
University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH—8050 Zürich, Switzerland

B
A

C
H

E
LO

R
 T

H
E

S
IS

 —
 C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
, P

ro
f.

D
r.

 B
ur

kh
ar

d
S

til
le

r

Implementation of an automatic, on-
demand Mobile Network

Operator (MNO) selection mechanism
on Android devices

Samuel Liniger
Zürich, Switzerland

Student ID: 08-913-832

Supervisor: Christos Tsiaras, Daniel Dönni
Date of Submission: August 23, 2013

Bachelor Thesis
Communication Systems Group
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH—8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

 i

Abstract

In the mobile communication industry the call termination is considered to be a de facto
monopoly, due to the fact that only the Mobile Network Operator (MNO) of the callee is able
to terminate his calls [61].

To counteract this, the AbaCUS approach introduces an Auction-based Charging and User-
centric System. AbaCUS assumes the existence of an automatic MNO selection
mechanism that is implemented in the callee‘s smart-phone, which facilitates an on-
demand MNO selection considering the termination rates [61] of all available MNOs.

This thesis describes a solution on Android based smart-phones, to select the MNO on-
demand remotely in an automatic manner. Furthermore the proposed solution is measured
by its efficiency in terms of energy, time and bandwidth consumption.

 ii

 iii

Zusammenfassung

Die Anrufzustellung in der Mobilfunkbranche ist traditionellerweise ein de facto Monopol.

Diesem Zustand wirkt der AbaCUS-Ansatz (Auction-based Charging an User-centric
System) entgegen, welcher eine auktionsbasierte Verrechnung und benutzerzentriertes
System einführt [61]. AbaCUS setzt beim Smartphone des Empfängers einen
Mechanismus voraus, der es erlaubt den Mobilfunkbetreiber über Remotezugriff anhand
der Terminierungsgebühr auszuwählen.

Die folgende Arbeit beschreibt eine Lösung für Android-Smartphones, um den
Mobilfunkbetreiber über einen Remotezugriff in einer automatischen Art und Weise zu
wechseln. Des Weiteren wird die vorgeschlagene Lösung auf ihre Effizienz hinsichtlich der
benötigten Batterie, benötigten Zeit und benötigten Bandbreite untersucht.

 iv

 v

Acknowledgments

I would like to thank Prof. Dr. Burkhard Stiller and the Communication Systems Group for
providing this interesting Bachelor Thesis based on an ongoing research project.

Special thanks for the great supervision of Christos Tsiaras. Without the many e-mails as
well as advice from discussions at his office this thesis would not have been possible.
Additionally, I would like to thank Daniel Dönni and Marisa Bumbacher for proofreading this
work.

 vi

 vii

Table of Contents

1 Introduction ..1
1.1 Motivation .. 1

1.2 Description of Work ... 1

1.3 Thesis Outline ... 1

2 Related Work ..3
2.1 Android ... 3

2.1.1 Software Architecture .. 3
2.1.2 Telephony Manager ... 4
2.1.3 Radio Interface Layer .. 4

2.2 Android Application Fundamentals ... 5
2.2.1 Android Activity .. 5
2.2.2 Android Services .. 6
2.2.3 Android Content Provider .. 6
2.2.4 Android Broadcast Receiver .. 6
2.2.5 Android Interface Definition Language (AIDL) ... 6

2.3 Development Prerequirement - Internal Android API .. 7
2.3.1 Accessing Internal Android API ... 7

2.4 Java Reflection ... 10

2.5 Google Cloud Messaging .. 10

2.6 AT Command Set ... 11
2.6.1 Test Commands .. 11
2.6.2 Read Commands ... 11
2.6.3 Set Commands .. 11
2.6.4 AT Commands in Practice ... 12

2.7 Auction- based Charging and User-centric System (AbaCUS) ... 13

2.8 Mobile/Wearable Device Electrosmog Reduction through Careful Network Selection 13

3 Design ...15
3.1 MNO Selection Mechanism .. 15

3.2 AbaCUS Application ... 16
3.2.1 GSM Phone Service .. 16
3.2.2 AbaCUSApp .. 18

3.3 Limitations ... 20

4 Evaluation ..22
4.1 Time Consumption .. 22

4.2 Power Consumption .. 26

4.3 Bandwidth Consumption ... 28

5 Conclusions ...29

6 Future Work ...30

A : Abbreviations ..35

B : Glossary ..36

C : Tools and Environments ..37

D : Power Consumption Calculation ..39

E : AbaCUS Messages ...40

F : Contents of the CD-ROM ..43

 viii

List of Figures

1 Android Architecture Diagram [4] ..3

2 Android RIL Architecture [51] ..4

3 Activity Lifecycle [1] ...5

4 Eclipse Access Rule ..7

5 ADT Custom Access Rule ...9

6 Android Custom Platform ..10

7 AT+COPS=? Response ..11

8 AT Commands Sent with puTTY ...12

9 Key Elements of AbaCUS [61] ..13

10 GSMPhone Instance ...15

11 Select MNO Manually ..15

12 Signing Application ..16

13 Sending Application to Device ...16

14 Initialize Phone Service ...17

15 Expose Phone Service ..17

16 Result Receiver ...18

17 (a) AbaCUSApp QoS-C / TeR-C Chooser (b) AbaCUSApp Dialer19

18 AbaCUS Request Service Message ..20

19 MNO Switching Average Time on Mobile Scenarios ...23

20 Min and Max Time on MNO Selection Scenarios ..23

21 MNO Switching Average Time Signal Strength ...24

22 MNO Switching Average Time ..24

23 Large MNO Switching Time ...25

24 Average Termination Time ..25

25 Average MNO Scan Time ..26

26 Power Consumption Calculation ...27

27 AbaCUS Call Process ...28

List of Tables

1 Signal Strength ..22

2 SGS2 Battery [28].. 27

3 MNO Switching Power Consumption ..27

4 Available MNO List Power Consumption ...27

5 Bandwidth Consumption ..28

Page 1

1 Introduction

The use of smartphones has been increasing in the last few years [40][65]. Many open
standards and accessible Application Programming Interfaces (API) make it easier for
developers to achieve their ideas and many communities, such as xda developers [64] or
stackoverflow [55], provide good questions and answers concerning mobile application
development. The question how to switch a Mobile Network Operator (MNO)
programmatically on Android devices already arose in 2010 [41]. As far as it is known the
answer of this question has not been published yet [42][50]. The main reason is that there
is no method provided in the public Android API that allows to perform this task [47].

1.1 Motivation

To allow new MNO selection algorithms to reduce radiation [47], by choosing the MNO
considering criteria such as the signal strength or to introduce new approaches for the call
termination service, based on the MNOs call termination rates [1], it is mandatory to have a
mechanism to switch the MNO programmatically. This means an application is needed
which performs this task instead of the manual selection through the User Interface (UI).

1.2 Description of Work

This thesis provides a solution to select a MNO automatically in a background process, so
that any other user interaction such as writing a message is not interrupted as long it is not
dependent on a internet connection through the mobile network and that the selection can
also be performed when the device is in stand-by mode. The mechanism is able to trigger
the selection either from a remote location or from the device itself. The mechanism does
not consider any security issues. Securing the MNO switching mechanism as well as
authorization issues should be handled in the application layer. The main goal was to
develop an automatic and on-demand MNO selection mechanism on Android platforms.
This mechanism also has to be evaluated in terms of energy and time consumption during
the MNO search and MNO selection procedure. Furthermore, the mechanism has also to
be evaluated with respect to the bandwidth consumption during the MNO selection decision
in the case that this happens remotely through AbaCUS.

The developed application is able to retrieve and store the user‘s location and to get a list
with available networks at this location. Furthermore, it is able to send and receive AbaCUS
messages, which was necessary for the evaluation of the bandwidth consumption.

In case that the primary goal of this thesis of a MNO selection mechanism would not be
possible, an equivalent approach for WiFi networks should be examined. However, since a
solution for the required mechanism has been deployed and evaluated, the secondary task
to change WiFi Access Points (APs) instead of MNOs programmatically has not been
investigated.

1.3 Thesis Outline

The structure of this thesis is the following: Section 2 provides information about related
work with a strong focus on other attempts to answer the main question. Furthermore,
solutions of similar problems are presented. The subsequent chapter develops the
mechanism outlined in the Subsection 1.1 and shows assets, drawbacks as well as
limitations of this work. The evaluation of the mechanism is discussed in Section 4 which is

Page 2

followed by the Conclusions. The last chapter describes open questions and future work in
the fields that have been discussed.

Page 3

2 Related Work

This thesis is based on research interests in the field of the programmatical MNO switching
on Android devices. The proposed solution makes use of existing approaches and extends
them to select MNOs in an automatic and on-demand manner. The following passages
introduce related work in this domain.

2.1 Android

Android is currently one of the most popular mobile platforms in the world [7]. Its openness
and the publicly available source code was a major criterion to choose this platform for the
purpose of this thesis. Nevertheless, it has to be kept in mind that Android is not entirely
open [63]. In fact, it does not provide full access to the middleware and the application
layer. In the kernel layer there are some components like power management, which
developers are not allowed to extend or modify [9].

2.1.1 Software Architecture

An important remark about the Android software architecture is that the Android Operating
System (OS) consists of four levels. The lowest level is the system kernel, which is based
on a Linux kernel that provides basic system services to upper layers, such as process
isolation and scheduling, file system support, device drivers and networking [15]. In the
middle of the four levels, native libraries such as databases or OpenGL are located. On the
same level the Android runtime is located with the Dalvik Virtual Machine (DVM). DVM is a
register-based VM, built-on the ARM architecture [17], which has been developed to allow
very small but still high-performance implementations [46]. On top of this middle level there

is the application framework which consists of several components. The Android software
architecture as described above is shown in Figure 1.

Figure 1: Android Architecture Diagram [4]

Page 4

On the top level there are user applications, as the provided ones by Google, or by the
Android developers community. Google offers an accessible API as well as a Software
Development Kit (SDK). From a modem integration‘s point of view the Telephony Manager
is the most important component.

2.1.2 Telephony Manager

The Telephony Manager in this thesis point of view is the most important component,
because it provides access to information about the telephony services on the device as
well as access to certain types of subscriber information. Applications can register a listener
to receive notification of telephony state changes [58]. The Telephony Manager is
connected to the Radio Interface Layer (RIL) by using a socket connection. This socket is
reserved only for this communication. Thus, it can neither be redirected nor expanded for
other clients [63].

2.1.3 Radio Interface Layer

The RIL is a middle layer between the applications and the wireless module. It sends so
called AT commands, which has been a standard way to access modems, to the baseband
depending on the request of an application to control telephony services. Additionally, it
reports AT responses from the baseband to the applications [51].

The RIL itself consists of two main parts, the Java part of the RIL (RILJ) and the native part
(RILC). The RILJ is in the application framework layer and is the part that acts as a
transmitter for the sockets mentioned in Subsection 2.1.2.

The RILC is part of the Hardware Abstraction Layer (HAL) and it is responsible to
communicate with the RILJ. In more detail, it packages the corresponding AT command
and sends it to the baseband. The RILC consists of three parts:

• RILD: This is a daemon process and communicates with the modem hardware
through the Linux kernel modem hardware driver [63].

• Libril.so: A shared library mainly to complete the communication to the RILJ and
to transmit messages to the Libreference_ril.so [51].

• Libreference_ril.so: Processes the communication with the RILD and dispatches
calls to the RILD [51].

A better overview of RIL is illustrated on Figure 2.

Figure 2: Android RIL Architecture [51]

Page 5

So far, there is no published attempt that accesses the RIL in Android to change the MNO.
In the stackoverflow community, the question how to get available networks using RIL,
appeared [30] on 2013. One possibility stated is to implement one‘s own RIL. But there was
no reply that documents this process yet.

2.2 Android Application Fundamentals

The Android applications are composed of one or more components, such as activities,
services, content providers or broadcast receivers. These applications do not have one
single entry point like traditional unix applications. Each component can act as a different
entry point through which the system can enter the application and exists as its own entity
[10]. Each component has a distinct purpose and a different lifecycle. These components
do not have access to each other‘s memory space. To achieve Interprocess
Communication (IPC) Android provides a tool called AIDL (Android Interface Definition
Language).

2.2.1 Android Activity

An activity is the only component with a user interface. It represents a single screen. The
user interface is strictly separated from the code, thus it is defined in a layout file written in
XML [35]. Each activity is separated from other activities. The communication takes place

Page 6

with Intents. An Intent represents an abstract description of a function that one activity
requires another activity to perform [35].

The life cycle of an activity is the most complex one. Essentially it has the four states
launched, running, killed and shut down [1], illustrated in Figure 3. There are three key
loops within an activity. The entire lifetime happens between the first call of
onCreate(Bundle), where global resource are setup, to a single final call of
onDestroy(), which releases the remaining resources. Then the visible lifetime of an
activity that happens between a call to onStart() until a corresponding call to onStop().
In this phase the activity is visible, although it must not be necessarily in the foreground.
That means that another activity that is visible can be in the foreground, but the other
activity is still visible, when for example the foreground activity is transparent. The lifetime
where the user interface of the activity is visible is called foreground lifetime. During this
time the activity is in front of all other activities.

An activity can be destroyed if the activity is finished by calling finish() on it, or the
system is destroying the instance temporarily to free memory.

2.2.2 Android Services

Services are running in the background to perform long-running operations or to perform
work for remote processes. The Android platform avoids reclaiming service resources. That

Figure 3: Activity Lifecycle [1]

Page 7

means that once a service starts it is likely to be available unless memory gets scarce [35].
Other components can start services and let them run or interact with them.

2.2.3 Android Content Provider

A content provider manages persistent application data which can be stored in the file
system, an SQLite [54] database on the web or any other persistent location. The content
provider offers a mechanism that other applications can query or modify the data. Thus, an
application that provides a ContentProvider can share data with other applications and
manage the data model of an application [35].

2.2.4 Android Broadcast Receiver

A broadcast receiver is a component that can be registered to system wide broadcasts.
These are system or application events. Example for system broadcasts are
announcements that the screen has turned off or that the battery is low. There are also
broadcasts initiated by applications, for example that data has been downloaded
successfully and is available for use now. Broadcast receivers do not display a user
interface, but they can create status bar notifications. Basically, a broadcast receiver acts
as a gateway to other components [10].

2.2.5 Android Interface Definition Language (AIDL)

If developing Android applications, it might be necessary that different processes running in
different applications have to communicate with each other. But one process cannot access
the memory of another process in Android [5]. Therefore, the Android Interface Definition
Language (AIDL) is provided, which defines the programming interface that the client and
service can communicate using Interprocess Communication (IPC). For that, they both
have to decompose their objects into primitives the OS can understand. Afterwards these
objects are marshalled into code that is handled with AIDL. The AIDL interface has to be
defined in an .aidl file which uses the Java programming language syntax. This file has to
be stored in the src/ directory of the project. The Android SDK tools generate an IBinder
interface based on the .aidl file when the project is built. The service then has to
implement this interface providing the methods, which the client applications may invoke
when they are bound to the service.

2.3 Development Prerequirement - Internal Android API

Besides the public Android API that is accessible with the SDK, there is also an API that is
not accessible via SDK which is located in the package com.android.internal [62]. In
fact these methods are usable with Java reflection. However, there are advantages as well
as drawbacks of using Java reflection.

In the software development of Android applications using Android SDK a jar file called
android.jar is referenced. Thus it is added to the build path. This library has all classes
from com.android.internal removed, as well as all classes, enumerations, fields and
methods that are marked with the annotation @hide. If the application is launched on a
device the library framework.jar is loaded. This library is equivalent to the library
referenced in the SDK. However, there is one difference. The framework.jar library
contains all internal API classes and all API components that are annotated with @hide.
These classes and methods can be accessed with Java reflection.

Page 8

2.3.1 Accessing Internal Android API

Accessing the internal Android API requires the android.jar to be replaced by the
framework.jar to gain access to the internal classes. However, this is not immediately
working. The reason for that is that the Android Developer Tools (ADT) plug-in for the
Integrated Development Environment (IDE) Eclipse [24], which is providing a development
environment for building Android applications, forbids the usage of anything of the package
com.android.internal by adding an access rule to the Java Build Path, which needs
to be removed.

A developer that needs to access anything from the internal API has to do the following
steps: 1) Obtain Original Android Framework 2) Create Custom Framework 3) Modify
Eclipse Access Rule.

2.3.1.1 Obtain Original Android Framework

There are two different ways to obtain the original Android framework. One approach a
developer could take would be to compile the framework himself, due to the fact that
Android is an open source mobile OS [23]. However, there is another way by getting the
runtime equivalent that is loaded on the device, which is located at /system/framework/
framework.jar. Within this work the second approach has been chosen because this is
less time consuming and a working solution has already been published. After it has been
downloaded successfully it has to be extracted, for example by the command jar xf
framework.jar. If the extracted folder does not contain a file classes.dex the file /
system/framework/framework.odex has to be downloaded from the device. This file
has to be disassembled with baksmali.jar [53] by the following command: java -jar
baksmali framework.odex. If errors occur with the suggestion to download more odex
files they have to be downloaded in the same location where framework.odex has been
downloaded and the command has to be executed again. This will generate Android

Figure 4: Eclipse Access Rule

Page 9

platform related classes as smali files in a folder named out. Smali files are the
disassembled Java classes in an editable form [13]. The folder out has to be assembled
with smali.jar [53] by the command java -jar smali out. The assembled file is
named out.dex and is equivalent to the file classes.dex, which has to be converted to
a jar file using a tool called dex2jar [21] and then the resulting jar file has to be extracted.
This can be done with the command jar xf framework.jar. The extracted folder
contains all .class files of the package com.android.internal in the folder
corresponding to the package name.

2.3.1.2 Create Custom Framework

To access the internal API in an IDE such as Eclipse, a custom framework has to be
created which contains the classes and methods of the internal package. To create the
custom framework, the Android SDK‘s android.jar has to be extracted first. This file is
located at the Android SDK‘s installation folder in SDK/platforms/android-X/
android.jar, where X is the API Level that is targeted to be customized such as level 15
for Android 4.0.4. The API level is an integer value to uniquely identify the framework API
revision offered by a version of the Android platform [3]. All files that have been extracted
from the original Android framework have to be copied in the previously extracted folder.
Already existing files have to be replaced. Then all files in this folder have to be
compressed again in android.zip followed by a renaming in android.jar. When the
android.jar file will be added to the build path all the methods of the package
com.android.internal will be accessible. The original Android framework library could
either be replaced by the custom platform by replacing the original android.jar with the
created one or the created framework could be added as new platform. To add a new
platform the entire folder of the original platform has to be copied. Then the original
android.jar has to be replaced with the custom one. To distinguish this custom
framework from the original one a custom name and custom API level has to be provided
by adapting the file build.prop in the platform folder. The value under the entry
ro.build.version.sdk has to be replaced by a desired number, which represents the
API level. The value ro.build.version.release could be expanded with .extended
to indicate that this is a customized platform.

2.3.1.3 Modify Eclipse Access Rule

Finally, the last hurdle is to modify the Eclipse access rule that prohibits the use of the
internal API. There are different possible ways to achieve this. The first approach is to
modify the ADT source code and build it, which has not been investigated within this work.
The easier way is to modify the ADT‘s bytecode. Therefore the contents of the file
com.android.ide.eclipse.adt_*.jar which is located in the folder plugins of the
Eclipse installation have to be extracted. The * in the file name is a placeholder, hence the
complete file name may differ depending on the ADT version. In other words, the contents
have to be pulled out in a separate folder. In the subfolder com/android/ide/eclipse/
adt/internal/project of the extracted folder the file
AndroidClasspathContainerInitializer.class has to be opened in an editor that
supports non-printable characters, for example SlickEdit [52] or notepad++ [37]. The string
com/android/internal/ needs to be replaced with another string. In this work it has
been changed to com/android/internax/**. When this file has been saved, the folder
has to be compressed again with the same name as before. It has to be ensured, that the
internal root folder of the archive is the same as the original, otherwise Eclipse will not
recognize it. Finally, the archived folder has to be renamed to *.jar. The original ADT jar

Page 10

file has to be replaced with the new one. After restarting eclipse the internal API is
accessible. Another, less time consuming way, that worked successfully with ADT version
21 and 22, is to create a new access rule that allows to use classes out of the package
com/android/internal/**. Because the access rule in the subentry android.jar
cannot be modified, a new access rule should be created directly below the android
platform. The resolution must be "Accessible" and a rule pattern has to be created
(Figure 5).

Figure 5: ADT Custom Access Rule

Page 11

To make it possible to use the custom platform, the platform of the project has to be
changed to the newly added one, as illustrated in Figure 6.

2.4 Java Reflection

Reflection is a technique to examine or modify the runtime behavior of applications in the
Java Virtual Machine [60]. It is very powerful, because it can enable applications to perform
operations that otherwise would not be possible. For example an application can make use
of external, user-defined classes or private members on classes can be examined. But
reflection should not be used carelessly, because of three main drawbacks. There is a big
performance overhead, since reflection involves types that are dynamically resolved. That
is the reason why certain Java Virtual Machine optimizations can not be performed and the
use of reflection results in slower performance. Therefore, reflection should not be used in
sections of code which are called regularly. Another drawback is that reflection requires
runtime permission. This may not be present when an object (security manager) exists, that
defines a security policy for an application. Thus, if a security manager exists and reflection
is used, a Security Exception would be thrown [59]. A big benefit of reflection is the
possibility to access private fields and methods or fields and methods that are not
accessible via SDK. On the other hand, this can result in unexpected side-effects such as
non working code in future releases of the platform.

2.5 Google Cloud Messaging

Google provides a service called Google Cloud Messaging (GCM) for Android to send data
from a server to a Android-powered device [29]. This service handles everything from
queueing the messages to the delivery to the target Android application running. The
messages can contain up to 4kb of payload.

Figure 6: Android Custom Platform

Page 12

2.6 AT Command Set

The AT command interface has been a standard way to access modems as Computer
peripherals [63]. Generally an AT command consists of three parts. It starts with AT
followed by a command and ended with the line termination character [66]. Particularly
there are three different types of AT commands which will be introduced in more detail in
the following sections. All the commands discussed here are network service related and
specific to GSM modem access.

2.6.1 Test Commands

Test commands test the existence of a command and check its range of subparameter(s)
[66]. The format of those commands is ATxxx=?. To get a list of supported MNOs for
example, the command AT+COPS=? has to be sent to the GSM modem. Figure 7 shows

the answer to this, where an integer is indicating the availability of the operator, out of four
possible states:

• 0 unknown
• 1 available
• 2 current
• 3 forbidden

The next parameters are the long and short alphanumeric format of the name of the
operator. The five digit number that is following represents the Mobile Country Code (MCC)
which is three digits followed by the Mobile Network Code (MNC), which is the code for the
network provider [44].

2.6.2 Read Commands

The read AT commands, as indicated by the name, read the current value of the
subparameter(s) [66] and the format of such commands is ATxxx?. For example, to get the
current registered network the command AT+COPS? has to be sent to the GSM modem.

2.6.3 Set Commands

To set new subparameter values, set commands have to be used. The AT command
interpreter will return OK in the case that the command has been successful, otherwise an
error or informative result code will be returned [66]. The format of set AT commands looks
like this: ATxxx=a,b. An example related to the thesis is the command to set the MNO,
which is the: AT+COPS=1,2,"22801" command. The first integer defines the mode, with
five different values:

• 0 automatic
• 1 manual
• 2 deregister from network
• 3 set only
• 4 manual/automatic; if manual selection fails, automatic mode is entered

Figure 7: AT+COPS=? Response

Page 13

The second integer shows out of three possible values the format, how the MNO is
referenced:

• 0 long format alphanumeric
• 1 short format alphanumeric
• 2 numeric

Thus if numeric format has been chosen, the last parameter that identifies the MNO has to
be the Mobile Country Code plus the Mobile Network Code, as is evident in the example
above. Otherwise if the format is alphanumeric the MNO is referenced by a name either
with up to 16 characters (long) or 8 characters (short) [12].

2.6.4 AT Commands in Practice

There have been many attempts to send AT commands to Android devices, either as
peripheral from a computer or directly from the device itself [31]. But not all issues have
been solved yet.

Within this thesis both attempts have been done to send AT commands as peripheral from
a computer Samsung Galaxy S II (SGS2) as well as to send AT commands from this device
itself.

The attempt to send AT commands from a computer with Windows XP was successful.
Prerequisites were that the correct GSM modem driver of the used SGS2 was installed.
Afterwards the modem could be addressed over the correct COM port with puTTY [11]. The
outcome of it was a successful MNO selection which is illustrated in Figure 8.

In contrast, the approach to send AT commands from Mac OSX according to [48] failed.

Figure 8: AT Commands Sent with puTTY

Page 14

The next approach was to send AT commands from the device itself. A possible approach
is also documented on the internet, but as far as it is known there is no published working
solution yet [31].

2.7 Auction- based Charging and User-centric System (AbaCUS)

An example of a system that requires a mechanism as the one proposed in this thesis is
presented by C. Tsiaras and B. Stiller at [61]. The authors propose a solution to counteract
the monopoly of the call termination service in mobile networks. Therefore they introduce a
system where the caller, who is the paying party, can influence which MNO will terminate
the call. For that purpose the caller selects a defined Quality-of-Service class (QoS-C) and
the Termination Rate Class (TeR-C). The QoS classes contain parameters related to sound
quality and the network-access waiting-time. The TeR-Cs define the potential start-up cost
and the desired charging rate. To perform a call, the caller sends a request to place a call to
the Auction Authority (Au2). This request includes the Mobile Subscriber Integrated
Services Digital Network Number (MSISDN) of the callee and the desired QoS-C as well as
the TeR-C tolerance of the caller. Multiple MNOs can participate in an auction performed by
the Au2 by sending the selected TeR-C preference per QoS-C. After the auction has taken
place, the Au2 sends the information of the winning MNO to the device of the caller and the
callee, to register to the winning MNO and terminate the call. This process requires an
automatic and on-demand MNO selection mechanism. Figure 9 illustrates the key elements
of AbaCUS.

2.8 Mobile/Wearable Device Electrosmog Reduction through Careful
Network Selection

Another work that could make use of an automatic and on-demand network selection is
proposed by Seigneur et. al. [47]. The authors provide a network switching selection model
and its algorithms that minimize the non-ionizing radiation of the devices during use. Their
goal is to minimize the exposure of the mobile user to electromagnetic radiations while still

Figure 9: Key Elements of AbaCUS [61]

Page 15

providing a certain Quality-of-Service (QoS). Within a proof of concept they validated the
model and its algorithms. Due to the fact that the Android API does not provide a
mechanism to force switching from one to another mobile network, the user has to
manually select a network. This takes a lot of time because the provided mechanism by
Android searches first for all available networks in any case. To avoid this, the proposed
selection mechanism of this thesis can be used for the non-ionizing radiation minimization
purpose.

Page 16

3 Design

Based on current research and published solutions in the field of the thesis topic, the
mechanism to select MNOs automatically and on-demand has been implemented.
Furthermore, it is essential to list potential limitations and drawbacks of the mechanism.

3.1 MNO Selection Mechanism

Although the Android API does not provide any method to change the MNO, studying the
Android 4.0.4 source code [6] the class GSMPhone was found. This class contains a public
method selectNetworkManually(...). This is part of the com.android.internal
package and could therefore be used with the method described in Subsection 2.4. The
class PhoneFactory provides methods to get different kinds of phone objects. To
instantiate a GSMPhone object the method getGsmPhone() : Phone has to be invoked
[16].

Afterwards, the method selectNetworkManually(...) can be invoked by the
GSMPhone object with the required parameters OperatorInfo and a Message.
OperatorInfo contains the information about the MNO to select. This includes the
operator information as alpha numeric long, alpha numeric short and numeric. The different
states that can be sent are UNKNOWN, AVAILABLE, CURRENT and FORBIDDEN. Within this
work a selection could only be performed when a new OperatorInfo object with a correct
MNO as numeric was created. The other values can be null or empty, as well as the state
that the mechanism is working. The handler is used to schedule the message when the
MNO has been selected successfully. Therefore it has to obtain the message:
EVENT_NETWORK_SELECTION_DONE.

Before this mechanism is usable, two further things have to be done 1) run the application
with a different shared user ID and 2) run the application under the phone process. To
prevent a SecurityException, that is thrown when protected intents are sent by the
methods wanted to be invoked, the application has to run either with the system user ID
android:sharedUserId="android.uid.system" or the shared user ID

Figure 10: GSMPhone Instance

Context context = getApplicationContext();
ClassLoader cl = context.getClassLoader();
Class<?> PhoneFactory;
 try {
 PhoneFactory = cl.loadClass("com.android.internal.telephony.PhoneFactory");
 Method get = PhoneFactory.getMethod("getGsmPhone", (Class[]) null);
 GSMPhone gsmPhone = (GSMPhone) get.invoke(null, (Object[]) null);
 }catch (Exception e) {
 //exception handling
 }

Figure 11: Select MNO Manually

int EVENT_NETWORK_SELECTION_DONE = 200;
OperatorInfo operatorInfo= new OperatorInfo("Swisscom", "","22801", "UNKNOWN");
Handler mHandler = new Handler();
Message message = mHandler.obtainMessage(EVENT_NETWORK_SELECTION_DONE);
gsmPhone.selectNetworkManually(operatorInfo,message);

Page 17

android:sharedUserId="android.uid.phone" [16]. This has to be set in the
"AndroidManifest.xml" within the manifest-tag. In addition, the application has to run in the
process android:process="com.android.phone", so that the invocation of
getGsmPhone() is allowed. This attribute has to be added in the tag of the component that
should run in the phone process, for example in the activity-tag.

Because the shared user ID is used by more than one applications, all have to be signed
with the same certificate [34]. Thus the application has to be signed with the system
signature key. The way to get such a key is to run a custom rom, for example
CyanogenMod, which also provides these certificates [20]. A custom ROM is a fully
standalone version of the OS. Since Android is open source, developers are free to take the
version of the phone's operating system that comes with your phone when you buy it (stock
ROM) and optimize, modify or add things [19].

The process of signing an application is explained according to [8]. First of all, the
application has to be exported as unsigned application package. The
platform.x509.pem and platform.pk8 have to be downloaded. These files have to
be put into the same folder as the application to sign. With the tool jarsigner and the
following command the application will be signed (Figure 12).

To get this application on the device, the partition has to be remounted read-write first. For
that purpose superuser rights are needed. Afterwards the application can be sent to the
device (Figure 13).

3.2 AbaCUS Application

The requirements for the application that handles a call in AbaCUS were that it is able to
perform the MNO switching in an automatic manner. Additionally, the application has to
store the current location and get the current available MNOs. During the MNO search
there should not be any user interaction. To achieve a call, the application has to be able to
dial an MSISDN and exchange all the AbaCUS messages. The final implementation
consists of two applications. One is responsible for the interaction with the GSM modem to
handle the MNO switching and MNO scanning mechanism. The other application performs
the communication to the Au2 server and provides a GUI to choose the TeR-C and QoS-C,
a dialer to choose the callee and to store settings, such as the interval time to update the
Au2 server. The reason why the MNO selection mechanism is in a different application is,
that this part runs with android:sharedUserId="android.uid.system" but the
GCM service which is responsible for the Au2 server responses, cannot run with this user
id.

3.2.1 GSM Phone Service

The service PhoneService consists of one class providing the mechanism to access the
com.android.internal.telephony.ITelephony.gsm.GSMPhone.

Figure 12: Signing Application

java -jar signapk.jar platform.x509.pem platform.pk8 Application.apk signedApp.apk

Figure 13: Sending Application to Device

adb shell mount -o remount,rw /system
adb push signedApp.apk /system/app/Application.apk

Page 18

It implements the IServicePhone which is the interface providing the following IPC
methods with AIDL:

• void selectMnoNumeric(in int numeric)
• void selectMnoAlphaLong(in String alphaLong)
• String[] getOperatorList()
• void searchOperators()

The two methods to select a new MNO triggers the selection. The method to get the
operator list returns a list with the available MNOs that have been found after the invocation
of the method searchOperators(). The selection process and the search process are
asynchronous. Therefore a listener has been implemented that is called when the MNO has
been selected successfully or if the available networks have been scanned. To send this
information to another application using this service, a ResultReceiver has been
implemented. This generic interface is used that the application which uses the
PhoneService can receive a callback result from it [43].

On creation of the service, the GSMPhone object is instantiated with Java reflection.
Afterwards, a phone state listener is started for notification purposes when the phone state
has changed. Then it searches the available MNOs for the first time. After the service has
been created and the start command was called, the ResultReceiver is created, that
sends the callback results to the application using this service. Because the service should
run until it is stopped explicitly for arbitrary periods of time this method returns
START_STICKY. This constant indicates that if the service‘s process is killed while it is
started, the system will try later to re-create it [49]. Figure 14 shows how the service has to
be instantiated from another application.

The class MnoSelectionServiceConnection (Figure 15) implements
ServiceConnection and is used to expose the PhoneService object to invoke the
provided methods.

Figure 14: Initialize Phone Service

MnoSelectionServiceConnection connection = new MnoSelectionServiceConnection();
Intent intent = new Intent("com.example.phoneservice");
ResultReceiver resultReceiver = new PhoneServiceResultReceiver(new Handler());
intent.putExtra("receiver", resultReceiver);
boolean ret = bindService(intent, connection, Context.BIND_AUTO_CREATE);
startService(intent);

Figure 15: Expose Phone Service

public class MnoSelectionServiceConnection implements ServiceConnection {

 @Override
 public void onServiceConnected(ComponentName name, IBinder boundService) {
 InitService.setPhoneService(IServicePhone.Stub.asInterface((IBinder) bound-
Service));
 }

 @Override
 public void onServiceDisconnected(ComponentName name) {
 InitService.setPhoneService(null);
 }
}

Page 19

The PhoneServiceResultReceiver class (Figure 16) is used to invoke methods of the
activity using the service. If a registration to a MNO was successful the
PhoneServiceResultReceiver gets the MNO numeric name. When the service has
scanned available networks successfully, a string array with the available networks is
returned with the MNO numeric and MNO alphanumeric long in the following format:
Numeric;Alphanumeric Long, for example 22801;Swisscom.

3.2.2 AbaCUSApp

The part of AbaCUS on the Anrdroid mobile device is called AbaCUSApp. This application
is responsible for the creation of the PhoneService and the communication to the Au2

server. The developed application within this thesis is a simple prototype which provides the
mechanism to illustrate the process of a call in AbaCUS. It consists of several services and
activities running either in the background or providing a GUI. The main part is a service
called InitService which creates the PhoneService, register the device for GCM and
initializes the CalleeData of the device. This service is always called on device boot-up. If
the application starts for the first time and the MSISDN of the inserted SIM card can not be
extracted, a preference screen appears to insert the MSISDN manually. Additionally the
time interval to send updates to the Au2 server can be inserted in milliseconds. These
updates include the current location. The GUI of AbaCUSApp consists of four different
activities. When the application is started, a selection matrix appears to choose the TeR-C
and QoS-C where the rows are related to the TeR-C and the columns to the QoS-C. This
selection happens in a matrix (Figure 17), because it allows the choice to be made by one
click.

If these parameters have been chosen, the next screen appears which provides a dialer
function. A text field expects the MSISDN of the callee. Additionally, a contact stored on the
device could be chosen by clicking the contact button. If the callee‘s MSISDN is entered in
the text field, the call can be triggered by the dial button (Figure 17). If the Menu button of
the device is pushed in any of the two introduced activities, a screen to change settings
appear. If the Menu button is pressed in the activity of the QoS-C and TeR-C chooser there

Figure 16: Result Receiver

public class PhoneServiceResultReceiver extends ResultReceiver {
 public static final int RESULT_SCANNED = 0;
 public static final int RECEIVE_STATE_IN_SERVICE = 1;

 public PhoneServiceResultReceiver(Handler handler) {
 super(handler);
}

 @Override
 protected void onReceiveResult(int resultCode, Bundle resultData) {
 switch (resultCode) {

case RESULT_SCANNED:
 String[] operators = resultData.getStringArray("op"));
 break;
 case RECEIVE_STATE_IN_SERVICE:
 String currentOperator= resultData.getString("mno");
 break;
 default:
 break;
 }
}

Page 20

are different options available. One possibility is that the preference screen that has been
introduced before will open. Two buttons are related to the GCM service. The one is to
unregister the push notifications and the other to register it. The server name of the GCM
service is hardcoded and not configurable in this prototype.

Then there is the possibility to see the current available MNOs by clicking Available
Operators. There is also a button that opens a browser and shows the AbaCUS website if
clicked.

3.2.2.1 AbaCUS Messages

To send AbaCUS Messages there are two communication channels. The messages from
the Au2 server to the device are sent with GCM. The reason of this is that the device has to
act as a server to get messages. But if a persistent listener would be implemented, this
would have a big impact to the battery life. GCM instead provides an already optimized
mechanism which can send up to 4kb of payload. If a push notification arrives at the device
it extracts the payload. This data is always a key value pair. If the mobile device, that should
receive a notification, is not connected to the server but registered, it gets the message the
next time it is online.

Upstream messages to the server are sent through an URL connection as JavaScript
Object Notation (JSON). JSON is a lightweight text-data interchange format [33]. That is the
reason why this syntax has been chosen.The following messages have been implemented:

• requestService (Figure 18)
• register
• update
• ok

Figure 17: (a) AbaCUSApp QoS-C / TeR-C Chooser (b) AbaCUSApp Dialer

(a) (b)

Page 21

A general AbaCUS message always begins with an item called message type. This
indicates which kind of message it represents, for the server to know how to parse it.

Four message types have been implemented which are mapped to an integer as follows:
• Message Register = 0
• Message Update = 1
• Message Request Service = 2
• Message Status = 3

The register method needs the CalleeData (of the device) as parameter. The callee data
consists of the IMEI, the SIM Card Number, MSISDN, UUID, current location and a key. An
update message consists only of the current location. Update messages are sent in a
predefined time interval to keep the Au2 up to date. If a device requests a service it sends
the current position, the desired QoS-C, the selected TeR-C, CalleeData of the caller, the
MSISDN of the one to call and a generated key. Possible status messages after a register
message has been sent are OK or ERROR. Other status messages are OK, ERROR,
POSTPONE in the case an update message has been sent. In the case that the device sent
a request service, possible status responses of the server are BUSY, AWAY or ERROR. To
ensure that the application can be extended, the Au2 client holds only the methods of the
available AbaCUS messages. If such a method is invoked, it opens a generic JSON client
which takes JSON Objects that are sent to the servlet of the Au2 server. The structure of
each message with its attributes is in Appendix E.

3.3 Limitations

There are different limitations on the developed solution. The mechanism works on a SGS2
with CyanogenMod 9. The attempt to run it with a HTC Desire Z on CyanogenMod 7 has
been done. But this is not possible without adapting the code. For example the method
selectNetworkManually does not expect a parameter called OperatorInfo, instead
it is called NetworkInfo in Android 2.3.7. Once this has been adapted the selection
mechanism has been working. The reason why the mechanism selection is working only on
a custom ROM is that the PhoneService has to run with
android:sharedUserId="android.uid.system" or
android:sharedUserId="android.uid.phone". Such an application can only be
installed if it is signed with the system signature, thus the same signature the firmware has
been signed with. To get the application on a device it must be rooted so that the partition

Figure 18: AbaCUS Request Service Message

{
"msgType":0,
"qos":"GOOD",
"time":1376064992915,
"msisdn":"00306977990055",
"imei":"358150048251046",
"sim":"89300100090303909590",
"uuid":"0019cfe74d286e",
"calleeMsisdn":"00 372 5929 0600",
"long":8.5723798,
"key":"[C@410ef850",
"ter":"ECONOMY",
"acc":1138,
"lat":47.4389765
}

Page 22

where to place the application can be remounted with writing rights. Otherwise the
application cannot be installed.

Other limitations are that no security issues have been considered. The dispatched
AbaCUS messages are not encrypted but sent in plain text. Thus a potential attacker could
observe these messages.

Page 23

4 Evaluation

To examine if the implemented mechanism is practicable, an evaluation with respect to time
consumption, power consumption and bandwidth consumption, in case of AbaCUS, has
been performed. Time consumption and power consumption were tested together for the
MNO selection mechanism and the mechanism to get available networks. However, during
the evaluation a few parameters could not have been controlled. Two foreign SIM cards
were used [27][39] where no guarantee was given that the registration process to a Swiss
MNO was performed with high priority. Besides this, the tests were not performed under
laboratory conditions. The signal strength sometimes has been unstable and has not been
under control.

4.1 Time Consumption

To test the time and power consumption, a test has been implemented to switch between
three available Swiss operators (Orange [38], Sunrise [56] and Swisscom [57]). To get a
complete test, the switching took place in all directions, thus one test step consisted of six
switches. This test was repeated a hundred times which led to total 600 hops in total. In the
end, the average time needed per case and the time needed for the whole test was
calculated. In each cellular system for mobile communications transmitters, typically base
stations, cover a certain area, a cell [44]. These cells have a unique 16 bit cell identifier [45].
After a successful hop, the signal strength and the corresponding cell id have been
measured five times. The cell id and corresponding signal strength have been measured
the first time immediately after the hop, then after every 500 ms. The reason why the signal
strength has been captured five times is that it is apparent if the signal strength is stable or
if it signals off. The corresponding cell id has been tracked to make sure that a possible
signal strength oscillation is not due to a change to a different cell. Valid signal strength
values are 0-31 and 99. The relation between these values and the signal strength in dBm
is illustrated in Table 1 [22].

This experiment has been executed six times during a weekday on the following time
frames (08:00, 10:30, 12:00, 14:00, 17:00, 02:00). These time frames have been selected
so that the measurements concluded are spread during the day when the network state
(e.g, network load) changes between the rush hours. In a first step, the phone was
connected to power supply, resting at the same location. The next time the experiment was
repeated one more time without the power supply to measure the battery consumption.
Then the experiment has also been executed when moving in a train from Zurich airport to
the countryside of Lucerne. The results of the MNO switching time are shown in Figure 19.
The data for the bars of the MNO selection while stable consists of total 6 times 100 hops

Table 1: Signal Strength

value dBm

0 -113 dBm or less

1 -111 dBm

2 - 30 -109 dBm -53 dBM

31 -51 dBm or greater

99 not known or not detectable

Page 24

collected in different hours. In contrary the data of the MNO selection while moving consists
of total 100 hops. The last two bars show the mean over all cases. Thus the mean of the
MNO selection while stable is calculated out of total 3600 hops. In contrary the mean of the
other case is calculated of the 600 hops of the MNO selection evaluation while moving. One

bar corresponds to all switches performed from the indicated MNO to another. The error
bars indicates the standard deviation. The first blue bar shows the average switching time
from Swisscom to Sunrise at the same location. The first red bar in contrary shows the
average switching time from Swisscom to Sunrise while moving. The first MNO in the
caption below the bar is always the MNO where the device was registered first and the
second MNO is the one that has been switched to. The large standard deviation results
from big maximum values which can be seen on Figure 20. The implemented tests always
tries to register to an MNO until it was successful. That is the reason why in the test case

while moving the maximum values appear to be very high compared to the experiments at
the same location.

6.49 6.28

8.97
8.28 8.36

7.57 7.66

����� �����

�����

���	�

��
��

�����
�����

0

2

4

6

8

10

12

14

Swisscom-
Sunrise

Swisscom-
Orange

Sunrise-
Swisscom

Sunrise-Orange Orange-
Swisscom

Orange-Sunrise Total

se
c

MNO Switching Average Time on Mobile Scenarios
MNO selection
while stable
MNO selection
while moving

Figure 19: MNO Switching Average Time on Mobile Scenarios

0

5

10

15

20

25

30

35

40

45

50

Swisscom-
Sunrise

Swisscom-
Orange

Sunrise-
Swisscom

Sunrise-Orange Orange-
Swisscom

Orange-Sunrise Total

se
c

Minimum and Maximum Time on MNO Selection Scenarios
min
max
min moving
max moving

Figure 20: Min and Max Time on MNO Selection Scenarios

Page 25

Figure 21 shows that there is no significant difference in the average switching time if it is
distinguished by the signal strength after a successful selection.

Thus the average switching time is not dependent on the signal strength. The numbers
below the bars in Figure 21 indicates the sum of how many time the signal strength occured
out of the total test hops. Figure 22 gives an overview of how the switching time depends on
the time of day. The data for the bargraph is collected out of the total 3600 hops collected
on a weekday. The error bars indicate the standard deviation of the measurements.

Figure 21: MNO Switching Average Time Signal Strength

7.33

8.48
8.21

7.16

7.99

6.96

9.41

13

8.53

1

3

5

7

9

11

13

15

17

19

12 8 5 3 1

se
c

Signal Strength

MNO Switching Average Time depending on Signal Strength

Stable
Moving

457/600 11/600 4/600 128/600 0/600 2319/3600 668/3600 8/3600 2/3600 604/3600

Figure 22: MNO Switching Average Time

�����
����

�����

������

����� ����

�����

������ ���	��

	�����

�����

�����

���� ��� ��	�� ��	��
����� �����

0

5

10

15

20

25

30

35

08:00 10:30 12:00 14:00 17:00 02:00

se
c

MNO Switching Average Time
mean
max
min

Page 26

The bars of Figure 23 illustrates the cases where the time to switch a MNO took more than
ten seconds.

In addition to the automated tests a manual test has been performed to get the dimension
of how long it takes for a phone call in AbaCUS. To test this, a mock Au2 server has been
running in a local network. The time was taken after the dial button in the AbaCUSApp was
pressed until the callee‘s phone was ringing. Because the Au2 mock server simulates that
Swisscom always wins, the test has been done ten times each when the callee‘s device
had to switch from Orange to Swisscom and ten times when it had to switch from Sunrise to
Swisscom. In other ten cases the time was measured when the MNO did not have to
change because it already was Swisscom. The results are summarized in Figure 24.

Figure 23: Large MNO Switching Time

��� ���
���

����

���

��
0

50

100

150

200

250

08:00 10:30 12:00 14:00 17:00 02:00

am
ou

nt

Switching Time Larger than 10 Seconds

>10sec

����
����

����

�	�

0.0

5.0

10.0

15.0

20.0

25.0

Orange-Swisscom Sunrise-Swisscom No MNO Change Normal Dialing

se
c

Average Termination Time

Mean

Figure 24: Average Termination Time

Page 27

The different bars indicate the average time consumed for a call termination where the error
bars are representing the standard deviation of the measurements. In AbaCUS, the
average time of a call process is mainly dependent on the dialing time. This is apparent in
Figure 24 where the average time in the case where no MNO change happened is still
comparable with the normal dialing case where AbaCUS is not involved. The difference of
this time to the cases where the MNO has been switched corresponds to the average MNO
selection time that has been evaluated. The first MNO in caption below the bars indicates to
which MNO the callee‘s device was registered before the call. The second MNO is the
winning one which the callee‘s device had to switch to. The third bar means that the callee‘s
device was already registered to the winning MNO. The last bar shows the average time
when dialing with a normal dialer without AbaCUS.

Besides the evaluation of the MNO switching mechanism, the mechanism to get available
networks has been evaluated with respect to time and power consumption. For that reason,
available operators have been searched 100 times in a stable position and 300 times when
moving from Zurich to Lucerne by train. Besides recording the used battery and consumed
time the available networks have been logged. In the case when moving the evaluation
returned an operator list in 292 times out of the 300. In seven cases when the scan failed
the consumed time was only one to four hundredth of a second and thus negligible like the
failed scans in the stable test. The bars in Figure 25 illustrate the average time needed for a
successful scan of available operators where the error bars are indicating the standard
deviation.

4.2 Power Consumption

The power consumption is very critical in a mobile system. If the developed mechanism
would consume the whole battery within a few network hops it would not be usable in
practice. Hence an estimation of the power consumption has been made. To measure the
power consumption, the battery level was determined before the test run and after the test
has been performed according to [36]. The difference of these levels was the final battery
consumption in percentage of the battery energy. The assumption was that the battery
health is in a new ideal condition. This is appropriate because the device was only used for
scientific purposes and therefore not heavily used. The assumption had to be made
because there currently is not an application that measures the current battery energy or an
application to measure the energy used per application. The total energy of a new SGS2
battery is 6.11 Wh according to the manufacturer.

35.71

32.45

0

5

10

15

20

25

30

35

40

45

Stable Moving

se
c

Average Time of Available MNO Scan
Average Time

Figure 25: Average MNO Scan Time

Page 28

In other words the total energy of a new battery is 21‘996 J (Figure 26 (1)). During the test
the display of the device remained turned off. In the test case where the location was stable
the measured battery consumption was 14%. This corresponds to the energy consumption
of 3079.44 J. To get the total power for the MNO switching mechanism the consumed
energy has to be divided by the total experiment time. This calculation includes the energy
needed for capturing the signal strength and the cell ID five times for each MNO switching
measurement. However, the energy consumed on this process is relatively small compared
to the energy demanded by the MNO switching process. This leads to a total of 0.5406 W
consumed power for the MNO switching mechanism (Figure 26 (2)).

This value seems high but feasible if it is compared to the power consumption of the talk
mode in 3G networks (Table 2).

The solution process of the calculation can be seen in Appendix D. The same test has been
performed while moving from Zurich to Lucerne by train. The test lasted 7404 seconds
where 22% of the battery was consumed. This corresponds to a total power consumption of
0.6536 Watt. While comparing the values of both tests it is evident that in the case the
mobile device is moving the power consumption is 20.9% higher than the power
consumption when the position is stable (Table 3).

Table 4 summarizes the power consumption of the available MNO scans.

The total power when stable was calculated from the 100 scans also used for the time
consumption evaluation. This test took 3571 seconds. The total power when moving was
calculated from the experiment with 300 scans when moving from Zurich to Lucerne. The
elapsed time of this test was 9510 seconds.

Table 2: SGS2 Battery [28]

Consumption Kind 2G 3G

Total Talk Time 1100 min 520 min

Calculated Talk Power 0.333 W 0.705 W

Stand-by Time 710 610

Calculated Stand-by Power 8.6 mW 10 mW

Table 3: MNO Switching Power Consumption

Kind
Power
Consumption

Total Power Stable 0.5406 W

Total Power Moving 0.6536 W

Figure 26: Power Consumption Calculation

E 6.11Wh 3600s 21996J= =

Ptot
E J batteryused

t erimentexp s
-- 21996J 0.14

5696s
---------------------------------- 0.5406W= = =

(1)

(2)

Page 29

4.3 Bandwidth Consumption

The bandwidth consumption of a call process has been measured with an application called
Bandwidth Monitor [14]. This application shows the amount of data sent and received per
application. Table 5 summarizes the different messages that have been measured. The

registration process to the GCM server for the push notifications is necessary the first time
the application starts as well as when the SIM card is changed. To deactivate this push
notifications the application has to be unregistered from the GCM server. A service request
is always sent from a caller to the Au2 server. Figure 27 summarizes a call process in

AbaCUS. The structure of the messages from the caller to the Au2 server is known,
because it is sent as JSON [32]. However, in the other direction the structure is not known
because it is handled by GCM. There, the needed attributes are committed as a key value
pair where the key indicates the type of the attribute and the value the attribute itself. All
AbaCUS messages with their attributes are shown in Appendix E. The numbers before the
message names in Figure 27 corresponds to the numbers in brackets in Table 5.

Table 4: Available MNO List Power Consumption

Kind Power Consumption

Total Power Stable 0.123 W

Total Power Moving 0.231 W

Table 5: Bandwidth Consumption

Activity Received (Bytes) Sent (Bytes)

Register GCM 128 457

Request Service 358 (1) 796 (4)

Change MNO 256 (2) 276 (3)

Unregister GCM 128 437

Caller Callee Au2

requestService

changeMNO

OK

readyToCall

(1)

(4)

(2)

(3)

Figure 27: AbaCUS Call Process

Page 30

5 Conclusions

The goal of this bachelor thesis was to implement an automatic, on-demand Mobile
Network Operator (MNO) selection mechanism on Android devices. This goal has been
accomplished by the implementation of an Android service to change the MNO
programmatically. This mechanism has been evaluated according to its energy efficiency
and time consumption. The evaluation has shown, that the mechanism would be
practicable, because the time consumption was in an acceptable extent. The dialing took
most of the time used in a AbaCUS call. The time consumption for the switching
mechanism as well as the communication to the server was negligibly low. The evaluation
showed that the power consumption of a single MNO switch is high, but in the same
dimension as when a phone call is performed. In order to face the requirements of
AbaCUS, an Android application has been implemented which makes use of the MNO
selection mechanism. The application is able to receive the user‘s location and the
available networks. To get an estimation of how much data the AbaCUS messages require,
an evaluation of the bandwidth consumption has been done. The existing knowledge of
how to use the internal Android API has been used to gain access to more methods for the
connection with the GSM modem which the open Android API does not provide. However, it
has to be kept in mind, that this workaround is not the best method, since the internal API is
not listed and also may change in the future. If new models of network selection become
accepted that require automatic, on-demand MNO selection, such mechanisms should be
published in the open API.

The developed application is only a prototype. For a full working application all AbaCUS
messages have to be specified, such that the application as well as the corresponding
server can work together. For this prototype no human computer interaction principles have
been considered. Thus some actions do not give an immediate user feedback. The
prototype is specifically developed for a SGS2. On other devices the Graphical User
Interface (GUI) might not be displayed in a proper way. For the developed mechanism no
unit tests have been written. It has been assumed that the used methods to switch MNOs
are already tested by Google. Last but not least, the AbaCUS application has been tested
to ensure that the desired MNO switches were performed as expected.

Page 31

6 Future Work

Due to the fact that until now no automatic, on-demand MNO selection mechanism has
been published the findings of this thesis can be an instrument to help on research for new
MNO selection algorithms. The implemented mechanism can for example be used to
provide a proof of concept for a network switching selection model that minimize the non-
ionizing radiation of Android devices during use [47]. Further research could include
searching for mechanism for an automatic and on-demand MNO selection on other
widespread platforms.

To demonstrate the technical feasibility of AbaCUS, the missing parts like the Au2 server
and the infrastructure to communicate with the devices should be implemented. The
application that has been developed within this thesis could then be integrated in this
system. Since the implemented mechanism has not considered any security issues, future
work could address this topic as well. Due to the fact that the developed application is a
proof of concept for Android based devices there are many things a productive application
should consider. For example a solution to provide the developed mechanism on other
smartphones is proposed. Other possible future work is the implementation of a stable and
well tested multi-platform AbaCUS application where human computer interaction
principles are also taken into account. For simplicity reasons user inputs are not checked
for correctness so far. E.g., the phone number that is dialed is not checked for the right
pattern. It is assumed that the user always inserts correct data.

The development of a method to change the MNO programmatically is novel and has not
been published before, so far as is known. Therefore, it opens the field for many different
usages, such as the MNO selection based on various criteria/metrics.

Page 32

References
[1] AbaCUS Project, URL:www.abacusproject.eu, Visited in August 2013.

[2] Activity, URL:http://developer.android.com/reference/android/app/Activity.html#Activi-
tyLifecycle, Visited in July 2013.

[3] Android API Level, URL:http://developer.android.com/guide/topics/manifest/uses-sdk-
element.html#ApiLevels, Visited in August 2013.

[4] Android Architecture - The Key Concepts of Android OS, URL:http://www.android-app-
market.com/android-architecture.html, Visited in July 2013.

[5] Android Interface Definition Language (AIDL), URL:http://developer.android.com/
guide/components/aidl.html, Visited in August 2013.

[6] Android Source Code, URL:http://grepcode.com/snapshot/repository.grepcode.com/
java/ext/com.google.android/android/4.0.4_r2.1/, Visited in July 2013.

[7] Android, the world's most popular mobile platform, URL:http://developer.android.com/
about/index.html, Visited in July 2013.

[8] Android your (my) way, URL:http://omri.org.il/2012/05/25/android-your-my-way/, Vis-
ited in July 2013.

[9] M. Anvaari and S. Jansen: Evaluating architectural openness in mobile software plat-
forms; Proceedings of the Fourth European Conference on Software Architecture:
Companion Volume (pp. 85-92). ACM. August, 2010.

[10] Application Fundamentals, URL:http://developer.android.com/guide/components/fun-
damentals.html, Visited in July 2013.

[11] AT Commands, URL:http://www.radioraiders.com/gsm-at-commands.html, Visited in
July 2013.

[12] AT+COPS - Operator selection, URL:http://www.activexperts.com/mmtoolkit/at/com-
mands/?at=%2BCOPS, Visited in July 2013.

[13] Backsmali / Smali Manager, URL:http://forum.xda-developers.com/
showthread.php?t=2311766, Visited in August 2013.

[14] Bandwidth Monitor, URL:https://play.google.com/store/apps/details?id=org.net-
work&hl=de, Visited in August 2013.

[15] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. R. Sadeghi and B. Shastry: Towards
taming privilege-escalation attacks on Android; Proceedings of the 19th Annual Sym-
posium on Network and Distributed System Security, February, 2012.

[16] Can a telephony.Phone object be instantiated through the sdk? ,URL:http://stackover-
flow.com/questions/2143754/can-a-telephony-phone-object-be-instantiated-through-
the-sdk?lq=1, Visited in July 2013.

[17] N. Carlo: Einblick in die Dalvik Virtual Machine; IMVS Fokus Report, Vol. 3, No. 1, pp
5-12, 2009.

[18] C. Cockings: GSM AT Command Set; UbiNetics Ltd Cambridge Technology Centre,
Melbourn, 2001.

[19] Custom ROMs For Android Explained - Here Is Why You Want Them, URL:http://
www.androidpolice.com/2010/05/01/custom-roms-for-android-explained-and-why-
you-want-them/. Visited in July 2013.

Page 33

[20] CyanogenMod System Signature, URL:https://github.com/CyanogenMod/
android_build/tree/gingerbread/target/product/security, Visited in July 2013.

[21] dex2jar, URL:http://code.google.com/p/dex2jar/downloads/list, Visited in August 2013.

[22] Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommu-
nications System (UMTS); AT command set for User Equipment (UE) (3GPP TS
27.007 version 8.5.0 Release 8), October, 2008.

[23] Downloading and Building, URL:http://source.android.com/source/building.html, Vis-
ited in August 2013.

[24] Eclipse IDE, URL:http://www.eclipse.org, Visited in August 2013.

[25] Extracting the Contents of a JAR File, URL:http://docs.oracle.com/javase/tutorial/
deployment/jar/unpack.html, visited in July 2013.

[26] I. Forman, N. Forman and J. V. Ibm: Java reflection in action. 2004.

[27] Frogmobile, URL:http://www.frogmobile.gr/en/default.aspx, Visited in August 2013.

[28] Galaxy S II, URL:http://www.samsung.com/uk/consumer/mobile-devices/smart-
phones/android/GT-I9100LKAXEU-spec, Visited in August 2013.

[29] Google Cloud Messaging for Android, URL:http://developer.android.com/google/gcm/
index.html, Visited in July 2013.

[30] How to get available network operators? (using RIL and non-API methods), URL:http:/
/stackoverflow.com/questions/15929591/how-to-get-available-network-operators-
using-ril-and-non-api-methods, Visited in July 2013.

[31] How to talk to the Modem with AT commands, URL:http://forum.xda-developers.com/
showthread.php?t=1471241, Visited in July 2013.

[32] JSON, URL:http://www.json.org, Visited on August 2013.

[33] JSON Tutorial, URL:http://www.w3schools.com/json/default.asp, Visited in August
2013.

[34] Manifest, URL:http://developer.android.com/guide/topics/manifest/manifest-ele-
ment.html, Visited in July 2013.

[35] Z. Mednicks, L. Dornin, B. Meike and M. Nakamura: Programming Android; First Edi-
tion, O'Reilly Media Inc., Sebastopol, July, 2011.

[36] Monitoring the Battery Level and Charging State, URL:http://developer.android.com/
training/monitoring-device-state/battery-monitoring.html, Visited in August 2013.

[37] Notepad++, URL:http://notepad-plus-plus.org, Visited in August 2013.

[38] Orange, URL:http://www1.orange.ch, Visited in August 2013.

[39] Planetsim, URL:http://planetsim.gr/home_page/, Visited in August 2013.

[40] Prognose zu den Marktanteilen der Betriebssysteme am Absatz vom Smartphones
weltweit in den Jahren 2012 und 2016, URL:http://de.statista.com/statistik/daten/
studie/182363/umfrage/prognostizierte-marktanteile-bei-smartphone-betriebssyste-
men/, Visited in July 2013.

[41] Programatically connecting to another Network operators, URL:http://stackover-
flow.com/questions/2373727/programatically-connecting-to-another-network-opera-
tors, Visited in July 2013.

Page 34

[42] Programatically setting network mode, URL:http://stackoverflow.com/questions/
16149809/programatically-setting-network-mode, Visited in July 2013.

[43] ResultReceiver, URL:http://developer.android.com/reference/android/os/ResultRe-
ceiver.html, Visited in August 2013.

[44] J. Schiller: Mobile Communications; Second Edition, Pearson Education, Harlow,
2003.

[45] J. Schiller: Solution Manual for Mobile Communications; Second Edition, Berlin.

[46] D. Seal: ARM architecture reference manual. Pearson Education, 2000.

[47] J. M. Seigneur, X. Titi, T. Maliki: Towards Mobile/Wearable Device Electrosmog
Reduction through Careful Network Selection; Proceedings of the 1st Augmented
Human International Conference. ACM, April, 2010.

[48] Send AT commands to USB modem, URL:http://brunomgalmeida.wordpress.com/
2012/04/06/send-at-commands-to-usb-modem/, Visited in July 2013.

[49] Service, URL:http://developer.android.com/reference/android/app/Ser-
vice.html#START_STICKY, Visited on August 2013.

[50] Setting Network Operator, URL:http://www.basic4ppc.com/android/forum/threads/set-
ting-network-operator.24942/, Visited in July 2013.

[51] M. Shen and J. Jiang: Design and implementation of Radio Interface layer in Android
video telephone system; International Conference on Computer Science and Network
Technology (ICCSNT), 2011 , Vol. 3, pp 1429 - 1432, December, 2011.

[52] SlickEdit, URL:http://www.slickedit.com, Visited in August 2013.

[53] smali/baksmali, URL:https://code.google.com/p/smali/, Visited in August 2013.

[54] SQLite, URL:http://www.sqlite.org, Visited in August 2013.

[55] Stackoverflow, URL:http://stackoverflow.com, Visited in August 2013.

[56] Sunrise, URL:http://www1.sunrise.ch,Visited in August 2013.

[57] Swisscom, URL:http://www.swisscom.ch, Visited in August 2013.

[58] Telephony Manager, URL:http://developer.android.com/reference/android/telephony/
TelephonyManager.html, Visited in July 2013

[59] The Security Manager, URL:http://docs.oracle.com/javase/tutorial/essential/environ-
ment/security.html, Visited in July 2013.

[60] Trail: The Reflection API ,URL:http://docs.oracle.com/javase/tutorial/reflect/, Visited in
July 2013.

[61] C. Tsiaras and B. Stiller: Challenging the Monopoly of Mobile Termination Charges
with an Auction-based Charging and User-centric System (AbaCUS); Networked Sys-
tems (NetSys), March, 2013.

[62] Using internal (com.android.internal) and hidden (@hide) APIs [Part 1, Introduction],
URL:https://devmaze.wordpress.com/2011/01/18/using-com-android-internal-part-1-
introduction/, Visited in July 2013.

[63] T. Vaattovaara: Analysis of Modem Integration in Open Source Smartphone Platforms;
Master Thesis, Oulu University of Applied Sciences, March, 2011.

[64] XDA Developers, URL:http://www.xda-developers.com, Visited in August 2013.

Page 35

[65] 20% iOS - 60% Android: Umfangreiche Studie zur Smartphone-Nutzung in
Deutschland, URL:http://www.iphone-ticker.de/20-ios-60-android-umfangreiche-
studie-zur-smartphone-nutzung-in-deutschland-44098/, Visited in July 2013.

[66] 3rd Generation Partnership Project; Technical Specification Group Terminals; AT com-
mand set for User Equipment (UE), Release 6, June, 2003.

Page 36

Appendix A: Abbreviations

AbaCUS Auction-based Charging an User-centric System

ADT Android Developer Tools

Au2 Auction Authority

API Application Programming Interface

CCS Cloud Connection Server

DVM Dalvik Virtual Machine

GCM Google Cloud Messaging

GUI Graphical User Interface

HAL Hardware Abstraction Layer

IDE Integrated Developer Environment

IMEI International Mobile Equipment Identity

IPC Interprocess Communication

MCC Mobile Country Code

MNC Mobile Network Code

MNO Mobile Network Operator

MSISDN Mobile Subscriber Integrated Services Digital Network Number

OS Operating System

RIL Radio Interface Layer

SGS2 Samsung Galaxy S II

UUID Universally Unique Identifier

VM Virtual Machine

XML Extensible Markup Language

Page 37

Appendix B: Glossary

AT command Specific command language to access modems.

CCS The GCM Cloud Connection Server allows third party servers to

communicate with Android devices.

GCM A service to send push notifications with payload between an Android

device and a server.

RIL Middle layer between Android applications and wireless module that sends

AT commands to the baseband.

Page 38

Appendix C: Tools and Environments
Table 6: Tools and Frameworks Used

Tool Description Version Source

ADT (Android
Development
Tools)

Plug-in for Eclipse, which
provides a development
environment for building
Android applications

21.1.0 http://devel-
oper.android.com/tools/
sdk/eclipse-adt.html

baksmali Disassembler for the dex
format used by dalvik

1.4.2 https://
code.google.com/p/
smali/downloads/
detail?name=baksmali-
1.4.2.jar&can=2&q=

Bandwidth
Monitor

Android Application This to
keep a track of bandwidth
usage by application.

1.0.6 https://
play.google.com/store/
apps/
details?id=org.net-
work&hl=de

dex2jar Converter for .dex to .jar
file format

0.0.9.15 http://code.google.com/
p/dex2jar/downloads/
list

Eclipse Integrated development
environment (IDE)

Juno
Service
Release 2

http://www.eclipse.org

Google Cloud
Messaging
for Android
Library

3

Google Play
services

7

jarsigner Tool to verify the signa-
tures and integrity of
signed JAR files

http://docs.oracle.com/
javase/7/docs/tech-
notes/tools/windows/
jarsigner.html

Notepad++ Source Code Editor 6.4.2 http://notepad-plus-
plus.org

Page 39

Tool Description Version Source

puTTY Open-source terminal emula-
tor, serial console and
network file transfer
application

0.62 http://www.chi-
ark.greenend.org.uk/
~sgtatham/putty/down-
load.html

signapk Program to sign an applica-
tion with a system signa-
ture

0.3.1 http://code.google.com/
p/signapk/downloads/
list

SlickEdit Cross-platform, multi-lan-
guage code editor

18.0.0.13 http://
www.slickedit.com

smali Assembler for the dex for-
mat used by dalvik

1.4.2 https://
code.google.com/p/
smali/downloads/
detail?name=smali-
1.4.2.jar

Page 40

Appendix D: Power Consumption Calculation

E 6.11Wh 3600s 21996J= =

PtalkTime2G
E J

ttalkTime2G s
------------------------------------- 21996

1100min 60 s
------------------------------------- 0.333W= = =

PtalkTime3G
E J

ttalkTime3G s
------------------------------------- 21996

520min 60 s
---------------------------------- 0.705W= = =

Ps dbyTtan ime2G
E J

tS dbyTtan ime2G s

21996
710h 3600 s
--------------------------------- 10

3 8.6mW= = =

Ps dbyTtan ime3G
E J

tS dbyTtan ime3G s

21996
610h 3600 s
-------------------------------------- 10

3 10mW= = =

Page 41

Appendix E: AbaCUS Messages

The registration takes place every time that a client connects.

The update takes place periodically. The time interval should be configurable.

������� ����

������������
������	���������������
�� �����!"#$!���
����������%&�

������'!����

#�  ��������$(�&�
)�  ������

������� ����

��� '*#���
�!"#$!�����%�

������'!����

#�  ��������$(�&�
)�  ������
"�  ���+��	��

Page 42

This is the case that the callee is not busy.

For every step there is a time out. For example from step 1 on, the caller has to wait for a
period of time before step 5. If step 5 takes too long the caller will assume that the call is not
possible to be placed. This time frame should be configurable in the client settings.

In step 2 if the time that the Service Request has been received is not close enough with
the timestamp the step 3 will not follow (this time frame should also be configurable).

The same principle with the time stamp is followed by the callee in step 3 as well.

In this case the callee might be already on a call (Busy)

Not registered in the AbaCUS (Away)

Or something else might be wrong (Error)

�#����� �#����� ����
	��
������,�"����-�����
�#����������#�����
����	���!�.���(#/�+��.���
$(���#('�

������,�"����-�����

�#����������#���������
!�.���0
����	��
$(���#('�

1�����������

�#�������%��$(���#('�

2�����

3����#*4��!�"#���
0
����	����#�������%�

5�����

�#����� �#����� ����
	��
������,�"����-�����
�#����������#�����
����	���!�.���(#/�+��.��

���6��47�8#47���!��

Page 43

In this case the callee realizes that there is a time out so it does not register to the MNO.

In this case the MNO realizes that there is a time out, so it notifies the Caller that the call will
not be completed

In this case the MNO realizes that there is a time out so notifies the Caller that the call will
not be completed

�#����� �#����� ����
	��
������,�"����-�����
�#����������#�����
����	���!�.���(#/�+��.���
$(���#('�

������,�"����-�����

�#����������#���������
!�.���0
����	��
$(���#('�

1�����������

�#�������%��$(���#('�

2��+�(��!���

3��+�(��!���

5�����

�#����� �#����� ����
	��
������,�"����-�����
�#����������#�����
����	���!�.���(#/�+��.���
$(���#('�

������,�"����-�����

�#����������#���������
!�.���0
����	��
$(���#('�3��+�(��!���

�#����� �#����� ����
	��
������,�"����-�����
�#����������#�����
����	���!�.���(#/�+��.���
$(���#('�

���+�(��!���

Page 44

Appendix F: Contents of the CD-ROM

AbaCUS Application Project folder of the implemented Android application prototype
including all source files and referenced libraries.

Mock Au2 Server Project folder of the mocked server to demonstrate a call in AbaCUS.

Bachelorthesis.pdf Bachelor Thesis in PDF form.

Abstract.txt The abstract in English.

Zusfsg.txt The abstract in German.

Evaluation Folder which contains the source code of the mechanism evaluation as well
as the evaluation results.

Intermediate presentation.pdf A pdf file of the Bachelor Thesis intermediate presentation.

Related Work Papers Folder which contains related work papers.

	Abstract
	Abstract

	Zusammenfassung
	Acknowledgments
	Table of Contents
	1 Introduction 1
	1.1 Motivation 1
	1.2 Description of Work 1
	1.3 Thesis Outline 1

	2 Related Work 3
	2.1 Android 3
	2.1.1 Software Architecture 3
	2.1.2 Telephony Manager 4
	2.1.3 Radio Interface Layer 4

	2.2 Android Application Fundamentals 5
	2.2.1 Android Activity 5
	2.2.2 Android Services 6
	2.2.3 Android Content Provider 6
	2.2.4 Android Broadcast Receiver 6
	2.2.5 Android Interface Definition Language (AIDL) 6

	2.3 Development Prerequirement - Internal Android API 7
	2.3.1 Accessing Internal Android API 7

	2.4 Java Reflection 10
	2.5 Google Cloud Messaging 10
	2.6 AT Command Set 11
	2.6.1 Test Commands 11
	2.6.2 Read Commands 11
	2.6.3 Set Commands 11
	2.6.4 AT Commands in Practice 12

	2.7 Auction- based Charging and User-centric System (AbaCUS) 13
	2.8 Mobile/Wearable Device Electrosmog Reduction through Careful Network Selection 13

	3 Design 15
	3.1 MNO Selection Mechanism 15
	3.2 AbaCUS Application 16
	3.2.1 GSM Phone Service 16
	3.2.2 AbaCUSApp 18

	3.3 Limitations 20

	4 Evaluation 22
	4.1 Time Consumption 22
	4.2 Power Consumption 26
	4.3 Bandwidth Consumption 28

	5 Conclusions 29
	6 Future Work 30
	A : Abbreviations 35
	B : Glossary 36
	C : Tools and Environments 37
	D : Power Consumption Calculation 39
	E : AbaCUS Messages 40
	F : Contents of the CD-ROM 43

	List of Figures
	1 Android Architecture Diagram [4] 3
	2 Android RIL Architecture [51] 4
	3 Activity Lifecycle [1] 5
	4 Eclipse Access Rule 7
	5 ADT Custom Access Rule 9
	6 Android Custom Platform 10
	7 AT+COPS=? Response 11
	8 AT Commands Sent with puTTY 12
	9 Key Elements of AbaCUS [61] 13
	10 GSMPhone Instance 15
	11 Select MNO Manually 15
	12 Signing Application 16
	13 Sending Application to Device 16
	14 Initialize Phone Service 17
	15 Expose Phone Service 17
	16 Result Receiver 18
	17 (a) AbaCUSApp QoS-C / TeR-C Chooser (b) AbaCUSApp Dialer 19
	18 AbaCUS Request Service Message 20
	19 MNO Switching Average Time on Mobile Scenarios 23
	20 Min and Max Time on MNO Selection Scenarios 23
	21 MNO Switching Average Time Signal Strength 24
	22 MNO Switching Average Time 24
	23 Large MNO Switching Time 25
	24 Average Termination Time 25
	25 Average MNO Scan Time 26
	26 Power Consumption Calculation 27
	27 AbaCUS Call Process 28

	List of Tables
	1 Signal Strength 22
	2 SGS2 Battery [28] 27
	3 MNO Switching Power Consumption 27
	4 Available MNO List Power Consumption 27
	5 Bandwidth Consumption 28

	Implementation of an automatic, on- demand Mobile Network
	Operator (MNO) selection mechanism on Android devices
	Samuel Liniger
	Zürich, Switzerland
	Student ID: 08-913-832
	Supervisor: Christos Tsiaras, Daniel Dönni
	Date of Submission: August 23, 2013

	1 Introduction
	1.1 Motivation
	1.2 Description of Work
	1.3 Thesis Outline

	2 Related Work
	2.1 Android
	2.1.1 Software Architecture
	Figure 1: Android Architecture Diagram [4]

	2.1.2 Telephony Manager
	2.1.3 Radio Interface Layer
	Figure 2: Android RIL Architecture [51]

	2.2 Android Application Fundamentals
	2.2.1 Android Activity
	Figure 3: Activity Lifecycle [1]

	2.2.2 Android Services
	2.2.3 Android Content Provider
	2.2.4 Android Broadcast Receiver
	2.2.5 Android Interface Definition Language (AIDL)

	2.3 Development Prerequirement - Internal Android API
	2.3.1 Accessing Internal Android API
	Figure 4: Eclipse Access Rule

	2.3.1.1 Obtain Original Android Framework
	2.3.1.2 Create Custom Framework
	2.3.1.3 Modify Eclipse Access Rule
	Figure 5: ADT Custom Access Rule
	Figure 6: Android Custom Platform

	2.4 Java Reflection
	2.5 Google Cloud Messaging
	2.6 AT Command Set
	2.6.1 Test Commands
	Figure 7: AT+COPS=? Response

	2.6.2 Read Commands
	2.6.3 Set Commands
	2.6.4 AT Commands in Practice
	Figure 8: AT Commands Sent with puTTY

	2.7 Auction- based Charging and User-centric System (AbaCUS)
	Figure 9: Key Elements of AbaCUS [61]

	2.8 Mobile/Wearable Device Electrosmog Reduction through Careful Network Selection

	3 Design
	3.1 MNO Selection Mechanism
	Figure 10: GSMPhone Instance
	Figure 11: Select MNO Manually
	Figure 12: Signing Application
	Figure 13: Sending Application to Device

	3.2 AbaCUS Application
	3.2.1 GSM Phone Service
	Figure 14: Initialize Phone Service
	Figure 15: Expose Phone Service
	Figure 16: Result Receiver

	3.2.2 AbaCUSApp
	Figure 17: (a) AbaCUSApp QoS-C / TeR-C Chooser (b) AbaCUSApp Dialer

	3.2.2.1 AbaCUS Messages
	Figure 18: AbaCUS Request Service Message

	3.3 Limitations

	4 Evaluation
	4.1 Time Consumption
	Table 1: Signal Strength
	Figure 19: MNO Switching Average Time on Mobile Scenarios
	Figure 20: Min and Max Time on MNO Selection Scenarios
	Figure 21: MNO Switching Average Time Signal Strength
	Figure 22: MNO Switching Average Time
	Figure 23: Large MNO Switching Time
	Figure 24: Average Termination Time
	Figure 25: Average MNO Scan Time

	4.2 Power Consumption
	Figure 26: Power Consumption Calculation
	Table 2: SGS2 Battery [28]
	Table 3: MNO Switching Power Consumption
	Table 4: Available MNO List Power Consumption

	4.3 Bandwidth Consumption
	Table 5: Bandwidth Consumption
	Figure 27: AbaCUS Call Process

	5 Conclusions
	6 Future Work
	References
	[1] AbaCUS Project, URL:www.abacusproject.eu, Visited in August 2013.
	[2] Activity, URL:http://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle, Visited in July 2013.
	[3] Android API Level, URL:http://developer.android.com/guide/topics/manifest/uses-sdk- element.html#ApiLevels, Visited in August 2013.
	[4] Android Architecture - The Key Concepts of Android OS, URL:http://www.android-app- market.com/android-architecture.html, Visited in July 2013.
	[5] Android Interface Definition Language (AIDL), URL:http://developer.android.com/ guide/components/aidl.html, Visited in August 2013.
	[6] Android Source Code, URL:http://grepcode.com/snapshot/repository.grepcode.com/ java/ext/com.google.android/android/4.0.4_r2.1/, Visited in July 2013.
	[7] Android, the world's most popular mobile platform, URL:http://developer.android.com/ about/index.html, Visited in July 2013.
	[8] Android your (my) way, URL:http://omri.org.il/2012/05/25/android-your-my-way/, Visited in July 2013.
	[9] M. Anvaari and S. Jansen: Evaluating architectural openness in mobile software platforms; Proceedings of the Fourth European Conference on Software Architecture: Companion Volume (pp. 85-92). ACM. August, 2010.
	[10] Application Fundamentals, URL:http://developer.android.com/guide/components/fundamentals.html, Visited in July 2013.
	[11] AT Commands, URL:http://www.radioraiders.com/gsm-at-commands.html, Visited in July 2013.
	[12] AT+COPS - Operator selection, URL:http://www.activexperts.com/mmtoolkit/at/commands/?at=%2BCOPS, Visited in July 2013.
	[13] Backsmali / Smali Manager, URL:http://forum.xda-developers.com/ showthread.php?t=2311766, Visited in August 2013.
	[14] Bandwidth Monitor, URL:https://play.google.com/store/apps/details?id=org.network&hl=de, Visited in August 2013.
	[15] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. R. Sadeghi and B. Shastry: Towards taming privilege-escalation attacks on Android; Proceedings of the 19th Annual Symposium on Network and Distributed System Security, February, 2012.
	[16] Can a telephony.Phone object be instantiated through the sdk? ,URL:http://stackoverflow.com/questions/2143754/can-a-telephony-phone-object-be-instantiated-through- the-sdk?lq=1, Visited in July 2013.
	[17] N. Carlo: Einblick in die Dalvik Virtual Machine; IMVS Fokus Report, Vol. 3, No. 1, pp 5-12, 2009.
	[18] C. Cockings: GSM AT Command Set; UbiNetics Ltd Cambridge Technology Centre, Melbourn, 2001.
	[19] Custom ROMs For Android Explained - Here Is Why You Want Them, URL:http:// www.androidpolice.com/2010/05/01/custom-roms-for-android-explained-and-why- you-want-them/. Visited in July 2013.
	[20] CyanogenMod System Signature, URL:https://github.com/CyanogenMod/ android_build/tree/gingerbread/target/product/security, Visited in July 2013.
	[21] dex2jar, URL:http://code.google.com/p/dex2jar/downloads/list, Visited in August 2013.
	[22] Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); AT command set for User Equipment (UE) (3GPP TS 27.007 version 8.5.0 Release 8), October, 2008.
	[23] Downloading and Building, URL:http://source.android.com/source/building.html, Visited in August 2013.
	[24] Eclipse IDE, URL:http://www.eclipse.org, Visited in August 2013.
	[25] Extracting the Contents of a JAR File, URL:http://docs.oracle.com/javase/tutorial/ deployment/jar/unpack.html, visited in July 2013.
	[26] I. Forman, N. Forman and J. V. Ibm: Java reflection in action. 2004.
	[27] Frogmobile, URL:http://www.frogmobile.gr/en/default.aspx, Visited in August 2013.
	[28] Galaxy S II, URL:http://www.samsung.com/uk/consumer/mobile-devices/smartphones/android/GT-I9100LKAXEU-spec, Visited in August 2013.
	[29] Google Cloud Messaging for Android, URL:http://developer.android.com/google/gcm/ index.html, Visited in July 2013.
	[30] How to get available network operators? (using RIL and non-API methods), URL:http:/ /stackoverflow.com/questions/15929591/how-to-get-available-network-operators- using-ril-and-non-api-methods, Visited in July 2013.
	[31] How to talk to the Modem with AT commands, URL:http://forum.xda-developers.com/ showthread.php?t=1471241, Visited in July 2013.
	[32] JSON, URL:http://www.json.org, Visited on August 2013.
	[33] JSON Tutorial, URL:http://www.w3schools.com/json/default.asp, Visited in August 2013.
	[34] Manifest, URL:http://developer.android.com/guide/topics/manifest/manifest-element.html, Visited in July 2013.
	[35] Z. Mednicks, L. Dornin, B. Meike and M. Nakamura: Programming Android; First Edition, O'Reilly Media Inc., Sebastopol, July, 2011.
	[36] Monitoring the Battery Level and Charging State, URL:http://developer.android.com/ training/monitoring-device-state/battery-monitoring.html, Visited in August 2013.
	[37] Notepad++, URL:http://notepad-plus-plus.org, Visited in August 2013.
	[38] Orange, URL:http://www1.orange.ch, Visited in August 2013.
	[39] Planetsim, URL:http://planetsim.gr/home_page/, Visited in August 2013.
	[40] Prognose zu den Marktanteilen der Betriebssysteme am Absatz vom Smartphones weltweit in den Jahren 2012 und 2016, URL:http://de.statista.com/statistik/daten/ studie/182363/umfrage/prognostizierte-marktanteile-bei-smartphone-betriebssystemen/, Vi...
	[41] Programatically connecting to another Network operators, URL:http://stackoverflow.com/questions/2373727/programatically-connecting-to-another-network-operators, Visited in July 2013.
	[42] Programatically setting network mode, URL:http://stackoverflow.com/questions/ 16149809/programatically-setting-network-mode, Visited in July 2013.
	[43] ResultReceiver, URL:http://developer.android.com/reference/android/os/ResultReceiver.html, Visited in August 2013.
	[44] J. Schiller: Mobile Communications; Second Edition, Pearson Education, Harlow, 2003.
	[45] J. Schiller: Solution Manual for Mobile Communications; Second Edition, Berlin.
	[46] D. Seal: ARM architecture reference manual. Pearson Education, 2000.
	[47] J. M. Seigneur, X. Titi, T. Maliki: Towards Mobile/Wearable Device Electrosmog Reduction through Careful Network Selection; Proceedings of the 1st Augmented Human International Conference. ACM, April, 2010.
	[48] Send AT commands to USB modem, URL:http://brunomgalmeida.wordpress.com/ 2012/04/06/send-at-commands-to-usb-modem/, Visited in July 2013.
	[49] Service, URL:http://developer.android.com/reference/android/app/Service.html#START_STICKY, Visited on August 2013.
	[50] Setting Network Operator, URL:http://www.basic4ppc.com/android/forum/threads/setting-network-operator.24942/, Visited in July 2013.
	[51] M. Shen and J. Jiang: Design and implementation of Radio Interface layer in Android video telephone system; International Conference on Computer Science and Network Technology (ICCSNT), 2011 , Vol. 3, pp 1429 - 1432, December, 2011.
	[52] SlickEdit, URL:http://www.slickedit.com, Visited in August 2013.
	[53] smali/baksmali, URL:https://code.google.com/p/smali/, Visited in August 2013.
	[54] SQLite, URL:http://www.sqlite.org, Visited in August 2013.
	[55] Stackoverflow, URL:http://stackoverflow.com, Visited in August 2013.
	[56] Sunrise, URL:http://www1.sunrise.ch,Visited in August 2013.
	[57] Swisscom, URL:http://www.swisscom.ch, Visited in August 2013.
	[58] Telephony Manager, URL:http://developer.android.com/reference/android/telephony/ TelephonyManager.html, Visited in July 2013
	[59] The Security Manager, URL:http://docs.oracle.com/javase/tutorial/essential/environment/security.html, Visited in July 2013.
	[60] Trail: The Reflection API ,URL:http://docs.oracle.com/javase/tutorial/reflect/, Visited in July 2013.
	[61] C. Tsiaras and B. Stiller: Challenging the Monopoly of Mobile Termination Charges with an Auction-based Charging and User-centric System (AbaCUS); Networked Systems (NetSys), March, 2013.
	[62] Using internal (com.android.internal) and hidden (@hide) APIs [Part 1, Introduction], URL:https://devmaze.wordpress.com/2011/01/18/using-com-android-internal-part-1- introduction/, Visited in July 2013.
	[63] T. Vaattovaara: Analysis of Modem Integration in Open Source Smartphone Platforms; Master Thesis, Oulu University of Applied Sciences, March, 2011.
	[64] XDA Developers, URL:http://www.xda-developers.com, Visited in August 2013.
	[65] 20% iOS - 60% Android: Umfangreiche Studie zur Smartphone-Nutzung in Deutschland, URL:http://www.iphone-ticker.de/20-ios-60-android-umfangreiche- studie-zur-smartphone-nutzung-in-deutschland-44098/, Visited in July 2013.
	[66] 3rd Generation Partnership Project; Technical Specification Group Terminals; AT command set for User Equipment (UE), Release 6, June, 2003.

	Appendix A : Abbreviations
	Appendix B : Glossary
	Appendix C : Tools and Environments
	Table 6: Tools and Frameworks Used
	Table 6: Tools and Frameworks Used

	Appendix D : Power Consumption Calculation
	Appendix E : AbaCUS Messages
	Appendix F : Contents of the CD-ROM

