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Abstract

Im Kontext dezentraler und selbstverwalteter Identitdten wéchst die Sorge um die Of-
fenlegung von Daten. Gesetzliche Regelungen und Richtlinien sollen Datenmissbrauch
einschrénken.

Nutzer, die iiber Informationen verfiigen, haben jedoch keinen Zugriff, um die Datenan-
frage des Dienstanbieters zu verifizieren.

Um dieser Herausforderung zu begegnen, schligt diese Arbeit vor, maschinelles Lernen
und kiinstliche Intelligenz zu nutzen, um Informationsinhabern bei der Entscheidung zu
helfen, ob Dienstanbieter nur unbedingt notwendige Daten anfordern.

Konkret entwickelt diese Arbeit einen Prototyp eines eingeschrinkten Verifizierers mit
zwei Schliisselkomponenten. Eine davon ist ein On-Chain-Smart Contract zur Erleichte-
rung der Kommunikation zwischen Entitédten. Eine weitere ist ein Off-Chain-Checker, der
aus einem maschinellen Lernmodell besteht, um die Notwendigkeit einer Datenanfrage zu
ermitteln.

Die Effektivitit und Effizienz des Systems werden durch Tests sowohl uniiberwachter als
auch iiberwachter Lernmodelle an synthetisch generierten Datensétzen bewertet.

In Leistungstests zeigte der Random-Forest-Algorithmus eine aussergewohnliche Leistung
bei der Erkennung iiberméssiger Datenanfragen. Dariiber hinaus fithrte der Prototyp des
eingeschrénkten Verifizierers zu minimalen Latenzen, was auf seine Anwendung in der
realen Welt hindeutet.
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Abstract

In the context of decentralized identities and self-sovereign identities, concern over data
disclosure rises up. Legal regulations and policies are implemented to limit data misuse.

However, users who are information holders do not have access to verify the data request
from the service provider.

To address this challenge, this work propose to leverage machine learning and artificial
intelligence technology to help information holders decide if service providers only request
strictly necessary data.

Specifically, this work develops a restricted verifier prototype with two key components.
One is on-chain smart contract to facilitate communication between entities. Another one
is off-chain checker which consists of a machine learning model to determine the necessity
of a data request.

The system’s effectiveness and efficiency are evaluated by testing both unsupervised and
supervised learning models on synthetically generated datasets.

In capability and performance tests, the Random Forest algorithm demonstrates excep-
tional performance in detecting excessive data requests. Furthermore, the restricted ver-
ifier prototype introduced minimal latency, indicating its application in the real world.
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Chapter 1

Introduction

1.1 Motivation

Governments and institutions are increasingly becoming digital. As a result, individuals
who are unwilling to provide certain data to service providers are increasingly excluded
from various services. For example, when an individual like Tom wishes to book a flight
ticket, airline companies often require mandatory personal information from him, such
as his gender, during the booking process. However, Tom might have privacy concerns
and prefer not to disclose his gender to the flight company. In the current system, this
information is typically a mandatory field during the registration or booking process.
Due to this requirement, if Tom chooses to withhold his gender, he is unable to com-
plete the transaction, thereby he is excluded from traveling by air. Another example is
the mandatory requirement of displaying COVID-19 vaccination certificates when people
travel during pandemic time. Those who refuse to disclose this information have no choice
but to give up their travel plan [26].

Governments have led initiatives in Decentralized Identity (DI) and Self-Sovereign Iden-
tity (SSI) systems in recent years, which introduced complex challenges, particularly
concerning the potential imposition of such systems on individuals. For example, the Eu-
ropean Union published the eIDAS 2.0 regulation which introduced a European Digital
Identity Wallet, enabling citizens to store and control their identity credentials securely
and use them across member states of the European Union (EU) [8]. There is a concern
that service providers might request more personal information than is strictly necessary.
Without strong enforcement of data minimization principles, users could be pressured to
disclose more data than required for a service. People who opt not to participate in the
system because of the unwillingness of sharing unnecessary data are completely excluded
from the service. Although data privacy policies such as the General Data Protection
Regulation (GDPR) mandate that service providers should not require excessive data,
users do not have strategies to verify data requests [9].

The reality is that individuals and service providers are not in an equitable position be-
cause service providers are the ones who actually control the data collection process. In
the absence of solutions that empower users to verify if excessive data is requested from
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the service providers, service providers still have access to request extensive personal in-
formation for other purposes, sometimes exceeding what is strictly relevant to the service.
For example, in the famous Facebook-Cambridge Analytica data scandal, Cambridge An-
alytica collected millions of personal data from Facebook users for political advertising
[18]. To limit data misuse, data minimization is one of the fundamental principles in
DI/SSI frameworks. Service providers should not require more data than the service
needs. Requesting unnecessary data may trigger various privacy issues. However, users
are often unable to recognize or address when such a request is made.

This dynamic creates a power imbalance, effectively compelling users to consent to ex-
cessive data disclosure or face exclusion. While this issue may be somewhat mitigated in
competitive sectors where users can choose from multiple service providers, such flexibil-
ity is often absent in contexts like government services or international mobility, where
options are typically limited or nonexistent.

1.2 Thesis Goals

The primary goal of this thesis is to research how machine learning techniques and arti-
ficial intelligence solutions can be employed to achieve data minimization and limit data
disclosure in DI and SSI systems. The focus is on defining and implementing the verifier
role within DI and SSI frameworks. Research begins with establishing a foundational
understanding of DI and SSI systems and their key components, such as issuers, holders,
and verifiers. Building on this foundation, the thesis examines the verifier’s role and
authority in decentralized identity and self-sovereign identity systems. A comprehensive
literature review is conducted to learn the essentials of the research.

The second goal is to explore the application of machine learning models to limit data
disclosure in DI and SSI systems. This is achieved by developing a prototype that detects
excessive data disclosure. This goal is broken down into three key subgoals. First, several
use cases, including flight ticket purchase, student information management, restaurant
reservation, and other general scenarios, are identified to provide concrete contexts for
data collection and model training. Second, a generated synthetic dataset is used as input
to train a suitable machine learning model. This dataset includes a labeling scheme for
supervised learning and predefined criteria to address the inherent subjectivity of defining
data necessity. The size of the dataset is determined by the amount needed to achieve
sufficient model accuracy while remaining within computational limitations. Finally,
suitable ML models are selected and trained based on their accuracy and efficiency in
detecting unnecessary data requests. These models are evaluated to ensure they can
effectively meet the data minimization requirements of the chosen use cases.

After model training and evaluation, the third goal is to design a verifier prototype that
integrates the machine learning model into an existing decentralized identity system. This
prototype demonstrates how data requests can be automatically checked if they meet the
data minimization requirement. Finally, this thesis evaluates the restricted verifier from
both a technical and a practical perspective, evaluating its feasibility, effectiveness, and
alignment with the principles of decentralized identity and self-sovereign identity systems.
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1.3 Methodology

This section details the methodology used in literature review, data generation, model
training, and integration of the model into a decentralized identity system.

1.3.1 Literature review

To lay a solid theoretical foundation for this research, a comprehensive literature review
is conducted to understand the whole landscape of decentralized identity frameworks,
which is crucial for exploring various architectures and core concepts of the decentral-
ized identity framework. We focus on SSI systems, especially their core concepts such
as access control, data ownership, and privacy-preserving mechanisms. A critical part
of this review is understanding the unique roles and authority of verifiers within DI/SSI
systems. The review also concentrates on the intersection of identity systems with ma-
chine learning and artificial intelligence. This component of the review is crucial for
understanding how artificial intelligence and machine learning help to detect unnecessary
data request and sensitive information in different scenarios. This provides the concep-
tual framework for selecting and integrating machine learning models into decentralized
identity infrastructure.

Following the PRISMA methodology, the literature review is conducted to identify, eval-
uate, and summarize academic and technical works related to DI/SSI frameworks and
their intersection with ML and Al [28].

In the identification stage, we search major digital databases including IEEE Xplore,
ACM Digital Library, ScienceDirect, SpringerLink, and Google Scholar using combina-
tions of keywords such as "decentralized identity”, "self-sovereign identity”, "verifiable
credentials”, ”"data minimization”, “data disclosure”, "access control”, "zero-knowledge
proofs”, "machine learning in decentralized identity systems” and "machine learning in
self-sovereign identity systems”. The search is limited to publications between 2000 and

2025, and only English-language sources are considered.

After removing duplicates and irrelevant papers, we exclude publications that focus solely
on centralized identity management or unrelated blockchain topics. We assess the remain-
ing articles against the eligibility criteria: relevance to DI/SSI architectures, discussion of
privacy-preserving mechanisms, and involvement of machine learning models in DI/SSI
identity systems.

A total of 41 publications are selected. The final review focuses on (i) architectural
models of decentralized identity systems, (ii) self-sovereign identity concepts such as data
ownership and access control, (iii) the role of verifiers in DI/SSI frameworks, and (iv)
the integration of AI/ML techniques to enhance data privacy, particularly in detecting
unnecessary data requests.

This structured review provides the theoretical basis for selecting and integrating machine
learning models into the DI/SSI infrastructure.
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1.3.2 Data generation

Due to the absence of a publicly available dataset suitable for training and evaluating
models that detect excessive data requests, we have to generate our own synthetic dataset.
This dataset is used as the crucial input for the machine learning models. To ensure the
generated data is representative and high-quality, it needs to simulate real-world data
requests, including various fields and contexts.

For this purpose, we use the Synthetic Data Vault (SDV) library to generate synthetic
data [29]. SDV is chosen for its outstanding capacity to produce high-quality, statisti-
cally comparable data with both categorical and multi-type fields, which is essential for
simulating the complexity of data requests in real-world DI/SSI systems. We first define
a schema to represent typical data requests issued by service providers. Each synthetic
sample simulates a data request and includes fields such as name, gender, nationality, age,
marital status, and purpose of service. These attributes are selected based on a review of
the actual data fields requested in DI/SSI systems documented in academic papers and
from real-life scenarios.

Multiple synthetic datasets are generated to reflect variations in service types, including
flight ticket purchase, student information management, and restaurant reservation.

This unlabeled dataset is used to train our unsupervised learning models in order to detect
abnormal data requests. The GaussianCopula model is selected based on its superior
performance in modeling high-cardinality categorical fields.

To create more complex synthetic samples, we used a large language model (LLM). We
choose Gemini, which is developed by Google for its strong performance in natural lan-
guage reasoning and structured data synthesis [14]. Compared to rule-based or statistical
generation tools, LLMs offer the advantage of producing semantically rich and varied
samples, which closely resemble real-world data requests.

Each synthetic sample generated by Gemini simulates a data request, including fields
such as name, gender, nationality, age, marital status, and purpose of service. To enable
supervised machine learning, it is essential to create labeling rules to identify whether
a data request is excessive for the selected use case. Consequently, we ask Gemini to
provide a binary label indicating whether the data request is appropriate (minimal) or
inappropriate (excessive). The size of the dataset is determined by the necessary amount
of data needed to reach adequate model accuracy within the constraints of computational
resources.

Gemini is chosen after a preliminary comparison with other publicly available LLMs (e.g.,
GPT-4, BERT, and Llama) in the early stage of this work. Compared with open-source
models, Gemini is more precise in labeling excessive requests after manual verification.
Compared to other business models, Gemini is more cost-effective.

This approach produced a labeled dataset suitable for training machine learning models
to detect violations of data minimization in DI/SSI systems.
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1.3.3 Model selection and training

To develop an effective checker for detecting unnecessary data requests in DI/SSI systems,
we evaluate multiple unsupervised and supervised learning models. The selection criteria
focus on the models’ ability to handle high-dimensional data and detect outliers.

For unsupervised learning, we select Isolation Forest and Autoencoder. These models are
chosen for their strong performance in efficiency in preliminary experiments. Isolation
Forest, in particular, excels in identifying anomalies based on isolation properties with-
out assumptions about the data distribution, while Autoencoders capture reconstruction
errors as a proxy for detecting atypical data request patterns.

For supervised learning, we train and compare Random Forest, Logistic Regression, and
Decision Tree classifiers. These are selected for their ability and effectiveness in binary
classification and anomaly detection tasks.

All models are trained on the synthetic dataset described previously, using an 80/20
train-validation split. The feature vectors include binary indicators for each requested
data field (e.g. name, age, nationality), along with contextual information such as the
purpose of the service. For supervised learning models, the ground truth labels are
generated using Gemini, which indicate whether a given data request was compliant with
data minimization principles.

Instead of building every model from scratch, we import the model from standard Python
libraries such as sklearn, since the goal of this work is not to develop novel machine
learning algorithms.

To comprehensively assess model performance, we use the following metrics. We use
Precision-Recall Curve and F1-Score to evaluate performance on potentially imbalanced
dataset (e.g., where there are relatively few excessive data requests compared to normal
data requests). The AUC-ROC curve is used to measure the trade-off between true
positive and false positive rates. We also use accuracy to generally benchmark across all
the models.

These metrics allow us to compare models not only in terms of overall accuracy, but
also with regard to their ability to correctly detect excessive data requests, which is the
primary goal of this work.

1.3.4 Integration

Integration is a crucial validation step. It allows the prototype to be tested in a real
and operational environment, which helps us uncover potential challenges. This process
validates the prototype as a genuine solution, not just a theoretical concept. Integrating
into an existing SSI system also provides a strong proof of concept, demonstrating the
functionality and performance of the machine learning-based checker.

CredChain is an ideal platform for integration, because its design principles align with the
needs of this work. CredChain is built on the Ethereum blockchain, which provides the
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decentralized and immutable ledger required for the on-chain components of the prototype
[6]. The restricted verifier prototype is integrated into the CredChain infrastructure via a
hybrid deployment. We deploy both on-chain and off-chain components to achieve better
performance. The core verification logic is implemented as a smart contract deployed on
the blockchain, while the synthetic data generator and machine learning model are hosted
on an off-chain Flask-based web application to avoid huge latency on the blockchain.

This integration strategy ensures a balance between blockchain transparency and com-
putational efficiency. This hybrid deployment makes restricted verifier well-suited for
DI/SSI frameworks where privacy, verifiability, and performance are critical.

1.4 Thesis Outline

This thesis consists of 6 chapters, including an introduction, fundamentals of the work,
architecture design, implementation, evaluation and the conclusion.

Chapter 1 begins with an introduction and motivation that the growing concerns about
data disclosure in DI/SSI system are examined. This section also outlines the main
research tasks and objectives.

Chapter 2 discusses about the background and related work, which provide a detailed
overview of decentralized identity systems and the principles that are needed in this
work. This helps readers understand the fundamentals of this work and also informs
readers of the development of this area based on related works.

Chapter 3 talks about the conceptual framework of the restricted verifier. This is to help
the reader grasp the entire architecture of the prototype.

Chapter 4 is the implementation chapter, which shows the details of the restricted verifier,
including the dataset generation, model selection and challenges encountered during the
experiments. The behind-the-scenes reasons of the steps is also discussed in detail.

Chapter 5 focuses on evaluating and validating the prototype and assessing its perfor-
mance and effectiveness.

Chapter 6 concludes with a critical discussion of the advantages and disadvantages of the
proposed solution. We also discuss about future work, including potential improvements
to the model and broader applications of the restricted verifier in decentralized identity
systems.

1.5 Contribution

Our work introduces a novel user-centric verifier that empowers the user to evaluate data
requests, which is previously unavailable in DI and SSI systems. This approach directly
addresses the problem of excessive data disclosure by complementing existing technologies
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with a blockchain-based, restricted verifier. In contrast to previous systems where users
could not verify if data request is necessary for its declared purpose, this prototype sends
the request to a local checker. This machine learning-based classifier helps users identify
unnecessary data requests, giving them the control to make an informed decision about

data sharing.
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Chapter 2

Fundamentals

2.1 Background

In modern society, no one is exempt from the concern of data privacy. Various interna-
tional organizations and national governments have introduced the corresponding laws
and regulations to regulate data privacy. For example, the European Union (EU) pub-
lished the General Data Protection Regulation (GDPR) in 2016 focusing on regulating
data collection, data transfer, and all forms of actions related to the data subject [9].
GDPR also becomes the basis for other similar laws or acts in other countries and re-
gions. For example, the UK published the UK GDPR which is identical to the GDPR
[17]. The California Consumer Privacy Act (CCPA) that came into effect in 2018 also
shares many similarities with GDPR. In the United States, there are several acts to pre-
vent data misuse [37]. The Personal Information Protection Law (PIPL) came into effect
in China in 2021 aiming at protecting personal data [30]. When we compare all these
privacy laws, it is easy to extract the core concepts of data privacy protection. These
principles include fairness, transparency, and data minimization [5|. Data minimization
means that data collectors can only require minimal data to provide the service and no
other data should be requested from the user [3]. These laws and regulations show that
more and more governments are paying attention to data disclosure.

2.1.1 Decentralized Identities

Decentralized identity(DI) and self-sovereign identity(SSI) represent the emerging trend
in identity management that is shifting from centralized authorities to user-centric [32].
There are four key components in the self-sovereign identity architecture [24]. The first
is decentralized identifiers(DIDs). The identifier is unique and is linked to the specific
user for identification. The common way to generate such identifiers is asymmetric cryp-
tography. By establishing the public and private key pairs, anyone on the blockchain can
verify the identity of a specific user without relying on any external entities. The second
component is the authentication. Authentication in the self-sovereign identity system is
achieved through cryptographic methods, with which only authorized entities can access

9
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or share the data. In this case, access control is achieved. The third part is verifiable
claims(VCs), which is the core of self-sovereign identity. A claim is a statement about a
specific subject. The verifiable claim is signed by the issuer. Users store such claims and
present them to other parties who send requests without disclosing other personal infor-
mation. The fourth component is storage. There are two ways to store verifiable claims.
The most common way is off-chain storage, which is also known as private storage. Users
can keep the data in their own storage. Another way is public storage, which means that
the data is stored on-chain. For example, public keys are usually stored in public storage
for the convenience of communication. In parallel, blockchain technology is widely used
in decentralized identity systems and self-sovereign systems. The blockchain is a growing
list of records known as blocks. Each block consists of the cryptographic hash of the
previous block, a timestamp, and transaction data. The core part of the blockchain are
the rules that are known as smart contracts. Smart contracts can be used to control
the ownership of properties and make blockchain more applicable compared with other
technologies [27]. The main challenges of using blockchain technologies to replace the
current centralized database include cyber security threats such as adversarial machine
learning and IoT vulnerabilities, data privacy concerns such as GDPR compliance and
user consent, and technical issues such as scalability [39)].

2.1.2 Data minimization

In recent years, data minimization has emerged as a critical principle in the design of
privacy-preserving systems, particularly in decentralized identity systems. There are
arguments that self-sovereign systems cannot let users fully control their data without
addressing privacy at the network level [35]. However, other people believe SSI is feasi-
ble despite network concerns. Stokkink worked with the Dutch government to develop
TCID, which satisfies functional requirements to guarantee the desirable system proper-
ties. They show that despite the latency caused by network-level anonymization, TCID
is still applicable in real-life situations. Although DI and SSI are promising in protec-
tion data privacy, there are still challenges to apply them to real life. Giannopoulou
pointed out that there are three challenges in data compliance when applying decentral-
ized identity and self-sovereign identity systems [12|. First, there is ambiguity in roles
and responsibilities. DI and SSI systems blur the traditional role in data management
system. Secondly, although self-sovereign identity promotes user control over personal
data, ensuring only necessary data is collected remains a huge challenge. Thirdly, one of
the most critical feature of blockchain system is immutability which makes erasing after
using not possible. Considering the challenge of data minimization in SSI, a growing
trend of research addresses this challenge from various perspectives, including software
engineering, machine learning, algorithmic fairness, and distributed learning. Senarath et
al. proposed a data minimization model aimed at integrating privacy considerations into
the software development life cycle. Their model helps developers understand data from
a user-centric perspective and redesign data collection strategies accordingly [33]. Mukta
conducted a survey on data minimization techniques in blockchain-based healthcare sys-
tems. They present a comparative analysis on the privacy properties of various methods.
The first solution is data masking, which focuses on minimizing collection. During the
collection stage, the service provider is responsible for collecting the data legitimately.
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The decision to collect minimal patient data can be made at design time. For example,
when collecting personal information, the service provider may make some data entry
fields optional, giving the patient the choice not to expose some data to the system. The
second solution is access delegation aiming at minimizing purpose. During the data usage
phase, it is essential to ensure that the data is used strictly in accordance with the purpose
for which it was originally collected. If secondary use, such as forwarding to third parties
is intended, additional consent should be obtained from the user. However, in practice,
the consent request remains static. Users are typically asked to consent prior to data col-
lection, covering all anticipated purposes, with little to no follow-up. The third solution
is access control, which focuses on minimizing storage and access. In the storage stage,
service providers typically apply access control measures to limit who can access sensitive
data. The key concern is data retention. Ideally, private data should be deleted at the
point the service terminates. However, removing data from a blockchain-based system is
challenging due to its inherent immutability. They offer a unique view of data minimiza-
tion from both data holders and issuers. From the data owners’ perspective, there are
three solutions. The first solution is selective disclosure, which means minimizing data
sharing. Users can decide what data they would like to share. Consent management
and access control should also be owner-centric. The second is anonymization. This is to
modify personal data in order to make it impossible to identify the data owner. The third
solution is consent management. Data owners have full control over their data. Without
the consent of data owner, no one can access the data. [25].

2.1.2.1 Federated learning

Recent works in federated learning (FL) has also contributed significantly to the practice
of data minimization. By design, federated learning enables the training of decentralized
models without transferring raw data to central servers [22|. For example, Bonawitz et
al. designed an efficient and robust protocol to securely aggregate high-dimensional data.
Their protocol allows a server to compute large-scale data vectors from endpoints in a
secure manner without knowing the contribution of a specific user [4].

2.1.3 Machine Learning

Machine learning is a popular solution for various tasks like classification, recognition,
and prediction. Whether excessive data are requested is a classic binary classification
task.

Machine learning has become a widely adopted approach in various tasks, including classi-
fication, regression and pattern recognition. Its ability to learn from large datasets makes
it particularly suitable for problems where rule-based or manual systems fall short.

In the context of data privacy, data minimization can be converted into a classification
task that determining whether excessive data is requested. This can be framed as a binary
classification problem, where the system must decide whether a given request for personal
data is aligned with the principle of data minimization or whether it goes beyond what
is necessary for the stated purpose.
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2.1.3.1 Machine learning approaches

Machine learning approaches can be divided into three major categories, supervised learn-
ing, unsupervised learning, and semi-supervised learning. Supervised learning means that
training data is labeled. Every input sample is matched with an output label. This direct
association between input and output lets the model learn the pattern and be able to
make predictions. However, if labeled data is not available, supervised learning is not
feasible. In this case, unsupervised learning focuses on uncovering the inner logic and
hidden patterns in the training dataset. Unsupervised learning strategies, such as clus-
tering techniques and anomaly detection, could be used to identify unusual data. Unlike
unsupervised learning and supervised learning, semi-supervised learning combines labeled
and unlabeled data to train models. It leverages the strengths of both supervised and
unsupervised learning, addressing the challenge of needing large amounts of labeled data,
which can be expensive or time-consuming to acquire. Semi-supervising learning model is
firstly trained on labeled dataset. Then it uses its learned patterns from the labeled data
to predict labels for the unlabeled data, creating pseudo-labels. The pseudo-labeled data
is then combined with the original labeled data. The model is retrained on this larger,
enriched dataset. This process helps the model to improve overall performance.

2.1.3.2 Machine learning models

For classification tasks, we consider both unsupervised and supervised learning models.

For unsupervised learning, the most common strategy is clustering. For example, the
famous K-Means algorithm. These algorithms group similar data points together to
form a cluster. If a data point is too far away from the center of the cluster, it is an
outlier. For anomaly detection, the autoencoder is designed to learn efficient compressed
representations of input unlabeled data. Autoencoder consists of two main components,
encoder and decoder. The encoder is used to compress the input into lower dimensions,
while the decoder reconstructs the original input from the code. The model is trained to
minimize the difference between the original input and its reconstruction. Autoencoders
are especially useful for tasks like dimension reduction, feature learning, and anomaly
detection. In anomaly detection, for example, the model is trained with data that are
regarded normal. When the input is an anomaly sample, the reconstruction will be
far from the original input, which is a flag for outliers. Apart from Autoencoder, one-
class SVM(support vector machine) and isolation forest also have great performance in
anomaly detection. They have similar learning strategy as autoencoder. They also learn
from the normal data pattern and identify deviations as outliers. One-class SVM unlike
autoencoders focuses on detect outliers and novelties within the dataset rather than
assuming tasks like binary classification. Compared with Autoencoder which is a deep
learning model, isolation forest is renowned for efficacy and efficiency. Isolation forest
relies on recursive partitioning to detect anomalies.

For supervised learning, there are some popular models which are both efficient and
effective in classification tasks. Logistic regression is widely used for binary classification
tasks. Its main strengths are simplicity, efficiency, and easy to interpret. A decision tree is
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a tree-like model which leverage partitioning to detect anomalies. Decision tree is robust
to outliers and easy to visualize. Random forest consists of multiple decision trees. As a
result, random forest overcomes the problem of decision tree such as overfitting. Random
forest performs well in both balanced and unbalanced datasets.

2.1.3.3 Machine learning metrics

To evaluate the performance of machine learning models, we use various metrics, in-
cluding F1 score, accuracy, AUC-ROC curve and precision-recall curve. In the following
paragraphs, TP stands for true positive, TN stands for true negatives, FP stands for
false positive, and FN stands for false negative. True positives are instances that are
actually positive and are correctly predicted as positive by the model. True negatives
are instances that are actually negative and are correctly predicted as negative by the
model. False positives are instances that were actually negative, but were incorrectly
predicted as positive by the model. This is also known as a Type I error. False negatives
are instances that were actually positive, but were incorrectly predicted as negative by
the model. This is also known as a Type II error.

Accuracy is the most straightforward metric for measuring machine learning models.
Accuracy quantifies the proportion of correctly predicted instances that includes both
positive and negative out of the total number of instances.

TP+TN
TP+TN+ FP+ FN

Accuracy =

Although accuracy is straightforward, it can be misleading when the dataset is highly
imbalanced. For example, the dataset consists of 95% of positive instances and 5%
negative instances. The model is set to predict everything as positive. As a result, it
achieves 95% accuracy which is not the case.

Precision, which is also known as Positive Predictive Value, measures the proportion of
true positive among all instances predicted as positive. It answers the question: "Among
all the instances the model predicted as positive, how much percentage were actually
positive?”

Precisi TP
recision = —————
TP+ FP

Recall which is also known as Sensitivity or True Positive Rate, measures the proportion
of true positive predictions among all actual positive instances. It answers the question:
”Of all the actual positive instances, how many did the model correctly identify?”

TP

RGCCL” = m—m
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F1 score is harmonic mean of precision and recall. F1 score shows the balance between
precision and recall. It is high only if both are high.

Precision -
Recall — 2 recision - Recall

Precision + Recall

ROC (Receiver Operating Characteristic) curve plots the True Positive Rate (Recall)
against the False Positive Rate (FPR) at different classification thresholds.

AUC (Area Under the Curve) quantifies the overall ability of the model to discriminate
between the positive and negative classes, across all thresholds.

True Positive Rate (TPR) = Recall

TP
TPR= —— "
h TP+ FN
False Positive Rate (FPR)
FPR = L
FP+TN

The ROC curve is made by varying the classification threshold from 0 to 1, and computing
TPR and FPR at each point. The AUC is the area under the ROC curve, ranging from
0 to 1. 1.0 means perfect classifier. 0.5 means random guessing. Smaller than 0.5 means
worse than random guessing.

2.2 Related Work

Recent research has explore the possibility of achieve data minimization goal in DI and SSI
systems. Researchers focus on improving data minimization through decentralized data
architectures. Battiston created an alternative solution to the standard cloud-centralized
data architecture 2. Specifically, instead of depending on centralized storage, they aim to
put data under the control of the individual owners in decentralized personal data stores.
Their primary goal is to improve data minimization. For example, they tried to keep more
sensitive data under the control of users while not interrupting the normal function of the
application. To achieve this goal, they added aggregating views over the decentralized
data to the centralized part of the schema. They designed an extensive SQL language
to provide privacy-preserving incremental view maintenance. Some studies aimed at
leveraging decentralized identity-Based blockchain solution to prevent unauthorized data
usage. Kang et al. design a new architecture that covers essential roles in the data-
sharing ecosystem: the issuer of personal data, the individual holder of the personal data,
a trusted data storage manager, a trusted license distributor, and the data consumer. The
proof-of-concept implementation is based on the decentralized identity framework being
developed by the Hyperledger Indy/Aries project [21]. Zyskind et al. introduced a novel
protocol which can turn a blockchain system into an automated access-control manager.
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In this scenario, third-parties are not needed to perform authentication and access control.
They combine on-chain and off-chain storage to construct a privacy-centralized personal
data management platform. The framework focuses on ensuring that users own and
control their personal data while the service provides are only guests with delegated
permissions [40].

Another key aspect of decentralized identity is access management. In order to enable
individuals decide who can access their personal data and to let individuals to make use
of their data for their own purposes, Hardjono proposed that a federated authorization
architecture is required as a fundamental component of the decentralized identity solution.
This federated component allow users to manage data access policies including granting
access an revoking access to the distributed data repositories. This work showed the user
managed access architecture and protocols that build the foundation of scalable federated
authorization [16].

Recent works have also focused on developing new identity frameworks. Samunnisa et
al. showed that traditional centralized identity systems have vulnerabilities that result
in data breaches and lack of user control. Their study aims to develop and evaluate a
decentralized identity management framework based on blockchain technology to enhance
security, privacy, and efficiency in digital transactions. They proposed an integrated
system that contains Decentralized Identifiers (DIDs), Verifiable Credentials (VCs), and
smart contract verification. They also introduce a trust registry model to attest the
creditability of the issuer. The system was tested with a Kaggle-based decentralized
identity dataset in a simulated blockchain environment [31]. Similarly, NEXTLEAP
proposes a new decentralized architecture which enhances data privacy. NEXTLEAP
builds a federated identity systems. NEXTLEAP decentralized the traditional identities
to secure both message and metadata [15].

Researchers also explore privacy-preserving way for authentication. Sucasas et al. propose
a a pseudonym-based signature scheme that provides verifiable delegation. This scheme
enables users to share data attributes according to the policies of the service providers but
remain anonymous [36]. Gilani et al. pointed out that the self-sovereign identity concept
gives users access to own and gain insights of their digital identities. They provided
a comprehensive overview of the core concepts of self-sovereign identity, including the
components of identity proofing and authentication solutions for different self-sovereign
identity solutions [13].

In addition to selective disclosure, other privacy-enhancing technologies are being ex-
plored. Babel et al. pointed out that DI/SSI aims to offer a solution to manage their
own credentials. However, when presented to a relying party, excessive data is revealed
to the verifier and the activities of the end users are tracked by the relying party. Several
academic works and practical solutions leverage zero-knowledge proofs (ZKPs) to reduce
or avoid such excessive information disclosure. Strategies vary from simple selective dis-
closure to data-minimizing anonymous credentials. They demonstrated that the current
SSI solutions built with anonymous credentials still lack critical features including revo-
cation, certificate chaining, and security integration. They argued that general-purpose
ZKPs can make security components possible in digital identity systems and prevent
MitM attacks [1].
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In the field of AI, researches are conducted on leveraging machine learning to limit data
disclosure. Ganesh et al. proposed a data minimization framework for machine learning
that meets the requirements of legal regulations by limiting the use of unnecessary data
and purpose in the training pipeline |[11]. To achieve the data minimization goal, it is
important to identify and mitigate algorithmic biases in the recommendation system that
could lead to discrimination. Clavell and her collaborators presented an algorithmic audit
of a commercial application to demonstrate the feasibility of delivering a service without
collecting sensitive data like gender, age, race, religion, or other protected attributes of
users [10]. Staab et al. proposed a vertical data minimization workflow based on data
generalization, ensuring that no full-resolution client data is exposed during training and
deployment of models, in which case user privacy is under the umbrella during cyber
attacks or data breaches [34].

When doing analysis, researchers may need to access microdata collected by organizations,
while these microdate may contain personal information. To avoid the potential privacy
leak, data centers usually only allow analysis to be completed using the software from
the controller and the controller checks the outputs of the analyses before returning
the outputs. Manual checking is time-consuming and expensive. Domingo-Ferrer et al.
explored the use of machine learning techniques to partially automate output checking.
They used rule-based approach and proved that machine learning models can be employed
in safe access centers and decentralized data storage [7]. Jones et al. discusses about the
ethnics of consenting in Al which fills the gap of leveraging Al in preserving privacy may
trigger privacy concerns [19]. Although machine learning models do not have human
involved, they still can have bias because of the training data they are fed. Veale et al.
present that trusted third parties could selectively store data which is strictly necessary for
discriminating and integrating fairness constraints when building the model in a privacy-
preserving manner [38].



Chapter 3

Design

3.1 Prototype architecture

Data Request Response

Issuer Holder Verifier

© o Certificate _m Response @
— - Data Request —

Decentralized Identifiers(DIDs)

Smart Contracts} Blockchain

Figure 3.1: Architecture

The restricted verifier prototype consists of 5 major components: issuer, holder, verifier,
checker and blockchain. As Figure [3.1] shows, the issuer issues the certificates to the
holder. Issuers are usually governments or organizations that issues identity certificates
to the holders. Holders are users who hold their personal information certificates or cre-
dentials given by the issuer. The verifiers are service providers who send data requests to

17
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the holder to obtain the necessary information to provide certain services. The creden-
tials issued by the issuers are usually encoded by cryptographic algorithms rather than
plain-text for security reasons|23]. The restricted verifier prototype can be divided into
two parts, on-chain and off-chain. The core of the on-chain part is the smart contract,
which performs verification rules of handling the data request. The checker is a machine
learning-based tool designed to analyze the data request and make a decision that if ex-
cessive data is requested in the data request. The machine learning model is embedded
in the checker.

The checker component of this system is designed to belong to the holder (the user),
allowing them to verify data requests from a verifier (the service provider) with the help
of a machine learning-based automated tool. The holder and the checker communicate
through a Web3 instance that connects to a local Ethereum node.

This checker is intentionally not deployed on the blockchain to prevent potential inter-
ruptions to normal network communication. The decision to keep the checker off-chain
is based on the significant computational resources that machine learning models con-
sume, which is highly inefficient and costly for on-chain execution [20]. For instance,
the checker needs to perform several computationally intensive tasks, such as converting
text-based inputs into numerical vectors and preprocessing the vectors for the models,
followed by the actual prediction process. If these tasks are executed on the blockchain,
the massive latency may interfere with the core functionality of blockchain. In contrast,
computational resources are not a constraint when the checker is deployed off-chain.

To facilitate communication, the verifier sends a data request to the holder by emitting an
event on the blockchain. Similarly, the holder’s response to the verifier is also transmitted
via an event emission. This event-driven communication model ensures that the interac-
tions remain transparent and secure on the blockchain, while the heavy computational
work is handled efficiently off-chain.

3.1.1 Data structure

The data structures are written with Solidity language which is a statically-typed curly-

braces programming language designed for developing smart contracts that run on Ethereum.

event DataRequest (
address indexed verifier,
address indexed holder,
string fields,
string purpose,
uint256 requestID

Listing 3.1: DataRequest

event DataRequestResponse (
address indexed verifier,
address indexed holder,
bool approved,
uint256 requestID
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Listing 3.2: DataRequestResponse

uint256 private requestCounter;

Listing 3.3: RequestCounter

event VerificationRequest(
address verifier,
address holder,
string fields,
string purpose,
bool responded

Listing 3.4: VerificationRequest

From Listing [3.1], we can see that a data request consists of five components, the address
of verifier, the address of holder, data fields requested, purpose of the request, and request
ID. The data structure of DataRequestResponse is showed in Listing Accordingly,
DataRequestResponse contains the address of verifier, the address of holder, decision and
request ID. The address of holder and verifier is an address variable which is a Solidity
data type representing an Ethereum address.

Another variable prensented in both DataRequest and DataRequestResponse is uint256
requestID. requestID is a unique identifier for DataRequest. Each time funchtion
requestData is called, function requestCounter is incremented, and the new value
becomes the requestID. This ensures every request has a unique identifier. This helps
off-chain systems like checker, track which request triggered the event. Here, we choose
uint256 rather than smaller data types like uint32 or uint8 for two reasons. On the one
hand, when the smart contract runs for a long time, smaller data types may encounter
the problem of running out of identifiers. In contrast, uint256 can avoid this problem.
On the other hand, uint256 is the most resource-efficient type in Solidity even though it
uses more bits than necessary for small numbers. The Ethereum Virtual Machine (EVM)
stores data in 32-byte (256-bit) slots. When a uint256 variable is declared, it occupies
exactly one slot. For a smaller type like uint8, it still occupies a full 32-byte slot, but
only uses a small portion of it. If EVM stores multiple small varibles in one slot, packing
and unpacking consume more gas than reading and writing.

The purpose variable in DataRequest is a string. It can be a single word or short
sentence to explain the purpose of the service. For example, the airline company may
put flight booking as the purpose. The approved variable in DataRequestResponse is a
boolean variable. It is a binary value. True represents that the data request is approved
as no excessive data is required. False represents that the data request is denied by the
checker.

The requestCounter in Listing is a uint256 variable used to tracker the number of
requests. The private keyword is a visibility modifier in Solidity that restricts access to
a variable or function to only the contract itself. It cannot be accessed by other contracts
or off-chain systems. If requestCounter were public, anyone could read or modify it
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directly. We add this keyword to prevent external manipulation. By making it private,
we ensure that only the contract’s functions can increment it, which means requestId
values are sequential and unpredictable by external actors.

As Listing shows, VerificationRequest contains an extra boolean variable apart
from the data types discussed above. responded is used to track pending requests.

In these events, fields is a string consisting of several words separated by comma.

indexed is a keyword that marks a parameter as indexed in an event. Indexed parameters
are hashed and stored in the event’s topics, which is a special data structure in Ethereum
logs. Through using indexed, parameters can be efficiently filtered by off-chain systems.
For example, in checker, it is possible to filter events where the verifier is a specific
address without scanning all events. Non-indexed parameters are stored in the data field
of the log. Although indexed parameters can accelerate filtering, they also increase gas
cost because the data must be hashed. In addition, only the first three parameters can be
indexed, which is limited by the Solidity language. That is why we choose to index only
parameters needed to filter by (e.g., verifier, holder) rather than indexing all parameters.

When verifier sends a data request to holder, holder will send the data request to checker.
After making the decision, the checker will send the response back to the holder. The
holder can decide to accept or reject the data request based on the response sent by the
checker. Finally, the holder can send the response to the verifier.
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Chapter 4

Implementation

In this chapter, details of implementation will be discussed in several aspects, including
data structure, major functions, on-chain smart contract, off-chain flask application, how
the on-chain part and off-chain part communicate, and model training.

4.1 Data preprocessing

When checker receives a DataRequest, checker will call generate_field_vector to
convert the fields string into field_vector_formatted vector for further computation
shown in Listing [4.1. Here, we choose to make purpose as string instead of array or
vector, because Web3.py and many Ethereum clients do not support filtering for events
with dynamic types, like string[], in the event signature. This means that while the
event is emitted and visible on-chain, the event filter in Web3.py will not catch it if the
event contains a dynamic array. In the following code, string fields is converted into
field_vector_formatted by the function generate_field_vector.

fields = "name, email, passport_number"
def generate_field_vector(fields, fields_dic):
# Convert the input fields string into a list (assuming comma-
separated)
fields_list = fields.split(", ")

# Initialize an empty list of Os with the same length as fields_dic
field_vector = [0] * len(fields_dic)

# Set the corresponding index to 1 for each field found in
fields_1list
for field in fields_list:
if field in fields_dic:
index = fields_dic.index(field)
field_vector [index] = 1
field_vector_formatted = np.array(field_vector).reshape(l, -1)
return field_vector_formatted

Listing 4.1: Convert string fields into formatted vector

21
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4.2 On-chain smart contract

Apart from the data structure discussed in Chapter 4.1, smart contract RestrictedVer-
ifier.sol consists of several functions to emit, handle and respond events.

function requestData(
address verifier,
string memory fields,
string memory purpose
) public returns (uint256) {
require(bytes(fields) .length > 0, "Must specify fields");
require (bytes (purpose) .length > 0, "Must specify purpose");

requestCounter++;

requests [requestCounter] = VerificationRequest ({
verifier: verifier,
holder: msg.sender,
fields: fields,
purpose: purpose,
responded: false

IO

emit DataRequest(verifier, msg.sender, fields, purpose,
requestCounter) ;

return requestCounter;

Listing 4.2: Request data function

Listing shows the function requestData. This function is called by the verifier to
request data from the holder. Therefore, the parameters are the address of verifier, fields
requested and purpose. In line 7-8, there are two assertions to ensure both fields and
purpose are not empty. After validate the data request, we increase the requestCounter
by one to keep the counter updated. Then we store the request in memory after getting
the address of the holder. Finally, we emit the event DataRequest. The return value is
the index of the request from the counter.

function respondToRequest (uint256 requestId, bool approved) public
{
VerificationRequest storage request = requests[requestId];
require (! request.responded, "Request already responded");
require(msg.sender == request.verifier, "Only verifier can
respond") ;

request.responded = true;

emit DataRequestResponse(request.verifier, request.holder,
approved, requestId);

Listing 4.3: Respond to request function
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Function respondToRequest in Listing is used to respond to the request by the ver-
ifier. Firstly, we get the request from storage. Then we check if the request has already
been responded. If yes, no further response is needed. Then, the assertion is to ensure
only verifier can respond. After the validation, we can actually change the status of the
request to responded. Lastly, we emit the event DataRequestRespond.

function getRequest(uint256 requestId) public view returms (
address verifier,
address holder,
string memory fields,
string memory purpose,
bool responded
) o
VerificationRequest storage request = requests[requestId];
return (
request.verifier,
request.holder,
request.fields,
request.purpose,
request.responded

}
Listing 4.4: Get request function

Listing shows the function getRequest which is used to acquire the request. The
parameter is the ID of the request. We get the request from the storage and return the
needed information including the address of both verifier and holder, fields requested,
purpose and the status of the request.

4.3 Off-chain Flask application

model = joblib.load(’model.pkl’)

# Connect to the Ethereum node

w3 = Web3(Web3.HTTPProvider (’http://127.0.0.1:85457))
print ("Connected to Ethereum:", w3.is_connected())

# Load the ABI
with open(’RestrictedVerifier_abi.json’) as f:
abi = json.load(f)

# Set the deployed contract address
contract_address = ’0x0B306BF915C4d645ff596e518fAf3F9669b97016"°

# Get contract object
verifier = w3.eth.contract (address=contract_address, abi=abi)

Listing 4.5: Flask application setup

Listing shows the setup of the off-chain Flask application. Firstly, the machine learn-
ing is loaded using joblib which is a light-weight pipelining tool in python. Then, we
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connect to the Ethereum node using web3. Through an output, we can check if the
connection is successful. After the successful connection, we load the ABI file, which is a
json description file to explain the interface of Solidarity smart contract. Then, the core
to connect on-chain verifier and off-chain system is to set the contract address which is
generated after deployment. With the contract address, we can get the verifier instance
through web3.

# Function to handle new events

def handle_event (event):
verifier = event[’args’][’verifier’]
request_id = event[’args’][’requestId’]
holder = event[’args’][’holder’]
fields = event[’args’][’fields’]
purpose = event[’args’][’purpose’]

print (f"Received Request from {holder} for {fields} with purpose ’{
purposel}’")

decision = decide(fields, purpose)
print (f"Decision: {decision}")

# Call approveRequest

tx_hash = verifier.functions.respondToRequest (request_id, decision)
.transact ({’from’: verifier})

receipt = w3.eth.wait_for_transaction_receipt (tx_hash)

print (f"Approval Transaction complete: {receipt.transactionHash.hex
OB D)

Listing 4.6: Handle event

Listing [4.6/shows how checker handle the event. Firstly, all parameters needed are stored
locally to avoid frequent call to access the event. Then, we call the function decide to
get the decision. After getting the result, we call function respondToRequest to generate
the hash which is passed to web3 for communication.

def generate_field_vector(fields, fields_dic):
# Convert the input fields string into a list (assuming comma-
separated)
fields_list = fields.split(", ")

# Initialize an empty list of Os with the same length as fields_dic
field_vector = [0] * len(fields_dic)

# Set the corresponding index to 1 for each field found in
fields_list
for field in fields_list:
if field in fields_dic:
index = fields_dic.index(field)
field_vector [index] = 1
field_vector_formatted = np.array(field_vector).reshape(l, -1)
return field_vector_formatted

Listing 4.7: Get field vector
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This function is used to process the input string of fields. As it is separated by comma,
we get fields list from the string fields. Then we match the items in the list to the
fields dic which we created before. We convert the list to a binary list which lowers
the computational complexity and is gas-efficient. At last, this function will return a
formatted binary list.

#decision function
def decide(fields, purpose):
# Example: if purpose contains "Marketing" reject it

fields_dic = [’name’, ’email’, ’passport_number’, ’birthdate’,
phone_number’, ’height’, ’blood_type’, ’shoe_size’, ’
favorite_color’, ’eye_color’, ’pet_name’]

if "flight" in purpose.lower ():
input_vector = generate_field_vector(fields, fields_dic)
result = model.predict(input_vector)
if result == 1:

return True
else:
return False
return False

Listing 4.8: Decision function

The function decide in Listing is the core part of the whole verification process. We
set the fields dic first for the function generate_field_vector in Listing [4.7] Then
we process the purpose variable to match the use case. At last, we can load the model
and make the prediction. If the response is TURE, the the function will return TRUE. Oth-
erwise, FALSE will be returned.

# Subscribe to new events
def log_loop(event_filter, poll_interval):
print ("Event Listener Thread Started...")
while True:
for event in event_filter.get_new_entries():
print ("New Event Detected")
handle_event (event)
time.sleep(poll_interval)

Listing 4.9: Log loop function

The function log_loop is for constantly listening to the port if any new event is detected.

# Create event filter
event_filter = verifier.events.DataRequest.create_filter (from_block=0)

Listing 4.10: Event filter

event_filter with from_block=0 means it will listen for all occurrences of the DataRe-
quest event from the very beginning of the blockchain.
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app = Flask(__name__)
Q@app.route(’/’)
def home () :
return "Flask app running and listening to blockchain events!"

)

).

if __name__ == _main_

# Start event listener thread

thread = threading.Thread(target=log_loop, args=(event_filter, 2),
daemon=True)

thread.start ()

print ("Started Flask app and Blockchain Event Listener!")

# Start Flask app
app.run(port=5000, threaded=True)

Listing 4.11: Main function

Listing shows the main function of checker. We start event listener thread and
Flask application.

4.4 Model training

4.4.1 Synthetic dataset generator

def generate_synthetic_data(
n_normal=100,
n_outliers=5,
random_seed=42

np.random.seed (random_seed)

# Step 1: Define fields

core_fields = [’name’, ’email’, ’passport_number’, ’birthdate’, °’
phone_number ’]

optional_fields = [’height’, ’blood_type’, ’shoe_size’, ~’
favorite_color’, ’eye_color’, ’pet_name’]

all_fields = core_fields + optional_fields

# Step 2: Create seed training data (core fields = 1, optional = 0)
seed_data = []
for _ in range (10):
record = {field: 1 for field in core_fields}
record.update ({field: 0 for field in optional_fields})
seed_data.append(record)
seed_df = pd.DataFrame(seed_data)

# Step 3: Define metadata
metadata = SingleTableMetadata ()

metadata.detect_from_dataframe (seed_df)

# Step 4: Fit synthesizer
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synthesizer = GaussianCopulaSynthesizer (metadata)
synthesizer.fit(seed_df)

# Step 5: Generate normal companies
normal_data = synthesizer.sample(n_normal)

# Add tiny noise (some optional fields activated rarely)
for field in optional_fields:
normal_data[field] = normal_datal[field].apply(lambda x: 1 if np
.random.rand() < 0.05 else 0)
normal_data = synthesizer.sample(n_normal)
HUHHHHHHARAAAAAAH AR BB B HHARAH R AR A A AR R R R B HHHARS
# this is to make all data binary in order to perform pca
# Force all fields to be binary (some SDV models generate floats)
normal_datalall_fields] = normal_datalall_fields].applymap(lambda x
1 if str(x).lower() in [’1’, ’true’] else 0)

# Random tiny noise
for field in optional_fields:
normal_data[field] = normal_datal[field].apply(lambda x: 1 if np
.random.rand() < 0.05 else x)
HUEHAHAHBSHA A BB R AR HA R BB HHAHA R B RS R BB HH A B HH A HAHS

# Step 6: Inject outlier companies
outlier_data = []
for _ in range(n_outliers):
record = {field: 1 for field in core_fields}
# Choose 3 random weird fields to add
weird_fields = np.random.choice(optional_fields, size=3,
replace=False)
record.update ({field: 1 if field in weird_fields else 0 for
field in optional_fields})
outlier_data.append(record)
outlier_df = pd.DataFrame (outlier_data)

return full_df

Listing 4.12: Synthetic dataset generator function

In the Listing [4.12] we can see the whole process of generating synthetic dataset depend-
ing on SDV. We set core fields and optional fields first. Then we use random seed to
create seed training data. We define metadata and choose synthesizer following the steps
of SDV. After the preparation steps, we can generate normal companies. We also add
tiny noise to avoid bias. After getting the normal dataset, we inject outliers to complete
the whole dataset. This function will return a full dataset for further use.

# Generate the data

core_fields_flight_ticket = [’name’, ’email’, ’passport_number’, ’
birthdate’, ’phone_number’]

optional_fields_flight_ticket = [’height’, ’blood_type’, ’shoe_size’, ’
favorite_color’, ’eye_color’, ’pet_name’]

df _flight_ticket = generate_synthetic_data(core_fields=
core_fields_flight_ticket,
optional_fields=
optional_fields_flight_ticket,
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n_normal=100, n_outliers=5)
df _flight_ticket.to_csv("output_flight_ticket.csv")

Listing 4.13: Generate datasets for use case: flight ticket purchase

Listing show how we generate the synthetic dataset for the use case flight ticket
purchase. Firstly, we configure the core fields as name, email, passport number, birth
date and phone number. Then we set the optional fields as height, blood type, shoe size,
favorite color, eye color and pet name. After setting up all the fields, we call the function
generate_synthetic_data and set the parameters. At last, we export the dataset to a
csv file output_flight_ticket.csv.

# Generate the data
core_fields_student = [’name’, ’email’, ’passport_number’, ’birthdate’,
’phone_number’, ’studentID’, ’gender’, ’age’]
optional_fields_student = [’height’, ’blood_type’, ’shoe_size’, ’
favorite_color’, ’eye_color’, ’pet_name’]

df _student = generate_synthetic_data(core_fields=core_fields_student,
optional_fields=optional_fields_student,
n_normal=1000, n_outliers=5)

df _student.to_csv("output_student.csv")

Listing 4.14: Generate datasets for use case: student information management

Listing [4.14] show how we generate the synthetic dataset for the use case student informa-
tion management. Firstly, we configure the core fields as name, email, passport number,
birth date, phone number, studnet ID, gender and age. Then we set the optional fields as
height, blood type, shoe size, favorite color, eye color and pet name. After setting up all
the fields, we call the function generate_synthetic_data and set the parameters. At
last, we export the dataset to a csv file output_student.csv.

# Generate the data
core_fields_restaurant = [’name’, ’time’]
optional_fields_restaurant = [’height’, ’blood_type’, ’shoe_size’, ’
favorite_color’, ’eye_color’, ’pet_name’]
df _restaurant = generate_synthetic_data(core_fields=
core_fields_restaurant,
optional_fields=optional_fields_restaurant
s
n_normal=1000, n_outliers=5)
df _restaurant.to_csv("output_restaurant.csv")

Listing 4.15: Generate datasets for use case: restaurant reservation

Listing show how we generate the synthetic dataset for the use case restaurant reser-
vation. Firstly, we configure the core fields as name and time. Then we set the optional
fields as height, blood type, shoe size, favorite color, eye color and pet name. After setting
up all the fields, we call the function generate_synthetic_data and set the parameters.
At last, we export the dataset to a csv file output_restaurant.csv.
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def create_point_cloud_plot(data_file, title, n_normal, n_outliers,
output_filename):
# Read the data
X_data = pd.read_csv(data_file, index_col=0)
X_data_raw = X_data.to_numpy ()

# Use PCA to reduce dimensions for visualization
pca = PCA(n_components=2)
X_data_2d = pca.fit_transform(X_data_raw)

# Separate normal and outlier points
normal_points = X_data_2d[:n_normall
outlier_points = X_data_2d[n_normal:]

# Create scatter plot
plt.figure(figsize=(12, 8))

# Plot normal points
plt.scatter (normal_points[:, O], normal_points[:, 1],
alpha=0.7, s=60, c=’blue’, label=’Normal’)

# Plot outlier points
plt.scatter (outlier_points[:, 0], outlier_points[:, 1],
alpha=0.9, s=80, c=’red’, label=’0utlier’)

plt.title(title)
plt.legend ()
plt.axis(’off’) # Remove axis

# Save the plot

plt.savefig(output_filename, dpi=300, bbox_inches=’tight’)
plt.show ()

plt.close()

Listing 4.16: Point cloud polt generation function

Listing shows the function to generate point cloud for the datasets. We import the
csv file to X_data using pandas library from python and set the parameter index_col
to 0 to discard the index column in line 3. After importing the csv file using pandas,
the datatype of X_data is DataFrame. In order to use it for model training, we convert
X_data to numpy data type and get X_data_raw. In line 7, we initiate a two-component
PCA instance. Then we call the function fit_transform of pca to convert X_data_raw
into an ndarray variable. We use PCA to reduce dimensions for visualization. Then in
line 11-12, we separate normal and outlier points and store in two variables. After the
preprocessing, we can start to draw the point cloud plot. We choose matplotlib.pyplot
because its outstanding capability of visualization. We use the function pyplot.scatter
to plot both normal and outlier points. To make the plot more readable, we add title and
legend. At last, we export the plot using the function pyplot.savefig

# Generate plots for all three datasets
# Flight ticket data
create_point_cloud_plot(
’output_flight_ticket.csv’,
’Flight Ticket Data Points (PCA Visualization)’,
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100, 5,
>flight_ticket_point_cloud.png’

Listing 4.17: Point cloud plot for the use case: flight ticket purchase

In Listing we call the function create_point_cloud_plot to draw cloud point plot
for the use case: flight ticket purchase.

# Generate plots for all three datasets
# Student data
create_point_cloud_plot(
’output_student.csv’,
’Student Data Points (PCA Visualization)’,
1000, 5,
’student_point_cloud.png’

Listing 4.18: Point cloud plot for the use case: student information management

In Listing [4.18], we call the function create_point_cloud_plot to draw cloud point plot
for the use case: student information management.

# Generate plots for all three datasets
# Restaurant data
create_point_cloud_plot(
’output_restaurant.csv’,
’Restaurant Data Points (PCA Visualization)’,
1000, 5,
’restaurant_point_cloud.png’

Listing 4.19: Point cloud plot for the use case: restaurant reservation

In Listing we call the function create_point_cloud_plot to draw cloud point plot
for the use case: restaurant reservation.

4.4.2 Unsupervised learning

X_raw X.to_numpy ()
model = IsolationForest(contamination=0.25, random_state=42)
model.fit (X_raw)

Listing 4.20: Training isolation forest

We convert the raw data to numpy. Then, we set the machine learning model and train
it with our training data.
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4.4.3 Supervised learning

This section discusses about the implementation of supervised learning models. We choose
logistic regression, random forest and decision tree. In this section, we will show the code
of preparation, model training and plot drawing

4.4.3.1 Preparation

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import OneHotEncoder

from sklearn.compose import ColumnTransformer

from sklearn.pipeline import Pipeline

from sklearn.linear_model import LogisticRegression # Import Logistic
Regression

from sklearn.metrics import accuracy_score, precision_score,
recall_score, fl_score, roc_auc_score, confusion_matrix

import seaborn as sns

import matplotlib.pyplot as plt

import sys

from datetime import datetime

from sklearn.tree import DecisionTreeClassifier # Import Decision Tree
Classifier

from sklearn.ensemble import RandomForestClassifier

# Redirect all output to a log file

log_filename = f’model_training_log_{datetime.now().strftime ("%Y¥%m%d_%H
hMAS") Y. txt’
log_file = open(log_filename, ’w’)
original_stdout = sys.stdout
sys.stdout = log_file
print (f"Model Training Log - Started at {datetime.now().strftime (’%Y-%m
=%d SH:%M:%S’)XF")
print ("=" * 80)
# --- 1. Load the noisy dataset ---
try:
df = pd.read_csv(’output_noisy.csv’)
print ("\nDataset Info:")
df .info ()
print ("\nValue counts for ’Is_Excessive’:")
print (df [’ Is_Excessive’].value_counts ())
except FileNotFoundError:
print ("Error: ’output_noisy.csv’ not found. Please make sure the
file is in the same directory as the script.")
exit ()
# --- 2. Separate features (X) and target (y) ---
X = df [[’Requested_Data_Type’, ’Purpose_of_Request’]]
y = df [’ Is_Excessive’]
print (f"\nFeatures (X) shape: {X.shapel}")
print (f"Target (y) shape: {y.shapel}")
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# --- 3. Define the preprocessor for One-Hot Encoding ---
preprocessor = ColumnTransformer (
transformers=[
(’cat’, OneHotEncoder (handle_unknown=’ignore’), [’
Requested_Data_Type’, ’Purpose_of_Request’])
D
# --- 4. Split the data into training and testing sets ---

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size
=0.2, random_state=42, stratify=y)

print (f"\nTraining set size: {len(X_train)} samples")
print (f"Testing set size: {len(X_test)} samples")

print ("\n’Is_Excessive’ distribution in training set:")
print(y_train.value_counts(normalize=True))

print ("\n’Is_Excessive’ distribution in test set:")
print (y_test.value_counts (normalize=True))

Listing 4.21: Preparation

In Listing we can see the preparation steps before training supervised learning
models. From line 1 to line 13, we import necessary python libraries, including pandas,
sklearn, seaborn, matplotlib, sys, datetime. Among all these libraries, sklearn
provides the core functions for model training.

Line 15-18 shows how the log files are generated. We use the sys library to generate logs.
To make the whole process clear, we use print to record every step.

From line 24 to line 32, we can see that dataset is loaded through pandas and stored in
a DataFrame object. Then we print the basic information of the dataset. In this section,
we use the try-catch structure to catch the exception and errors. The second step is
separate features (X) and the target (y). We store these attributes in X and y. The third
step is defining the preprocessor for One-Hot Encoding. Then the last step is spliting the
data into training and testing sets. We set it to 80-20. In line 50-55, we print some debug
information and log information.

4.4.3.2 Logistic regression

# --- 5. Create the machine learning pipeline (Logistic Regression) ---
model_pipeline = Pipeline(steps=[(’preprocessor’, preprocessor),
(’classifier’, LogisticRegression(

random_state=42, solver=’liblinear’
, class_weight=’balanced’))])
# solver=’liblinear’ is a good default for small datasets and binary
classification.
# class_weight=’balanced’ helps address potential class imbalance.

print ("\n--- Training the Logistic Regression model with noisy data ---
Il)

model _pipeline.fit(X_train, y_train)

Listing 4.22: Logistic regression
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After the preparation, we can start to train the machine learning model. Listing
shows the process of training logistic regression model. We use Pipeline to load the
model and set the classifier to LogisticRegression, solver to 1iblinear and class weight
to balanced. Because liblinear is a good default for small datasets and binary classi-
fication. balanced helps address potential class imbalance.

4.4.3.3 Random forest

# --- 5. Create the machine learning pipeline (Random Forest) ---
model_pipeline = Pipeline(steps=[(’preprocessor’, preprocessor),
(’classifier’, RandomForestClassifier (

random_state=42, n_estimators=200,
class_weight=’balanced’))])
# Increased n_estimators to 200 for potentially better learning with
noise
# Added class_weight=’balanced’ to handle potential class imbalance if
Os vastly outnumber 1s

print ("\n--- Training the Random Forest model with noisy data ---")
model_pipeline.fit(X_train, y_train)

Listing 4.23: Random Forest

After the preparation, we can start to train the machine learning model. Listing [4.23
shows the process of training random forest model. We use Pipeline to load the model
and set the classifier to RandomForestClassifier, estimators to 200 and class weight to
balanced. Because increased n_estimators to 200 for potentially better learning with
noise. balanced helps address potential class imbalance if Os vastly outnumber 1s.

4.4.3.4 Decision tree

# --- 5. Create and train multiple Decision Tree models with different
max_depth values ---

max_depths = [56, 10, 20, 100]

models = {}

print ("\n--- Training Decision Tree models with different max_depth
values ---")

for max_depth in max_depths:
print (f"\nTraining Decision Tree with max_depth={max_depthl}")

# Create the machine learning pipeline (Decision Tree Classifier)
model _pipeline = Pipeline(steps=[(’preprocessor’, preprocessor),
(’classifier’,
DecisionTreeClassifier (
random_state=42, max_depth=
max_depth, class_weight="’
balanced’))])

# Train the model
model_pipeline.fit(X_train, y_train)
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models [max_depth] = model_pipeline
print (f"Model training complete for max_depth={max_depthl}")

Listing 4.24: Decision tree

After the preparation, we can start to train the machine learning model. Listing [4.24
shows the process of training decision tree model. Different from logistic regression and
random forest, decision tree has an extra parameter max_depth. The max_depth param-
eter in a decision tree is a hyperparameter that controls how deep the tree can be. It is
used for controlling the complexity of the model. The higher max_depth is, more complex
the model will be. We set it to 5, 10, 20 and 100 to observe the impact.

We use Pipeline to load the model and set the classifier to DecisionTreeClassifier
and class weight to balanced. Because balanced helps address potential class imbalance.

4.4.3.5 Evaluation

# --- 6. Make predictions and evaluate the model ---

y_pred = model_pipeline.predict(X_test)

y_prob model_pipeline.predict_proba(X_test)[:, 1] # Probabilities for
the positive class (Is_Excessive=1)

Listing 4.25: Model prediction

In Listing we can use the model for prediction and calculate the probabilities for
the positive class which means Is_Excessive =1.

print ("\n--- Model Evaluation on Noisy Test Set ---")
print (f"Accuracy: {accuracy_score(y_test, y_pred):.4f}")
print (f"Precision: {precision_score(y_test, y_pred):.4f}")
print (f"Recall: {recall_score(y_test, y_pred):.4f}")

print (f"F1-Score: {fl_score(y_test, y_pred):.4f}")

print (£"ROC AUC: {roc_auc_score(y_test, y_prob):.4f}")

Listing 4.26: numerical evaluation

Listing shows the evaluation of the models from accuracy, precision score, recall
score, F1 score and AUC score.

# Optional: Confusion Matrix for more detailed insights

cm = confusion_matrix(y_test, y_pred)

plt.figure(figsize=(6, 4))

sns.heatmap(cm, annot=True, fmt=’d’, cmap=’Blues’,
xticklabels=[’Predicted 0’, ’Predicted 1°],
yticklabels=[’Actual 0’, ’Actual 1°])

plt.title(’Confusion Matrix (Logistic Regression)’)

plt.ylabel (’Actual Label’)

plt.xlabel (’Predicted Label’)

plt.savefig(’confusion_matrix_lr.png’, dpi=300, bbox_inches=’tight’)

plt.close ()

Listing 4.27: Confusion matrix generation
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Listing shows how confusion matrices is generated. We use the function confu-
sion_matrix to calculate confusion matrices. Then we use seaborn.heatmap to draw
the scatter plots.

# --- Precision-Recall Curve ---
from sklearn.metrics import precision_recall_curve,
average_precision_score

precision, recall, _ = precision_recall_curve(y_test, y_prob)
average_precision = average_precision_score(y_test, y_prob)

plt.figure(figsize=(8, 6))
plt.plot(recall, precision, color=’blue’, lw=2,
label=f’Precision-Recall curve (AP = {average_precision:.3f})’
)

plt.plot ([0, 1], [1, 0], color=’red’, lw=1, linestyle=’--’, label=’
Random classifier’)

plt.xlabel (’Recall’)

plt.ylabel (’Precision’)

plt.title(’Precision-Recall Curve (Logistic Regression)’)

plt.legend ()

plt.grid(True, alpha=0.3)

plt.savefig(’precision_recall_curve_lr.png’, dpi=300, bbox_inches=’
tight’)

plt.close ()

Listing 4.28: Precision-Recall generation

We use precision_recall_curve from sklearn.metrics to draw the figures. We add
the grid to make the plot more clear.

# --- ROC Curve ---
from sklearn.metrics import roc_curve

fpr, tpr, _ = roc_curve(y_test, y_prob)
roc_auc = roc_auc_score(y_test, y_prob)

plt.figure(figsize=(8, 6))
plt.plot (fpr, tpr, color=’blue’, lw=2,
label=f’ROC curve (AUC = {roc_auc:.3f})’)
plt.plot ([0, 1], [0, 1], color=’red’, lw=1, linestyle=’--’, label=’
Random classifier’)
plt.x1im([0.0, 1.0])
plt.ylim([0.0, 1.05]1)
plt.xlabel(’False Positive Rate’)
plt.ylabel (’True Positive Rate’)
plt.title(’ROC Curve (Logistic Regression)’)
plt.legend ()
plt.grid(True, alpha=0.3)
plt.savefig(’roc_curve_lr.png’, dpi=300, bbox_inches=’tight’)
plt.close ()

Listing 4.29: AUC-ROC curve generation
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We use ROC_curve from sklearn.metrics to draw the figures.

#
f

- 6. Evaluate all models and generate plots ---

or max_depth in max_depths:

model_pipeline = models[max_depth]

# Make predictions

y_pred = model_pipeline.predict(X_test)

y_prob = model_pipeline.predict_proba(X_test)[:, 1] # Probabilities
for the positive class (Is_Excessive=1)

print (£"\n--- Model Evaluation for max_depth={max_depth} ---")
print (f"Accuracy: {accuracy_score(y_test, y_pred):.4f}")

print (f"Precision: {precision_score(y_test, y_pred):.4f}")
print (f"Recall: {recall_score(y_test, y_pred):.4f}")

print (f"F1-Score: {fl_score(y_test, y_pred):.4f}")

print (£"ROC AUC: {roc_auc_score(y_test, y_prob):.4f}")

# Confusion Matrix

cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(6, 4))
sns.heatmap(cm, annot=True, fmt=’d’, cmap=’Blues’,
xticklabels=[’Predicted 0’, ’Predicted 177,
yticklabels=[’Actual 0’, ’Actual 1°])
plt.title(f’Confusion Matrix (Decision Tree, max_depth={max_depthl})
)

plt.ylabel (’Actual Label?’)

plt.xlabel (’Predicted Label’)

plt.savefig(f’confusion_matrix_dt_depth{max_depth}.png’, dpi=300,
bbox_inches=’tight’)

plt.close ()

# Precision-Recall Curve
from sklearn.metrics import precision_recall_curve,
average_precision_score

precision, recall, _ = precision_recall_curve(y_test, y_prob)
average_precision = average_precision_score(y_test, y_prob)

plt.figure(figsize=(8, 6))
plt.plot(recall, precision, color=’blue’, lw=2,

label=f’Precision-Recall curve (AP = {average_precision:.3
£3)7)
plt.plot ([0, 1], [1, 0], color=’red’, lw=1, linestyle=’--’, label=’

Random classifier’)

plt.xlabel (’Recall’)

plt.ylabel (’Precision’)

plt.title(f’Precision-Recall Curve (Decision Tree, max_depth={
max_depthl}) ’)

plt.legend ()

plt.grid(True, alpha=0.3)

plt.savefig(f’precision_recall_curve_dt_depth{max_depth}.png’, dpi
=300, bbox_inches=’tight’)

plt.close ()

# ROC Curve
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from sklearn.metrics import roc_curve

fpr, tpr, _ = roc_curve(y_test, y_prob)
roc_auc = roc_auc_score(y_test, y_prob)

plt.figure(figsize=(8, 6))
plt.plot (fpr, tpr, color=’blue’, lw=2,
label=f’R0OC curve (AUC = {roc_auc:.3f})’)

37

plt.plot ([0, 1], [0, 1], color=’red’, 1lw=1, linestyle=’--’, label=’

Random classifier’)
plt.x1im([0.0, 1.0])
plt.ylim([0.0, 1.05]1)
plt.xlabel(’False Positive Rate’)
plt.ylabel (’True Positive Rate’)
plt.title(f’ROC Curve (Decision Tree, max_depth={max_depthl})’)
plt.legend )
plt.grid(True, alpha=0.3)
plt.savefig(f’roc_curve_dt_depth{max_depthl}.png’, dpi=300,
bbox_inches=’tight’)
plt.close ()

Listing 4.30: Evaluation for decision tree

In Listing we evaluated decision tree model with different max depth, including

accuracy, F1 score, confusion matrix, AUC-ROC curve and precision-recall curve.

# --- Optional: Visualize the Decision Tree (requires graphviz and
pydotplus) ---

# This part is for visualization, you might need to install extermal
software (Graphviz)

# and Python libraries (graphviz, pydotplus).

# pip install graphviz pydotplus

try:
from sklearn.tree import export_graphviz
import graphviz
from IPython.display import Image
import pydotplus

# Get feature names after one-hot encoding

feature_names = model_pipeline.named_steps[’preprocessor’].
named_transformers_[’cat’].get_feature_names_out (
[’Requested_Data_Type’, ’Purpose_of_Request’]
)
dot_data = export_graphviz(model_pipeline.named_steps[’classifier’
1,
feature_names=feature_names,
class_names=[’Not Excessive’, ’Excessive
1,

filled=True, rounded=True,

special_characters=True, out_file=None)

graph = pydotplus.graph_from_dot_data(dot_data)
graph.write_png(’decision_tree.png’)

print ("\nDecision Tree visualization saved as ’decision_tree.png’")

except ImportError:
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print ("\nSkipping Decision Tree visualization. Install ’graphviz’
and ’pydotplus’ to enable it.")
print ("You might also need to install Graphviz software: https://
graphviz.org/download/")
except Exception as e:
print (£"\nAn error occurred during Decision Tree visualization: {e}

II)

# Restore stdout and close log file
sys.stdout = original_stdout
log_file.close ()

Listing 4.31: Visualization for decision tree

Listing shows the visualization process of decision tree. Visualization helps us un-
derstand decision process more clearly. We need graphviz and pydotplus to run this
code snippet. This step is optional and not mandatory for evaluation.



Chapter 5

Evaluation

This chapter discusses about the results from the experiments. We evaluate the results
based on two metrics. One is capability test, which is used to measure the capability of
the unsupervised-learning model in detecting excessive data requests. This is designed
to test the whole pipeline. The other one is performance test. We measure the speed
and accuracy of the machine learning models. We use speed, F1 score, AUC-ROC curve,
precision-recall curve to compare the performance of different supervised-learning models.

5.0.1 Environment setup

This section discusses about the environment setup including both hardware and software.

5.0.1.1 Hardware

Device Apple Macbook PRO 2020
Processor (CPU) Apple M1 chip 8-core CPU
Graphics Processing Unit (GPU) | Apple M1 chip 8-core GPU
RAM 8GB
Operating System macOS 12 Monterey

Table 5.1: Hardware setup

5.0.1.2 Software

Virtual Environment ‘ conda 23.1.0
Python | 3.10.16

Table 5.2: Software setup

39



40 CHAPTER 5. EVALUATION

Library Version
pandas 2.3.1
numpy 2.2.5
skikit-learn | 1.6.1
matplotlib 3.10
seaborn 0.13.2

Table 5.3: Libraries version

name | email | passport | birth | phone | height | blood | shoe | favorite | eye | pet
number | date | number type | size | color color | name
1]1 0 1 1 0 0 0 0 0 0 0
2|1 0 1 1 0 0 0 0 1 0 0
311 0 1 1 0 0 0 0 0 0 0
411 0 1 1 0 0 0 0 0 0 0
511 0 1 1 0 0 0 0 0 0 0
611 0 1 1 0 0 0 0 0 0 0

Table 5.4: Sample dataset for use case: flight ticket purchase

5.0.2 Use case

In Table and [5.6] we can see the sample datasets for three use cases, including
flight ticket purchase, student information management, and restaurant reservation. In
these tables, 1 means this attribute is requested and 0 represents this attribute is not
requested.

5.0.3 Impact on CredChain

This section discusses about the impact of restricted verifier on the Credchain. We
measure the average decision time of different models and blockchain transaction and
other overhead. We run the same test case for 10 times and take the average to represent
the performance.

From Table we can see that decision time is relatively short compared with normal
blockchain transaction.

name | email | pass | birth | phone | student | gender | age | blood | shoe | color | eye pet
num | date | num | ID type | size color | name
1)1 0 1 1 0 0 0 1 0 0 0 0 0
211 0 1 1 0 0 0 0 1 0 0 0 0
311 0 1 1 0 0 0 0 0 0 0 0 0
411 0 1 1 0 0 0 0 0 0 0 0 0
511 0 1 1 0 0 0 0 0 0 0 0 0
611 0 1 1 0 0 0 0 0 0 0 0 0

Table 5.5: Sample dataset for use case: student information management



name | time | height | blood | shoe | favorite | eye pet
type | size | color color | name
11 0 0 0 1 0 0 0
211 0 0 0 0 0 0 0
311 0 0 0 0 0 0 0
411 0 0 0 0 0 0 0
511 0 0 0 0 0 0 0
6|1 0 0 0 0 0 0 0

Table 5.6: Sample dataset for use case: restaurant reservation

Decision time 0.0046 seconds | 17.7%
Blockchain transaction | 0.0212 seconds | 82%
Other overhead 0.0001 seconds | 0.3%

Table 5.7: Impact on Credchain

5.0.4 Capability test

Flight Ticket Data Points (PCA Visualization)

@® Normal
@ Outlier

Figure 5.1: Point cloud for use case: flight ticket purchase
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We design capability test to verify the functionality of our prototype. In these tests, we
focus on the whole pipeline instead of the performance of specific models. We design
three use cases and generate related datasets. We can see from Figure that in the
scenario of purchasing the flight ticket, the outliers are clearly separated from the cluster.
On the contrary, Figure [5.2] and Figure [5.3|show that outliers are mixed with normal data

points which increase the difficulty of telling them apart.

We train two unsupervised-learning models including Isolation Forest and Autoencoder.

As the generated dataset is categorical, both models learn the rules very fast.
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Student Data Points (PCA Visualization)

Normal
[ o .
@ Outlier
[ ]
[ ]
[ ] ° °
® L]
L] ) °
[ ]
® [ ]
[ ]
L] ° °
[ ]
® [ ]
Y L

Figure 5.2: Point cloud for use case: student information management

5.0.5 Performance test

In this section, we discuss about the experiment results of supervised learning models.
Unlike capability test, we generate synthetic data using LLM instead of SDV. LLM allows
us to have more complex dataset. SDV is capable of generating categorical data which is
not effective enough to simulate the real world. In this case, we employ Google Gemini
[14] to generate synthetic data for training supervised-learning models.

We train three models with same training data including logistic regression, random forest
and decision tree. Figure 5.4 to 5.9 shows the confusion matrices of different models. We
can see that random forest has the highest true positive rate and lowest false negative
rates. Logistic regression also performs well in reporting true positive. With different
max depth, decision tree achieve higher in detecting true positive when max depth is
higher.

From Figure 5.10 to 5.15, we can see the plots of precision-recall curve. From these
figures, we can see the trade-off between precision and recall. In Figure 5.12, there is not
much trade-off because the max depth is very low.

From 5.16 to 5.21, we can see the performance of models in detecting true positives
against false positives. Random forest has the best performance and decision tree with
max depth of 5 performs the worst. Figure 5.18 shows that decision tree with max depth
of 5 almost has the same results as random guessing. With the max depth increasing,
decision tree performs better. When max depth equals 100, it is possibly to be overfitting.

In Table 5.1, we can see that random forest has the highest accuracy and F1 score. The
decision tree with a maximum depth of 5 has the lowest accuracy and F'1 score. Logistic
regression also performs well. The decision tree has higher accuracy and F1 score when
the maximum depth is higher.
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Restaurant Data Points (PCA Visualization)
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Figure 5.3: Point cloud for use case: restaurant reservation
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Confusion Matrix (Random Forest)
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dom Forest

Figure and show the visualization of decision tree with different maximum

depth.
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Figure 5.12: Precision-Recall curve:
Decision Tree with Max_depth=5
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Figure 5.14: Precision-Recall curve:
Decision Tree with Max_depth=20
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Precision-Recall Curve (Decision Tree, max_depth=10)
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Figure 5.13: Precision-Recall curve:
Decision Tree with Max_depth=10
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Figure 5.15: Precision-Recall curve:
Decision Tree with Max_depth=100
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Figure 5.17: ROC curve: Random
Forest
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ROC Curve (Decision Tree, max_depth=5)
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Figure 5.18: ROC curve: Decision
Tree with Max_depth=>5
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Figure 5.20: ROC curve: Decision
Tree with Max_depth=20

Model

CHAPTER 5. EVALUATION

ROC Curve (Decision Tree, max_depth=10)
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Figure 5.19: ROC curve: Decision
Tree with Max_depth=10

ROC Curve (Decision Tree, max_depth=100)

1.0{ — ROC curve (AUC = 0.558)
---- Random classifier

0.8
@
T
< 0.6
v
2
g
&
v
3
£ 04

02

0.0

0.0 02 0.4 0.6 0.8 L0

False Positive Rate

Figure 5.21: ROC curve: Decision
Tree with Max_depth=100

Accuracy | F1 score

Logistic Regression

0.6150 0.7459

Random Forest

0.8750 0.9315

decision tree(max_depth=>5)

0.1950 0.1827

decision tree(max_depth=10)

0.2750 0.3256

decision tree(max_depth=20)

0.4150 0.5224

decision tree(max_depth=100)

0.7850 0.8754

Table 5.8: Accuracy and F1 score
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Requested_Data_Type_Biometric Data (Fingerprint) < 0.5
ini = 0.5
samples = 800
value = [400.0, 400.0]
class = Excessive
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samples = 706
value = [369.231, 350.917]
class = Not Excessive
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value = [369.231, 339.069]
class = Not Excessive

Figure 5.22: Visualization of Decision tree (max_depth=5)
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Figure 5.23: Visualization of Decision tree (max_depth=10)
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Chapter 6

Final Considerations

6.1 Summary

This thesis successfully implemented and evaluated a new prototype for a user-centric,
restricted verifier designed to address excessive data disclosure in SSI systems. The core
of this work is developing a novel prototype that empowers information holders to verify
the necessity of data requests.

A new smart contract, RestrictedVerifier.sol, is implemented and deployed on the
blockchain to facilitate the process of event emission, response, and track. This smart
contract, as the on-chain component, manage the communication flow between the verifier
(service provider) and the holder (user) and ensuring the integrity and transparency of
data requests.

For the off-chain component, a machine learning-based checker is developed to act as
the automated decision-making tool. To build and train this checker, a comprehensive
dataset is essential. Given the absence of suitable public dataset, we use a hybrid data
generation approach using both the SDV library and a large language model Gemini to
produce high-quality, synthetic datasets. The datasets are used to train and evaluate a
variety of machine learning models.

Both unsupervised and supervised learning models are evaluated for their performance
and suitability as the checker. Unsupervised models like Isolation Forest and Autoen-
coders are evaluated for their ability to detect anomalous data requests without prior
labeling. For supervised learning, classifiers such as Random Forest, Logistic Regression,
and Decision Tree are trained on a labeled dataset to predict whether a data request is
excessive. The models are evaluated using various metrics to identify the most accurate
and efficient solution for verifying data requests.

In conclusion, this work provides a functional and well-evaluated prototype that enables
data minimization from the user’s side. This approach fills the gap of user privacy within
decentralized identity frameworks.
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6.2 Conclusions

This work demonstrates that leveraging machine learning and artificial intelligence to
enhance data privacy within DI and SSI systems is feasible and promising. This the-
sis successfully designs, implements, and evaluates a restricted verifier prototype that
empowers users to verify data requests for compliance with data minimization principles.

The experimental results from our prototype show that supervised learning models sig-
nificantly outperform unsupervised learning models in this specific case. This is because
supervised models, trained on a labeled dataset, are able to learn the patterns that dis-
tinguish necessary from unnecessary data requests. In contrast, unsupervised models
performs well in domain-specific scenarios but have difficulty in complex situations.

Furthermore, the research proves that model performance can be significantly improved
through parameter fine-tuning. This process is crucial for achieving the higher accuracy
and precision in order to build a reliable and trustworthy system. The fine-tuned model
demonstrates the ability to accurately classify data requests.

The successful hybrid integration of the off-chain machine learning-based checker with an
on-chain smart contract shows that it is possible to leverage Al to enhance user privacy
without interfering the normal function of blockchain system. This approach addresses
the latency challenges associated with running machine learning algorithms, which makes
the solution practical for real-world practice.

6.3 Future Work

Future work can be done to further train more complex models to be the checker. Large
language models also are promising for classifying data requests. Embedding LLM into
checker will help it to handle more complex scenarios or corner cases.

This thesis provides a strong foundation for a machine learning-based restricted verifier,
but there are many aspects to improve and explore in the future work.

First, although the machine learning models evaluated in this work, such as Random
Forest, show good performance in detecting excessive data requests, more complex models
could potentially achieve higher accuracy and better generalization ability. For example,
deep learning models can discover more sophisticated patterns of data requests, allowing
it to handle a wider range of cases that are difficult for traditional classifiers.

Furthermore, LLMs present a particularly promising solution for enhancing the function-
ality of the checker. LLMs excel at understanding context and intent, which are crucial
for recognizing excessive data requests. Integrating an LLM into the checker would allow
it to actually understand the scenario instead of doing simple rule-based or feature-based
classification. This would allow the checker to handle complex scenarios and unforeseen
corner cases.
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Appendix A

Contents of the Repository

The code repository contains the following content: The project consists of mainly three
parts at the moment, including backend smart contracts, frontend React application and
Flask application.

Installation

We need to install hardhat and Flask for Credchain. In order to use SDV, we need to
configure the environment separately.

Operation

First, we need to compile and deploy smart contracts to the testnet. To do this, make sure
Hardhat is installed on your environment or install using npm install —save-dev hardhat
command. Once installed we can deploy contracts.

To deploy, start the hardhat node with npx hardhat node.

Open another terminal window and deploy the contracts using npx hardhat run —network
localhost scripts/deploy.js command.

Once the contracts deployed you can see the contract address in the node terminal (e.g.,
0x5fbdb2315678afech367f032d93f642{64180aa3).

Since we are deploying few contracts, each one of them will have different address. Right
now the deploy.js file contains all the deployment scripts that will be needed, but part of
it is commented out so the only contract that is being deployed right now is DID Registry.

Now we can start the frontend app. To do this call the npm start from the frontend
directory. The main logic is in /scr/App.js file and contains a simple app that interacts
with deployed DID registry.

To make sure the frontend can access the deployed contracts, for each contract we need
to compiled file to the /scr/utils directory. At the moment the only compiled contract is
represented by DID.json.
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For each deployed contract we also need to add contract ABI and its address in /src/u-
tils/constants.js file. Follow the same pattern as for DID Registry.

Then we can start the Flask application. python checker.py
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