
An Automatic and On-demand MNO Selection Mechanism
Christos Tsiaras, Samuel Liniger, Burkhard Stiller

University of Zürich, Department of Informatics (IFI), Communication Systems Group (CSG)
Binzmühlestrasse 14, CH–8050 Zürich, Switzerland

tsiaras@ifi.uzh.ch, samuel.liniger@uzh.ch, stiller@ifi.uzh.ch
Abstract—A manual selection of the Mobile Network
Operator (MNO) to be used on a mobile device is possible
through the respective user interface. Furthermore, mobile
devices can be adjusted to select automatically the MNO
based on the strongest signal strength, among the list of
those MNOs the Subscriber Identity Module (SIM) card is
allowed to be registered with. However, so far in modern
mobile operating systems, such as Android and iOS, there
is no available method in the public developer’s Applica-
tion Programming Interface (API), which allows for an
automatic and on-demand selection of the MNO by third-
party applications. Recently, various research approaches
assume the existence of an automatic and on-demand MNO
selection mechanism to achieve different goals, such as
breaking the termination rates monopoly (AbaCUS) or
minimizing the non-ionizing radiation of mobile/wearable
devices. The interest of such a mechanism has been raised
three years ago by the Android developers community.
Thus, this work here presents an automatic and on-demand
MNO selection mechanism, that has been designed and
implemented on the Android platform. For evaluation pur-
poses the energy and end-to-end (e2e) time consumption
while switching among MNOs using this mechanism is
evaluated and as an applied example the data consumption
of AbaCUS signaling messages is measured.

Index Terms — Android, mobile operators, selection mech-
anism, energy efficiency, data consumption

I. INTRODUCTION

The development and the evaluation of an automatic
and on-demand Mobile Network Operator (MNO) selec-
tion mechanism for the Android platform, which is pre-
sented in this work, is motivated due to the following 3
reasons: (1) The number of available MNOs in a certain
location, (2) potential benefits of such a mechanism for
the three main mobile communication stakeholders
(MNOs, end-users, and regulation authorities), and (3)
the existing number as well as the future estimation of
devices in the mobile phones market that can support
such a mechanism.

In 2013, 191 MNOs, which are active in 61 countries
across Europe [22], result in an average of three available
MNOs per country. Additionally, in mobile communica-
tions there is no physical barrier (e.g., wires) that might
force an end-user to stay connected with a specific MNO.
Thus, MNO subscribers, due to multiple available MNOs
in a location and commonly used medium in mobile com-
munications, can hop automatically between different
MNOs according to their preference.

From the MNO’s perspective such a hopping attitude is
driven by the fact that MNOs can benefit by offering on-

demand premium services to any subscriber of any com-
petitive MNO, e.g., high and/or guaranteed sound quality
or guaranteed access to the network in case of network
congestion, if the caller and/or the callee register tempo-
rarily in other network(s). In this case the hosting MNO
can profit from collecting termination rates of the call.
On one hand, MNOs can monetize some of their avail-
able network resources by attracting more users to use
their services, while offering a lower than the usual price
in case of low network load. According to the analysis
[23], MNOs should increase their focus on new research
suggestions, as the proportion of total retail telecoms rev-
enue stemming from their current mobile services is
expected to drop over the next five years. On the other
hand, MNO subscribers can benefit from lower service
charges and/or better Quality-of-Service (QoS) agree-
ments. Despite economical benefits mentioned, an auto-
matic and on-demand MNO selection mechanism can
minimize the non-ionizing radiation of the device, espe-
cially by each time selecting the MNO with the stronger
signal strength, as recently proposed by [28].

Another benefit of the MNO selection flexibility, that
an automatic and on-demand MNO selection mechanism
supports, can be introduced by regulating authorities.
This can enforce the competition in the traditionally con-
sidered monopoly of the Mobile Termination Rates
(MTRs), as it was introduced in previous work on chal-
lenging the monopoly of mobile termination charges with
an Auction-based Charging and User-centric System
(AbaCUS) [35].

A widely used automatic and on-demand MNO selec-
tion mechanism should be supported by many mobile
devices that can be equally used in almost every MNO
across the world. Thus, those devices should be able to
operate in multiple 3rd Generation Partnership Project
(3GPP) technologies such as 2/3/4G [24] and should
have high market penetration. Smart phones fulfill those
criteria; according to [32], since 2011 smart phones are
the primary customer’s choice. Android is one of the
most popular platform in the smart phones market [5].
Thus, the decision to implement and evaluate the auto-
matic and on-demand MNO selection mechanism on the
Android platform has been taken. Thus, the research
question answered in this work here reads as: Is it feasi-
ble and efficient to design an automatic and on-demand
MNO selection mechanism, which supports the attempt
to overcome the mobile termination rates monopoly
obstacle? And the engineering question answered con-
cerns the path in which way to implement effectively and
efficiently such a prototype in the Android platform.
978-1-4799-0913-1/14/$31.00 ©2014 IEEE

The remainder of this paper is structured as follows.
Related work is discussed in Section II, followed in Sec-
tion III by the design of the automatic and on-demand
MNO selection mechanism. Major results of the evalua-
tion in respect to time consumption, energy efficiency,
and AbaCUS end-to-end (e2e) calling process duration
and signaling messages data consumption are presented
in Section IV. Finally, Section V summarizes the paper,
draws conclusions, and presents future work.

II. RELATED WORK

The development and the efficiency in terms of time
and energy consumption of an automatic and on-demand
MNO selection mechanism for smart phones is important
not only from a research point of view [35], [28], but also
driven by the recent discussion in the Android developers
community [27]. Thus, it is essential to invest key effort
toward the development of such a mechanism, as well as
for the evaluation of the solution implemented.

A. Auction-based Charging and User-centric System
A monopoly is a corporation that is the only seller of a

good or a service, and thus it can define the price. How-
ever, monopolies can be divided into two categories, the
naturally defined and the market-defined monopolies.
The power market in many countries is considered to be a
natural monopoly [16] and the main reason is that there is
usually only one wire reaching each house. Thus, only
the company that owns the delivery network can provide
power services. The termination service in mobile com-
munication is also considered to be a monopoly [34].
However, this is a market-defined monopoly, since there
is no physical limitation (e.g., wires) for reaching a
mobile user. Call termination rates of MNOs are heavily
regulated by national telecommunications regulation
authorities across the world due to the monopolistic char-
acteristics of the call termination service. However, today
the technology allows for different charging mechanisms
that could overcome the call termination market monop-
oly obstacle. The AbaCUS charging mechanism [35] pro-
poses that MNOs participate in an auction, where they
bid on termination rates per location and per QoS param-
eters, such as the network access priority and the sound
QoS during a call. AbaCUS require computational effort
in the terminal device (smart phone), prior to the estab-
lishment of a call, to support the flexible termination
rates selection. One of this operations is that the callee
should switch from one MNO to another, so the caller
will benefit from lower termination rates and/or the better
QoS. Thus, an automatic and on-demand MNO selection
mechanism is needed to support and handle the MNO
switching in the application layer.

B. Electrosmog Reduction through Network Selection
Another novel work to make use of an automatic and

on-demand network selection is proposed by [28]. A net-
work switching selection model and its algorithms mini-
mizes the non-ionizing radiation of devices during use.
The key goal is to minimize the exposure of the mobile

user to electromagnetic radiations, while still providing a
certain QoS level. Within a proof of concept [28] vali-
dated the model and its algorithms. Due to the fact that
the Android Application Programming Interface (API)
does not provide for a mechanism to force switching
from one MNO to another, the user has to manually
select a network. This takes a lot of time, because the
provided mechanism by the Android platform searches
first for all available networks, which is a time consum-
ing operation. This time overhead makes it impractical to
apply a MNO selection algorithm. However, the avail-
able MNOs in a country are well known and do not
change often. Thus, to avoid the MNO searching delay in
this work here, this operation is skipped while a MNO is
selected. Available MNOs in a location are stored in a list
and when needed the respective MNO is selected from
that list. Nevertheless periodic updates of that list, e.g.,
daily, when an application starts, or when a user moves in
a predefined area, are essential to ensure that all currently
available MNOs are stored in the list. Thus, the proposed
MNO selection mechanism in this paper here can be used
for the non-ionizing radiation minimization purpose as
well. The evaluation of this mechanism, in terms of
energy and time consumption per MNO switching can
define a threshold of a maximum number of hops
allowed in the non-ionizing radiation minimization MNO
selection approach, so that the electrosmog reduction
approach remains both realistic and energy efficient.

C. Attention (AT) Commands
The Attention (AT) commands interface has been a

standard way to access modems as computer peripherals
[37]. Generally an AT command consists of three parts. It
starts with AT followed by a command and ends with the
line termination character [15]. There are three different
types of AT commands (Test, Read, and Set).

Test commands test the existence of a command and
check its range of parameters. The format of those com-
mands is ATxxx=?. To get a list of available MNOs the
command AT+COPS=? has to be sent to the GSM
modem. The reply of the GSM modem returns a list of
MNOs with the following information: (a) MNO status
(0 unknown, 1 available, 2 current, 3 forbidden), (b)
MNO short and long alphanumeric name e.g., Orange
CH or ORANGE, and (c) a five digit number that repre-
sents the three digits Mobile Country Code (MCC) fol-
lowed by the two digits Mobile Network Code (MNC),
which is the code for the network provider [29].

The read AT commands, as indicated by the name, read
the current value of parameters. Set Commands are used
to set new parameter values. The AT command inter-
preter will return OK in the case that the command has
been successful, otherwise an error or informative result
code will be returned. The MNO set AT command reads
as AT+COPS=1,2,“22801”. In this command, the
first integer defines the mode, with five different values
(0 automatic, 1 manual, 2 deregister from network, 3 set
only, 4 if manual selection fails, automatic mode is
entered). The second integer shows out of three possible
values that format the MNO is referenced to (0 long for-

mat alphanumeric, 1 short format alphanumeric, 2
numeric). Thus, if the numeric format has been chosen,
the last parameter identifying the MNO is the MCC plus
the MNC, e.g., 22801 for Swisscom in Switzerland.

There have been many attempts to send AT commands
to Android devices, either as peripheral from a computer
or directly from the device itself [17]. But not all issues
have been solved yet. Within this work here, an attempt
to send AT commands as peripheral from a computer to a
Samsung Galaxy S II (SGS2) smart phone was done.
Furthermore, an attempt to send AT commands from the
device itself took place. The attempt to send AT Com-
mands from a computer was successful. Prerequisites
were that the correct GSM modem driver of SGS2 was
installed on the computer. Afterwards, the modem could
be addressed over the correct device port with a Secure
Shell (SSH) client. The outcome of it was a successful
MNO selection. However, the approach to send the MNO
set AT command from the device itself failed. Until this
work concluded, there was no documentation of a suc-
cessful MNO switching solution via AT commands
directly sent from an Android device.

III. MNO SELECTION MECHANISM

Besides the public Android Application Programming
Interface (API) that is accessible with the Software
Development Kit (SDK), there is also an API, which is
located in the package com.android.internal
[36] that is not accessible via the SDK. While developing
Android applications the android.jar library is refer-
enced. In this library all classes, enumerations, fields, and
methods that are marked with the annotation @hide,
from the internal package are removed. When the
application is launched on a device the library frame
work.jar, which is equivalent to the android.jar,
is loaded. However, the framework.jar library pro-
vides access with Java reflection [18] to all internal API
components from the internal package.

A. Accessing the Android Internal API
Accessing the internal Android API requires the

android.jar library to be replaced by the frame
work.jar. This is not immediately working since the
Android Developer Tools (ADT) plug-in for the Inte-
grated Development Environment (IDE) Eclipse [14] for-
bids the usage of any instrument in the internal
package by adding an access rule to the java build path.
Thus, a developer that need to access anything from the
internal API has to do the following steps: 1) obtain the
original Android framework, 2) create a custom Android
framework, and 3) modify the Eclipse access rule.

B. Obtaining the Original Android Framework
There are two different ways to obtain the original

Android framework. One approach is to compile an own
framework, due to the fact that Android is an open source
mobile Operating System (OS) [13]. However, there
exists another path for getting the runtime equivalent and
being loaded onto the device at /system/frame
work. Within this work the second approach has been

chosen, because it is less time consuming. After the
framework.jar library is downloaded it has to be
extracted by the command jar xf framework.jar.
If the extracted folder does not contain a file
classes.dex the file framework.odex has to be
downloaded from the device as well. This file has to be
disassembled with baksmali.jar [31] by the follow-
ing command: java -jar baksmali frame
work.odex. If errors occur with the suggestion to
download more odex files, missing files have to be
downloaded in the same directory with the frame
work.odex. This will generate the Android platform
related classes as smali files [7] in a folder named out.
This folder has to be assembled with the command java
-jar smali out. The assembled file is named
out.dex and is equivalent to the file classes.dex,
which has to be converted to a jar file using a tool called
dex2jar [11]. The resulting jar file has to be extracted
with the command jar xf framework.jar. The
extracted folder contains all class files of the internal
package in the folder corresponding to the package name.

C. Creating a Customized Android Framework
To access the internal API in an IDE, such as Eclipse, a

custom framework has to be created, which contains
classes and methods of the internal package. To create the
custom framework the Android’s SDK android.jar
has to be extracted. This file is located in the Android’s
SDK installation folder in SDK/platforms/
android-X/android.jar, where X is the API
Level that is targeted at to be customized [2], e.g., level
15 for Android 4.0.4. All files being extracted from the
original Android framework have to be copied into the
previously extracted folder overwriting already existing
files. All files in this folder have to be compressed again
into android.jar and added to the build path. All
methods of the internal package are now accessible.

The original Android framework library has to be
replaced with the custom platform by replacing the origi-
nal android.jar with the one created. Alternatively,
the framework created can be added as new platform. To
add a new platform, the entire folder of the original plat-
form has to be copied. The original android.jar has
to be replaced with the custom one. To distinguish this
custom framework from the original one, a custom name
and a custom API level has to be provided by adapting
the file build.prop in the platform folder. The value
under the entry ro.build.version.sdk has to be
replaced by a desired number, which represents the API
level. The ro.build.version.release value
should be expanded with .extended to indicate that
this is a customized platform.

D. Modifying the Eclipse Access Rule
The last hurdle is to modify the Eclipse access rule that

prohibits the use of the internal API. There are different
possible ways to achieve this. The first approach is to
modify the ADT source code and build it, which has not
been investigated within this work. Another way is to
modify the ADT’s bytecode. Therefore, the content of the

file com.android.ide.eclipse.adt_*.jar,
which is located in the folder plugins of the Eclipse
installation has to be extracted. The value of * in the file
name depends on the ADT version. In the subfolder
com/android/ide/eclipse/adt/internal/
project of the extracted folder the file
AndroidClasspathContainerInitial-
izer.class has to be opened in an editor that supports
non-printable characters. The string com/android/
internal/ needs to be replaced with another string
such as com/android/internax/**. In turn, the
folder has to be compressed with the same name as
before. It has to be ensured that the internal root folder of
the archive is the same as the original one, otherwise
Eclipse will not recognize it. Finally, the archived folder
has to be renamed to *.jar and the original ADT jar
file has to be replaced with the new one. After restarting
Eclipse the internal API is accessible. Another approach
worked successfully only with ADT version 21 and 22:
create a new access rule that allows to use classes out of
the package com/android/internal/**. Since the
access rule in the subentry android.jar cannot be
modified, a new access rule should be created directly
below the android platform.

E. Invoking the MNO Selection Mechanism
Although the Android API does not provide any

method to change the MNO, the class GSMPhone exists
within the Android 4.0.4 source code [6]. This class con-
tains a public method selectNetworkManually.
This is part of the internal package and can be used
for the purpose of the automatic and on-demand MNO
selection mechanism. The class PhoneFactory pro-
vides a method to get different kinds of phone objects. To
instantiate a GSMPhone object the method getGsm
Phone has to be invoked [9]. Afterwards, the method
selectNetworkManually can be invoked by the
GSMPhone object with the required parameters Opera
torInfo and a Message. OperatorInfo contains
the information about the MNO to select. This includes
the operator information, similar to the AT commands
case, as alpha numeric long, alpha numeric short, and
numeric. Here a selection could be performed, when a
new OperatorInfo object with a correct MNO was
created. Other values can be null or empty. Before this
mechanism is usable, two further steps have to be per-
formed: (1) run the application with a different shared
user ID and (2) run the application under the phone pro-
cess. To prevent a SecurityException that is
thrown, when protected intents [3] are sent by the meth-
ods invoked, the application has to run either with the
system user ID: android:sharedUserId="an
droid.uid.system" or with the shared user ID
android:sharedUserId="android.uid.
phone" [9]. This ID has to be set in the AndroidMan
ifest.xml within the manifest-tag.

Additionally, the application has to run in the process
android:process="com.android.phone" to
ensure that the invocation of getGsmPhone is allowed.
This attribute has to be added into the application-tag.

Due to the reason that the shared user ID is used by more
than one applications, all applications have to be signed
with the same certificate [21]. Thus, the application has
to be signed with the system signature key. To get such a
key is to run a custom Read Only Memory (ROM),
which provides these certificates [10], e.g., Cyanogen-
Mod. The process of signing an application according to
[4] is the following: First, the application has to be
exported as an unsigned application package. Second, the
platform.x509.pem and platform.pk8 have to
be downloaded. Third, these files have to be put into the
same folder as the application to be signed.

Before the application is sent to the device, it has to be
signed with the tool jarsigner and the command:
java -jar signapk.jar platform.x509.pe
m platform.pk8 Application.apk signedA
pp.apk. Finally, to sent the application on the device,
the partition has to be remounted from a superuser with
read-write privileges.

IV. EVALUATION OF THE MNO SELECTION MECHANISM

Energy is a critical resource in mobile communica-
tions. Furthermore, long delays are critical for services
with a real-time network access, such as phone call estab-
lishment, and they may affect the end-user’s Quality-of-
Experience (QoE)? Thus, having an on-demand and auto-
matic MNO selection mechanism that consumes a lot of
energy, or takes a lot of time to switch between MNOs
will be practically unusable. Considering that, an evalua-
tion in respect to the energy consumption and the time
needed between MNOs switching has been performed.

A realistic evaluation of the MNO selection mecha-
nism has to elaborate multiple successful SIM card regis-
trations between various MNOs in the same location.
However, the majority of MNOs accept in their networks
only SIM cards issued by them or their roaming partners.
Here, a set-up where MNOs accept a SIM card on their
network was mandatory for the MNO switching process.
Thus, two prepaid SIM cards issued by Mobile Virtual
Network Operators (MVNO) have been used. The SIM
cards selected have been chosen with the criterion that
the registration is possible, while in roaming with every
MNO in Switzerland (Orange, Sunrise, and Swisscom).

A. Time Consumption between MNO Switching
There exists a certain SIM card registration time over-

head with a SIM card in roaming due to the fact that the
local MNO needs time to authorize the foreign SIM card
before accepting it within its network. To minimize the
authentication overhead, the two SIM cards that have
been used were registered to each available MNO prior to
the measurements. Thus, a record for each SIM card
would be present already during MNO switching mea-
surements, especially in every Visitor Locator Register
(VLR) of each MNO.

Thus, the registration time measured had the minimum
possible authentication overhead. However, since these
SIM cards used during the measurements were prepaid,
the available balance authorization overhead could nei-
ther be avoided nor estimated. Furthermore, no guarantee

was given that the registration process of the SIM card in
roaming to a local MNO was performed with high prior-
ity.

The MNO look-up process might take more than 30 s
[20]. Thus, the MNO list has been gathered once and
their constant availability during the measurements was
assumed. The MNO switching average time between the
three available MNOs in Switzerland took place for the
following two scenarios: (a) when the device was placed
in an urban area inside a building and (b) when the device
was moving on a train from Zürich to Lucerne. For a
comprehensive test the switching took place between all
possible MNO pairs. Thus, one test step consisted of 6
switches. This test was repeated 100 times, which led to
600 hops in total. Finally, the time needed for the entire
test was measured and the average time needed per case
was calculated.

To examine, if the MNO switching time is correlated to
the signal strength the cell id and the corresponding sig-
nal strength have been measured in the device once,
immediately after the MNO hop, and then 4 more times
after every 0.5 s. The reason why the signal strength has
been captured 5 times is to confirm that its strength was
stable. The corresponding cell id has been tracked to
make sure that a possible signal strength oscillation is not
due to a change to a different cell. According to [12] the
relation between the Received Signal Strength Indication
(RSSI) values and the signal strength in dBm is outlined
in Table 1.

TABLE 1: SIGNAL STRENGTH VALUES

RSSI value Signal strength [dBm]

0 -113 dBm or less

1 -111 dBm

2-30 -109 dBm to -53 dBm

31 -51 dBm or greater

99 not known or not detectable

In those tests implemented the device always tries to
register to an MNO until the attempt is successful. The
measurements for case (a) was executed 6 times during a
weekday in the following time frames (8:00, 10:30,
12:00, 14:00, 17:00, 2:00 hours). These time frames have
been selected so that these measurements undertaken are
spread during the day, when the network state (e.g., the
network load) changes between rush hours. Thus, the
data of the MNO selection consists of total 6 times 100
hops collected in different hours, concluding a total num-
ber of 3600 hops. The data of the MNO selection for case
(b) consists of a total of 100 hops per MNO pair, reaching
a total number of 600 hops, resulting in MNO switching
times as shown in Figure 1.

The first MNO, which appears in the caption below the
first set of bars, is always the MNO, where the device
was registered first, and the second MNO is the one that
has been switched to. Each bar corresponds to all
switches performed, from the indicated MNO to another.

Error bars indicate the standard deviation of all measure-
ments. However, there is a minimum time needed to
complete the 6-step SIM network registration process
[26]. Thus, the assumption that the minimum MNO
switching time cannot be in practise lower than the low-
est value measured in this work (4.36 s) has been taken.
Left bars present the average switching time between the
MNOs at the same location; right bars present the aver-
age switching time between the same MNOs while mov-
ing. The last set of bars presents the mean MNO
switching time for all cases (a) and (b) in summary. The
large standard deviation results from large maximum val-
ues (cf. Figure 2). Due to the unstable availability of
MNOs while moving on a train the maximum MNO
switching values appear to be much higher compared to
the experiments at the same location is some cases. Fur-
thermore, the MNO selection time shows a quite unstable
behavior in some of the cases, which might be related to
specific MNO’s infrastructure configurations or the cur-
rent capacity of the connected cell. However, the average
MNO switching time is similar in both cases showing
that the MNO selection mechanism performs well in
every scenario.

�������� �������	 �������� �������	 �	������ �	������
��

�

�

�

�

�

��

��

��

�����������
����
�	����

�

�
��

�
��

��
�

�
��

��
��

��
�

����������
������� ���!��"�

����������
������� ��#�
�"�

�	$��	�
��
��$���
	���
��$���������

Fig. 1: Switching Time between MNOs

�������� �������	 �������� �������	 �	������ �	������ �����
�

��

��

��

��

��

	
���������
�����
�	���

	

�

��
�

��
��

�

�

��
��

��
��

�

	�%�	
���������
������� ���!��"�
	�
�	�
���������
������� ���!��"
	�%�	
���������
������� ��#�
�"�
	�
�	
���������
������� ��#�
�"�

Or: Orange Su: Sunrise
Sw: Swisscom

Fig. 2: Min and Max Values for the MNO Switching Time

Figure 3 correlates the MNO switching time with
respective RSSI values (12, 8, 5, 3, and 1) of the new
MNO. These numbers on each bar indicate the total num-
ber of times that the respective signal strength occurred
out of the total test hops for scenarios (a) on the left bar
and (b) on the right bar. Thus, error-bars represent the
standard deviation of these measurements and they are
larger in cases, where the respective signal strength has
been captured only a few times. It can be seen that the
signal strength is not affecting significantly the total
switching time from one MNO to another. However,
more measurements in a controlled environment, where
more values per signal strength are captured, can lead to
more accurate conclusions.

Finally, Figure 4 presents the correlation of the MNO
switching time for case (a) in those 6 time-slots that the
experiment occurred in. It can be seen that the minimum
MNO switching time is stable in every time-slot. How-
ever, the average and the maximum values are higher in
the morning and early in the evening. A possible expla-
nation of this is that the MNO’s available capacity in a
cell is lower when people are moving in the morning or
after lunch to their offices. Furthermore, Figure 5 shows
how many times the MNO switching time exceeds 10 s
each time-slot. The considerably higher values around
14:00 hours are most likely due to the high network
usage at that time.

12 8 5 3 1
0

2

4

6

8

10

12

14

16

18

Received signal strength indication

M
N

O
 s

w
it

ch
in

g
 t

im
e

[s
]

MNO switchig time (stable)
3600 measurments
MNO switching time (moving)
600 measurments

4572319 668 1286042 08 411

Fig. 3: MNO Switching Time and Signal Strength Correlation

08:00 10:30 12:00 14:00 17:00 02:00
0

5

10

15

20

25

30

35

Time of the day

M
N

O
 s

w
it

ch
in

g
 t

im
e

[s
]

Mean time

Min time
Max time

Fig. 4: MNO Switching Time During the Day

08:00 10:30 12:00 14:00 17:00 02:00
0

50

100

150

200

250

Time of the day

N
u

m
b

er
 o

f
ti

m
es

 M
N

O
 s

w
it

ch
in

g
 e

xc
ee

d
ed

 1
0

s

Fig. 5: MNO Switching Time > 10 s

B. MNO Switching Energy Consumption
The power consumption is critical in a mobile system.

If a mechanism would absorb a large amount of available
energy resources within a few network hops, the MNO
switching mechanism would not be usable in practice.
Hence, a detailed evaluation of the power consumption
has been made. To measure the power consumption, the
battery level was determined before the test run and after
the test had been performed according [25]. The differ-
ence of these levels lead to the final battery consumption
in percentage of the battery energy. The assumption is
that the battery health is in ideal condition. This assump-
tion is appropriate, because the device of those measure-
ments and its battery was new and experiments were

performed in an ideal temperature for the battery [33].
This procedure was applied, since currently no Android
application exists, which can measure the real battery
capacity, or no application is in place, which measures
the consumed energy per application accurately.

E 6 11Wh, 3600s⋅ 21996J= =

Ptot
E J)() Batteryused⋅

t erimentexp s()
-- 0 14, 21996J⋅

5696s
---------------------------------- 0 5406W,= = =

(1)

(2)

The total energy of the battery of the device used is
6.11 Wh according to the manufacturer. Thus, the total
energy that a new battery can produce is 21996 J (cf.
Equation 1). During the test the display of the device
remained turned off, as well as every irrelevant to the
experiment process was disabled. In the test case (a),
where the location was stable, the measured battery con-
sumption was 14% and the total duration of the measure-
ments was 5696 s. This corresponds to the energy
consumption of 3079.44 J. To reach the total power for
the MNO switching mechanism the consumed energy has
to be divided by the total experiment time. However, this
calculation includes also the energy needed for capturing
the signal strength and the cell ID five times for each
MNO switching measurement. This overhead does not
affect significantly the result concerning the MNO
switching mechanism, because the energy consumed on
this process is small compared to the energy demanded
by the MNO switching process. Thus, the results show a
total 0.5406 W consumed power for the MNO switching
mechanism (cf. Equation 2). The same test has been per-
formed in test case (b), while moving from Zürich to
Lucerne by train. The test lasted 7404 s and 22% of the
battery was consumed. This corresponds to a total power
consumption of 0.6536 W. By comparing these values of
both tests, it is evident that in the case the mobile device
is not moving the power consumption of the MNO
switching mechanism appears to be approximately 17.3%
lower than the power consumption, when device is mov-
ing, most likely due to the handover energy consumption
that can not be isolated. The MNO selection mechanism
power value is comparable to the power consumption of
the talk mode in 3G networks, which is calculated con-
sidering manufacturer’s maximum stand-by and talk-time
in 2G and 3G networks, as shown within Table 2.

TABLE 2: MOBILE DEVICE CHARACTERISTICS

Consumption 2G max talk
time [h]

2G power
[W]

3G max talk
time [h]

3G power
[W]

Voice service 18.33 0.3333 8.67 0.705

Stand-by 710.00 0.0086 610.00 0.010

TABLE 3: ABACUS DATA VOLUME CONSUMPTIONS

Activity Received [B] Sent [B]

Register GCM 128 457

Service request 358 (1) 796 (4)

Change MNO 256 (2) 276 (3)

Unregister GCM 128 437

C. AbaCUS E2E Time & Data Consumption
To estimate how long it takes to be established a phone

call in AbaCUS, the Au2 server, which return the MNO
that will terminate a call, has been mocked in a local net-
work. A phone call according to the AbaCUS protocol
(cf. Figure 6) took place. The total time from the initia-
tion of the call until the callee’s phone was ringing was
measured. The Au2 mock server simulated that Swiss-
com always wins the AbaCUS auction since the AbaCUS
distributed auction mechanism described at [35] is not
implemented yet. The test call has been done 30 times.
Ten times the callee’s device had to switch from Orange
to Swisscom and ten times it had to switch from Sunrise
to Swisscom. Additionally, in ten more cases the time
was measured when the callee’s MNO did not have to
change, because it already was Swisscom. These results
are summarized in Figure 7. The different bars indicate
the average time consumed for a call termination, where
error bars are representing the standard deviation of all
measurements. The average time in the case where no
MNO change happened is still comparable with the nor-
mal dialing case where AbaCUS is not involved. Thus, is
shown that for the AbaCUS protocol the average time of
a call establishment process mainly depends on the dial-
ing time. The difference of the calling time that a MNO
switching is involved, to cases where the MNO has not
been switched, corresponds to the average MNO selec-
tion time that has been evaluated in Subsection A above.
The first MNO in the caption below the bars indicates to
which MNO the callee’s device was registered before the
call. The second MNO is the winning one, which the
callee’s device had to switch to. The third bar means that
the callee’s device was already registered to the winning
MNO, and the last bar shows the average time when dial-
ing with the traditional dialer without AbaCUS.

������� ������� �	
�

���
����������	����

���������
����

������

����������
������

Fig. 6: AbaCUS Protocol (Service Request)
The data consumption of the AbaCUS signaling mes-

sages [35], [20] has been measured with an application
called Bandwidth Monitor [8]. Table 3 summarizes the
data consumption for every AbaCUS signaling message
that has been measured. A service request is always sent
from a caller to the Au2 server. The structure of the mes-
sages from the caller to the Au2 server is known, because
it is sent as JSON [19]. However, on the other direction
the structure is not known because it is handled by
Google Cloud Messaging (GCM). The registration pro-
cess to the GCM server for the push notifications is nec-
essary the first time the application starts as well when
the SIM card is changed. To deactivate this push notifica-
tions the application has to be unregistered from the
GCM server. All numbers before those message names in
Figure 6 corresponds to those numbers in brackets in
Table 3.

V. SUMMARY, CONCLUSIONS AND FUTURE WORK

�������� �������� �	�
��
�� �	����������
�
�

�

��

��

��

��

����
�����
���	��

��
���
��
��
���
�
�
�

��
��
�
��
��
��

�������
���
������
�����
����������	��

Fig. 7: AbaCUS Call Procedure Evaluation

In this work a prototype of an automatic and on-
demand MNO selection mechanism for the Android plat-
form had been designed and implemented. The evalua-
tion of the mechanism showed that the time consumption
as well as the communication to the server was negligibly
low. For both scenarios (the stable mobile user in an
urban location or moving in a train) it was shown that the
MNO switching time is independent of those MNOs
involved and on average it is expected to be below 10 s.
Secondly, the power consumption of an MNO switching
is in the same dimension of the power needed, when a
phone call is performed (cf. Table 4). To demonstrate key
requirements, an Android application has been imple-
mented, which makes use of the MNO selection mecha-
nism. To determine the data AbaCUS messages require,
an evaluation of the data consumption was performed
and results showed that there is only low overhead in the
AbaCUS protocol. Thus, an automatic and on-demand
MNO selection mechanism is proven to be a realistic and
feasible requirement in case that new MNO selection pol-
icies need to be applied in the future.

Concluding, the existing knowledge on how to use the
internal Android API has been combined to gain access
to methods in connection with the GSM modem, which
the open Android API does not provide. Thus, an auto-
matic and on-demand MNO selection mechanism has
been designed, implemented, and tested successfully.
However, this workaround is not the best method, since
the internal API is not listed and also may change in the
future. Nevertheless, this work showed that such a mech-
anism is doable and realistic from an energy and time
perspective, especially when it is compared to other type
of services, such as the traditional phone calls. Thus, the
source code of the developed mechanism in this work can
be found at [1] and [20]. However, since such a mecha-
nism could be used in the mobile termination rates
monopoly break or it could open the window for addi-
tional services, such as on-demand QoS-guaranteed ser-
vices, an automatic and on-demand MNO selection
mechanism should be published in the open API by all
smart phone vendors.

Finally, in the future all AbaCUS messages will be
encrypted and further evaluation concerning the time, the
power demand, and the data consumption of the AbaCUS
protocol will be done, using additional and different SIM
cards (e.g., post-paid ones) and performing measure-
ments in additional settings with other MNOs.

TABLE 4: POWER CONSUMPTION EVALUATION

Process Power [W]

Talk 3G 0.7050

MNO selection moving 0.6536

MNO selection stable 0.5406

Talk 2G 0.3333

ACKNOWLEDGEMENTS

This work was supported partially by the SmartenIT
and the FLAMINGO projects, funded by the EU FP7
Program under Contract No. FP7-2012-ICT-317846 and
No. FP7-2012-ICT-318488, respectively.

REFERENCES

[1] AbaCUS Web page, URL: http://www.abacusproject.eu/,
Visited in August 2013.

[2] Android API Level, URL: http://developer.android.com/
guide/topics/manifest/uses-sdk-element.html#ApiLevels,
Visited in August 2013.

[3] Android Intents, URL: http://developer.android.com/refer-
ence/android/content/Intent.html, Visited in Aug. 2013.

[4] Android your (my) way, URL: http://omri.org.il/2012/05/
25/android-your-my-way/, Visited in July 2013.

[5] Android market share, URL: http://www.ibtimes.com/an-
droid-gains-smartphone-os-market-80-share-q2-ios-falls-
behind-will-ios-7-revive-apples-os-fortunes, Visited in Au-
gust 2013.

[6] Android Source Code, URL: http://grepcode.com/snap-
shot/repository.grepcode.com/java/ext/com.google.an-
droid/android/4.0.4_r2.1/, Visited in July 2013.

[7] Backsmali/Smali Manager, URL: http://forum.xda-devel-
opers.com/showthread.php?t=2311766, Visited in August
2013.

[8] Bandwidth Monitor, URL: https://play.google.com/store/
apps/details?id=org.network&hl=de, Visited in August
2013.

[9] Can a telephony.Phone object be instantiated through the
sdk?, URL: http://stackoverflow.com/questions/2143754/
can-a-telephony-phone-object-be-instantiated-through-
the-sdk?lq=1, Visited in July 2013.

[10]CyanogenMod System Signature, URL: https://
github.com/CyanogenMod/android_build/tree/ginger-
bread/target/product/security, Visited in July 2013.

[11]Dex2jar, URL: http://code.google.com/p/dex2jar/down-
loads/list, Visited in August 2013.

[12]Digital Cellular Telecommunications System (Phase 2+);
Universal Mobile Telecommunications System (UMTS);
AT Command Set for User Equipment (UE) (3GPP TS
27.007 version 8.5.0 Release 8), October 2008.

[13]Downloading and Building Android, URL: http://
source.android.com/source/building.html, Visited in Au-
gust 2013.

[14]Eclipse IDE, URL: http://www.eclipse.org/, Visited in Au-
gust 2013.

[15]3rd Generation Partnership Project (3GPP), Technical
Specification Group Terminals, AT command set for User
Equipment (UE) (Release 6), June 2003.

[16]J. D. Gwartney, R. L. Stroup, R. S. Sobel and D. A.
Macpherson, “Microeconomics: Private and Public Choice,
14th Edition”, Chapter 11 “Characteristics of a Monopoly”,
Cengage Learning, January 2012.

[17]How to talk to the Modem with AT commands, URL: http:/
/forum.xda-developers.com/showthread.php?t=1471241,
Visited in July 2013.

[18]Java Reflection, URL: http://docs.oracle.com/javase/tutori-
al/reflect/, Visited in August 2013.

[19]JSON, URL: http://www.json.org, Visited on August 2013.
[20]S. Liniger, “Implementation of an automatic, on-demand

Mobile Network Operator (MNO) selection mechanism on
Android devices”, Bachelor thesis, Communication Sys-
tems Group (CSG), Computer Science Department (IFI),
University of Zurich (UZH), Zürich, Switzerland, August
2013.

[21]Manifest, URL: http://developer.android.com/guide/topics/
manifest/manifest-element.html, Visited in July 2013.

[22]MNO directory, URL: http://www.mnodirectory.com/eu-
rope-subs.html, Visited in August 2013.

[23]MNOs must reform tariffs, URL: http://www.eurocom-
ms.com/industry-news/49-online-press/9218-mobile-oper-
ators-must-reform-tariffs-to-make-data-switch, Visited in
August 2013.

[24]Mobile communication technologies per country, URL:
http://www.gsmarena.com/network-bands.php3, Visited in
August 2013.

[25]Monitoring the Battery Level and Charging State, URL:
http://developer.android.com/training/monitoring-device-
state/battery-monitoring.html, Visited in August 2013.

[26]K. Pahlavan, P. Krishnamurthy, “Principles of wireless net-
works”, Chapter 7, paragraph 7.3, Prentice Hall PTR, 2002.

[27]Programatically Connecting to Another Network Opera-
tors, URL: http://stackoverflow.com/questions/2373727/
programatically-connecting-to-another-network-opertors,
Visited in August 2013.

[28]J. M. Seigneur, X. Titi, T. Maliki, “Towards Mobile/Wear-
able Device Electrosmog Reduction through Careful Net-
work Selection”, 1st Augmented Human International
Conference (AH’10), Megève, France, April 2010.

[29]J. Schiller: Mobile Communications; 2nd Edition, Pearson
Education, Harlow, U.K., 2003.

[30]J. Schiller: Solution Manual for Mobile Communications;
Second Edition, Freie Universität Berlin, Berlin, Germany.

[31]Smali/Baksmali, URL: https://code.google.com/p/smali/,
Visited in August 2013.

[32]Smartphones penetration, URL: http://www.nielsen.com/
us/en/newswire/2010/smartphones-to-overtake-feature-
phones-in-u-s-by-2011.html, Visited in August 2013.

[33]K. Takeno, M. Ichimura, K. Takano, J. Yamaki, “Influence
of cycle capacity deterioration and storage capacity deteri-
oration on Li-ion batteries used in mobile phones”, Journal
of Power Sources, Vol. 142, No. 1–2, March 2005, pp 298-
305.

[34]Telecompetition, “Chapter 5. Call termination”, URL:
http://www.kilpailuvirasto.fi/tiedostot/telecompeti-
tion.pdf, Visited in August 2013.

[35]C. Tsiaras, B. Stiller, “Challenging the Monopoly of Mobile
Termination Charges with an Auction-based Charging and
User-centric System (AbaCUS)”, Networked Systems
(NetSys 2013), Stuttgart, Germany, March 2013, pp 110-
117.

[36]Using Internal (com.android.internal) and Hidden (@hide)
APIs [Part 1, Introduction], URL: https://devmaze.word-
press.com/2011/01/18/using-com-android-internal-part-1-
introduction/, Visited in July 2013.

[37]T. Vaattovaara, “Analysis of Modem Integration in Open
Source Smartphone Platforms”, Master Thesis, Oulu Uni-
versity of Applied Sciences, Finland, March 2011.

