
Design and Evaluation of Biometric
Data Management in

Blockchain-Based Self-Sovereign
Identities

Justin Verhoek
Zurich, Switzerland

Student ID: 18-750-661

Supervisor: Daria Schumm, Prof. Dr. Burkhard Stiller
Date of Submission: August 5, 2024

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland
URL: http://www.csg.uzh.ch/

Declaration of Independence

I hereby declare that I have composed this work independently and without the use of any
aids other than those declared (including generative AI such as ChatGPT). I am aware
that I take full responsibility for the scientific character of the submitted text myself,
even if AI aids were used and declared (after written confirmation by the supervising
professor). All passages taken verbatim or in sense from published or unpublished writings
are identified as such. The work has not yet been submitted in the same or similar form
or in excerpts as part of another examination.

Generative AI was employed to create the example biometric fingerprint data (minutiae
points). Additionally, a grammar correction AI program (Grammarly) was used to correct
the spelling and sentence structure.

Zürich,
Signature of student

i

ii

Zusammenfassung

Die Nutzung digitaler Identitäten, basierend auf zentralisierten Identitätsmanagementsy-
stemen, hat in letzter Zeit stark an Popularität gewonnen. Dies hat zu einem Anstieg
der Forschung im Bereich digitaler Identitätsmanagementsysteme geführt. Ein neuer, po-
tenzieller Ansatz ist die Nutzung von “Self-Sovereign Identity”(SSI)-Systemen, die eine
dezentrale Datenverwaltung unterstützen. Aktuelle Ansätze für Identitätsmanagementsy-
steme basieren auf biometrischen Daten zur Authentifizierung der Nutzer. Die Integration
biometrischer Daten in SSI-Systemen bereitet noch einige Probleme, insbesondere in Be-
zug auf Verknüpfbarkeit und Datenschutz.
Diese Arbeit schließt diese Forschungslücke, indem sie biometrische Daten privat und
sicher in ein blockchain-basiertes SSI-System integriert. Das Hauptziel ist die Implemen-
tierung und Bewertung eines SSI-Systems, welches die biometrische Authentifizierung der
digitalen Identitätsinhaber unterstützt, unter Berücksichtigung von Datenschutz und Si-
cherheit.
Das vorgeschlagene System nutzt hybride Verschlüsselung, um die Fingerabdruck-Minuzien-
Daten sicher zu speichern, und wird auf einem Ethereum-basierten Framework eingesetzt.
Das System basiert auf “Smart Contracts”, “Decentralized Identities”(DIDs) und “Veri-
fiable Credentials”, um ein funktionierendes SSI-System aufzubauen. Der Authentifizie-
rungsprozess der Verschlüsselung, Entschlüsselung und Vergleich der Fingerabdrücke wird
“Off-Chain”durchgeführt, um die Leistung und Sicherheit zu optimieren.
Das Design und die Implementierung werden anhand von Schlüsselmerkmalen wie Lei-
stung, Sicherheit, Datenschutz, Verknüpfbarkeit und Skalierbarkeit bewertet. Die Ergeb-
nisse zeigen die Sicherheit und den Datenschutz des vorgeschlagenen Systems bei effizien-
ter Leistung in Bezug auf die Authentifizierungszeit. Es wurden jedoch Herausforderungen
wie hoher Gasverbrauch, der zu hohen Transaktionsgebühren führt, und Skalierbarkeitsbe-
schränkungen identifiziert. Die Arbeit schließt mit Empfehlungen für zukünftige Arbeiten,
einschließlich der Optimierung des “Smart Contract”-Betirebs und der Erforschung alter-
nativer Speicherlösungen zur Bewältigung der idtenifizeirten Herausforderungen.
Diese Arbeit trägt zur laufenden Entwicklung sicherer, benutzerzentrierter, dezentraler
Identitätsmanagementlösungen bei, indem sie eine der ersten Implementierungen und
Bewertungen eines SSI-Systems unter Verwendung biometrischer Authentifizierung be-
reitstellt. Dadurch wird weitere Forschung angeregt und das Potenzial der Integration
biometrischer Daten in blockchain-basierte SSI-Systeme hervorgehoben.

iii

iv

Abstract

Digital identity usage relying on centralized identity management systems has recently
seen a huge increase in popularity. This has triggered an increase in research surround-
ing digital identity management systems. A potential remedy is the utilization of Self-
Sovereign Identity (SSI) systems, that support decentralized data management. Current
identity management system approaches rely on biometric data for the authentication
of users. However, there are still several challenges to overcome with the integration of
biometric data into SSI systems, especially in terms of linkability and privacy concerns.
This thesis fills this research void, by integrating biometric data privately and securely
into a blockchain-based SSI system. The main objective is to implement and assess an
SSI system utilizing biometric authentication of the digital identity holders while taking
privacy and security into account.
The proposed system utilizes hybrid encryption to securely store the fingerprint minutiae
data and is deployed on an Ethereum-based framework. The system relies on smart con-
tracts, decentralized identifiers (DIDs), and verifiable credentials to build a functioning
SSI system. The authentication process of encryption, decryption, and matching of fin-
gerprints are performed off-chain to optimize performance and security. The design and
implementation are evaluated based on key aspects such as performance, security, privacy,
linkability, and scalability.
The results indicate the security and privacy of the proposed system with efficient per-
formance in terms of authentication time. However, challenges such as high gas usage,
resulting in high transaction fees, and scalability limitations were identified. The work
concludes with future work recommendations, including optimizing smart contract oper-
ation and exploration of alternative storage solutions to mitigate these challenges.
This thesis contributes to the ongoing development of secure, user-centric, decentralized
identity management solutions, by providing one of the first implementations and evalua-
tion of an SSI system utilizing biometric authentication. Thereby steering further research
whilst highlighting the potential of integrating biometric data within blockchain-based SSI
systems.

v

vi

Acknowledgments

First and foremost, I would like to thank the Communication Systems Group and espe-
cially Prof. Burkhard Stiller and my supervisor Daria Schumm for the great opportunity.
More concretely I want to extend my sincere appreciation to Daria Schumm for her invalu-
able guidance, suggestions, and assistance throughout the writing and creation process of
my thesis.

Moreover, I would like to thank Amos Calamida, Robin Chan, and Sarina Grubenmann,
for their support, constructive feedback, and meticulous proofreading.

vii

viii

Contents

Declaration of Independence i

Zusammenfassung iii

Abstract v

Acknowledgments vii

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Goals . 1

1.3 Thesis Outline . 2

2 Fundamentals 3

2.1 Background . 3

2.1.1 Identity . 3

2.1.2 Self-Sovereign Identity . 6

2.1.3 Biometric Data . 9

2.1.4 Biometric Data in Self-Sovereign Identity Systems 10

2.1.5 Smart Contract . 11

2.1.6 Hybrid Encryption . 11

2.2 Related Work . 12

2.2.1 Biometric Template Protection in SSI systems 12

2.2.2 Biometric Template Protection in Blockchain 14

2.2.3 Summary of Related Work . 17

ix

x CONTENTS

3 Design 19

3.1 System Overview . 19

4 Implementation 23

4.1 Smart Contracts . 23

4.1.1 DID Registry . 24

4.1.2 Issuer Registry . 25

4.1.3 Credential Registry . 25

4.2 JavaScript Modules . 27

4.2.1 Credential . 27

4.2.2 Encryption . 29

4.2.3 Matcher . 31

4.2.4 Authenticator . 33

4.2.5 Client Listener . 36

5 Evaluation 39

5.1 Performance . 39

5.1.1 Gas usage . 39

5.1.2 Time . 41

5.2 Security . 42

5.2.1 Smart Contracts for Security . 42

5.2.2 Hybrid Encryption of Biometric Data 43

5.2.3 Authentication Process . 44

5.3 Privacy . 44

5.3.1 Linkability . 44

5.4 Scalability . 45

5.5 Comparison with Existing Solution . 45

5.6 Evaluation Summary . 47

CONTENTS xi

6 Final Considerations 49

6.1 Discussion . 49

6.2 Conclusions . 50

6.3 Future Work . 50

Bibliography 51

Abbreviations 55

List of Figures 55

List of Tables 57

List of Listings 59

A Installation Guidelines 63

xii CONTENTS

Chapter 1

Introduction

1.1 Motivation

The increased use of digital identities in various government services shows the need for
advancements in identity management systems. Self-Sovereign Identity (SSI) systems
emerge as a promising solution, representing the transition from traditional centralized
identity solutions toward decentralized self-sovereign data management. While conven-
tional solutions, such as eId and ePassports, rely on biometric data for identity verification,
the integration of biometric data into SSI introduces new challenges. An important issue
identified in recent research, such as in the work of Goodell and Aste [14], is the inherent
problem of linkability associated with the use of biometrics in SSI systems. Linkability
expresses the interconnectedness of transactions by the same identity holder, creating a
visible pattern and resulting in the formation of a permanent record. The linkability of
transactions introduces a potential privacy concern, as it allows for the tracing and record-
ing of an individual’s activities over time. This prompts the research and evaluation of
biometrics in SSI systems for identity verification. Addressing this issue requires careful
consideration of the overall system design as well as privacy-enhancing techniques utilized
within the system. Exploring solutions can help the evolution of SSI systems to poten-
tially mitigate the challenges associated with biometrics and contribute to establishing a
more resilient and privacy-centric digital identity landscape.

1.2 Thesis Goals

The primary objective of this thesis is to develop a solution utilizing biometric authenti-
cation in an SSI system, focusing on privacy and security concerns. To achieve this several
intermediate goals have to be met.
Firstly, the current state of research on the use of biometrics within the SSI context will
be explored through a literature review. Further, the linkability and privacy-preserving
mechanism of current solutions are to be investigated. Out of that research, a problem
statement to be investigated with the thesis has to be formulated. A privacy-preserving

1

2 CHAPTER 1. INTRODUCTION

mechanism has to be selected and the prototype architecture has to be designed. The
prototype has to be implemented thereby creating a functional SSI system. Finally, the
design and implementation must be evaluated based on security and privacy, scalability,
performance, and costs.

1.3 Thesis Outline

This project encapsulates a literature review on the essential concept, design, and imple-
mentation of an SSI system utilizing biometrics for authentication, as well as an evaluation
of that system. The aim is to develop a functional system and gain valuable insights from
it to guide future research.
First, the fundamental concepts required for the project are introduced. Then the related
work regarding the current state of research in SSI systems utilizing biometrics is dis-
played. Out of this related work, the thesis goal is formulated. For the fulfillment of the
thesis goal, a system has to be implemented. In the Design chapter, the overall design of
the system is explained. In the next chapter, the detailed implementation of that design
is discussed. Afterward, the evaluation chapter evaluates the design and implementation.
The thesis ends with final considerations regarding the work done and presents future
work.

Chapter 2

Fundamentals

This chapter introduces the fundamental concepts that form the basis for understanding
the research and implementation of Self-Sovereign Identity (SSI) systems utilizing bio-
metric data. The background section describes the essential concepts whilst the related
work section presents the current state of research on these concepts.

2.1 Background

2.1.1 Identity

Identity is a fundamental, complex concept studied and defined across various disciplines,
including philosophy, psychology, law, sociology, and computer science [30]. In essence,
identity is defined through the characteristics and attributes that uniquely distinguish one
individual from another over a lifetime. These characteristics can be personal information
such as name, date of birth, and social security number, but also behavioral and physical
attributes such as biometric features [30, 31]. In everyday life, identity plays an important
role, especially in the context of interactions with systems and authorities. Identity can
facilitate interactions, and enable trust and clear communication. Traditional means of
establishing identity rely on physical documents such as passports, driving licenses, and
birth certificates. A bank can, for example, verify the identity of a customer by examining
the authenticity of such a document. With the rise of digital technologies, it is increasingly
important to extend the concept of identity to encompass digital identity [4, 31].

2.1.1.1 Digital Identity

Digital identity is the digital representation of an entity, meaning a person or organiza-
tion. A digital identity includes all the information that uniquely identifies an entity and
all the mechanisms used to manage, control, and authenticate the information in digital
environments. A digital identity does not have to be the identity of a real person. It can
digitally represent fictional people, legal people, companies, or organizations. Not every

3

4 CHAPTER 2. FUNDAMENTALS

person has a digital identity and it is possible for one person to have multiple digital iden-
tities [10, 31]. Digital identities are essential for enabling online transactions, accessing
services, and interacting on online platforms. Online banking, email correspondence, and
streaming services are all dependent on the use of digital identities. To use these services
entities need to tie themselves to many unique digital identities, by using password/email
combinations [4]. Managing all these different identities on different platforms is chal-
lenging for users as well as service providers. Users have to remember countless different
password and username combinations, which can lead to security vulnerabilities if the
same combination is used multiple times. Service providers face challenges in ensuring
the security and privacy of that user data [4].

Digital identities have several essential components. Namely, attributes are pieces of
information about a person’s identity. These can include demographic information (e.g.,
age, gender, address), biometric data (e.g. fingerprints, iris scans), and behavioral patterns
(e.g., browsing history, typing patterns). Some attributes are inherent to that person,
while others have been assigned to that person by a third party (e.g., nationality) and
could potentially be changed [10]. A key characteristic of attributes is that they are
intended to classify an entity into a particular category. Two people can share the same
age which is an attribute of theirs, therefore multiple entities can share the same attribute
[10, 31].
Attributes that are able to point to a single digital identity record in a system are called
identifiers. Identifiers are unique labels or codes assigned to entities in digital identity
systems. As such, they are not intended to describe a person but rather used as a reference
to the real-world identity. A third party often assigns these identifiers depending on the
use case (e.g., the legal name of a person, social security number, or username). In other
instances the identifier can be a representation of a property of an entity (e.g. fingerprints
or other biometric attributes) [10, 30]. Not only can the use of an identifier make the
real-world entity identifiable in a system, but the combination of attributes that are not
identifiers can accomplish the same. By applying multiple attributes such as a person
with green eyes, SSO starting with the number 5, 25 years old, and living in Switzerland
an entity could be identifiable.

2.1.1.2 Identity Management Systems

An identity management system is a collection of tools, processes, and policies used to
manage digital identities within an organization or across organizational boundaries [12].
Identity management systems provide several fundamental operations including identifi-
cation, verification, authentication, and authorization:

1. Identification is the first step in the process of recognizing the user interacting with
a resource. It takes place when an entity claims a digital identity. It is typically
accomplished by providing a username, a unique ID, email, or some other unique
identifier [26].

2. Verification is also known as identity proofing. It is the process of confirming the
identifier is valid and is associated with an identity in the system [26].

2.1. BACKGROUND 5

3. Authentication is the process of verifying the identity of an entity before allowing
access to a particular system’s resources. This operation typically requires the entity
to present a token, password, or biometrics before accessing the protected resource
[26].

4. Authorization is the final operation granting access rights to an entity. This process
determines what resources can be accessed by the entity [26].

The combination of these processes working in tangent ensures that only allowed entities
have access to specific resources [26].

Despite the advantages offered by digital identity systems, there are many challenges.
Firstly, identity formation is a continually ongoing process, where a person’s identity is
developed over the whole lifetime, evolving as a result of interactions with the environ-
ment surrounding the person. For that reason, every identity management system must
be designed to support the flexible, resilient, and dynamic nature of human identity [30].
Further, many identity providers generate income by accumulating user data with limited
transparency. This data can be used to develop user analysis systems and can be sold to
advertisers. The users have no control over how the data collected from them is used and
stored. Currently, most online service providers follow their own set of data management
policies and practices with few restrictions which can lead to industry monopolies. These
data ownership and governance issues have led to the pursuit of new identity models,
processes, and regulations, to provide more control to the users and transparency over the
utilization and storage of personal data by service providers [26].
In today’s digital world, most data subjects are aware of the possibility of identity fraud,
and still, weak passwords for online accounts are highly prevalent. This is propelled by the
overwhelming amount of online services that need to be managed by a subject. Authenti-
cation through accounts from service providers such as Facebook or Google has surfaced
as an option to alleviate the complexity of account management [4, 26]. This so-called
OAuth solution allows users to create profiles on platforms through the use of a profile
from third-party providers [18]. For example, instead of creating a new account, a user
could use their Google account to create a new profile for themselves on the new platform.
However, this OAuth solution for account and password management decreases the user’s
control over their data. Additionally, losing the account will lead to the lockout of all
linked accounts. Finally, there is no visibility into the security practices of the companies
managing the account and malicious actors could compromise one authentication service
and gain access to all linked accounts [4, 26]. The most promising solution for the safe
authentication of users is the usage of biometrics [26]. The main advantages of biometric
authentication systems are that there is no need to carry tokes or remember passwords,
they are harder to circumvent, and they provide a stronger link between the subject and
the action [9].
Another challenge is that the users’ data is generating another income stream for service
providers in the digital economy which has led to the accumulation of data for single ser-
vice providers and the fragmentation of identity data among different service providers.
An average data subject has their data scattered on different platforms, with the privacy
and security of the data being entirely dependent on individual business strategies, goals,
and budget plans. The lack of universal standards and interoperability among platforms

6 CHAPTER 2. FUNDAMENTALS

has made it challenging for data subjects to store, obtain, remove, or share their personal
data [26].
Multiple enormous data breaches in recent years have shown the weakness of current
centralized data storage, used to store users’ sensitive identity information. Outdated
methods of authentication via physical identity documents introduce their own privacy
and security issues due to their sensitivity, as they may be falsified, altered, lost, or stolen
and are at the mercy of human error [26].

The above-described challenges have motivated research to explore novel concepts for digi-
tal identity management. The emergence of distributed ledger technologies and blockchain
has given rise to Self-Sovereign Identity systems as a possible solution for the aforemen-
tioned challenges.

2.1.2 Self-Sovereign Identity

The most predominant approaches to secure identity management focus on central providers
of identities, such as national authorities or online service providers [10]. Self-Sovereign
Identity (SSI) is a novel decentralized identity concept that enables users to fully control
and manage their digital identity. The identity holder controls their data and decides
under what conditions and how their data should be shared with others. The SSI model
empowers the identity holders by letting them selectively disclose identity information
in different contexts. This enables the owner of their digital identity to only disclose
the required identity information [26]. SSI is a novel concept that has grown from the
emergence of blockchain technologies and has no universal consensus [2]. Allen [2] lays the
groundwork for adopting SSI by establishing desired properties in a theoretical framework.
Namely, they point out ten properties which self-sovereign identities should possess:

1. Existence: Identities existence must be independent of any organization or authority

2. Control: The usage and storage of identity information must be in control of the
user

3. Access: Users must always have access to their identity data

4. Transparency: The system and its used algorithms must be transparent to the user

5. Persistence: Identities sustain existence over time as long as the users want

6. Portability: Identity information should be portable to any other service/platform

7. Interoperability: Identities should be usable across any services, platforms, and
international boundaries.

8. Consent: Any usage of identity information must be agreed to by the user

9. Minimalization: When data needs to be shared, the minimum amount should be
shared.

10. Protection: The user’s rights must always be protected

2.1. BACKGROUND 7

Allen [2] defines SSI in the following way. The user must be the central element in the
administration of identity. That entails the interoperability of a user’s identity across
multiple locations, as well as the user’s complete control of that digital identity. To
accomplish this, SSI must be transportable, meaning it cannot be locked down to one
site. An SSI system fully fulfilling the ten properties proposed by Allen [2] enables a
person to have full control over their digital identities regardless of living conditions,
including where the person lives, the person’s citizenship or chosen service providers for
social networks. SSI increases individual freedom in the digital space and counteracts
the oligopoly structure of the current internet, in which the “Big Five” (Apple, Microsoft,
Google, Amazon, Facebook) manage most of the digital identities [10].

2.1.2.1 Components of SSI

SSI is built upon several key building blocks. The SSI concept was established after the rise
of distributed ledger technologies. The key architectural requirements helping the realiza-
tion of SSI are decentralized identifiers (DID) and verifiable credentials [26]. Blockchain
technology, part of the distributed ledger technologies, provides a cryptographically se-
cure, decentralized, and distributed database of information. The blockchain enables
excluding central authorities and allows transactions to take place in a peer-to-peer net-
work without the reliance on a central authority [26]. Blockchain systems consist of an
immutable ledger, which consists of cryptographically hashed transactions. A group of
transactions forms a block. Each block contains a header referencing the hash of the pre-
vious block. This creates a chain of blocks where each block references the block before it
and gives the technology the name blockchain [26]. The transparency and immutability
of the blockchain provides a framework of trust and the opportunity for data storage dif-
fused among numerous entities. Leveraging blockchain technology has several advantages
for SSI systems. The decentralized nature of the blockchain allows data to be stored in
a ledger and not with a central entity. The immutability of the blockchain means trans-
actions have to be appended to the blockchain and can be verified by all the members of
the network. The distributed nature of blockchain complicates influencing the availability
and integrity of the data [26].
Decentralized Identifier (DID) is a new type of identifier, developed by the World Wide
Web Consortium (W3C) and a key component of the SSI model [29]. It was made for
a verifiable, self-sovereign digital identity that is interoperable across a range of different
systems. DIDs are URLs that lead to a DID Document, with information on how to use
the particular DID. In the context of SSI, a DID Document can specify a verification
method used for authentication [26].
A DID by itself can only be used for authentication. DIDs become particularly useful
combined with verifiable credentials or claims, which is another W3C standard. Verifi-
able credentials can be used to make any number of attestations about a DID subject [11].
These attestations can include certifications, granting DID subjects specific access rights.
A verifiable credential can, for example, attest that a bank has Know-Your-Costumer
(KYC) approved an individual to open a bank account, that an individual has been certi-
fied as eligible to drive or authorized to access certain programs [3]. A certifiable credential
contains the DID of its subject (bank customer), and the attestation (KYC approval) and
must be signed by the individual or entity making the claim (bank). Verifiable claims are

8 CHAPTER 2. FUNDAMENTALS

methods for trusted authorities to issue certified credentials to a specific DID. These DID
verifiable credentials are under the control of the DID subject and can be used at their
will independently of the authority providing the credential [30].
DIDs are made to work with many different systems and therefore do not require any
distributed ledger. Given the transparency and immutability of blockchain, personal
information should never be stored on the blockchain itself [26, 30]. But blockchain tech-
nology can be used to track the access of personal data, that is stored off-chain. This
makes it ideal for recording attestation or claims, and for the granting and revocation of
access to personal data [30].

2.1.2.2 Challenges of SSI

SSI solves several of the challenges concerning digital identity systems mentioned in
2.1.1.2. SSI offers the user control over their identity information, enabling flexible usage
of digital identities and therefore supporting the continual identity formation. The user’s
ability to share only selected information lessens the personal data gathered by service
providers. The decentralized structure of SSI systems makes the personal information
stored on digital identities much more secure, and the interoperability of the system en-
ables platform-agnostic usage.

SSI offers many advantages over centralized identity management systems and addresses
many of its problems. Still, as a novel concept, it has some challenges to overcome.
Namely, gaining control over the digital identities comes with additional administrative
efforts for the user. A core challenge is therefore ensuring solutions to help users deal with
this, ensuring SSI is not only usable but also practical and sufficiently comfortable [10].
Since SSI is supposed to be portable and support interoperability with different systems
standards for data management are crucial.
In contrast to traditional identity management models, where the identity providers are
primarily responsible for cryptography key management and its corresponding risks, in
SSI systems, this responsibility falls on the user. Helping users with key management
through the right technical support is a fundamental step towards the mass adoption of
SSI systems [26].
In the context of SSI systems relying on blockchain technology, privacy concerns around
identity data and issues around data correlation are important topics of discussion. SSI
systems deal with personal identity information, and blockchain is immutable and trans-
parent. Therefore, policies and practices around data management, user experience, and
data exchange should be carefully defined [26].
In an SSI system, a user can have multiple digital identities that they can use for multiple
different platforms. If malicious users gain control over a user’s profile, all of those digital
identities and connected profiles on other platforms could be in danger. Ensuring only
the rightful user has access to their digital identities becomes of the utmost importance
[26, 30]. For this reason, choosing the safest authentication system is essential. One
of the most promising and more widely available solutions is the use of biometrics for
authentication [4].

2.1. BACKGROUND 9

2.1.3 Biometric Data

Biometric technologies have been employed for the automatic authentication and iden-
tification of individuals at an increasing rate, because of advancements in modern tech-
nologies making them more accessible and their advantages over traditional methods [27].
Biometrics are defined by the International Standards Committee on Biometrics as the
automated recognition of individuals based on behavioral or biological characteristics [31].
Characteristics currently used for the recognition of individuals are finger and palm fric-
tion ridges, iris, face, voice, handwriting, hand shape, and hand vein patterns. These
biological characteristics are influenced by the behavior of the individuals, as such no bio-
metric characteristic is solely behavioral or biological, but always a combination of both.
[31]. Recognition is the key word in the definition, for the reason that to be recognized,
something has to be known beforehand. For biometric authentication to work, the bio-
metric has to be learned in a registration phase and stored. Biometric technology can
then classify whether it has encountered these biometrics before [31].
Biometric attributes have some significant differences from other forms of authentication
[31]. Traditional authentication schemes primarily rely on some form of token or some
other secret knowledge possessed by the user. These have several limitations, as they
identify the individuals indirectly. These approaches cannot differentiate between the
intended authorized user or a person having access to the password or token, whereas
biometrics directly identify the user [24, 31]. A person can easily share a PIN code with
another person to grant them access, but transferring biometrics is a whole other chal-
lenge. For identity systems non-transference of authorization makes them more secure, the
utilization of biometrics is therefore ideal [31]. In traditional authentication approaches,
non-biometric verifiers must match exactly. A PIN is not correct unless all digits match,
and a password requires the user to enter an exact match [31]. Because of variations in
human biology and physiological changes over time, biometric systems need to account for
some variations in the measurement of users’ biometrics. To have a working, biometric-
based authentication system, it is crucial to have some adjustment and robustness to the
variation of biometric data capture [27, 31].

A key advantage of biometrics as described above is the distinctive identification of the
user. At the same time, this is a great concern of biometric data, as they are universally
distinctive enough to identify persons. Resultingly, the data is extremely sensitive. Fur-
ther, individuals cannot choose their biometric data and cannot change them in the future
[14]. Tokens, PINs, or passwords can be revoked or reissued by system administrators. To
make systems more secure, a policy might require the change of PIN every 30 days. This
is not possible with biometrics as they are fixed to the user and cannot be changed [24,
31]. Tokens, PINs, and passwords can be application-specific and one can have different
ones for each application in use. This can ensure that if one digital identity associated
with a password is compromised, others would still be safe. Biometric attributes are fixed
to the user, one cannot have different ones for each application. The security of biometric
data is therefore essential, as compromised biometric data in one system makes every
other application secured with the same biometric vulnerable [24, 31]. For these reasons,
biometric data is considered highly sensitive data and needs careful privacy and secu-
rity considerations [14]. Therefore, the protection of biometric information is an essential
component of creating an identity management system.

10 CHAPTER 2. FUNDAMENTALS

Over the last two decades, several different biometric template protection (BTP) methods
have been developed [13]. To protect the privacy of individuals, the ISO/IEC Interna-
tional Standard 24745 [16] has defined four criteria for each biometric template protection
scheme. First, the protection should not greatly degrade the performance of the biomet-
ric authenticating system (performance preservation). Second, it should be impossible to
reconstruct the original template from the protected template (irreversibility). Third, if a
protected template is compromised it should be possible to revoke the protected template
and create a new protected template (revocability). Fourth, linking biometric templates
across different applications or databases should not be possible (linkability).
Linkability of biometric data can be defined as follows: two templates are fully linkable if
there is a method to detect they were extracted from the same biometric template [13].
The linkability of biometric data is a serious privacy and security threat. It enables the
collection of the personal data of individuals by malicious, unauthorized groups or users.
This personal data can be linked and analyzed with data from other applications, leading
to a loss of control for the user. This analysis of user data can lead to the identification of
the user. Biometric identification is therefore much more susceptible to the risks of iden-
tity theft and fraud [13, 23]. The problems raised by linkability show, why it is essential
to address the linkability of biometric data in identity management systems.

2.1.4 Biometric Data in Self-Sovereign Identity Systems

SSI systems are based on distributed ledgers allowing participants to share control of the
system. They also provide a shared public view of transactions ensuring every participant
sees the same transaction history. This shared transaction history enables the decentral-
ized safety of the systems but makes the protection of personal information shared in
the transaction history essential. The information in the shared history enables malicious
users to link transactions of the same participant taking these users’ control over informa-
tion away. The key aspect of SSI is that users can fully control and manage their digital
identity. Users can choose what identity information (name, age, social security number)
they want to share and with whom they want to share it [7]. This selective disclosure of
information claims provides privacy preservation. If service providers can link claims to
the same owner across multiple consecutive presentations or through collusion with other
service providers the owner’s right to privacy is destroyed [17]. Not only is linkability a
privacy and security concern, but it also breaks four of the desired properties of Allen
[2] namely control, consent, minimalization, and protection. As such, linkability can lead
to the loss of self-sovereignty of users in an SSI system as they lose control over their
information, the basic concept of SSI.

The binding of identification with a biometric characteristic that users cannot change
implicitly prevents users from utilizing the system without introducing linkability [14].
The linkability of the biometric data compromises this digital identity but could endanger
any digital identity registered with the same biometric information in the past or the
future. Linkability of biometric data in SSI systems suffers from the same issues as normal
identity systems but additionally threats to the fundamental properties upon which SSI is
built. Designing an SSI system utilizing biometrics needs to integrate protection schemes
against linkability.

2.1. BACKGROUND 11

2.1.5 Smart Contract

The term smart contract refers to the code scripts that execute certain tasks synchronously
on multiple nodes of a decentralized distributed ledger (blockchain). Smart contracts are
executed in a network of nodes without the need for an external authority [34]. For that
reason, the code of a smart contract can facilitate a transaction or contract between two
parties without reliance on a trusted third party. Smart contracts still have some limita-
tions in terms of the lack of general-purpose libraries, limited support for debugging, and
issues concerning the performance [34]. As smart contracts are deployed on blockchains
they need to be executed and validated by each node making all transactions visible to the
blockchain network. As a result, the transaction costs especially for those with complex
computation can be high and the validation of transactions may take a long time [34].

The Ethereum blockchain has become one of the most popular blockchains for smart con-
tracts. The Ethereum Virtual Machine (EVM) allows the execution of scripts using an
international network of public nodes. Ethereum has its own internal pricing mechanism
for all network transactions. Gas is the measure of how much computing power a trans-
action would need. Users have to pay gas fees in Ethers (ETH) for each transaction they
make and if transactions run out of gas they fail [6].

2.1.6 Hybrid Encryption

Data encryption is a technology that allows two parties, a sender and a receiver, to
communicate while the information shared between them is transformed according to
agreed-upon rules [33]. According to certain rules, the message is transferred between the
plaintext and the ciphertext. The process of transforming the plaintext into ciphertext
is called encryption. Similarly, the process of converting the ciphertext into plaintext is
called decryption. There are various encryption algorithms that can be split into two main
categories: symmetric encryption algorithms and asymmetric encryption algorithms [33].

Symmetric encryption refers to an encryption algorithm that uses the same key for both
encryption and decryption. It can therefore be called private key encryption. In the
symmetric encryption process, the data sender possesses the plaintext and the encryption
key to generate the ciphertext. To be able to read the original text the recipient of the
ciphertext has to perform the decryption with the same encryption key. The result should
be the original readable plaintext. In this system both the sender and receiver necessitate
the key. It requires the receiving party to be in possession of the secret key in advance
[33].

Asymmetric encryption algorithms use a pair of keys, a public key and a private key. The
private key is kept safe with the receiver party and cannot be shared with anyone, while
the corresponding public key can be shared with anyone requesting it. A message sender
can use the public key to encrypt the plaintext. The receiver can decrypt the ciphertext
with the private key [33].

Both approaches have advantages and disadvantages. Symmetric encryption algorithms
are very efficient and diversely usable. It requires less computational power and has

12 CHAPTER 2. FUNDAMENTALS

a relatively higher speed of encryption and decryption while processing. This makes
symmetric encryption more suitable for large data volumes. Yet, symmetric encryption
also has severe drawbacks. Due to the key being used for both encryption and decryption,
the security cannot be guaranteed. Once the secret key is intercepted and known by an
attacker the communication process is unsafe. Additionally, the management of secret
keys can be troublesome. For each new transmission, a new key is needed and these keys
need to be shared safely. This key management is a burden for users [33].
The asymmetric encryption approach is a very secure method for data encryption and
decryption. The key management system is much simpler as a user only has to keep his
own private key secret and safe. But compared to symmetric encryption the asymmetric
encryption algorithm is comparably slow. Further, some algorithms only allow a certain
length of plaintext to be encrypted. It is therefore only suitable for encrypting small
amounts of data [33].

The hybrid encryption approach aims to combine the advantages of both algorithms.
In the hybrid encryption approach, the message plaintext is encrypted with the secret
symmetric key. The public key of the receiver is used to encrypt the symmetric key. Both
the message ciphertext and the encrypted symmetric key are sent to the receiver. The
receiver uses their private key to decrypt the encrypted symmetric key. With the decrypted
symmetric key the receiver can decrypt the ciphertext to get the original plaintext. This
hybrid scheme leverages the high speed of symmetric encryption and the high security of
asymmetric encryption [33].

2.2 Related Work

2.2.1 Biometric Template Protection in SSI systems

With the emergence of decentralized technologies and the security advantages they pro-
vide, the concept of self-sovereign identity systems has gained momentum. The use of
biometrics for authentication and security has risen enormously in recent years, due to
the availability of biometric sensors in smartphones. Because of the sensitive nature of
biometric data, protection of the data is a crucial issue. Biometric template protection
refers to safeguarding individuals’ biometric data, such as fingerprints or facial recogni-
tion patterns, against unauthorized access and misuse. If malicious actors gain access
to the biometric template all services secured by the template are breached and because
the biometric can never be changed, all future services with the same biometric template
will be vulnerable. Making sure the original biometric template is secured is essential for
every identity management framework based on biometrics [9, 31]. Because of the novelty
of self-sovereign identity systems, there are few works on the combination of biometric
template protection and SSI.

Current identification and identity-providing systems rely on centralized databases which
offer a single point of compromise, which is a direct threat to users’ digital identities. The
Horcrux protocol proposed by Othman and Callahan [22], provides a method for the secure
exchange of biometric credentials within the IEEE 2410-2017 Biometric Open Protocol

2.2. RELATED WORK 13

Standard (BOPS) implemented across self-sovereign identity platforms using DIDs and
DID documents. This decentralized approach enhances the security of digital identities.
However, the protocol was never implemented, and as such the performance, correctness,
security, and privacy of the protocol have not yet been concretely investigated.
Bathen et al. [4] propose a novel approach called Self-Sovereign Biometric IDs (SelfIs),
which combines concepts such as decentralization, cancelable biometrics, bloom filters,
and machine learning to create a solution for using biometric data. SelfIs gives control
over digital identity back to the user. The biometric template is transformed with a
one-way function, which in theory is irreversible, meaning one cannot get the original
biometric template once it has been transformed. If an attacker can steal the transformed
biometric data he or she cannot carry out replay attacks. The transformation of the raw
biometric template creates pseudo-biometrics, which enhances the security and privacy of
the raw biometric template.
Hamer et al. [15] propose the Unique Self-sovereign Identity (USI), combining Cancelable
Biometrics with W3C Verifiable Claims [29]. The approach provides privacy-preserving
and non-linkable identification, guaranteeing no double enrolments. The system only al-
lows one identity per person as it is intended for the services of organizations such as
governments or healthcare.
Bathen et al. [4] initially proposed the use of pseudo-biometrics in blockchain, but Mishra
et al. [21] raises concerns over the architectural design of the solution, as well as the use of
bloom transformation, which can suffer from invertibility and linkability attacks. Because
of that and the sensitive nature of biometric credentials, Mishra et al. [21] develops a
novel framework to build self-sovereign and revocable pseudo-biometric identities. The
approach utilizes the combination of Random Distance Method (RDM) cancelable trans-
form, Decentralized Identifiers (DID), and BOPS server to create a secure environment
for identity management. The convergence of biometric authentication with SSI systems
marks a shift towards decentralized technology, granting users greater control over their
digital identities. Several protocols to ensure the security and safety of the biometric
data in SSI systems have been proposed, but all of them lack concrete performance and
linkability analysis to guide further research in the right direction.

Table 2.1: Summary of papers discussing privacy solu-
tions for biometrics in SSI systems

Paper
Reference

Issue Solution Future Work

Othman
and

Callahan
[22]

• Traditional authentication and
identity-providing systems are a
security risk

• Identity information stored in a
centralized structure

• Decentralized authentication
and storage based on DIDs
and BOPS.

• Users have full control over
their digital identities
enabling SSI.

• Reference
Implementation
of the protocol

• Analysis of
performance

Continued on next page

14 CHAPTER 2. FUNDAMENTALS

Table 2.1 – continued from previous page
Paper

Reference
Issue Solution Future Work

Bathen
et al. [4]

• Use of biometrics has seen a huge
increase, because of easier
availability

• Once an attacker has a biometric
template replay attacks can be
carried out

• SelfIs based on
decentralization, cancelable
biometrics, bloom filters and
machine learning

• Privacy-first solution for
using biometrics in SSI
systems

• Low accuracy
with live data
shows the model
needs to be
further
developed for
real use

Hamer
et al. [15]

• Identifications systems allowing
at most one identity exchange of
verifiable documents is necessary.

• The same basic information
gathered for identification in
every systems makes persons
linkable across different systems.

• Individuals are no longer in
control over how their identity is
used.

• Unique Self-Sovereign
Identity (USI) based on
Canelable Biometrics and
Verifiable Claims.

• Utilization of biometrics
allows users to register
without official
documentation.

• Achieve privacy preserving
an non linkable
identification, assuring non
double enrolment.

• Improve the
performance of
biometric
identification

• Reference
implementation

• Security,
linkability
analysis

Mishra
et al. [21]

• Biometrics in combination with
SSI has huge potential but risks
biometric templates.

• Until now only Bathen et al. [4]
propose use of pseudo-biometrics.
The approach has drawbacks in
terms of accuracy and submitting
the pseudo-biometric to a third
party.

• Random Distance Method
and DIDs are used to create
pseudo-biometric identities.

• Solution Ensures safety
whilst having good
performance accuracy.

• No further work
mentioned.

• No security
analysis
performed

2.2.2 Biometric Template Protection in Blockchain

Biometric template protection is not only critical for SSI systems but also for other
blockchain-based identity management systems. While SSI systems promise the users
full control over their digital identities, blockchain-based systems in general leverage de-
centralized technology for data security and to some extent user sovereignty. Whilst these
systems do not follow all the SSI principles to the fullest, they promote the sovereignty
of the user and discuss the importance of robust safety protocols for biometric data.

Liu, Sun, and Schuckers [19] designed and built a new identity management frame-
work that integrates a user’s transformed biometric data to smart contracts through the
Ethereum blockchain platform. The framework addresses the problems of traditional,
centralized, biometric-based identity management systems such as data security and the
users’ loss of control. The approach enables data security by utilizing the distributed

2.2. RELATED WORK 15

public ledger, guarantees privacy by using private storage for sensitive biometric data,
and facilitates self-sovereignty by using smart contracts.
The combination of blockchain and biometrics offers tremendous upside as both tech-
nologies could improve each other, while the challenge of biometric template storage and
protection remains. Delgado-Mohatar et al. [9] analyzes the latency, processing time,
economic cost, and biometric performance of integrating biometric data on the Ethereum
blockchain platform using smart contracts. The experimental study shows that template
protection can preserve the privacy of the templates and even improve biometric matching
accuracy concerning unprotected templates.
Smart contracts add functionality to blockchain platforms but can suffer from double-
spending attacks. Bisogni et al. [5] propose an encryption scheme using facial biometrics
to authorize and sign transactions in smart contracts. This ensures malicious users remain
punished and cannot continually violate the laws of the network. In the approach, the face
is used as a biometric key, encoded with the Convolutional Neural Network (CNN), fused
with an RSA key by using the Hybrid Information Fusion algorithm (BNIF), leading to
a combined key.
Biometric authentication is the preferred authentication scheme in modern systems be-
cause of its usability. Such systems require the careful handling of biometric templates.
Toutara and Spathoulas [28] propose a distributed scheme where the centralized database
is replaced by a combination of Ethereum/IPFS in which the user’s biometric templates
are stored in transformed and encrypted form. This approach allows any third-party ser-
vice to securely authenticate users without exposing the biometric template.
Acquah et al. [1] further propose an approach featuring the combination of Ethereum
with the IPFS. In this method fingerprint templates are encrypted by the symmetric key
algorithm: Advanced Encryption Standard (AES) and uploaded to the IPFS, while only
the template hash is stored on the Ethereum network. The structure was proven to be
feasible in terms of economic, performance, and security viewpoints.
Dalal et al. [8] proposes an approach for the verification of identity and educational cer-
tificates of students using biometrics and blockchain. In the proposed solution students
submit a hash of their biometric and a unique phrase, this hash as well as the college
certificate will be stored on the blockchain. Other college authorities can fetch a student’s
previous certificates using the hash of biometrics as well as the unique phrase. The project
aims to help authorities with the efficient authentication of identity and past educational
certificates.
Sharma, Saini, and Chaudhury [25] propose a multimodal biometric authentication scheme
using decentralized fuzzy vaults relying on Blockchain technology. The combination of
these technologies ensures the privacy of the user’s biometric template. A security analy-
sis of the scheme validated that the biometric template fulfills irreversibility, unlinkability,
and revocability criteria.
Researchers have explored various methods to integrate biometric data into blockchain-
based identity systems, addressing issues of data security, user control, and privacy. This
investigation encompasses an in-depth analysis of performance, security, and privacy as-
pects, evaluating economic costs, processing time, and latency associated with storing
biometric data on blockchain platforms using smart contracts.

16 CHAPTER 2. FUNDAMENTALS

Table 2.2: Summary of papers discussing applications of
biometrics in the blockchain

Paper
Reference

Issue Solution Future Work

Liu, Sun,
and

Schuckers
[19]

• Traditional biometric-based
identity management
systems store biometric data
on centralized databases.

• Users have no control over
how their data is used.

• Structure a risk for the
sensitive data in terms of
security and privacy.

• Integrate users’ transformed
biometric data to smart
contracts on the Ethereum
blockchain.

• Privacy is preserved through
personal storage of
biometrics on the IPFS

• Flexible programming of
smart contracts enables
self-sovereignty

• Implementation of
DIDs to enhance
the framework’s
capabilities.

Bisogni
et al. [5]

• Smart contracts need to be
secure, fast and more
user-friendly to be adapted
in the future.

• Preventing double-spending
and ensuring authenticity in
blockchain transactions is a
challenge.

• Incorporate face biometrics
and RSA encryption into
Smart Contract transactions
to enhance security and
transparency.

• Integrate other
biometric
attributes.

• Improve user
experience during
template creation.

Toutara
and

Spathoulas
[28]

• Security and privacy
vulnerabilities associated
with the centralized storage
of biometric templates in
traditional authentication
systems.

• Centralized database
replaced by a combination of
Ethereum/IPFS

• Biometric templates are
stored in transformed and
homomorphically encrypted
form.

• Allows secure authentication
without exposing actual
biometric data

• Analyze the
security
parameters and
costs of the
protocol

• Potentially refine
the protocol

Acquah
et al. [1]

• Traditional fingerprint
recognition systems possess
security vulnerabilities
because of their centralized
structure.

• Centralized databases are
controlled by a central
authority

• Encrypted fingerprint
templates are stored on the
Ethereum blockchain in
conjunction with the IPFS.

• Templates are hashed and
stored on the IPFS, only the
hashes are stored on the
Ethereum blockchain.

• Derive a robust
hashing function
for different types
of blockchains.

Continued on next page

2.2. RELATED WORK 17

Table 2.2 – continued from previous page
Paper

Reference
Issue Solution Future Work

Dalal
et al. [8]

• Current methods of verifying
student identities and
educational certificates
possess inefficiencies and
vulnerabilities.

• They rely on manual
verification processes and
centralized databases prone
to security breaches.

• Blockchain-based systems
where students register with
personal data and biometric
information

• Hashes of certification issued
by colleges, along with
students’ biometrics are
stored on the
blockchain/IPFS.

• Implementation of
the verification
systems using
biometrics and
the Ethereum
blockchain.

• Analysis of the
implemented
system.

Sharma,
Saini, and
Chaud-
hury [25]

• Protect users’ biometric
templates from unauthorized
access and ensure the
reliability of biometric
authentication systems
against different types of
attacks

• Attacks include
reverse-engineer encrypted
templates, link protected
templates to individuals,
brute force and zero-effort
attacks.

• Multimodal biometric
authentication scheme
leveraging fuzzy vault to
securely store biometric
templates

• Framework was analyzed in
terms of security,
irreversibility, unlinkability
and revocability and
validated in all those
aspects.

• Address
scalability
challenges by
exploring
implementation
on blockchain
platforms such as
Hyperledger.

• Integrate the
framework with
SSI systems and
digital wallets.

2.2.3 Summary of Related Work

Goodell and Aste [14] raise concerns about potential linkability associated with the use
of biometric data in SSI systems, leading to security and privacy issues. Some research
has addressed enhancing the security of biometric data in SSI systems, by incorporating
biometric template protection. A significant gap remains in the analysis of the security
and practical feasibility of these proposed systems. Research focusing on biometric tem-
plate protection in blockchain has presented several approaches while also analyzing the
solutions. This shows the current lack of research analyzing the security-enhancing so-
lutions of biometric data in SSI systems. The goal of this thesis is to present a solution
that reduces the linkability of biometric data in an SSI system and perform an analysis
in terms of performance, scalability, security, and privacy aspects.

18 CHAPTER 2. FUNDAMENTALS

Chapter 3

Design

The related works have shown that biometrics are only included in SSI systems as a form
of authentication. This chapter proposes the design of a system making use of biometrics
for the authentication of the DID holder, by presenting the system on various levels of
abstraction.
In the proposed system a user submits their biometric when creating a DID. The biometric
information is encrypted and stored on the DID Doc. An issuer can add a credential to
the DID. If the holder of the DID wants to present this credential to a verifier they need
to authenticate themselves via biometrics. The submitted biometric is compared to the
stored one. If the records match, the user will be identified as the original holder of the
DID and can present the credential to the verifier.

A real-world example use case in which the system can be used is the following: A person
(user/holder) creates a DID and registers it with his biometrics. The person has just
finished their degree at a university. The university (issuer) issues a credential to the
person by issuing the credential to the DID. While applying for jobs potential employers
(verifier) want to verify the degree. The person can show proof of the degree by presenting
the credential issued to their DID. To be able to present the credential the person must first
authenticate themselves by submitting their biometrics. If the authentication confirms the
identity, the person will be able to present the credential to the potential employer who
in turn can verify the credential.

3.1 System Overview

Figure 3.1 shows an overview of the enrollment phase of the proposed system. A user regis-
ters the biometrics transforming them into biometric data, that is subsequently encrypted.
With this encrypted information the DID is created and stored on the blockchain. An
issuer is then able to issue a credential to the DID, which is also stored on the blockchain.

19

20 CHAPTER 3. DESIGN

Figure 3.1: System overview of enrollment phase

Figure 3.2: System overview of authentication phase

Figure 3.2 shows an overview of the authentication process in the proposed system. The
user wants to present a credential, in order to do so the user needs to pass authentication to
ensure the user is the individual who created the DID in the first place. The user therefore
requests the credential and presents the biometrics. An authenticator compares the stored
biometrics with the newly presented biometrics and if they match grants the user the
credentials. If the biometrics do not match the user is denied access to the credentials

3.1. SYSTEM OVERVIEW 21

and cannot present them to a verifier. The user can then present the credentials to a
verifier, who can then verify them.

In Figure 3.3 the detailed sequence of the enrollment phase of the proposed system is
depicted. The user submits a fingerprint and the minutiae points are generated (fmp1).
The fmp1 data is then encrypted with a symmetric key. Following that the encrypted
fmp1 data is split into two parts share 1/2 and share 2/2. The symmetric key is encrypted
with a public key of the authenticator in the system. Share 1/2 and the symmetric key
are stored locally on the device. A DID is then registered to the user with the share 2/2
being saved on the DID Doc.
An issuer is able to generate a credential for any given DID. If a user earns or deserves
a certain credential the issuer can create the credential and save it to the DID of the
user. In the end, the user has the share 1/2, the DID ID, and the symmetric key. The
enrollment phase consists of creating a DID, enabling biometric authentication, for the
user, and adding credentials from an issuer to the DID.

Figure 3.3: Sequence diagram of the enrollment phase of the proposed system

Figure 3.4 shows the detailed sequence of the authentication phase of the proposed system.
If a user wants to present the credentials, the user first needs to receive them. A user has
to retrieve the DID, the associated share 1/2, and the encrypted symmetric key. The user
has to present a fingerprint from which the minutiae points are generated (fmp2). The
fmp2 data is encrypted using the same symmetric key as in the enrollment phase. The user

22 CHAPTER 3. DESIGN

requests the credential and submits the share 1/2, the encrypted symmetric key, and the
encrypted fmp2. An authenticator receives a request for the authentication containing this
information. The authenticator requests the info from the DID to receive the share 2/2.
The authenticator decrypts the encrypted symmetric key with his private key. Once the
authenticator has both shares 1/2 and 2/2, they are combined back together, forming the
original encrypted fmp1. Afterward, the authenticator uses the symmetric key to decrypt
the encrypted fmp1 and fmp2 data to obtain the decrypted fingerprint minutiae data.
The two sets of minutiae points fmp1 and fmp2 are then compared and the authenticator
checks whether they match. If they match the user gets the credential and is able to
present it. If they do not match the user was not successfully authenticated and the
access to the credential is denied.

Figure 3.4: Sequence diagram of the authentication phase of the proposed system

Chapter 4

Implementation

This chapter discusses the implementation of the design of the system presented in the
previous chapter 3. The implementation of the design was built on a preexisting codebase
provided by CredChain Project1. The codebase provided the base structure for the imple-
mentation to be built upon. This code was changed and extended to implement biometric
authentication in an SSI system2. The system’s smart contracts are coded with Solidity
whilst the rest of the code is written with JavaScript.
Deploying and managing the Ethereum smart contracts is done using the Hardhat devel-
opment environment. Additionally, Node.js is used to handle server-side operations and
integrate various functionalities within the project. To help with encryption and Ethereum
smart contract interactions, the implementation leverages the web3.js libraries3 and the
Node.js crypto module4.

Overall, the system implementation is as follows, the user creates a DID and saves part
of the encrypted biometric data on that DID. The issuer can add a credential, which is
created with the issuer’s public key (address). If the user wants to present that credential
they need to be authenticated. If the authentication is successful the user is granted the
credential and is able to present it to a verifier. This verifier can check the credentials by
obtaining the issuer’s public key from the credential signature. If this public key matches
the expected issuer’s public key the credential is validated. This implementation ensures
the incorporation of biometric authentication into a basic SSI system.

4.1 Smart Contracts

The smart contracts form the foundation of the SSI system. They manage DIDs, credential
issuance, and authentication transactions. In this section, the essential smart contract files
and their interactions are discussed.

1https://github.com/schummd/credchain
2https://github.com/jverho/SSI-Biometric-Authentication
3https://web3js.readthedocs.io/en/v1.2.11/index.html
4https://nodejs.org/api/crypto.html

23

https://github.com/schummd/credchain
https://github.com/jverho/SSI-Biometric-Authentication
https://web3js.readthedocs.io/en/v1.2.11/index.html
https://nodejs.org/api/crypto.html

24 CHAPTER 4. IMPLEMENTATION

4.1.1 DID Registry

The Listing 4.1 shows the DID Registry smart contract written with Solidity that handles
the DIDs and their basic functionalities. After the smart contract is deployed, the DID
Registry allows the creation of DIDs. This is done with the register() function that
is shown in Listing 4.1. The function requires the Ethereum address of the user, the
DID method, and the encrypted biometric information as inputs. It then adds all the
information to a DID Doc, which in this simplified system is a struct saved on the same
smart contract. The register function ensures that each Ethereum address can only have
one DID. Once the register function is used the DID is created for the address the user
specified. The getInfo() function can be used to get the stored additional info. It
is used by the Credential Registry contract, discussed in 4.1.3 when the user requests
authentication.

1 // SPDX -License -Identifier: MIT

2 pragma solidity ^0.8.9;

3
4 contract DID {

5
6 struct DDO { // DID Document

7 address id; // ethereum address of

identity owner

8 address owner; // original identity owner

9
10 string did; // did method

11
12 string additionalInfo; // field to store

information for authentication

13 }

14
15 mapping (address => DDO) private identity; // DID has a single DDO

16 mapping (address => bool) registered;

17
18 modifier onlyOwner (address _id) { require(msg.sender == identity[

_id].owner); _; }

19
20 function register(address _id , string memory _did , string memory

_additionalInfo) public {

21 require(registered[_id] == false , "the DID document already

exists");

22 registered[_id] = true;

23 identity[_id].id = _id;

24 identity[_id].owner = msg.sender;

25 identity[_id].did = _did;

26 identity[_id]. additionalInfo = _additionalInfo; // Store the

additional information

27 }

28
29 function getInfo(address _id) public view returns(string memory) {

30 return identity[_id]. additionalInfo;

31 }

32 }

Listing 4.1: DID Registry smart contract

4.1. SMART CONTRACTS 25

4.1.2 Issuer Registry

The Issuer Registry contract shown in Listing 4.2 is used to maintain a registry of issuers.
These issuers give DID holders specific credentials. Issuers can be added and deleted to
the registry with the appropriate functions. The checkIssuer() function allows checking
whether the address submitted as an input is the address of an issuer in the registry.

1 // SPDX -License -Identifier: MIT

2 pragma solidity ^0.8.9;

3
4 contract IssuerRegistry {

5
6 mapping(address => bool) public registry;

7
8 function addIssuer(address _address) public {

9 registry[_address] = true;

10 }

11
12 function deleteIssuer(address _address) public {

13 delete registry[_address];

14 }

15
16 function checkIssuer(address _address) external view returns(bool) {

17 if (registry[_address]) { return true; }

18 return false;

19 }

20 }

Listing 4.2: Issuer Registry smart contract

4.1.3 Credential Registry

The Credential Registry is the smart contract that controls the credentials that can be
added to DIDs. The credential is a verifiable claim that a verifier can verify by checking
the signature. The code in Listing 4.3 shows the Credential Registry contract. It requires
the import of the DID Registry contract because the getInfo() function from the DID
Registry contract is used, in the function requestAuthentication() (cf. Listing 4.4).
The DID Registry is saved as a state variable of type ’DID’ representing a reference to an
instance of the ’DID’ contract. The Credential Registry can use this reference to interact
with the ’DID’ contract and call functions from it.

The two events CredentialIssued and AuthenticationRequest are declared when the
contract is deployed. The events are used and emitted in the requestAuthentication()
(Listing 4.4) and handleAuthenticationResult() (cf. Listing 4.5) functions.

The struct Credential is the part of the code that saves the credential information ensuring
each credential has a unique ID. The addCredential() function in Listing 4.3 enables
adding credential information to a given DID. The function only saves all the information
for the credential. The credential itself is created in the JavaScript file credential.js

with the function generateCredential() (Listing 4.6), which is discussed in 4.2.1.

26 CHAPTER 4. IMPLEMENTATION

1 // SPDX -License -Identifier: MIT

2 pragma solidity ^0.8.9;

3
4 import "./ DIDRegistry.sol";

5
6 contract Credentials {

7 DID private didRegistry;

8
9 event CredentialIssued(bool result , address indexed user , string

issuer , string holder , string credHash , string signature);

10 event AuthenticationRequest(address indexed user , string _credId ,

string submittedInfo , string storedInfo , string localInfo , string

key);

11
12 constructor(address _didRegistry) {

13 didRegistry = DID(_didRegistry);

14 }

15
16 struct Credential { // verifiable claim

17 string id;

18 string issuer;

19 string holder;

20 string credHash;

21 string signature; // issuer signature of the

credential

22 bool uploaded; // true: the ID is used and

information uploaded

23 }

24
25 mapping (string => Credential) private credential;

26
27 function addCredential(string memory _id , string memory _issuer ,

string memory _holder , string memory _credHash , string memory

_signature) public {

28 require (credential[_id]. uploaded == false , "credential already

exists");

29 credential[_id].id = _id;

30 credential[_id]. issuer = _issuer;

31 credential[_id]. holder = _holder;

32 credential[_id]. credHash = _credHash;

33 credential[_id]. signature = _signature;

34 credential[_id]. uploaded = true;

35 }

36 }

Listing 4.3: Part of the Credential Registry smart contract

The requestCredential() function in Listing 4.4 is called by a user wanting to authen-
ticate themselves. It takes the userID and the credentialID as inputs, as well as the
submittedInfo which is the encrypted authentication biometric (encrypted fmp2), the
localInfo (share 1/2), and the encrypted symmetric key. The explanation of what is en-
crypted and how can be found in 4.2.2. To get the encrypted biometric information (share
2/2) that is stored on the DID Doc the getInfo() function is used. All this information
is used and given as inputs to the AuthenticationRequest event that is emitted. This

4.2. JAVASCRIPT MODULES 27

event is caught by the authenticator which uses the information passed in the event to
carry out the authentication. The authenticator is discussed in 4.2.4.

1 function requestCredential(address _id , string memory _credId , string

memory _submittedInfo , string memory localInfo , string memory key)

public {

2 string memory storedAdditionalInfo = didRegistry.getInfo(msg.

sender);

3 emit AuthenticationRequest(_id , _credId , _submittedInfo ,

storedAdditionalInfo , localInfo , key);

4 }

Listing 4.4: Request credential funciton from the Credential Registry smart contract

The handleAuthenticationResult() function is called by the authenticator to emit the
result of the authentication. If the authentication was successful and the fingerprints
matched, the function will emit the CredentialIssued event, with the result true, the
credential information containing the issuer address, the holder address, the credential
hash and the signature of the credential, that is created in the generateCredential()

function (Listing 4.6). If the fingerprints do not match the authenticator emits the event
with the result false and no additional information.

1 function handleAuthenticationResult(address _id , string memory _credId ,

bool _result) public {

2 if (_result) {

3 emit CredentialIssued(_result , _id , credential[_credId].

issuer , credential[_credId].holder , credential[_credId].

credHash , credential[_credId]. signature);

4 }

5 else{

6 emit CredentialIssued(false , _id , "-", "-", "-", "-");

7 }

8 }

Listing 4.5: Handle authentication result function from the Credential Registry smart
contract

4.2 JavaScript Modules

The JavaScript modules facilitate the creation and verification of credentials, manage the
hybrid encryption and decryption processes, and handle the authentication events. This
section discusses the key JavaScript files, their functionalities, and interactions within the
system.

4.2.1 Credential

The credential.js file handles the creation and verification of the credentials. To gen-
erate a credential the generateCredential() function, shown in Listing 4.6, is used.

28 CHAPTER 4. IMPLEMENTATION

This function relies on the web3.js ethereum library. The credentialID is created by
utilizing the web3.utils.sha3() function which creates a hash of the input string us-
ing the Secure Hash Algorithm 3 (SHA-3). The credential consists of several pieces of
information: credentialID, holderAccount, issuerAccount, creation date, and the
claim. The web3.utils.sha3() is used again, this time to create a hash of the cre-
dential. This hash is taken together with the private key of the issuer as inputs in the
web3.eth.accounts.sign() function to create a signature of the credential. The function
uses the private key of the issuer to create the signature. The generateCredential()

function returns the credential, credential hash, and the signature in string format. With
this function, credentials are created for a DID account. The return values are used in
the addCredential() function, (cf. Listing 4.3) to add the credential to the registry.

1 async function generateCredential(holderInfo , holderAccount ,

issuerAccount , issuerPrivateKey) {

2
3 let now = new Date();

4 // holder info should be different to make sure hash is different

for each credential

5 let credentialID = web3.utils.sha3(issuerAccount+now+holderInfo);

6
7 // create the credential

8 var credential = {

9 "id": credentialID ,

10 "holder": holderAccount ,

11 "issuer": issuerAccount ,

12 "created": now.toLocaleDateString (),

13 "claim": holderInfo ,

14 };

15
16 // create the has and signature , convert signature to string for

storage

17 let credentialHash = web3.utils.sha3(JSON.stringify(credential));

18 let sig = await web3.eth.accounts.sign(credentialHash ,

issuerPrivateKey);

19 let signature = JSON.stringify(sig);

20
21 return [credential , credentialHash , signature];

22 }

Listing 4.6: Generate credential function from the credential.js file

In a system with verifiers and issuers, the public address acting as the public key of the
issuer would be known. Any verifier could therefore acquire the address of the issuer.
The verifyCredential() function (cf. Listing 4.7) from the credential.js file handles
the verification of a credential by verifying the signature of the credential. To achieve
this the address of the issuer is recovered from the credential hash and the signature with
the web3.eth.accounts.recover() function. This function returns the corresponding
public key of the private key with which the signature was created. This public key is the
address of the issuer and can be compared to the address of the issuer that is publicly
known. If they match the credential is verified, if they do not match the credential is
refuted.

4.2. JAVASCRIPT MODULES 29

1 async function verifySignature(credHash , signature ,

expectedIssuerAddress) {

2 // Recover the signer ’s address from the signature and the credHash

3 let recoveredAddress = web3.eth.accounts.recover(credHash , signature

);

4
5 // Compare the recovered address with the expected issuer address

6 if (recoveredAddress.toLowerCase () === expectedIssuerAddress.

toLowerCase ()) {

7 console.log(’Signature is valid and credential is verified.’);

8 } else {

9 console.log(’Signature is invalid or does not match the expected

issuer address.’);

10 }

11 }

Listing 4.7: Verification of the credential function from the credential.js file

4.2.2 Encryption

The encryption.js file handles all the encryption and decryption processes within the
system. The system relies on a hybrid approach to encryption, meaning the biometric
data is encrypted with a symmetric key, and the symmetric key itself is then encrypted
with an asymmetric key pair. One part of the code shown in Listing 4.8 is responsible
for symmetric encryption and decryption of the biometric information. The other part
of the file as seen in Listing 4.9 handles the encryption and decryption of the symmetric
key. Both parts rely on the crypto library to carry out the encryption and decryption.

The generateSymmetricKey() function (Listing 4.8) creates the symmetric key that is
used to encrypt and decrypt the biometric information. The function returns a string 256-
bit key in hex string format that is created with the crypto.randomBytes() function.
This random key is specified to be a 256-bit key because Advanced Encryption Standard
256 (AES-256) is employed. The enrcypt() function (Listing 4.8) takes data as input in
string format and the symmetric key. The Initialization Vector (IV) is created to ensure
that the same data encrypted with the same key does not produce the same encrypted
ciphertext. The crypto.createCipheriv() function creates the cipher object with which
the data can be encrypted. Within the function the encryption algorithm is specified to
be ’aes-256-cbc’, the key is converted into a buffer and the IV is added. The cipher is
then used to encrypt the data creating the ciphertext. The IV is then prepended to the
ciphertext to ensure the IV can easily be used in the decryption process. Including the
IV in the result does not make the system less secure. It is simply used to ensure that
the same input data with the same key does not lead to the same encrypted ciphertext.
Adding the IV to the ciphertext is a standard practice to simplify the decryption process.

Decryption of the data is accomplished with the decrypt() function shown in Listing 4.8.
It takes the encrypted data and the symmetric key as inputs. The IV is split from the
encrypted data. A decipher object is created with the crypto.createDecipheriv()

function. The decipher object is defined to use the same algorithm ’aes-256-cbc’ used

30 CHAPTER 4. IMPLEMENTATION

in the encryption process. To create the decipher object the function requires the same
symmetric key and IV. With the decipher object the encrypted data can be decrypted.
The decrypt() function returns the decrypted data in string format.

1 // Function to generate a symmetric key

2 function generateSymmetricKey () {

3 return crypto.randomBytes (32).toString(’hex’); // 256-bit key in hex

string format

4 }

5
6 // Function to encrypt data with symmetric key

7 function encrypt(data , secretKey) {

8 const iv = crypto.randomBytes (16);

9 const cipher = crypto.createCipheriv(’aes -256-cbc’, Buffer.from(

secretKey , ’hex’), iv);

10 let encrypted = cipher.update(data);

11 encrypted = Buffer.concat ([encrypted , cipher.final()]);

12 return iv.toString(’hex’) + ’:’ + encrypted.toString(’hex’);

13 }

14
15 // Function to decrypt data with symmetric key

16 function decrypt(data , secretKey) {

17 let parts = data.split(’:’);

18 let iv = Buffer.from(parts.shift(), ’hex’);

19 let encryptedText = Buffer.from(parts.join(’:’), ’hex’);

20 let decipher = crypto.createDecipheriv(’aes -256-cbc’, Buffer.from(

secretKey , ’hex’), iv);

21 let decrypted = decipher.update(encryptedText);

22 decrypted = Buffer.concat ([decrypted , decipher.final ()]);

23 return decrypted.toString ();

24 }

Listing 4.8: Functions for the symmetric AES encryption/decryption of the biometric
data

The code in Listing 4.9 creates public/private RSA key pair and uses them for encryption
and decryption. The public and private keys are generated with the crypto.generateKey-
PairSync() and specified to be RSA keys. The keys are saved to PEM files. The keys
are only generated once, as the symmetric key should be encrypted with the same public
key so that the authenticator can decrypt the symmetric key with the same corresponding
private key.

The encryptSymmetricKeyWithPublicKey() function in Listing 4.9 takes the symmetric
key as the input. The crypto.publicEncrypt() function is used to encrypt the sym-
metric key. It uses the public key previously specified to encrypt the symmetric key. The
padding and oaepHash are specifically defined to ensure they match the corresponding
padding and oaepHash in the decryption function. In the end, the function returns the
encrypted symmetric key in string format.

The decryptSymmetricKeyWithPrivateKey() in Listing 4.9 function takes the encrypted
symmetric key as the input. The crypto.privateDecrypt() function handles the decryp-
tion of the encrypted symmetric key. It is specified to use the private key corresponding to
the public key, as well as the same padding and oaepHash as in the encryption function.

4.2. JAVASCRIPT MODULES 31

The decryptSymmetricKeyWithPrivateKey() returns the decrypted symmetric key in
string format.

1 // Generate an RSA key pair (only once , and store them in respective

files)

2 const { publicKey , privateKey } = crypto.generateKeyPairSync(’rsa’, {

3 modulusLength: 2048,

4 publicKeyEncoding: {

5 type: ’spki’,

6 format: ’pem’

7 },

8 privateKeyEncoding: {

9 type: ’pkcs8’,

10 format: ’pem’

11 }

12 });

13 const PUBLIC_KEY = fs.readFileSync("utilities/rsa_public_key.pem");

14 const PRIVATE_KEY = fs.readFileSync("utilities/rsa_private_key.pem");

15
16 // Function to encrypt a symmetric key with the public key

17 function encryptSymmetricKeyWithPublicKey(symmetricKey) {

18 const buffer = Buffer.from(symmetricKey , ’hex’);

19 const encryptedKey = crypto.publicEncrypt(

20 {

21 key: PUBLIC_KEY ,

22 padding: crypto.constants.RSA_PKCS1_OAEP_PADDING ,

23 oaepHash: ’sha256 ’

24 },

25 buffer

26);

27 return encryptedKey.toString(’base64 ’);

28 }

29
30 // Function to decrypt a symmetric key with the private key

31 function decryptSymmetricKeyWithPrivateKey(encryptedKey) {

32 const buffer = Buffer.from(encryptedKey , ’base64 ’);

33 const decryptedKey = crypto.privateDecrypt(

34 {

35 key: PRIVATE_KEY ,

36 padding: crypto.constants.RSA_PKCS1_OAEP_PADDING ,

37 oaepHash: ’sha256 ’

38 },

39 buffer

40);

41 return decryptedKey.toString(’hex’);

42 }

Listing 4.9: Functions for the asymmetric encryption/decryption with the RSA
public/private keypair

4.2.3 Matcher

The matcher.js file shown in Listing 4.10 handles the matching of fingerprints. The
fingerprints are matched by comparing the minutiae points of the fingerprints. In order

32 CHAPTER 4. IMPLEMENTATION

for two minutiae points to be considered a match three conditions must be verified.

1. Type: The minutiae points must be of the same type. When minutiae points are
extracted from fingerprints, each point is given a certain type. These types must be
a match.

2. Orientation: The orientation of the minutiae points must match. Each minutiae
point has an orientation in degrees when extracted from a fingerprint.

3. Distance: The distance between the two points is compared as the final condition.
To achieve this, the Euclidean distance between the minutiae points is calculated
and compared.

The euclideanDistance() function is used to calculate the distance between two points.
The Euclidean Distance is the shortest distance between two points meaning the distance
of the line segment between the two points. The distance is calculated using the formula
shown in Equation 4.1, the euclideanDistance() function implements this formula.

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 (4.1)

The matchFingerprints() function in Listing 4.10 handles the comparison and matching
of fingerprints. The two fingerprints to be compared are taken as the input. The threshold
variable is 5 by default but can be changed. Each of the three conditions described above
is verified for each minutiae point. If at any point in the matching a condition is not met
the next point is taken to be compared.

1. Type: First the type of the two points is compared. This is checked by the condition
storedPoint.type === newPoint.type. Checking the type of the point is done
first because it requires the least computational power, making the matching process
more efficient and faster.

2. Orientation: The next condition to be verified is the orientation. For the orientation
to match the difference in orientation between the two points must be within 10
degrees. This is achieved with the condition Math.abs(storedPoint.orientation

- newPoint.orientation) <= 10. This condition is checked before the distance
because checking the orientation condition requires significantly less computational
effort than the distance comparison.

3. Distance: The final condition to be checked is the distance between the two points.
To achieve this, the Euclidean distance between the minutiae points is calculated
with the euclideanDistance() helper function and compared. For the verification
of the distance condition, the distance between the two points must not exceed
the distance defined as the threshold (5 by default). This is accomplished with
euclideanDistance(storedPoint, newPoint) <= threshold. This condition is
checked last because it requires the helper function to calculate the distance and
afterward compare it to the threshold requiring the most computational power of

4.2. JAVASCRIPT MODULES 33

the three conditions. Examining this condition last ensures that the task requiring
the most computational power is only done when the two previous conditions are
satisfied.

If for two points all conditions are met the variable matches is increased by one. This way
the variable keeps count of all the successful matches. In the end, a threshold in terms
of how many minutiae points should match is defined. In this case, the threshold is 70%
meaning that at least 70% of the points should be a match. With the condition matches

>= matchThreshold it is checked if the amount of matches is enough for the threshold.
Depending on this result the matchFingerprints() returns true for a match and false

for a mismatch.

1 // Helper function to calculate Euclidean distance between two points

2 function euclideanDistance(point1 , point2) {

3 return Math.sqrt(Math.pow(point1.x - point2.x, 2) + Math.pow(point1.

y - point2.y, 2));

4 }

5
6 function matchFingerprints(stored , newFingerprint , threshold = 5) {

7 let matches = 0;

8
9 for (let i = 0; i < stored.minutiae_points.length; i++) {

10 for (let j = 0; j < newFingerprint.minutiae_points.length; j++)

{

11 const storedPoint = stored.minutiae_points[i];

12 const newPoint = newFingerprint.minutiae_points[j];

13
14 if (storedPoint.type === newPoint.type && Math.abs(

storedPoint.orientation - newPoint.orientation) <= 10) {

15 const distance = euclideanDistance(storedPoint , newPoint

);

16 if (distance <= threshold) {

17 matches ++;

18 break; // Move to the next stored point after a

match

19 }

20 }

21 }

22 }

23
24 // Define a threshold for a match (currently 70% of points have to

match)

25 const matchThreshold = 0.7 * stored.minutiae_points.length;

26 return matches >= matchThreshold;

27 }

Listing 4.10: Functions from the matcher.js file, that handle the matching of fingerprints

4.2.4 Authenticator

The authenticator.js file shown in Listing 4.11 creates a Node.js WebSocket that listens
to specific events emitted by a smart contract on the Ethereum blockchain using Web3.js.

34 CHAPTER 4. IMPLEMENTATION

The task of the authenticator is to receive an authentication request event and carry out
the authentication. This authenticator utilizes previously discussed functions from the
encryption.js file discussed in 4.2.2 and the matcher.js file discussed in 4.2.3.

In the file, a new Web3 instance using a WebSocket provider to connect to the local
Ethereum node running at ’ws://127.0.0.1:8545’ is created. As the authenticator should
listen to events released by the Credential Registry smart contract, the contract’s address
is given to the event listener. The startListener() function is an asynchronous function
that sets up the WebSocket listener.
The CredentialRegistry.events.AuthenticationRequest() function listens for the
AuthenticationRequest event emitted by the Credential Registry. If the listener catches
such an event the event handler function is executed. The handler function receives and
processes the event data. The AuthenticationRequest event defined in the Credential
Registry contract (cf. Listing 4.4) sends out the user address, the credential ID, the stored
encrypted info, the locally saved info and the new submitted encrypted info and the en-
crypted symmetric key. The event handler receives all this information and uses it for the
authentication. First, the encrypted symmetric key is decrypted with the decryptSymmet-
ricKeyWithPrivateKey() function from the encryption.js file (cf. Listing 4.9). In the
next step, the original encrypted biometric that was split up is concatenated. Afterward,
the symmetric key is used to decrypt the two encrypted fingerprint minutiae datasets.
This is done using the decrypt() function from the encryption.js file (cf. Listing 4.8).
The decrypted biometric data is used as inputs in the matchFingerprints() function
from the matcher.js file, shown in Listing 4.10. The return of this function will either
be true or false, which represents the result of the authentication.
The event handling ends with sending out the result of the authentication. This is achieved
by calling the handleAuthenticationResult() function from the Credential Registry
contract (cf. Listing 4.5). The function takes the user address, the credential ID and
the authentication result as inputs. In this way, the process of requesting a credential,
performing authentication, and sending out the authentication result is managed using
smart contracts. This ensures that the whole process is saved on the blockchain. This
has several advantages as tamper-proof records are created providing transparency in all
authentication transactions.

1 const Web3 = require(’web3’);

2 const web3 = new Web3(’ws ://127.0.0.1:8545 ’); // Use IPv4 explicitly

3 const contractABI = require(’../ artifacts/contracts/CredentialRegistry.

sol/Credentials.json’).abi;

4 const contractAddress = ’0x9fE46736679d2D9a65F0992F2272dE9f3c7fa6e0 ’; //

Credential Registry address

5 const CredentialRegistry = new web3.eth.Contract(contractABI ,

contractAddress);

6 const { matchFingerprints } = require(’./ matcher ’);

7 const { decrypt , decryptSymmetricKeyWithPrivateKey } = require(’./

encryption ’);

8
9 async function startListener () {

10 try {

11 const accounts = await web3.eth.getAccounts ();

12 const credentialRegistryAccount = accounts [0];

13
14 // Listen for the AuthenticationRequest event

4.2. JAVASCRIPT MODULES 35

15 CredentialRegistry.events.AuthenticationRequest ({

16 fromBlock: 0

17 }, async function(error , event) {

18 if (error) {

19 console.error(error);

20 return;

21 }

22
23 // getting the return values from the event

24 const { user , _credId , submittedInfo , storedInfo , localInfo ,

key } = event.returnValues;

25
26 // decrypting the symmetric key

27 const decryptedKey = decryptSymmetricKeyWithPrivateKey(key);

28
29 // putting the encrypted string back together and decrypting

the encrypted information

30 const combinedInfo = localInfo + storedInfo;

31 const decryptedCombinedInfo = decrypt(combinedInfo ,

decryptedKey);

32 const decryptedSubmittedInfo = decrypt(submittedInfo ,

decryptedKey);

33
34 // Parse the JSON strings into JavaScript objects

35 const submittedFingerprint = JSON.parse(

decryptedSubmittedInfo);

36 const storedFingerprint = JSON.parse(decryptedCombinedInfo);

37
38 // Perform the matching off -chain

39 const result = matchFingerprints(storedFingerprint ,

submittedFingerprint);

40
41 // Sending the authentication result back

42 CredentialRegistry.methods.handleAuthenticationResult(user ,

_credId , result)

43 .send({ from: credentialRegistryAccount })

44 .on(’receipt ’, function(receipt) {

45 console.log(‘Matching Result for ${user}: ${result

}‘);

46 })

47 .on(’error’, console.error);

48 });

49
50 console.log(’Authenticator started , waiting for events ...’);

51 } catch (error) {

52 console.error(’Error starting listener:’, error);

53 }

54 }

55 startListener ();

Listing 4.11: Authenticator file

36 CHAPTER 4. IMPLEMENTATION

4.2.5 Client Listener

The clientListener.js file shown in Listing 4.12 is similar to the authenticator.js

file in the sense that both listen to events being emitted by the Credential Registry smart
contract. The WebSocket and event listener setup is the same for both files. The difference
is the client listener is tasked with receiving the credential. Because of that the the event
that is being listened to is the CredentialIssued event. The listener contains a filter
in the form of a specific user address. As the file simulates the user’s client device and
is only interested in credentials issued to that user. The event handler function receives
the data from the event emitted namely the user address, issuer address, holder address,
the credential hash, and the signature. The credential can be checked by verifying the
signature of the credential. This is accomplished with the verifySignature() function
from the credential.js file (Listing 4.7).

1 const Web3 = require(’web3’);

2 const web3 = new Web3(’ws ://127.0.0.1:8545 ’); // Use IPv4 explicitly

3 const contractABI = require(’../ artifacts/contracts/CredentialRegistry.

sol/Credentials.json’).abi;

4 const contractAddress = ’0x9fE46736679d2D9a65F0992F2272dE9f3c7fa6e0 ’;

5 const Credentials = new web3.eth.Contract(contractABI , contractAddress);

6 const { verifySignature } = require(’./ credential ’);

7
8 async function listenForCredentials(userAddress) {

9 // Listen for the credential issuance event

10 Credentials.events.CredentialIssued ({

11 filter: { user: userAddress },

12 fromBlock: ’latest ’

13 }, function(error , event) {

14 if (error) {

15 console.error(error);

16 return;

17 }

18
19 // getting the return values from the event

20 const { result , user , issuer , holder , credHash , signature } =

event.returnValues;

21
22 // if the result is true receive the credential and verify it

23 if (result) {

24 let sig = JSON.parse(signature);

25 console.log(‘Credential for ${user}:‘);

26 console.log(‘Issuer: ${issuer}‘);

27 console.log(‘Holder: ${holder}‘);

28 console.log(‘Credential Hash: ${credHash}‘);

29 console.log(‘Signature: ${JSON.stringify(sig)}‘);

30 // credential is received by the client device and could be

given to verifier

31
32 // verifier verifies the credential

33 verifySignature(credHash , sig.signature , issuer);

34 }

35 else{

36 console.log("Authentication did not work! Biometrics did not

match!")

4.2. JAVASCRIPT MODULES 37

37 }

38 });

39 console.log("Client Receiver started and waiting for events ...");

40 }

41
42 listenForCredentials(’0x70997970C51812dc3A010C7d01b50e0d17dc79C8 ’); //

user address

Listing 4.12: Client listener file

38 CHAPTER 4. IMPLEMENTATION

Chapter 5

Evaluation

In this chapter the implementation of the system presented in the previous chapter 4 is
evaluated. The system is assessed regarding various key metrics such as performance,
security, privacy, and scalability. Sections 5.1–5.4 individually focus on these different
aspects to provide a comprehensive analysis of the system’s strengths and areas for im-
provement. Additionally, the system is compared to the solution of Acquah et al. [1] in
terms of these key metrics.

5.1 Performance

Proper logging was added to the respective deploy authentication files to evaluate the
system performance regarding the time and cost of performing authentication. The per-
formance evaluation was conducted with two sets of artificial example fingerprints con-
taining 30 and 80 minutiae points. This was done because typical data from fingerprints
ranges between 10-200 minutiae points, with good quality data requiring at least 40 to
100 minutiae [20, 32]. The two datasets were selected to evaluate the influence of different
sizes of fingerprint information submitted to the system.

5.1.1 Gas usage

The gas usage for each transaction is stable, the gas cost prices in terms of ETH, CHF,
and USD are highly volatile and can change rapidly. These prices are calculated at the
time of writing (July 2024) where 1 ETH = 2846,38 USD = 2558,30 CHF. The first step
in the process analyzed is the registering of a DID with the register() function from
the DID Registry smart contract. As seen in Table 5.1 the gas usage is very high with a
value of 1’406’862 for 30 minutiae points and 3’426’131 for 80 minutiae points. This gas
usage currently translates to a price of 5,63 USD and 13,71 USD respectively.

The gas usage and gas cost of adding a credential to a DID with the addCredential()

function can be seen in Table 5.2. The gas usage value is 731’856, meaning adding a

39

40 CHAPTER 5. EVALUATION

register() 30 minutiae points 80 minutiae points
Gas usage 1406862 3426131

Cost in ETH 1, 98× 10−3 4, 82× 10−3

Cost in CHF 5,06 12,31
Cost in USD 5,63 13,71

Table 5.1: Gas usage and costs for registration of a DID

credential would currently cost 2,93 USD. This gas usage is not influenced by the different
sizes of fingerprint information sets as they are not used in this transaction.

addCredential()
Gas usage 731856

Cost in ETH 1, 03× 10−3

Cost in CHF 2,63
Cost in USD 2,93

Table 5.2: Gas usage and costs for adding a credential

Table 5.3 shows the gas usage and cost of performing the authentication of a user with
30 minutiae points, while Table 5.4 shows the result of using 80 minutiae points. This
includes the authenticationRequest() and handleAuthenticatioResult() functions.
Only the authenticationRequest() function is influenced by the different sizes of fin-
gerprint information. The authentication process uses gas in the amount of 438’841 for
fingerprints with 30 minutiae points, which corresponds to a value of 1,56 USD. Perform-
ing the authentication with fingerprint data containing 80 minutiae points uses gas in the
amount of 1’155’398 corresponding to a current price of 4,46 USD.

authenticationRequest() handleAuthenticationResult() Total
Gas usage 94330 344511 438841

Cost in ETH 1, 21× 10−4 4, 28× 10−4 5, 49× 10−4

Cost in CHF 0,31 1,10 1,41
Cost in USD 0,34 1,22 1,56

Table 5.3: Gas usage and costs for authentication transactions with 30 minutiae points

authenticationRequest() handleAuthenticationResult() Total
Gas usage 810887 344511 1155398

Cost in ETH 1, 14× 10−3 4, 28× 10−4 1, 57× 10−3

Cost in CHF 2,91 1,10 4,01
Cost in USD 3,24 1,22 4,46

Table 5.4: Gas usage and costs for authentication transactions with 80 minutiae points

The gas and cost analysis shows that the current system is extremely expensive. All these
costs presumably have to be paid for by the user, the identity holder. The creation of
a DID and adding a credential to that DID would cost the user, depending on the size
of biometric data, 8,56 USD or 16,64 USD. To add to that the user would have to pay

5.1. PERFORMANCE 41

1,56 USD or 4,46 USD to authenticate themselves and receive the credential. These are
extremely high fees that the users would have to pay.
Furthermore, the analysis shows that the operations that do not occur often, the creation
of DID and the adding of credentials, are the more expensive ones. The authentication
of the user which presumably would happen much more often in the system is the less
expensive one. As a result, the correct part of the system’s functionalities are the more
and less expansive ones. Still, the system as a whole is way too expensive and in its
current form would never be adopted in a real-world scenario.

5.1.2 Time

To evaluate how much time the authentication process takes the time between sending out
the authentication request and receiving the authentication result is measured. The time
duration of the authentication is again analyzed using artificial fingerprint data containing
30 and 80 minutiae points respectively.

Table 5.5 shows the single measurements of the authentication time as well as the calcu-
lated average in milliseconds. It shows that the whole authentication process takes about
187,0 milliseconds on average.

measurements authentication time [ms]
1 169,00
2 229,00
3 171,00
4 162,00
5 228,00
6 169,00
7 148,00
8 167,00
9 179,00
10 248,00

Average 187,00

Table 5.5: Time duration of the authentication process using 30 minutiae points

Table 5.6 shows the measurements and calculated average of the authentication time
utilizing datasets of 80 minutiae points. The measurements show that the authentication
takes 355,5 milliseconds on average.

The measurements of the authentication time showed that the smaller the size of fin-
gerprint data files the faster the authentication process is. This comes from a minimal
increase in time needed for the off-chain comparison of two fingerprints. But mainly stems
from the fact that each step in the authentication process, such as sending and receiving,
takes more time when more data is involved. The time analysis in general shows that the
system performs efficiently for both 30 minutiae and 80 minutiae points, ensuring quick
authentication times.

42 CHAPTER 5. EVALUATION

measurements authentication time [ms]
1 352,00
2 352,00
3 337,00
4 355,00
5 344,00
6 355,00
7 367,00
8 384,00
9 364,00
10 343,00

Average 355,30

Table 5.6: Time duration of the authentication process using 80 minutiae points

This suggests the system is well-optimized for handling different sizes of biometric data. A
user would never have to wait more than half a second to receive the authentication result,
which is a satisfactory result. The fast authentication time enhances the user experience
by minimizing the wait time and ensuring smooth operation.

5.2 Security

The security of the systems relies on the use of smart contracts, cryptographic techniques,
and a well-structured authentication process. This section evaluates the security of the
system by discussing the various parts of the system, responsible for creating a safe system.
To achieve this different aspects of the system such as smart contracts, data encryption,
the authentication process, and the overall security of the system are assessed.

5.2.1 Smart Contracts for Security

The system utilizes Ethereum smart contracts to manage the DIDs, credential issuance
as well as the transactions needed for the authentication. Smart contracts increase the
security of the system by providing a transparent and resistant mechanism for transaction
processes. The key security advantages of using smart contracts are:

1. Transparency: All transactions are recorded on the blockchain, creating a transpar-
ent record that can be seen and examined by any participant in the network. Anyone
can look for inconsistencies in the process of requesting credentials and performing
the authentication. This makes faking one part of the process useless because the
whole process is recorded on the blockchain.

2. Immutability: Once a smart contract is deployed it cannot be changed or altered.
This ensures the way the different participants of the system communicate with each

5.2. SECURITY 43

other is fixed. This results in the logic of the whole system remaining consistent
and secure.

3. Decentralization: Using the decentralized Ethereum blockchain network eliminates
the single-point failure problem. There is no use in attacking a single node or
participant in the system. This makes the system much more secure and resilient
to attacks.

4. Automation: The automated execution of contracts according to predefined rules,
reduces the risk of human error thereby enhancing the system’s reliability.

5.2.2 Hybrid Encryption of Biometric Data

The system utilizes a hybrid encryption approach to secure biometric data. The combina-
tion of symmetric and asymmetric encryption ensures the security of sensitive biometric
data. A detailed description of the system’s encryption implementation is provided in
section 4.2.2.

The symmetric encryption of the biometric data is done using the Advanced Encryption
Standard (AES) algorithm. Specifically, the AES-256 algorithm is employed, as the key
used for the encryption is 256 bits. In the process, a randomly generated Initialization
Vector (IV) is used to ensure the ciphertext is always unique, even for identical plaintext
input. This makes the system more secure against certain types of attacks such as replay
attacks. For every DID in the system a new key is created to encrypt the biometric data,
further increasing the security. The AES-256 encryption is uncrackable with current
technologies. AES-256 ensures the safe and efficient encrypting of the biometric data.

To enable asymmetric encryption a RSA (Rivest-Shamir-Adleman) key pair is created.
This key pair is generated once, the authenticator in the system has the private key and
any user wanting to authenticate themselves can use the respective public key. The sym-
metric key is encrypted using RSA-2048 with the authenticator’s public key. RSA-2048
encryption is uncrackable with current technologies, ensuring that only the authenticator
with their private key can perform the decryption.

The encryption and decryption are performed off-chain, locally on the user’s device. This
is done for performance reasons concerning the computational power of smart contracts.
Additionally, anyone could see how the encryption/decryption is done if it would be
performed by a smart contract, keeping the logic off-chain protects the process further.

The hybrid encryption approach ensures that the encrypted biometric data can only be
decrypted by the authenticator. As long as the private key of the authenticator remains
safe the encrypted biometric data is completely safe as the combination of both encryption
are currently not decryptable without the corresponding keys.

44 CHAPTER 5. EVALUATION

5.2.3 Authentication Process

Biometric authentication has several advantages compared to traditional authentication
schemes as discussed in section 2.1.3. The implementation of biometric authentication in
the system leverages all these advantages making the system more secure. In the specific
use case the biometric authentication guarantees that only the original holder of the DID
can present credentials to potential verifiers. This is done through several key components
of the system. Hybrid encryption guarantees the security of the encrypted biometric data.
The biometric data is only stored in encrypted form never risking the original biometric
template. The matching of biometrics is performed off-chain ensuring raw biometric data
is never exposed during the authentication process. Secure storage of the authenticator’s
private key ensures only the authenticator is able to decrypt the biometric data.

5.3 Privacy

Privacy is a critical aspect of the system, especially because of the sensitive nature of
biometric data. This section aims to discuss the system’s privacy features.

To increase privacy the system adheres to the rules of data minimization only storing
the essential information of users required to make the system functional. To that effect,
only the minutiae points of fingerprints are encrypted and saved to perform fingerprint
matching. The minimizing of sensitive data stored reduces the risk of privacy breaches.
User consent is a fundamental aspect of any SSI system. As such the system implemented
requires explicit user consent for any action or sharing of data. The user remains in
complete control over their personal data. The process of creating a DID and registering
biometric data is only done at the user’s request. The authentication process can only be
initiated by a user ensuring their consent to use biometric data for authentication. The
reliance on user consent increases the protection of the users’ privacy.

5.3.1 Linkability

With linkability, data can be linked to a single user, potentially revealing the identity or
activities of the user. This is a serious privacy concern and for that reason, the system
needs to be evaluated in terms of linkability.

The utilization of DIDs ensures that the users control their digital identities without their
actual identities. Users decide which credentials are presented to verifiers, maintaining
complete control over their personal information. The selective disclosure of identity
information ensures only necessary information is shared, minimizing the linkability risk.
The biometrics is encrypted with the AES CBC encryption approach. Each encryption
is done with a different random IV ensuring that even the same plaintext gets different
ciphertext output. This reduces the linkability of the encrypted biometrics. Even if
the user registers multiple DIDs with the same fingerprint data the encryption process
guarantees different ciphertexts. The linkability of biometric data definition is provided

5.4. SCALABILITY 45

in subsection 2.1.3 and mentions that two biometric templates are linkable if there is a
way to detect that they came from the same original template. The encryption approach
utilized guarantees that according to that definition, the encrypted biometrics are not
linkable.

As discussed in section 5.2, the use of smart contracts increases the security of the system.
At the same time, they introduce potential privacy concerns, especially regarding link-
ability. The public ledger records all transactions and operations making them publicly
available. This transparency while beneficial in terms of security can lead to potential
privacy concerns if transaction patterns are analyzed. The analysis of transaction pat-
terns can introduce even more linkability concerns depending on the inappropriate usage
of the system by the user. If a user has a single DID to store all of his credentials, every
transaction with these credentials links back to the same DID. The usage of the system in
such a way would severely increase linkability. To ensure safety from linkability the user
would have to be educated on this issue or the system could be adapted to only allow a
limited number of credentials added to a single DID.

5.4 Scalability

Evaluation of the current system in terms of scalability is an essential aspect of the system,
as it aims to handle a large number of users and transactions over time. This section
assesses the scalability of the system to gather knowledge on what future improvements
could be made.

While the blockchain provides security and transparency it introduces some scalability
challenges. The gas usage evaluation showed the system’s limitation in relying on the
current blockchain. The main issue is the high gas fees. With the current prices of the
contract transactions, any user is deterred from using the system. For the system to
garner any users the pricing problem has to be fixed. Another potential issue with the
reliance on the blockchain is the limitation of transaction throughput. The Ethereum
network can only handle a certain amount of transactions per second. Depending on the
number of users in the system this could be a future limitation in terms of scalability.
The system employs off-chain processing to ensure performance efficiency. The perfor-
mance in terms of time is positive and currently does not seem like a limiting factor for
scalability. However, testing with more users in the system would have to be performed
to confirm this.

5.5 Comparison with Existing Solution

In this section, the proposed system is compared to the system proposed by Acquah et al.
[1], described in subsection 2.2.2. Although it is not a system featuring authentication
of users via biometrics but only the secure storage of biometrics. Other implementations
of biometric authentication based on smart contracts are rare and the ones that do exist
do not feature any evaluation that would allow the comparison. Therefore the system

46 CHAPTER 5. EVALUATION

proposed by Acquah et al. [1] was chosen, as the comparison of the two systems can still
lead to some valuable insights.

In the work of Acquah et al. [1], the hash of the fingerprint minutiae data is saved on the
blockchain whilst the data itself is stored on the IPFS. How much gas is used and the
cost associated with this is shown in Table 5.7, with the values taken from Acquah et al.
[1]. The cost in ETH, CHF, and USD are shown according to the conversation rates at
the time of writing (July 2024). Saving the biometric in this system has a gas usage of
147’982 which corresponds to a cost of 0,59 USD. As seen in Table 5.1 registering a DID
and storing the encrypted biometrics requires gas usage from 1’406’862 to 3’426’131 which
corresponds to 5,63 USD and 13,71 USD. This shows the clear economic advantage of only
having to store the hash on the blockchain, as significantly less data has to be stored. The
disadvantage on the performance side comes in the form of time, as the system of Acquah
et al. [1] takes longer to store and get the data.

sendTemplate()
Gas usage 147982

Cost in ETH 2, 08× 10−4

Cost in CHF 0,53
Cost in USD 0,59

Table 5.7: Gas usage and cost for storing biometric template with the system from Acquah
et al. [1]

In terms of security, both systems offer the same advantages as traditional fingerprint stor-
age systems. Both systems rely on decentralized structures and smart contracts which
provide advantages in terms of transparency as well as immutability. It can be argued
that the system proposed by Acquah et al. [1] is even more secure as only the hash of
the fingerprint data is stored on the blockchain which can be argued is more secure than
encrypting the fingerprint data. Analyzing the privacy of the system is more difficult as
the system of Acquah et al. [1] offers no functionalities of identity management systems
other than the storage of private information. It can be said that this single functionality
preserves the privacy of its users as no information reveals the identity of the users in any
way. The same can be said for the system implemented in this work as only storing the
encrypted biometrics preserves privacy. Difficulties can arise with the additional func-
tionalities of credentials and authentication as discussed in section 5.3. But to compare
the privacy-preserving mechanisms of these functionalities the system of Acquah et al.
[1] would have to be extended to be considered an identity management system. The
scalability issue is lowered by the reduction of gas usage and the associated costs. But
the increased complexity of the system of Acquah et al. [1] could lead to more transaction
strain resulting in increased scalability issues.

The system of Acquah et al. [1] offers no other functionality than a distributed storage
solution for biometrics, but still, the comparisons with the system implemented and eval-
uated in this work provide insights into what the system already does well and what could
be improved in the future. Only storing the hash of the biometric data on the blockchain
leads to significantly less gas usage, cost reduction, and scalability improvements, but
could come with more time required for operations. Privacy and security of the user’s

5.6. EVALUATION SUMMARY 47

biometric data are guaranteed in both systems, whilst only saving the hash of biometrics
on the blockchain could provide more safety.
A biometric authentication system based solely on saving the hash of fingerprint data
does not work. Measuring the same fingerprint leads to slightly different data every time,
meaning the hash of the biometric data would be completely different every time and
could not be compared for authentication purposes. Still reducing the gas usage and cost
of the system solutions based on saving the hash of biometrics on the blockchain with ac-
cess to the biometrics stored in a decentralized manner seems the most promising option.
Further work has to be done to explore this option and integrate such a system with an
SSI system utilizing biometrics for authentication.

5.6 Evaluation Summary

The evaluation of the performance of the system shows that the system incurs high gas
fees, making it expensive for users. The authentication time efficiency is proficient with
average times of 187 milliseconds for 30 minutiae points and 355 milliseconds for 80 minu-
tiae points. The system is well-optimized for quick authentication of users. Using smart
contracts increases security by providing transparency, immutability, decentralization, and
automation. The hybrid encryption approach using AES-256 for symmetric encryption
and RSA-2048 for asymmetric encryption ensures the robust protection of biometric data.
Data minimalization and user consent ensure reducing privacy risks. The employment of
DIDs and selective disclosure minimize the risk of linkability. The encryption method
ensures the unlinkability of the encrypted biometric data. The smart contract’s trans-
parency can introduce linkability concerns if transaction patterns are analyzed. Efficient
off-chain processing reduces the blockchain load and improves performance. The high gas
fees are the biggest challenge in system scalability.

The comparison with the solution by Acquah et al. [1] of securing biometrics on a dis-
tributed storage system shows improvements in decentralized storage compared to tra-
ditional centralized storage solutions. Additionally, the upside of developing a solution
saving the hash of biometrics on the blockchain and the encrypted biometric data itself
on a distributed storage system in combination with an SSI system is shown. This could
improve performance in terms of cost and scalability, while the execution time could suffer.

The system promises strong security and efficient performance but still faces challenges
in terms of gas cost and scalability. Addressing these issues, while ensuring the privacy
of the user will be critical for adopting the system into real-world use.

48 CHAPTER 5. EVALUATION

Chapter 6

Final Considerations

6.1 Discussion

The thesis goal of implementing a system using biometrics to authenticate users in an
SSI system and evaluating the system was accomplished, thereby creating the first work
featuring the implementation and evaluation of such a system. The background research
and literature review on the adjacent topics of SSI systems and biometrics inspired the
design of the system. The initial idea was to design a system managing biometric data in
an SSI system, no thought was put into why biometric data would be in that system. The
literature review showed the only reason to include biometric data would be to authenti-
cate users based on biometrics. Now the project not only included the secure management
of biometric data in an SSI system but also the authentication of users based on that bio-
metric data. The implementation of such a system proved to be more challenging than
anticipated. First was the problem of finding an appropriate codebase to build upon and
based on that learning about Smart Contracts and how to code them. How to handle
the biometric data with smart contracts in order to achieve the authentication was an-
other challenge, until the structure with performing the encryption/decryption as well as
matching the fingerprints off-chain was conceived. These implementation challenges with
the authentication took more time than anticipated and were part of the reason why no
second privacy-preserving mechanism was implemented. Another challenge was finding
another mechanism to secure the biometrics while still allowing authentication to work.
Before hybrid encryption was considered, the first idea was to hash biometric data to se-
cure it. An example of this that did not work out was using Zero-Knowledge Proof. The
problem with these hashing approaches is they do not work with authentication based
on biometric data. Measurements of the same fingerprint lead to slightly different results
which leads to the hashes being completely different making the comparison impossible.
As there was only one privacy-preserving mechanism to be able to compare the results
found the comparison featured another system previously presented in the related work
section. This system only featured secure storage of biometrics and no other identity
management or authentication functionalities. This system was chosen because no paper
could be found with a biometric authentication system and evaluation of that system to
make the comparison of the systems possible. Other than not being able to implement

49

50 CHAPTER 6. FINAL CONSIDERATIONS

a second system the schedule could be followed with only small adjustments necessary.
Those adjustments included more time needed for the development of the design and
implementation, but because there was enough time detriment for the final review and
corrections, the work schedule could be shifted by shortening the time allotted for final
touches.

6.2 Conclusions

Developing an SSI system featuring biometric authentication is a novel idea with poten-
tially huge upsides for users in terms of data ownership, security, and privacy, but it is
currently not feasible, because the gas usage and the correlated transaction costs of smart
contracts are too high. Consequently, more research and improvements are required before
real-world adoption is possible. The use of biometrics for authentication in SSI systems is
a complex subject matter. Storing the biometrics in encrypted form makes them secure,
but it is not enough for implementations based on blockchain as gas usage is still too high
with the amount of data sent in the transactions. A system based solely on this approach
will not work unless the gas usage fees of smart contracts are significantly decreased in
the future.
One possible solution would be the hashing of the biometric data, to decrease the amount
of data sent. But this makes biometric matching to authenticate users impossible. To
make storing the hashed biometrics a possible solution it would therefore have to be com-
bined with storing encrypted biometrics in a distributed storage system, making retrieval
of the biometrics for authentication possible. This proposal is based on the results of the
evaluation. An implementation of such a system would have to be evaluated in terms of
gas usage and authentication time to examine the feasibility.
If such a solution and other solutions prove not to be suitable, further improvements on
smart contracts may be necessary before the adoption of an SSI system utilizing biomet-
ric authentication becomes adaptable for real-world usage. Furthermore, the discussion
could then be held if biometric authentication with SSI systems and smart contracts are
necessary, or if other solutions for authentication in an SSI system would be better suited.

6.3 Future Work

To extend this work itself implementing a system that gathers biometric data from real
fingerprints and analyzing the system with the data gathered from those is the natu-
ral next step. This analysis would help determine the time and cost the authentication
process takes with real biometric fingerprint data. The analysis would further allow the
adjustment to threshold values inside of the matching function in Listing 4.10 further
optimizing the matching process.
Additionally, advancing the system to require less gas usage for the execution of the con-
tract transactions. This is partly achieved as further research and development is made
with smart contracts in general. On top of that research into the possibility of a system

6.3. FUTURE WORK 51

featuring the storage of hashed biometrics on the blockchain, while the encrypted bio-
metrics are saved on a distributed system, retrievable for biometric matching, could be
explored.
Otherwise, further privacy and security-preserving mechanisms are to be designed, imple-
mented, and evaluated, for comparison against each other and previous solutions, to gain
valuable insights and propel the evolution of SSI systems.

52 CHAPTER 6. FINAL CONSIDERATIONS

Bibliography

[1] Moses Arhinful Acquah et al. Securing fingerprint template using blockchain and
distributed storage system. 2020.

[2] Christopher Allen. The Path to Self-Sovereign Identity. url: https : / / www .

lifewithalacrity.com/article/the-path-to-self-soverereign-identity/.
[3] Mehmet Aydar, Serkan Ayvaz, and Salih Cemil Cetin. “Towards a Blockchain based

digital identity verification, record attestation and record sharing system”. In: arXiv
preprint arXiv:1906.09791. 2019.

[4] Luis Bathen et al. “Selfis: Self-sovereign biometric ids”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.
2019.

[5] Carmen Bisogni et al. “ECB2: A novel encryption scheme using face biometrics for
signing blockchain transactions”. In: Journal of Information Security and Applica-
tions. Vol. 59. 2021, p. 102814.

[6] Vitalik Buterin et al. “A next-generation smart contract and decentralized applica-
tion platform”. In: vol. 3. 37. 2014, pp. 2–1.

[7] Spela Cucko et al. “Towards the classification of self-sovereign identity properties”.
In: Ieee Access. Vol. 10. 2022, pp. 88306–88329.

[8] Jignasha Dalal et al. “Verification of identity and educational certificates of students
using biometric and blockchain”. In: Proceedings of the 3rd International Conference
on Advances in Science & Technology (ICAST). 2020.

[9] Oscar Delgado-Mohatar et al. Blockchain meets biometrics: Concepts, application
to template protection, and trends. 2020.

[10] Uwe Der, Stefan Jähnichen, and Jan Sürmeli. “Self-sovereign identity − opportuni-
ties and challenges for the digital revolution”. In: arXiv preprint arXiv:1712.01767.
2017.

[11] Paul Dunphy and Fabien A.P. Petitcolas. “A First Look at Identity Management
Schemes on the Blockchain”. In: IEEE Security & Privacy. Vol. 16. 4. 2018, pp. 20–
29.

[12] Md Sadek Ferdous et al. “Security usability of petname systems”. In: Identity and
Privacy in the Internet Age: 14th Nordic Conference on Secure IT Systems, NordSec
2009, Oslo, Norway, 14-16 October 2009. Proceedings 14. Springer. 2009, pp. 44–59.

[13] Marta Gomez-Barrero et al. “General Framework to Evaluate Unlinkability in Bio-
metric Template Protection Systems”. In: IEEE Transactions on Information Foren-
sics and Security. Vol. 13. 6. 2018, pp. 1406–1420.

[14] Geoff Goodell and Tomaso Aste. “A decentralized digital identity architecture”. In:
Frontiers in Blockchain. Vol. 2. 2019, p. 17.

53

https://www.lifewithalacrity.com/article/the-path-to-self-soverereign-identity/
https://www.lifewithalacrity.com/article/the-path-to-self-soverereign-identity/

54 BIBLIOGRAPHY

[15] Tom Hamer et al. Private digital identity on blockchain. 2019.
[16] ISO/IEC 24745:2022. ISO Standard. International Organization for Standardiza-

tion, 2022.
[17] Evan Krul et al. “SoK: Trusting Self-Sovereign Identity”. In: arXiv preprint

arXiv:2404.06729. 2024.
[18] E. H. Lahav. The OAuth 1.0 Protocol. url: https://datatracker.ietf.org/

doc/html/rfc5849.
[19] Yaoqing Liu, Guchuan Sun, and Stephanie Schuckers. “Enabling secure and privacy

preserving identity management via smart contract”. In: 2019 IEEE conference on
communications and network security (CNS). IEEE. 2019, pp. 1–8.

[20] Nuno Martins, José Silvestre Silva, and Alexandre Bernardino. “Fingerprint Recog-
nition in Forensic Scenarios”. In: vol. 24. 2. 2024, p. 664.

[21] Prince Mishra et al. “Pseudo-Biometric Identity Framework: Achieving Self-
Sovereignity for Biometrics on Blockchain”. In: 2021 IEEE International Conference
on Systems, Man, and Cybernetics (SMC). 2021, pp. 945–951.

[22] Asem Othman and John Callahan. “The Horcrux Protocol: A Method for Decen-
tralized Biometric-based Self-sovereign Identity”. In: 2018 International Joint Con-
ference on Neural Networks (IJCNN). 2018, pp. 1–7.

[23] Hatef Otroshi Shahreza, Yanina Y. Shkel, and Sebastien Marcel. Measuring Linka-
bility of Protected Biometric Templates Using Maximal Leakage. 2023.

[24] Nalini K Ratha et al.“Generating cancelable fingerprint templates”. In: IEEE Trans-
actions on pattern analysis and machine intelligence. Vol. 29. 4. 2007, pp. 561–572.

[25] Shreyansh Sharma, Anil Saini, and Santanu Chaudhury.“Multimodal biometric user
authentication using improved decentralized fuzzy vault scheme based on Blockchain
network”. In: Journal of Information Security and Applications. Vol. 82. 2024,
p. 103740.

[26] Reza Soltani, Uyen Trang Nguyen, and Aijun An.“A survey of self-sovereign identity
ecosystem”. In: Security and Communication Networks. Vol. 2021. 2021, pp. 1–26.

[27] Yagiz Sutcu et al. “What is biometric information and how to measure it?” In: 2013
IEEE international conference on technologies for homeland security (HST). IEEE.
2013, pp. 67–72.

[28] Foteini Toutara and Georgios Spathoulas. “A distributed biometric authentication
scheme based on blockchain”. In: 2020 IEEE International Conference on Blockchain
(Blockchain). IEEE. 2020, pp. 470–475.

[29] W3C. Decentralized Identifiers (DIDs). url: https://www.w3.org/2017/vc/WG/.
[30] Fennie Wang and Primavera De Filippi. “Self-Sovereign Identity in a Globalized

World: Credentials-Based Identity Systems as a Driver for Economic Inclusion”. In:
Frontiers in Blockchain. Vol. 2. 2020.

[31] James L. Wayman.“Biometrics in Identity Management Systems”. In: IEEE Security
& Privacy. Vol. 6. 2. 2008, pp. 30–37.

[32] Naser Zaeri. “Minutiae-based fingerprint extraction and recognition”. In: vol. 10.
2011, p. 17527.

[33] Qixin Zhang. “An overview and analysis of hybrid encryption: the combination of
symmetric encryption and asymmetric encryption”. In: 2021 2nd international con-
ference on computing and data science (CDS). IEEE. 2021, pp. 616–622.

[34] Weiqin Zou et al. “Smart contract development: Challenges and opportunities”. In:
IEEE transactions on software engineering. Vol. 47. 10. 2019, pp. 2084–2106.

https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc5849
https://www.w3.org/2017/vc/WG/

Abbreviations

AES Advanced Encryption Standard
BOPS Biometric Open Protocol Standard
BTP Biometric Template Protection
CBC Cipher Block Chaining
CHF Swiss Franc
DID Decentralized Identifier
ETH Ether (Cryptocurrency)
EVM Ethereum Virtual Machine
fmp1 Fingerprint Minutiae Points 1
fmp2 Fingerprint Minutiae Points 2
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IPFS InterPlanetary File System
ISO International Organization for Standardization
IV Initialization Vector
KYC now-Your-Costumer
OAuth Open Authorization
OAEPHashOptimal Asymmetric Encryption Padding Hash
PEM Privacy-Enhanced Mail
PIN Personal Identification Number
RDM Random Distance Methods
RSA Rivest-Shamir-Adleman
SHA-3 Secure Hash Algorithm 3
USD United States Dollar
W3C World Wide Web Consortium

55

56 ABBREVIATONS

List of Figures

3.1 System overview of enrollment phase . 20

3.2 System overview of authentication phase 20

3.3 Sequence diagram of the enrollment phase of the proposed system 21

3.4 Sequence diagram of the authentication phase of the proposed system . . . 22

57

58 LIST OF FIGURES

List of Tables

2.1 Summary of papers discussing privacy solutions for biometrics in SSI systems 13

2.2 Summary of papers discussing applications of biometrics in the blockchain 16

5.1 Gas usage and costs for registration of a DID 40

5.2 Gas usage and costs for adding a credential 40

5.3 Gas usage and costs for authentication transactions with 30 minutiae points 40

5.4 Gas usage and costs for authentication transactions with 80 minutiae points 40

5.5 Time duration of the authentication process using 30 minutiae points . . . 41

5.6 Time duration of the authentication process using 80 minutiae points . . . 42

5.7 Gas usage and cost for storing biometric template with the system from
Acquah et al. [1] . 46

59

60 LIST OF TABLES

Listings

4.1 DID Registry smart contract . 24
4.2 Issuer Registry smart contract . 25
4.3 Part of the Credential Registry smart contract 26
4.4 Request credential funciton from the Credential Registry smart contract . 27
4.5 Handle authentication result function from the Credential Registry smart

contract . 27
4.6 Generate credential function from the credential.js file 28
4.7 Verification of the credential function from the credential.js file 29
4.8 Functions for the symmetric AES encryption/decryption of the biometric

data . 30
4.9 Functions for the asymmetric encryption/decryption with the RSA pub-

lic/private keypair . 31
4.10 Functions from the matcher.js file, that handle the matching of fingerprints 33
4.11 Authenticator file . 34
4.12 Client listener file . 36

61

62 LISTINGS

Appendix A

Installation Guidelines

The code can be found in the following GitHub repository:
https://github.com/jverho/SSI-Biometric-Authentication

There you can find a detailed installation and operation guide in the README.md file.

63

https://github.com/jverho/SSI-Biometric-Authentication

	Declaration of Independence
	Zusammenfassung
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Thesis Goals
	Thesis Outline

	Fundamentals
	Background
	Identity
	Self-Sovereign Identity
	Biometric Data
	Biometric Data in Self-Sovereign Identity Systems
	Smart Contract
	Hybrid Encryption

	Related Work
	Biometric Template Protection in SSI systems
	Biometric Template Protection in Blockchain
	Summary of Related Work

	Design
	System Overview

	Implementation
	Smart Contracts
	DID Registry
	Issuer Registry
	Credential Registry

	JavaScript Modules
	Credential
	Encryption
	Matcher
	Authenticator
	Client Listener

	Evaluation
	Performance
	Gas usage
	Time

	Security
	Smart Contracts for Security
	Hybrid Encryption of Biometric Data
	Authentication Process

	Privacy
	Linkability

	Scalability
	Comparison with Existing Solution
	Evaluation Summary

	Final Considerations
	Discussion
	Conclusions
	Future Work

	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	List of Listings
	Installation Guidelines

