer

• All syslog messages are present in the allMessages list

• The hard-coded first and last three messages (First timestamp 0)

• Error indicating missing implementation (ENOSYS) on different syslog-actions (other
than read-all or size)

Beyond the kernel ring buffer, the investigation into how gVisor’s kernel, Sentry, handles
the syslog system call, shows that several system calls are either not fully implemented or
are implemented differently from native Linux. The discrepancy provides an opportunity
for further detection methods, which will be investigated later in this chapter, in the
sections about unimplemented system calls and about modifying the kernel ring buffer.

4.2 Docker Containerization Detection

This section investigates how methods for detecting standard Docker (runc), discussed in
the previous chapter, behave in a gVisor-based sandboxed environment.

4.2.1 Intel RAPL

The Linux kernel allows monitoring and limiting power of individual devices of the host
system through the sysfs pseudo-filesystem using the Power Capping Framework. The files
to access this functionality are located under /sys/devices/virtual/powercap/. The
kernel supports different mechanisms for power capping and each available one is assigned
a directory within the powercap sysfs-directory [28]. One of the powercap mechanisms
is RAPL (Running Average Power Limit) which is supported by many Intel CPUs since
Sandybridge [7].

The pseudo-files of the Power Capping Framework are organized within the sysfs directory
as follows:
/sys/devices/virtual/powercap/<control-type>/<power-zone>/<subzone>/

Here, RAPL is the <control-type> of the Power Capping Framework. Depending on
the hardware of the device, different zones and subzones will be available within RAPL’s
subdirectory. On a system that supports two RAPL zones the structure could look like
this:

intel-rapl/ .......................................Control-type, containing zones
intel-rapl:0/......................................Zone 0 for CPU package 0

intel-rapl:0:0/...................................Subzone 0 for core-part
intel-rapl:0:1/.................................Subzone 1 for uncore-part
intel-rapl:0:2/.......................................Subzone 2 for dram

intel-rapl:1/................................................Zone 1 for Psys
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The files containing the relevant power information for the subzone i of zone j can be
accessed via the path:
/sys/devices/virtual/powercap/intel-rapl/intel-rapl:i/intel-rapl:i:j/

Each subzone, as well as the zones themselves, contain information about the power usage.
The synergetic power attack, proposed by [7], makes use of the file energy_uj, providing
the total power usage of the zone, respectively the subzone, in microjoule [29]. Since gVisor
computes its own uptime in /proc/uptime instead of using the host’s uptime [27]9, this
would allow comparing the uptime to the total energy used by the hardware components.
A high energy usage while having a short uptime would indicate that a process is running
in a virtualized environment.

Even though the isolation mechanism proposed by [7], the power namespace, has not been
implemented in the Linux kernel, it was found in an experiment on a RAPL supporting
machine, that both, Docker and gVisor, attempt to mitigate the information leakage
by hiding the RAPL directories in the sysfs-filesystem altogether. While the proposed
power namespace, which would, analogous to other Linux namespaces, simply return the
(estimated) power used by processes within each container and thus provide information
that resembles the information a process would expect to encounter on a native machine
(accuracy), while at the same time not reveal any power information about the host’s
system (transparency), the hiding of the directories can be detected very easily. When
these files are not available, the process can suspect that it is running virtualized.

In summary, the RAPL files located in /sys/devices/virtual/powercap/intel-rapl/

are hidden in both Docker and gVisor. In Docker only the intel-rapl directory is
hidden but its parent directory is present and gVisor hides the whole powercap directory.
Both directories can potentially be missing on a machine that does not support RAPL.
Therefore, the information about the presence of these directories needs to be combined
with whether the CPU supports RAPL. On such a machine, both directories can be
expected to be present, and their absence indicates the presence of gVisor. If it does not
support RAPL, this is not a reliable indicator.

4.3 gVisor specific methods

The previous sections investigated VM and standard Docker detection methods from the
related work in a gVisor environment. While some methods were found to be applicable
in a similar form on gVisor, it demonstrated limitations for other methods. Oftentimes,
the investigation on the reason why a method cannot be used on gVisor, revealed new
mechanisms that could be used instead.

Although some findings from these investigations will be used in this section, the primary
focus is to explore new detection methods by studying gVisor’s design and behavior.

9pkg/sentry/fsimpl/proc/tasks.go lines 320 - 330
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4.3.1 Dockerenv and Dockerinit

Docker creates the file /.dockerenv [30]10 and in previous versions used to create the
file /.dockerinit in the filesystem of the container [31]. The .dockerenv exists as a
remnant of the LXC built-in exec driver, which was replaced by libcontainer [32] and
was used to store environment variables passed into the container, which were then read
from there, within the container [33]11. Since many applications, even Docker-components
such as moby’s libnetwork [34], relied on the presence of these files to detect that they
are running in a container, .dockerenv was kept and applications using .dockerinit

switched to .dockerenv for this use-case as well. Nowadays, .dockerenv is still created
by Docker but does not contain any environment variables anymore [30]12.

Since Docker mounts this file by default into images without providing an option to disable
it, it can be serve as an indicator.

4.3.2 Meminfo

The proc-filesystem contains process- and system-information. The file /proc/meminfo

gives information about the system memory, such as the total amount, free memory,
swapped memory, etc [35].

An experiment was conducted on a native Linux machine, standard Docker and gVisor.
While in Docker, all the information is accessible within the container, in gVisor only a
small subset of the attributes is available. Missing attributes in gVisor, that are available
on native and Docker are:

• SwapCached

• Zswap

• Zswapped

• KReclaimable

• Slab

• SReclaimable

• SUnreclaim

• KernelStack

• PageTables

• SecPageTables

• NFS_Unstable

• Bounce

• WritebackTmp

• CommitLimit

• Committed_AS

• VmallocTotal

• VmallocUsed

• VmallocChunk

• Percpu

• HardwareCorrupted

• AnonHugePages

• ShmemHugePages

• ShmemPmdMapped

• FileHugePages

• FilePmdMapped

• Unaccepted

• HugePages_Total

• HugePages_Free

• HugePages_Rsvd

• HugePages_Surp

• Hugepagesize

• Hugetlb

• DirectMap4k

• DirectMap2M

• DirectMap1G

An investigation into gVisor’s source code revealed that the cause lies in its userspace
kernel, Sentry. In the Generate function, which handles the generation of the content
of the meminfo pseudofile, only a small subset of values is produced. Some of them are
hard-coded to always return 0 kB, as highlighted in red in the list below [27]13:

10daemon/initlayer/setup_unix.go lines 23 - 68
11daemon/execdriver/lxc/init.go lines 108 - 134
12daemon/initlayer/setup_unix.go lines 23 - 68
13pkg/sentry/fsimpl/proc/tasks_files.go lines 269 - 311



22 CHAPTER 4. ARCHITECTURE

• MemFree

• MemAvailable

• Buffers

• Cached

• SwapCache

• Active

• Inactive

• Active(anon)

• Inactive(anon)

• Active(file)

• Inactive(file)

• Unevictable

• Mlocked

• SwapTotal

• SwapFree

• Dirty

• Writeback

• AnonPages

• Mapped

• Shmem

On a native machine, most attributes are generally expected to be present. While not all
attributes are always available (e.g., if huge pages are disabled in the kernel options, the
corresponding attributes will not show up), finding exactly these attributes with values
of 0 kB is a distinctive characteristic of gVisor that can be used as an indicator for
virtualization detection. Furthermore, a mistake in gVisor’s code causes the attribute that
is called SwapCached in the Linux kernel [36]14 to be called SwapCache in gVisor [27]15,
making it uniquely identifiable.

4.3.3 Sysfs DMI Information

In the previous section in this chapter about the VM detection method using dmidecode,
it was found that absence of the paths used by dmidecode16 is an indicator of container-
ization, both Docker and gVisor.

While both sysfs files that dmidecode uses, require superuser privileges, the kernel also
provides DMI information that is generally readable by regular users within the
/sys/devices/virtual/dmi/id directory.

An experiment on a native Linux machine, Docker, and gVisor showed that the files are all
also present in Docker. Some of the files (board_serial, chassis_seriel, product_serial,
product_uuid) are not readable by non-root users on a native machine but the Docker
daemon which is running as root on the host, passes the files on into the container where
they are then also readable by processes in the container. As these are serial numbers of
hardware components of the host machine, this is an information leakage channel, specifi-
cally allowing for co-residency attacks, as this uniquely identifies the machine hosting the
containers.

In gVisor containers, most of this information is isolated, making only the product_name
available to processes within the container, which has the same content as on the host
machine. Since the other information is isolated, not by providing non-identifying in-
formation in gVisor, but instead hiding it altogether, the absence of these files indicates
gVisor’s sandboxing.

14fs/proc/meminfo.c line 65
15pkg/sentry/fsimpl/proc/tasks_files.go line 294
16/sys/firmware/dmi/tables/smbios_entry_point and /sys/firmware/dmi/tables/DMI
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4.3.4 Uptime and Idle Time in the proc Filesystem

Figure 4.4: gVisor’s Computation of Uptime
and Combined CPU Idle Time [27]

As found in the investigation of using In-
tel RAPL to detect virtualization, gVi-
sor computes its own uptime. While in
Docker, we get the host’s uptime, gVisor
returns the time since the container was
started [27]17. In /proc/uptime the Linux
kernel stores two numbers: the time since
boot, and the combined idle time of all
CPUs [35]. While gVisor correctly com-
putes its own uptime, it is hardcoded to
return 0 as combined idle time (See figure 4.4). While theoretically possible, this is ex-
tremely unlikely to be encountered on a native machine and can be used as an indicator
of virtualization. The indicator can be made even stronger when comparing it to CPU
load and CPU time of running processes.

4.3.5 Unimplemented Syscalls

Application

Sentry 9P Gofer

Host Kernel

Hardware

System calls

System callsLimited system calls

Figure 4.5: gVisor’s Handling of System
Calls [5]

Unlike Docker, which does not have an own
kernel and simply relies on the isolation
mechanisms of the host’s kernel, gVisor
adds the component, Sentry, which is an
application level kernel. When a process
within the container attempts to make a
system call, Sentry will intercept it and if
supported, handles it itself and responds
instead of passing it on to the host’s ker-
nel [5]. An overview of gVisor’s compo-
nents is given in Figure 4.5.

This design potentially allows three forms
of gVisor-specific virtualization detection
mechanisms. Firstly, gVisor does not fully
support all system calls. While it only at-
tempts to implement an environment anal-
ogous to Linux 4.4, the current state is not fully equivalent [5]. Secondly, gVisor might
already implement system calls which cannot be expected to be available on a machine
running Linux 4.4. Consequently, comparing the reported kernel version with the avail-
ability of a system call which should not be available in Linux 4.4, may yield an indicator
for gVisor’s virtualization.

Thirdly, since system calls are intercepted by a user-level kernel, they are handled differ-
ently than on a native machine. This may lead to timing differences which would allow
for side-channel virtualization detection.

17pkg/sentry/fsimpl/proc/tasks_files.go lines 320 - 330
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This section will investigate the first category. In its application kernel, Sentry, gVisor
distinguishes between three levels of support of system calls (SupportUnimplemented,
SupportPartial, SupportFull [27]18) and implements them as seven different func-
tions [27]19:

• syscalls.Supported

• syscalls.SupportedPoint

• syscalls.PartiallySupported

• syscalls.PartiallySupportedPoint

• syscalls.Error

• syscalls.ErrorWithEvent

• syscalls.CapError

All of them return a struct of type Syscall, which contains the necessary information
for the syscall to be executed, including the name, the function that is called when the
syscall is executed, the level of support, and a note [27]20.

The system calls that are supported by gVisor have the struct field SupportLevel set
to SupportFull. These are implemented with the functions syscalls.Supported and
syscalls.SupportedPoint. The former will simply return a Syscall struct for the
requested syscall, the latter adds a callback and then simply invokes the first function,
which returns the struct.

The system calls of the second level SupportPartial are implemented with the functions
syscalls.PartiallySupported or syscalls.PartiallySupportedPoint . Both behave
similar to the corresponding ones of the SupportFull level, but are additionally annotated
with information about which parts work or which are different or missing. For example,
the partially supported system call syslog is annotated with “Outputs a dummy message
for security reasons” [27]21. In the following chapter about modifying the kernel ring buffer
it will become clear that these notes must be taken with a grain of salt as they do not
necessarily contain all missing parts of the system call. In this case, the mentioned chapter
will show, that the syslog system call does in fact output a dummy message for some
arguments (actions) but the note does not reflect that the system call is unimplemented
for most other actions.

Finally, the system calls that are not supported in gVisor are assigned the support level
SupportUnimplemented. They are implemented with the functions syscalls.Error ,
syscalls.ErrorWithEvent or syscalls.CapError . The first simply returns a hard-
coded error, the second also responds with a hard-coded error but also sends an event on
the event-channel and the last checks a given capability and only if the process holds the
capability, returns the error ENOSYS, revealing that the system call is not implemented. If
the capability is not held, it instead responds with EPERM (Operation not permitted) [27]22.

This mechanism masks missing system calls in cases where the required capability is not
held by the process and thus makes detecting the presence of gVisor more difficult.

18pkg/sentry/kernel/syscalls.go lines 55 - 67
19pkg/sentry/syscalls/syscalls.go lines 37 - 128
20pkg/sentry/kernel/syscalls.go lines 70 - 86
21pkg/sentry/syscalls/linux/linux64.go line 550
22pkg/sentry/syscalls/syscalls.go lines 74 - 128
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4.3.6 Modifying the Kernel Ring Buffer

The investigation of the VM detection method using dmesg to access the kernel ring
buffer showed that this method can be used in a similar way in gVisor. While this
method uses the content of the messages that gVisor’s kernel Sentry responds with when
the syslog system call with the SYSLOG_ACTION_READ_ALL action as argument is exe-
cuted, examining the source code of how this is handled, showed that this action and the
SYSLOG_ACTION_SIZE_BUFFER action are the only ones that Sentry implements.

Attempting to call other actions on a native machine is expected to either work or result
in a permission error (when running as non-privileged user). However, gVisor returns the
ENOSYS error, indicating a missing implementation [27]23.

For simplification, the action SYSLOG_ACTION_CLEAR is exemplarily chosen in this work.
On successful execution it should clear the ring buffer. A simple experiment was conducted
in gVisor and confirmed this detection mechanism, as attempting to clear the ring buffer
failed with the message specifying that the implementation is missing.

23pkg/sentry/syscalls/linux/sys_syslog.go lines 35 - 61
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Chapter 5

Implementation

Figure 5.1: Strategy Definition

The implementation of the malware pro-
totype combines all the detection mecha-
nisms found in the previous chapter. The
implementation stores each mechanism in
an instance of a strategy struct. A strategy
consists of a name, a description, and the
function that will carry out the detection
mechanism and return a score denoting the certainty this mechanism indicates virtual-
ization. The reported score lies between 0, which indicates that the mechanism is certain
that the malware is not running in gVisor, and 100, which will be returned when the indi-
cators the mechanism checks are fully present. This score does not regard the reliability
of the mechanism itself, it simply denotes to which extent the detection mechanism has
found the characteristics it expects from gVisor in the current environment.

Therefore, for simple binary checks, it will always be either 0 or 100, and continuous
mechanisms will always have at least one case where they return 0, or 100 respectively.

Since, however, the mechanisms vary in overall reliability, each stratetgy also includes a
weight. This weight lies between 0, if a detection mechanisms is completely indepentend
of the environment, and 1, indicating that the mechanism detects gVisor with maximal
certainty. The final effective score of the stratetgy will be the product of this weight and
the reported score of the detection mechanism.

By default, the malware iterates over all strategies and computes the average weighted
score from the return values of the strategy-functions:

score =

∑
i (si · wi)∑

i wi

Whenever a strategy returns with an error, its weight is set to 0 so that the score is ignored
in the final score. If in the end the score is above a threshold, the malware categorizes the
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result as having detected gVisor. Additionally, with the -malicious flag set, the malware
will simulate malicious behaviour, i. e. a coin miner, when no virtualizaton is detected.

Alternatively, instead of using all strategies, specific strategies can be specified with the
-strat option, passing a list of comma-separated strategies or a strategy-group. The
available strategies and groups can be listed with -list-strat.

5.1 Choice of Language

The implementation is written in Go. Since
malicious programs usually do not control
the machine they run on, it is best to make
as few assumptions as possible, e.g., about
available interpreters or shared libraries and
the compatibility of their versions. Since Go
is a compiled language, it does not require
an interpreter, and because of its static link-
ing, it produces a stand-alone executable,
which does not require certain libraries or
a runtime to be present on the host. Addi-
tionally, not only is this an implementation
of a malware, but a malware that attempts
to hide its malicious nature, when it is be-
ing analyzed, which gives another reason to
prefer a compiled language, as the source
code cannot simply be read. Finally, the
environment the malware targets, gVisor, is
also written in Go.

• No interpreter required on target ma-
chine

• No assumptions about available li-
braries or version conflicts due to
static linking

• Code cannot simply be read

• Same language as target environment,
gVisor

5.2 Implementation Details of Strategies

The following subsections match the sections of the previous chapter. For each detection
mechanism found there, the corresponding subsection in this chapter will describe how
the mechanism is implemented in the strategies of the malware. For each strategy the
implementation will be explained and scores for the different cases will be assigned.

5.2.1 BIOS Information

As the investigation in chapter 4 showed, the VM detection method based on the BIOS
information accessed by dmidecode cannot be used in the same way in gVisor.
dmidecode first attempts to read the BIOS information from sysfs and if this is not
possible, attempts to read it from the memory device file /dev/mem, both unavailable in
gVisor.
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Instead, the malware uses this as characteristic and imeplements the strategies dmidecode_mem
and dmidecode_sysfs, one for each method of dmidecode.

The first simply checks for the presence of /dev/mem, returning 100 if it is absent (full
detection), or 0 if present (no detection).

The second checks for the files /sys/firmware/dmi/tables/smbios_entry_point and
/sys/firmware/dmi/tables/DMI. However, since in gVisor the expected case is that the
whole /sys/firmware/dmi/ is missing, only then 100 is returned. If some of the subdi-
rectories, or even one of the two files exist, it will return lower, but non-zero scores. If
both files are present, the malware categorizes this as native and thus returns 0.

5.2.2 Kernel and Driver Logs in the Kernel Ring Buffer

The VM-detection mechanism using the
content of the kernel ring buffer can be used
very similarly in gVisor. The investigation
in chapter 4 demonstrated that in gVisor,
a program can know even more about the
characteristics of the ring buffer, and even
about the content, than in a virtual ma-
chine. Therefore, instead of using dmesg to
retrieve the syslog messages and grepping
for keywords, like virtual, the malware im-
plements four different strategies to evalu-
ate the buffer.

1. kernel_ring_buffer_messages_set

2. kernel_ring_buffer_messages_count

3. kernel_ring_buffer_messages_fixed

4. dev_kmsg

By default, dmesg uses the /dev/kmsg device to access the kernel ring buffer. If this fails
it uses the syslog syscall as a fallback. As the investigation showed, this device file is not
available in gVisor, but the buffer still can be accessed with the fallback system call.

The dev_kmsg strategies is implemented as simple binary check, returning 0 if /dev/kmsg
is present and 100 otherwise.

The remaining strategies all involve access to the kernel ring buffer in some form. To
accomplish this, the malware implements shared helper functions for the three strategies:
get_syslog_size() and get_syslog_content(). Both functions interact with the kernel
ring buffer via the syslog system call, which is invoked through the syscall package from
the Go standard library.

The first helper function executes the system call with the action SIZE_BUFFER to get the
current size of the kernel ring buffer as return value. The second helper function returns
the content of the current kernel ring buffer. Since the syslog system call with the action
READ_ALL cannot simply return the entire log as return value, the malware first requests
the size using the first helper method and allocates a local buffer of appropriate size. A
pointer to this local buffer will then be passed as argument, together with its size and
desired action (READ_ALL), when invoking the system call. The kernel then fills this local
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buffer with the messages from its ring buffer. The local buffer, which is an array of bytes,
is then converted to a list of strings, one message from the ring buffer per entry and
returned.

As shown in the investigation, gVisor generates the messages in the ring buffer the first
time it is requested. The first and last three messages are hard-coded and ten additional
messages are randomly chosen from a list. The kernel_ring_buffer_messages_set

strategy retrieves all messages from the kernel ring buffer and iterates over them to check
whether they are messages that gVisor potentially can generate. Only if this is the case
for 100 % of the messages in the current environment, the strategy will return a score of
100. If a small portion of other messages are present as well, it returns lower scores and
0 otherwise.

The second strategy kernel_ring_buffer_messages_count focuses solely on the number
of messages rather than their content. Since gVisor hard-codes four specific messages and
draws ten from its list at random, finding exactly 14 messages in the ring buffer strongly
suggests the presence of gVisor. While this can potentially occur on native machines
as well, production systems usually have a number of messages by a magnitude larger,
making it very unlikely to be this amount exactly by coincidence. However, if the number
deviates even slightly, it is most likely not a gVisor-based environment. Therefore, the
strategy is binary and returns a score of 100 only if exactly 14 messages are present, and
0 otherwise.

Similar to the first strategy, the kernel_ring_buffer_messages_fixed strategy also
examines the content of the messages. While the decision of the first strategy is based on
what portion of the found messages are found within gVisor’s set of possible messages,
this strategy takes the position of the four hard-coded messages along with the initial
timestamp into account. If all four messages are present in their expected positions and
the timestamp matches, it returns a score of 100. Given that the first message is the
strongest indicator (Starting gVisor...), if only the first message and timestamp match,
the malware still estimates the environment to be gVisor-based with a high likelihood,
therefore returning a score of 80.

5.2.3 Intel RAPL

As described in the corresponding section about RAPL in the previous chapter, the infor-
mation about missing Powercap or RAPL sysfs-directories must be interpreted in combi-
nation with knowledge about RAPL support on the current machine.

To confront this problem, the strategy intel_rapl gathers CPU information by checking
the vendor ID in the /proc/cpuinfo file. Since a score of 0 signifies certainty that the
current environment is not gVisor-based, returning this score on non-Intel CPUs is not
a sensible option. Instead, when the malware detects that the machine does not support
RAPL, it returns an error. Whenever a strategy returns with a non-nil error, the main
loop will assign a weight of 0 to that strategy. This ensures that this strategy will not
affect the overall average score, and consequently, it will be ignored in the malware’s
decision.
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If the malware, however, is running on an Intel machine, it will proceed to check the
presence of the powercap and intel-rapl directories. Since gVisor hides not only the
intel-rapl directory but the entire /sys/devices/virtual/powercap/ parent directory,
the malware will return a score of 100 only if it is in fact absent.

In Docker the powercap directory is present but the intel-rapl directory is absent. Al-
though this case overall is more characteristic of a virtualized environment, it is untypical
for gVisor-environments, which the malware focuses on. Hence, it will conservatively as-
sign a rather low, but non-zero score of 40. Finally, on an Intel machine, the expected
case for running natively is for both directories to be present. In this case the strategy
returns a score of 0.

5.2.4 Dockerenv

This strategy dockerenv simply checks for the presence of the file .dockerenv in the
container’s root directory. In both Docker and gVisor it is expected to always be present.
Thus, the decision of the strategy is binary, returning a score of 100 on existence, and 0
otherwise.

5.2.5 Meminfo

As described in chapter 4, the /proc/meminfo file allows processes to retrieve various
information about the memory. In gVisor the file is present but many attributes are
missing and only a subset is available, some of which are assigned a hard-coded value
of 0 kB in gVisor’s kernel Sentry. Furthermore, the attribute SwapCached was mis-
spelled as SwapCache. Using these findings, the malware implements three strategies
meminfo_attributes, meminfo_zeros and meminfo_typo.

Table 5.1: Expected Cases in meminfo attributes
Characteristic gVisor Native
attributes_gvisor found 100 % High
attributes_missing found 0 High

The first strategy contains two lists attributes_gvisor and attributes_missing. The
former stores attributes that the investigation showed are generated in Sentry. The latter
contains attributes commonly found on native machines that were found to be missing
in gVisor. The expected case in gVisor and on a native machine is depicted in table 5.1.
The absence of attributes of the first list strictly indicates that the environment is not
gVisor-based, while their presence does not provide much information, as these attributes
are commonly found on native machines as well. The strategy therefore starts by verifying
that all of them are found. If just a single one is missing, a score of 0 is returned, which
signifies certainty that the malware is not running on gVisor.

For the attributes of the second list, their presence is a strict indicator against gVisor,
while the absence is a non-strict indicator for gVisor. While they could also be missing
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on a native machine, it is unlikely to be exactly these attributes. Therefore, the strategy
continues with a case distinction in which it assigns a score of 100 only if all of them are
missing, and a rapidly decreasing score the more of them are found.

While the first strategy focuses solely on the presence and absence of attributes, the
second strategy meminfo_zeros considers the known values. To achieve this, it contains
a list of the attributes that the investigation of Sentry revealed to be hard-coded to 0 kB.
Similar to the first strategy, it iterates through the lines of /proc/meminfo and parses
the attribute name and value using a regular expression. If the list contains the found
attribute, the malware will check if the value is 0 kB. Since gVisor should always generate
this value for the given attributes, if only a single one has a different value, a score of 0
will be returned.

To handle cases of missing attributes, the strategy counts each attribute whose value
was checked. While in general it is a sign against gVisor if some are missing, the score
of this strategy should reflect the certainty of the environment being based on gVisor
considering only the values and not the presence of attributes; this is already checked
in the first strategy. Therefore, if not all values could be checked, the strategy becomes
inapplicable and returns an error so that it will be assigned a weight of 0 in the main
loop.

Finally, the third strategy meminfo_typo iterates over the /proc/meminfo file again to
search for the SwapCache attribute. If it finds a line starting with SwapCache:, it returns
a score of 100, and 0 otherwise.

5.2.6 Sysfs DMI Information

The findings from the corresponding section in the previous chapter are implemented in the
strategy available_dmi_info. First, it checks for the availability of the sysfs directory
containing the user-readable DMI information (/sys/devices/virtual/dmi/id/) and
whether it contains the only file that is present in gVisor product_name. If both are
present it proceeds to check the existence of the files commonly found in this directory.

The final decision of this strategy considers the percentage of the files found. Only if
all but product_name are absent, a score of 100 is returned. For higher percentages the
returned score decreases quickly.

5.2.7 Uptime and Idle Time in the proc Filesystem

As seen in the source code of gVisor’s computation of the values in /proc/uptime, the
application kernel, Sentry, computes an own uptime and hard-codes the combined idle
time to 0. The latter is used by the strategy proc_combined_idle_time which reads the
file and parses the second value. While the expected format is 0.00, to increase robustness
the strategy converts the values to a float to compare it numerically (in case of 0 or 0.0,
etc.). If the value matches, the function returns a score of 100. If the combined idle time
is less than a tenth of a second, while suggesting it is not a gVisor environment, this is
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still very unlikely to happen on a native machine. In this case the strategy returns a low
but non-zero value of 10. On finding any higher number, a score of 0 is returned.

Failing to read the /proc/uptime file or being unable to parse the values due to an
unexpected line format is never expected and the strategy should fail. Consequently, in
this case the function passes the error on as return value to not be weighted in the overall
score.

5.2.8 Unimplemented Syscalls

In the corresponding section of the architecture chapter it was shown that the way gVisor
handles system calls enables three attack vectors. This strategy focuses on the first vector
(the system calls that are unimplemented in gVisor) as they have the highest potential to
allow gVisor to be detected.

Since gVisor’s goal is to implement an environment resembling Linux 4.4 [5], all unsup-
ported system calls that are also not supported by this Linux version are filtered out for
the implementation of this detection strategy. The remaining system calls that gVisor’s
kernel Sentry does not implement [37] that are implemented in the Linux kernel 4.4 [38]
are listed in below.

• setfsuid

• setfsgid

• uselib

• personality

• ustat

• sysfs

• sched_setparam

• sched_rr_get_interval

• vhangup

• modify_ldt

• sysctl

• adjtimex

• acct

• settimeofday

• swapon

• swapoff

• reboot

• iopl

• ioperm

• init_module

• delete_module

• query_module

• quotactl

• set_thread_area

• get_thread_area

• lookup_dcookie

• remap_file_pages

• mq_timedsend

• mq_timedreceive

• mq_notify

• mq_getsetattr

• kexec_load

• add_key

• request_key

• ioprio_set

• ioprio_get

• migrate_pages

• vmsplice

• move_pages

• perf_event_open

• fanotify_init

• fanotify_mark

• name_to_handle_at

• open_by_handle_at

• clock_adjtime

• kcmp

• finit_module

• sched_setattr

• sched_getattr

• kexec_file_load

• bpf

• userfaultfd

As seen in the corresponding section in the architecture chapter, we cannot simply expect
unimplemented system calls to respond with ENOSYS (Function not implemented) when
they are called, as gVisor attempts to mask missing implementation in several ways. Some
simply return some other hard-coded error (mostly permission errors) and others require
certain capabilities and only reveal the missing implementation when that capability is
held by the process that called it.

To address this, an experiment was conducted in which the responses to all filtered un-
supported system calls were gathered on a native Linux machine, both when running as a
privileged and as an unprivileged user. These were then compared to the response gVisor
gives and categorized into four potential classes, as depicted in table 5.2.
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Table 5.2: Classification of Indicative Value of gVisor’s Unimplemented System Calls
Class Description
Strong indicator gVisor’s response is different in both cases
Difference to privileged native gVisor’s response is different only to the privileged native execution
Difference to unprivileged native gVisor’s response is different only to the unprivileged native execution
Weak indicator gVisor’s response is the same as both native executions

In the experiment it was found that the third class is empty, so the strategy implements
the remaining three classes. While the system calls whose responses are strong indicators
(in the following referred to as strong system calls) can both indicate virtualization as
well as indicate a native environment. This is because, when the malware receives a lot
of responses to the strong system calls that are the responses that gVisor is expected
to give, these responses are automatically an unexpected case for a native machine, and
vice-versa. On the other hand, when all the responses to the weak system calls are
the ones that the malware expects to receive from gVisor, it indicates neither that it is
running on a native machine, nor that it is running in gVisor. In both environment, these
responses are expected. In the case, however, that many of the weak system calls lead to
unexpected responses, while it still is not an indicator for whether the malware is running
native or virtualized, it is an indicator that it is not gVisor. This results in two possible
options to handle the weak system calls. The first is to make the score rely solely on
strong indicators and use the weak indicators not for the score (which represents to what
degree the characteristics the detection mechanism checks were found) but instead make
it influence the weight of the strategy which represents how reliable the strategy overall
is. A high amount of unexpected responses then indicates that the malware is running
in an environment where this method of checking the responses to system calls is not a
reliable way to detect virtualization.
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Figure 5.2: Decision Path for the
Third Class of System Calls

The second option is to use the weak system calls
only as negative indicator. Here, the strong system
calls are used to calculate the score, and unexpected
results of weak system calls decrease the score there-
after.

While the first approach would be more appropri-
ate for a malware that aims to generally detect any
form of virtualization, the focus of this work is to
reliably distinguish between native execution and
gVisor’s sandboxing. Therefore, in the prototype
the second approach is chosen. This design decision
ensures that the weight can be read as “how reliable
does the strategy detect gVisor overall”. As defined
in the introduction, a low score does not necessarily
indicate a native environment, but instead it indi-
cates the certainty that it is not running in gVisor.

In conclusion, a response that is diverging from
the expected response is always counted (for both,
strong and weak system calls) to indicate that the
environment is not gVisor (lowering the score), while a matching response is only counted
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for strong system calls, where it indicates that the environment is based on gVisor (in-
creasing the score).

The remaining class of system calls consists of those calls that give a different response
than gVisor only if running on a privileged native machine. Since without further infor-
mation, they can potentially be both, weak and strong, the malware further takes into
account the user ID. If this ID is 0, it assumes that if running natively, it is running as a
privileged user and assumes an unprivileged user otherwise.
The decision process of the malware is illustrated in Figure 5.2. With this additional in-
formation, the malware can distinguish whether it is at node A or B, and in both nodes,
it has enough knowledge to interpret the responses to the system calls of the remaining
class. In node A, all elements of the class become strong system calls, as not only do
responses that deviate indicate that it is not gVisor (as weak system calls do) but addi-
tionally, matching responses are not expected in the native case (because in node A, the
malware can assume the native process is privileged) and thus indicate the presence of
gVisor. The last part, however, is not valid in point B, because in both possible cases,
native and gVisor, the responses are expected to match. Since diverging responses still
indicate that it is not gVisor, this class will be categorized as weak system calls, when the
malware is at node B.

The malware implements each of the three classes as map which assign each system call in
that class to the error gVisor is expected to return. Using Go’s syscall package from the
standard library, the malware iterates over each system call in the three maps and calls it.
It then compares the returned error to the one that is expected and counts the ones that
do not match. As described above, the malware then reduces the three classes to only
two (weak and strong) based on the user ID and computes the percentage of matching
responses for the two remaining classes:

strong percentage =

1.0−
(

∆strong+∆priv
|strong|+|priv|

)
if uid = 0

1.0−
(

∆strong
|strong|

)
if uid ̸= 0

weak percentage =

1.0−
(

∆weak
|weak|

)
if uid = 0

1.0−
(

∆priv+∆weak
|priv|+|weak|

)
if uid ̸= 0

Here, strong and weak denote sets that represent the maps of strong and weak system
calls in the malware. The priv denotes the set representing the third class of the system
calls where the expected response is only different on a privileged native machine.
The variables prefixed with ∆ represent the number of non-matching responses to the
system calls in that class in the current environment.
Finally, the score is computed and returned:

score = max(0, 100 · (strong percentage− (1.0− weak percentage)))

5.2.9 Modifying the Kernel Ring Buffer

As seen in the source code of Sentry’s handling of the syslog system call, only two actions
are implemented. This is when syslog is called with either the argument READ_ALL or
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SIZE_BUFFER . All other attempts to execute this system call will result in a ENOSYS error.
The strategy syslog_clear makes use of this by chosing one alternative action from the
many remaining available ones and attempts to execute it using the syscall-package from
Go’s standard library. The invocation of the syscall returns as third return value an error
number. The malware evaluates this error and only if it equals ENOSYS, it returns a score
of 100.

While any other action for the syslog system call can be chosen, the malware attempts
w.l.o.g to invoke it with the action SYSLOG_ACTION_CLEAR. This action does not require
an allocated buffer or length as argument and thus reduces error sources in the detection
strategy.



Chapter 6

Evaluation

This chapter will evaluate how reliable the malware detects gVisor’s virtualization. First,
the overall reliability will be investigated practically by conducting experiments in different
environments. In each environment, the malware will be executed in a gVisor-backed
Docker container using a helper script to compile an overview of the reported scores.

Afterwards, the reliability of the individual strategies will be discussed theoretically, by ex-
amining the characteristics of gVisor that enable it to be detected, to assess the likelihood
of false negatives. In order to estimate the likelihood of false positives, the reliability to
detect these characteristics in gVisor will be contrasted with the likelihood of encountering
the same characteristics in a productive native environment.

Based on these discussions, this chapter will propose mitigation techniques for each strat-
egy. It will do so by, on the one hand, showing preventative measurements that an
application using gVisor could implement without having to modify gVisor (e.g., configu-
ration, workarounds), and on the other hand, by suggesting changes that could be made
to gVisor or the Linux kernel. The proposed techniques will in turn be confirmed by
experiments in hardened environments to which the techniques have been applied.

Since the focus of this thesis is the detection of gVisor’s sandboxing, false negatives are
considered if the malware runs in a gVisor container but does not detect it. Failing to
detect that it runs in a different form of virtualization, like a virtual machine or standard
Docker, is not considered a false negative. Likewise, the evaluation will count as a false
positive whenever the malware detects virtualization but runs not virtualized at all, on a
native machine.

6.1 Setup of the Experiments

Listing 6.1: Dockerfile to Run the Malware in gVisor

1 FROM debian:bookworm

2
3 COPY prototype /opt/prototype

4 CMD /opt/prototype

37
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Listing 6.2: Script to Build and Run the Malware and Container Image

1 #!/bin/sh

2
3 set -eu

4
5 go build .

6 docker build . -t prototype

7 docker run --runtime=runsc prototype:latest

The container image is built using a Dockerfile (Listing 6.1) which simply takes the base
image of Debian Bookworm and copies the compiled malware into the /opt/ directory
and starts it as default command. The Dockerfile is utilized by a helper script (List-
ing 6.2) which first compiles the malware, then builds the container image as defined by
the Dockerfile and finally starts a container with that image specifying gVisor’s runtime
(--runtime runsc).

6.2 Performance of the Malware in Different Environments

Using the setup described in the previous section, the malware will be tested in the
environments depicted in table 6.1.

Table 6.1: Environments the Malware was Tested in
ID Environment Host OS Kernel (Host) Host CPU
0 gVisor Debian Bookworm 6.5.0 Intel i5-7300U
1 Native (Privileged) Debian Bookworm 6.5.0 Intel i5-7300U
2 Native (Unprivileged) Debian Bookworm 6.5.0 Intel i5-7300U
3 Native (Privileged) Artix 6.9.7 Intel i5-8350U
4 Native (Unprivileged Artix 6.9.7 Intel i5-8350U
5 Native (Privileged) Debian Stretch 4.9.0 AMD Athlon G. 3150U
6 Native (Unprivileged) Debian Stretch 4.9.0 AMD Athlon G. 3150U

Table 6.2 shows the scores that the individual strategies of the malware achieved in the
environments defined in table 6.1. The numbers in the title row reference the environments
from table 6.1. In this row a green background signifies a gVisor-based environment, where
the expected score is 100 and a red background signifies a native environment, in which
the strategies are supposed to return a score of 0. The background of the data cells below
is green to red based on the achieved score. If the strategy returns the correct score, the
cell will have the same color as the title row.

As the results in table 6.2 show, the malware correctly decides whether gVisor is present
in all cases. In all but one case, all applicable strategies give a perfect score, with the one
case giving 0.34 instead of 0.00 out of 100.
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Table 6.2: Overview of the Achieved Scores in Different Environments
Strategy 0 1 2 3 4 5 6
dmidecode_mem 100 0 0 0 0 0 0
dmidecode_sysfs 100 0 0 0 0 0 0
intel_rapl 100 0 0 0 0 - -
dockerenv 100 0 0 0 0 0 0
meminfo_attributes 100 0 0 0 0 0 0
meminfo_zeros 100 0 0 0 0 0 0
meminfo_typo 100 0 0 0 0 0 0
available_dmi_info 100 0 0 0 0 0 0
proc_combined_idle_time 100 0 0 0 0 0 0
syscall_unimplemented 100 0 0 0 0 0 0.34
kernel_ring_buffer_messages_set 100 0 - 0 - 0 -
kernel_ring_buffer_messages_count 100 0 - 0 - 0 -
kernel_ring_buffer_messages_fixed 100 0 - 0 - 0 -
dev_kmsg 100 0 0 0 0 0 0
syslog_clear 100 0 - 0 - 0 -
Final weighted score 100 0 0 0 0 0 0.34

6.3 Reliability and Mitigation of Individual Strategies

In the following, the reliability sections describe the malware’s view, assessing its reliabil-
ity in productive environments gVisor is commonly used in (as opposed to the resilience
against specific countermeasures targeting the detection strategies). The specific counter-
measures and their effectiveness are discussed in the mitigation sections.

6.3.1 BIOS Information

Reliability The first strategy, dmidecode_mem, uses the absence of the character device
file /dev/mem as indicator for gVisor. While its equivalent for the kernel’s virtual memory
/dev/kmem can be disabled by setting the kernel option CONFIG_DEVKMEM to n, which sev-
eral major Linux distributions do by default [39][40], disabling the file /dev/mem through
the option DEVMEM [36]1 is not commonly done on native machines, making false positives
unlikely. False negatives are possible, if gVisor was configured to pass through the mem-
ory device file or if a file was specifically created at this location. Both options are not
expected to be commonly found in gVisor use-cases.

The second strategy dmidecode_sysfs bases its decision on the sysfs files that dmidecode
uses2. On native machines they can be expected to be present, and a container would
specifically need to be configured to provide these two files. Since DMI information is not
required in most use-cases that containers are usually used for, both, false positives and
false negatives are unlikely.

1drivers/char/Kconfig lines 310 - 317
2/sys/firmware/dmi/tables/smbios_entry_point and /sys/firmware/dmi/tables/DMI
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Mitigation Currently the strategy dmidecode_mem simply checks for the presence of the
character device file /dev/mem but not the content. A simple way to mitigate this detection
mechanism is to simply create a file in this location. In order to make the file type match
the type /dev/mem has on regular systems, a character device file can be created using
mknod.

Listing 6.3: Dockerfile Mitigating the dmidecode mem Strategy

1 FROM debian:bookworm

2
3 COPY prototype /opt/prototype

4
5 CMD mknod /dev/mem c 1 1 && /opt/prototype

Executing the malware with this modified Dockerfile results in the strategy returning a
score of 0. Consequently, the detection mechanism has been successfully prevented. To
counter this mitigation technique an attacker would need to examine the content of the
memory device file, which increases the required complexity of the malware. Defending
against such an adapted strategy would, however, require proper isolation of the /dev/mem
file. gVisor would need to provide this device file by simulating a physical memory that
only contains data used by processes within the container. While gVisor has its own
memory management, it does not have a physical memory, and accurately simulating
one is not trivial and possibly susceptible to side-channel attacks using timing difference.
Sentry would need to ensure that any data present in the simulated physical memory
file is actually loaded in the host’s physical memory to be able to respond in time. For
memory not present in the simulated memory but loaded in the host’s physical memory,
delays would need to be simulated. Currently, Sentry has no simple way to determine
which pages are loaded in the host’s physical memory [41].

The second strategy dmidecode_sysfs, which currently simply checks for the existence
of the two DMI files that dmidecode uses, can be mitigated by creating any file in this
directory. Since the malware could simply counter this by attempting to decode the files
(e.g. by replicating dmidecode), a more robust defense will be proposed.

As seen in the architecture chapter, the sysfs files, required by dmidecode, can be mounted
with Docker’s -v option. To validate that this is a possible option, dmidecode was installed
in a gVisor container which was started with the flags shown in listing 6.4.

Listing 6.4: Mounting the Host’s Sysfs DMI Files

1 docker run --rm -it --entrypoint bash --runtime=runsc -v /sys/firmware/

dmi:/sys/firmware/dmi debian:bookworm

Running dmidecode in the container showed that it can now successfully retrieve the DMI
information.

The helper script was modified (Listing 6.5) in order to validate that the strategy returns
a score of 0 when this mitigation technique is applied, which was successful. Since the
previous experiment showed that dmidecode is able to decode the DMI information in
this configuration, it can be concluded that the proposed improved strategy, that would
evaluate the files instead of simply checking for their existence, is mitigated with this
technique as well.
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Listing 6.5: Helper Script Mitigating the dmidecode sysfs Strategy

1 #!/bin/sh

2
3 set -eu

4
5 go build ..

6 docker build . -t prototype_mitigation_dmidecode_sysfs

7 docker run --runtime=runsc -v /sys/firmware/dmi:/sys/firmware/dmi

prototype_mitigation_dmidecode_sysfs:latest

Mounting the host’s DMI files is, however, only a proof of concept and is unsuitable for
productive applications like a malware analysis tool, as it leaks the host’s BIOS informa-
tion into the container. Instead, the malware analysis tool could include mock DMI and
smbios_entry_point files that were either copied from an unrelated machine or were
artificially created to contain realistic data. To further increase resilience against this
detection method, a set of DMI mock files could be included and selected randomly, or
could be generated dynamically before the container is started.

6.3.2 Kernel and Driver Logs in the Kernel Ring Buffer

Reliability This section will describe the implementation of the three strategies that use
the content of the kernel ring buffer:

1. kernel_ring_buffer_messages_set

2. kernel_ring_buffer_messages_count

3. kernel_ring_buffer_messages_fixed

False positives are very unlikely for all three. In the first strategy, all logged messages
would need to appear in the list of the messages gVisor can generate. Since this list
does not contain any messages that other programs would write to the syslog, no false
positives are expected. In the second strategy, exactly 14 messages would need to be
present. While this strategy is the most likely of the three to cause a false positive,
production systems often have several hundreds of messages, making it improbable to
match this number by coincidence. In the third strategy the first and last three messages
would need to match gVisor’s hard-coded syslog messages. Since the first messages is
“Starting gVisor...”, it is practically impossible for even the first message to match, let
alone all of them simultaneously.

Since for all possible syslogs that gVisor possibly can generate, all of the three strategy
achieve a score of 100. For false negatives to occur the syslog would need to be changed.
gVisor, however, only implements the actions SIZE_BUFFER and READ_ALL for the SYSLOG
system call. Both of them are read-only operations.

Mitigation To defend against the detection strategies, the syslog needs to contain some-
thing different than all the possible syslog instances that gVisor possibly can generate.
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Because the SYSLOG system call only implements read-only actions, it cannot be modified
by a process running in the container, i.e., before starting the malware. Consequently,
the Generate function needs to be patched:

Listing 6.6: Patch to the Function Generating the Syslog
diff --git a/pkg/sentry/kernel/syslog.go b/pkg/sentry/kernel/syslog.go

index d03a14add ..3975653 b8 100644

--- a/pkg/sentry/kernel/syslog.go

+++ b/pkg/sentry/kernel/syslog.go

@@ -48,39 +48,32 @@ func (s *syslog) Log() []byte {

// Not initialized , create message.

allMessages := [] string{

- "Synthesizing system calls ...",

- "Mounting deweydecimalfs ...",

- "Moving files to filing cabinet ...",

[...]

- "Recruiting cron -ies...",

- "Verifying that no non -zero bytes made their way into /dev/zero ...",

- "Accelerating teletypewriter to 9600 baud ...",

+ "Bluetooth: hci0: corrupted SCO packet",

+ "usb 1-9: USB disconnect , device number 5",

+ "usb 4-2: Manufacturer: Generic",

+ "intel_rapl_common: Found RAPL domain package",

[...]

+ "input: PC Speaker as /devices/platform/pcspkr/input/input6",

+ "ACPI: button: Power Button [PWRF]",

+ "device -mapper: uevent: version 1.0.3" ,

+ "systemd [1]: Starting modprobe@fuse.service - Load Kernel Module fuse ...",

}

selectMessage := func() string {

@@ -96,22 +89,16 @@ func (s *syslog) Log() []byte {

const format = " <6 >[%11.6f] %s\n"

- s.msg = append(s.msg , []byte(fmt.Sprintf(format , 0.0, "Starting gVisor ..."))...)

+ s.msg = append(s.msg , []byte(fmt.Sprintf(format , 0.0, "Linux version 4.4-amd64 (

debian -kernel@lists.debian.org) (gcc -12 (Debian 12.2.0 -14) 12.2.0 , GNU ld (GNU

Binutils for Debian) 2.40) #1 SMP PREEMPT_DYNAMIC Debian 6.1.94 -1 (2024 -06 -21)"))...)

time := 0.1

- for i := 0; i < 10; i++ {

+ n := 5 + rand.Intn(len(allMessages) - 4)

+

+ for i := 0; i < n; i++ {

time += rand.Float64 () / 2

s.msg = append(s.msg , []byte(fmt.Sprintf(format , time , selectMessage ()))...)

}

- time += rand.Float64 () / 2

- s.msg = append(s.msg , []byte(fmt.Sprintf(format , time , "Setting up VFS ..."))...)

- time += rand.Float64 () / 2

- s.msg = append(s.msg , []byte(fmt.Sprintf(format , time , "Setting up FUSE ..."))...)

-

- time += rand.Float64 () / 2

- s.msg = append(s.msg , []byte(fmt.Sprintf(format , time , "Ready !"))...)

-

// Return a copy.

o := make ([]byte , len(s.msg))

copy(o, s.msg)

In this proof of concept defense (Listing 6.6) three changes were made to the source of the
gVisor version release-20240715.0 (git tag). Firstly, the messages were replaced with
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messages that can be found on real machines. Secondly, the hard-coded messages were
removed, such that now only the first is hard-coded and its content was replaced with a
message resembling a native machine more closely. Lastly, instead of generating the fixed
amount of 14 messages, the number of messages is now randomized.

Listing 6.7 shows how the patch was applied to gVisor’s source code, how gVisor was
compiled thereafter and the patched runtime was installed to the system.

Afterwards, the malware was executed using the unmodified Dockerfile and helper script
on the patched runtime. All of the three strategies now return a score of 0, verifying the
proof of concept.

Listing 6.7: Application of the Patch and Compilation and Installation of gVisor

1 # Preparing source code

2 git clone https :// github.com/google/gvisor.git

3 cd gvisor

4 git checkout release -20240715.0

5 git apply <patch -dir >/ syslog.patch

6
7 # Building

8 mkdir -p bin

9 make copy TARGETS=runsc DESTINATION=bin/

10
11 # Backup old runsc and install patched version

12 sudo mv /usr/bin/runsc runsc_usr_bin.bak

13 sudo mv /usr/local/bin/runsc runsc_usr_local_bin.bak

14 sudo cp ./bin/runsc /usr/local/bin

A productive application, like a malware analysis tool, could build on this patch and
replace the entire selectMessage function with a more sophisticated generation of the
messages than simply drawing them from a predefined list.

6.3.3 Intel RAPL

Reliability The strategy intel_rapl that checks for the presence of relevant sysfs files
and directories in combination with CPU information is less reliable than the previous
strategies. On the one hand it fails on non-intel CPUs, giving no information at all, and
on the other hand would also require a more sophisticated method of checking whether a
CPU supports RAPL.

False negatives happen if the malware detects an Intel CPU but the RAPL powercap
files do not exist in the sysfs directory. In its current state the malware simply checks
the vendor in the CPU information and assumes RAPL compatibility when it is an Intel
processor. To avoid false negatives on processors pre-Sandybridge, the model name would
need to be taken into account in combination with information about which CPU models
support RAPL. Beyond that, false negatives could also happen if the CPU supports RAPL
but the distribution makes the information unavailable in the sysfs directories. This is
possible using the CONFIG_POWERCAP or CONFIG_INTEL_RAPL kernel options [36]3. To

3drivers/powercap/Kconfig lines 17 - 36



44 CHAPTER 6. EVALUATION

estimate the likelihood of encountering an environment with such a kernel configuration,
experiments were conducted on different machines with different distributions. In table 6.3
the RAPL column denotes whether the CPU supports RAPL. The Sysfs Files column
then shows whether the Distribution using the specified Kernel Release made the RAPL
information available via the sysfs file system in the experiments.

Table 6.3: Experiment: RAPL Support and Availability of Sysfs Files
CPU Distribution Kernel Release RAPL Sysfs Files
Intel i5-7300U Debian Bookworm 6.5.0-44-generic ✓ ✓
Intel i5-7300U Fedora 40 Workstation 6.8.5-301.fc40.x86 64 ✓ ✓
Intel i5-7300U Ubuntu 24.04 LTS 6.8.0-31-generic ✓ ✓
Intel i5-7300U Alpine 3.20.2 6.6.41-0-lts ✓ ✓
Intel i5-8350U Artix 6.9.7-artix1-1 ✓ ✓
Intel Xeon E5-2407 Debian Bookworm 6.1.0-22-amd64 ✓ ✓
AMD Athlon G. 3150U Fedora 40 Workstation 6.9.9-200.fc40.x86 64 ✓ ✓
AMD Athlon G. 3150U Debian Stretch 4.9.0-9-amd64 ✓ ✗
BCM2835 RPi OS 12 6.1.21-v7+ ✗ ✗

The experiments present two findings. Firstly, the proposed method of checking for RAPL
support using a list of CPU models and whether they support RAPL, not only avoids false
negatives on pre-Sandybridge Intel processors, but extends the range of machines the
strategy is applicable on, because some non-Intel CPUs support RAPL as well. Secondly,
it shows that none of the modern tested distributions prohibit access to RAPL via the
sysfs files on RAPL-supporting CPUs, but very old distributions might not support it.
This suggests reliability against false positives only on newer distributions.

Mitigation In it’s current version, only the files need to be present. gVisor, however,
currently does not support mounting volumes to this directory with the -v option, nor can
the files be created after the container was started, as the directory is mounted read-only.

In order to solve this problem, and to avoid the detection through the analysis of the con-
tent of the RAPL files (e.g., checking that energy_uj increases), a power-based namespace
could be added to the Linux kernel which estimates the share of the host’s power usage
caused by processes within the container, as proposed by [7].

6.3.4 Dockerenv and Dockerinit

Reliability When gVisor is used via Docker, no false negatives are expected to hap-
pen. Currently, Docker always creates the file, without providing an option to disable it.
However, gVisor can also be used to run Kubernetes pods in its sandbox. Executing the
malware in a gVisor-backed pod in Minikube 1.33.1 showed that the .dockerenv file is
not created in Kubernetes, and consequently this strategy returns a wrong score. False
positives, however, are not expected since native machines do not create the file.
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Mitigation One way to mitigate this detection vector is to simply remove the .dockerenv
file in the container before the malware is started. Although not possible during the build
process of the container image, for malware analysis tools this can be a valid option, as
they have control over when the malware is executed.

Listing 6.8: Dockerfile Mitigating the dockerenv Strategy

1 FROM debian:bookworm

2
3 COPY prototype /opt/prototype

4 CMD rm /. dockerenv && /opt/prototype

Caution, however, must be taken with unintended side-effects. For example moby’s
enableBridgeNetFiltering function depends on the file [30]4.

6.3.5 Meminfo

Reliability As the investigation of gVisor’s source code in chapter 4 showed, three char-
acteristics of gVisor’s can be used to detect its presence. These were implemented in three
strategies in the malware:

1. meminfo_attributes

2. meminfo_zeros

3. meminfo_typo

False negatives are expected in none of the three strategies, because the returned attributes
and hard-coded 0 kB values are deterministicly generated in gVisor’s kernel.

For false positives to occur in the first strategy, a native machine would need to be running
with a kernel that disabled exactly those features that produce the attributes that are
missing in gVisor, which is unlikely to happen by coincidence.

In the strategy meminfo_zeros all the values that are hard-coded to be 0 kB in gVisor
would need to be 0 on a native machine to cause a false positive. For some of the attributes
that is a plausible scenario to encounter on a productive native machine, for example, a
machine with no swap file or partition will have a value 0 kB in the three swap attributes.
For others, like Unevictable, Mlocked or Dirty, the likelihood is lower, and is further
reduced because they need to all be 0 simultaneously. Yet, it is the most likely strategy
to cause a false positive of these three.

For the strategy meminfo_typo, false positives are not expected, since the Linux kernel
does not generate an attribute called SwapCache.

4moby/libnetwork/drivers/bridge/setup_bridgenetfiltering.go lines 48 - 65 and 76 - 79
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Mitigation The /proc/meminfo file cannot simply be written to, making it difficult to
prevent this detection mechanism in the current state of gVisor. Consequently, gVisor’s
generation of the meminfo file would need to be patched.

The first strategy meminfo_attribute only relies on the set of meminfo attributes being
available, a scenario which could possibly also happen on a native machine with very
restricted kernel options. Implementing more of the features that are commonly present
in Linux, for example huge pages, would reduce its distinctive character. The strategy
meminfo_zeros uses the hard-coded 0 kB values. For some of the attributes this does
not necessarily require mitigation, i.e., the swap values. For others, like Unevictable and
Mlocked, gVisor would need to be able to oversee which parts of the memory used by pro-
cesses within the container have been locked to prevent it from being swapped [42]. Finally,
the meminfo_typo can very easily be mitigated by correcting the name of the SwapCache
attribute to SwapCached in the file pkg/sentry/fsimpl/proc/tasks_files.go

6.3.6 Sysfs DMI Information

Reliability The strategy strat_available_dmi_info depends on the sysfs files provid-
ing DMI information in the directory /sys/devices/virtual/dmi/id. To detect gVisor,
it relies on the fact, that product_name is present while all other files in this directory
are missing. Since gVisor has no functionality to create the other files, false negatives are
not expected.

On Linux, on the other hand, these files are generally expected to be present, most of
them even being readable by unprivileged users [21]. Therefore, no false positives should
happen.

Mitigation In the current state of gVisor, the function that adds the specific inode
for the product_name sysfs file, has no functionality to create further files [27]5. This,
however, is necessary to defend against this detection mechanism, because the directory
/sys/devices/virtual/dmi/id/ is a read-only directory, making it impossible for a pro-
cess within the container to create the files before the malware is executed.

As a proof of concept, gVisor’s creation of the id sysfs directory was patched (Listing 6.9),
adding the functionality to provide the bios_date file. In this proof of concept the bios
date is set to the date the container was started.

Listing 6.9: Patch to the Function Adding the inodes in the id Sysfs Directory
1 diff --git a/pkg/sentry/fsimpl/sys/sys.go b/pkg/sentry/fsimpl/sys/sys.go

2 index 161 e282d4 ..05 d3875bc 100644

3 --- a/pkg/sentry/fsimpl/sys/sys.go

4 +++ b/pkg/sentry/fsimpl/sys/sys.go

5 @@ -21,6 +21,7 @@ import (

6 "os"

7 "path"

8 "strconv"

9 + "time"

10

5pkg/sentry/fsimpl/sys/sys.go lines 85 - 200
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11 "golang.org/x/sys/unix"

12 "gvisor.dev/gvisor/pkg/abi/linux"

13 @@ -176,6 +177,7 @@ func (fsType FilesystemType) GetFilesystem(ctx context.Context ,

vfsObj *vfs.Virt

14 "dmi": fs.newDir(ctx , creds , defaultSysDirMode , map[string]kernfs.Inode{

15 "id": fs.newDir(ctx , creds , defaultSysDirMode , map[string]kernfs.Inode{

16 "product_name ": fs.newStaticFile(ctx , creds , defaultSysMode ,

productName +"\n"),

17 + "bios_date ": fs.newStaticFile(ctx , creds , defaultSysMode , time.Now().

Format ("01/02/2006") +"\n"),

18 }),

19 }),

20 })

The patch (Listing 6.9) was then applied to the source code of gVisor at the git tag
release-20240715.0. Afterwards, gVisor was compiled and the patched runtime was
installed on the system, similar to the application of the previous patch (Listing 6.7), but
replacing the patch name in line 5.

The malware was then run in a container backed by the patched runtime using the un-
modified Dockerfile and helper script. The achieved score of 70 of the strategy in question,
demonstrates that adding the creation of the remaining files will defend against this de-
tection mechanism. Since most of the files contain very general information, gVisor could
easily implement the generation of real-seeming information for the remaining files in that
directory.

6.3.7 Uptime and Idle Time in the proc Filesystem

Reliability The strategy proc_combined_idle_time uses the fact that the combined
idle time reported by gVisor in the file /proc/uptime is hard-coded to always be 0. Since
it is hard-coded, no false negatives should occur. As the time is reported in seconds with
two decimal places, for a false positive to occur, the combined idle time would need to be
less than 10 ms on a native machine, which is unrealistic to encounter on most productive
Linux machines.

Mitigation gVisor relies on the isolation mechanism cgroups to limit the allowed re-
sources usage of a container [10]. To isolate the /proc/uptime file properly, Sentry could
attempt to combine the assigned CPU limit with the actual CPU usage of the processes
within the container to infer a reasonable idle time.

For applications which simply want to prevent the detection of gVisor but do not require
a correct idle time, a defense mechanism is proposed by patching gVisor’s kernel, Sentry :
gVisor already computes a correct uptime and stores it in its kernel. When a process
requests the combined idle time, i.e., by accessing /proc/uptime the time between this
request i and the previous request i − 1 is computed as ∆t. For this time interval, the
relative idle time pi will randomly be chosen between 0.5 and 1.0, signifying that the
CPUs have been idling between 50 % and 100 % of the time. Additionally, the number
of CPUs nproc will be taken into account by taking the product of these three values,
resulting in the combined idle time in the interval ∆t. This will be added to the idle time
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that was returned on the last request cii−1 resulting in the new total combined idle time.
This ensures that the value is increasing monotonically.

∆t = ti − ti−1 (Time interval since last request)

pi← [0.5, 1.0] (Choose relative idle time in this interval)

cii = cii−1 + (∆t · pi · nproc) (Update the combined idle time)

The Patch (Listing 6.10) shows how this was implemented in gVisor. First, gVisor’s
kernel in pkg/sentry/kernel/kernel.go was modified and two integer fields were added:
The first combinedIdleTimeLastRequest stores the Unix time of the last request in
milliseconds6. The second variable combinedIdleTimeLastValue stores the value that
was returned on the last request. Additionally, the function CombinedIdleTime was
added to the kernel. When called, it updates the combined idle time stored in the kernel
as described in the equations above.

Finally, the Generate function in pkg/sentry/fsimpl/proc/tasks_files.go was mod-
ified by replacing the hard-coded 0 value with the correct retrieval of the idle time from
the kernel.

Listing 6.10: Patching the Combined Idle Time in the proc Filesystem
1 diff --git a/pkg/sentry/fsimpl/proc/tasks_files.go b/pkg/sentry/fsimpl/proc/tasks_files.

go

2 index 37 bcff1f2 ..3 e0b1c228 100644

3 --- a/pkg/sentry/fsimpl/proc/tasks_files.go

4 +++ b/pkg/sentry/fsimpl/proc/tasks_files.go

5 @@ -324,8 +324,7 @@ func (* uptimeData) Generate(ctx context.Context , buf *bytes.Buffer)

error {

6 k := kernel.KernelFromContext(ctx)

7 now := time.NowFromContext(ctx)

8
9 - // Pretend that we’ve spent zero time sleeping (second number).

10 - fmt.Fprintf(buf , "%.2f 0.00\n", now.Sub(k.Timekeeper ().BootTime ()).Seconds ())

11 + fmt.Fprintf(buf , "%.2f %.2f\n", now.Sub(k.Timekeeper ().BootTime ()).Seconds (), float64

(k.CombinedIdleTime ()) / 1000)

12 return nil

13 }

14
15 diff --git a/pkg/sentry/kernel/kernel.go b/pkg/sentry/kernel/kernel.go

16 index 230 ed9742 ..13 c9928c9 100644

17 --- a/pkg/sentry/kernel/kernel.go

18 +++ b/pkg/sentry/kernel/kernel.go

19 @@ -35,6 +35,8 @@ import (

20 "errors"

21 "fmt"

22 "io"

23 + "math"

24 + "math/rand"

25 "path/filepath"

26 "time"

27
28 @@ -153,6 +155,8 @@ type Kernel struct {

29 // See InitKernelArgs for the meaning of these fields.

30 featureSet cpuid.FeatureSet

31 timekeeper *Timekeeper

32 + combinedIdleTimeLastRequest int64

33 + combinedIdleTimeLastValue int64

6Milliseconds since 1970-01-01
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34 tasks *TaskSet

35 rootUserNamespace *auth.UserNamespace

36 rootNetworkNamespace *inet.Namespace

37 @@ -379,6 +383 ,11 @@ type InitKernelArgs struct {

38 // Timekeeper manages time for all tasks in the system.

39 Timekeeper *Timekeeper

40
41 + // Stores the time and returned value of the last access of the combined

42 + // idle time in milliseconds.

43 + CombinedIdleTimeLastRequest int64

44 + CombinedIdleTimeLastValue int64

45 +

46 // RootUserNamespace is the root user namespace.

47 RootUserNamespace *auth.UserNamespace

48
49 @@ -440,6 +449 ,10 @@ func (k *Kernel) Init(args InitKernelArgs) error {

50
51 k.featureSet = args.FeatureSet

52 k.timekeeper = args.Timekeeper

53 +

54 + k.combinedIdleTimeLastRequest = k.timekeeper.Now().UnixMilli ()

55 + k.combinedIdleTimeLastValue = 0

56 +

57 k.tasks = newTaskSet(args.PIDNamespace)

58 k.rootUserNamespace = args.RootUserNamespace

59 k.rootUTSNamespace = args.RootUTSNamespace

60 @@ -1482,6 +1495 ,25 @@ func (k *Kernel) Timekeeper () *Timekeeper {

61 return k.timekeeper

62 }

63
64 +// Returns a forged combined idle time in milliseconds , internal variable is

65 +// updated on request

66 +func (k *Kernel) CombinedIdleTime () int64 {

67 + // Calculate time in seconds since the last request

68 + lastRequest := k.combinedIdleTimeLastRequest

69 + now := k.timekeeper.Now().UnixMilli ()

70 + lastRequestDiff := now - lastRequest

71 +

72 + // Randomly decide how much of the interval since the last request was idle

73 + // (between 50% and 100%)

74 + idlePercentage := 0.5 + rand.Float64 () * 0.5

75 +

76 + // Store time of this request and update idle time

77 + k.combinedIdleTimeLastRequest = now

78 + k.combinedIdleTimeLastValue += int64(math.Round(float64(lastRequestDiff) *

idlePercentage * float64(k.ApplicationCores ())))

79 +

80 + return k.combinedIdleTimeLastValue

81 +}

82 +

83 // TaskSet returns the TaskSet.

84 func (k *Kernel) TaskSet () *TaskSet {

85 return k.tasks

The patch was applied to gVisor’s source code at tag release-20240715.0, similar to
the previous patch (Listing 6.7) but replacing the patch name in line 5. Executing the
malware on the patched runtime by using the unmodified Dockerfile and helper script,
showed that the strategy now returns a score of 0, demonstrating the effectiveness of the
defense mechanism.

6.3.8 Unimplemented Syscalls

Reliability The system calls that the malware checks are all implemented with one of
these functions in gVisor:



50 CHAPTER 6. EVALUATION

• syscalls.Error

• syscalls.ErrorWithEvent

• syscalls.CapError

While the first two always return the hard-coded error, specifyied in gVisor’s source code,
the last one depends on the environment. Here, the malware assumes that no special
capabilities are granted to the container it is running in. If that is the case, however,
the affected system calls will falsify the result. While the impact is small, since only the
system calls implemented with syscalls.CapError are affected, and of those only exactly
those whose required capabilities are granted, it is still possible to improve the malware in
this regard. To improve the reliability in these scenarios, where non-default capabilities
are granted, the malware could simply rely on the system calls that are implemented as
syscalls.Error or syscalls.ErrorWithEvent in gVisor.

Another possibility, which does not reduce the amount of system calls that can be used for
detection, is to implement a more fine-grained checking mechanism for system calls using
syscalls.CapError which would check which capabilities it holds and determine with this
information, what gVisor would respond. This only requires knowledge about gVisor’s
syscall-capability mapping, as each system call implemented like this, can only return
ENOSYS or EPERM [27]7. For each system call this solely depends on a single capability
which is hard-coded in pkg/sentry/syscalls/linux/linux64.go.

Mitigation Preventing this strategy is likely the most challenging of the presented detec-
tion mechanisms, as it would require gVisor to respond to every system call in the same
way Linux 4.4 would. It is improbable that gVisor will implement all missing system calls
in the near future, not least because Google has explicitly decided not to do so for some
of them [43].

As an alternative to ensuring that these characteristics are removed by modifying gVisor,
for many applications it might be more practical to reduce the amount of assumptions
a malware can make in gVisor’s environment. For example, an additional user could be
created within gVisor and instead of executing processes as root, the regular user could
be used. When the malware is not running with UID 0, it cannot expect as many system
calls to work.

6.3.9 Modifying the Kernel Ring Buffer

Reliability Since gVisor is hard-coded to respond to all actions apart from READ_ALL

and SIZE_BUFFER with the ENOSYS error, no false negatives are expected. Executing the
syslog system call with the action CLEAR on native Linux should either successfully clear
the ring buffer, or return a permission error. Thus, no false positives should happen either.

7pkg/sentry/syscalls/syscalls.go lines 111 - 128
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Mitigation In order to prevent this detection mechanism, gVisor would need to imple-
ment the missing actions of the syslog system call. Sentry already keeps a log of messages
that it can return on the READ_ALL buffer. While no quick workaround is possible to fix
this, implementing the remaining actions is feasible.
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Chapter 7

Summary and Conclusions

The investigation of the various ways to detect gVisor, shows that virtualization entails a
large attack surface for detection. While the Linux kernel has many features to provide
isolation, which is extended by gVisor’s additional security features, such as intercepting
system calls, perfectly isolating a container to make its detection impossible, is very
challenging.

As the evaluation of the malware showed, in the current state, a malware that specifically
targets gVisor in order to not be analyzed in a gVisor-based analysis tool, it is able to
reliably and efficiently detect it and shut down its malicious behavior.

Yet, many detection mechanisms can be mitigated to such a degree which suffices for many
use-cases. Specifically, in the case of container-based malware analysis tools or honeypots,
it does not need to be completely impossible to detect its underlying virtualization. At
the very least, when the detection requires such complexity or time, that the attempt to
detect the virtualization can in itself be detected as malicious, the respective detection
mechanism is sufficiently mitigated for many use-cases.

7.1 Future Work

In future work two things can be done. Firstly, since the focus of this work is mainly
the detection, many of the mitigation techniques were shown simply as a proof of con-
cept, some of which needing a complete implementation to be applicable in productive
applications.

Secondly, the detection strategies investigated in this work use the characteristics of
the virtualized environment for its detection. Since gVisor intercepts system calls, they
are handled differently than on a native Linux machine. Future work could investigate
whether this leads to distinctive timing differences which could be used as a side-channel
for detecting the presence of gVisor’s application-level kernel. Similar to the work of [19]
on virtual machines, both sources of indicators could then potentially be fused to improve
the reliability through the additional timing analysis, while maintaining the efficiency of
the characteristics analysis in the general case.
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Abbreviations

BIOS Basic Input Output System
CGroup Control Group
CPU Central Processing Unit
CVE Common Vulnerabilities and Exposures
FS File System
GCE Google Compute Engine
GDT Global Descriptor Table
I/O Input / Output
LXC Linux Containers
NN Neural Network
OS Operating System
SMBIOS System Management BIOS
UID User Identifier
VMM Virtual Machine Monitor
VM Virtual Machine
eBPF Extended Berkeley Packet Filter

59



60 ABBREVIATONS



Glossary

Containerization Containerization is a form of virtualization that uses features built into
the host’s kernel to achieve its isolation and generally does not use virtualized hard-
ware.

Isolation Isolation refers to the mechanism of hiding the presence of processes and their
actions from each other. A resource is properly isolated, if, instead of hiding the
resource altogether, an identical interface is provided but only provides the part of
the data that belongs to the same domain.

Virtualization Virtualization allows the creation of multiple virtual computers on the
same physical host.
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Appendix A

Installation Guidelines

Detailed setup instructions are provided in the README.md.
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