
Quality-of-Experience (QoE)
Estimation for Mobile Data
Networks through Mobile

Measurements

Tomas Ludrovan
Zurich, Switzerland

Student ID: 13-746-813

Supervisors:
Prof. Dr. Burkhard Stiller, Prof. Dr. Thomas Grechenig,

Christos Tsiaras, Thomas Bocek, Anuj Sehgal, Sebastian Seeber,
Andreas Ehringfeld

Date of Submission: August 29, 2014

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Mobile networks became popular over last years and technology enabled data delivery
to mobile devices. Mobile data is nowadays used for different applications where each of
them has different requirements for a good quality. Bandwidth can be measured by avail-
able tools, however protocol-specific measurements for testing connection quality under
quality of service regulations of network providers are missing. In the scope of this master
thesis a new software system called BonaFide+ Provider was developed for performing
protocol-specific measurements and detailed visualization of quality on map. In addition,
completely new functionality was implemented, which can estimate the experienced qual-
ity perceived by users based on type of activity being performed using DQX mathematical
model.

i

ii

Acknowledgments

This master thesis was written in cooperation between the University of Zurich in the
scope of Erasmus programme and the Technical University of Vienna. I would like to
thank everyone who supported me and the project, especially my coordinators Prof. Dr.
Burkhard Stiller at the University of Zurich and Prof. Dr. Thomas Grechenig at the
Technical University of Vienna and my supervisors Christos Tsiaras, Andreas Ehringfeld,
Anuj Sehgal and Sebastian Seeber. I would also like to thank for support to our project
partners and to people who performed measurements, which were evaluated in this master
thesis.

This work also contributed to the research of the FLAMINGO1 project, on which the
University of Zurich, Jacobs University of Bremen and the Universität der Bundeswehr
München participate.

1Flamingo is a European (ICT-FP7 Network of Excellence) project focusing on network and service
management. More informations are available on: http://www.fp7-flamingo.eu/

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Target group . 5

1.2 Description of Work . 5

1.2.1 Theoretical part . 5

1.2.2 System design and implementation 6

2 Related Work 7

3 Quality of Service 9

4 Quality of Experience 13

4.1 Deterministic Mathematical Model (DQX) 14

5 Network Influence Factors 17

5.1 Mobile Network Type . 17

5.2 Location of the end-user . 18

5.3 Daytime . 20

5.4 QoS Regulations in the Network . 20

v

vi CONTENTS

6 Towards real-world use-cases of QoE 21

6.1 Tool for QoE Estimation: BonaFide+ Provider 21

6.1.1 Software Architecture . 22

6.1.1.1 Central Server . 24

6.1.1.1.1 Life-cycle Management 25

6.1.1.1.2 Availability to Clients 27

6.1.1.1.3 Measurement Server Distribution 28

6.1.1.1.4 Centralized Storage of Measurement Results . . . 33

6.1.1.1.5 Identification of Measurement Results 35

6.1.1.1.6 Stored Data . 37

6.1.1.1.7 REST Interface Specification 40

6.1.1.2 Measurement Server . 42

6.1.1.2.1 REST Implementation 43

6.1.1.2.2 Measurement Protocol 44

6.1.1.3 Client Application . 45

6.1.1.3.1 Infrastructure Integration 45

6.1.1.3.2 Ways of Measurements 48

6.1.1.3.3 Measurement Results 52

6.1.1.3.4 Overall Results Visualization 52

6.1.1.3.5 Mean Opinion Score and DQX Model for QoE
Estimation . 57

6.1.1.3.6 Filtering . 57

6.1.1.3.7 Squares and Map Projection 59

6.1.1.3.8 Location Awareness 60

7 Evaluation 61

8 Future Work 67

9 Summary and Conclusions 69

CONTENTS vii

List of Figures 69

List of Tables 72

A Contents of the DVD 75

viii CONTENTS

Chapter 1

Introduction

1.1 Motivation

”The future of internet is mobile” [29]. Mobility is the requirement of modern people [34]
and is defined as ”Change of property1 between defined units of a system” [34]. Franz
Lehner defines mobility as location-independence of communication partners [29]. Because
of such requirements, wireless technology for delivering mobile data was developed [24].
Mobile devices not only support GSM calls and messaging, but got also connected to the
internet [24]. By this fact new requirements and demands arised, because using internet
completely differs from the previous offline (without internet connectivity) cell phone
usage. Using such technology, people and services became location-independent [34] [29]
together with the technology (Figure 1.1). Consumers of mobile technologies are mostly
confronted by marketing advertisements, which advertise physical layer peak data rate,
which define the technology data throughput in lab conditions without considering any
data correction techniques, signal quality, interference, scheduling [33], but how the service
is offered in real environment is hidden to them, because the technology can’t be easily
measured and evaluated with respect to different environmental conditions with available
tools. Because the what do I buy and what do I get deviation, consumers of mobile
technologies should be aware of possible reasons for it and should have access to measured
data.

With internet connectivity on the phone (smartphone) new possibilities were offered to
the end user, such as web browsing, e-mail, internet telephony and video streaming. Even
if it sounds easy because people are used to consume that services via computers, mobile
technologies make this more interesting. In contrast to cable internet, mobile internet has a
lower bandwidth and this is in addition shared by the number of simultaneously connected
users via the same frequency (overview of common frequencies is listed in Table 1.1). As
written in [33] moving from physical layer peak data rate (lab envirnoment) to application
level peak data rate (single user located directly under the base station) the available
throughput is still not reflecting real world performance [33]. This can be compared to
WiFi for better understanding. If only one user is associated with the access point, the

1Meaning: persons, informations, material object etc.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Communication technologies and their classification [24]

whole technically available bandwidth belongs to him. If more users are connected, WiFi
technology has to coordinate parallel communication and thus schedule the bandwidth to
all users. As a result, every user gets lower bandwith as the maximum available. This
is also necessary in mobile networks, which also operate on a specific frequency and have
a technology- and coverage-specific properties. However, mobile networks are developed
with much more effort than WiFi networks because of higher number of consumers and
because services provided by mobile network operators (MNOs)2 are subject of fees and
thus should promise a good quality. Specification of the cell system, which is the base
of mobile networks, explicitly requires economic utilization of the limited mobile radio
frequency [24].

Network performance is also not constant. There are many factors, which give variations
to the end-users experience, e.g. network type, number of concurrent users in the same
location and at the same time etc. Especially In this master thesis each factor will be
described and evaluated. I will call such factors hard factors, because their capacity is
given by available technology and can’t be easily changed. Beside such factors there are
also another ones which play an important role in regulating available resources. They can
be conFigured and dynamically adapted and I will call them soft factors. They are not
given by the technology, but by fair sharing of available resources with the goal that every
user becomes the feeling that he is not affected by others. I am talking about Quality
of Service (QoS), which is used for such regulations by almost every network provider in
order to improve overall quality of the users experience when consuming different services
in a multi-user network environment.

2Franz Lehner define MNOs as companies which deploy and maintain mobile networks [29]

1.1. MOTIVATION 3

Usage Frequency in MHz
TV 47-68
FM-Radio 87,5-108
Trunked radio system 418,8-430
C-450 451-465
GSM 900 890-960
GSM 1800/ DCS 1800 1710-1880
Radar 960-1215
Satellit 1631,5-1643,5
DCS 1800 1710-1880
DECT 1880-1900, 2110-2120

Table 1.1: Usage of common frequencies [29]

There are many disjoint and correlated factors, which affect the network performance.
The expression ”good quality” was mentioned, which is quite vague without proper ar-
gumentation. A traditional approach to measure network performance is to perform a
bandwidth test. This test provides current network throughput as a number, which can be
used to compare performance of different networks and/or network providers. Many such
tests (e.g. http://www.speedtest.net/, http://hsi.bluewin.ch/speedtest/, www.dsl.sk) use
time-measured data exchange between 2 parties - client and a server - for computing the
bandwidth. This can be useful when one would like to compare the network performance
in absolute values, however it says nothing about the quality goodness. With result e.g.
1348 kbit/s one can say it is more than 1 Mbit/s and less than 2 Mbit/s, but one can’t
say that this is good or bad. This statement is dependent from many conditions. While
1348 kbit/s could be too slow for streaming Full HD videos, it is more than required for
Voice over IP (VoIP) [26]. Moving into this direction we will be able to interpret results
in a different way - not what is more, what is a big number etc., but what is good for a
specific use-case. This interpretation will, in contrast to simple speedtest tools, estimate
users experience with the consumed service over the network. This interpretation, called
Quality of Experience (QoE), is be able to compute such statements based on measured
QoS and parameters, which are developed in lab environments in order to estimate the
users experience [37]. Under such interpretation one will be able to measure if the net-
work is good or bad for a particular service and will not confuse by absolute values, which
are sometimes much bigger than required. As an example 1 Gbit/s network bandwidth
doesn’t make VoIP call better than network with bandwidth of 1 Mbit/s. In both cases
the QoE would be excellent (assumed only the bandwidth differs and other parameters
such as latency are the same).

There are some tools, which are targeting network quality, however they are very limited
and are focusing only bandwidth and not QoE, so they are providing absolute values
without their goodness, which is from my point of view more important for end-users
than the maximum available bandwidth. For somebody using internet for reading e-mails
or VoIP telephony, the bandwidth in ranges greater than e.g. 1 Mbit/s is not required,
however the classical end-user understanding says more is better. Network providers often
try to offer more bandwidth in order to better sell the product, however this is mostly
a theoretical value without taking what is needed by the user in real and also provider-

4 CHAPTER 1. INTRODUCTION

specific QoS policies into charge. Hidden QoS regulations can result in different bandwidth
for different protocols, such as torrents and video streaming. This gap between offered and
provided performance is only partially provided by available tools to consumers. Proper
testing of networks targeting specific use-cases (QoE) and for protocol performance - not
measured by random data exchange, but by protocol-simulating measurements, which are
testing performance under network providers QoS regulations - is missing.

QoE is closely associated with QoS, because experience is connected to a network-specific
intent, e.g. making a VoIP call, where QoS has influence on how the experience will be.
However pure QoS data are not talking about the experience itself, but about available
ressources. While QoS measurement can tell one that there is available bandwidth of 1
Mbit/s for VoIP calls with latency 21ms, QoE will decide if the user will perceive good or
bad quality. To make it more clear, one can explain it in a different way. QoS measurement
will ask: ”Which bandwidth and latency is currently observed for VoIP protocol?”, but
QoE will go beyond it and will ask: ”How good is the quality of VoIP call at the moment?”.
In this master thesis the Deterministic Quality-of-Experience model (DQX) [39] is used
for the calculation of QoE.

QoS is not constant, but dependent from the underlying network technology and from
numerous influence factors, which will be discussed in this master thesis. Because QoE
is related to QoS, the QoS fluctuation can result in changes in the QoE, however the
QoE will change only if the QoS changes to a degree sensitive to the quality change of
the targeted QoE use-case. Every QoE estimation has a set of pre-conFigured values,
which decide about the experience for a given service. For example QoE of VoIP will take
bi-directional bandwidth into account and QoE of video streaming only bandwidth of one
direction. Every use-case is sensitive to different QoS observations and thus fluctuation
in the network can have no, slightly or strong influence on the QoE. When a VoIP call
requires bandwidth of 8 kbit/s to be considered as good, the network drop-down from 10
Mbit/s to 1 Mbit/s will have no effect in the quality of the call. On the other side, it can
result in bad quality while streaming video. All such investigations and decisions will be
covered in this master thesis.

There are no tools available, which can tell the user if the network performance results in
a good or bad experience with e.g. VoIP call. Because of importance of such informations,
this master thesis reflects QoE state-of-art and documents implementation of a distributed
system, which is able to measure networks and to provide QoE interpretations. Location,
daytime, network technology and other additional factors were considered in order to
cover QoE based on different conditions in real world envirnoment as defined by subscriber
data rate [33]3. Measurement clients can be installed on Android mobile devices and are
optimized for measurements in mobile networks. WiFi networks are supported as well,
but the result is not only dependent from the network quality, but also from the WiFi
throughput between the mobile device and the wireless access point. When measuring
mobile networks, the maximal throughput can be achieved by the mobile device once it

3Subscriber data rate is often expressed as ”up to” a peak, a range of min-max values, and average
measurements. This is the view of a single subscriber’s data rate and can vary greatly depending on the
conditions and the number of subscribers on a cell using the services, but it gives a realistic expectation
of what subscribers are likely to experience on a real life network. [33]

1.2. DESCRIPTION OF WORK 5

can connect to the given network type in contrast to measuring e.g. fiber internet over
WiFi-G access point.

1.1.1 Target group

This work is dedicated for individuals, network providers and research groups in the QoE
and QoS field.

Individuals can use the system for testing their internet performance and for viewing
networks by measured results of all users, who performed tests before. Users can see real
network performance and in addition the estimated experience for different services in
particular locations.

Network providers can use this system to map performance of their infrastructure over
time and at different locations. Because this system is optimized especially for mobile
network operators (MNOs), using system developed in the scope of this master thesis can
support them to evaluate their wireless setup and implied signal interference, disturbance
and mirroring.

Research groups can use the system for experiments. The system is easily configurable
and open-source, so everybody can use it and contribute to its future direction. This
thesis can be used as a reference for understanding the system.

1.2 Description of Work

This master thesis consist of a theoretical research and of the system design and imple-
mentation.

1.2.1 Theoretical part

Prior to the system design, QoE field was researched in detail to gain in-depth insight
into the topic. This was necessary for collecting requirements and preconditions for the
system design. In this master thesis related theory will be explained and brought to the
future direction. While QoE is still being researched and evaluated, this work will be
also contribute to it and will implement current research progress into an open-source
software system, which can be used directly by network users and by research groups for
experiments and modifications. This master thesis provides documentation and explana-
tion of my decisions for better understanding of the topic and of the system, which can
automatically determine users experience.

6 CHAPTER 1. INTRODUCTION

1.2.2 System design and implementation

As already mentioned, beside the theory research new system was designed and imple-
mented, which is able to perform protocol-specific QoS measurements needed for QoE
estimation based on the DQX model and which can provide QoS and also QoE visualiza-
tions to end-users. In contrast to existing tools, this system is able to perform protocol-
specific measurements, which take QoS regulations such as Application Level Filtering
into account. This system not only show detailed measurement results, but also estimate
users experience.

The new system extends measurements to protocol specific QoS measurements (targeting
protocol performance instead of random data exchange) and adds the ability to estimate
by measured data the users experience at specific place, at specific time and for specific
use-case.

Chapter 2

Related Work

Currently there are no QoE estimation tools available. This fact initiated the development
of a completely new approach for measuring not only QoS, but also for estimation of user
experience at particular locations.

Measrdroid (https://play.google.com/store/apps/details?id=de.tum.in.net.measrdroid.
gui.stats) is an Android application for collecting phone usage statistics, which also in-
clude signal quality, traffic usage, WiFi coverage etc. Measurement are passive - only
available data is collected and evaluated. No network performance tests are done nor
available.

Netradar available at https://www.netradar.org/ is a software system for mobile in-
ternet quality measurements supporting both mobile data and WiFi networks. Results
are displayed on a map. This project provides measurement clients for multiple operating
systems and measurement results are stored centrally. Measured data are:

� Downstream,

� latency,

� upstream,

� signal strength.

This tool goes into QoS direction, however upstream and downstream measurements are
not differentiated for particular protocols and thus they don’t reflect application-specific
QoS regulations of network providers. QoE estimation is not available and in current
implementation also not possible, because QoE is specific for a particular application and
without having the specific measurement data (including QoS regulations) the statement
about the user experience of the particular application would be not appropriate.

Another Android application for measuring QoS and for finding the connection between
QoS and QoE developed by TelecomItalia Laboratories is TeleAbarth. This application

7

8 CHAPTER 2. RELATED WORK

collect network measurements and end-user quality feedback regarding the use of smart-
phone applications [40]. However the tool is not able to estimate the user experience
based on measured QoS data.

There are many speedtest tools such as http://www.speedtest.net/ or http://hsi.
bluewin.ch/speedtest/, which are performing download or upload throughput tests and
some of them also latency measurements. However no speedtest tool was found which is
able to perform protocol-specific measurement, which would incorporate QoS regulations
of network providers. QoE aspects are also missing.

Chapter 3

Quality of Service

Internet communication bases on data exchange between peers in the network. Data com-
munication without any regulation can cause bottleneck effect of the whole data flow. In
this case, each packet is considered the same, i.e. there is no difference in the network
scheduling for any type of packet. This can however lead to problems, because proto-
cols with high-bandwidth usage and with low-priority (e.g. mass downloads, torrents)
can consume so much bandwidth that other high-priority services such as VoIP or video
streaming become unavailable or limited.

”The notion of quality of service (QoS) has been proposed to capture quantitatively or
quantitatively defined performance contract between the service provider and the user ap-
plications.” [22]. ”QoS covers the concepts, parameters and methods needed to manage the
interactions between applications, typically running in end-user terminals and in network
nodes managed by network operators. QoS parameters include bit rates, delay properties,
and packet loss rates.” [28]. QoS defines constraints for a specific data communication,
e.g. the bandwidth of a HTTP download or latency for an online game. In contrast to raw
(unregulated) data flow QoS takes control over the routing scheduling in order to make
communication better distributed for different application, each with specific requirement
(e.g. low latency, minimum or maximum bandwidth, routing priority). QoS regulations
split the available data link in order to manage resources available by the communication
channel for different applications.

Figure 3.1 shows an example for a hierarchical QoS. In this scenario QoS regulation
divides the green communication channel for different customers, where each customer
has a guaranteed bandwidth. QoS regulation guarantees in this case that Customer-
1 can’t extend the bandwidth of 400 Mbps despite the fact that the physical link can
offer up-to 1 Gbps. Given that each customer has a guaranteed maximum speed and
each of them can’t be affected by the bandwidth usage other customer. QoS is defined
in Service Level Agreements of network providers and it guarantees each customer the
agreed bandwidth, which is managed by appropriate QoS regulations in the network.

Another and for purpose of this master thesis more important QoS regulation is shown in
Figure 3.2. In this scenario the traffic classification is specific to different protocols and
applications. Thanks to Deep Packet Inspection the QoS regulation is able to classify

9

10 CHAPTER 3. QUALITY OF SERVICE

Figure 3.1: Hierarchical QoS [16]

each packet based on its application. This can be e.g. web, video, instant messaging,
VoIP. According to this classification the data flow can be managed and prioritized based
on the packet type. Classification can be done by the port number or by the deep packet
inspection, where packet type is determined by the packet analysis instead of the target
or source port, which can vary for each protocol. As a result, the channel is regulated by
giving priority to certain applications or by adjusting the minimal and maximal bandwidth
dedicated for a concrete application. Similar to the hierarchical QoS shown in Figure 3.1
the available channel bandwidth is divided into an application-specific handling. Given
that the data flow can be adjusted in order to give a dedicated bandwidth or latency
to specific applications and thus e.g. VoIP can perform well even when the P2P data
communication utilizes the whole bandwidth. Such regulations are required in order to
make the limited channel bandwidth available for many users and for different applications
without harming the required QoS properties of each application.

Figure 3.2: Application-specific QoS [18]

QoS can be measured, however to make the measurement application-specific, a desired
protocol should be used when performing the test. This can’t be reached with random data
exchange between two peers in the network, but packets used in the data exchange should
carry protocol-specific markers, which can be classified by network providers and handled
as a real application-specific communication in the network. Measuring that way the QoS
of a particular protocol or application can be measured and QoS specific parameters such

11

as current bandwidth and latency can be collected. Results can then describe the
connection quality for specific applications in numeric (quantitative) values. The quality
can be then interpreted based on such values. However the interpretation that bigger
bandwidth is better than the slower one is not always correct. More application-specific
understanding of this statement will be described in the following chapter.

12 CHAPTER 3. QUALITY OF SERVICE

Chapter 4

Quality of Experience

”Engineers talk about network performance and quality of service, business people talk
about average revenue per user and customer churn while behavioral scientists talk about
happiness and experiences.” [28]. QoE extends the QoS by making statements about the
user experience when having a specific bandwidth and latency available on the device. This
differs from the numerical model (quantity) and transforms it to qualitative statements
such as application VoIP performs excellent in current network conditions. Experience
is the users opinion and thus such statements rely on the users feedback. [31] describes
QoE as ”the processes of human perception and experiencing, and of quality formation”.
In contrast to QoS, QoE doesn’t provide numeric values about the bandwidth, but user
experience statements in given conditions for a particular application considering what
the application requires and if the network satisfies its needs [28]. Experience is defined by
[28] as direct personal participation or observation. [39] describes QoE as a user-centric
concept reflecting the end-user satisfaction of a service while considering various technical
variables, such as latency, bandwidth, or jitter.

”The business of network operator is highly dependent on customer satisfaction.” [28].
Users are confronted with marketing informations about the offered network performance,
QoS can measure if they are satisfied and QoE can say if the user will expect a good or
bad quality when using a particular application. Perceived quality is a key criterion for
evaluating systems [31]. Figure 4.1 shows the relation between customers, applications,
SLA and the network QoS. [31] describes QoE as the degree of delight or annoyance
of a person whose experiencing involves an application, service, or system. It results
from the person’s evaluation of the fulfillment of his or her expectations and needs with
respect to the utility and/or enjoyment in the light of the person’s context, personality
and current state. When talking about wireless communication, QoE is also influenced by
radio conditions in the radio access network [23]. An in-detail explanation of the influence
is covered in covered in Chapter 5.

”QoE can only be estimated through mathematical models, or it can be measured indi-
rectly through an experimental setup.” [37] Because the goal of this master thesis is to
provide QoE statements based on QoS measurements, mathematical model had to be used
for the QoE estimation. Mean Opinion Score (MOS) reflects the end-user satisfaction at a
numerical scale where the higher the score is the higher the end-user’s satisfaction is and

13

14 CHAPTER 4. QUALITY OF EXPERIENCE

Figure 4.1: Framework for analyzing communications ecosystem [28]

vice versa [39]. The scale is shown in Table 4.1. Because MOS defines subjective opin-
ions, the Deterministic Mathematical Model (DQX) can be used for QoE estimation [39].
This model combines measured QoS results with predefined configuration parameters and
computes the resulting estimated QoE. Configuration parameters can be adjusted in order
to converge the resulting computed statement to the real experience perceived by users.
[37] shows how lab experiments can contribute to parameter adjustments for the DQX
model. The mathematical model behind the computation is the same for all applications,
however several parameters within the model approximate the perception of quality to the
specific application. Because each service has different network requirements, the QoE
differs in different conditions for different applications. [38] shows how parameters can be
chosen for a particular use-case.

MOS value Quality
5 Excellent
4 Good
3 Fair
2 Poor
1 Bad

Table 4.1: The MOS scheme according to [27]

4.1 Deterministic Mathematical Model (DQX)

DQX is a mathematical approach for QoE estimation. It has a set of predefined parameters
listed in Table 6.9, which converge the computation towards the real users experience

4.1. DETERMINISTIC MATHEMATICAL MODEL (DQX) 15

based on an underlying mathematical formula. The formula can compute values between 1
and 5 as listed in Table 4.1, which are interpreting the measured QoS input for a particular
application. The representation in the client application is done by five discrete colors
between green (excellent) and red (bad).

MOS can be affected in two way - in a positive and in a negative. Accordingly there are
increasing (ei) and decreasing (ed) parameters used in the mathematical model. Which
parameter is increasing and which is decreasing is defined for each particular application
depending on the application requirement. Concrete configuration of the implemented
QoE computation in the BonaFide+ provider system is shown in Table 6.9. Equation 4.1
shows the formula for computing.

E (X) = 1 + 4 ·
N∏
k=1

[
e(i∨d) (xk)− 1

4

]wk
(4.1)

The formula shown in Equation 4.1 contains e(i∨d), which means both increasing and
decreasing parameters are included in the result, where i stands for increasing and d
for decreasing. How the value of e for increasing parameters is computed is shown in
Equation 4.2 and how for decreasing parameters in Equation 4.3. The value for m is
chosen as shown in Equation 4.4.

ei (x) = 4 ·
(

1− e−
(
x
x0

)m
·ln 4

)
+ 1

m− =
ln
(

ln 1+ε
4

− ln 4

)
ln x0−δ

x0

m+ =
ln
(

ln 1−ε
4

− ln 4

)
ln x0+δ

x0

(4.2)

ed (x) = 4 · e−
(
x
x0

)m
·ln 4/3

+ 1

m− =
ln
(

ln 3+ε
4

ln 3/4

)
ln x0−δ

x0

m+ =
ln
(

ln 3−ε
4

ln 3/4

)
ln x0+δ

x0

(4.3)

m := f(x) =


m− > 0 for x < x0

0 for x = x0

m+ > 0 for x > x0

(4.4)

Equation 4.5 shows how parameters are normalized according to the DQX model specifi-
cation.

x :=
x− xmin

xmax − xmin
∀ x ∈ R (4.5)

How MOS estimation based on DQX model was implemented in the BonaFide+ Provider
is described in Subsection 6.1.1.3.5.

16 CHAPTER 4. QUALITY OF EXPERIENCE

Chapter 5

Network Influence Factors

There are factors which have influence on the network quality. This results in QoS varia-
tions and in the end also can (but not necessary) affect QoE. In following sections different
factors and their drawback will be described.

The following will be also evaluated by the BonaFide+ Provider system for measuring
quality of data communication in mobile networks, which is part of this master thesis and
which will be described in chapter 6.

5.1 Mobile Network Type

Currently there is not a single network type spread in mobile networks. Because of
compatibility between base stations and older mobile devices and because of the reverse
compatibility between mobile devices and older base stations, multiple network technolo-
gies are used in parallel. Each network type has its characteristics. We will focus on
mobile data only. Table 5.1 lists some of them with their maximum available bandwidth.
As we can see in the Table, the bandwidth is different for each of them and thus has an
influence on the resulting QoS delivered to the client. Figure 5.1

Technology Data rate
GSM 9,6 - 14,4 kbit/s
GPRS 9,05 - 171,24 kbit/s
HSCSD 9,6 - 57,6 kbit/s
EDGE 11,2 - 400 kbit/s
UMTS 64 kbit/s - 2 Mbit/s
LTE MIMO 4x4 20 MHz 50.1 Mbps downlink, 12.7 Mbps uplink

Table 5.1: Mobile network technologies and their data rate [34] [33]

Beside the bandwidth, network technology has also another influence factor on the result-
ing QoE - the latency. ”With HSDPA networks, a subscriber can expect a two-second or
longer delay to set up the first connection, and then between 75 and 150 ms roundtrip

17

18 CHAPTER 5. NETWORK INFLUENCE FACTORS

Figure 5.1: Network technologies and their evolution [29] (paketoriented = packet-oriented,
vermittlungsorientiert = exchange-oriented, bis zu = up to)

latency afterwards. With LTE’s all IP, flat architecture, the initial data packet con-
nection is much faster, typically 50 ms, and then between 12-15 ms roundtrip latency
afterwards.” [33]. Latency will be thus measured by the implemented system.

5.2 Location of the end-user

Quality of mobile networks is also dependent from the location of the end-user. Despite the
fact that mobile networks are designed well to offer good quality regardless to the end-user
location, there are still location-dependent issues which play role when delivering mobile
data to clients:

� Signal interference on same frequencies [33],

� error correction [33],

� number of concurrent users utilizing the network at the same location (i.e. traffic
load) [33],

� signal disturbance by buildings, i.e. radio shadows [24],

5.2. LOCATION OF THE END-USER 19

� Doppler effect [24],

� impulse disturbance [24],

� fading [33],

� attenuation loss [33],

� signal to noise ratio [33].

As shown in Table 5.2 the bandwidth and network coverage are affected by disturbing
elements such as written above. Table 5.3 explain other factors, which have influence to
the signal quality. Considering all factors which affect the wireless communication the
QoS and implied QoE can significantly vary in different locations as shown in Figure 5.2.
Location is also an important constraint when making statements about the QoS.

Figure 5.2: Subscriber data rate example [33]

Signal reach in buildings 500m, outside of buildings up to 10km
Data rate 1200 - 4800 Baud
Limitations communication not possible from within closed metal rooms

Table 5.2: Mobile coverage variation due to disturbance factors [24]

20 CHAPTER 5. NETWORK INFLUENCE FACTORS

Disturbance reason Description Visualization
Damping Decreasing signal reach due

to atmospheric disturbance
or influence of weather

Shading Signal can be shaded by
barriers such as tunnels or
buildings and thus the re-
ception can be limited

Reflection Signal is mirrored by flat ar-
eas. Such signal is weaker
than directly received sig-
nal.

Scattering Relatively small objects can
scatter the signal.

Diffraction Cants can bend or distract
the signal.

Table 5.3: Signal disturbance factors [29]

5.3 Daytime

Network loads can vary during the daytime. That’s why it is important to bind a particular
result to the current time, so that locations can be evaluated with respect to the time.

5.4 QoS Regulations in the Network

Specification of the cell system, which is the base of mobile networks, explicitly requires
economic utilization of the limited mobile radio frequency [24]. To achieve a fair band-
width distribution within limited resources, MNOs apply artificial QoS rules, which try
to limit bandwidth to the level that it doesn’t affect QoE, e.g. by limiting the speed of
torrent downloads where the bandwidth doesn’t play a significant role and leaving the
bandwidth available for other protocols such as video streaming. Applying such regula-
tions the network can serve different services over a limited but utilized channel. However
this is possible only to a certain extent. Peak times and traffic loads [33], when many
users are connected and using internet services simultaneously, can lead to worse QoE
even when the communication channel is regulated by QoS restrictions.

There can be also a business reason for a specific QoS regulation, e.g. limiting VoIP
protocol in order to make internet telephony artificially unusable in order to force users to
use paid telephony services. According to the research of Vitali Bashko there was found
an evidence that such scenarios are implemented by some MNOs [20].

Chapter 6

Towards real-world use-cases of QoE

In previous sections QoS and QoE were described from the technical perspective. In
this chapter the theory will be turned into the real-world environment. Internet content
is delivered over best effort networks and is consumed on various types of devices such
as smartphones [23], but what does the best effort look like, how can it be measured
and evaluated - this will be part of expertise in following sections. The focus will be on
mobile networks and mobile devices (smartphones or Tablets). This direction is interesting
because of it’s location, wireless bandwidth and current aggregation dependency. Also the
data traffic generated by smartphones increased dramatically over last years [30]. Mobile
devices also support the full bandwidth throughput over the current mobile technology
over which the device is connected in contrast to e.g. throughput of fiber internet over
WiFi-G. Mobile devices are directly connected to the technology they support and thus
make the measurement more accurate.

Because the wireless bandwidth is shared by numerous users and the number users has an
increasing tendency (Figure 6.1), the bandwidth observed on the users device can vary.
There are different sources of generating traffic on mobile devices. [30] states increasing
grow of video-on-demand applications, which generate noticeable traffic because of its
nature. Music streaming counts also to bandwidth-intensive applications [30]. As we
can see, there is growing need for data throughput, but the technology can only provide
fixed maximum rate. How networks perform in peek times, or in more general how they
perform given different conditions such as daytime, protocol, location etc. will be covered
by the BonaFide+ Provider.

6.1 Tool for QoE Estimation: BonaFide+ Provider

The implemented system was not set up in a lab environment, but in real-world. This
invited many people to use it for performing real network measurements and QoE esti-
mations as it will be discussed later. Thanks to collaborating universities the systems
infrastructure is maintained and provided to everybody. In addition, the system is Open
Source and enables everybody to deploy it on own infrastructure, including all kinds of
servers and the client application.

21

22 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

Figure 6.1: Number of mobile network users between 1995 and 2000 [34]

The system, which was implemented in the scope of this master thesis, is called BonaFide+
Provider. It is a distributed system containing 2 types of servers and a client application,
which is available for Android operating system. The name is derived from the BonaFide
Provider system initially developed by Vitali Bashko at the Jacobs University of Bremen
[21]. The new one is using measurement engine of the original one and the rest was
completely redesigned and turned into managed and distributed system. Details will be
described in following sections.

6.1.1 Software Architecture

BonaFide+ Provider is a distributed system, which contains three communication parties:

� central server,

� measurement server,

� measurement and visualization client.

The original BonaFide Provider was able to perform protocol specific QoS measurements,
however only single measurement server was supported and the configuration (e.g. IP
address and port) had to be set manually in the client application. Protocol performance
was already mentioned in previous sections - the new intention was to estimate QoE of
specific services. For that, measuring only the random traffic would exclude the influence
of QoS restrictions by providers and thus the measurement wouldn’t be accurate for the
given purpose. That’s why I decided to simulate protocol on traffic used for measurements.
This extended the random data flow to protocol data flow and made the measurement

6.1. TOOL FOR QOE ESTIMATION: BONAFIDE+ PROVIDER 23

Measurements

Measurement servers

assignment,

results cloud

Server livecycle

management

Client

Central

server

Measurement

servers

Figure 6.2: BonaFide+ Provider - infrastructure diagram

protocol-specific. By using such data, one can talk about bandwidth available for a
specific protocol at the given moment. Measurement engine with the ability to simulate
protocols while testing the network throughput was already implemented in the BonaFide
Provider and because the code was open, it was used and extended it in the new system.
The BonaFide Provider only contained a measurement server and a client application
and the measurement engine was implemented between them. Results were only available
locally, i.e. in the application on which measurements were performed. This is useful when
somebody would like to test the actual network performance - without respect to location,
MNOs and other parameters, which could improve later analysis. Measurement results
were stored locally, but they provided detailed performance results only and without other
parameters such as the BonaFide+ Provider does. The new system stores results in own
cloud - i.e. centrally. This adds more flexibility to the data analysis, because not only
own results can be analyzed and shown, but also results aggregated from others. Added
the location awareness, one can see geographically distributed results and performance of
networks in a global space.

Figure 6.2 shows how system parties of the new BonaFide+ Provider are deployed and how
they communicate. The meaning of arrows is presence of communication between parties.
Basically every party has implemented communication channel with each other party, but
how we can see on the Figure, arrows are unidirectional. The direction shows originator

24 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

and target of communication. For example an arrow originating at the client and point-
ing to the measurement server implies that the client attempts to establish connection
to the listening (waiting for communication) measurement server. The communication
is established only by directions shown in the Figure, however the communication itself
is bidirectional, i.e. on top of the TCP/IP protocol. The Figure also explains the sub-
ject of each communication with labels colored by the same color as the corresponding
arrow. The information in braces stands for the communication protocol used on the
given path. Basically the whole system uses REST (Representation State Transfer [36])
services over HTTPs for communication except for the communication between client and
the measurement server, where custom protocol was necessary for measuring the protocol-
sensitive data throughput. The custom protocol was initially implemented and described
by Vitali Bashko in his master thesis [20] and was reused and extended for performing
measurements in the scope of this master thesis.

6.1.1.1 Central Server

Central server is the central unit of the whole system. There is only one central server
in the system given by the design. However, to support higher loads and availabil-
ity, the central server can be clustered into a load-balancing and/or fail-over cluster.
Because all the communication with the central server uses REST services, which are
data-oriented [36] and provided over a HTTP server running on it, adding such feature
is not subject of new research, but can be easily implemented by already existing ex-
tensions of available HTTP servers, e.g. extension to the popular Apache web server:
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html. Also the Se-
cure Sockets Layer (SSL) extension on top of HTTP was used and thus the communication
interface is provided via HTTPs only to ensure integrity, authenticity and encryption be-
tween the central server and other parties of the system. The decision to implement the
communication with REST services was based on its platform- and programming language
independence. REST services are universal interface and can be consumed and called by
every system. Claudio Riva and Markku Laitkorpi define REST services as ”an archi-
tectural style derived from the Web, and its architectural elements and constraints aim
at collecting the fundamental design principles that enable the great scalability, growth
and success of the Web.” [36]. The decision to implement REST interface was result of
a long discussion between participating universities about the technology, which should
be used to implement communication between the central server and other parties of the
system. Another approach was to use Enterprise Java Beans (EJB), but after performing
experiments with the server technology a big memory overhead was observed. Another
disadvantage is the update process of the central server, e.g. when updating a single line
in the central server, the whole application needs to be recompiled and deployed to the
server. This process took a long time compared to another technology such as PHP. PHP
was also evaluated and brought better performance (lower memory usage), portability
(every PHP-enabled server can host the central server and every client - not only Java-
based - can consume the service - in contrast to EJB) and maintenance (application can
be edited on-the-fly by simply editing the source scripts - e.g. when changing parameters
such as p, which will be discussed later). Because in the system PHP runs on Apache
web-server, it is natively reachable via HTTP requests, which include GET, POST, PUT

6.1. TOOL FOR QOE ESTIMATION: BONAFIDE+ PROVIDER 25

and DELETE methods. The decision to use this technology was seen as the best one
available. In addition MySQL server [17] is used for storing and manipulating data.

Figure 6.2 shows many arrows pointing at the central server and we can notice the zero
outdegree. It means that the central server act as a passive unit in the system. It
provides services for other parties and manages the system without initiating requests to
them. Each other party requires it in order to make the whole system available. In the
following its necessity within the system will be described.

Starting with focus on the right side of Figure 6.2, i.e. the scope of communication between
measurement servers and the central server, the system is able to contain an arbitrary
number of measurement servers. However, at least one is essential for the system to work.
Why there is need for many measurement servers will be discussed in the following 6.1.1.2
section. The main role in the scope of measurement servers is to manage their life-cycle,
availability for clients and distribution.

6.1.1.1.1 Life-cycle Management

Life-cycle management takes care of managing the state of measurement servers. State
can be either available or not-available. The central server has to be aware of all measure-
ment servers, which are currently online. This is necessary to provide client applications
with the information, with which server they should perform measurements. The most
important perquisite is that maintained measurement servers are currently online and
central server should take care of providing only such servers to the client applications.

One way how to achieve this is to open and maintain a persistent TCP/IP connection be-
tween each measurement server and the central server. In this case the central server would
have to keep opened sockets with every measurement server and with every socket also
to run separated thread. When the connection would be interrupted (central server en-
counters exception from the socket connection), the measurement server would be deleted
from the measurement servers list. The delay would be dependent from the keep-alive
timeout of the TCP/IP connection. This would be a working solution, however costs
for maintaining threads and sockets on the central server were seen as high and a better
solution was searched.

Another approach to maintain statuses of measurement servers should work in a similar
way, but with significant improvement of reserved resources maintained by the central
server. Instead of using TCP/IP sockets another non-persistent connections for keep-
alive messages were considered. In this model the central server doesn’t have to manage
a persistent connection to every measurement server, but measurement servers will send
a short keep-alive message (we can describe them also as heart-beat messages) to the
central server at fixed intervals to update the central server about their availability. Every
connection will be closed immediately after the information is delivered to the server and
thus there is no need for any socket management. In order to implement this, an available
approach was used and the central server is available for such communication via REST
services.

26 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

The state is determined by the central server and because the communication is unidi-
rectional, notification service in the measurement server was implemented, which sends
periodical notification messages to the central server. That messages carry additional
informations about the measurement server and the meta-information that the server is
available and running. By collecting such messages, the central server is able to evaluate
the state of each measurement server on-the-fly, i.e. to manage its life-cycle. There are
several challenges for the life-cycle management:

� Measurement server can be started and integrated into the system easilly.

� Measurement server can go offline due to any reason such as server shutdown, net-
work interruption etc.

� Measurement server must be accessible over the internet.

The life-cycle management is based on keep-alive messages received from measurement
servers. If p is period of keep-alive messages, c is current time, e is the time when last keep-
alive message was received (time of an event) and l is network latency, the measurement
server availability a is shown in 6.3 and will be considered as follows:

a is true if: e ≥ c− (p+ l), false otherwise

Figure 6.3: Measurement server availability timeframe

This approach dynamically manages online servers over time and satisfies all challenges
written in 6.1.1.1.1. The central server only delegates a measurement server to clients
when it gets keep-alive message from it within a. When no keep-alive message arrives
within the availability threshold a, central server considers the server as offline. By setting
p to an appropriate value, measurement servers can leave without notifying the central
server and without affecting the overall functionality. Because clients are resistant against
connecting to offline measurement servers, they can pick another server without returning
with an error, so delegating an offline server for a short time-frame (≤ a) will have no
effect on the functionality of the whole system.

This implementation features another advantage as well - measurement servers don’t
require to have a static IP address. When the IP address changes over time, the central
server will be notified from the new one, adds a new server with this IP address to the
measurement server list and removes the server with the old one after the availability
threshold a. Again, by setting p to an appropriate value makes this transition invisible.

6.1. TOOL FOR QOE ESTIMATION: BONAFIDE+ PROVIDER 27

An appropriate value of p was mentioned several times. Because p is the main variable
deciding about the measurement server status, it has to be chosen with respect to the
following challenges:

� Measurement servers state should be always up-to-date.

� Updating the state of the measurement server shouldn’t affect the performance of
the central server.

To combine this two challenges, p should not be too big (in conflict with the first chal-
lenge) and also not too small (in conflict with the second challenge). Setting p should be
adjusTable over time and should satisfy both of them. Initially the system was be set up
with the value of p = 2 and its implementation makes it easy to change its value later.

6.1.1.1.2 Availability to Clients

Now when the list of online measurement servers is available, the design can move to
the second aspect - to the availability to clients. Even with the information about
online measurement servers, we are not that far to initiate the connection to them. At
the moment we have their IP addresses and the information if each of them are online or
not. The IP address is determined automatically by the central server from the recieved
connection request and thus can’t be faked by incorrect setting. But for a successful
connection we need more than the IP address:

� name, which is human-readable and which can identify the server for humans,

� port, to which the measurement server is bound to,

� location of the measurement server, which will be used for performance issues dis-
cussed later.

The keep-alive message was extended to contain also these parameters. The notification
service, which updated the central server about its state was extended to advertise the
measurement server completely to the central server, including parameters mentioned
in the Listing 6.1.1.1.2. Implemented like this, the central server can provide complete
technical information for the connection (state, IP address and port) and identification
for end-users (name, location). Location is used also for performance optimalization and
will be described later.

The measurement server needs to be configurable due to the need of providing informations
about itself. The configuration is implemented directly on the measurement server and
can be provided by two ways:

� by configuration file BonaFide.conf as shown in Listing 6.1,

� or by providing parameters via command-line arguments.

28 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

BONAFIDE CONFIGURATION FILE

Path to the central server service

centralserverurl=https :// bonafide.pw/rest

Name of this measurement server

name=University of Zurich

Port Number used to run main socket

port =4000

Path to file that contains list of protocols to load

list =../ list

Path to a local folder to store submitted measurement

results

storage=

Define level of logging. Possible values sorted by priority

: OFF , FATAL , ERROR , WARN , INFO , DEBUG , TRACE. INFO is

default value.

verbose=INFO

Geograpgic position of the measurement server

latitude =47.414242

longitude =8.549490

Listing 6.1: Configuration file BonaFide.conf of the measurement server

The first option, i.e. setting parameters in the BonaFide.conf configuration file, makes
it easier to (re)start the server (no start-up are required when starting the server). If
there is a need of setting arguments dynamically on server start-up - for example when
the measurement server should be started dynamically by call from another program -
there is the second option for setting parameters. The second option has precedence
in case of configuration conflicts. By this implementation, particular saved parameters
in BonaFide.conf (if set) can be easily overwritten by setting them as arguments when
starting the measurement server. All available configuration parameters are listed in
Listing 6.1 and each of them can be set either via the configuration file or via command-
line arguments. When providing them via the command line, they have to be appended
to the server start call as follows:

<BonaFide server start call> -argument1 value1 -argument2 value2

6.1.1.1.3 Measurement Server Distribution

Configuration parameters are checked during the measurement server start. If any pa-
rameter is missing, the measurement server will not start and inform the user about
the problem. The measurement server uses parameters loaded by listed methods for its
advertisement to the central server.

6.1. TOOL FOR QOE ESTIMATION: BONAFIDE+ PROVIDER 29

BonaFide+ Provider system added support for multiple measurement servers. Each server
has a properts location, which differs it from others. Figure 6.4 shows current measure-
ment server distribution. In order to achieve the most accurate results when measuring
connection performance, the routing distance should be taken in charge in order to mini-
malize routing delays, which affect the measurement result. The measurement should text
the throughput of the network connection and thus the optimal model would be to have
measurement server directly connected to the base station to which the client is connected
to. Because this is not possible, I was considering other strategies to eliminate side-effects
of long-distance routing. The goal of a correct measurement is to perform it over the mini-
mal amount of hops between the client and the measurement server. However the decision
about which server should be chosen from the list of available measurement servers had
to be researched in depth. First and probably most correct decision about which is the
nearest server would be to measure the routing distance by itself, however to check the
number of immediate hops on the routing path between the client and the measurement
server is time-consuming and linearly growing with the amount of available measurement
servers. The routing distance can’t be cached and reused by other clients in the system,
because routing decisions can vary for each node in the network (in mobile networks the
routing decision can also be affected by the current base-station association) and thus
each client would need to measure routing distance to each available measurement server
prior to each single measurement. However, this is very inefficient.

Another approach would be to ping each measurement server from withing the client
and decide based on the response time. To have a correct response, factors such as initial
establishment of wireless data connection should be excluded from the time measurement.
However, this is still time consuming and the time spent during the measurement server
picking process is growing with the number of available measurement servers.

A solution was searched, which would make the number of available measurement servers
independent from the picking process. The direct approach would not be able to achieve
it. The intention was to bridge the goal to a different strategy, which could pick the best-
suited measurement server instantly and as correct as possible. University of Maryland
showed in their study [19] that there is a connection between geographical distance
and round-trip times (RTT) between server and client. According to the study with
increasing geographical distance the RTT was increasing as well. This behavior sounded
very hopeful, because based on [19] I would be able to dynamically find out the server with
the lowest RTT with respect to the current location of the client. Because measurement
servers are distributed over multiple locations as shown in Figure 6.4 and their location is
known to the central server, the goal is to take advantage of the connection between RTT
and geographical distance and compute the nearest measurement server picking strategy.
Nearest server now became a double meaning - what is the geographically nearest can be
now considered as the one with the lowest RTT on the path. In this thesis a mechanism
for minimizing the geographical distance and in conclusion for minimizing the RTT for
measurements between client and measurement server will be designed and applied.

Distance between measurement servers and clients can dynamically vary, as we focus
measurements of mobile networks. Client can move and change their location and thus the
distance to the measurement server. The location of a measurement server is considered
to be constant. As I already mentioned, the measurement server advertises its location to

30 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

Figure 6.4: Measurement server locations

the central server. At this point, the location became much higher importance than just
locating the server on the map for the users better overview. For distance calculation also
the second point needs to be known - the location of the client. Because most devices,
which will be supported by the Application, are equipped by position sensors [3] and
different location strategies [1], the client was implemented in the way that it can request
the list of available measurement servers given its current location retrieved by any of
the available location strategies on the mobile device. As a result, the central server will
know the clients location at the time the list of available measurement servers is requested.
Because the client should perform a measurement against the nearest measurement server,
the central server has to adapt the list and provide the client with the best decision based
on the current context (distance between the client and each measurement server). The
implementation involves a list sorted by the geographical distance between client and
the measurement server in the ascending order. Given such list, the client can process
measurement servers in the order they are distanced from it, e.g. try to measure against
the nearest and if it fails, measure against the second nearest server and so on.

The next question was how to compute the distance between two geographic points. Point
class of the MySQL database management system [5] is used for storing location data.

6.1. TOOL FOR QOE ESTIMATION: BONAFIDE+ PROVIDER 31

MySQL added support for spatial extensions since version 5.0.161, however the distance
computation between two points was not implemented in versions before 5.6 according to
the official MySQL database management system (DBMS) documentation [8]. Because of
missing detailed documentation of the function and because of limited support in MySQL
DBMS versions I decided to research distance computation independently from the current
implementation and to implement a custom variant, which I will be able to reproduce and
explain in detail in following paragraphs and which will be supported by all versions of
MySQL DBMS with spatial extensions.

Julien Montavont and Thomas Noel describe in their article the way of computing the
distance between two points given by their coordinates: ”The distance between two points
can be calculated using the Haversine formula.” [32].

Let us denote coordinates of point1 and point2 as (lat1, long1) and (lat2, long2) respec-
tively, latitude separation with ∆lat and the longitude separation with ∆long, where
angles are in radians, and R is the Earths radius (R = 6, 371km). The distance d between
the two points is calculated by the formula as follows:

haversin

(
d

R

)
= haversin(∆lat) + cos(lat1) ∗ cos(lat2) ∗ haversin(∆long)

where the Haversine function is given by

haversin(δ) = sin2

(
δ

2

)

After resolution on the right side we get:

haversin

(
d

R

)
= sin2

(
∆lat

2

)
+ cos(lat1) ∗ cos(lat2) ∗ sin2

(
∆long

2

)

Let h denote the haversin(d/R).

h = sin2

(
∆lat

2

)
+ cos(lat1) ∗ cos(lat2) ∗ sin2

(
∆long

2

)

One can then solve for d either by simply applying the inverse Haversine or by using the
arcsin (inverse of sine) function:

d = R ∗ haversin−1(h) = 2R ∗ arcsin(
√
h)

The computation can be done in the source code of the central server or directly in the
database by a stored function. Implementing it in the code has several disadvantages:

1Support was added for InnoDB engine. Source: https://dev.mysql.com/doc/refman/5.0/en/spatial-
extensions.html

32 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

� Distance can be computed only via code. Custom analytical SQL queries executed
during data analysis directly in the DBMS will not be able to take distance in charge.
Every distance computing will require an external script.

� Distance-related queries will be processed via the central server. All rows will be
fetched from the DBMS and processed by the central server. This can include
huge amount of data and thus the processing procedure would be of an additional
overhead. This also includes distance-related sorting, which will be part of the
nearest measurement server search.

Implementing distance computation directly in the database would lead into better per-
formance and query flexibility. The haversine formula can be implemented as a stored
function in MySQL DBMS. Implementation is shown in 6.2. This function will take coor-
dinates (latitude and longitude) of two points and will return the distance between them
in kilometers. This function also enables sorting by distance between given point and
stored coordinates. In other words, with stored coordinates of measurement servers we
can sort their distance to the client by given coordinates in the ascending order on-the-fly
and enable the client to perform measurements against the nearest server.

DELIMITER //

DROP FUNCTION IF EXISTS DISTANCE; //

CREATE FUNCTION DISTANCE(lat1 FLOAT ,lon1 FLOAT ,lat2 FLOAT ,

lon2 FLOAT)

RETURNS FLOAT NO SQL DETERMINISTIC

COMMENT ’returns distance (km) between 2 points on Earths

 surface ’

BEGIN

SET lat1=radians(lat1);

SET lat2=radians(lat2);

SET lon1=radians(lon1);

SET lon2=radians(lon2);

RETURN 2*6371* asin(sqrt(pow(sin((lat2 -lat1)/2) ,2)+cos(

lat1)*cos(lat2)*pow(sin((lon2 -lon1)/2) ,2)));

END; //

DELIMITER ;

Listing 6.2: Haversine function in MySQL

With this stored function, MySQL DBMS is not only able to tell one how far the server is,
but also perform sorting operations. Listing 6.3 shows an example query for such sorting,
which is used by the central server. Variables starting with $ are input or configuration
parameters and are injected into the query by the central server.

6.1. TOOL FOR QOE ESTIMATION: BONAFIDE+ PROVIDER 33

SELECT id ,ip,name ,port ,latitude ,longitude ,DISTANCE($latitude ,

$longitude ,latitude ,longitude) AS distance FROM

bonafide_measurement_servers WHERE last_seen_timestamp >=

$minimum_timestamp_of_alive_servers ORDER BY distance ASC

Listing 6.3: Distance-based sorting

Variables $latitude and $longitude are coordinates of the clients current position. They
are received from the client on measurement server listing request. As seen in the query
in Listing 6.3, the central server can then use the built-in function shown in Listing 6.2
for obtaining the distance between client and measurement servers. When the distance is
present, the ORDER BY clause can then sort the result set by the distance in ascending
order. This ordered result set is list of measurement server in the order they are distanced
from the client. The calculation is directly done in the DBMS and thus only the final
(ready-to-use) ordered result set is sent back to the central server.

Central server manages besides measurement servers covered by previous subsections also
measurement results. Following subsections will focus on the left part of Figure 6.2.

6.1.1.1.4 Centralized Storage of Measurement Results

BonaFide+ Provider system stores measurement results in the central server storage in-
stead of using local storage of each client. The central server takes care about their
collection, distribution and protection. There were several challenges when implementing
this part of the system, because handling of such data is essential when obtaining trust of
end-users. While everybody would expect in-depth overview of own results, providing the
same to other users could significantly harm the trust to the system. This involves not
only other users of the system, but also data interception by third parties such as man-
in-the-middle attacks. Each potentially unexpected behavior of the system by end-users
should be eliminated and thus following aspects were taken in charge when designing the
measurement results centralized storage.

� Usability, privacy: each user should have full and detailed access to only own
measurement results,

� Accessibility, portability: each user should have the possibility to access own
results from an arbitrary device and should be able to migrate results from device
to device,

� Anonymity, privacy stored informations should be limited to the extent that
nobody can identify the end-user, even not the provider of the central server,

� Privacy, authenticity, encryption: data communication between clients and the
measurement results cloud should be encrypted and authenticated in order to avoid
unauthorized access to data (e.g. by network providers, which can in combination
with the communication origin and the transmitted information reveal the users
identity),

34 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

� Accessibility, anonymization: data visible to all users should provide only sta-
tistical overview.

While considering listed challenges, the central server, which is provider of the measure-
ment results cloud, had to implement all of them in order to make the whole system safe
and robust. Without that the future of the system would be endangered.

In order to implement usability, each user has simple (one-click) access to detailed own
measurement results stored on the central server. The overview contains location, network
provider, country and detailed measurement results such as bandwidth, data usage etc.
With such overview the end-user has full control of own measurements and access to its
own results, which can be used for network quality interpretations. By adding privacy
the detailed overview is only accessible by the user of origin. No other user can retrieve
detailed results of other users. This is achieved by custom implementation of transparent
authentication, which will be described in Subsection 6.1.1.1.5. In order to make this
access accessible and porTable each user can use an arbitrary device (supported by
the client application) and can migrate results from end-device to end-device. The exact
mechanism will be described in Subsection 6.1.1.1.5.

Another point of interest is the communication between clients and the central server. Be-
cause the communication carries the whole detailed overview when storing and retrieving
own measurement results, the system should also make sure that the information is only
available to desired parties, i.e. to the central server and to the particular client. This
is achieved by forcing the communication between clients and the measurement server as
shown on Figure 6.2 to be fully encrypted and authenticated. The communication
interface is secured by using HTTPS in combination with signed server certificate, which
is verified prior to any data transmission between the central server and clients. This
makes man-in-the-middle attacks and unauthorized data interception impossible.

By adding next level of security, the system is designed to protect end-users even from
identification by central server providers (anonymity). Data, which is stored along with
measurement results, don’t contain any information which can reveal the identity of the
end-user. In contrast to services such as WhatsApp, where the user is required to provide
its phone number2, BonaFide+ Provider doesn’t require or even collect such data in
background. No e-mail address, phone number or other data available on the device,
which uniquely identify the end-user, are sent to the central server.

End-users of the system can access statistical overview of all measurement results collected
by all users. This overview doesn’t contain any detailed informations about other users
or about their detailed performance and coordinates. Such results are anonymized and
accessible in the way that no privacy is violated nor the detailed overview owned by
each user is provided to everybody. Having access to such statistical overview users
can compare performance of networks at specific locations, using specific mobile network
technology or by using different protocols (QoS and QoE relevant). How the overview is
provided to end-users will be described in Section 6.1.1.3.4.

2Citing terms and conditions of WhatsApp available on the official website
http://www.whatsapp.com/legal/: ” In order to access and use the features of the Service, you
acknowledge and agree that you will have to provide WhatsApp with your mobile phone number.”

6.1. TOOL FOR QOE ESTIMATION: BONAFIDE+ PROVIDER 35

6.1.1.1.5 Identification of Measurement Results

Measurement results are stored and managed by the central server. Each result itself is
anonymized, i.e. there is nothing stored about the users identity. Despite this fact, each
user should have access to own measurement results, including the whole history. In order
to achieve that and to preserve all privacy issues discussed before a custom mechanism
was implemented.

Because identification by phone number or by other personal information would reveal
the users identity and everything about his network, a pseudonym identification was
considered. By applying such identification, results still can be aggregated and stored
under unique identification, but without any connection to the end-user.

Implementing such mechanism involves following procedures:

� transparent automatic generation of the artificial identification key,

� maintaining the identification key by both central server and client,

� linking stored measurement results to the identification key,

� providing detailed results if correct identification is supplied by the client.

In the first step the artificial identification key was added to each result and an extra
identification table was added to the system in order to link results to the identification
key. The relation is shown in Figure 6.5. All keys are stored in this table and results are
mapped by a foreign key to them. This implementation enables fast indexed check if a
provided identification key is available in the system and joined set of results belonging
to the particular identification key.

An identification key will be called identification token in the scope of this master
thesis. It is an upper-case string of length 15 characters and it is randomly generated
as shown in Listing 6.4. Initially the client has no identification token assigned and thus
the first request of measurement history and the first submit of measurement result is
identified with an empty string. When such request arrived to the central server, two
cases are considered:

� Client requests list of previously submitted measurement results with an empty
identification token. In this case the central server can’t find any connection to
submitted results, because the identification token is missing and thus an empty list
will be returned to the client.

� Client submits new measurement result with an empty identification token. In this
case the measurement result needs to be stored with proper identification, which
doesn’t exist yet.

– At this moment - prior to saving the result - the identification token is generated
as shown in Listing 6.4 and stored in the identification token Table. The
identification token is generated until it is unique across all already persisted
identification tokens.

36 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

– Now when the token is created the result is stored in the database and linked
to the newly created entry in the identification token table as shown in Figure
6.5.

– The new identification token is sent back to the client and the client replaces the
identification token in its internal database. At this point, the client is assigned
an identification token, which will be used in future communication requests
related to the measurement results management with the central server.

function generate_random_token () {

return strtoupper(substr(md5(rand (100000000 ,999999999)) ,0,15)

);

}

Listing 6.4: Function for generating the identification token

Figure 6.5: Identification token relation

Once this phase is done, submitting new measurement results and requesting list of mea-
surement results for the particular user are bound to the maintained identification token.
This token is maintained by the central server and by the client. The identification token
is hard to guess because of the number of possible combinations and even if it would be
guessed (can happen when the system will manage huge number of identification tokens),
there is no connection to the end-user and thus this approach can be considered as safe for
this particular purpose. Identification token only identifies detailed measurement results
and results history and is sent by the client when performing both operations - result
retrieval and submit.

Identification tokens are mainly assigned by the central server when the client submits
first measurement result with an empty or invalid token. There is no action required
from the user. Client then stores the token locally and uses it for future communication.
For portability purposes the system supports multiple clients with the same identification
token. Because the token can be changed in the client as shown in Figure 6.6, users can:

� set the same identification in multiple devices and share results across them. Ex-
ample scenario: Company XY would like to test their mobile data plans and thus
each employee is requested to collect measurements. Shared identification token
enables centralized analysis of measurement results collected by all employees of the
company.

� transfer collected measurement results to a new device.

Given this flexibility, users can find out new scenarios which will fit their needs by just
editing the configuration and without the need to set up their own BonaFide+ infrastruc-
ture.

6.1. TOOL FOR QOE ESTIMATION: BONAFIDE+ PROVIDER 37

Figure 6.6: Identification token setting in the client application

Following subsections will handle the internal structure of the data management and the
communication interface of the central server.

6.1.1.1.6 Stored Data

This subsection is dedicated to the data model behind the central server. The central
server uses relational database for storing and manipulating data. Data are interconnected
by foreign keys and thus the InnoDB database engine of MySQL DBMS is used [7]. There
are three tables in the database and they are defined in Listings 6.5, 6.6 and 6.7.

CREATE TABLE IF NOT EXISTS ‘bonafide_measurement_servers ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘ip‘ varchar (15) NOT NULL ,

‘hostname ‘ varchar (50) NOT NULL ,

‘port ‘ int (11) NOT NULL ,

38 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

‘name ‘ varchar (50) NOT NULL ,

‘last_seen_timestamp ‘ int (11) NOT NULL ,

‘latitude ‘ float (10,6) NOT NULL ,

‘longitude ‘ float (10,6) NOT NULL ,

PRIMARY KEY (‘id ‘),

UNIQUE KEY ‘ip‘ (‘ip ‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT=’Collection of

measurement servers with additional informations ’

AUTO_INCREMENT =1 ;

Listing 6.5: DB table for storing data about measurement servers

CREATE TABLE IF NOT EXISTS ‘bonafide_tokens ‘ (

‘user_token ‘ varchar (15) NOT NULL ,

‘created_datetime ‘ datetime NOT NULL ,

PRIMARY KEY (‘user_token ‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT=’Tokens -

anonymous identifiers of users ’;

Listing 6.6: DB table for storing identification tokens

CREATE TABLE IF NOT EXISTS ‘bonafide_measurement_results ‘ (

‘id‘ int (11) NOT NULL AUTO_INCREMENT ,

‘user_token ‘ varchar (15) DEFAULT NULL ,

‘measurement_datetime ‘ datetime NOT NULL ,

‘measurement_location ‘ point DEFAULT NULL ,

‘measurement_server_id ‘ int (11) DEFAULT NULL ,

‘measurement_server_name ‘ varchar (50) NOT NULL ,

‘protocol_specification_name ‘ varchar (30) NOT NULL ,

‘is_mobile_network ‘ enum(’true’,’false’) NOT NULL ,

‘network_type ‘ varchar (30) NOT NULL ,

‘country ‘ varchar (30) NOT NULL ,

‘operator ‘ varchar (30) NOT NULL ,

‘operator_name ‘ varchar (30) NOT NULL ,

‘signal_strength ‘ varchar (30) NOT NULL ,

‘latency ‘ bigint (20) NOT NULL ,

‘upload_random_roundtrip_time ‘ bigint (20) NOT NULL ,

‘upload_random_bytes_sent ‘ int (11) NOT NULL ,

‘upload_random_bandwidth ‘ bigint (20) NOT NULL ,

‘upload_random_completness ‘ text NOT NULL ,

‘upload_protocol_roundtrip_time ‘ bigint (20) NOT NULL ,

‘upload_protocol_bytes_sent ‘ int (11) NOT NULL ,

‘upload_protocol_bandwidth ‘ bigint (20) NOT NULL ,

‘upload_protocol_completness ‘ text NOT NULL ,

‘download_random_roundtrip_time ‘ bigint (20) NOT NULL ,

‘download_random_bytes_sent ‘ int (11) NOT NULL ,

‘download_random_bandwidth ‘ bigint (20) NOT NULL ,

‘download_random_completness ‘ text NOT NULL ,

6.1. TOOL FOR QOE ESTIMATION: BONAFIDE+ PROVIDER 39

‘download_protocol_roundtrip_time ‘ bigint (20) NOT NULL ,

‘download_protocol_bytes_sent ‘ int (11) NOT NULL ,

‘download_protocol_bandwidth ‘ bigint (20) NOT NULL ,

‘download_protocol_completness ‘ text NOT NULL ,

‘upload_total_bytes ‘ int (11) NOT NULL ,

‘download_total_bytes ‘ int (11) NOT NULL ,

‘error_message ‘ text NOT NULL ,

PRIMARY KEY (‘id ‘),

KEY ‘token_id ‘ (‘user_token ‘),

KEY ‘measurement_server_id ‘ (‘measurement_server_id ‘),

KEY ‘measurement_location ‘ (‘measurement_location ‘(25))

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT=’Storage for

measurement results ’ AUTO_INCREMENT =1 ;

ALTER TABLE ‘bonafide_measurement_results ‘

ADD CONSTRAINT ‘bonafide_measurement_results_ibfk_1 ‘

FOREIGN KEY (‘user_token ‘) REFERENCES ‘bonafide_tokens ‘

(‘user_token ‘) ON DELETE SET NULL ON UPDATE CASCADE ,

ADD CONSTRAINT ‘bonafide_measurement_results_ibfk_2 ‘

FOREIGN KEY (‘measurement_server_id ‘) REFERENCES ‘

bonafide_measurement_servers ‘ (‘id ‘) ON DELETE SET NULL

ON UPDATE CASCADE;

Listing 6.7: DB table for storing measurement results

Each table contains self-explanatory variable names for stored data. In the BonaFide measurement results
table definition there are multiple columns for storing upload and download performance.
That columns contains random and protocol keyword. Random measurements are per-
formed by using random data exchange between the measurement server and the client.
It can be supposed as simple throughput measurement, i.e. without taking specific QoS
regulations in charge. Protocol stands for protocol-specific measurement. When measur-
ing protocol bandwidth, measurement server and client simulate the protocol in order to
achieve protocol-related bandwidth. In-depth description follows in the subsection about
the measurement server.

Table 6.1 explains in detail why and for what are different upload and download columns
used.

Specification of upload * and download * DB columns

[random/protocol] roundtrip time Duration of the data exchange during the
test

µs

[random/protocol] bytes sent Amount of data used in the test bytes
[random/protocol] bandwidth Bandwidth bytes/s
[random/protocol] completness Statement about the test completeness

Table 6.1: REST service - submission of measurement results

40 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

6.1.1.1.7 REST Interface Specification

Central server only provides communication with other parts of the system via REST
services and it only listens to incoming request. No outgoing connection is initiated by
the central server. The communication interface is reachable via the Apache webserver
with mod ssl3 extension, which protects the communication from eavesdropping. This
is essential for privacy reasons, because clients are sending e.g. their location over the
internet network, where intercepting such information could lead into locating the appli-
cation end-user. HTTPS, which is currently the only possible way to communicate with
the central server, protects the whole system from man-in-the-middle attacks and enables
only encrypted and authenticated communication channel for the data exchange.

The REST interface is published on the following URL:

https://bonafide.pw/rest/

This is the base path for all services, which are provided by the central server. This
URL can vary and thus it is configurable in all parts of the system, i.e. in the measure-
ment server and in the client application. The second reason for making this parameter
configurable is the nature of the project - the whole system is open-source, what means
that everybody can get the code and deploy the system on his own infrastructure. In this
scenario, the URL will be different from the official one and thus it needs to be conFigured
in other parties as well. I enabled the configuration via settings (client) and via configu-
ration parameters (measurement servers), so the change doesn’t require recompilation of
the source code and can be easily changed even by non-technical user.

In addition to the base path of the REST services URL, there are subpaths pointing to
particular services. There are different services and different suffixes to the base path.
They are described in the following part. Details of the implementation can be seen in
the attached source code.

Retrieval of the measurement server list sorted by name
Listing of measurement servers sorted by name should be used when no location of the
client is available.
URL suffix: /measurement-servers/list
Method: GET
Input format no input
Output format: JSON

Table 6.2: REST service - measurement server list sorted by name

3mod ssl extension provides SSL v2/v3 and TLS v1 support for the Apache HTTP Server. Source:
http://httpd.apache.org/docs/2.2/mod/mod ssl.html

6.1. TOOL FOR QOE ESTIMATION: BONAFIDE+ PROVIDER 41

Retrieval of the measurement server list sorted by distance
Listing of measurement servers sorted by distance should be used when location of the
client is available. The distance is computed between the clients location and the location of
measurement servers. The first server in the returned list will be the nearest measurement
server and the last one the one with the longest distance.
URL suffix: /measurement-servers/list/{latitude}/{longitude}
Method: GET
Input format Input is provided in form of path parameters
Output format: JSON

Table 6.3: REST service - measurement server list sorted by distance

Advertising measurement to the central server
This service should be used by measurement servers for registering them into the central
server
URL suffix: /measurement-servers/add
Method: POST
Input format JSON
Output format: JSON

Table 6.4: REST service - advertising measurement to the central server

Listing of measurement results
This service should be used by the client application for reading all own measurement
results from the central server
URL suffix: /measurement-results/list
Method: GET
Input format no input
Output format: JSON

Table 6.5: REST service - listing of measurement results

42 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

Listing of measurement results for a viewport
This service should be used by the client application for reading own measurement results
from the central server in the given area (viewport). This is used for rendering results on
a map. The output will contain definition of result squares on the map and the view will
be adapted according to the requested viewport. The viewport is the map area currently
displayed to the end-user by the client application. Results are also filtered based on the
provided filtering request.
URL suffix: /measurement-results/list-for-viewport/{south-west-

latitude}/{south-west-longitude}/{north-east-latitude}/{north-
east-longitude}

Method: POST (POST method is used because of the need to send many
data such as the viewport definition and the definition of filter to
the central server. Sending all such data would be too complicated
over path parameters and thus I decided to make an exception and
to use POST instead of GET for implementing this service. GET
doesn’t support sending JSON-serialized data.)

Input format path parameters (viewport definition) and JSON (filter definition)
Output format: JSON

Table 6.6: REST service - listing of measurement results for a viewport

Submitting results to the central server
This service should be used by client applications to submit measurement results to the
central server.
URL suffix: /measurement-servers/add
Method: POST
Input format JSON
Output format: JSON

Table 6.7: REST service - submission of measurement results

This subsection covered the importance of the central server in the BonaFide+ Provider
system. In the following subsection I will discuss the measurement server into detail.

6.1.1.2 Measurement Server

Measurement servers are the key component for performing network measurement tests.
As described in the previous subsection, the BonaFide+ Provider system supports multiple
instances of measurement servers, which are distributed over the globe. This section will
focus on the server infrastructure and the measurement procedure.

Measurement server is an endpoint for connection quality measurements. It is running on
the internet and waiting for measurement requests. When measurement request arrives,
the server provides an interface to perform service-level quality measurements. Every
server maintains a list of available protocols, which can be tested on it. This list is

6.1. TOOL FOR QOE ESTIMATION: BONAFIDE+ PROVIDER 43

provided to the client prior to the measurement. In the scope of this masters thesis,
the current single-server implementation was extended to multi-server because of better
performance described in Section 6.1.1.1.3. There will be also more than one measurement
server, which will be deployed in different locations. They don’t require to be under the
control of the BonaFide project. The project is open-source and everybody can run his
own instance of measurement server.

Because measurement servers are a dynamic environment (they can appear and leave), a
suiTable mechanism was implemented to use and utilize them in a maximal feasible way.
Their role is to deliver bandwidth informations to the client application and thus they
should offer the best possible data throughput to the client application to minimize routing
delays between the measurement server and the client application. The mechanism for
measurement server life-cycle management was described in the previous subsection.

Each measurement server is a standalone Java application. Java programming language
was chosen because of its portability to multiple operating systems. Thanks to ”Write
software on one platform and run it on virtually any other platform” [15], the measure-
ment server is not dependent from the server architecture nor from the operating system
running on it. With additional libraries such as described later on the programming
language is well suited to implement the measurement server including the custom com-
munication protocol. Client application is implemented in Java as well because of the
Java-limited support on Android devices, which leads to improved code-reusability across
the client application and the measurement server, where especially the measurement
protocol implementation is shared by common libraries between them.

According to the infrastructure diagram on Figure 6.2 the measurement server communi-
cates with the central server and accepts connections from clients. REST interface is used
for communication with the central server and custom protocol for communication with
clients. The custom protocol features the measurement interface and thus REST was not
applicable. The custom protocol was initially implemented by Vitali Bashko at Jacobs
University of Bremen [20] and was adapted and used in the new BonaFide+ Provider
system.

6.1.1.2.1 REST Implementation

Because RAW socket data exchange between the measurement server and the central
server would be too much overhead and because the central server already provides REST
communication interface, which is suiTable for the required data exchange between that
two parties, the measurement server communicates with the central server via REST
services. Measurement servers consume service specified in Table 6.4 for their advertise-
ment. Measurement servers contain notification service, which takes care of telling the
central server about their presence on internet and about their availability to measure-
ment clients, including the initial IP address, port, name and location. The service sends
periodic updates to the central server in order to refresh its availability as described in
Subsection 6.1.1.1.1 about the measurement server life-cycle management in the central
server. Updates are sent at:

44 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

� the measurement server start,

� at the time p according to Figure 6.3.

The period of keep-alive messages p is received from the central server at each REST
service call. Thanks to this implementation the central server dynamically manages the
delay between updates and the client is supposed to follow it.

While researching the technology EJB, which was supposed as candidate for the central
server implementation, the framework Jersey [13] was part of the research, which features
RESTful Web Services in Java and which is used according to the documentation also
in the GlassFish Application Server [12] for REST services implementation. Jersey can
be used for both REST server and REST client implementation. Because measurement
servers only consume such services as described in Figure 6.2, Jersey API was chosen for
the client-side REST implementation side [14]. The notification service is based on Jersey
in addition with Jackson [9] extension for JSON object serialization and deserialization.
This technology allowed me to work in high-level abstraction environment and without the
need of RAW socket management, generating JSON strings etc. This is also a good exam-
ple for the REST independence and portability. Despite the fact that the REST provider
is implemented with PHP, there is no limitation for other programming languages, i.e. I
avoided the single-technology-lock-in. The measurement server is implemented with Java
and can consume the standardized and documented REST interface of the central server.
This will be essential for future system extensions as well, e.g. by implementing an iPhone
application, which require implementation in different programming language than PHP
or Java.

6.1.1.2.2 Measurement Protocol

Measurement servers provide custom communication interface for performing measure-
ments. This protocol was developed by Vitali Bashko and it is documented in his master
thesis [20]. The BonaFide+ Provider system uses the same protocol implementation with
a new extension for measuring latency.

Latency is measured after each measurement when the wireless connection is already
established (connection initialization as described in [33] doesn’t negatively affect the
measured latency). The implementation on the client measures time of the following
procedure:

1. Establish a TCP socket connection to the measurement server.

2. Send ”PING” message as a string to the measurement server.

3. Receive ”PONG” message as a string from the measurement server.

4. Close the TCP connection.

6.1. TOOL FOR QOE ESTIMATION: BONAFIDE+ PROVIDER 45

6.1.1.3 Client Application

The client application is the part of the system which will be in the hand of the end-user.
Since the data collection will rely on the application use, one of the biggest challenges
was to make the application user-friendly. Central server and measurement servers are
used by the client application as shown in Figure 6.2. The client application was im-
plemented for Android operating system version >= 4.0 and it can be installed directly
from the Google Play store: https://play.google.com/store/apps/details?id=de.

jacobs.university.cnds.BonaFide.plus. This makes distribution and update process
easy.

6.1.1.3.1 Infrastructure Integration

The application uses the central server as a bootstrap server, i.e. it is the first place which
is contacted when the client application is started. Because the BonaFide+ provider sys-
tem is an open-source software project, everybody can set up own central server and thus
the URL pointing to the central server REST interface is configurable directly in appli-
cation settings (Figure 6.8), i.e. without the need of recompiling the application. The
communication uses the HTTPS secured REST interface of the central server for com-
munication. The implementation on the client side uses Jersey and Gson library. Jersey
is also used by measurement servers for communication with the central server, however
running it on the Android platform caused an application crash by NullPointerException4

and thus a workaround had to be implemented. To get Jersey working on Android the
ServiceIteratorProvider had to be extended as shown in Listing 6.8 and used instead of
the default Jersey implementation by calling ServiceFinder.setIteratorProvider(new An-
droidServiceIteratorProvider());. With this workaround Jersey was working as usual.

For object-JSON (de)serialization the library Gson was used [10] instead of the library
Jaskson, which was used in the measurement server implementation because of missing
SAX annotation support on the Android platform. This library is able to easily convert
objects to JSON representation and vice-versa and thus it fully replaces the Jackson
library. Object data fields are automatically serialized into JSON and the name of the
variable is used as a key in the JSON output. This behavior can be changed by annotating
the appropriate data field with @SerializedName(”another name”). In combination with
Jersey everything was ready to implement the REST service client for communication
with the central server.

Client application initially is not aware of any measurement servers available in the system.
They are managed by the central server and provided to the client application based on
the particular intention. As described in Subsection 6.1.1.1.3 the central server is able
to sort list of available measurement servers by their distance from the client in order to
minimize routing delays when performing measurements. Measurement servers are sorted
by the distance when the client application provides its own location to the central server.
If the location is not available, random measurement server is chosen.

4This behavior is known also on the community Q&A website
http://stackoverflow.com/questions/9342506/jersey-client-on-android-nullpointerexception

46 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

/**

* This class is workaround to make Jersey -client work on

Android. It extends and fixes the default

ServiceIteratorProvider

*/

package de.jacobs.university.cnds.bonafide.plus.rest;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Iterator;

import android.util.Log;

import com.sun.jersey.spi.service.ServiceFinder.

ServiceIteratorProvider;

public class AndroidServiceIteratorProvider <T> extends

ServiceIteratorProvider <T> {

private static final String TAG =

AndroidServiceIteratorProvider.class.getSimpleName ();

private static final String MESSAGE = "Unable to load

provider ";

private static final HashMap <String , String[]> SERVICES =

new HashMap <String , String []>();

private static final String []

com_sun_jersey_spi_HeaderDelegateProvider = {

"com.sun.jersey.core.impl.provider.header.

MediaTypeProvider",

"com.sun.jersey.core.impl.provider.header.

StringProvider" };

private static final String []

com_sun_jersey_spi_inject_InjectableProvider = {};

private static final String []

javax_ws_rs_ext_MessageBodyReader = {

"com.sun.jersey.core.impl.provider.entity.

StringProvider",

"com.sun.jersey.core.impl.provider.entity.

ReaderProvider" };

private static final String []

6.1. TOOL FOR QOE ESTIMATION: BONAFIDE+ PROVIDER 47

javax_ws_rs_ext_MessageBodyWriter = {

"com.sun.jersey.core.impl.provider.entity.

StringProvider",

"com.sun.jersey.core.impl.provider.entity.

ReaderProvider" };

static {

SERVICES.put("com.sun.jersey.spi.HeaderDelegateProvider",

com_sun_jersey_spi_HeaderDelegateProvider);

SERVICES.put("com.sun.jersey.spi.inject.

InjectableProvider",

com_sun_jersey_spi_inject_InjectableProvider);

SERVICES.put("javax.ws.rs.ext.MessageBodyReader",

javax_ws_rs_ext_MessageBodyReader);

SERVICES.put("javax.ws.rs.ext.MessageBodyWriter",

javax_ws_rs_ext_MessageBodyWriter);

SERVICES.put("jersey -client -components", new String [] {})

;

SERVICES.put("com.sun.jersey.client.proxy.

ViewProxyProvider", new String [] {});

}

@SuppressWarnings (" unchecked ")

@Override

public Iterator <Class <T>> createClassIterator(Class <T>

service , String serviceName ,

ClassLoader loader , boolean ignoreOnClassNotFound) {

String [] classesNames = SERVICES.get(serviceName);

int length = classesNames.length;

ArrayList <Class <T>> classes = new ArrayList <Class <T>>(

length);

for (int i = 0; i < length; i++) {

try {

classes.add((Class <T>) Class.forName(classesNames[i])

);

} catch (ClassNotFoundException e) {

Log.v(TAG , MESSAGE , e);

}

}

return classes.iterator ();

}

@Override

public Iterator <T> createIterator(Class <T> service , String

serviceName , ClassLoader loader ,

boolean ignoreOnClassNotFound) {

48 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

String [] classesNames = SERVICES.get(serviceName);

int length = classesNames.length;

ArrayList <T> classes = new ArrayList <T>(length);

for (int i = 0; i < length; i++) {

try {

classes.add(service.cast(Class.forName(classesNames[i

]).newInstance ()));

} catch (IllegalAccessException e) {

Log.v(TAG , MESSAGE , e);

} catch (InstantiationException e) {

Log.v(TAG , MESSAGE , e);

} catch (ClassNotFoundException e) {

Log.v(TAG , MESSAGE , e);

}

}

return classes.iterator ();

}

}

Listing 6.8: Workaround implementation of ServiceIteratorProvider for Jersey on Android

6.1.1.3.2 Ways of Measurements

The client application provides two ways for performing network quality measurements.
The most advanced way, where the end-user can set additional configuration, is the cus-
tom measurement. Custom measurements let the user choose the measurement server
from list of available measurement servers, protocol(s) and number of cycles (i.e. how
many times the measurement should be repeated). User decides when to start such mea-
surement. User interface for configuration of custom measurement is shown in Figure
6.7.

Second option for performing measurements is an automatic measurement service. This
service is running in the background and according to application settings measurements
are automatically started without users interaction. This option helps to collect measure-
ment results over longer time and without the need of manually starting measurement
results. Choice of measurement server is not controlled by the user and is optimized by
the nearest measurement server algorithm described in Subsection 6.1.1.1.3. The service
tries to pick the nearest measurement server and thus avoids routing delays in order to
make the measurement as exact as possible. The service performs one measurement cycle
for all available protocols on the chosen measurement server. While the measurement is
running, the service prevents the device from going into the sleep state [4], because this
would interrupt the measurement process. Once the measurement is done, sleep mode is
enabled again.

6.1. TOOL FOR QOE ESTIMATION: BONAFIDE+ PROVIDER 49

Figure 6.7: Custom measurement

Automatic measurements can be conFigured by application settings as shown in Figure
6.8. There are two parameters which have influence on how automatic measurements will
be performed:

� Time threshold,

� Movement threshold.

Time treshold is the delay between measurements in minutes. Setting it to e.g. 10
minutes, the service performs measurement every 10 minutes (even if the device is in
sleep state). This option is useful when one would like to collect measurement results in
one place over time. If the end-user would like to measure quality of a particular area, the
time threshold may be not the best option, because only time counts and not the location
change. For this purpose the second threshold would be preferred. Movement threshold
defines the distance from the last measurement in meters. Setting this threshold to e.g.
300, the service will start measurement every 300 meters of movement. This option is

50 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

preferred for end-users who are moving and collecting measurement results with respect
to locations on the path of movement.

Both thresholds are OR-combined, i.e. measurement is started after the specified time
threshold counted from the last measurement or when the location of the device changes
and the distance between the current location and the location of the last measurement
is longer or equal than the specified movement threshold. Setting both thresholds to
appropriate values makes the automatic measurement service well suited for collecting
both - static and dynamic measurements.

Figure 6.8: BonaFide+ application settings

The client application is also able to measure performance of wireless local area networks
(WiFi), however results may not be accurate due to throughput limitation of the particular
WiFi technology. In case the internet connection is faster than the WiFi connection
between the client device and the wireless access point, measuring performance of such
network would be misrepresented, e.g. the statement about bandwidth would be affected
by the WiFi throughput and the latency would reflect the real internet performance.
Because of such limitations, using WiFi networks is not the preferred connection type,

6.1. TOOL FOR QOE ESTIMATION: BONAFIDE+ PROVIDER 51

however it is supported by the application and results are denoted by the origin. When
both connection types - mobile and WiFi - are turned on on the device in parallel, the WiFi
connection is used by the device and thus such measurements are classified as measurement
of WiFi network.

When using WiFi networks for performing measurements, there was another problem ob-
served while testing the application. Android devices don’t work well with WiFi networks
in roaming setup [32], i.e. when multiple WiFi access points with the same SSID are over-
lapping. The device was randomly changing association from one access point to another
one followed by interruption of each established connection. This caused interruption of
the measurement process and thus measurements were not always finished correctly. An
example of such case is shown in Figure 6.9.

Figure 6.9: Problem with Android and roamed WiFi networks

52 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

6.1.1.3.3 Measurement Results

Each user has a detailed overview of own measurement results in the application, including
unlimited measurement history. Figure 6.10 shows an example for a detailed measurement
result.

Figure 6.10: Detailed measurement results

6.1.1.3.4 Overall Results Visualization

In addition to the detailed measurement overview, which is only available to the user
of origin, there is an overall statistic overview of all measurements performed by the
BonaFide+ provider system.

Data visualization is an important approach in the BonaFide+ provider project, because
it forms the basis of measurement understanding for the end user. Different types of data
listed in Table 6.8 are subject of visualization and every type has different characteristics.

6.1. TOOL FOR QOE ESTIMATION: BONAFIDE+ PROVIDER 53

Focus Type of data

Location of measured data geographic
Operator enumeration
Mobile technology used enumeration
Protocol/ Service enumeration
Call plan type (pre-paid/subscription) enumeration
Time of data input temporal

Table 6.8: Data types used in BonaFide+ provider

To be able to visualize such data, an appropriate method had to be chosen for each
of them. While designing this part of the client application, following challenges were
considered:

� different data types - some of them intersected and some of them disjoint - needs to
be visualized clearly and without confusing the user - filtering may help to change
focus to e.g. location, provider, technology etc.,

� users need to understand the data - a good visualization method have to be chosen.

Figure 6.10 shows how detailed overview is presented to the user. However this overview
is not applicable for visualizing geographical data and/or for showing aggregated results
collected by many users. For such purpose another presentation was designed.

Because of combination of different data types and because of anonymization of single
results, a combined presentation interface was intended. The design was influenced by
the fact that measurements are bound to particular locations, which can be efficiently
visualized on a map. Map was taken as the underlaying layer for the visualization. The
map area was available for placing another data on top if it while keeping the privacy
issue of obfuscating single measurements.

Each position is bound to a single location given by latitude and longitude. On the
map this could be visualized by a point marker as shown in Figure 6.4. However keeping
limited resources of mobile devices in mind, the amount of shown markers displayed on the
map should be minimized. This has also an usability reason, because many overlapping
markers would make them unreadable. From the privacy point of view, single locations
shouldn’t be displayed either, because they can reveal single location such as companies,
flats etc. Considering everything written in this paragraph, an aggregated method of
displaying results was developed.

Single results, i.e. points, are aggregated into larger units, which save resources available
on the device and also obfuscate single measurement locations. The unit for displaying
aggregated results is a square - the screen is filled with fixed amount of squares based
on its resolution, which divide the screen into a grid. Each square is just a placeholder
at the beginning and is not visible to the user. The grid is bound to the screen and not
to the map. This is different in similar tools such as Netradar, where squares are bound
to the map, i.e. moving the map moves also squares (squares are rendered to the same

54 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

position on the map). BonaFide+ provider doesn’t have any fixation to the map. Once
the screen is divided into the grid, the grid doesn’t move with the map movement. When
the underlaying map is moved, squares stays at the same position on the screen and only
the area below them changes.

100%
(best)

0%
(worst)

Figure 6.11: Quality gradient for coloring squares

Each square aggregates results below it. If there is no result under the particular square,
the square is not displayed on the map to indicate that the area is not covered by any
measurements. If there are more that zero measurement results under the area of the
square, the square becomes visible. Each square is displayed with 50% alpha value to
make also the underlaying area (map) visible. Each displayed square has a color, which
indicate the quality of the underlaying area. The quality can be e.g. download protocol
bandwidth or upload random bandwidth. The focus can be changed by filters which will
be described later. The color is computed based on the average value of all results located
below it. The color is red (worst quality), green (best quality) or something between as
shown in Figure 6.11. The quality is represented in percentage and the color is picked
from the gradient based on the computed quality average. An example for everything
described in this paragraph is shown in Figure 6.12.

The average of each square is computed by a special algorithm developed in the scope of
this master thesis. Because squares are bound to the display, the user has flexibility to
adjust the visualization by moving the map. After the map is moved, color of each square
is recalculated based on the new are below it. Until now there was only the expression
average, but this is not enough to decide which color the square should contain. For
that the minimum and maximum is needed in order to decide about the percentage
(percentage is mapped to a particular color between red and green). The minimum value
available in the results database will be the value of 0% and the maximum the value
of 100%. Then the average for each square will be between 0% and 100% and its color
can be determined based on the quality gradient shown in Figure 6.11. In order to add
another flexibility to the visualization, the minimum and maximum is always computed
for the current map viewport. Map viewport is the area on the map which is currently
displayed on the screen. This means that the minimum and maximum is always adapted
to the shown map area and to the current zoom level. This approach enables focusing
into areas without taking the rest of the world into charge when computing the quality
of each square. Regions, which are not displayed in the current viewport, are excluded
from the minimum-maximum-computation and thus colors of squares reflect the relative
quality based on the minimum and maximum measured in the displayed area.

Figure 6.13 combines view of the viewport, map and of the square orientation.

� green area shows the map viewport,

6.1. TOOL FOR QOE ESTIMATION: BONAFIDE+ PROVIDER 55

Figure 6.12: Example for rendering of squares

� red area shows the square,

� black arrows and compass show the orientation on the map.

All three views are combined into a single visualization. Map viewport and squares are
defined by two points given by coordinates:

� NE point stands for north-east,

� SW stands for south-west.

Given that two points the rectangle can be reconstructed. NE and SW points of the map
viewport are input for the square calculation. Squares are calculated by the central server
and rendered by the application given square definitions returned from the central server.
The definition contains list of squares and each square is defined by its NE and SW points
and by the quality in percents (0-100). The client application then renders all squares

56 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

Figure 6.13: Viewport, map and square orientation

defined by the central server for the given viewport. The maximum amount of squares
rendered on the screen is defined by the grid. Squares are rendered over the map given
coordinates of their NE and SW points. When the underlaying map moves, each square
is removed and redrawn according to the definition. The central server knows the width
and height of the viewport based on its coordinates. Given the number of squares in the
horizontal space by the central server configuration, the central server computes NE and
SW points for each square within the viewport. The number of horizontal squares is given
by the configuration and can be computed to fill exactly the whole width of the viewport
and the number of vertical squares is computed based on the height of the viewport in
order to fill the whole screen with squares. Because squares have the same side length
(square side length), it is not always possible to exactly fill the area of the viewport. The
yellow square overflow area illustrates the area below the viewport, into which the bottom
square line may reach. However, the performance is not significantly affected by that and
the user has the feeling that the whole display is covered by squares (no empty space is
seen at the bottom of the viewport).

The average for each square is queried from the database. The geometry class Polygon [6]
is used for selecting results located in the square. An example query is shown in Listing
6.9. This selection is indexed and thus the performance is not significantly affected even
when selecting within a huge results space. The DBMS then computes the average value
for the requested parameter, e.g. the upload random bandwidth.

SELECT count (*) AS aggregated_count , AVG(".$requested_column.

") AS ".$requested_column."_avg FROM ".Sql:: $db_prefix."

measurement_results WHERE within(measurement_location ,

GeomFromText(’POLYGON ((". $square ->south_west_latitude ." ".

$square ->south_west_longitude .",".$square ->

6.1. TOOL FOR QOE ESTIMATION: BONAFIDE+ PROVIDER 57

south_west_latitude ." ".$square ->north_east_longitude .",".

$square ->north_east_latitude ." ".$square ->

north_east_longitude .",".$square ->north_east_latitude ." ".

$square ->south_west_longitude .",".$square ->

south_west_latitude ." ".$square ->south_west_longitude ."))’

)) AND ".$requested_column." >0".

$applied_filters_query_injection

Listing 6.9: Example query withing the PHP code for average computation for a particular
square

6.1.1.3.5 Mean Opinion Score and DQX Model for QoE Estimation

In addition to average computations, the application features also the QoE estimation.
Average data are numeric values and they are missing the interpretation. QoE estimation
turns them into interpreted expressions such as at this places the web browsing performs
excellent. For that the same visualization technique is used as for the average visualization,
but squares aren’t colored by the average anymore, but by the QoE value. Having this,
the end-user can interpret colors as the statement about the expected experience for the
particular purpose (currently implemented are: webbrowsing, IP telephony and video
streaming).

QoE combines different measured values in order to make the statement about the ex-
perience as close as applicable. Each application has its specific properties and thus the
formula needs to be adjusted for each of them. Table 6.9 shows how the MOS computa-
tion is configured in the BonaFide+ Provider system. MOS is computed by the central
server and parameters can be adjusted in the configuration file of the central server.

Service Protocol(s) Effect Parameter min max x0 MOS = 3 MOS = 5 m− m+ wk

Browsing HTTP increasing downlink throughput 0Mbps 50.1Mbps 1330Kbps −25% +100% 2.41 2.58 75%

decreasing latency 1ms 2000ms 523ms +15% −50% 10.17 6.29 25%

Video FlashVideo increasing downlink throughput 0Mbps 50.1Mbps 1.5Mbps −20% 5Mbps 3.11 1.49 100%

480p 720p

VoIP VoIP-H323 increasing uplink throughput 0Mbps 12.7Mbps 8Kbps 5.3Kbps 64Kbps 1.67 0.86 25%

increasing downlink throughput 0Mbps 50.1Mbps 8Kbps 5.3Kbps 64Kbps 1.67 0.86 25%

decreasing latency 1ms 2000ms 120ms +50% −50% 10.17 2.16 50%

Table 6.9: MOS-related Values [38]

6.1.1.3.6 Filtering

In order to view only relevant data on the map, the client application implements two
types of filters located at the top of the view:

� Scope - which parameter should be averaged and rendered on the map

58 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

� Filter - which operators, countries, protocols etc. should be contained in the average
computation

The scope switch decides about the target scope, i.e. what should be visualized in the
map. Currently the application supports following target scopes:

� MOS webbrowsing (QoE relevant),

� MOS IP telephony (QoE relevant),

� MOS video streaming (QoE relevant),

� download protocol bandwidth,

� download random bandwidth,

� upload protocol bandwidth,

� upload random bandwidth,

� latency,

� signal strength.

Each target scope can be combined with an appropriate filter. Currently supported filters
are:

� protocol,

� network type,

� operator,

� country.

Filters contain additional filtering parameters as shown in Figure 6.14. The list of pa-
rameters depends from available results, i.e. unique values from the appropriate database
column are selected and displayed. Then only checked (in this case) operators will be
applied in the average or MOS computation. Filter can be turned on and off via the
switch located at the top right side.

6.1. TOOL FOR QOE ESTIMATION: BONAFIDE+ PROVIDER 59

Figure 6.14: Filtering operators

6.1.1.3.7 Squares and Map Projection

For the map presentation Google Maps API v2 is used. It is offered as a free service, it
can be directly implemented in Android applications and supports shape rendering on top
of the map layer [11] as required by the project. Polygon shapes are used for rendering
quality squares. Color of each polygon is defined in ARGB format to support the alpha
channel, which is required for rendering the square with semi-transparency.

Redrawing of results is initiated by the movement of the map. Google Maps API v2
however don’t implement an appropriate listener for on map idle event but required by
the project, so custom implementation was done in form of a custom listener. This custom
listener extends the basic onMapChange listener by the onMapIdle listener, which is not
available by default in the current Google Maps version. This listener ignores frequent
immediate position updates caused by scrolling the map and fires onMapIdle event after
the position is fixed and not changed for a specified piece of time, which is currently set
to 500ms.

60 CHAPTER 6. TOWARDS REAL-WORLD USE-CASES OF QOE

Figure 6.12 shows rendered squares, however they appear not to be squares. Squares in
the context of the BonaFide+ provider are rendered by coordinates and not by pixels on
the screen. The square side length is always the same for all squares rendered on the map
and it is represented by ∆ latitude and ∆ longitude (∆ latitude=∆ longitude). But as
shown in the Figure, they are rendered as rectangles. This is not bug in the application,
but squares are distorted because of the map projection. Despite the fact that they appear
to be rectangles, they are squares on the real earth surface.

6.1.1.3.8 Location Awareness

The client application is location aware, i.e. it is aware of its current location. This is
essential when making measurement results location-specific. Access to the location of
the device is dependent from access restrictions defined on the device, but the application
requests user to turn on location providers when the access is blocked. There are multiple
methods for obtaining the location of the device according to [2]:

� GPS,

� cell towers,

� WiFi signals.

The application supports all available location strategies and uses a fused location provider,
which combines input of different location providers available and turned-on in the de-
vice and supplies the application with the most accurate location. The fused provider
is implemented by Google and its documentation can be found at the following link:
http://developer.android.com/google/play-services/location.html. Using the
fused location provider enables fast access to the location in the indoor space and also the
most exact (GPS based) location in the outdoor space (i.e. where GPS is applicable). The
application doesn’t rely on a single location provider and can get access to the location
even if only one provider is enabled.

Chapter 7

Evaluation

In the scope of this master thesis the whole infrastructure was set up and maintained. 29
users were participating on mobile measurements with the client application downloaded
from Google Play and running on Android devices connected to internet via mobile data.

There were done 1657 measurements via mobile networks in total in following countries
(countries were recognized based on the country of the connected MNO):

� Switzerland (719),

� Germany (410),

� Greece (8),

� Belgium (83),

� Korea (12),

� Czech Republic (357),

� Spain (12),

� not available (56)

Controlled measurements in Zurich were done in the city center as shown in figures. This
area was crowded and different shapes were placed on the street which have an influence
on the signal quality (Figure 7.1). The expectation was that the internet quality will be
negatively influenced. During evaluation QoE was focused instead of QoS.

Measurement results for different QoE use-cases are shown in Figure 7.2. The expectation
that the quality will be bad was wrong. Major areas performs excellent for all three use-
cases. There are some variations caused by application-specific parametrization of QoE
computation.

Measurement focusing disturbing elements was performed in area shown in Figure 7.3.
When focusing QoE of video streaming, where high bandwidth is required, the QoE sinked

61

62 CHAPTER 7. EVALUATION

Figure 7.1: Zurich city center - Bahnhofstrasse

because the bandwidth was limited due to signal disturbance caused by the scaffold. How-
ever QoE of VoIP and web browsing was excellent in this area - i.e. QoS was apparently
influenced by disturbance, but it was still excellent for making an internet call or for web
browsing. This disturbance would be noticeable only when one would stream videos in
this area.

Figure 7.4 shows QoE of video streaming in Switzerland. When zooming out, diffused
measurement results are aggregated into bigger squares and thus small local deviations
will become invisible when the average MOS for the particular square is computed.

Beside QoE interpretations also other parameters such as signal strength can be visualized
as shown in Figure 7.5.

63

Figure 7.2: Zurich city center - QoS of different use-cases

64 CHAPTER 7. EVALUATION

Figure 7.3: QoE for video streaming affected by disturbance element

65

Figure 7.4: QoE of video streaming in Switzerland

66 CHAPTER 7. EVALUATION

Figure 7.5: Signal strength in Bern

Chapter 8

Future Work

The BonaFide+ Provider system is open for everyone and can be freely extended. This
Chapter opens discussion of the future direction of the system.

Integration of measurement servers into the infrastructure is currently not authenticated.
Measurement servers can be easily configured and inserted into the system by just speci-
fying the REST URL of the central server. Measurement servers are then automatically
managed by the life-cycle management. The origin of measurement servers is not verified
and thus also malicious measurement servers would be accepted, which could e.g. pro-
vide shaped bandwidth for measurements and thus measurements would be artificially
incorrect. Verification is not easy in open infrastructures, because everybody is allowed
to deploy a measurement server, however central server is not yet able to filter which
measurement server is allowed to join and which not. This can be done similar to commu-
nication between WiFi Access Points (AP) and RADIUS servers, where a shared secret
is used for AP verification. Measurement servers and central server can share a secret
verification string, which can be compared when the measurement server tries to join the
infrastructure. The communication between measurement servers and the central server
is already encrypted and secured by HTTPS, which would make exchange of shared secret
secure.

The connection to measurement servers is not checked when measurement servers join
the infrastructure. They are automatically accepted without the guarantee that all nec-
essary ports (i.e. the whole communication interface) are accessible on them. Without
checking the reverse connection measurement servers can contain blocked ports and thus
measurements could be limited. This reverse-connection check can be implemented on
the central server at the point when measurement server tries to join the infrastructure.
The IP address and service port is known to the central server and reverse connection
can check if the measurement server is configured correctly. If not, measurement server
shouldn’t be accepted.

Measurement servers are sending periodic keep-alive messages to the central server in or-
der to advertise themselves to the system. Central server responds with the delay value
until the next keep-alive message. Measurement servers then follow this received delay

67

68 CHAPTER 8. FUTURE WORK

instruction. This enables future extensions such as longer update periods for known mea-
surement servers or load balancing of keep-alive updates. In the current implementation
only constant delay is returned by the central server and thus each measurement server
keeps sending keep-alive updates in fixed intervals.

Client application are getting assigned an identification token, however there is no security
mechanism protecting the central server from issuing huge amount of identification tokens
to malicious clients. Implementation of identification token counters and limitations for
particular IP addresses would clear this risk.

Evaluation of the system showed a significant data usage with automatic measurements.
This is one of major possibilities for improvements, since client applications are measur-
ing mobile networks and thus are connected via mobile data, which may be expensive for
end-users. During the evaluation 1GB was consumed within one hour. Automatic mea-
surements perform measurements of all available protocols at the nearest measurement
server. Each measurement includes redundant tasks such as random flow measurement
used for comparing random and protocol flow, where random flow doesn’t need to be
measured with each protocol again and again. This would save a lot of data traffic with-
out losing any measurement output. Currently each protocol measurement is handled as
a separate task and automatic measurements are performing them one after each other.
Adding the possibility to control their subtasks could enable automatic measurements to
disable subtasks which are already done and not needed to be done for a second time.

Another important improvement is addition of statistical overview to each square. In
the current implementation squares are only drawn and are not labeled nor equipped
with pop-up informations. The reason is that Google Maps API v2 doesn’t provide on-
click listeners for polygons and thus implementing such functionality manually over the
map onClick listener was out of scope of this master thesis. This onClick listener can
provide screen coordinates of the click and an additional algorithm can be implemented
for resolution of the square located in the area where the click was perceived. In addition
an overlay information can be shown which would provide more details about the clicked
area. Such data are already provided to client applications via the REST data model, but
they need to be shown to the user.

Chapter 9

Summary and Conclusions

This master thesis contributed to the QoE research with the open-source distributed
system BonaFide+ Provider for protocol-specific QoS measurements and QoE estimation.
Estimating the experience of users in different use-cases and environmental conditions is
completely new functionality, which was not implemented in any software system before.

BonaFide+ Provider can be used and extended in future works in the QoE direction.
Given the ability to deploy the whole system on own infrastructure research groups can
adapt QoE estimation parameters and freely experiment with the whole system.

69

70 CHAPTER 9. SUMMARY AND CONCLUSIONS

List of Figures

1.1 Communication technologies and their classification [24] 2

3.1 Hierarchical QoS [16] . 10

3.2 Application-specific QoS [18] . 10

4.1 Framework for analyzing communications ecosystem [28] 14

5.1 Network technologies and their evolution [29] (paketoriented = packet-
oriented, vermittlungsorientiert = exchange-oriented, bis zu = up to) . . . 18

5.2 Subscriber data rate example [33] . 19

6.1 Number of mobile network users between 1995 and 2000 [34] 22

6.2 BonaFide+ Provider - infrastructure diagram 23

6.3 Measurement server availability timeframe 26

6.4 Measurement server locations . 30

6.5 Identification token relation . 36

6.6 Identification token setting in the client application 37

6.7 Custom measurement . 49

6.8 BonaFide+ application settings . 50

6.9 Problem with Android and roamed WiFi networks 51

6.10 Detailed measurement results . 52

6.11 Quality gradient for coloring squares . 54

6.12 Example for rendering of squares . 55

6.13 Viewport, map and square orientation . 56

71

72 LIST OF FIGURES

6.14 Filtering operators . 59

7.1 Zurich city center - Bahnhofstrasse . 62

7.2 Zurich city center - QoS of different use-cases 63

7.3 QoE for video streaming affected by disturbance element 64

7.4 QoE of video streaming in Switzerland . 65

7.5 Signal strength in Bern . 66

List of Tables

1.1 Usage of common frequencies [29] . 3

4.1 The MOS scheme according to [27] . 14

5.1 Mobile network technologies and their data rate [34] [33] 17

5.2 Mobile coverage variation due to disturbance factors [24] 19

5.3 Signal disturbance factors [29] . 20

6.1 REST service - submission of measurement results 39

6.2 REST service - measurement server list sorted by name 40

6.3 REST service - measurement server list sorted by distance 41

6.4 REST service - advertising measurement to the central server 41

6.5 REST service - listing of measurement results 41

6.6 REST service - listing of measurement results for a viewport 42

6.7 REST service - submission of measurement results 42

6.8 Data types used in BonaFide+ provider 53

6.9 MOS-related Values [38] . 57

73

74 LIST OF TABLES

Appendix A

Contents of the DVD

Attached DVD contains source code of the whole BonaFide+ Provider system, including
the central server, measurement server and the client application.

75

76 APPENDIX A. CONTENTS OF THE DVD

Bibliography

[1] http://developer.android.com/guide/topics/location/strategies.html,
last access: 29.8.2014.

[2] http://developer.android.com/guide/topics/location/strategies.html,
last access: 29.8.2014.

[3] http://developer.android.com/guide/topics/sensors/sensors_overview.

html, last access: 29.8.2014.

[4] http://developer.android.com/reference/android/os/PowerManager.html,
last access: 29.8.2014.

[5] http://dev.mysql.com/doc/refman/5.0/en/gis-class-point.html, last access:
29.8.2014.

[6] http://dev.mysql.com/doc/refman/5.0/en/gis-class-polygon.html, last ac-
cess: 29.8.2014.

[7] http://dev.mysql.com/doc/refman/5.6/en/innodb-foreign-key-

constraints.html, last access: 29.8.2014.

[8] http://dev.mysql.com/doc/refman/5.6/en/spatial-relation-functions-

object-shapes.html\#function_st-distance, last access: 29.8.2014.

[9] http://jackson.codehaus.org/, last access: 29.8.2014.

[10] https://code.google.com/p/google-gson/, last access: 29.8.2014.

[11] https://developers.google.com/maps/documentation/android/shapes, last ac-
cess: 29.8.2014.

[12] https://glassfish.java.net/, last access: 29.8.2014.

[13] https://jersey.java.net/, last access: 29.8.2014.

[14] https://jersey.java.net/documentation/latest/client.html, last access:
29.8.2014.

[15] https://www.java.com/en/about/, last access: 29.8.2014.

[16] http://www.accedian.com/en/solutions/business-services.html, last access:
29.8.2014.

77

78 BIBLIOGRAPHY

[17] http://www.mysql.com/, last access: 29.8.2014.

[18] http://www.sdncentral.com/technology/role-of-l4-7-network-

intelligence-sdn/2012/10/, last access: 29.8.2014.

[19] Anurag Acharya and Joel Saltz. A study of internet round-trip delay. Technical
report, University of Maryland, Computer Science Department, 1998.

[20] Vitali Bashko. Traffic differentiation detection in mobile networks using android
phones. Master’s thesis, Jacobs University, 2012.

[21] Vitali Bashko, Nikolay Melnikov, Anuj Sehgal, and Jürgen Schönwälder. Bonafide:
A traffic shaping detection tool for mobile networks. In IFIP/IEEE International
Symposium on Integrated Network Management (IM-2013), 2013.

[22] Shigang Chen and Klara Nahrstedt. An overview of quality of service routing for
next-generation high-speed networks: Problems and solutions, 1998.

[23] Johan De Vriendt, Danny De Vleeschauwer, and David Robinson. Model for esti-
mating qoe of video delivered using http adaptive streaming. IFIP/IEEE IM2013.

[24] Bernardin Denzel, Heidi Heilman, Rolf M. Katzsch, Andreas Meier, Michael Moerike,
and Heinz Sauerburger. Mobilkommunikation. Hüthig GmbH, Heidelberg, 1995.

[25] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison-Wesley, Upper Saddle River, NJ, 2000.

[26] Bur Goode. Voice over internet protocol (voip). Proceedings of the IEEE, vol. 90,
no. 9, 2002.

[27] TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU. Methods for
subjective determination of transmission quality, 08 1996.

[28] Kalevi Kilkki. Quality of experience in communications ecosystem. Journal of Uni-
versal Computer Science, 2008.

[29] Franz Lehner. Mobile und drahtlose Informationssysteme. Springer-Verlag, Berlin,
2003.

[30] Analysys Mason. Global mobile network traffic - a summary of recent trends. report,
2011.

[31] Sebastian Möller and Alexander Raake. Quality of Experience. Springer, Berlin,
2013.

[32] Julien Montavont and Thomas Noel. Ieee 802.11 handovers assisted by gps infor-
mation. Wireless and Mobile Computing, Networking and Communications, pages
166–172, 2006.

[33] Inc. Motorola. Realistic lte performance - from peak rate to subscriber experience,
2009.

BIBLIOGRAPHY 79

[34] Ralf Reichwald. Mobile Kommunikation - Wertschöpfung, Technologien, neue Dien-
ste. Gabler Verlag, Wiesbaden, 2002.

[35] Flávio Ribeiro, Dinei Florencio, Cha Zhang, and Michael Seltzer. Crowdmos: An
approach for crowdsourcing mean opinion score studies. ICASSP, 2011.

[36] Claudio Riva and Markku Laitkorpi. Designing web-based mobile services with rest.
Service-Oriented Computing - ICSOC 2007 Workshops, Springer Berlin Heidelberg,
pages 439–450, 2009.

[37] Manuel Rösch. Quality-of-experience measurement setup. Technical report, Univer-
sity of Zurich, Department of Informatics (IFI), 2014.

[38] Christos Tsiaras, Anuj Sehgal, Sebastian Seeber, Daniel Doenni, Burkhard Stiller,
Jürgen Schönwälder, and Gabi Dreo Rodosek. Towards evaluating type of service
related quality-of-experience on mobile networks. 7th IFIP Wireless and Mobile
Networking Conference, 2014.

[39] Christos Tsiaras and Burkhard Stiller. A deterministic qoe formalization of user
satisfaction demands (dqx).

[40] Alessandro Verdolini and Stefano Petrangeli. A smartphone agent for qoe evaluation
and user classification over mobile networks. Fifth International Workshop on Quality
of Multimedia Experience, 2013.

