Communication Systems Group, Prof. Dr. Burkhard Stiller

BACHELOR THESIS

University of
Zurich™

7

Design and Implementation of a
System for Reproducible Machine
and Deep Learning Models

Viachaslau Berasneu
Zlrich, Switzerland
Student ID: 20-734-109

Supervisor: Dr. Alberto Huertas, Jan von der Assen
Date of Submission: September 13, 2023

University of Zurich
Department of Informatics (IFI)
Binzmuhlestrasse 14, CH-8050 Zirich, Switzerland —

Bachelor Thesis

Communication Systems Group (CSQ)
Department of Informatics (IFI)

University of Zurich

BinzmUhlestrasse 14, CH-8050 Ztirich, Switzerland
URL: http://www.csg.uzh.ch/

Zusammenfassung

In den letzten Jahren sind kleine und mittlere Unternehmen (KMU) zunehmend von
Technologie abhingig geworden, investieren jedoch weniger in die Cybersicherheit. Dies
macht sie anfillig fiir Malware-Angriffe, die sich zunehmend auf Unternehmen anstelle von
Einzelpersonen konzentrieren und erhebliche wirtschaftliche Auswirkungen haben. Dieses
Projekt schlagt die Entwicklung und Implementierung eines Prototyp-Tools vor, das es er-
moglicht, Maschinenlernmodelle innerhalb der SecBox-Sandbox-Umgebung zu trainieren,
zu speichern und zu testen. Sowohl Klassifikations- als auch Anomalieerkennungsmodelle
werden {iber Scikit-learn implementiert, um Vorhersagen iiber bekannte Malware-Typen
(binédre und multiklassige Klassifikation) sowie die Erkennung von unbekannter Malware in
Echtzeit wihrend der Ausfithrung in der SecBox bereitzustellen. Die Modelle werden mit
den Protokollen zur Ausfithrung von Systemaufrufen und Ressourcennutzung trainiert, die
aus der SecBox verfiighar sind, und in geeignete Formate umgewandelt, indem datenba-
sierte und sequenzbasierte Datenvorverarbeitung verwendet wird. Die Reproduzierbarkeit
der Modelle wird durch die Erstellung von Konfigurationsdateien mit Verweisen auf die
Zufallsseed-Werte, die in der Schulung verwendeten Datensdtze und andere Modellpa-
rameter sichergestellt, die zur erneuten Schulung desselben Modells verwendet werden
konnen. Zur Bewertung und Vergleich der Modellleistung wird jeder Modelltyp in einem
realistischen Szenario der Ausfithrung von Monti-Ransomware innerhalb der SecBox ge-
testet, wobei eine Verwirrungsmatrix erstellt sowie Genauigkeits-, Préazisions-, Riickruf-
und F1-Score-Metriken auf der Grundlage der Modellvorhersagen berechnet werden. Die
Systemaufruf-Klassifikatormodelle zeigen die beste Leistung bei der Klassifizierung von
Monti-Malware-Proben, und das Projekt schlieft mit der Angabe mehrerer relevanter
Forschungsbereiche ab, die weiter untersucht werden sollen.

1

Abstract

In recent years, small and midsize enterprises (SMEs) have become increasingly reliant
on technology, but lag in terms of investment into cybersecurity. This renders them
vulnerable to malware attacks, which are increasingly targeting companies rather than
individuals, with great economic impact. This project proposes and implements a pro-
totype tool, which allows for machine learning models to be trained, stored, and tested
within the SecBox sandbox environment. Both classification and anomaly detection mod-
els are implemented through Scikit-learn, in order to provide predictions about known
malware types (binary and multiclass classification), as well as detecting the presence
of unseen malware in real-time during the SecBox execution. The models are trained
using the system call and resource usage file execution logs available from the SecBox,
which are transformed into suitable formats using frequency-based and sequence-based
data preprocessing. Model reproducibility is ensured by generating configuration files
with references to the random seeds, the datasets used in training, as well as other model
parameters, which can be used to re-train the same model. To evaluate and compare
model performance, each model type is tested in a realistic scenario of the execution of
Monti ransomware within the SecBox, creating a confusion matrix as well as calculat-
ing the accuracy, precision, recall and F1-score metrics based on the model predictions.
The system call classifier models are shown to have the best performance when classify-
ing Monti malware samples, and the project is concluded by specifying several relevant
research areas to be investigated further.

iii

v

Acknowledgments

Dr. Alberto Huertas and Jan von der Assen, who supported and guided me on this
project.

Prof. Dr. Burkhard Stiller, for providing me the opportunity to write this thesis at the
Communication Systems Group.

vi

Declaration of Independence for Written
Work

I hereby declare that I have composed this work independently and without the use of any
aids other than those declared (including generative Al such as ChatGPT). I am aware
that I take full responsibility for the scientific character of the submitted text myself,
even if Al aids were used and declared (after written confirmation by the supervising
professor). All passages taken verbatim or in sense from published or unpublished writings
are identified as such. The work has not yet been submitted in the same or similar form
or in excerpts as part of another examination.

Ziirich, 13.09.2023 @

A}

Signature of student

vil

viil

Contents

Zusammenfassung

Abstract

Acknowledgments
Declaration of Independence

1 Introduction

1.1 Motivation
1.2 Description of Work
1.3 Thesis Outline

2 Background

2.1 Sandboxing
2.2 Malware Analysis
2.2.1 Static Malware Analysis L.
2.2.2 Dynamic Malware Analysis,
2.2.3 Hybrid Malware Analysis.
2.3 Datasets Modeling Malware Behaviors
2.3.1 Static Datasets
2.3.2 Dynamic Datasets
2.4 Machine Learningo
2.4.1 Introduction to Machine Learning
2.4.2 Machine Learning Pipeline

X

X CONTENTS

3 Related Work 11
3.1 Methodology 11
3.2 Sandbox Systems 11
3.3 Machine Learning Cybersecurity Solutions 14

4 Requirements and System Design 17
4.1 System Requirements L 17

4.1.1 Available Data 17
4.1.2 Algorithm Choices, 18
4.1.3 Data Preprocessing 19
4.2 System Design 19
4.2.1 General Architectureo 19
4.2.2 Model Trainer Code Section 21
4.2.3 Data Manager Code Section, 22
424 Front-end Charts L 22

5 Prototypical Implementation 25
5.1 Imitial Test Runs 25
5.2 Implementing the Model Trainer 27

5.2.1 System Call Data 27
5.2.2 Resource Usage Data 29
5.2.3 Model Training Library 29
5.2.4 Trainer Implementation 30
5.2.5 Storing the Trained Models 31
5.3 Extending the Data Manager 32
5.3.1 Classifier Manager, 32
5.3.2 Anomaly Detector Manager, 34
5.4 Extending the Front-End Interface 34
5.4.1 Model Selector 34

5.4.2 Malware Analysis Tables, 35

CONTENTS

6 Prototype Evaluation

6.1 Generating the Test Data Set

6.2 Model Resource Efficiency oL

6.3 Model Effectiveness

6.3.1
6.3.2
6.3.3
6.3.4

6.3.5

Accuracy

Precision

Recall

F1-Score

Interpreting the Numerical Results

6.4 Model Reproducibility and Explainability

7 Summary and Conclusions

7.1 Summary of Work Conducted and Conclusion of Main Findings

7.1.1
7.1.2
7.1.3
7.1.4

7.1.5

Introduction

Background

Related Work

7.2 Further Work

7.2.1

7.2.2

7.2.3

7.2.4

Bibliography

Abbreviations

Realistic Representation of Sandbox Behavior

Changing how the Resource Usage Data is Provided to the Model

Trainer

Training the Models from the Front-End

Integrating the Models” Explainable Metrics into the Front-End In-

terface

x1

37

37

40

41

43

43

44

44

44

45

47
47
47
47
48
48
49
49
49

49

20

20

o1

53

57

xil

Glossary

List of Figures

List of Tables

A Installation Guidelines

CONTENTS

59

59

61

65

Chapter 1

Introduction

This chapter describes the motivation behind the project, and outlines the tasks necessary
to fulfill the overall goal.

1.1 Motivation

Technology has become a ubiquitous part in the modern world, with a variety of enter-
prises making an effort to implement technological solutions to the tasks they perform.
For example, pharmaceutical companies are attempting to integrate digital technologies
into their value chains [1], part manufacturers are exploring the concept of human-robot
collaboration in order to improve the efficiency of existing manufacturing processes [2],
and machine learning tools have shown a lot of promise in predicting price trends within
stock exchange markets [3].

However, this newfound reliance on technology poses great risks, as malicious actors seek
to exploit such systems. They are aided by the lack of experience on the side of small and
midsize enterprises (SMEs), who are becoming increasingly reliant on such technologies
(such as computerized order entry systems in hospitals) [4], yet often lack the resources or
do not see the need to invest in advanced cybersecurity solutions to safeguard themselves
from attacks [5].

Due to this, there have been noticeable changes in the nature of malware attacks - rather
than targeting individual users, many malicious actors now choose to attacks SMEs, for
example through ransomwares such as the WannaCry, Erebus, and SamSam viruses, with
the economic consequences often exceeding a million dollars per company [6].

Standard antiviruses, which have previously been the answer for protection against such
attacks, cannot always detect new forms of malware, which can be the case for variations
of malware from the same family, or other, unknown (zero-day) exploits [7]. However, a
modern solution to this problem is becoming apparent - machine learning can be applied
to detect malware within systems, offering tools for both the detection of known malware

2 CHAPTER 1. INTRODUCTION

types, as well as the detection of malware making use of previously unknown vulnerabilities

8]-

Such tools can safely be implemented into existing enterprise architectures through a
sandbox environment. This process is relatively cheap (meaning that it is applicable for
small and midsize enterprises), and provides an environment in which files can be ran and
analyzed without the risk of damage to the underlying system [9].

Therefore, there exists a need for a cheap, reliable machine learning tool for malware
detection within the systems of small and midsize enterprises, which is described by this

paper.

1.2 Description of Work

In this thesis, a study is conducted into the mechanisms offered by machine learning
for malware detection and analysis within sandbox systems. Existing works within the
subjects of "Machine Learning Malware Cybersecurity Solutions” and "Sandbox Systems”
are reviewed and critically evaluated, and a design for a machine learning malware analysis
sandbox system is proposed, outlining the requirements behind a successful system, and
how the system’s architecture is implemented.

The proposed design is implemented as a prototype, extending the existing SecBox sand-
box system with machine learning pipelines, in particular Decision Tree and Naive Bayes
supervised learning models, and Local Outlier Factor and Isolation Forest unsupervised
learning models, with the underlying model training mechanism allowing additional mod-
els to be trained in a simple, reproducible manner.

The implementation is done in Python, and the trained models are used to generate pre-
dictions in real-time with regards to files that the SecBox is executing and monitoring.
The models are then evaluated with regards to their usefulness and resource usage in a
realistic scenario dealing with a Monti ransomware execution within the SecBox environ-
ment.

Finally, the findings of this project are concluded, and possible next steps are proposed,
with regards to research areas that are identified as important, and may improve the
implemented prototype solution.

1.3 Thesis Outline

Chapter 1 outlines the increasing dependence of SMEs on technology, as well as their lack
of investment into existing cybersecurity measures, resulting in increased risk of malware
attacks. It establishes the need for a machine learning malware analysis tool, and outlines
the structure of this project with regards to the design, implementation and evaluation
of this tool.

1.3. THESIS OUTLINE 3

Chapter 2 looks into the underlying concepts behind a reproducible, machine learning
malware analysis system. In particular, sandboxes are discussed with regards to how vir-
tualization techniques allow for safe malware execution without risk to the host machine,
malware analysis is discussed in terms of static, dynamic and hybrid malware analysis
techniques (and which data they require), and machine learning is discussed in terms of
problem types and the machine learning pipelines that are used to train and evaluate
models.

In Chapter 3, research is conducted into existing works within the topics of "Machine
Learning Cybersecurity Solutions” and "Sandbox Systems”. Each cybersecurity solution
is critically evaluated in terms of its data format requirements, data processing techniques,
machine learning models implemented, as well as metrics such as the solution’s account-
ability and reproducibility of the trained models. Each sandbox system is evaluated in
terms of its system requirements, runnable file types, virtualization technique, as well as
whether the sandbox is open source, maintained and accountable. SecBox is selected from
existing sandbox systems as the base system to expand upon within this project.

Within Chapter 4, a design is proposed for the prototype system. First, available data
from the SecBox environment is discussed, and choices are made regarding which data files
should be used for the model training. Then, the concrete machine learning algorithms are
chosen for both the classification and anomaly detection models, followed by a discussion
of the data preprocessing methods to be used. Lastly, the system design is outlined in
terms of its existing architecture and proposed changes.

Chapter 5 describes the prototypical implementation of the proposed design, outlining the
results of initial malware test runs within the SecBox interface, how the Model Trainer
module is implemented with regards to data processing, Scikit-learn model training library
and model storage, as well as how the Data Manger module is extended to fulfill the real-
time classification and anomaly detection tasks.

In Chapter 6, the implemented solution is evaluated, talking about how the test data
set was generated, how efficient each of the implemented machine learning models is in
terms of its resource usage, as well as how effective they are based on confusion matrices
and derived metrics. The numerical results are interpreted and explained, and the model
reproducibility is discussed.

Finally, Chapter 7 summarises the project, discussing the main findings for each section
of the project, as well as proposing topics that can be looked into in the future in order
to expand upon the project.

CHAPTER 1. INTRODUCTION

Chapter 2

Background

This section discusses the underlying concepts behind a reproducible machine and deep
learning malware analysis sandbox system. These can be split into several distinct sec-
tions.

2.1 Sandboxing

This section discusses the sandbozring technique and its applications in cybersecurity.

A sandbozx is a technique often used in cybersecurity, where an application can be encap-
sulated within the underlying host machine [10]. This allows the user to run a potentially
unsafe application (e.g. malware) in an environment similar to the host, exploring the ap-
plication’s effects through monitoring and visualization tools, without the risk of causing
damage to the host system.

Each sandbox is designed with specific operating systems in mind, and sometimes only
supports a limited number of file extensions in order to ensure the security of its environ-
ment.

The environment itself is created based on a virtualization technique [11]:

1. Full virtualization creates a virtual machine that fully simulates the host. The
program can then be run inside this virtual machine on its own operating system.
This is fairly slow, but very secure, as there is limited and controlled interaction
with the host system.

2. Containerization involves the program being run directly on the operating system
of the host computer through a container engine, which has the benefit of being
much faster compared to full virtualization, but is less secure, as a poorly designed
container can easily expose the user’s system to malicious actions.

6 CHAPTER 2. BACKGROUND

The SecBox environment is a good example of a sandbox environment, using containeriza-
tion to allow the user to run malware on a simulated system, with a malware-free version
running alongside. The data from both sandboxes (such as system calls and network
activity) is then recorded, providing opportunities to analyze the malware [12].

2.2 Malware Analysis

This section discusses malware analysis, its types and relevance for the proposed solution.

Malware analysis is the study of the functionality, purpose, origin, and potential impact
of malicious software. It is typically separated into 3 forms - Static Malware Analysis,
Dynamic Malware Analysis and Hybrid Malware Analysis.

2.2.1 Static Malware Analysis

The goal of static malware analysis is to understand a malware sample by studying its
source code, which would allow to understand the malware’s purpose without needing to
execute it on a device [13].

However, in practice, malware samples which can be collected from real systems are only
available as binaries - files which contain machine code, which cannot easily be converted
back into understandable high-level programming code needed to perform static analysis.
Decompiling such code for analysis purposes remains a challenge.

2.2.2 Dynamic Malware Analysis

In dynamic malware analysis, a malware sample is observed at runtime. This is achieved
by running it on a system, typically either on a virtual machine or inside a container
(which isolates the malware from other applications, but still allows it to access the
machine hardware) [14].

For example, the SecBoxr malware analysis sandbox runs a malware sample using container
virtualization inside a VM, alongside a non-infected sandbox, and logs resource usages
(such as CPU and RAM usage) for both, allowing users to see how various malware
samples affect system resources during their runtime.

2.2.3 Hybrid Malware Analysis

Hybrid malware analysis combines the previous two techniques, attempting to combine the
advantages and avoid the disadvantages of both. One way it can do so is by executing the
malware while performing dynamic analysis, and then performing static analysis on any
artifacts that were produced (such as changes in memory made by the malware), allowing

2.3. DATASETS MODELING MALWARE BEHAVIORS 7

for more useful information to be gathered about the malware sample in question, which
may yield better analysis results [15].

Of the three malware analysis methods, Dynamic Malware Analysis is the most relevant
type for the project, due to its usage within the SecBox environment to study the malware
sample’s effects at runtime.

2.3 Datasets Modeling Malware Behaviors

This section discusses datasets which can be used to represent malware and record its
actions.

In order to train a machine learning model to recognize and classify malware, a dataset
which models malware behaviors will be used. To help reproducibility of the machine-
learned model obtained from the data set, it must also be preprocessed in a uniform way
each time a model is trained (this aspect will be discussed in the next chapter).

Two possible dataset types exist - Static Datasets and Dynamic Datasets.

2.3.1 Static Datasets

Static datasets are collected through static malware analysis. They typically contain
features generated from the malware files (e.g. presence of specific keywords in the code,
or file hashes), as well as metadata related to the malware (e.g. file encoding and creation
date) [16]. These can be used to identify known malware samples, as well as those which
are similar to the samples in the training dataset.

2.3.2 Dynamic Datasets

Dynamic datasets are collected through dynamic malware analysis, and contain data
related to how the malware sample behaves at runtime - for example, CPU and RAM
usage, network packets sent and received, and system calls (requests from the program for
the system’s resources or services) among others. Such datasets provide better recognition
of heterogenous malware samples compared to static datasets [17].

2.4 Machine Learning

This section discusses machine learning and the machine learning pipeline.

8 CHAPTER 2. BACKGROUND

2.4.1 Introduction to Machine Learning

At its core, Machine Learning (ML) is a process of using historical data to create a
prediction algorithm for future data, which takes a (training) data set, and outputs a
model according to which, new data points can be evaluated.

There exist two main problem types for ML:

e Classification problems, where the goal is to assign an observation (data point) to
a specific category.

e Regression problems, where the goal is to predict numerical properties of an obser-
vation.

2.4.2 Machine Learning Pipeline

A typical machine learning component is implemented within a system through a machine
learning pipeline. Such a pipeline which can be outlined in 4 distinct phases [18]:

Data Preprocessing

The raw data needs to be prepared prior to training the model, as the data quality can
have major effects on the quality of the model.

First, the data is cleaned, which corrects any errors/invalid data in the data set, such as
by removing them altogether, or substituting them with other values (such as the data
set average).

Afterwards, Feature Engineering is performed, where certain input features are selected
or transformed in order to maximize the performance of the model. For example, Fea-
ture Encoding assigns numeric values to categorical variables. Or, Principal Component
Analysis can be used to represent the input data set through a smaller number of variables.

Lastly, Data Splitting is performed, where the data set is split into a training set, which
will be used to train the model, and a test set, which will be used to evaluate the model
performance. Conventional validation consists of a 70-30 split between the training and
test data, whereas cross-validation requires the model to be trained with multiple possible
splits of the data, which performs better for small data sets, where a split can hide
statistical properties of the data.

2.4. MACHINE LEARNING 9

Model Training

The preprocessed data is given to a selected machine learning algorithm, which attempts
to learn patterns from the data set. A multitude of ML algorithms exist [19]:

Supervised learning algorithms are trained using a labeled data set, and use probabilities
of previously observed events to infer probabilities for new data.

Unsupervised learning algorithms are given unlabeled data, try to infer patterns from it,
and apply these to new data.

Model Validation

To test the prediction accuracy of the model, its performance on the test data set is
evaluated, measuring metrics such as:

1. Precision: True Positives / (True Positives + False Positives)

2. Recall: True Positives / (True Positives + False Negatives)

3. F1 score: 2 * (Precision * Recall) / (Precision + Recall)
This stage helps identify problems with the model and how it was trained, e.g. overfitting,
where the model memorizes the training data rather than looking for patterns within,

which yields a high prediction accuracy for the training data, but very low accuracy for
any other data set [20].

In the case of poor model performance, the pipeline may need to be revised, such as
changing how data was preprocessed, or selecting a different ML model to be trained.

Model Deployment

Once the model has been trained and demonstrated satisfactory performance during val-
idation, it is deployed into its intended system, where it will make predictions about new
data.

10

CHAPTER 2. BACKGROUND

Chapter 3

Related Work

This chapter looks at real-world systems implementing sandbox environments and machine
learning pipelines.

3.1 Methodology

This section details the methodology according to which related work will be evaluated.
Two types of solutions will be looked at:

1. Sandbox systems for malware analysis

2. Machine learning cybersecurity solutions

Each sandbox system will be evaluated in terms of its platform compatibility, handled
data types, virtualization method and general characteristics.

Each ML cybersecurity solution will be evaluated in terms of its ML pipeline (see 2.4.2),
scope of application, and limitations compared to the proposed solution.

3.2 Sandbox Systems

In addition to the previously mentioned SecBoz environment, other sandbox systems with
relevance for malware analysis exist. This section details several such systems.

Kaspersky Sandbox [21] implements a full virtualization solution for dynamic malware
analysis, in which it receives specific requests regarding the file to execute, environment
and file configuration, and operating system.

The file is executed, with the sandbox monitoring its interactions with the OS through
various means. Based on the analysis result, it labels the file as either malware or benign,
while including providing activity logs from the execution process. It also implements VM

11

12 CHAPTER 3. RELATED WORK

environment randomization and simulated user actions, preventing VM detection by the
malware. The sandbox is able to handle all Windows files, in addition to Android APKs
and internet links.

Unfortunately, the solution is patented, closed-source and does not provide real-time mon-
itoring of the file execution.

Open-source solutions do exist, for example Cuckoo Sandbox [22] is a VM sandbox for
automated analysis of suspicious files. It provides high extensibility and customization
thanks to its modular architecture and open-source model. It is available for most major
operating systems, and consists of a central managing software (the Host) and multiple
possible virtual environments (Guests)

To submit a file for analysis, users can use the Submission Utility, with the option to
either use the default analysis packages provided, or add their own. Then, the file will be
executed with the environment options specified, and several results files will be generated
and saved by the sandbox (such as Cuckoo process monitoring logs).

However, the current version of Cuckoo is unmaintained, does not implement machine
learning algorithms by default, and lacks real-time monitoring capacity.

In contrast to these sandboxes, not every sandbox comes with a software suite to facilitate
malware analysis functions - DRAKVUF [23] is a black-box binary analysis system for
dynamic malware analysis, designed for Windows and Linux systems (which must run on
Intel CPUs with virtualization support). It supports all file types, and is open source.
The aspect that sets it apart from other malware analysis sandboxes is its agentless
approach - instead of needing additional software, it takes advantage of existing tools in
the operating system, using techniques such as process injection to run files on the host,
for example by hijacking the Windows Task Manager execution.

But, DRAKVUF doesn’t implement machine learning, making it vulnerable to novel
malware threats. It also can’t be executed on CPUs other than Intel due to its reliance
on the Intel virtualization support. Lastly, the only real-time monitoring function is a
console log, which can be hard to interpret.

Some sandboxes, such as Limon [24], implement machine learning tools. It is a Linux
sandbox, which uses full virtualization for malware analysis. It allows the user to perform
both static analysis prior to malware execution (e.g. md5 hash, ELF header), dynamic
analysis with real-time metrics as the software is being executed (e.g. syscalls, packet
captures), as well as post-mortem analysis after the VM is suspended.

Limon is open-source, and supports ELF executables, Loadable Kernel Modules (LHM)
as well as Python, Perl, Shell, Bash and PHP scripts. Unfortunately, it is not maintained,
and implements black-box machine learning algorithms through the VirusTotal API. Also,
since it is only available for Linux machines, it’s less versatile compared to malware
analysis tools that supports multiple platforms, since it cannot be used to detect common
threats for other platforms.

Finally, Any.Run [25] is a cloud-based tool for dynamic malware analysis. The user can
submit files for analysis, interact with the sandbox environment in real-time, as well as use
the internet to check websites for web threats. The results are presented in an "ATT&CK
Matrix”, providing visual feedback and accountability with regards to how the file was
classified.

3.2. SANDBOX SYSTEMS

13

However, the sandbox is closed-source, and does not specify which (if any) machine learn-
ing algorithms it implements, functioning like a black box.

The comparison table below uses the following metrics:

1. Platform(s) - which operating system(s) is the sandbox designed for?

2. Artifact Types - which kinds of files can the sandbox run?

3. Virtualization Technique - Does the sandbox use full virtualization or containeriza-

tion?

4. Open Source - Is the sandbox open-source?

5. Maintained - Is the sandbox actively maintained?

6. Accountable - Does the sandbox implement tools to track its actions and the analysis
progress (e.g. real-time monitoring)?

7. Implements ML - Does the sandbox implement any machine learning algorithms for
malware analysis?

Table 3.1: Comparison of Sandbox Systems

System Platform(s) Artifact Virtualization Open Maintained | Accountable | Implements
Types Technique Source ML
Kaspersky Windows, All Win- | Full Virtu- | No Yes No Yes (undis-
Sandbox Android dows Files, | alization closed algo-
(2019) Android rithms)
APKs
Cuckoo Windows, Most Win- | Full Virtu- | Yes No Yes No
Sandbox Linux, dows files, | alization
(2011) Mac OS, | Android
Android APKs, Ad-
ditional files
as defined
by the user
DRAKVUF | Windows, All files Full virtual- | Yes Yes No No
(2022) Linux (only ization
Intel CPUs)
Limon Linux ELF, LKM, | Full Virtu- | Yes No Yes Yes (undis-
(2015) Program- alization closed algo-
ming lan- rithms)
guage
scripts
Any.Run Windows Most Win- | Full virtual- | No Yes Yes Yes (undis-
(2023) dows files ization closed algo-
rithms)
SecBox Linux Bash Containerisat] Yes Yes Yes No
(2023) scripts,
ELF files

Overall, it can be seen that existing sandbox solutions are either closed-source (lack-
ing accountability with regards to why certain decisions were made regarding the data),
unmaintained, or lack machine learning components (rendering them ineffective against
unseen malware threats).

However, we can also note that the SecBox system meets most of the chosen criteria for
a malware analysis system. It only lacks a machine learning component, which makes it
a perfect candidate as the system to be extended for this project.

14 CHAPTER 3. RELATED WORK

3.3 Machine Learning Cybersecurity Solutions

This section reviews existing machine learning solutions that have been developed for
cybersecurity and malware analysis.

In [26], the authors implemented a stacked deep learning approach, performing basic
data preprocessing by removing missing values and standardizing numeric features, then
training 5 deep learning models with the training data, and taking the model averages in
order to generate predictions.

The constructed model was evaluated using a SCADA dataset from the Mississippi State
University, with data present for specific attack types, and could then be used for intrusion
detection within SCADA systems.

Unfortunately, it was developed exclusively for SCADA-specific threats and scarce data,
and is not able to take advantage of larger data sets if those are available.

An example of a system that can analyze data from operating systems is [27], a framework
for automatic, incremental analysis of malware samples.

The solution uses system calls log files collected during malware execution in a sandbox
environment, preprocessing the data by mapping each system call to a vector in a multi-
dimensional vector space.

Each dimension of this specially designed vector space represents a certain behavioral
pattern, allowing clustering to be applied in order to distinguish data categories, followed
by classification in order to assign new data samples to the known categories. The frame-
work’s performance is evaluated using metrics such as Precision, Recall and F-Score.
However, the framework only provides support for analysis using the specific data map-
ping and representation procedure described, meaning it is not applicable for implementing
other data preprocessing steps or training different ML models.

System calls are not the only possible aspect for machine learning - [28] implements
multiple algorithms for malware classification based on the PE file headers. The solution
takes a preprocessed data set of PE header attributes from Kaggle, where each row of the
dataset represents an executable file, and is split into 57 columns, each representing a PE
header feature. Several ML methods are then applied to the dataset, such as Decision
Trees and Gradient Boosting, each training a model. The performance of all trained
models is then compared based on their accuracy scores. But, the proposed approach
only works with preprocessed PE header data, and fails to implement the preprocessing
part of the ML pipeline, as well as lacking support for other malware analysis metrics
(e.g. syscalls).

A more focused approach was taken in [29], where a malware sample dataset from the
Canadian Institute of Cybersecurity was taken. The dataset consists of memory dumps
from both benign and malicious memory dumps, and was preprocessed using feature
selection and feature rank to reduce its dimensionality, allowing to train ML models on
the important features of the data

Several ML classification algorithms (such as KNN, SVM) were then trained on the data.
Once the models were trained, they were evaluated based on their accuracy scores in
classifying malware samples from a test set. The model that showed the best accuracy
would be selected. Unfortunately, the paper only includes support for the specific malware

3.3. MACHINE LEARNING CYBERSECURITY SOLUTIONS 15

data set provided, which quickly becomes obsolete in a world of ever-evolving malware
threats.

Finally, in [30], an ontology-based machine learning approach was applied, where an
Android application ecosystem was represented formally as an ontology based on a method
described in the paper, and a Bag of Graphs technique was used to find common properties
of different applications based on their application manifest XML files.

Later, feature importance analysis was performed to select the most important dimensions
of the generated dataset, which were then provided to a Random Forest model for training.
The model’s performance was evaluated using statistical techniques such as Precision,
Recall and F1-score.

However, the solution only analyzed Android application manifest XML files, therefore
lacking support for dynamic data sets and other data formats, which is important to
counter modern malware obfuscation techniques.

The comparison table below has the following metrics:

1. Data format - what is the data format of the training dataset(s)?

2. Data preprocessing - what techniques (if any) were used to preprocess the data prior
to model training?

3. Flexible preprocessing - can choices be made regarding how data is preprocessed?

4. ML algorithm(s) - which machine learning algorithm(s) does the solution imple-
ment?

5. Accountable - does the solution provide explanations for its predictions, allowing
users to understand why a particular decision was made?

6. Reproducible - can a given result (e.g. malware classification) be reliaby reproduced
when starting with a fresh ML model?

7. Adaptable - can a different ML pipeline be integrated into the solution?

Table 3.2: Comparison of Machine Learning Cybersecurity Solutions

16 CHAPTER 3. RELATED WORK
Solution Data For- | Data Pre- | Flexible ML Algo- | Accountable | Reproducible| Adaptable
mat processing Preprocess- rithm(s)
ing
[26] (2022) | MODBUS Removing No Neural Net- | No Yes No
missing works
values,
Standardiz-
ing numeric
features
[27] (2011) | System call | Mapping No Hierarchical | Yes No No
log files function to Clustering,
a vector Nearest
space Prototype
Classifica-
tion
(28] (2022) | CSV N/A No Decision Yes No No
Tree, Gra-
dient Boost-
ing
[29] (2022) | Memory Feature Se- | No KNN, No No Yes
dumps lection, fea- CNN, Naive
ture rank Bayes, Ran-
dom Forest,
SVM, DT
[30] (2018) | Application | Ontology No Random Yes No Yes
Manifest model, Bag Forest
XMLs of Graphs

Overall, it can be seen that existing solutions for malware analysis using machine learning
do not implement flexible data preprocessing, either lack reproducibility or accountability
with regards to their analysis results, as well as lacking support for implementation of
additional machine learning pipelines.

Chapter 4

Requirements and System Design

In order to implement a machine learning tool for a malware analysis sandbox, the tool’s
requirements must be specified, and an appropriate system design needs to be suggested.
This chapter discusses these two aspects.

4.1 System Requirements

4.1.1 Available Data

The SecBoz environment provides multiple types of system logs that describe a program’s
activity during its execution. Of particular interest are three of these:

1. System calls CSV files - store all system calls with their timestamp, arguments, as
well as additional data.

2. Network activity PCAP files - store network packet captures, with details such as
protocol (TCP or UDP) and destination IP addresses.

3. Resource usage JSON files - store information about how the system is performing
in real-time, such as percentage CPU usage, RAM usage as well as amount of sent
and received packages

Within this thesis, the system call and resource usage files will be focused on, because
PCAP files are more difficult to interpret, and may as a result lead to worse model
performance when trying to detect malware inside the sandbox.

Both of the chosen file categories are generated by the sandbox for the healthy and infected
sandbox instances, and can be used to train machine learning models. However, such data
cannot be used out-of-the-box by ML algorithms - different algorithms require different
data formats and preprocessing steps to be undertaken prior to model training, so the ML
algorithms need to be chosen first, followed by choosing the data preprocessing techniques
that will be used.

17

18 CHAPTER 4. REQUIREMENTS AND SYSTEM DESIGN

4.1.2 Algorithm Choices

The machine learning algorithm choices are very important, because one of the key goals
for the tool is its accountability - this means that a decision made by an algorithm (e.g.
malware/not malware in a simplistic case) should be explainable to a potential user with
regards to why this decision was made.

Another goal is reproducibility, which means that it should be possible to take an un-
trained machine learning model, and, after training it on the same data set in the same
manner, it should generate the same predictions about the data.

Lastly, it’s important for the system to be able to recognize both common threats (such
as known ransomware, e.g. Monti) and novel threats.

With these 3 criteria in mind, the proposed solution consists of 2 parts, with classification
algorithms used for detecting known malware classes, and anomaly detection algorithms
for detecting novel threats:

For the classification algorithms, the following models will be used:

1. Decision Tree Algorithm
2. Naive Bayes Algorithm
The Decision Tree algorithm was chosen because it has good accountability - this is due

to its tree-like structure and feature importance rankings, which show the features of the
data that were looked at in order to make the classification decision.

Likewise, Naive Bayes also has a good degree of accountability, with the possibility of
determining the feature importance rankings based on the conditional probabilities cal-
culated.

Both of these algorithms are reproducible in terms of their standard code implementations
by controlling the random seed parameter.

For the anomaly detection algorithms, the following models will be used:

1. Isolation Forest Algorithm

2. Local Outlier Factor Algorithm
The Local Outlier Factor (LOF) algorithm is accountable thanks to its anomaly score,
which explains how much of an outlier a data point is when compared to other points.

Similarly, the Isolation Forest Algorithm also provides accountability in the form of scores,
which indicate how isolated each data point is.

Both of these algorithms can be used in a reproducible manner by controlling the random
seed, as well as the n_neighbors and contamination parameters.

4.2. SYSTEM DESIGN 19

4.1.3 Data Preprocessing

All of the aforementioned algorithms require data to be preprocessed in order to function
effectively. Therefore, the available system call CSV files and resource usage JSON files
need to be converted to a suitable format.

System Call Files

For the system call files, a bag-of-words algorithm was selected for the feature extraction,
with two data preprocessing options:

Option 1 is frequency-based preprocessing: The system calls present in the file will be
collected together into time slices, thus accounting for differences in execution time. For
each time slice, a 2D array will be generated, with time slices as the rows, and counters
for each system call and how often it appears within the time slice as the columns. For
an illustration, see Table 5.1.

Option 2 is sequence-based preprocessing: Instead of counting how often each system call
appears in a time slice, the algorithm will instead count how often every other system call
appears after the system call currently being considered (within each time slice). For an
illustration, see Table 5.2.

In both cases, the resulting array can be used to train the system call machine learning
models.

Resource Usage Files

For the resource usage files, the individual metrics (CPU percent usage, RAM usage, pack-
ages sent, packages received) will be combined together into a 2D array. For a visualisation
of the resulting data format, see Table 5.3.

Note that, unlike the system call data, these operations already yield a data format
which can be used to train the resource usage machine learning models, so there is no
need to perform further data processing such as splitting data into time slices (unless the
processing method proves to be ineffective in terms of generating good models).

4.2 System Design

4.2.1 General Architecture

The existing SecBox architecture is shown in Figure 4.1.

20 CHAPTER 4. REQUIREMENTS AND SYSTEM DESIGN

Frontend Host

. @ puthon Sandbox
v Infected Instance Healthy Instance

Client

WebSocket I Monitors | Controller
Network
| Syscalls] [Sandbox Management]l MALWARE bazaar .
J

[Performance Metrics [Userinteraction |

[Cwensoceet) T —
I
Backend Data Managers ’_],_‘[], WebappH

& pytho 1 et | =| WehS j=1 =
System | |Perform-)
Network y User Interaction |
(] mongoDB. Calls ance

Figure 4.1: SecBox existing architecture

As it can be seen, there are 3 main components - Frontend, Host and Backend. Each
can be run separately on different machines if needed, and all are connected together via
WebSockets. There is also a REST API connection to Malware Bazaar, which is used to
access new malware samples.

The host is responsible for setting up and running the sandbox on a target machine, mak-
ing use of gVisor to provide isolation between the sandbox and the hardware components.
It includes several Monitors to record data regarding the sandbox runs:

e Network Monitor records data such as IP addresses that the sandbox sends packets
to and the transmission protocol (TCP or UDP). Since the PCAP files are not
relevant for this project, this monitor can be ignored.

e Syscall Monitor records each system call performed by the system, with data such
as timestamp, system name, thread id and additional arguments.

e Performance Monitor records the resource usage of the system at every point in time,
with metrics such as CPU % usage, RAM usage, and packages sent and received.

The backend is responsible for receiving the data sent by the host monitors, performing
data processing for visualizing the data within graphs in the frontend, as well as accepting
user instructions for the sandbox environment from the frontend and passing them to the
host controller.

The frontend provides a graphical user interface for launching and managing the sandbox
environment to the user, visualizes data from the sandbox execution in real-time, as well
as showing the results of previous sandbox runs in a post-mortem analysis tab.

4.2. SYSTEM DESIGN 21

A 5N + SecBox - Server is running

Download Files

CPU Usage

Figure 4.2: SecBox post-mortem analysis tab

The proposed extension of the SecBox consists of several parts, discussed below.

4.2.2 Model Trainer Code Section

First, a ModelTrainer module will be added to the backend. It will contain the data
needed to train the ML models (syscall and resource usage files), an abstract model-
Trainer.py class, and the concrete implementations for the different types of machine
learning models used in the project:

Resource Usage Classifier

Resource Usage Anomaly Detector

System Call Classifier

System Call Anomaly Detector

Each of these will implement the training pipelines discussed above, as well as a "predictor”
function, which will take a trained model as well as a dataset, and make a prediction
regarding whether the dataset comes from a malware-infected system or not. The trained
models will be stored as part of the module, providing easy access to them again. Each
model will be linked to a configuration file, which will record training parameters such as
dataset used, random seed, etc. in order to ensure reproducibility of the model training.

22 CHAPTER 4. REQUIREMENTS AND SYSTEM DESIGN

4.2.3 Data Manager Code Section

To link the Model Trainers to the Front-End, the existing Data Manager Module (which
is currently responsible for processing and delivering performance and system call data to
the front-end) will be extended with two new Data Managers, both of which will integrate
into the existing WebSocket connections:

1. anomalyDetectorManager.py will be responsible for accepting data from the front-
end in real-time, converting it into an acceptable format for generating a prediction,
as well as instructing the corresponding (system call or resource usage, depending
on the data received) Anomaly Detector component to load the appropriate model
and generate a prediction based on the data. This prediction will then be forwarded
to the Anomaly Detector Table in the front-end.

2. classifierManager.py will also be responsible for accepting data from the front-end
in real-time, preprocessing it and instructing the corresponding Classifier component
to load an appropriate model and generate a prediction, which will be forwarded to
the Malware Analyzer Table in the front-end.

4.2.4 Front-end Charts

Apexcharts is currently used as the graphing library for the front-end interface. The
existing real-time analysis page (see Figure 4.3) will be extended with two additional
tables mentioned in the previous section:

CPU Usage Number of Processes

Packets Transmitted Transport Protocols

WDELETE & QuIT

Figure 4.3: SecBox existing analysis page

e The Malware Analyzer Table will display the time slices processed by the models,
and the corresponding predictions from both the System Call Classifier compo-
nent and Resource Usage Classifier component. Such predictions may support both

4.2. SYSTEM DESIGN 23

binary (infected/healthy) and multiclass (Monti, CoinMiner, healthy, etc.) classifi-
cations, depending on how the data sets are labelled.

e The Anomaly Detector Table will display the time slices processed by the models,
and the corresponding predictions from the System Call Anomaly Detector and

Resource Usage Anomaly Detector components. Such a prediction with either be
"inlier” or "outlier”.

24

CHAPTER 4. REQUIREMENTS AND SYSTEM DESIGN

Chapter 5

Prototypical Implementation

This chapter discusses the concrete implementation of the proposed solution in Chapter

4.

5.1 Initial Test Runs

After the design choices were finalized, actual work with the SecBox environment began.
For the initial setup, it was necessary to create .env files for each individual section of the
SecBox (front-end, back-end and host) in order to specify how they should run together,
as each one could also be run on a separate machine. An example of a configured .env file
can be seen in Figure 5.1

Open ~ [-env Save = B 6 €
1 DB_PORT=270817]

2 HOST_BITNESS=64
3 DB_HOST="localhost"
4 DB="mydb"

PlainText ~ Tab width: 8 v Ln1,Col14 2 INS |

Figure 5.1: A configured .env file for the SecBox api

25

26 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

Afterwards, several sandbox test runs were conducted, running a random available mal-
ware on different available operating systems. It was determined that

1. Certain malware types did not work on the sandbox (e.g. the provided CoinMiner
malware sample), see Figure 5.2.

2. Other malware types (e.g. Monti ransomware) consistently worked well.

+ SecBox - Server is running

CPU Usage healthy Number of Processes
026.zip bin boot dev etc home lib 1ib32
1ib64 Lit a mnt opt proc root run
sbin srv sys tmp usr var

docke

3ead77e:
: docker:

@ heatny
@healhy @ infected
not found
Packets Transmitted apparmor: unrecogr > ° - P Transport Protocols
OCI runtime exec failed: executing
iting command

128150
not found
/etc/kinsing directory: unknown

Anomaly Detector

Syscall rformance
Pr Pred

mestamp

Figure 5.2: SecBox error when attempting to run a CoinMiner virus - various libraries
not found

As a result, the requirements were adjusted to have a specific focus on the Monti malware
family, which is a ransomware that encodes system files.

5.2. IMPLEMENTING THE MODEL TRAINER 27

]
3
Il

<« [¢] O D localhost:s: &/5b31bd30110f4bc28F116391e2ac7a15 14

CPU Usage Number of Processes

120009)
/etc/../ $ cd etc rv sys tmp usr var

/ete/../etc/ $ 1s ../ $ cd etc

./etc/ $ 1s

klist.puuuk ca-
s.conf.puuuk bindresvport .bl: -
conf.conf.puuuk | certificates.conf on.d cron.daily

debconf.conf debian_version default
deluser.conf.puuuk dpkg ub. conf . puuuk iser.conf dpkg

environment.puuuk fstab.puuuk b gai.conf ow host.conf
gai.conf.puuuk group.puuuk gshadow.puuuk s d issue issue.net

Packets Transmitted st.conf.puuuk hostname hosts init.d X .s0.ca o.conf 1d.so.conf.d Transport Protocols

@nealthy @ infected

pam.conf p
rco.d rei.d

.conf.puuuk mtab networks.puuuk
nsswitch. conf.puuuk opt os se

res.d resolv
dow shell
pam.conf.puuuk pam.d d.puuuk profile.d

update-motd.d wgetrc xattr.conf

Figure 5.3: Monti ransomware in action within SecBox - note the CPU usage spike and
encrypted disk files

There were several reasons for this decision:

1. It was shown to execute reliably within the SecBox environment.

2. It should be more easily detectable using the chosen machine learning algorithms
thanks to its aggressive resource usage during the disk encryption phase.

The aforementioned properties will also make it easier to prove that the machine learning
models function correctly, which is great for the proof-of-concept prototypical implemen-
tation.

5.2 Implementing the Model Trainer

5.2.1 System Call Data

The first stage of implementing the ML Model Trainer was the data preprocessing. For
the system call data, two pipelines were implemented (as discussed in the design section):

1. Frequency-Based Preprocessing

2. Sequence-Based Preprocessing

28 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

For both, the initial system call file (see Figure 5.4) was reduced to just the columns
containing the important information (in this case, they are time_ns and sysname)

A B C D E F G H 1 J K L M r
Mime n o Jivead id syene systame conainer id I sredantiais s |
2 1.68681636892929E+018 1 12brk. I’ o 72 7 0 22 13925620083530.
3 | 1.68681636893163E+018 1 63uname v [139256203116776 49 15032381856]
4 1.68681636893245E+018 1 2laccess " I 0 1 15032384000 1 1392562031677
5 1.68681636893318E+018 1 21 access 3 x 15440 4 139256200692112 8 139256202968147 1]
6 | 1.68681636893344E+018 1 257openat I [4294967196 139256200834728 524288 0 535 0]
7 1.68681636893412E+018 1 Sfstat 3 B 139318974354256 139318974354256 0 65535 0]
8 | 1.68681636893457E+018 1 9mmap v o 7534 1 2 3q
9 | 1.6866163689347E+018 1 3close v B 7534 1 2 3q
10 | 1.68681636893519E+018 1 21 access 3 [0 0 2 10
1 1.68681636893575E+018 1 257 openat 3 [4294967196 139256202968528 524288 0 0 13931897435468°
12 1.68681636893607E+018 1 Oread 3 B 139318974354712 832 0 0 13931897435468°
13 1.68681636893626E+018 1 Sfstat I B3 1 1 1 1:
14 | 1.68681636893634E+018 1 9mmap I o 8192 3 34 4294967295 0]
15 | 1.68661636893646E+018 1 9mmap I o 2267936 5 050
16 | 1.68681636893656E+018 1 10 mprotect " L 2093056 0 139318974353872 30
17 | 1.68681636893662E+018 1 9mmap I [1s 12 20480 3 2066 3| 151552]
18 1.6868163689383E+018 1 3close I B3 40 0 1879048191 1879048225]
19 1.6868163689389E+018 1 21access " L 0 0 139256200816304
20 | 1.68681636893951E+018 1 257 gpenat I [4294967196 139256203097296 524288 0 0 13931897435463!
21 1.68681636893981E+018 1 Oread I 3 139318974354664 832 0 0 13931897435463!
22 | 168681636893993E+018 1 5istat I B 1 4 1 1 9 1 1
23 1.68681636893997E+018 1 9mmap I o 2109712 5 2050 30
24 | 1.68681636894005E+018 1 10 mprotect " L 2093056 0 139318974353824 30
25 1.68681636894009E+018 1 9mmap I [1: 8192 3 2066 3 8192]
26 | 1.68681636894064E+018 1 3close I 3 40 0 49 1879048191 1879048225]
27 1.686816368941E+018 1 21 access " L 0 0 139256200814064
28 | 1.68681636894111E+018 1 257 gpenat I [4294967196 139256203098576 524288 0 0 13931897435459.
29 | 1.68681636894146E+018 1 Oread I B3 139318974354616 832 0 0 13931897435459.
30 | 1.68681636894156E+018 1 Sfstat I B3 1 1 1: 1 1:
31 1.68681636894159E+018 1 9mmap I o 4131552 5 2050 30
32 1.68681636894166E+018 1 10 mprotect I L 2097152 0 139318974353632
33 1.6868163689417E+018 1 9mmap I L 24576 3 3/ 1994752]
34 | 1.68681636894227E+018 1 9mmap I L 15072 3 50 4204967295 0]
35 1.68681636894245E+018 1 3close I B3 40 0 49 1879048191 1879048225]
36 | 1.68681636804285E+018 1 9mmap I o 3 34 4204967295 0]
37 | 1.68681636804319E+018 1 158 arch_pret] I (4008 139256203085632 139256203088016 34 4204967295 0]
38 | 1.68681636804346E+018 1 10 mprotect ! L 16384 1 139256203098608 139256203116840 6]
39 | 16868163680430E+018 1 10mprotect I [4006 1 130256203007344) 11047
40 | 168681636804437E+018 1 10mprotect I [1 16384 1 130256203096064 0 2007]
41 | 168681636804503E+018 1 10mprotect I 158: 16384 1 130256202965360 0 1127]
42| 1.68681636804533E+018 1 10mprotect I it 4006 1 130256202063440 0103
43 1.68681636894558E+018 1 11 I L 7534 4110283702272 139256202963440 0 193]
44 | 168681636804646E+018 1 2570penat i 4204967196 94897540211903 2050 0 130256102224640 1302561022464
45 | 1.68681636894662E+018, 1 16ioct! v o 21505 139318974355920 0 139318974356000 139256192224641
46 | 168681636804707E+018 1 5istat i o 13031074356064 130318074356064 0 130318074356000 1302561022464
47 | 1.68681636804754E+018 1/ 12 hrk 5bd00dcf9944bc3f3d5852a6bfede7hb57d87d14cd03fofB82dd6130c328d8045¢ |/ o} 139256192220224 131696 1.84467440737095E+019 20

Figure 5.4: Example system call CSV file

Then, for the frequency preprocessing procedure, the system calls were collected into time
slices of 1 second - this time period was chosen because it had the best tradeoffs in terms of
including system calls that took a long time to execute (if a system call takes longer than
the specified time period, it will lead to empty time slices when preprocessed, cluttering
the data), and not having vastly unbalanced time slices, where some would have in excess
of 100 system calls, while others would only have 1.

Each time slice would thus have a counter for how often each system calls appeared
inside, leading to the data format shown in Table 5.1 (note that only a few system calls
are shown for clarity, rather than a complete list). This format matches the proposed
frequency data structure in the design section of this report, and was used to train the
system call classifier and anomaly detector models.

Table 5.1: Sample frequency-processed system call list

Timestamp | readlink | mkdir | unlinkat | rt_sigaction | Istat
1679827200000 0
1679827201000
1679827202000
1679827203000
1679827204000
1679827205000
1679827206000
1679827207000
1679827208000
1679827209000

(S
s}
—
—_

O = OO

Ll Nl Bl Bewl e el il e
—_
[\

ORI OO OrRO

o
—_
oo
I =l Nen)

5.2. IMPLEMENTING THE MODEL TRAINER 29

If sequence preprocessing was chosen instead, each entry would include a list rather than
a counter, with each entry in that list corresponding to how often a system call in the list
appeared after the current system call being considered, within a particular time slice.
For a visualization of this data structure, see Table 5.2.

Table 5.2: Sample sequence-processed system call list

Timestamp readlink mkdir unlinkat | rt_sigaction Istat
1679827200000 | [1,0,0,1,1] | [0,1,1,0,1] | [1,0,1,1,0] | [0,1,0,1,1] | [1,0,0,1,1]
1679827201000 | [0,1,0,1,0] | [1,0,1,0,1] | [0,1,0,1,0] | [1,0,1,0,1] | [0,1,0,1,0]
1679827202000 | [1,0,0,1,1] | [0,1,1,0,1] | [1,0,1,1,0] | [0,1,0,1,1] | [1,0,0,1,1]
1679827203000 | [0,1,0,1,0] | [1,0,1,0,1] | [0,1,0,1,0] | [1,0,1,0,1] | [0,1,0,1,0]
1679827204000 | [1,0,0,1,1] | [0,1,1,0,1] | [1,0,1,1,0] | [0,1,0,1,1] | [1,0,0,1,1]
1679827205000 | [0,1,0,1,0] | [1,0,1,0,1] | [0,1,0,1,0] | [1,0,1,0,1] | [0,1,0,1,0]
1679827206000 | [1,0,0,1,1] | [0,1,1,0,1] | [1,0,1,1,0] | [0,1,0,1,1] | [1,0,0,1,1]
1679827207000 | [0,1,0,1,0] | [1,0,1,0,1] | [0,1,0,1,0] | [1,0,1,0,1] | [0,1,0,1,0]
1679827208000 | [1,0,0,1,1] | [0,1,1,0,1] | [1,0,1,1,0] | [0,1,0,1,1] | [1,0,0,1,1]
1679827209000 | [0,1,0,1,0] | [1,0,1,0,1] | [0,1,0,1,0] | [1,0,1,0,1] | [0,1,0,1,0]

Likewise, we can see that the sequence data structure matches the proposed structure in
the design section.

5.2.2 Resource Usage Data

For the resource usage data, the important outlined resources (cpu percent usage, ram
usage, packages sent, packages received) were collected into the following format:

Table 5.3: Resource usage processed data

Timestamp CPU % | RAM Usage | Packages Sent | Packages Received
1679827200000 0.75 1215 32 19
1679827201000 0.35 836 12 8
1679827202000 0.92 562 8 15
1679827203000 0.23 938 23 37
1679827204000 0.68 457 15 12
1679827205000 0.42 1043 7 22
1679827206000 0.81 274 20 9
1679827207000 0.17 1599 32 30

5.2.3 Model Training Library

The concrete machine learning model implementations were taken from SciKit-learn, as
it is a popular python library for machine learning, providing all the necessary tools for
implementing the proposed solution. The specific models that were used are:

30 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

e sklearn.tree.DecisionTreeClassifier
e sklearn.naive_bayes.GaussianNB
e sklearn.ensemble.IlsolationForest

e sklearn.neighbors.LocalOutlierFactor

5.2.4 Trainer Implementation

The model trainers are implemented as shown below. Note that only some of the code is
shown for brevity:

System Call Classifier

Listing 5.1: System Call Classifier

class SyscallClassifier (ModelTrainer):
def __init__(self, model):
super (). __init__ ()
self . model = model
self.all_syscalls = [#list of system calls to be considered]

def predict (self, data):
return self.model. predict (data)

def trainModel (self , dataFilePaths, featureExtractor , modelName):
self.dataFilePaths = dataFilePaths
self . featureExtractor = featureExtractor
self .modelName = modelName

features_combined_list = []

marker_combined_list = []

for path, marker in dataFilePaths:
syscall_raw_list = self.readFileContents (path)
features = self.extractFeatures(syscall_raw_list)
features_combined_list . extend (features)
marker_combined_list . extend (
[marker for _ in range(len(features))])

self . fitModel (features_combined_list , marker_combined_list)
self.saveModel (modelName)

The system call classifier class fulfills two purposes:

5.2. IMPLEMENTING THE MODEL TRAINER 31

1. Allow for models to be trained by initializing the class with the desired Scikit-learn
model, then using the trainModel() function together with the data file paths, and
a feature extraction method (either frequency or sequence-based extraction). The
model is then saved as a pickle file.

2. Allow for prediction to be generated in real-time using existing models, by allow-
ing pre-trained models to be loaded by initializing the class with the pretrained
Scikit learn model, then generating predictions for data points with the help of the
predict() function.

Resource Usage Anomaly Detector

Listing 5.2: Resource Usage Anomaly Detector

class PerformanceAnomalyDetector (ModelTrainer):
def __init__(self, model):
super (). __init__ ()
seltf .model = model

def predict (self, data):
return self.model. predict (data)

def trainModel(self , dataFilePaths, modelName):
self.dataFilePaths = dataFilePaths
self .modelName = modelName

features_combined_list = []

for path in dataFilePaths:
features = self.readFileContents(path, ’"healthy’)
features_combined_list .extend (features)
features = self.readFileContents(path, ’'infected’)
features_combined_list .extend (features)

self.fitModel (features_combined_list)
self.saveModel (modelName)

The Anomaly Detector classes fulfill the same general purpose (described above) as the
Classifier classes, with the difference that no labels are provided during the model training
stage. Also, models making use of resource usage files do not require a feature extractor
to be specified (unlike the system call models), since the existing features are simply
aggregated before being passed to the model.

5.2.5 Storing the Trained Models

Once the data is preprocessed and the model is trained, it is stored as part of the Model
Trainer module (see Figure 5.5) using the "pickle” python object serializer. This means

32 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

that the models can then be easily loaded back into the trainer class on demand, and be
used to generate predictions about new data without having to retrain the model.

odelTrainer

~ models

{} freque
= freque

{} Frequen
= freque
{} Frequent
= frequen:
{} model

json

all_detector_Forest.pkl

B coin_miner
B coin_miner
modelTrainer.
performanceAno yDetector.py

performanceClassifier.py

syscallClassifier.py

Figure 5.5: Sample stored models as part of the modelTrainer module

5.3 Extending the Data Manager

The data manager module is extended with two further data managers to handle the
exchange of data and commands related to the classifiers and anomaly detectors between
the front-end interface, back-end model trainers, and host monitors.

5.3.1 Classifier Manager

Listing 5.3: Classifier Manager

class ClassifierManager (DataManager):
def __init__(self, socketio, db,
syscall_classifier , performance_classifier):
super (). __init__(socketio, db)
cwd = os.getewd ()

5.3. EXTENDING THE DATA MANAGER 33

with open(#models list) as json_file:
models = json.load(json_file)

if syscall_classifier in models|[”categories”|:
matching_model = models|[”categories”|[syscall_classifier |[0]
with open(os.path.abspath(matching_model), 'rb’) as file:
trained_model = pickle.load (file)

self .syscall_classifier = SyscallClassifier (trained_model)
if ’frequency’ in syscall_classifier:
self.syscall_classifier.featureExtractor = ’frequency’
else:
self.syscall_classifier.featureExtractor = ’'sequence’

if performance_classifier in models|[”categories”]:
matching_model =

models |7 categories”|[performance_classifier |[0]
with open(os.path.abspath(matching_model), 'rb’)
as file:

trained_model = pickle.load(file)
self.performance_classifier =
PerformanceClassifier (trained_model)

self .syscallCollector = []
self .performanceCollector = []

def handle_message (self , msg, classifier_type):
if classifier_type = ’syscalls ’:
self.process_data(msg, "syscalls”)
elif classifier_type = ’performance’:
self.process_data(msg, "performance”)
else:
print (" Classifier Error”)

#collect data into timeslices, transform and make prediction
def process_data(self , data, classifier_type):
if classifier_type = "syscalls”:
#syscall data preprocessing
elif classifier_type = "performance”:
#resource usage data preprocessing
else:
print ("Data_Processing _Error”)

The classifier manager is initialized via a websocket request when such is received from
the front-end. The models which were selected in the front-end are loaded for the system
call and resource usage classifiers in the backend, and the classifier manager class becomes
ready to receive system call and resource usage data from the system monitors. When such
data is received, it is preprocessed according to the methods outlined in the design section

34 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

(for data format samples, see the "Implementing the Model Trainer” section above), and
the processed data is forwarded to the backend models, which return a prediction.

5.3.2 Anomaly Detector Manager

The anomaly detector manager follows a similar structure as above, although lacking
a feature extractor and having different websocket namespaces. Therefore, it has been
omitted.

5.4 Extending the Front-End Interface

The front-end interface was changed in several ways. In particular:

1. A model selector section was added to the sandbox start interface.

2. Two malware analysis tables were added to the real-time analysis dashboard

5.4.1 Model Selector

A model selector was added to the "Start New Sandbox” dialog, allowing to specify pre-
trained models for each of the data (system calls/resource usage) and model type (classi-
fier /anomaly detector) combinations.

c O D localhost:5050 o 9 & =
Start Analysis Process

Select 05
ubuntu:20.04

Syscall Malware Analyzer
Sequence Syscall Analyzer Tree

Performanc jare Analyzer
Performance Analyzer Bayes

Syscall Anomaly Detector Run Ubuntu 18.04

Performance Anomaly Detector

ance Detector LOF liner

ance Detector Forest

irat

Gafoyt

Figure 5.6: The model selector dropdowns in the start menu

5.4. EXTENDING THE FRONT-END INTERFACE 35

Each of these models would then generate predictions regarding whether the sandbox was
infected or not in real-time, once the sandbox was launched.

5.4.2 Malware Analysis Tables

2 malware analysis tables were added to the real-time sandbox interface, see Figure 5.7.

]
3
Il

& C O D localhost:8080/live/5b31bd30110F4bc28F1 16391e2ac7al15 P

/etc/ $ cd .

Packets Transmitted Transport Protocols

Anomaly Detector

) Syscall Performance
me Timestamp ma
Prediction

WDELETE & QUIT B SAVE & EXIT

Figure 5.7: Malware analysis tables as part of the front-end interface

On the bottom-left of the dashboard is the Malware Analyzer table, which receives pre-
dictions from the system call classifier and resource usage classifier. The predictions are
of the format

(timestamp, prediction)

and are matched together in the front-end in order to have predictions from both models
for the same timestamp easily visible.

On the bottom-right of the dashboard is the Anomaly Detector table, which receives
predictions from the system call and resource usage anomaly detectors, and matches
them together as described above. The displayed predictions are then either "inlier” if a
data point was perceived as normal, or "outlier” if it was perceived to be malicious.

36

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

Chapter 6

Prototype Evaluation

This chapter conducts an evaluation of the implemented prototype solution, in order to
assess the resource efficiency and effectiveness of the different machine learning models

6.1 Generating the Test Data Set

To generate the test data set, a machine with an Intel i7-8750H CPU (6 cores, 2 threads
per core) and 16GB of RAM was used, running Ubuntu 22.04.

A zip archive was downloaded from [31] into the SecBox environment (zipped size 176MB,
unzipped size 412MB). This archive contained various data formats, such as text files, csv
files, powerpoint presentations and pdf files (see Figure 6.1. It was cloned 12 times, as
downloading larger data sets proved to be infeasible due to SecBox’s bandwidth limita-
tions, with the cloning resulting in a total size of 4944MB for the files.

37

38

/etc/ $ cd 026

/etc/026/ $ 1s

026000.
026004 .
D26008.
026013.
026016.
026019.
026023.

B26027

026031.
026035.
026039.
D26043.

026047
026051

B26055.
BD26058.
026062.x
D26066.
026070.
026074 .x
B26078.x
026081.x

ppt 026001
xls 026005
ppt 026009
ppt 026014

CHAPTER 6. PROTOTYPE EVALUATION

.ppt 026002.ppt 026003.
.ppt 026006.ppt 026007.
.ppt 026010.ppt 026011.
.ppt 026015.ppt

html 826017.ppt 026018.ppt

ppt 026020.
.x1ls 026025.ppt 026026.
.x1ls 026028.
ppt 026032,
.jpg 826037. 026038,
csv 026040.
pdf 026044.
026048 .
026052.
026056.
.log 026060.log 026061,
xls s B26065.(
026067 .
.gif 826072.x1s 026073.
.x1ls 026076.csv 026077.
.x1s 026080.dbase3
.x1s 026083.x1s 026084 .x1s

ppt 026024

gif 026036

026059
026063

026071
026075
026079
026082

ppt ©26021.ppt 026022.

ppt 026029.ppt 026030.
pdf 026033, 026034,

pdf 026041. 026042,
pdf 026045. 026046.
pdf 026049.csv 026050.
pdf 026053.xml 026054,
html 026057.pdf

pdf 02 s 026069.

Figure 6.1: The file contents of the downloaded archive

These files were placed under the /etc/ SecBox directory (Figure 6.1), and a Monti ran-
somware file was then run on an Ubuntu 22.04 operating system within the SecBox envi-
ronment, with the exact start time of malware execution being recorded.

6.1. GENERATING THE TEST DATA SET 39

CIUIITI | TITLLITUL I UTL. TLI TLL WIS LLu

1ib32 1ib64 1ibx32 malware.7z media mnt opt
proc root run sbhin srv sys tmp usr var

/% cd etc

/etc/ $ ls

026 027 028 029 030 031 032 033 034 035 036
037 038 adduser.conf alternatives apt
bash.bashrc bindresvport.blacklist ca-
certificates ca-certificates.conf cloud
cron.d cron.daily debconf.conf
debian_version default deluser.conf dpkg
e2scrub.conf environment fstab gai.conf
group gshadow gss host.conf hostname hosts
init.d issue issue.net kernel 1d.so.cache
ld.so.conf ld.so.conf.d legal libaudit.conf
login.defs logrotate.d lsb-release machine-
id mke2fs.conf mtab netconfig networks
nsswitch.conf opt os-release pam.conf pam.d
passwd profile profile.d rc®.d rcl.d rc2.d
rc3.d rc4.d rc5.d rcé6.d rcS.d resolv.conf
rmt security selinux shadow shells skel ssl
subgid subuid sysctl.conf sysctl.d systemd
terminfo update-motd.d wgetrc xattr.conf

Figure 6.2: /etc/ folder contents after archive cloning

Once all the test files were encrypted, the sandbox execution was stopped (15 minutes
of execution time), and the system call (174MB) and resource usage (34MB) files were
downloaded onto the machine (Figure 6.3). Note that the resource usage files were not
available from the SecBox front-end download interface, so they were taken directly from
the connected database storage.

40 CHAPTER 6. PROTOTYPE EVALUATION

+ SecBox - Server is running

Download Files

@B PCAP Healthy

@B PCAP Infected

SysCalls Healthy

SysCalls Infected

¥ DOWNLOAD FILES

BISAVE

SEXIT

Figure 6.3: Downloading the files resulting from a Monti execution using the SecBox
interface

The file versions from the "infected” sandbox were cut to start from the malware execution
timestamp, rather than the sandbox setup time, in order to avoid labeling the healthy
sandbox state prior to malware execution as "infected”. This method allowed to separate
the "infected” section of the data into its own file, with the data from both the system
call and resource usage files then being passed to the model trainers, which were executed
while being provided the data files to train and store their respective machine learning
models.

Once preprocessed according to the methods outlined in the Design chapter, the system
call file had 82 features (total of system calls considered), while the resource usage file
had 4 features (cpu percentage, ram, packages sent, packages received)

6.2 Model Resource Efficiency

The resource efficiency of each model can be measured by looking at the training time
and resident set size (a metric that measures how much RAM a process is actively using).
The resource efficiency table can be seen in Table 6.1.

6.3. MODEL EFFECTIVENESS 41

Table 6.1: Model Resource Efficiency Table

Model Training Time (s) Training RSS (KB)
Resource Usage Classifier Bayes 0.07 108540
Resource Usage Classifier Tree 0.07 108420
Resource Usage Detector LOF 0.07 111168
Resource Usage Detector Forest 0.17 111240
System Call Classifier Frequency Bayes 2.51 342372
System Call Classifier Sequence Bayes 244.40 342732
System Call Classifier Frequency Tree 2.52 342220
System Call Classifier Sequence Tree 253.70 342816
System Call Detector Frequency LOF 2.27 329420
System Call Detector Sequence LOF 167.82 297024
System Call Detector Frequency Forest 2.18 299572
System Call Detector Sequence Forest 168.90 298284

It can be seen that the resource usage models were much faster to train compared to the
system call models, and required much fewer active RAM.

This is due to their simplistic data processing (combining different metrics like CPU
percentage and RAM usage into a single array for each timestamp) and smaller file sizes
(in general, a JSON resource usage data file was at least 5 times smaller compared to a

system call CSV file).

On the other hand, system call models needed more resources, with an interesting ob-
servation - models using sequence-based preprocessing required roughly 100 times more
training time than models using frequency-preprocessed data (despite RSS requirements
remaining the same). This is because of the data structure arising from sequence prepro-
cessing (see Table 5.2) - a list of lists, with O(n?) space complexity, which is much worse
than the O(n) complexity of the frequency preprocessed data structure (see 5.1).

6.3 Model Effectiveness

To evaluate the usefulness of the different models when outputting predictions, a model
from each category was selected:

1. System Call Classifier (Frequency Preprocessed) Naive Bayes

2. Resource Usage Classifier Decision Tree

3. System Call Anomaly Detector (Sequence Preprocessed) LOF

4. Resource Usage Anomaly Detector Isolation Forest
These models were used to output predictions in a test run against a Monti ransomware

sample, and a confusion matrix was created for each model. Note that the sandbox setup
phase was ignored for these results:

42

CHAPTER 6. PROTOTYPE EVALUATION

Table 6.2: Confusion Matrix - System Call Classifier with Naive Bayes

Actual
Outcome

total

Predicted Outcome

p

n

29

33

32

33

total

29

36

Table 6.3: Confusion Matrix - Resource Usage Classifier with Decision Tree

Actual
Outcome

n

total

Predicted Outcome

p

n

16

0

19

total

16

Table 6.4: Confusion Matrix - System Call Anomaly Detector with Local Outlier Factor

Actual
Outcome

n

total

Predicted Outcome

p

n

29

36

65

total

29

36

6.3. MODEL EFFECTIVENESS 43
Table 6.5: Confusion Matrix - Resource Usage Anomaly Detector with Isolation Forest

Predicted Outcome

p n total
p 16 0 16
Actual
Outcome
n 3 0 3
total 19 0

Based on these matrices, further metrics can be calculated:

6.3.1 Accuracy

Accuracy is the ratio of correct predictions against the total number of predictions.

Table 6.6: Model Accuracy Table

Model Model Accuracy
System Call Classifier (Frequency Preprocessed) Naive Bayes 0.9538
Resource Usage Classifier Decision Tree 0.1579
System Call Anomaly Detector (Sequence Preprocessed) LOF 0.4461
Resource Usage Anomaly Detector Isolation Forest 0.8421

6.3.2 Precision

Precision measures how many of the predicted "positive” instances are positive in reality.

Table 6.7: Model Precision Table

Model Model Precision
System Call Classifier (Frequency Preprocessed) Naive Bayes 0.9063
Resource Usage Classifier Decision Tree 0.0
System Call Anomaly Detector (Sequence Preprocessed) LOF 0.4461

Resource Usage Anomaly Detector Isolation Forest 0.8421

44 CHAPTER 6. PROTOTYPE EVALUATION

6.3.3 Recall

Recall is a metric that measures how many of the actual positive data points were predicted
correctly by the model.

Table 6.8: Model Recall Table

Model Model Recall
System Call Classifier (Frequency Preprocessed) Naive Bayes 1.0
Resource Usage Classifier Decision Tree 0.0
System Call Anomaly Detector (Sequence Preprocessed) LOF 1.0
Resource Usage Anomaly Detector Isolation Forest 1.0

6.3.4 F1-Score

F1-Score is a metric combining precision and recall, to give a more balanced perspective
of the model by considering both false positives and false negatives in its evaluation.

Table 6.9: Model F1-Score Table

Model Model F1-Score
System Call Classifier (Frequency Preprocessed) Naive Bayes 0.9508
Resource Usage Classifier Decision Tree Undefined
System Call Anomaly Detector (Sequence Preprocessed) LOF 0.6170
Resource Usage Anomaly Detector Isolation Forest 0.9142

6.3.5 Interpreting the Numerical Results

Overall, it can be seen that the first model (system call classifier with naive bayes) showed
great performance across all metrics when generating predictions for a possible Monti
infection.

Unfortunately, the second model (resource usage classifier with decision tree) did not
perform nearly as well, and was unable to detect the Monti infection.

This is likely due to the SecBox architecture and how it relates to the raw data required
by the models - for system calls, this raw data is taken directly from the system call
monitor running on the host machine, whereas the corresponding resource usage data is
not available from the performance monitor - instead, the only place it can currently be
taken is from a function that prepares it for front-end graphing, which may have led to
longer delays for data processing and unexpected data groupings.

Alternatively, it could also be due to the breadth of metrics considered - during Monti
execution, the only noticeable spike was in CPU usage, whereas the other system resources
such as RAM remained at reasonable levels. As a result, the change in CPU usage may
not have been noticeable enough for the model.

6.4. MODEL REPRODUCIBILITY AND EXPLAINABILITY 45

Finally, the last two models (system call anomaly detector with LOF and resource usage
anomaly detector with isolation forest) exhibited unusual behavior, labelling nearly every
data sample as an outlier.

There is a straightforward explanation for this - the data sets using which the models
were trained are relatively limited, meaning that the possible "normal” behaviors of the
system are not described sufficiently well to the machine learning models.

This situation causes the anomaly detector to interpret even slight deviations from the
norm as unusual, so when the new malware sample was executed, every data point was
labelled as an outlier.

In order to solve this, the representation of "normal” behavior within the SecBox will need
to be extended, either through larger data sets in order to have a sufficient number of
data points for patterns to be discovered, or through more varied representations of the
healthy sandbox behaviors, for example by executing code that requires a lot of system
resources, so as to normalize such behavior.

6.4 Model Reproducibility and Explainability

The final evaluation criteria is the reproducibility and explainability of the trained machine
learning models.

When looking at model reproducibility, the set objective has been fulfilled, because every
created model is linked to a configuration file, which details every input that the model
received from the user, as well as additional information such as the random seed chosen
by the previous model (see Figure 6.4). Using this file, any model can be reconstructed
from scratch to generate the same predictions, therefore making the training process
reproducible.

% _'-'::l':j!;_'l.T--El ner :::. maodals ™

"modelName" :
"modelType":
“d EvltEvlF l-l_

"randomState":
"contamination":
"novelty": i

"n neighbors": 28,
"timePeriod": 1000000000

Figure 6.4: A JSON model configuration file

46 CHAPTER 6. PROTOTYPE EVALUATION

In terms of explainability, the objective has been partially fulfilled, because the chosen
machine learning models have a high degree of explainability (for a discussion of this,
see 4.1.2), however, these metrics are not currently visually displayed anywhere, meaning
that a user that wishes to access them would have to look for these metrics themselves
within the model trainer program module.

Chapter 7

Summary and Conclusions

This chapter summarises the work that was conducted during this project, concludes the
main findings of this project, and proposes ideas for how the project can be extended in
the future.

7.1 Summary of Work Conducted and Conclusion of Main
Findings

The summary of work is done on a per-chapter basis, including the main findings within
each chapter:

7.1.1 Introduction

Within the introduction section, the current situation in the world with regards to tech-
nology usage and cybersecutity was looked into, and it was found that small and midsize
enterprises (SMEs) were becoming increasingly reliant on technology, yet lacked appro-
priate cybersecurity measures, leaving them prone to cyberattacks from malicious actors.

The usage of machine learning for malware analysis was established as a promising tech-
nique to resolve this problem, and the need for a machine learning malware analysis tool
was explained.

7.1.2 Background

Malware analysis was looked into in detail, and it was found that several techniques
exist. The best option was found to be a combination of static analysis conducted on
the artifacts produced by the malware, and dynamic analysis of the malware during its
runtime. This was because it offered the best chances of deciphering the malware’s purpose
and functions.

47

48 CHAPTER 7. SUMMARY AND CONCLUSIONS

It was also found that for any machine learning model, a machine learning pipeline needs
to be configured, establishing the need to make choices regarding data preprocessing,
model selection and model evaluation methods.

7.1.3 Related Work

In related work, two distinct categories of works were looked into - machine learning
cybersecurity solutions, and sandbox systems with machine learning components.

For machine learning cybersecurity solutions, it was determined that existing solutions
lacked important aspects for the project, such as reproducibility of outcomes, account-
ability with regards to why certain predictions were made, and the option to implement
different machine learning pipelines.

For sandbox systems, it was found that most sandboxes that implemented machine learn-
ing components were closed source, thus were not suitable for the project. However,
SecBox was discovered as an appropriate system that fulfilled the basic requirements
- being actively maintained, accountable and open source, although lacking a machine
learning component.

As a result, it was decided to extend SecBox with a machine learning component in order
to fulfill the project’s goals.

7.1.4 Design

Within the design section, the system requirements for the prototype solution were out-
lined, and it was decided to use the available system call CSV files and resource usage
JSON files (which are generated with every run), in order to provide suitable data to the
machine learning component.

Choices regarding machine learning algorithms were made, with Decision Tree and Naive
Bayes models chosen for malware classification, while Isolation Forest and Local Outlier
Factor were chosen for anomaly detection. These choices were made due to the fact that
all of these models can be trained in a reproducible manner, and possess a good degree
of explainability in terms of the predictions that they output.

Data preprocessing methods were decided upon, with the proposal to use frequency-
based and sequence-based data preprocessing for the system call files, while simple data
aggregation was used for the resource usage files.

Lastly, the general architecture of the project was outlined, extending the existing SecBox
architecture with a new model trainer module in the backend, new data managers were
added, with the capability to command the model trainers via websocket connections,
and new front-end components were designed, intended to display the model predictions
in real-time.

7.2. FURTHER WORK 49

7.1.5 Implementation

For the implementation, the initial setup of the SecBox environment is described, followed
by the results of initial test runs of various malware types in the SecBox environment. It
was found that certain malware types (such as Monti ransomware) executed as expected
within the environment, while others (such as available versions of coin miners) did not
execute at all due to missing libraries.

A decision was made to focus on the Monti ransomware family due to instability of other
malware samples, and the more apparent effect of the ransomware in terms of aggressive
resource usage providing better training data for the models.

Lastly, the concrete implementation of the Model Trainer module, and extensions to the
Data Manager module are described, as well as the additions to the front-end interface
such as the prediction tables and model chooser interface.

7.1.6 Evaluation

Finally, in the evaluation section, confusion matrices were created for selected machine
learning models, and then used to calculate metrics such as accuracy, precision, recall
and F1-Score for each model in order to assess how effective it is at recognizing Monti
ransomware.

The resource usage of each model was measured and explained, both for training the
model using the available data files, as well as generating predictions regarding infected
files in real-time.

Lastly, aspects such as the reproducibility and explainability of each model were looked
into, and the overall findings for each model were explained in terms of the SecBox archi-
tecture and the chosen machine learning pipelines.

7.2 Further Work

There are several aspects in this project that were touched upon, but are significant
enough to warrant additional research in the future.

7.2.1 Realistic Representation of Sandbox Behavior

One of the problems that was encountered during this project (and explained in the
Evaluation section) was the lack of realistic representation of sandbox behaviors under
load.

The Monti ransomware uses the majority of a system’s resources during its execution,
particularly with regards to the CPU percentage usage. On the other hand, the healthy

50 CHAPTER 7. SUMMARY AND CONCLUSIONS

sandbox environment does not execute any tasks by default, meaning that, if an action is
performed in the future that causes high load on the CPU, it will be classified as a Monti
virus by the current models.

An attempt to rectify this was made by simulating load through downloading large zip
files, unzipping them and moving their contents within the SecBox environment, however
this proved insufficient, possibly due to the differences in the character of system calls and
level of CPU usage.

Therefore, it will be of great benefit if a technique to model "healthy” system load is
designed, as it would help decrease the number of false positive predictions by the machine
learning models.

7.2.2 Changing how the Resource Usage Data is Provided to the Model
Trainer

It was also mentioned in the evaluation that an issue arose with the resource usage data
during the real-time prediction phase of the SecBox - some of the data was very delayed
in arriving at the model trainer class (when compared to the system call data), leading
to worse predictions by the machine learning models.

In order to resolve this issue, the existing SecBox resource usage monitor implementation
could be changed to be consistent with the system call monitor, because currently, the
necessary system call data can be taken directly from the system call monitor, however,
the corresponding resource usage data is only available from a data processing function
within the websocket implementation of the project.

To resolve this issue, a data processing function that provides all the needed parameters
can be added directly to the resource usage monitor, minimizing delays and data format
changes due to data processing for the front-end, and therefore improving the quality of
the models through better data quality and availability.

7.2.3 Training the Models from the Front-End

Currently, the machine learning models are trained and stored by running a training script
contained within the Model Trainer python files in the backend. From the user point of
view, it would make sense to integrate the model training into the front-end, allowing
users to select data files and train models directly from the SecBox interface.

This can be achieved by extending the websocket connections (within the WebAPT python
file) with an additional namespace, which would allow the front-end to issue commands
such as "train a decision tree classifier using this data file” to the model trainer in the
backend, and would make it easier for users to experiment with training new models.

7.2. FURTHER WORK o1

7.2.4 Integrating the Models’ Explainable Metrics into the Front-End
Interface

Lastly, the evaluation mentioned that while the chosen machine learning models contain
a good degree of explainability, the benefits are not being maximized at the moment,
as the provided metrics are not shown to the users. For example, the decision tree and
naive bayes models contain feature importance ranking data, showing which features
are considered to be more relevant to the problem at hand. Likewise, the Local Outlier
Factor algorithm calculates an anomaly score for each data point, and the Isolation Forest
algorithm calculates an isolation score.

Therefore, a method of displaying these underlying scores could be designed for each
model, providing users with this information in the front-end during the sandbox execu-
tion, and therefore allowing them to better understand why a certain prediction was made
by the model with regards to a file.

52

CHAPTER 7. SUMMARY AND CONCLUSIONS

Bibliography

[1] L. Vermeer and M. Thomas, “Pharmaceutical /high-tech alliances; transforming health-
care? digitalization in the healthcare industry”, Strategic Direction, vol. 36, no. 12,
pp. 43-46, 2020.

[2] Y.Sun, W. Wang, Y. Chen, and Y. Jia, “Learn how to assist humans through human
teaching and robot learning in human-robot collaborative assembly”, IEEE Systems
Journal, vol. 52, no. 2, pp. 728-738, 2022.

[3] M. S. Ismail, M. I. Mohd Salmi Md Noorani, F. A. Razak, and M. A. Alias, “Pre-
dicting next day direction of stock price movement using machine learning methods
with persistent homology: Evidence from kuala lumpur stock exchange”, Applied
soft computing, vol. 93, p. 106 422, 2020.

[4] M. Cohen and J. Smetzer, “Understanding human over-reliance on technology; it’s
exelan, not exelon; crash cart drug mix-up; risk with entering a “test order™, Hospital
pharmacy (Philadelphia), vol. 52, no. 1, pp. 7-12, 2017.

[5] A. Alahmari and B. Duncan, “Cybersecurity risk management in small and medium-
sized enterprises: A systematic review of recent evidence”, in 2020 International
Conference on Cyber Situational Awareness, Data Analytics and Assessment (Cy-
berSA), 2020, pp. 1-5. DOI: 10.1109/CyberSA49311.2020.9139638.

[6] A. Zimba and M. Chishimba, “On the economic impact of crypto-ransomware at-
tacks: The state of the art on enterprise systems”, Furopean journal for security
research, vol. 4, no. 1, pp. 3-31, 2019.

[7] E. Gandotra, D. Bansal, and S. Sofat, “Zero-day malware detection”, in 2016 Sizth
International Symposium on Embedded Computing and System Design (ISED), 2016,
pp. 171-175. pOI: 10.1109/ISED.2016.7977076.

[8] F. Abri, S. Siami-Namini, M. A. Khanghah, F. M. Soltani, and A. S. Namin, “Can
machine/deep learning classifiers detect zero-day malware with high accuracy?”, in
2019 IEEE International Conference on Big Data (Big Data), 2019, pp. 3252-3259.
DOI: 10.1109/BigData47090.2019.9006514.

9] M. Vasilescu, L. Gheorghe, and N. Tapus, “Practical malware analysis based on
sandboxing”, in 2014 RoEduNet Conference 13th Edition: Networking in Education
and Research Joint Event RENAM Sth Conference, 2014, pp. 1-6. DoI: 10.1109/
RoEduNet—-RENAM.2014.6955304.

[10] M. Maass, A. Sales, B. Chung, and J. Sunshine, “A systematic analysis of the science
of sandboxing”, PeerJ Computer Science, vol. 2, e43, 2016.

33

o4

[11]

[12]

[13]

[14]

[15]

[16]

BIBLIOGRAPHY

L. Vokorokos, A. Balaz, and B. Mados, “Application security through sandbox vir-
tualization”, Acta Polytechnica Hungarica, vol. 12, no. 1, pp. 83-101, 2015.

J. v. d. Assen, A. H. Celdréan, A. Zermin, R. Mogicato, G. Bovet, and B. Stiller,
“Secbox: A lightweight container-based sandbox for dynamic malware analysis”, in
NOMS 2023-2028 IEEE/IFIP Network Operations and Management Symposium,
2023, pp. 1-3. DOL: 10.1109/NOMS56928 . 2023 . 10154293.

H. A. Noman, Q. Al-Maatouk, and S. A. Noman, “A static analysis tool for malware
detection”, in 2021 International Conference on Data Analytics for Business and
Industry (ICDABI), 2021, pp. 661-665. DOT: 10.1109/ICDABI53623.2021.9655866.

A.V, V. P V. G. Menon, et al., “Malware detection using dynamic analysis”, in 2023
International Conference on Advances in Intelligent Computing and Applications
(AICAPS), 2023, pp. 1-6. DOI: 10.1109/AICAPS57044.2023.10074588.

R. B. Hadiprakoso, H. Kabetta, and I. K. S. Buana, “Hybrid-based malware anal-
ysis for effective and efficiency android malware detection”, in 2020 International
Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS),
2020, pp. 8-12. por: 10.1109/ICIMCIS51567.2020.9354315.

N. Balram, G. Hsieh, and C. McFall, “Static malware analysis using machine learn-
ing algorithms on aptl dataset with string and pe header features”, in 2019 In-
ternational Conference on Computational Science and Computational Intelligence
(CSCI), 2019, pp. 90-95. DOL: 10.1109/CSCI49370.2019.00022.

S. Gulmez, A. G. Kakisim, and I. Sogukpinar, “Analysis of the dynamic features on
ransomware detection using deep learning-based methods”, in 2023 11th Interna-
tional Symposium on Digital Forensics and Security (ISDFS), 2023, pp. 1-6. DOI:
10.1109/ISDFS58141.2023.10131862.

A. Posoldova, “Machine learning pipelines: From research to production”, IFEE
Potentials, vol. 39, no. 6, pp. 3842, 2020. po1: 10.1109/MP0OT.2020.3016280.

S. Sedkaoui, “Supervised versus unsupervised algorithms: A guided tour”, in Data
Analytics and Big Data. 2018, pp. 123-151. DOI: 10.1002/9781119528043. ch?.

I. Bilbao and J. Bilbao, “Overfitting problem and the over-training in the era of data:
Particularly for artificial neural networks”, in 2017 Eighth International Conference
on Intelligent Computing and Information Systems (ICICIS), 2017, pp. 173-177.
DOI: 10.1109/INTELCIS.2017.8260032.

V. Pintiysky, “System and method of analysis of files for maliciousness in a virtual
machine”, US10339301, Jul. 2019.

C. Compton, “Cuckoo sandbox: Automated malware analysis.”, Jul. 2019.
T. Lengyel, Drakwuf wiki, 2022.
K. Monappa, Limon - sandbox for analyzing linux malwares, 2015.

ANY.RUN, Any.run dynamic malware analysis sandboz, Available at https://
app.any.run/, 2023.

W. Wang, F. Harrou, Y. Sun, B. Bouyeddou, and S.-M. Senouci, “A stacked deep
learning approach to cyber-attacks detection in industrial systems: Application to
power system and gas pipeline systems”, Cluster Comput, vol. 25, pp. 561-578, 2022.
DOI: https://doi.org/10.1007/s10586-021-03426-w.

BIBLIOGRAPHY 5}

[27] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis of malware be-
havior using machine learning”, Journal of computer security, vol. 19, no. 4, pp. 639—
668, 2011.

[28] S. Varma and J. Narasimharao, “Malware analysis with machine learning: Classi-
fying malware based on pe header”, International Journal for Research in Applied
Science and Engineering Technology (IJRASET), vol. 10, no. VI, pp. 3583-3590,
2022. DOIL: https://doi.org/10.22214/ijraset.2022.44668.

[29] M. S. Akhtar and T. Feng, “Malware analysis and detection using machine learning
algorithms”, Symmetry, vol. 14, no. 11, p. 2304, 2022. DOT: https://doi.org/10.
3390/sym14112304.

[30] L. C. Navarro, A. K. W. Navarro, A. Gregio, A. Rocha, and R. Dahab, “Leveraging
ontologies and machine-learning techniques for malware analysis into android per-
missions ecosystems”, ComputerséfSecurity, vol. 78, pp. 429-453, 2018. DOI: https:
//doi-org/10.1016/j.cose.2018.07.013.

[31] Dataset 26, https://digitalcorpora.s3.amazonaws.com/corpora/files/govdocs] /zipfiles/026.zip.

96

BIBLIOGRAPHY

Abbreviations

CSV
CPU
DT
JSON
LOF
ML
RAM
RSS
SMEs
Syscall

Comma-Separated Values
Central Processing Unit
Decision Tree

JavaScript Object Notation
Local Outlier Factor
Machine Learning

Random Access Memory
Resident Set Size

Small to Midsize Enterprises
System Call

o7

o8

ABBREVIATONS

Glossary

Machine Learning A process of using historical data to create a prediction algorithm for
future data

Malware Analysis The study of the functionality, purpose, origin, and potential impact
of malicious software

Sandboxing A technique used in cybersecurity, where an application can be encapsulated
within the underlying host machine

29

60

GLOSSARY

List of Figures

4.1
4.2

4.3

5.1

5.2

5.3

5.4
9.9
5.6
5.7

6.1
6.2

6.3

6.4

SecBox existing architectureo
SecBox post-mortem analysistab

SecBox existing analysis page Lo

A configured .env file for the SecBox api

SecBox error when attempting to run a CoinMiner virus - various libraries
not found

Monti ransomware in action within SecBox - note the CPU usage spike and
encrypted disk files

Example system call CSV file
Sample stored models as part of the modelTrainer module
The model selector dropdowns in the start menu

Malware analysis tables as part of the front-end interface

The file contents of the downloaded archive.
/etc/ folder contents after archive cloning

Downloading the files resulting from a Monti execution using the SecBox
interface L

A JSON model configuration file.,

61

62

LIST OF FIGURES

List of Tables

3.1

3.2

5.1
5.2

2.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Comparison of Sandbox Systems 13
Comparison of Machine Learning Cybersecurity Solutions 15
Sample frequency-processed system call list 28
Sample sequence-processed system call list 29
Resource usage processed data L. 29
Model Resource Efficiency Table 41
Confusion Matrix - System Call Classifier with Naive Bayes 42
Confusion Matrix - Resource Usage Classifier with Decision Tree 42

Confusion Matrix - System Call Anomaly Detector with Local Outlier Factor 42

Confusion Matrix - Resource Usage Anomaly Detector with Isolation Forest 43

Model Accuracy Table 43
Model Precision Table L 43
Model Recall Table 44
Model F1-Score Table 44

63

64

LIST OF TABLES

Appendix A

Installation Guidelines

Follow the installation guidelines of the underlying SecBox system (provided as a README
file within the code). The database setup step (marked as being optional for the original
system) is recommended, so as to allow retrieval of the resource usage files for model
training.

65

