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Abstract

This thesis explores the integration of physical identity with blockchain-based Self-Sovereign
Identity (SSI) systems, focusing on privacy and user control. It identifies challenges of
existing solutions, particularly the reliance on biometric data and its risks to user au-
tonomy. To address these issues, this thesis proposes the system “Credchain-ZKP” using
zero-knowledge proofs to verify physical identity without disclosing biometric data. Two
prototypes are implemented and evaluated in terms of performance, cost, scalability, se-
curity and privacy. The results demonstrate the feasibility of securely linking physical
and digital identities while adhering to SSI principles.
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Zusammenfassung

Diese Bachelorarbeit untersucht die Integration physischer Identitét in Blockchain-basierten
Self-Sovereign Identity (SSI) Systemen mit Fokus auf Datenschutz und Datenautonomie
von Nutzenden. Sie zeigt die Grenzen aktuell implementierter Losungen auf, insbesondere
die Nachteile durch die Verwendung von biometrischen Daten in Bezug auf Nutzerauto-
nomie. Als Antwort auf diese Probleme wird das System “Credchain-ZKP” konzipiert, das
Zero-Knowledge-Proofs einsetzt, um physische Identitdtsmerkmale zu verifizieren, ohne
sensible biometrische Daten preiszugeben. Zwei Prototypen werden implementiert und
hinsichtlich Performance, Kosten, Skalierbarkeit, Sicherheit und Datenschutz bewertet.
Die Ergebnisse zeigen, dass physische und digitale Identitdten unter Wahrung der SSI-
Prinzipien erfolgreich verkniipft werden kénnen.
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Chapter 1

Introduction

Digital identity solutions have become more and more common in both governmental and
private sectors, promising easier interactions and less physical documents. However, many
of these solutions only offer basic digital versions of existing IDs (e.g. an electronic Pass-
port). These approaches typically fail to address challenges that Self-Sovereign Identity
(SSI) solutions aim to cover, such as returning ownership and control of personal data to
users.

Recent research points to a need for methods linking physical identity to digital, self-
sovereign credentials in a reliable way. For instance, NISTY| specifications explicitly ex-
clude physical aspects [21], leaving the question of real-world identity largely unanswered.
Similarly, [43] explains that understanding of how physical identity could be integrated
within SSI systems would be valuable. These gaps show why such systems should not
only manage digital, but also physical credentials.

While exploring existing ways of combining physical and digital identities, one challenge
reoccurred for many systems: How can verifiers ensure that an individual matches the
presented credentials? While some systems use sensitive biometric data do perform this
match, this approach does not fulfill principles of SSI such as data minimization or user
autonomy. Filling this gap, zero-knowledge proofs have emerged as a promising option,
allowing user details to be verified without revealing any data. This alignment with SSI
principles makes zero-knowledge proofs particularly suitable for bridging the gap between
physical and digital identity.

1United States’ National Institute of Standards and Technology



2 CHAPTER 1. INTRODUCTION

1.1 Thesis Goals

This thesis intends to explore how physical identity can be securely linked with SSI while
maintaining user control and privacy. In line with the tasks described in the project, the
work is divided into several key goals:

e Establish background and foundations: Develop the necessary theoretical ground-
work on SSI and clarify the significance of incorporating physical identity into digital
identity systems.

e Review existing approaches: Conduct a comprehensive literature review to identify
current methods for linking physical identity to SSI, evaluate their strengths and
weaknesses, and develop a clear problem statement.

e Define a mechanism for integration: Propose a mechanism designed specifically
for connecting physical identity and SSI, ensuring that it meets high standards of
privacy, security, and data minimization.

e Specify requirements and design architecture: Derive both functional and non-
functional requirements to guide the design of a prototype architecture. This ar-
chitecture should enable physical and digital identity connectivity in a reliable and
user-centric way.

e Implement a prototype: Build a simplified SSI system — comprising issuer, veri-
fier, and identity holder — that integrates physical identity features while upholding
privacy and security principles.

e Evaluate performance and security: Carry out a comprehensive assessment of the
prototype, focusing on data confidentiality, system scalability, performance metrics,
and cost. Compare these findings to a baseline setup that does not include physical
identity, highlighting the benefits and any trade-offs.

1.2 Thesis Outline

In chapter 2, key concepts and theories related to identity and SSI are introduced. This
definitions of identity, authentication, and zero-knowledge proofs. The chapter also re-
views related work and identifies gaps this thesis aims to address. Chapter 3 outlines
the proposed design. It explains the principles, requirements, and architecture needed
to connect physical identity with SSI using zero-knowledge proofs. Chapter 4 describes
the implementation of the prototypes. It focuses on how the design was implemented,
the technologies used, and how biometric data and proofs are processed. Chapter 5 eval-
uates the prototypes by measuring their performance, cost, scalability, and security. It
also compares the system’s privacy features to existing solutions. Chapter 6 concludes
the thesis, highlighting the main contributions and the system’s role in securely linking
physical and digital identities, and identifies potential improvements for future research.



Chapter 2

Fundamentals

This chapter introduces concepts and related work that form the foundation of this thesis.
It begins with an overview of core theories and relevant definitions. The discussion then
turns to an analysis of related work and the presentation of the problem statement.

2.1 Background

This section begins by defining key terms related to identity, explaining how identity can
be authenticated and how this process connects to Self-Sovereign Identity systems. It
then moves on to zero-knowledge proofs, providing an overview and illustrating different
mechanisms.

2.1.1 Identity

At the core of every authentication process is the principle of identity verification, across
varying levels of trust and specific requirements. [44] define identity as the comprehensive
set of attributes defining a person uniquely. These attributes describe properties of persons
like height, hair color, citizenship, or a name and have no means to be unique themselves,
but can be shared by multiple persons.

To identify a person, select non-unique attributes are insufficient. An identifier, on the
other hand, works as a reference to a person. Such references can be assigned (e.g. names)
or be a "particular representation of an observable property” (e.g. unique attributes such
as biometric data) [44], based on the context and the environment they are being used in.
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2.1.2 Proofs of Identity

Identity proofing and authentication describe the process through which a person’s iden-
tity is determined and verified using specific identity attributes [21]. The United States’
National Institute of Standards and Technology (NIST) outlines three fundamental com-
ponents of this process in their Digital Identities Guidelines [21], applicable across various
contexts and environments:

1. Resolution: Attributes (e.g. height or hair color) and provided identity evidence
(e.g. passport or social security number) are used to establish a reference to a
person.

2. Validation: Assessment of the requested identity evidence and attributes: Are they
present, valid, authentic and accurate?

3. Verification: Upon successful validation, the identity of a claimant can be confirmed.
Several sources also categorize the strength or reliability of the presented proof of identity,
requiring that certain criteria must be fulfilled for varying levels of confidence. These

criteria include different types of core attributes presented, identity evidence presented or
usage of specific authentication and verification processes [19, 21].

2.1.3 Authentication

A widely used authentication process is Multi-Factor Authentication (MFA). This method
is based on the categorization of attributes [20], 37

1. Something you know, such as a password or a username.
2. Something you have, such as an ID card, a physical badge, or a smartphone.
3. Something you are, referring to biometric characteristics, such as fingerprints or iris

scans.

Combining two or more of these factors (MFA) results in in higher levels of assurance and
thus higher confidence in the identity of the claimant [14].

2.1.4 Self-Sovereign Identity (SSI)

Self-Sovereign Identity is a user-centric approach to digital identity management, allow-
ing individuals to control, present and verify their digital identity without relying on
centralized institutions. In contrast to traditional identity systems with service providers
managing identities, SSI uses decentralized technologies. Users create Decentralized Iden-
tifiers (DIDs) stored on the blockchain acting as references to, in this case, human users.
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Verifiable Claims, digital attestations issued by third party entities, present single at-
tributes related to the user. For instance, a Verifiable Claim could certify the user’s age,
educational qualification, or membership in a specific organization. This system allows
identity verification by presenting only the necessary attributes to any other party, with-
out any central authority, enhancing autonomy, privacy and security while maintaining
trust [1].

2.1.5 Zero-Knowledge Proofs (ZKP)

Zero-knowledge proofs are cryptographic protocols that allow a prover to convince a ver-
ifier of the truth of a statement without revealing any information beyond the validity
of the statement itself. This ensures the confidentiality of sensitive information while
enabling verification and trust [1§].

Multiple types of zero-knowledge proofs exist. Most can be categorized as follows:

e Interactive Zero-Knowledge Proofs: Interactive ZKPs involve multiple rounds of
communication between prover and verifier. The verifier issues challenges and the
prover must respond correctly to each [4§].

e Non-Interactive Zero-Knowledge Proofs: In a non-interactive ZKP, the prover and
verifier do not need to communicate multiple times — the prover sends one single
proof to the verifier which can be verified independently [48].

e zk-SNARKSs (Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge):
zk-SNARKSs are compact non-interactive proofs that are quick to verify, relying on a
trusted setup phase for each proof circuit. Prover and verifier both need knowledge
of the keys generated through the verified setup [48].

e zk-STARKS (Zero-Knowledge Scalable Transparent Arguments of Knowledge): zk-
STARKSs are an evolution of zk-SNARKSs removing the need for a trusted setup,
improving scalability [48].

e Bulletproofs: Bulletproofs are a type of zero-knowledge proof specifically designed
for range proofs, for instance verifying whether an individual’s age meets a minimum
requirement [3).
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2.2 Related Work

This section examines existing SSI systems and explores their details, limitations and
current interactions with the physical world. This analysis is concluded with a summariz-
ing table and a presentation of the observed research gap and the developed problem
statement.

2.2.1 Related Work on Existing Digital and Physical Implementations

In reviewing related work, a systematic approach was adopted to compare existing imple-
mentations across several dimensions. The following criteria were used:

e Purpose and Availability: The motivation behind the system’s creation and its
implementation status.

e Enrollment: Registration and identity verification processes, including any physical
elements, if present.

e Presentation and Transmission: Presentation of identity, types of credentials used,
and methods of transmission.

e Identity Assurance: Use of third-party attestations and the level of trust established.

e Usability: Ease of enrollment and presentation for users and verifiers, including any
requirements such as smartphones or internet connection.

e Security and Privacy: Protection measures against fraud or identity theft.

e Connection of Physical and Digital Identity: Any findings specific to the intercon-
nection between physical and digital identities.

e FR/NFR: Presence of specific functional or non-functional requirements.
e Specific remarks and limitations.
Six implementations have been selected for a detailed analysis based on their unique ca-

pabilities for integrating physical identity within Self-Sovereign Identity systems, followed
by a summarizing table [2.1]
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2.2.1.1 Worldcoin / World ID

Purpose and Availability: Worldcoin and World ID were created to build a global
digital identity and currency system. Unique to the system is the use of biometric
data (iris scans) to verify "humanness” [45]. At the time being, over 6 million people
are enrolled.

Enrollment: Users can enroll by scanning their iris by an "Orb”, an iris scanner, and
enregister via the mobile app. The hashed iris scan is then saved in Worldcoin’s
database. It is not possible to authenticate by any other means to ensure that users
only enroll once [16, 45].

Presentation and Transmission: The World ID is presented through the Worldcoin
app. After scanning a QR code of a service, the app generates zero-knowledge
proofs that allow users to authenticate themselves without revealing personal info.
These proofs are computed on the user’s device. The transmission works over the
Worldcoin network off-chain — not peer-to-peer, but over their central servers. The
blockchain is only used to set the uniqueness of World IDs [45].

Identity Assurance: There are no traditional third-party attestations; trust is based
on the uniqueness of the biometric-derived World ID.

Usability: Users must physically access an Orb for enrollment and then use a phone
app. Access to an Orb is physically limited by their availability. As of September
2024, there are five Orbs available in entire Germany. Additionally, an internet
connection is usually required to connect to verifiers. Verifiers can integrate an API
into their services to support the World ID. [45].

Security and Privacy: Using unique biometric protects against fraud. Zero-knowledge
proofs ensure that users can prove their human uniqueness without releasing per-
sonal information. However, use of biometric data as well as the transmission is
handled by Worldcoin’s servers, raising concerns regarding privacy and data control
[16, 29].

Specifics: Even though World ID aims at privacy-respecting digital ID, classification
of this system as truly self-sovereign is unclear, since it is lacking decentralization
in many parts where a high degree of reliance on Worldcoin as a central instance is
necessary [16].

Connection of physical and digital Identity: World ID directly links physical bio-
metric data (iris scans) to digital identities by creating World IDs referenced on the
blockchain. Using proprietary hardware to scan the iris of users and using this proof
of uniqueness forms an interesting approach. However, this sole focus on uniqueness
does not hold for more advanced use cases of user identification, such as determining
if a user is authorized to access a service or transiting a border.

FR/NFR: World ID primarily addresses functional requirements by pursuing unique
human identity verification and proof of personhood [45].
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2.2.1.2 Kiva Protocol

e Purpose and Availability: The Kiva Protocol allowed individuals to use a digital
identity that combines personal details and biometrics to access financial services
[44]. The project has been initially rolled out in Sierra Leone in 2018 and was
discontinued by 2022 [30), 44].

e Enrollment: People can sign up by registering at a governmental polling station,
providing biometric and personal data such as a fingerprint, their name and their
birthdate [44].

e Presentation and Transmission: Enrolled users can then either use a digital wallet
to present their identity or let a financial institution retrieve their identity based on
user’s biometrics [44].

e Identity Assurance: Governmental entities enroll users and ensure their identity at
sign-up using their personal details and biometrics [44].

e Usability: Users do need a governmental ID to enroll. A smartphone can be used to
manage their digital identity, but is not a requirement. Verifiers need proper access
to the system and biometric equipment, which may limit usability for institutions
not willing or able to provide that [44].

e Security and Privacy: The DID published only confirms that the premised holder
with these personal details is a citizen of that country. Information about a loan is
being published on-chain and attached to a DID; the private key is stored either on
the user’s smartphone or on Kiva’s servers in case they don’t have a smartphone [44].
This raises questions on the part of Kiva’s data protection measures. The protocol
itself is based on the Selective Disclosure principle. As such, a single bank will not
be able to see all interactions and the full history of the user with other banks,
but only transactions attached to its own sub-DID. Furthermore, the data usage is
designed to be as minimal as possible — including the fact that the biometric data
is not being used by the financial institute primarily, but only as a second factor in
case the user does not own a smartphone [44].

e Connection of physical and digital Identity: In the enrollment process, users need to
use their biometric data to be set up with a digital identity. At presentation, they
can verify their identity digitally through an app or physically through biometric
scans [44]. There is no physical transmission mechanism or mandatory physical, e.g.
biometric authentication process known.

e FR/NFR: The Kiva Protocol mainly focuses on the functional requirements ad-
dressing digital identity creation and establishing credit history. It also addresses
non-functional requirements and balances aspects like security (possibility to have
private keys on your digital wallet) and availability (letting Kiva manage your pri-
vate keys and authenticate using a biometric second factor) |30, [44].
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2.2.1.3 Civic Pass

e Purpose and Availability: The Civic Pass aims to provide secure identity verification
on demand and with low cost, while giving users control over their personal informa-
tion [34] and enabling compliance with regulations, such as Know Your Customer
protocols [36].

e Enrollment: Users register by scanning physical, government-issued IDs and a live
facial scan comparison to it through the Civic app [6]. Upon verification, Civic
generates a DID stored on the blockchain [36]. Additionally, it is possible to obtain
a physical "Civic ID card” by physical verification at an "authorized provider” [5].
This enables physical use of the digital ID.

e Presentation and Transmission: Identity is presented via their app once users choose
to share verified information and transmitted directly, off-chain, to the service
provider. Different methods of communication with a service provider seem to be
supported via the app: QR codes, Bluetooth and near field communication [4]. The
physical ID allows offline and NFC-based verification [5]. For service providers,
Civic provides APIs for easier integration [7].

e Identity Assurance: The compliance with Know Your Customer regulations and
the use of government-issued IDs contribute to maintaining a high level of trust.
However, given that Civic acts as both the attestation provider and verifier, a service
provider needs to trust the processes and the API implemented by Civic.

e Usability: Using the app, it is possible to onboard online using a mobile phone with
a camera and an internet connection. For presentation, an internet connection is
required. Using the physical Civic ID card, it is possible to present ID offline, but
a prior physical visit to a provider’s office is necessary.

e Security and Privacy: Using biometric and especially in-person verification ensures
high trust levels. Users’ personal info and documents are only stored on their mobile
devices and hashes of it are stored on the blockchain, ensuring no centralized storage
of personal data [31].

e Connection of physical and digital Identity: Civic relies heavily on physical elements
such as a governmental ID and a facial likeness scan for the initial enrollment. For
the physical Civic ID card, physical presence at a verifiers office is needed. The
physical Civic ID card enables users to access their digital ID offline through NFC,
complementing the online use of their digital ID via QR codes, NFC, or Bluetooth,
forming a bridge between the digital ID and its physical representation [5].

e FR/NFR: Civic addresses functional requirements (e.g. identity verification and ac-
cess control) as well as non-functional requirements (e.g. accessibility and usability)
through using the Civic Identity digitally and with their physical ID. [4, 5].

e Specifics: Due to Civic acting as the central instance in this process, this system
does not match the requirement of a decentralized SSI system.
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2.2.1.4 EBSI/ESSIF (EU)

Purpose and Availability: The European Self-Sovereign Identity Framework (ES-
SIF) aimed at empowering EU citizens with a digital identity and enabling them
to control and own their digital identity [17]. It was a project of the European
Blockchain Service Infrastructure EBSI and was discontinued by 2022 [32]. Mean-
while, EBSI’s operation and many elements of the ESSIF framework are still being
continued.

Enrollment: After an inital setup in a mobile application, the ESSIF relies on physi-
cal presence at enrollment for verification since only authorized institutions are able
to issue a verifiable identity [13].

Presentation and Transmission: ESSIF offers two possibilities of presenting identity:
using biometric authentication — implemented by the mobile phone manufacturer
— to access an app and share Verifiable Credentials or using an EU elD to log in,
obtain a verifiable Credential and presenting it |12, |13].

Identity Assurance: Only authorized, often governmental, institutions are eligible
for issuing a verifiable identity [13]. Users are being verified at presentation by
providing their biometrics to open the app or to log in with their EU eID [13].
Apart from that, no verification is mentioned on the service provider side.

Usability: Enrollment requires users to install a compatible digital wallet, using a
smartphone, internet connection, and initial physical verification. The integration
of eID might have increased usability [13].

Security and Privacy: Users can control their data and choose what information to
display, enhancing privacy [13]. However, security measures are questionable since
relying on smartphone-built authentication can be prone for manipulation, as there
is no additional authentication possibility.

Connection of physical and digital Identity: ESSIF connects physical identity doc-
uments to digital identities. Apart from the initial physical verification, no further
specifically physical use cases are described for the SSI system. However, as men-
tioned, there are various efforts to further develop the learnings from this project.
One example is the EU-designed specifications for digital wallets, whose advertised
use cases include using it as a passport and thus international border crossings [15].
An international organization like the EU could particularly advance such applica-
tions of digital IDs and promote exchange protocols — also based on SSI.

FR/NFR: ESSIF primarily targets functional requirements of cross-border digital
identity verification and interoperability of the system. Additionally, it focuses on
standardization by adhering and establishing EU-wide standards and regulations
[15].
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2.2.1.5 United Nations World Food Programme ”Building Blocks’:

e Purpose and Availability: The United Nations WFP (World Food Programme)
implemented an iris scan authentication system to enable efficient food assistance
distribution to refugees without relying on physical vouchers or actual money [42].

e Enrollment: UNHCR Jordan, the UN Refugee Agency in Jordan, registers refugees
and scans their irises. They must be physically present in order to utilize proprietary
iris scanners [42]. The patterns captured by the scanner create an unique, individual
biometric template.

e Presentation and Transmission: At the point of service, e.g. a supermarket, ben-
eficiaries can authenticate themselves by having their iris scanned. The iris scan
serves as the sole authentication credential — there is no physical card, voucher, PIN
or other method involved in that process [42].

e Identity Assurance: The WFP acts as a custodian of user’s private keys. After
successful biometric authentication, the keys are triggered to sign transactions on a
private blockchain. Sensitive biometric and personal information stay off-chain and
in a layer managed by WFP between the blockchain and the actual user [44].

e Usability: Beneficiaries do not need to carry documents or remember any credentials,
authentication is as simple as looking into an iris scanner. The points of service need
to be equipped and ensure a secure internet connection to the WFP [42].

e Security and Privacy: The WFP describes all protocols and procedures as secure
and privacy-respecting. However, capturing biometric data and transmitting it to a
server of WEP can bring risks. [44] also points out possible caveats of using biomet-
ric data: Biometric features can change, are constantly left behind everywhere by
individuals (on photos or as fingerprints) and, unlike passwords, cannot be swapped
in the event of an exploit. Additionally, the mandatory use of biometrics can raise
ethical questions about consent, especially in vulnerable populations.

e Connection of physical and digital Identity: This system directly links the physical
identity of an individual to their digital identity in the system and completely elimi-
nates any other document. Furthermore, physical presence is required at enrollment
as well as presentation.

e FR/NFR: This system addresses specific and use-case-related functional require-
ments, namingly efficient aid distribution and identity verification. As for non-
functional requirements, user-side usability of the systems without even needing
any hardware increases accessibility [42].

e Specifics: This system described does not match SSI criteria: Users have no control

over their identity data, biometric data is stored centrally and the system depends
on UNHCR and WFP as central authorities.
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2.2.1.6 TCID

e Purpose and Availability: TCID is a DID-based SSI system developed together with
the Dutch government. It aims to provide a scalable digital SSI system usable for
high-assurance identity verification, such as passport-grade identification [39, 40].
Their system is not ready for practical use but serves as a proof of concept for their
proposed architecture.

e Enrollment: Users create a DID. Embedded in it is an unique string acting as a
second factor that can be used for on-site verification. Possibilities range from PINs
to facial recognition data [40].

e Presentation and Transmission: Users store their verifiable credentials in their digital
wallet and share them on request, partially or completely. Bluetooth is used as an
on-site communication mechanism. Communication takes place directly between
user and verifier with no central authority inbetween [40].

e Identity Assurance: Governmental institutions and other trusted entities can verify
users’ identities and issue verifiable credentials. Service providers can then authen-
ticate these credentials by verifying the digital signatures on the DIDs, along with
the second authentication factor and the revocation status [40].

e Usability: Users need access to a smartphone and, for any biometric enrollment, to
an authorized center. Verifiers need to be able to use Bluetooth for on-site com-
munication and, if facial recognition is used, cameras. Since Bluetooth is used as a
transmission protocol, no internet connection is necessary for the user at presenta-
tion.

e Security and Privacy: Strong encryption, digital signatures and physical factors
(PIN or biometric features) help mitigate fraud and identity theft. Users can choose
which attributes they want to share and all personal data is stored locally on devices.

e Connection of physical and digital Identity: The system integrates a second factor
with a string on the DID that can be verified locally, making it suitable for high-
security applications. The work also describes passport-grade ID representation in
combination with facial scans with liveness detection [40]. Additionally, the ability
to present credentials offline via Bluetooth increases the usability.

e FR/NFR: The system was built with special focus on the functional requirements
of direct peer-to-peer communication without central intermediaries and integrity
verification of the digital ID using a second factor as part of the DID [40].

e Specifics: The precautions and considerations regarding using biometric data, as
outlined by [44] in subsection [2.2.1.5| are applicable in this context as well.
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Criteria Worldcoin / Kiva Protocol Civic Pass EBSI/ESSIF UN WFP TCID
World ID (EU) ”Building

Blocks”

Enrollment Iris scan via Register at Scan ID and Set up in app; Registered by Create DID

?Orb” and app  government facial physical UNHCR,; iris with unique
station with recognition via  verification scans taken string; may

biometrics app; physical required need on-site

ID optional verification

Presentation app generates Present via Present via Use app or EU  Iris scan at Share

and proofs; uses wallet or app; uses QR elD to share service points credentials via

Transmission central servers biometrics at codes, credentials for Bluetooth;

institutions Bluetooth, authentication  peer-to-peer
NFC; physical
ID possible

Identity Trust in Government Civic verifies Authorized WFP manages  Government

Assurance unique verifies identity  IDs; institutions keys; biometric  verifies
biometric ID; with compliance issue identities  data off-chain identity;
no third biometrics with providers
parties regulations authenticate

credentials

Use of ?Orb” iris Biometric Smartphone Smartphone Proprietary iris Smartphone

Hardware scanner; equipment; with camera; app scanners with
smartphone smartphones physical ID Bluetooth;
app optional uses NFC possible

biometric
sensors

Centralization  Relies on Centralized Civic is central  Involves Centralized Decentralized;
central servers elements; authority; not government system peer-to-peer

government fully authorities; managed by communication
and Kiva can decentralized aims for stan- UNHCR and

manage keys if dardization WEFP

users decide

not to

Connection of  Links iris scans Biometrics set Physical Connects Links physical Second factor

Physical and to digital IDs up digital ID; attributes (ID,  physical identity to on DID;

Digital on blockchain verify via app facial scan); documents to digital; includes facial

Identity or biometrics physical ID digital IDs; physical scans with

bridges digital includes digital presence liveness
and physical wallets as required detection
passports

Focus FR: Unique FR: Digital FR: Identity FR: FR: Efficient FR:

FR/NFR human identity identity and verification Cross-border aid Peer-to-peer
verification credit history; and access identity distribution; communica-
using iris scans NFR: balances  control; NFR: verification; NFR: high tion, integrity

security and enhanced NFR: EU-wide usability verification
availability usability with standardiza- without user using second
digital and tion hardware factor

physical ID
options

Table 2.1: Analysis of Six Identity Management Systems

2.2.2 Related Work on Zero-Knowledge Proofs in SSI Systems

Literature on the interconnection of zero-knowledge proofs and identity management sys-
tems remains relatively limited. [48] explores foundational insights into the interconnec-
tion of zero-knowledge proofs, blockchain and Self-Sovereign Identity systems, focusing
on the integration of zk-STARKSs enabling selective disclosure of credentials. [41] provides
a framework for zero-knowledge proofs applications in blockchain. Although not directly
linked to identity systems, the work does propose zk-SNARKSs as a solution for certain

verifiable claims, such as proving account balances.
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2.2.3 Research Gap and Problem Statement

While reviewing current solutions one challenge keeps arising: How is it possible to ensure
that the person physically standing in front of a verifier truly matches the digital identity
claimed? In many real-world contexts, smartphones and PIN numbers can be stolen or
passed on to someone else and are subject to misuse [16, 30]. To address this, some solu-
tions use biometric data. However, biometric data comes with disadvantages: Individuals
potentially leave traces of biometric markers (e.g. photos, fingerprints) and unlike pass-
words, biometrics can not be replaced when compromised [16, |44]. Furthermore, some
solutions use proprietary hardware to capture biometric data and process it further, being
intransparent to the user and thus contradicting with self-sovereign identity principles of
decentralization, user autonomy and data minimization [40].

Thus, the following problem statement explores the design of a SSI solution using bio-
metrics for robust physical verification, yet keeping actual biometric data enclosed on the
user’s device and never disclosing it to any outside institution.

Problem Statement: Current high-assurance Self-Sovereign Identity systems for physical
usage rely on biometric data, raising privacy concerns and conflicting with SSI principles
of user control and data minimization. This thesis aims to enhance existing methods by
securely integrating biometrics without disclosing actual biometric data. The goal is to
develop an SSI system that enables high assurance levels in physical use cases while en-
suring biometric data remains securely stored on the user’s device without being disclosed
to any external parties.



Chapter 3

Design

This chapter begins with the first section explaining general requirements for SSI systems
and additional requirements based on the problem statement. The second section then
presents the proposed design.

3.1 Design Principles and Requirements

This chapter begins with design principles and requirements formulated by other authors
for general SSI systems. These various requirements and approaches can then be cate-
gorized into 13 clusters. Based on these clusters, additional requirements necessary to
address the problem statement are derived and summarized in a table

3.1.1 Related Design Principles and Requirements

[2] initiated a discussion on key design principles through a blog post outlining ten foun-
dational concepts for Self-Sovereign Identity systems:

e Existence: Digital identities are extensions of real individuals.

e Control: Full authority over identities. Create, manage, revoke credentials.

e Access: Retrieve and review all identity data anytime.

e Transparency: Open and understandable operations, policies, and algorithms.

e Persistence: Identities remain valid as long as desired by the user.

e Portability: Transfer identity data between systems without restrictions.

e Interoperability: Compatibility across different platforms and services.

e Consent: Explicit permission required for sharing or using identity information.

15
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e Minimalization: Minimize disclosure and share only necessary identity information.
e Protection: Prioritize and protect users’ rights and freedoms.
These principles have since been refined, aggregated, and extended by numerous authors.

[38] offer a broader formulation of nine general property categories based on these princi-
ples:

e Representation: Digital representation of any entity possible — human, legal, or
technical.

e Control: Decision-making authority only by the controller, covering rights, manage-
ment, ownership, and data updates.

e Flexibility: Avoid vendor lock-in; include interoperability, open standards, and sup-
port for open-source solutions.

e Security: Uses cryptographic tools to secure interactions, manage keys, and ensure
tamper-proof operations.

e Privacy: Only essential data is disclosed in each interaction, using selective disclo-
sure and consent.

e Verifiability: Ensures credential validity and timeliness through certificates, man-
agement, and revocability.

e Authenticity: Credentials are strongly bound to their initial bearers to prevent
fraud.

e Reliability: Guidance for verifiers on which issuers to trust, with decentralization
and governance mechanisms.

e Usability: Efficiency, a positive user experience and availability of user support.

[9] took another approach and composed a comprehensive list of 20 precisely formulated
requirements in different categories:

e Existence and Representation: Independent existence of users and the creation of
multiple identities.

e Decentralization: Avoid reliance on centralized systems.

e Autonomy: Full autonomy over identity data without relying on third parties.

e Control: Full user control over digital identities and data.

e Privacy and Minimal Disclosure: Use of selective disclosure and data minimization.

e Single Source: Users as the single source of truth, managing self-asserted and third-
party claims.
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e Consent: Users can give and withdraw consent for data usage.
e Security: Employ cryptographic measures for confidentiality and authentication.
e Protection: Safeguards entities’ rights, with mechanisms for evidence and assurance.

e Verifiability and Authenticity: Users can prove their identity reliably and verifiers
ensure data has not been tampered with.

e Accessibility and Availability: Unrestricted access to identity data across platforms.
e Recoverability: Robustness to allow identity recovery if lost or compromised.

e Usability and User Experience: Interfaces are intuitive and reliable, with a consis-
tent experience.

e Transparency: System and algorithms are transparent to users, with open-source
architecture.

e Standardization: Based on open standards to ensure portability and interoperabil-
ity.

e Persistence: Identities remain as long as needed, with clear separation for modifi-
cations.

e Portability: Enables transfer of identity data to chosen agents.
e Interoperability: Usability across various domains.
e Compatibility with Legacy Systems: Backward compatibility to facilitate adoption.
e Cost: Minimal costs for identity management to encourage adoption.
[47] aim to provide a robust SSI design framework. Notably, they include functional apart
from non-functional requirements, clearly differentiating between:

Non-Functional Requirements:

e Provability: Validate and prove credential integrity.

e Interoperability: Operate across platforms and domains.
e Portability: Transfer identity data without restrictions.
e Pseudonymity: Support pseudonyms for privacy.

e Recovery: Enable access recovery.

e Scalability: Handle growing users and transactions.

e Security: Strong cryptographic measures.

e Usability: User-friendly interfaces.
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e Protection: Safeguard privacy and rights.

e Persistence: Identities remain as long as needed.

e Minimization: Limit data disclosure.

e Existence: Recognizes users’ independent digital presence.
e Control: Full authority over identity data.

e Consent: Explicit permission for data sharing.

e Transparency: Open operations and policies.

e Access: Continuous data access.

e Convenience: Seamless user experience.

e Inclusion: Accessible to all users.

e Trust: Reliable and governed operations.

e Biometrics Support: Allows biometric authentication.
e Support of IoT: Compatible with IoT devices.

e Cost: Minimized identity management costs.
Functional Requirements:

e Issuer Discovery: Allow users to locate credential issuers.

e Connection Creation: Establish secure connections for identity interactions.

e Credential Creation: Generate verifiable credentials.

e Verification with Credentials: Allow verifiers to authenticate credentials efficiently.
e Backup/Recovery: Mechanisms for identity data recovery.

e Derive/Share Credentials: Derivation of new credentials and secure sharing.

e Sunset Credentials: Manage credential lifecycle, including expiration and revoca-

tion.

Depending on the use-case of an application, the expression and even presence of these
requirements can vary. [22] explain that different levels of identity verification and security
are required based on the specific needs and risks involved in each scenario. For example,
they outline three Identity Assurance Levels ranging from minimal identity proofing to
high-assurance scenarios with in-person verification.

Building upon these four publications, it is possible to categorize the different requirements
into clusters. These clusters with their belonging requirements are shown in the following

table
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Cluster 12] [38] 19] |47] [47] Functional
Non-Functional Requirements
Requirements
Existence and Independent Representation Existence and Existence Credential
Representation Existence Representation Creation
Control and Control Control Autonomy, Single Control, Consent
Autonomy Source, Control
Access and Access Flexibility Accessibility Access, Inclusion  Connection
Inclusion Creation, Issuer
Discovery
Transparency Transparency Flexibility Transparency Transparency
Privacy and Disclosure, Privacy Privacy and Minimization, Derive/Share
Minimal Minimalization Minimal Pseudonymity, Credentials
Disclosure Disclosure Consent
Persistence Persistence, Flexibility Portability, Persistence,
and Portability = Portability Standards, Portability,
Interoperability Scalability
Interoperability Interoperability Flexibility Interoperability, Interoperability
and Compeatibility
Compatibility with Legacy
Consent and Consent-based Control Consent Consent
Delegation Sharing
Security and Rights Protection Security Protection, Security, Verification with
Protection Security Protection, Credentials
Biometrics
Support
Verifiability Verifiability, Verifiability, Provability, Trust Credential
and Authenticity Authenticity Creation, Back-
Authenticity up/Recovery
Reliability and Reliability Cost, Recovery Backup/Recovery,
Resilience Sunset
Credentials
Usability and Usability Usability and UX  Usability,
User Convenience
Experience
Adoption and Flexibility, Cost, Support of
Sustainability Reliability IoT

Table 3.1: Categorization of Requirements into Clusters

3.1.2 Additional Requirements for the Proposed Design

The clusters enable the formulation of additional requirements necessary to fulfill the

problem statement, specific to each cluster.

Non-Functional Requirements (NFR):

e Control and Autonomy

— NFR1: User Control over Biometric Data: Ensure users have full control and
autonomy over their biometric data, including enrollment, storage, usage and
presentation.

e Access and Inclusion

— NFR2: Compatibility with Standard Devices: Ensure compatibility with stan-
dard user devices (e.g. smartphones).
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e Privacy and Minimal Disclosure
— NFR3: No Transmission of Biometric Data: Ensure that any biometric data
remains stored on the user’s device and is never transmitted to verifiers or any
external parties.
e Security and Protection
— NFR4: Resistance to Attacks: Ensure that the system provides robust security
measures, for example against tampering with the verification process.
e Verifiability and Authenticity
— NFR5: High-Assurance Verification without Disclosure: Enable verifiers to
authenticate users at high assurance levels without accessing actual biometric
data.
e Reliability and Resilience & Usability and User Experience

— NFR6: Real-Time Processing: Ensure real-time processing to be viable for
physical, real-life authentication scenarios.

Based on these non-functional requirements it is possible to derive functional requirements,
directly satisfying the respective non-functional requirements:

Functional Requirements (FR):

e User Control over Biometric Data (NFR1); No Transmission of Biometric Data
(NFR3)

— FR1: Local Biometric Processing: All biometric data processing should hap-
pen locally on the user’s device, so that unprocessed biometric data never leaves
the device.

e High-Assurance Verification without Disclosure (NFR5); No Transmission of Bio-
metric Data: (NFR3)

— FR2: Zero-Knowledge Proof Implementation: The system should use zero-
knowledge proof protocols that allow users to prove possession of biometric
attributes without revealing actual biometric data.

The following table extends the previous table by the requirements addressing the
problem statement of this work.



Cluster 12] |38] 19] |47 |47] Functional Proposed Design: Proposed Design:
Non-Functional Requirements Non-Functional Functional
Requirements Requirements Requirements
Existence and Independent Representation Existence and Existence Credential
Representation Existence Representation Creation
Control and Control Control Autonomy, Control, User Control Local Biometric
Autonomy Single Source, Consent over Biometric Processing
Control Data (NFR1) (FR1)
Access and Access Flexibility Accessibility Access, Connection Compatibility
Inclusion Inclusion Creation, Issuer  with Standard
Discovery Devices (NFR2)
Transparency Transparency Flexibility Transparency Transparency
Privacy and Disclosure, Privacy Privacy and Minimization, Derive/Share No Transmission Local Biometric
Minimal Minimalization Minimal Pseudonymity, Credentials of Biometric Processing
Disclosure Disclosure Consent Data (NFR3) (FR1),
Zero-Knowledge
Proof
Implementation
(FR2)
Persistence and Persistence, Flexibility Portability, Persistence,
Portability Portability Standards, Portability,
Interoperability Scalability
Interoperability Interoperability Flexibility Interoperability,  Interoperability
and Compatibility
Compatibility with Legacy
Consent and Consent-based Control Consent Consent
Delegation Sharing
Security and Rights Security Protection, Security, Verification with  Resistance to
Protection Protection Security Protection, Credentials Attacks (NFR4)
Biometrics
Support
Verifiability and Verifiability, Verifiability, Provability, Credential High-Assurance Zero-Knowledge
Authenticity Authenticity Authenticity Trust Creation, Back- Verification Proof
up/Recovery without Implementation
Disclosure (FR2)
(NFR5)
Reliability and Reliability Cost, Recovery Backup/Recovery,
Resilience Sunset
Credentials
Usability and Usability Usability and Usability, Real-Time
User Experience UX Convenience Processing
(NFR6)
Adoption and Flexibility, Cost, Support of
Sustainability Reliability IoT

Table 3.2: Clustered Requirements including Proposed Design
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3.2 Design: Credchain-ZKP and Credchain On-Chain ZKP

This section explores the design choices behind the two design proposals Credchain-ZKP
and Credchain On-Chain ZKP and discusses them based on the non-functional and func-
tional requirements described earlier. Following, the final design proposals are presented
using user flow descriptions, selected acceptance criteria and sequence diagrams.

3.2.1 Starting Point: TCID and Credchain

To address the problem statement and the related requirements, this work considers the
TCID system described in the related work. TCID, as an SSI system, aims to achieve high
assurance levels in physical verification by using a PIN or a biometric template (such as
a fingerprint or facial recognition) as a second authorization factor to confirm the user’s
ownership of the DID [40]. However, this approach requires the transmission of biometric
data to the verifier, which conflicts with NFR3: No Transmission of Biometric Data.

The proposed design maintains the second factor principle from TCID but replaces di-
rect biometric data transmission with a zero-knowledge proof. This satisfies NFR1 (user
retains control of data) and NFR3 (since no unprocessed biometric leaves the device).

The second building block for this design is Credchain, a minimal SSI codebase providing
a foundation for implementing additional features. Credchain is available in a public
GitHub repository [10]. During implementation, the second-factor feature from TCID
(referred to as Credchain with 2FA) and the proposed zero-knowledge proof mechanism is
added to Credchain. Both elements together form what will be referred to as Credchain-
ZKP. A third implementation, Credchain On-Chain ZKP, will additionally explore
performing the verification process on the blockchain instead of performing it locally with
the verifier.

3.2.2 Integrating Biometric zk-SNARK Zero-Knowledge Proofs

Credchain-ZKP uses zk-SNARK as a zero-knowledge proof since it meets the stated re-
quirements, is available in a well-documented JavaScript library snarkJS [28] and present
in literature. Prior research demonstrates usages of zk-SNARKSs in SSI contexts as well
as for isolated biometric usages, as outlined in chapter and [23]. This presence in
both areas reinforces the suitability of zk-SNARKSs for addressing the problem statement.

While face or iris recognition would be possible, this design and implementation describes
using a fingerprint template for simplicity. The same processes can be applied to other
biometric input sources. Using a fingerprint also satisfies NFR2 (compatibility with stan-
dard devices like smartphones that often use fingerprint sensors).

Using a zero-knowledge proof for biometric verification allows for privacy while maintain-
ing high-assurance verification. It allows a user to prove ownership of a biometric input
without disclosing biometrics itself. [23] proposes such a biometric identification scheme

for fingerprints based on zk-SNARKSs.
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3.2.3 Architecture and User Flows

In this proposed design for Credchain-ZKP, three main phases can be described: Enroll-
ment, zk-SNARK Proof Generation & Presentation, and Verification. Following, the user
flows will be described and shown in sequence diagrams.

3.2.3.1 Enrollment

1. Local Biometric Capture

(a) The user’s device (e.g. smartphone) captures their fingerprint.

(b) The device processes this data locally to create a biometric template, satisfying
NFR1 (User Control over Biometric Data) and NFR3 (No Transmission of
Biometric Data).

2. DID Creation

(a) The user’s device creates a DID.
(b) The DID is a hash of

i. The issuer’s wallet address
ii. A timestamp nonce (number used once, provides randomness for the hash)
iii. The biometric template derived previously

3. Registration on a Decentralized Network

(a) The DID is then registered on a decentralized network. The biometric template
never leaves the user’s device, as required by FR1.

A,
e M

User [ User Device ‘ Decentralized Network_

Capture fingerprint

i
.
=

| Process fingerprint |
! (Create biometric template)

| Create DID ,

| Register DID on decentralized network -

b

Confirmation of DID registration

Confirmation of DID registration

S SRR R R S R R .

User User Device Decentralized Network
R

Figure 3.1: UML Sequence Diagram of Enrollment Flow
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3.2.3.2 zk-SNARK Proof Generation & Presentation

1. Local ZKP Computation (FR2)

(a) When users decide to present their identity, the user’s device captures a fresh
fingerprint scan and transforms it into a biometric template.

(b) The biometric template is used as a private input to a zk-SNARK proof gen-
eration circuit.

(c¢) Public inputs (called publicSignals) for this zk-SNARK proof are the issuer’s
wallet address, the timestamp nonce used at generation and the user’s DID.

2. Transmission to the Verifier

(a) The proof and the public inputs are then composed to one data object and
shown to the user, to be transmitted to the verifier.

(b) Effective transmission can take place locally via a wide variety of options, QR
codes or direct transmission via NFC / Bluetooth would be possibilities.

As per NFR6 (Real-Time Processing), the proof generation must be fast enough for real-
life interactions. [40] mentions a maximum interaction time of 30 seconds for a system to
be applicable in practice.

This proof attests that the user’s fresh scan matches the biometric template attached to
the biometric template without disclosing it. This aligns with NFR3 (No Transmission
of Biometric Data) and NFR5 (High-Assurance Verification).

&)
L'Isef | User Device | Verifier

|
1 Request to present identity

i Capture fresh fingerprint

>

| Process fingerprint |
' {Create biometric template) |

| Generate zk-SNARK proof

:1 zk-SMARK proof and public inputs |

| _ i | i Transmission methods can include QR codes,
: zk-SNARK proof and public inputs ! > | NFC, Bluetooth, etc. IT

U;.ie\lr | User Device | Verifier

Figure 3.2: UML Sequence Diagram of zk-SNARK Proof Generation
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3.2.3.3 Verification — Credchain-ZKP

1. The Verifier receives the following verification inputs:

(a) The Proof

(b) PublicSignals (containing issuer wallet address, timestamp nonce and a user-
provided DID)

(c) Holder address, indicating which DID the user owns
2. Zero-Knowledge Proof Verification

(a) The public inputs are re-composed, ensuring that values such as the issuer and
the DID come from trusted sources (on-chain or from known constant values)
— no wrong or malicious inputs from the user can be used for the verification.

(b) In Credchain-ZKP: the verifier runs a verification method provided by snarkJS
requiring three inputs:
i. The verification key, a public key generated during setup of the zero-
knowledge circuit
ii. The recomposed publicSignals
iii. The proof received from the user

3. A positive result of the verification method allows the verifier to conclude that the
holder indeed controls the same biometric template that was used to create the DID.

./ \-.
Verifier

Verifier Application | ‘ Decentralized Network

| Receive proof and public inputs ‘_:

Fetch DID using holder address

Return DID data

e-compose public inputs

i

Verify proof

alt / [Verification successful]

. Confirmation of valid proof
[\reriflication failed]
1 Rejection of proof

|
|
|
|
|
k-
1
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Vel['_f\'ler Verifier Application | l Decentralized Network

i&

PN

Figure 3.3: UML Sequence Diagram of Credchain-ZKP Verification Flow
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3.2.3.4 Verification — Credchain On-Chain ZKP

1. The Verifier receives the following verification inputs:

(a) The Proof

(b) The publicSignals (containing issuer wallet address, timestamp nonce and a
user-provided DID)

(c) Holder address, indicating which DID the user owns
2. Zero-Knowledge Proof Verification

(a) The public inputs are re-composed, ensuring that values such as the issuer and
the DID come from trusted sources (on-chain or from known constant values)
— no wrong or malicious inputs from the user can be used for the verification.

(b) For Credchain On-Chain ZKP, the verifier:
i. Recomposes the proof by calling a method ezportSolidityCallData provided
by the snarkJS library.

ii. Calls a method provided by a deployed Smart Contract, whose code was
generated by snarkJS based on the circuit-specific verification key. Thus,
the call to the Smart Contract requires two inputs:

A. The recomposed publicSignals
B. The proof received from the user

3. A positive result of the verification method allows the verifier to conclude that the
holder indeed controls the same biometric template that was used to create the DID.

A

Verifier Verifier Application | Decentralized Network.

| Receive proof and public inputs

| Fetch DID using holder address

Return DID data

R

e-compose proof and public inputs

| Call verifyProof

Y

| | Verification result

-
i [

alt [Verification successful]
1

' _ Confirmation of valid proof I

-

[Verification failed]

. Rejection of proof

Pl

Vetlj!er Verifier Application ‘ Decentralized Network

[} )
R

A,

Figure 3.4: UML Sequence Diagram of Credchain On-Chain ZKP Verification Flow
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3.2.3.5 Verifiable Credentials

The research gap and the problem statement focus solely to clearly determine the holder
of a DID in a physical context. Verifiable credentials, as independent entities, are only
linked to a DID. For this reason, they are not considered more specifically here, not in
the design nor in the implementation.

3.2.4 Key Components

The following core elements are used and interacting with each other in this design:

3.2.4.1 User Device

The user’s smartphone serves as the local environment for biometric capture and zero-
knowledge proof generation. Its responsibilities include:

e Local Biometric Processing: Capturing the fingerprint and transforming it into a
private template, during DID generation as well as during presentation and proof
generation.

e DID Creation: Constructing a DID and sending it to the decentralized network.

e zk-SNARK Proof Generation: Generating the proof confirming user’s biometric
matches the on-chain DID using snarkJS.

e Proof Presentation: Sending the zero-knowledge proof and necessary publicSignals
to the verifier on request.

3.2.4.2 Verifier

The verifier confirms the authenticity of the user’s proof and ensures it matches the DID
on the network.

e Retrieving DID: Fetches the DID from the network and compares user inputs with
on-chain content.

e For Credchain-ZKP: Proof Verification: Executes a check of the zero-knowledge
proof through the library snark.JS.
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3.2.4.3 Decentralized Network

The decentralized network records DIDs and allows lookup by verifiers. Its responsibilities
include:

e DID Registration: Allows for registration of the user-generated DID.
e DID Lookup: Allows a verifier to retrieve the user’s DID by the user’s wallet address.

e For Credchain On-Chain ZKP: Proof Verification: The decentralized network
also contains a smart contract generated by snarkJS with the ability of verifying
zero-knowledge proofs.

3.2.5 Addressing Non-Functional and Functional Requirements

This subsection directly shows how the formulated requirements and the design are con-
nected.

1. NFR1: User Control over Biometric Data

(a) The biometric template is stored on the user’s device and never transmitted
anywhere.

2. NFR2: Compatibility with Standard Devices

(a) Enrolling and proof generation is possible on standard user’s devices, requiring
a smartphone with a fingerprint sensor and an internet connection at enroll-
ment.

(b) Verification is also possible on standard devices. There is no need for additional
or proprietary hardware. For Credchain On-Chain ZKP, an active internet
connection is required.

3. NFR3: No Transmission of Biometric Data

(a) The biometric template is stored on the user’s device and never transmitted
anywhere.

4. NFRA4: Resistance to Attacks

(a) Using pre-existing, stable zero-knowledge proof libraries ensures proven and
reliable encryption and verification mechanisms.

(b) The zero-knowledge proof will fail if modified during transmission, protecting
against Man-In-The-Middle Attacks.

(¢) The Verifier compares the DID provided with the DID on-chain, ensuring no
false or malicious inputs from the user’s device.

5. NFR5: High-Assurance Verification without Disclosure
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(a) The verifier gains certainty that the user’s biometric template matches the
stored template without seeing biometric data.

(b) The zero-knowledge proof circuit contains the definition of the proof. A valid
proof implies that the user has knowledge of the biometric input matching the
hash-based DID (hash of issuer address + timestamp + biometric template).

6. NFR6: Real-Time Processing

(a) Using proven algorithms within the library snarkJS ensures efficient process-
ing. Chapter [5| measures the efficiency and real-time execution time of the
implementations.

7. FR1: Local Biometric Processing

(a) The biometric template is stored on the user’s device and never transmitted
anywhere.

8. FR2: Zero-Knowledge Proof Implementation

(a) Using zk-SNARK and snarkJS to generate and verify proofs.
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Chapter 4

Implementation

This chapter explains the implementation of Credchain with 2FA, Credchain-ZKP and
Credchain On-Chain ZKP, focusing on elements added to Credchain. Credchain with 2FA
serves as a baseline with integration of two-factor authentication using direct biometric
input. Credchain-ZKP adds the zero-knowledge proof, and Credchain On-Chain ZKP
moves verification on-chain. The intention behind three implementations as separate
projects is to enable measurement of the overhead added by either zero-knowledge proof
or verification on-chain. The goal is to implement all three solutions as similarly as
possible to facilitate their comparison.

4.1 Credchain with 2FA

Per design, this implementation is based on a second factor as seen in TCID [40] supporting

physical authentication. The implementation is available in a public GitHub repository
[24].

The main implementation is located in frontend/src/App.js. The application logic as well
as the user interface (Ul) is divided into two parts: registerldentity and verifiyDID.

The following figures and show the UI of Credchain with 2FA, before and after
successful verification.
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User

Generate DID

Log Output:

CHAPTER 4. IMPLEMENTATION

Verifier
Holder Address: Enter holder address
Issuer Address: Enter issuer address
Timestamp: Enter timestamp

Biometric Template: Enter Biometric Template

Verify DID

Verification result:
Execution time: ms

Figure 4.1: Credchain with 2FA: Before Verification

User

Generate DID

Log Output:

Holder is: @x70997970(51812dc3A010C7d01b50edd17dc79C8
Issuer is: 0x3C44CdDdB6a9@@fa2b585dd299e@3d12FA4293BC
Date is: 578

Biometric template Mock is:
a24f98a8b2c2ffcf6d7777e73ebe75617e944316056ef5athe347a2437d760761c3béb
b7@b6a43aed9a7a56b623b67d251d9d8F62ac5df73275e5e140atadathe3cddB8517b5a
bd 21a11b39 b82b23aelafof71262baf3fedeac24a7f3b7c7c5e81d
2bba6@e2cda2cfee775b1c650bad3b365Fbb3ecd9727¢3d26188604c@3al2ac6f1552d
2342f9356b9fbec6cbcobde85d900e243b92a1445da3401ced2a5db8168a75953aed44c
3256b1ef73509fc1d264bbbofd37fb8af730f860eb576bcbf1flcfd766d4ee8dcf1bfb
46ade5474c053d4f9298105¢7740a4906532640c00c3b17987ec129d2ffe6b6fh34aea
851eb8e601d956e1af78e0

DID is:
1345868014228099280424887318130162279888252630897428753191188267622136
3551398

Figure 4.2: Credchain

Verifier

Holder Address: 0x70997970C51812dc3A01

Issuer Address: 0x3C44CdDdB6aY00fa2bSE
Timestamp: 578
Biometric Template: a24f98a8b2c2ffcf6d7777e7.

Verification result: Verification successful. Template and DID match.
Execution time: 5.80 ms

with 2FA: After Verification
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4.1.1 RegisterIdentity

Clicking a Button labeled "generate DID” on the UI calls the method registerldentity.
Registerldentity prepares all inputs as outlined:

o Issuer (issuerToDecimalString): The issuer’s wallet address is converted into a deci-
mal number format BigInt and then formatted as a string. This is required because
the snarkJS library only accepts inputs in this specific format for its public Input
objects.

e Timestamp Nonce (nowDecimalString): A timestamp nonce is used to add random-
ness in the generated hash.

e Mock of Biometric Data (biometricMockString): The focus of the implementation is
using and evaluating the zero-knowledge proof. Thus, the implementation uses a 512
character hexidecimal string mimicking a fingerprint template, without retrieving
and using actual biometric data.

These three inputs are being hashed and saved on a smart contract DIDRegistry. The
smart contract remains unchanged in this implementation. Last, the generated data is
displayed to the user.

Following is the main code of registerldentity, partly abbreviated for readability:

let holder = "0x70997970C51812dc3A010C7d01b50e0d17dc79C8";
let issuer = "0x3C44CdDdB6a900fa2b585dd299e03d12FA4293BC";
let issuerToDecimalString = BigInt(issuer.toLowerCase()).toString(10);

let nowDecimalString = new Date().getMilliseconds ().toString();

let biometricMockString = "a24f98a8b2c2ffcf6d7777e73ebe756£f7 [...]"
let biometricDecimalString = BigInt("Ox" + biometricMockString).
toString (10) ;

const ubaasDID = poseidon3([biometricDecimalString,
issuerToDecimalString, nowDecimalString], 1).toString();

await didContract.methods.register (holder, ubaasDID).send({from:
holder});
const did = await didContract.methods.getInfo (holder).call();

const didData = ‘Holder is: ${holder}\n\nIssuer is: ${issuer}\n\nDate
is: ${nowDecimalString}\n\nBiometric template Mock is: ${
biometricMockString}\n\nDID is: ${did[0]}¢;

setDidOutput (didData) ;

Listing 4.1: Code of Registerldentity
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4.1.2 VerifyDID

This method is called after inputting a holder’s wallet address, the issuer’s wallet address,
the timestamp nonce used at generation and a biometric template. The verification pro-
cess hashes the biometric template, the timestamp nonce and the issuer’s wallet address
with the same hash algorithm used at generation. This recomputedDID is compared
to the actual DID linked to the holder’s wallet address. Time markers encapsulate the
verification process to measure its execution time.

Following is the main code of verifyDID, partly abbreviated for readability:

const chainDIDContract = await didContract.methods.getInfo (
holderAddress) .call();
const chainDID = chainDIDContract [0];

const biometricDecimalString = BigInt ("O0x" + mockString).toString
(10);

const issuerToDecimalString = BigInt(issuerInput.toLowerCase()).
toString (10) ;

const recomputedDID = poseidon3([biometricDecimalString,
issuerToDecimalString, timestampInput], 1).toString();

// Comparison
if (recomputedDID === chainDID) {
setVerificationResult ("Verification successful. Template and DID
match.");
} else {
setVerificationResult ("Verification failed. Invalid inputs.");

3

Listing 4.2: Code of VerifyDID in Credchain with 2FA
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4.2 Credchain-ZKP

Credchain-ZKP is based on the implementation Credchain with 2FA and aims at addition-
ally integrating the zero-knowledge proof. The following sections explain the five main
components of the implementation. The implementation is available in a public GitHub

repository [26]. The following figures , and show the Ul of Credchain ZKP,
before, after successful and after failed verification.

User Verifier

Generate DID Holder Address: Enter Holder Address input

Paste Proof Input including Public Signals:

Proof Generation
Verify Proof

Holder Address: Enter Holder Address input L
Verification result:
Execution time: ms

Issuer: Enter Issuer input

Timestamp: Enter Timestamp input

Biometric Input: Enter biometric mock input

Generate Proof

Generated Proof + Public Signals:

Figure 4.3: Credchain-ZKP: Before Verification



User

Generate DID

Holder is: @x70997970C51812dc3A@10C7d@1b50e0d17dc79C8
Issuer is: 9x3C44CdDdB6a99@fa2b585dd299e@3d12FA4293BC
Date is: 92

Biometric template Mock is:
a24f98a8b2c2ffcfed7777e73ebe756F7e944316056¢ef5atbe347a3437d760761¢3bbb
b70b6ad3ae09a7a56b623b67d251d9d8F62ac5df73275e5e140afaltafbc3cdd8517b5a
bd660ac9421a11b39780cec0dObB82b23aelafof71262baf3fedeac24a7f3b7c7c5e81d
2bb46002c4a2cfee775b1c650b4d3b365Fbb3ecd9727¢c3d26188604c03al2ac6f1552d
2342f9356b9fbecbcbcObde85d900e243b92a1445da3401ced2a5db8168a75953aed4c
3256blef73509fc1d264bbbofd37+b8af730f8608b576bcbf1flcfd766ddee8dcflbfb
46ade5474c053d4F9298105c7740a4906532640c00c3b17987ec129d2fFebb6fb34aca
851eb8e6@1d956elaf78e0

DID is:

1712741872730316655117878884264489017164909591344202087666697695990813
0178171

Proof Generation

Holder Address: 0x70997970C51812dc3A01
Issuer: 0x3C44CdDdBEad00faZbs
Timestamp: 92

Biometric Input: a24i98a8b2c2ffcfBd7777e7

Generate Proof

Generated Proof + Public Signals:

{"proof™: {"pi_a":
["22636244486907627189072474014247339136261691633067855334136167023453
69881515", "14599429164711902528923609925203121843474900775728072803677
890086068611454733","1"],"pi_b":
[["20089035861027144768186@8468924376131266180598669916814680281306854
2955978953","183125079773797800940119662459417815434197181806144106687
5072112153472671679"],
["29428801376773301176604741644883285913440367155695434198385647558593
55747925 ,"97915170512952265700023121378834612812245450111664864106680
13404157770385366"],["1","@"]],"pi_c":
["50212321008286368668211634382529332766278477939614237884183018605760
76193837, "80339686388686424375019828673919762554902126073010571896875
68321412438794665","1" ], "protocol™: "grothl6", "curve":"bn128"}, "publicS
ignals™:

["344073830386746567427978432078835137280280269756", 92", "171274187273
©3166551178788842644890171649095913442020876666976959908130178171" 1}

Generation time: 258.20 ms

Figure 4.4: Credchain-ZKP

CHAPTER 4. IMPLEMENTATION

Verifier

Holder Address: 0x70997970C51812dc3A01

Paste Proof Input including Public Signals:

{"proof": {"pi_a":

["22636244486907627189072474014247339136261691633067855334136167023453
69881515" ,"14599429104711902528923609925203121843474900775728072803677

890086068611454733","1"],"pi_b":

[["2008903586102714476818608468924376131266180598669916814680281306854
2955978953","183125079773797800940119662459417815434197181806144106687

5072112153472671679" ],

["29428801376773301176684741644883285913440367155695434198385647558593

55747925","979151705129!
13404157770385366" ], ["

5700023121378834612813245450111664864106680
"11,"pi_c":

["50212321008286368668211634382529332766278477939614237884183018605760
76193837","80339686388686424375019828673919762554902126073010571896875
bn128"},"publicS

68321412438794665","1"], "protocol”
ignals":

"groth16", "curve

["344073830386746567427978432078835137280280269756","92", "171274187273

03166551178788842644898171649095913442020876666976959908130178171" 1}

Verification result: Proof is valid.
Execution time: 27.40 ms

After Successful Verification
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User

Generate DID

Holder is: @x7@997970C51812dc3A@10C7d01b50e0d17dc79C8
Issuer is: @x3C44CdDdB6a900fa2b585dd299e03d12FA4293BC
Date is: 578

Biometric template Mock is:
a2498a8b2c2ffcf6d7777e73ebe75617e944316056ef5atbe347a3437d768761c3bob
b7@b6ad3aeB9a7a56b623b67d251d9d8F62ac5dF73275e5e140aftadatbc3cdd8517b5a
bd600ac3421a11b39780cecB@Bb82b23aelafof71262baf3fedeac24a7f3b7c7c5e81d
2bb46002cdalcfee775b1c650bAd3b365Tbb3ecd9727c3d26188604c03al2ac6T1552d
2342F9356b9fbec6ecbcobde8sdoene243b92a1445da3401ces2a5db8168a75953aed4c
3256b1ef73509fc1d264bbb9fd37fb8af736f8600b576bcbf1f1cfd766d4ee8dcf1bfb
46ade5474c053d4F9298105c7740a49@6532640c00c3b17987ec129d2ffebb6fb3daca
851eb8e6@1d956e1at78e0

DID is:

1345868014228099280424887318130162279888252630897428753191188267622136
3551398

Proof Generation

Holder Address: 0x70997970C51812dc3A01
Issuer: 0x3C44CdDdB6a900fa2b5¢
Timestamp: 578

Biometric Input: 224f98a8b2c2ffcf6d7777eT

Generate Proof

Generated Proof + Public Signals:

{"proof":{"pi_a":
["91734341591673673665022404995497727574798034455893077679266717234862
26167041","11608628624736114767926111505576156724729585884215335240377
064716688084771918","1"], "pi_b":
[["116060385414085071940442718707516100376@592248236200311560242030981
3250437887","664270931487592836187436224478767405147354335233598019495
0127046856651507688" ],
["14419305478731802274730704954128777330671813078256678198384080350215
283377238","1606501827741231909464321564092750023755790491924265895218
0483850793260780267" ], ["1","0"]], "pi_c":
["19426718530157555759317642300485684799935906898460783410730767088023
97318563","20291846905507982643617962970081246981509265939595599861751
696517711520267373","1"], "protocol"” : "grothle","curve™:"bn128"}, "public
Signals":

["244073830386746567427978432078835137280280269756", "578™, "13458680142
280992804248873181301622798882526308974287531911882676221363551398" |}

Generation time: 332.70 ms

Verifier

Holder Address: 0x70997970C51812dc3A01

Paste Proof Input including Public Signals:

{"proof":{"pi_a":
["91734341591673673665022404995497727574798024455893077679266717234862
261670641","11608628624736114767926111505576156724729585884215335240377
064716688084771918","1"], "pi_b":
[["1160603854140850719404427187075161003760592248236200311560242030981
3250437887", "664270931487592836187436224478767405147354335233598019495
0127046856651507688" ],
["1441930547873180227473@704954128777330671813078256678198384080350215
283377238","16@06501827741231909464321504092750023755790491924265895218
0483850793260780267"],["1","0"]],"pi_c":
["19426718530157555759317642300485684799935906898460783410730767088023
97318563", "XXX61796297008124698150926593959559986175169651771152026737
3","1"],"protocol”: "groth16","curve":"bn128"}, "publicSignals™:
["344073830386746567427978432078835137280280269756", "578","13458680142
280992804248873181301622798882526308974287531911882676221363551398" 1}

Verification result: Invalid proof.
Execution time: 12.40 ms

37

Figure 4.5: Credchain-ZKP: After Failed Verification

4.2.1 RegisterIdentity

This method remains unchanged to Credchain with 2FA and is therefore not explained
further.
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4.2.2 GenerateProof

GenerateProof is called after providing four key inputs: The holder’s wallet address, their
biometric template, the issuer’s wallet address, and a timestamp nonce. Internally, the
method retrieves the user’s DID from the blockchain and constructs a zero-knowledge
proof demonstrating that the provided biometric input aligns with the DID. The zero-
knowledge proof takes three essential inputs:

e circuitInput: Includes the biometric template, the issuer’s wallet address, timestamp
nonce used during DID generation and the DID. These values are required by the
designed circuit.

o circuitWasm: The WebAssembly file that executes the proof generation logic, gen-
erated based on the designed circuit

o circuitFinalZKey: The final private key generated during the trusted setup.

The proof is then generated using snarkjs.groth16.fullProve, a method provided by the
snarkJS library. This method combines the local inputs with the circuit artifacts to pro-
duce the proof and the publicSignals, a small set of visible outputs, necessary to validate
the proof. The output of the fullProve method are the generated proof and the publicSig-
nals, both objects then need to be transmitted to a verifier. Once the proof is generated,
the method calculates its execution time.

Following is the main code of generateProof, partly abbreviated for readability:

const chainDIDContract = await didContract.methods.getInfo (
generateHolderAddress) .call();
const chainDID = chainDIDContract [0];
const circuitInput = {
biometricTemplate: BigInt("Ox" + generateBiometricInput).toString

(100,
issuer: BigInt(generateIssuer.toLowerCase()).toString(10),
now: generateTimestamp,
DID: chainDID
3
const circuitWasmBuffer = await fetch("/zkFiles/circuit.wasm").then(
res => res.arrayBuffer ());
const circuitWasm = new Uint8Array(circuitWasmBuffer);
const circuitFinalZkeyBuffer = await fetch("/zkFiles/circuit_final.
zkey") .then(res => res.arrayBuffer());
const circuitFinalZkey = new Uint8Array(circuitFinalZkeyBuffer) ;

const {proof, publicSignals} = await snarkjs.grothl6.fullProve
circuitInput,
circuitWasm,
circuitFinalZkey

)

const proofData = {proof, publicSignals};

setGeneratedProof (JSON.stringify (proofData));

Listing 4.3: Code of GenerateProof
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4.2.3 VerifyDID

Different to Credchain with 2FA’s verifyDID, this implementation’s verifyDID requires the
proof and publicSignals as one JSON object and, as a second input, the holder’s wallet
address.

The verification process recomposes publicSignals to prevent any user manipulation. Then,
a call to the method snarkjs.groth16.verify follows to perform the validation based on the
verification key (the public key to the zero-knowledge proof circuit), the recomposed
publicSignals and the proof.

Finally, the method calculates its execution date and outputs it together with the result
of the proof validation.

Following is the main code of verifyDID, partly abbreviated for readability:

const parsedProof = JSON.parse(proofInput);
const {proof, publicSignals} = parsedProof;

// compose data to recompose Public Signals

const chainDIDContract = await didContract.methods.getInfo (
verifierHolderAddress) .call();

const chainDID = chainDIDContract [0];

let issuer = "0x3C44CdDdB6a900fa2b585dd299e03d12FA4293BC";
let issuerToDecimalString = BigInt(issuer.tolLowerCase()).toString
(10);

const recomposedPublicSignals =
L
publicSignals [0],
issuerToDecimalString,
publicSignals[2],
chainDID
1

if (JSON.stringify(recomposedPublicSignals) !=
publicSignals)) {
throw new Error ("publicInputs mismatch! Proof invalid!");

}

JSON.stringify (

const isValid = await snarkjs.grothl6.verify(verificationKey,
recomposedPublicSignals, proof);
if (isValid) {
setVerificationResult ("Proof is valid.");
} else {
setVerificationResult("Invalid proof.");

}

Listing 4.4: Code of VerifyDID in Credchain-ZKP
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4.2.4 Circom Circuit

The library used for generation and verification of the zero-knowledge proof, snarkJS [28],
relies on Circom 2 [27] to define its zero-knowledge proof circuits.

The circuit specifies precisely what information can be retrieved from a valid proof gen-
erated by snarkJSs.

Similar to the verifyDID method in Credchain with 2FA, the circuit is designed to perform
the following steps:
1. Take as inputs: Biometric template, issuer’s wallet address, the timestamp nonce.
2. Hash the biometric template, the issuer’s wallet address, the timestamp nonce.
3. Ensure that the hash is equal with the DID input.

The issuer’s wallet address, timestamp nonce and DID serve as public inputs, while the
biometric template remains a private input.

pragma circom 2.1.9;

include "./circomFiles/poseidon.circom";
include "./circomFiles/comparators.circom";

template DIDValidation() {

signal input biometricTemplate;
signal input issuer;

signal input now;

signal input DID;

component hash = Poseidon (3);
hash.inputs [0] <== biometricTemplate;
hash.inputs [1] <== issuer;

hash.inputs [2] <== now;

component eq = IsEqual();
eq.in[0] <== hash.out;
eq.in[1] <== DID;

// eq.out must be 1 (hash == DID)
eq.out === 1;
}
component main {public [issuer, now, DID]} = DIDValidation();

Listing 4.5: Code of Circom Circuit
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4.2.5 Trusted Setup Generation

41

Generating the trusted setup is a manual process required to generate foundational cryp-
tographic material for Groth16. Groth16 is the zero-knowledge proof scheme used by
snarkJS to generate cryptographic proofs based on the circuit. It involves a series of
command-line commands and file outputs. Below is an outline of the key commands,
their outputs and their purpose. The setup documentation is available online as well [27].

> circom2 circuit.circom
template instances:
non-linear constraints:
linear constraints:

public inputs: 3
private inputs: 1
public outputs: O

wires: 266

labels: 945

Written successfully:
Written successfully:
Written successfully:

73

0

Everything went okay

261

--rlcs --wasm --sym

./circuit.rics
./circuit.sym
./circuit\_js/circuit.wasm

Listing 4.6: Command-Line Interaction: Convert Circom Circuit into Multiple Artifacts

This step converts the Circom circuit source file (circuit.circom) into:

e Circuit constraints in a rank-1 constraint system file (circuit.rlcs)

e A compiled WebAssembly file for generating witnesses (circuit.wasm)

e Symbolic debug data (circuit.sym)

> snarkjs powersoftau new bnl28 12 potl12_0000.ptau

[INFO] snarkjs: First Contribution Hash:

9e63ab5f6
a40b9195
07104067
ad75abd?2

2b96538d
9ea38ef9
c09d0961
c8340b40

aaed2372
f5£f6a303
5£f928eab
0e3b18e9

481920d1
3b886516
17bcdf49
68bdffef

Listing 4.7: Command-Line Interaction: Initialize a Powers of Tau File

This command initializes a Powers of Tau file for a specific curve.

These Powers of

Tau numbers ensure we have enough cryptographic randomness for the eventual Grothl6
scheme construction.

> \snarkjs powersoftau contribute pot12_0000.ptau potl12_0001.ptau --name
="First Contribution"

Enter a random text.
[INFO] snarkJS:

(Entropy): regenschirm
Contribution Response Hash imported:

b8fcd703 732e6546 4f5f04c9 b43c9bc7
f2c505ee cb3d3abb 6e85458f c1a2b595
30dbbe34 abf5105c e883d770 £298b7e3
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3cd5c609 c43dcc05 afb2171a e59666d8
[INFO] snarkJS: Next Challenge Hash:
b1£8ab57f 4dd40aa9 1dd887d0 8cbb775d
dc54160e £f3456e28 2168b550 397024f4
6216e3fe ffbl1f734 7b6daa8b 5b4d7557
dd9fd459 e5969bc4 2f£f99504 d0000alc

Listing 4.8: Command-Line Interaction: Contribute to Random Entrophy

This step introduces random entropy to the Powers of Tau generated previously by typing
any random text.

> snarkjs powersoftau prepare phase2 potl12_0001.ptau potl2_fimnal.ptau

Listing 4.9: Command-Line Interaction: Fix Random Entropy into Final File

This step fixes all prior randomness into a final file pot12_final.ptau required for Groth16’s
second phase of the trusted setup.

> snarkjs grothl6 setup circuit.rlcs potl2_final.ptau circuit_final.zkey

[INFO] snarkjs: Reading rilcs

[INFO] snarkjs: Reading tauGl
[INFO] snarkjs: Reading tauG2
[INFO] snarkjs: Reading alphatauGl
[INFO] snarkjs: Reading betatauGl
[INFO] snarkjs: Circuit hash:
795dc153 b45d0c7a abaceb9b e08fcléda
2d1c912d £4c41727 cbecall7 e837dece
5635aa93 864a9266 a2ddbcca 7b6d7013
b36b0db3 dd31070a 3b92b84c ec6b808d

Listing 4.10: Command-Line Interaction: Produce Proving and Verification Key

Next is the actual Groth16 setup. The circuit definition (circuit.rles) and the final Powers
of Tau data (pot12_final.ptau) are used to produce our proving and verification key in one
packaged file (circuit_final.zkey).

> snarkjs zkey export verificationkey circuit_final.zkey
verification_key. json

[INFO] snarkjs: EXPORT VERIFICATION KEY STARTED
[INFO] snarkjs: > Detected protocol: grothl6
[INFO] snarkjs: EXPORT VERIFICATION KEY FINISHED

Listing 4.11: Command-Line Interaction: Separate Verification Key

Finally, the verification key is separated out as verification_key.json. Verifiers will be able
to load this JSON object during the snarkjs.groth16.verify step to validate any proofs
generated for that specific circuit.
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4.3 Credchain On-Chain ZKP

This implementation is based on Credchain-ZKP, but moves the verification process from
the verifier to the blockchain using a smart contract. The source code of this implemen-

tation is available in a public GitHub repository . Figures and show the
Ul of Credchain On-Chain ZKP, before, after successful and after failed verification.

User Verifier (on-chain verification)

Generate DID Holder Address: Enter Holder Address input

Paste Proof Input including Public Signals:

Proof Generation
Verify Proof

Holder Address: Enter Holder Address input . "
Verification result:
Execution time: ms

Issuer: Enter Issuer input

Timestamp: Enter Timestamp input

Biometric Input: Enter biometric mock input

Generate Proof

Generated Proof + Public Signals:

Figure 4.6: Credchain On-Chain ZKP: Before Verification



User

Generate DID

Holder is: @x70997970C51812dc3A010C7d01b50e@d17dc79C8
Issuer is: 0x3C44CdDdB6a900fa2b585dd299¢03d12FA4293BC
Date is: 667

Biometric template Mock is:
a24f98a8b2c2ffcf6d7777e73ebe756F7€944316056ef5athe347a3427d760761c3b6b
b70bbad3ae@9a7a56b623b67d251d9d8T62ac5df73275e5el40afadatbc3cdd8517b5a
bd66@ac9421a11b39780cec@@@b82b23ae1af9f71262baf3fedeac24a7f3b7c7c5e81d
2bbA6002cla2cfee775b1c650bAd3b365Fbb3ecd9727c3d26188604c@3a12ac6+1552d
23429356b9fbec6cbcobde85d900e243b92a1445da3401ced2a5db8168a75953aeddc
3256b1ef73509fc1d264bbbofd37fb8af730F8600b576bcbf1flcfd766d4ee8dcflbfb
46ade5474c053d419298105c7740a4906532640¢00c3b17987ec129d2febbbofbldaea
851eb8e601d956elaf78ed

DID is:

6926146931401628285335895194775807652138317461677832876013561909823373
258835

Proof Generation

Holder Address: 0X70997970C51812dc3A01
Issuer: 0x3C44CdDdB6a900fa2b5¢
Timestamp: 667

Biometric Input: a2498a8b2c2ffciBd7777eT.

Generated Proof + Public Signals:

{"proof":{"pi_a":
["11472440258096960976799926381728385301276067263547157252936996620150
612013259","1302066962883823792856036133567179944896057469186228450361
0370542762682733785","1"], "pi_b":
[["7866312760886124981604065482436627618772182278308510669725214134825
612662311","5159077180537477170414766645353475888148823235435327594056
884025104088119211"],
["53307695457304486299958814150801933386798561145239004140674109831123
68368709","71889138889532129356908439464073016988743104322964641798599
22108281951036766"], ["1","0" 1], "pi_c":
["18656304609731106061640873201538595826006240045006073369460887759637
707426656","2846885767332623222210969971607692483904246358819603731868
739917979097675998","1" ], "protocol” : "groth16", "curve"”: "bn128"}, "public
Signals":

["344073830386746567427978432078835137280280269756", "667", "69261469314
01628285335895194775807652138317461677832876013561909823373258835" |}

Generation time: 379.80 ms
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Verifier (on-chain verification)

Holder Address: 0x70997970C51812dc3A01

Paste Proof Input including Public Signals:

{"proof":{"pi_a":
["11472440258096960976799926381728385301276067263547157252936996620150
612013259","1362066962883823792856036133567179944096057469186228450361
©370542762682733785","1"],"pi_b":
[["7866312760886124981604065482436627618772182278308510669725214134825
612662311","5159077180537477170414766645353475888148823235435327594056
884025104088119211" ],
["533076954573064486299958814150801933386798561145239004140674109831123
68368709","71889138889532120256908439464073016988743104233064641798599
22108281951036766" 1, ["1","0" 1], "pi_c":
["18656304609731106061640873201538595826006240045006073369460887759637
707426656","2846885767332623222210969971607692483904246358819603731868
739917979097675998" "1, "protocol”:"grothl6™,"curve™:"bn128"}, "public
Signals":

["344073830386746567427978432078835137280280269756", "667", "69261469314
01628285335895194775807652138317461677832876013561909823373258835" |}

Verify Proof

Verification result: Proof is valid.
Execution time: 28.50 ms

Figure 4.7: Credchain On-Chain ZKP: After Successful Verification
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User

Generate DID

Holder is: 0x70997970C51812dc3A010C7d01b50e0d17dc79C8
Issuer is: @x3C44CdDdB6a900fa2b585dd299e03d12FA4293BC
Date is: 883

Biometric template Mock is:
a24198a8b2c2ffcf6d7777e73ebe756f7e944316056ef5afbe347a3437d760761c3b6b
b70b6a43ae@9a7a56b623b67d251d9d8F62ac5df73275e5e140afadathc3cdd8517b5a
bd660ac9421a11b39780cecBBBb82b23aelafof71262baf3fedeac24a/f3b7c7c5e81d
2bb466@2cAa2cfee775b1c650bAd3b365Fbb3ecd9727¢c3d26188604c@3al2ac61552d
2342f9356b9fbec6cbcIbde85d900e243b92a1445da34@1ced2a5db8168a75953aed4c
3256blef73509fc1d264bbbofd37fb8af73018600b576bcbf 1flcfd766d4ee8dcflbfb
46ade5474c@53d419298105¢7740a4906532640¢00c3b17987ec129d2ffe6b6fb34aca
851eb8e601d956elaf78e0

Verifier (on-chain verification)

Holder Address: 0x70997970C51812dc3A01

Paste Proof Input including Public Signals:

{"proof":{"pi_a":
["8322551470016610758257309631398133280624927267060817005524599958036503
42406486","21382524868481430559923576248992628540579857624635056590897
932566932766890747","1"],"pi_b":
[["1834054104922236557665186839664376329469477535220935457093209870704
5115741483","390312143032597447558415399685601599954638888830608871440
6177630021302401338"],
["18590905563661032633660301011639645210608310158191928213516371139779
045200029" , "x931782470897 001966000164519844039152112879310815695875
8585673136381061381"],["1 11,"pi_c":
["13484608260294201945125619238557937077190398558850182395611039424123
634901551","1594235462284319761225028040277253375861439755762438929099
1951346677675170166","1" ], "protocol”: "groth16", "curve" : "bn128"}, "publi
cSignals”:

45

DID is: ["344073830386746567427978432078835137280280269756", 883", "18707311691
1870731169192228672497471205840108306407210675694171982422962278500277 922286724974712058401083064072106756941719824229622785002772133581" ]}
2133581

Proof Generation
Verify Proof

Verification result: Verification failed. Check log.
Execution time: ms

Holder Address: 0x70997970C51812dc3A01
Issuer: 0x3C44CdDdB6ag00fa2b5¢

Timestamp: 883

a24f98a8b2c2ffci6d7777e7

Generate Proof

Generated Proof + Public Signals:

Biometric Input:

{"proof": {"pi_a":
["83225514700166107582573096313981332802492726700817005524599958036503
42406486" ,"21382524868481430559923576248992628540579857624635056590897
932566933766890747","1"],"pi_b":
[["1834054104922236557665186839664376329469477535220935457093209870704
5115741483","390312143032597447558415399685601539954638888830608871440
6177630021202401338" ],
["18590905563661032633660301011639645210600310158191928213516371139779
045200029", "9317824708975590019660001645198440391521128793108156958758
585673136381061381"1,["1","0"]],"pi_c":
["13484608260294201945125619238557937077196398558850182395611039424123
634901551, "1594235462284319761225028040277253375861439755762438929899
1051346677675170166","1" ], "protocol” : "groth16", "curve" : "bn128"}, "publi
cSignals":
["344073830386746567427978432078835137280280269756",883", "
922286724974712058401083064072106756941719824229622785002772133581" ]}

Generation time: 354.30 ms

Figure 4.8: Credchain On-Chain ZKP: After Failed Verification

4.3.1 VerifyDID

The method verifiyDID differs from Credchain-ZKP. Instead of making a verification
call to the snarkJS library, it calls a method on a smart contract. To accomplish this,
the proof elements are converted to hexadecimal format, split, and then passed to the
function call in separate parts. The hexadecimal conversion is performed using the method
snarkjs.groth16.exportSolidityCallData from the snarkJS library.

The following code excerpt highlights the modifications made to the verifyDID method
compared to Credchain-ZKP.
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46 CHAPTER 4. IMPLEMENTATION

// transform proof and publicInput to Contract input format
const callData = await snarkjs.grothl6.exportSolidityCallData(proof,
recomposedPublicSignals);

const callDataArray = JSON.parse(‘[${callDatal}] ‘);
const a = callDataArray[0];

const b = callDataArray[1];

const ¢ = callDataArrayl[2];

const callDatalnput = callDataArray [3];

// on-chain verification

let verifier = "0x3C44CdDdB6a900fa2b585dd299e03d12FA4293BC"; //
Account 3
const isValid = await verifierContract.methods.verifyProof(a, b, c,

callDataInput) .send ({from: verifier});

Listing 4.12: Code of VerifyDID in Credchain on-Chain ZKP

4.3.2 Verifier.sol

This file is generated by the snarkJS library based on the circuit artifacts previously
created during the trusted setup. It includes a single method, verifyProof, which accepts
four inputs:

pA

pB

pC

pubSignals

Components pA, pB and pC are parts of a zk-SNARK proof and must be provided in
a specific format. PubSignals expects the public inputs required for the verification.
The verification is then performed using numerous constraint constants and calculations
enforcing these constraints.

Generation of this file is possible using the following command:

> snarkjs zkey export solidityverifier circuit_final.zkey Verifier.sol
[INFO] snarkJS: EXPORT VERIFICATION KEY STARTED

[INFO] snarkJS: > Detected protocol: grothl6

[INFO] snarkJS: EXPORT VERIFICATION KEY FINISHED

Listing 4.13: Command-Line Interaction: Generation of Verifier.sol



Chapter 5

Evaluation

This chapter evaluates the three implementations Credchain with 2FA, Credchain-ZKP
and Credchain OnChain ZKP through experimental tests and theoretical analysis. The
evaluation scenarios focus on proof of ownership of a DID in physical contexts, such as
when an individual user visits a physical store and attempts verification. This focus
aligns with non-functional requirements NFR2 (Compatibility with Standard Devices)
and NFR6 (Real-Time Processing).

5.1 System Performance

Measured performance refers to the execution time as perceived and measured by the
React user interface for the respective methods responsible for zero-knowledge proof gen-
eration and verification. In line with NFR2 (Compatibility with Standard Devices), three
devices are used for the experiments, representing realistic scenarios in which such devices
could be used by either user (Smartphones) or verifier (Windows Notebook).

e OnePlus 7T, OxygenOS (Android) 12
e Apple iPhone 14, iOS 18.2
e Lenovo X1 Yoga G4, i7 8565U, Windows 11
For all tests, a locally hosted HardHat Node was started and accessed through the React

application. Tests were either run locally on the Windows Notebook mentioned above or
on the mobile devices, with a HardHat Node made available in the local network.

After each of the five test runs per device and implementation, both the Node and the
React development server were restarted and the device’s cache cleared to prevent any
interference and ensure comparable results.

47



48 CHAPTER 5. EVALUATION

5.1.1 Execution Time: GenerateProof

The following Figure [5.1] presents the execution times of the generateProof method by
device and implementation, the tables [5.1], 5.2 and [5.3] contain the associated data.

Comparison of GenerateProof Execution Times
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Figure 5.1: Comparison of Average GenerateProof Execution Times Across Devices.

Note: Credchain with 2FA has no zero-knowledge proof generation, while the gener-
ateProof method is identical for the other two implementations. For this reason it is
possible to calculate a combined average across all 10 runs per device, resulting in an
execution time of 351.9ms for the iPhone 14, 608.64ms for the OnePlus 7T and 344.16ms
for the Lenovo X1 Yoga.

The generation of the zero-knowledge proof is the most time- and computation-intensive
phase. Device performance appears to play a role, with the older OnePlus 7T notably
lagging behind. However, all devices comfortably meet the evaluation scenario of real-
time usage with user devices, completing the generation of a zero-knowledge proof in
under one second. This satisfies both NFR2 (Compatibility with Standard Devices) and
NFR6 (Real-Time Processing).

Test Run Nr. 1 2 3 4 5 average
Credchain-ZKP  352.00ms 349.00ms 357.00ms 357.00ms 351.00ms 352.20ms
Credchain 379.00ms 355.00ms 348.00ms 338.00ms 333.00ms 350.60ms

On-Chain ZKP

Table 5.1: Execution Time of GenerateProof: iPhone 14
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Test Run Nr. 1 2 3 4 5 average
Credchain-ZKP  680.00ms 604.30ms 610.40ms 608.50ms 627.00ms 626.04ms
Credchain 591.10ms 607.60ms 602.60ms 557.70ms 597.20ms 591.24ms

On-Chain ZKP
Table 5.2: Execution Time of GenerateProof: OnePlus 7T

Test Run Nr. 1 2 3 4 5 average
Credchain-ZKP  332.70ms 338.50ms 356.80ms 350.50ms 346.70ms 345.04ms
Credchain 340.40ms 349.10ms 341.40ms 341.90ms 343.60ms 343.28ms

On-Chain ZKP

Table 5.3: Execution Time of GenerateProof: Lenovo X1 Yoga G4 / i7 8565U

5.1.2 Execution Time: VerifyDID

The following Figure [5.2] presents the execution times of the verifyDID method by device
and implementation, the tables and [5.6] contain the associated data.

Comparison of VerifyDID Execution Times
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Figure 5.2: Comparison of Average VerifyDID Execution Times Across Devices.

The verification of the zero-knowledge proof in Credchain-ZKP adds between 14.38ms and
53.46ms of execution time compared to Credchain with 2FA, depending on the device. The
difference measured between Credchain-ZKP and Credchain On-Chain ZKP is negligible,
with a maximum of 16.42ms.

For Credchain On-Chain ZKP, it is important to note that these tests were done on
a local HardHat Node. In a real-world scenario on the Ethereum MainNet, on-chain
verification would take longer because of network delays and block confirmation times.
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On chain verification could take anywhere from a few seconds to minutes. As of 5th of
January 2025, the average block time on the Ethereum MainNet is around 12 seconds
[46]. However, the total execution time for a transaction involves more than just the
block time, such as transaction propagation across the network and time until inclusion
in a block.

It can be concluded that verification with Credchain-ZKP meets both NFR2 (Compati-
bility with Standard Devices) and NFR6 (Real-Time Processing). In contrast, while the
on-chain verification with Credchain On-Chain ZKP satisfies NFR2, as processing is in-
dependent of the user’s device, it does not fulfill NFR6, since processing times of up to
several minutes cannot be considered real-time.

Test Run Nr. 1 2 3 4 5 average

Credchain 2FA 18.00ms  30.00ms 16.00ms 17.00ms  23.00ms  20.80ms
Credchain-ZKP 64.00ms  65.00ms  67.00ms  72.00ms  65.00ms  66.60ms
Credchain 60.00ms  63.00ms  70.00ms  65.00ms  68.00ms  65.20ms
On-Chain ZKP

Table 5.4: Execution Time of VerifyDID: iPhone 14

Test Run Nr. 1 2 3 4 5 average

Credchain 2FA 40.70ms  36.40ms  37.70ms  39.10ms  34.80ms  37.74ms
Credchain-ZKP 96.10ms  103.70ms 85.80ms  81.50ms  88.90ms  91.20ms
Credchain 92.70ms  109.10ms 124.80ms 95.70ms 115.80ms 107.62ms
On-Chain ZKP

Table 5.5: Execution Time of VerifyDID: OnePlus 7T

Test Run Nr. 1 2 3 4 5 average

Credchain 2FA 5.80ms 5.00ms 4.20ms 5.10ms 7.70ms 5.42ms
Credchain-ZKP 12.40ms  21.60ms 19.90ms 19.70ms  20.40ms 18.80ms
Credchain 25.40ms  23.80ms  33.20ms  24.10ms  23.20ms  25.94ms
On-Chain ZKP

Table 5.6: Execution Time of VerifyDID: Lenovo X1 Yoga G4 / i7 8565U

5.2 Cost

The cost of blockchain transactions is determined by gas fees, which represent the com-
putational resources required to process and validate the transaction. The Hardhat Node
outputs logs containing "Gas used” for any deployment or computation done on-chain.
Average gas price per unit recorded as of 5th of January 2025 is 8 Gwei [11], however, it
can fluctuate heavily [33]. 8 Gwei equate to 0.000000008 ETH. With a Price of 3,632.82
USD per ETH, as of 5th of January 2025 07:00 GMT+1 [8], a gas unit consumed translates
to cost of 0.00002906256 USD per gas unit.
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The following subsections will calculate the cost associated with the deployment of the
contract as well as transaction cost, using the above value per gas unit.

These calculations, summarized in Table [5.7] indicate that zero-knowledge proof verifica-
tion on-chain introduces fix-cost of USD 12.36 at deployment and per-call cost of USD
6.64 for each verification in comparison to local verification.

Implementation Deployment Deployment Interactions Interactions
(Gas) (USD) (Gas) (USD)

Credchain 2FA 8,078,173 234.77 189,728 5.51

Credchain-ZKP 8,078,173 234.77 189,716 5.51

Credchain 8,928,977 259.50 418,326 12.51

On-Chain ZKP

additional cost 425,390 12.36 228,610 6.64

On-Chain ZKP

Table 5.7: Summary of Gas Units and Cost for the Associated Smart Contracts

5.2.1 Credchain with 2FA

Deploying the contracts required a total of 8 078,173 gas units, resulting in deployment
cost of USD 234.77. A single call to register a DID consumed 189,728 gas units, equivalent
to USD 5.51.

Since the contracts have not been modified from the original Credchain implementation,
no additional cost occurs for Credchain with 2FA in that aspect. Only the cost of the call
to the DIDRegistry is specific to this implementation since the structure of the DID has
been modified.

5.2.2 Credchain-ZKP

Deploying the contracts required a total of 8,078,173 gas units, resulting in deployment
cost of USD 234.77. A single call to register a DID consumed 189,716 gas units, equivalent
to USD 5.51.

Since the contract and registration code are identical, the resulting cost are identical
to Credchain with 2FA. The registration call used slightly fewer gas units, likely due to
differences in the size of the DID components. However, when rounded to USD, the cost
is effectively the same.

Credchain-ZKP incurs no additional gas costs compared to Credchain with 2FA since both
proof generation and verification occur locally.
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5.2.3 Credchain On-Chain ZKP

For Credchain On-Chain ZKP, deploying the contracts required a total of 8,503,587 gas
units, resulting in deployment cost of USD 247.14. This includes the additional deploy-
ment of the Groth16Verifier contract, which used 425,390 gas units, adding USD 12.36 to
the total cost.

The registration of a DID consumed 189,716 gas units, equivalent to USD 5.51 per call,

identical to Credchain-ZKP. A single call to the Groth16Verifier used 228,610 gas units,
translating to cost of USD 6.64.

5.3 Scalability

In this subsection, scalability is considered as the ability to handle an increasing number
of users and transactions, while highlighting limiting factors for possible growth under
potential users and verifiers.

For Credchain-ZKP, both proof generation and verification happen locally. Since there
is no specific hardware needed and everything is processed in real time, even on older
mobile phones such as the OnePlus 7T released in 2019 [35], there are no central nor
decentral processing time constraints compared to the base system Credchain with 2FA.
Local processing avoids bottlenecks that might occur in decentralized networks. This
setup meets the requirements NFR2: Compatibility with Standard Devices and NFR6:
Real-Time Processing. Cost-wise, there are no increases in comparison to the base system.

For Credchain On-Chain ZKP, the scalability of the verification process is tied to the un-
derlying blockchain. Factors such as transaction throughput, block confirmation times and
network congestion can directly impact verification times. Especially with high demand in
the network, possible delays are likely to increase. Additionally, gas fees associated with
on-chain calls can fluctuate as well [33]. Elevated gas fees and non-real-time processing
could discourage potential users and verifiers.

One unresolved aspect is the systems’ reliance on a stable biometric template. [23] has
proven that zk-SNARKSs are fundamentally compatible with fingerprints. However, how
this pattern’s performance in real-world scenarios remains an open question and should
be explored in future work.
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5.4 Security

Both implementations leverage zero-knowledge Proofs using snarkJS and the Grothl6
algorithm, ensuring data confidentiality and high trust for users as well as verifiers. The
Circom circuit defines the cryptographic constraints and renders them transparent. This
also ensures that proofs can not be altered or intercepted, since any malformation would
lead to an invalid proof. Verification on the chain as in Credchain On-Chain ZKP enhances
security by performing verification directly on the blockchain, making the verification
process transparent, immutable and auditable for users and verifiers, reducing the risk of
hidden manipulation.

A notable limitation in the current design is the lack of a mechanism to guarantee a
freshly generated proof. Verifiers cannot be certain if a proof was generated just-in-time
or previously, raising the possibility of replay attacks if an old proof is being reused in
a new context. This gap could be addressed by exploring different zero-knowledge proof
protocols or challenge-response mechanisms.

The results of this analysis aligns with the requirement NFR4: Resistance to Attacks, but
also indicates room for future improvements.

5.5 Privacy

The zero-knowledge proof employed in Credchain-ZKP and Credchain On-Chain ZKP
allows users to prove their identity without revealing any underlying biometric data. This
ensures that sensitive biometric information remains confidential and stored locally, never
being transmitted, aligned with NFR3: No Transmission of Biometric Data.

Furthermore, the cryptographic guarantees also fulfill NFR5: High-Assurance Verification
without Disclosure, as users can demonstrate possession of valid biometric credentials with
the same level of trust as if they would present it physically.

Both implementations also follow NFR1: User Control over Biometric Data, since no mod-
ifications are made how user data is captured, stored or shared compared to the base SSI
systems. The user retains full autonomy over their data — zero-knowledge proofs simply
introduce an additional layer for verification between actual biometric data, encapsulating
it away from the verifier.

Through this analysis, it becomes clear that Credchain-ZKP works effectively with local
verification for the purposes of the task description, while moving verification on-chain
introduces associated costs and delays. These factors make on-chain verification less
practical for the discussed evaluation scenarios. On-chain verification may be beneficial
in scenarios where the verification process also triggers an action on the blockchain, and
where additional transparency to the users is needed, thereby justifying the additional
costs and delays.
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Chapter 6

Final Considerations

In this chapter, this thesis will be summarized, final conclusions will be drawn and future
work is proposed based on the limitations and insights.

6.1 Summary

This thesis began with the key objective of investigating the feasibility of connecting
physical identity with Self-Sovereign Identity. After researching the fundamentals of SSI
and its integration with physical identity, I reviewed current and existing solutions that
link physical identity to digital systems.

A common issue in these solutions is verifying that the person presenting themselves is the
rightful owner of a DID. These systems then rely on a second factor, a PIN or biometric
data, to solve this issue. While using biometric verification, they often gather biometric
data directly at the verifier, compromising user privacy and control.

To address this, I started from a minimal SSI codebase provided and implemented Credchain-
ZKP: utilizing the two-factor authentication approach, but integrated with zero-knowledge
proofs using the snarkJS library, allowing verification of biometric data without disclosing
it. Additionally, in parallel, I implemented Credchain On-Chain ZKP allowing on-chain
verification through a smart contract.
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6.2 Conclusions

This thesis aims to improve existing mechanisms supporting usage of physical identity
in the context of a digital system by securely integrating biometric verification without
revealing the actual biometric information. Building upon the research gap identified in
related studies, the primary goal was to develop a Self-Sovereign Identity system that
ensures high assurance levels in physical use cases while keeping biometric data securely
stored on the user’s device, preventing any disclosure to external parties.

In the chapter |5| Evaluation, the developed implementations are compared against the
baseline project, Credchain with 2FA. The Credchain-ZKP implementation successfully
demonstrated the integration of zero-knowledge proofs to prove ownership of biometric
data without exposing the data itself. This approach enhances the verifiability of digi-
tally represented physical identities while respecting users’ privacy and protecting their
biometric information. Additionally, Credchain On-Chain ZKP explored outsourcing the
verification process to the blockchain.

Overall, the challenge of integrating biometric data into SSI systems in a secure and
privacy-preserving manner, and thus the overlying goal of improving digital and physical
identity, has been successfully addressed. The implementations provided insights into
the trade-offs between local and on-chain verification. On-chain verification increased
transparency for users but comes with significantly higher costs and possible waiting
times, while local processing did serve the evaluation goals outlined in chapter By
ensuring that biometric data remains under the user’s control and is not transmitted
externally, the proposed SSI system designs aligns with the principles of user autonomy
and data minimization.

However, chapter outlines a notable limitation in regards of verifiers trust and secu-
rity concerns: the current design cannot ensure proofs are freshly generated, making it
potentially vulnerable to replay attacks. This could be mitigated by adopting alternative
zero-knowledge proof protocols or challenge-response mechanisms.

Both implementations were particularly successful due to the choice of snarkJS, which
significantly simplified the integration of zero-knowledge proofs for users, verifiers, and
smart contracts. At the same time, working with snarkJS required careful and precise
understanding of parsing objects in the code and creation of a circuit in Circom. This
aspect of the project demanded substantial conceptual work and planning, constituting
a majority of the development efforts, in order to enable a reliable, efficient and useful
implementation and meeting the key objectives.

A notable modification during the creation of this thesis was the addition of on-chain
verification. This addition provided an alternative perspective and enabled the verification
process to be outsourced from the verifier’s device to the blockchain.

A deviation from the initial work schedule was mainly caused by an insufficient foundation
of related work at the beginning. Extending and pivoting the review and analysis of
relevant literature was deemed to be both necessary and beneficial for identifying and
addressing the research gap.
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6.3 Future Work

Given the outcomes and limitations of this thesis, following future work is proposed:

e Enhancing on-chain verification: Deploying the verifier on a blockchain test network
would provide more accurate data regarding gas costs and realistic transaction times,
offering better understanding of the implications of on-chain verification.

e Developing an application: Credchain-ZKP and Credchain On-Chain ZKP function
as proof-of-concepts. Embedding within a smartphone application and a dedicated
verifier would strengthen the claims made through this thesis. This would also
enable capturing actual biometric data and evaluate its modalities, limits and the
user experience while interacting with the system.

e Exploring zero-knowledge proofs: As outlined in Security, the implementations
could be enhanced by a mechanism ensuring freshness of the proof. To address this,
exploring alternative zero-knowledge proof systems or implementing a challenge-
response mechanism could prove effective.
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Appendix A

Installation and Deployment

This chapter outlines installing, running and interacting with Credchain with 2FA,
Credchain-ZKP and Credchain On-Chain ZKP.

A.1 System’s Point of View

All three implementations are available in public GitHub repositories and contain all files
necessary to run all interactions proposed in this thesis:

e Credchain with 2FA: [24]
e Credchain-ZKP [26]
e Credchain On-Chain ZKP |25

All three repositories are standalone applications able to run:

e A local HardHat Node
e Smart contracts deployed by helper scripts

e A React frontend application
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A.2 Installation

Make sure the code repository is on your local file system and that npm is available on
your machine.

In the base directory, open a terminal and install dependencies. Then, go to the frontend
subdirectory and install dependencies as well:

npm install
cd ./frontend/
npm install

A.3 Deployment and Startup

1. Open a terminal in the base directory and start the local Hardhat Node:

npx hardhat node

2. Open a second terminal and deploy the smart contracts:
npx hardhat run scripts/deploy.js

3. Open a third terminal, navigate to the frontend subdirectory, and start the React
application:
cd ./frontend/

npm start

4. Open user interface in a browser under http://localhost:3000/

If you would like to run the frontend application on another device, e.g. a mobile phone,
you need to point the project to your local machine’s IP address instead of localhost:

1. Edit frontend/src/App. js and replace localhost with your machine’s local IP:

const web3 = new Web3("ws://localhost:8545")
// Change to:
const web3 = new Web3("ws://192.168.178.26:8545")
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2. Edit hardhat.config. js to add a network definition with your local IP:

networks: {
localNetwork: {
url: "http://192.168.178.26:8545",
chainld: 31337

A final hardhat.config. js could look like:

1 require("@nomicfoundation/hardhat-toolbox");
2 require("@nomiclabs/hardhat-truffleb");
3

4 module.exports = {

5 solidity: "0.8.9",

6 mocha: {

7 timeout: 100000000

8 3,

9 networks: {

10 localNetwork: {

11 url: "http://192.168.178.26:8545",
12 chainId: 31337

13 }

14 }

15 };

16

Listing A.1: Hardhat.config.js Including Custom Network

3. Open a terminal in the base directory and start the Hardhat Node with your local
IP:

npx hardhat node --hostname 192.168.178.26 --port 8545

4. Open a second terminal and deploy the contracts to your new network:

npx hardhat run --network localNetwork scripts/deploy.js

5. Open a third terminal, go to the frontend folder, and start the React app:

cd ./frontend/
npm start

6. Connect with your IP in the browser of any device on your network:

http://192.168.178.26:3000/

The application should be accessible, allowing you to proceed with each step of the
user interface.
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A.4 Data Structures

Following central artifacts are used, generated and output by all implementations. Some

numbers have been abbreviated for improved readability.

const ubaasDID = poseidon3([biometricDecimalString,
issuerToDecimalString, nowDecimalString], 1).toString();

Listing A.2: Generation of DID Object

Holder is: 0x70997970C51812dc3A010C7d01b50e0d17dc79C8

Issuer is: 0x3C44CdDdB6a900fa2b585dd299e03d12FA4293BC

Date is: 562

Biometric template Mock is: a24f98a8b2c2ffcf6d7777e73e...8e0

DID is: 137804003922047246589675762488379214062223513606362708717...094
Listing A.3: Hardcoded User Data and Generated DID
{

"proof":{

"pi_a":[
"17067569700893446944483687844131654135751603...302",
"13227015223689131480594699190365044235335064...254",
n l n

1,

"pi_b":[

[
"155635293410294163275097291947651519083381...047",
"138679231088626801734051173943572958123943...422"
1,
L
"203294632336588663031935993840288536086317...461",
"130742743761935980242122254414224779220657...593"
1,
[
n 1 n ,
n O n
]

1,

"pi_c":[
"219264817017124704975608980044782359608185648...920",
"176221158428468467996695876065798429760596575...464",
n 1 n

1,

"protocol":"grothl6",

"curve":"bn128"

3,

"publicSignals": [
"344073830386746567427978432078835137280280269756",
"562",
"137804003922047246589675762488379214062223513606362708717...094"

]

}

Listing A.4: Generated Proof and PublicSignals
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