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Abstract

Dezentralisierte Identitätsanwendungen versuchen, die Nachteile heutiger zentralisierter
Identitätsmanagementsystem abzumildern, die Sicherheit zu erhöhen und Nutzenden mehr
Kontrolle über ihre digitale Identität zu geben. Homomorphe Verschlüsselung ermöglicht
arithmetische Operationen mit verschlüsselten Daten. Die Kombination dieser beiden
Konzepte ergibt interessante Anwendungen in der Verifikation digitaler Identifikations-
nachweise. Beispielsweise kann deren Zusammenspiel verwendet werden, um das Ausstell-
datum eines Identitätsnachweises durch den Vergleich mit einem Schwellwert zu verifizie-
ren. Dies ist der Anwendungsfall, welcher in dieser Arbeit angenommen wird. Um eine
solche Überprüfung zu ermöglichen, ergibt sich schnell der Bedarf nach einer verschlüs-
selten Vergleichsoperation (Schwellwert ≤ Ausstelldatum). Vor dieser Arbeit gab es keine
Implementierung einer solchen Vergleichsoperation in JavaScript. Mit diesem Hintergrund
werden verschiedene Wege untersucht, eine Implementierung in JavaScript vorzunehmen
und sie in den existierenden Prototypen einer dezentralisierten Identitätsanwendung zu in-
tegrieren. Die implementierte Version ist vollständig funktionsfähig und wurde erfolgreich
in den existierenden Prototypen integriert. Allerdings weist die neue Implementierung
gewisse Leistungsnachteile gegenüber alternativen Ansätzen auf.
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Decentralized identity applications attempt to mitigate the shortcomings of today’s cen-
tralized identity management systems, improving security and granting users more control
over their digital identity. Homomorphic encryption allows for arithmetic operations on
encrypted data. The combination of these two concepts results in interesting applications
for the verification of digital credentials. For example, they can be combined to verify
the issuance date of a credential against a threshold. This is the use case assumed in this
work. To render such a verification possible, the need for an encrypted comparison opera-
tion (threshold date ≤ issuance date) soon emerges. However, prior to this thesis, no such
homomorphic comparison operation has been implemented in JavaScript. Considering
this, this work explores ways of implementing the homomorphic comparison operation in
JavaScript, as well as integrating it with an existing prototype of a decentralized identity
application. The implemented version of the comparison operation is fully functional and
was successfully integrated into the existing decentralized identity application. However,
it shows some performance disadvantage when compared to alternative approaches.
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Chapter 1

Introduction

1.1 Motivation

Homomorphic encryption (HE) allows arithmetic operations to be performed directly on
encrypted data, returning the correct result upon decryption. This encryption method
is usually proposed for applications like genomics, finances and the protection of data
privacy in machine learning [10]. However, another interesting application of it are de-
centralized identity applications [43]. Specifically, homomorphic encryption can be used
for the verification of credentials without disclosing the information to be verified. In
such an application, the need for a homomorphic comparison operation (e.g. enc(a) ≤
enc(b)) emerges. For example, if a prover (e.g. a student) wants to prove to a verifier
(e.g. a company) that a credential was issued after a certain threshold date, they need to
homomorphically compute the expression

enc(threshold date) ≤ enc(issuance date).

This is the use case this work builds upon. The problem arising is that the encrypted
comparison operation is not trivial to compute and often not provided by HE libraries [24].
Especially in JavaScript, which is used for the existing prototype of a decentralized identity
application [40], the homomorphic comparison operation was not supported prior to this
work. The original prototype uses node-seal, a homomorphic encryption library based
on Microsoft SEAL[29], for homomorphic calculations. Since no comparison operation is
available in node-seal, the prototype relies on a workaround for the verification process.
This motivates the need for a cleaner version using the comparison operation.

1.2 Thesis Goals

The main goal of this thesis is the implementation of a homomorphically encrypted com-
parison operation in JavaScript. The comparison operation has to support 64-bit integers
(Unix timestamps) and should be integrated into the original prototype using an appro-
priate protocol.

1



2 CHAPTER 1. INTRODUCTION

A more fine-grained outline of the thesis goals, as described in the task description, con-
sists of the following points:

1. Establishing a background on decentralized identity systems and encryption

2. Conducting a comprehensive literature review on homomorphic encryption and the
homomorphically encrypted comparison operation

3. Formulation of a problem statement motivating the need for an encrypted compar-
ison operation

4. Design of a prototype which effectively uses the comparison operation in a decen-
tralized identity system

5. Implementation of the comparison operation and extension of provided code base

6. Evaluation of the newly implemented prototype against the existing Zero-Knowledge
proof (ZKP) approach.

1.3 Methodology

The first part of this thesis is of theoretical character, focusing on research existing on de-
centralized identity applications, homomorphic encryption and the comparison operation
in homomorphic encryption. To get an overview about existing homomorphic encryption
schemes and corresponding implementations, a general survey on homomorphic encryp-
tion schemes [2] is taken as a starting point. From the sources cited in this general survey,
forward snowballing is used to find state-of-the-art papers on homomorphic encryption.
After the identification of the most important homomorphic encryption schemes, methods
for comparing two numbers are researched for each scheme.
The design part of this thesis is more practical, focusing on the feasibility and most suit-
able approach of implementing the comparison operation in JavaScript and integrating
it with the existing decentralized application prototype. The choice of the encryption
scheme and ways of translating existing implementations to JavaScript are explored in
this part. Thereafter, two ways of computing the homomorphically encrypted comparison
operation are implemented, and one of these implementations is integrated into the decen-
tralized identity application. In the evaluation, the method implemented in this work is
compared with the Zero-Knowledge Proof (ZKP) and the original HE prototype provided
in [43].

1.4 Thesis Outline

This thesis will first focus on the background knowledge needed for understanding from
a mathematical as well as an implementation perspective. Related works that discuss
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the comparison operation in homomorphic encryption as well as decentralized identity
applications are presented in chapter 2. In chapter 3, the design choices will be discussed,
providing diagrams and explanations needed to understand the implementation. The
implementation of the comparison operation in JavaScript and evaluation thereof are
discussed in chapters 4 and 5.
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Chapter 2

Fundamentals

In this chapter, the first three goals of this thesis:

� Establishing a background on decentralized identity systems and encryption

� Conducting a comprehensive literature review on homomorphic encryption and the
homomorphically encrypted comparison operation

� Formulation of a problem statement

are addressed. A background on decentralized identity systems and related encryption
concepts (with a special focus on homomorphic encryption) is established in section 2.1.
In section 2.2, comparison algorithms for each encryption scheme as well as libraries
compatible with these algorithms are discussed. The problem statement is formulated in
section 2.3.

2.1 Background

2.1.1 Decentralized identity applications

A decentralized identity application consists of three main contributors: an issuer, a
holder/prover and a verifier [42]. At the core, these applications have been designed
to give the holder as much control over their digital identity as possible. The protocol
between involved parties is as follows: The issuer issues a verifiable credential (e.g. a
University degree) to a holder (e.g. a student), who stores the credential in their digital
wallet associated with a decentralized identifier (DID). Thereafter, the holder (now in the
role of a prover) can present the data contained in the credential to a verifier (e.g. a
company), who is able to verify its validity via cryptographic proofs. A concept especially
useful in terms of data privacy is selective disclosure, where the prover can give the
verifier only exactly the information needed and e.g. only reveal first and last name
without disclosing the address. In decentralized identity applications, it is often useful

5



6 CHAPTER 2. FUNDAMENTALS

and even more privacy-preserving if there is a way of proving e.g. age over 18 without
disclosing the birth date, or showing that a document was issued after a threshold date
without disclosing the issuance date. The latter is the scenario assumed in this work.
To avoid information misuse, it must additionally be possible to revoke credentials in
decentralized identity applications on time [41]. Cryptographic accumulators are a useful
tool for implementing such credential revocation.

2.1.2 Private key and public key cryptography

An important and fundamental concept in cryptography related to decentralized identity
applications is the distinction between private and public key cryptography [22]. Tra-
ditionally in cryptography, a single key is used to encrypt and decrypt data and ensure
secure communication in a method called private key cryptography. However, this causes
the problem of needing a secure channel for exchanging this single key between sender
and receiver 2.1, which can be cumbersome.

Figure 2.1: Private key/symmetric cryptography

As a solution, an asymmetric (resp. public key) cryptographic scheme can be used, which
solves the problem of needing a secure channel for key exchange. In this method, the
receiver shares a public key with the sender, who can encrypt his message with this key.
Since decryption requires a second, private key, there is no need to encrypt the exchange
of the public key, see figure 2.2.
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Figure 2.2: Public key/asymmetric cryptography

In decentralized identity applications, public key cryptography is used in the form of
digital signatures [42]. Digital signatures enable the signing of digital documents with a
private key such that this signature can be verified with the corresponding public key [22].
Hence, in decentralized identity applications, the issuer can digitally sign a credential and
the verifier can verify it with the signature.

2.1.3 Zero-knowledge proofs

Zero-knowledge proofs (ZKPs) are a cryptographic method introduced in [18] with the
goal of proving the possession of knowledge without revealing the knowledge itself. In the
context of decentralized identity applications, ZKPs are very well suited for e.g. the age
verification problem. Generally, applications range from electronic voting [30] to nuclear
arms control agreements [36]. There are two main categories of Zero-Knowledge Proofs:
Interactive ZKPs and non-interactive ZKPs [18], where the former requires multiple iter-
ations of communication and the latter does not.

2.1.4 Homomorphic encryption

Similarly to zero-knowledge proofs, homomorphic encryption can be used to verify an
issuance date against a threshold without revealing the issuance date to the verifier. The
mechanisms enabling homomorphic encryption are described in the following.

Homomorphisms

To understand the idea of homomorphic encryption, it is useful to know the algebraic
concept of a homomorphism. A mapping f : G → G′ is called a homomorphism if it holds
for all a, b ∈ G:

f(a).f(b) = f(a.b)

where G,G′ are groups and . is the group operation [26]. The concept can be extended
to other algebraic structures such as rings and fields. A homomorphism makes sure that
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each operation can be executed in the domain and the range of a set, yielding the same
result in both cases.

Homomorphic encryption schemes

An encryption scheme is called homomorphic if it is possible to perform arithmetic oper-
ations on encrypted data, producing the correct result in the decrypted domain as well:

E(m1) ⋆ E(m2) = E(m1 ⋆ m2),∀m1,m2 ∈ M

where E is the encryption algorithm, M is the set of all possible messages and ⋆ is the
arithmetic operation [2].

Typical (non-homomorphic) encryption schemes require three algorithms [50]:

� Key generation: Generate public and private keys.

� Encrypt: Encryption of a plaintext into a ciphertext using the public key.

� Decrypt: Decrypt ciphertext into plaintext using the private key.

In order to make an encryption scheme homomorphic, a fourth algorithm is typically
required [50]:

� Evaluate: Evaluation of an operation in the encrypted domain, typically addition
and/or multiplication.

Various schemes for homomorphic encryption can be found in literature. All of them are
usually divided into three main categories: Partially Homomorphic Encryption (PHE),
Somewhat Homomorphic Encryption (SWHE) and Fully Homomorphic Encryption (FHE)
[2]. PHE only allows for homomorphic addition or multiplication, but not both. In
SWHE, the number of operations performed in the encrypted domain is limited, e.g. due
to increase in noise with each calculation [17]. As the name implies, fully homomorphic
encryption allows for an unlimited number of evaluations of arbitrary functions [2].

Another way of categorizing encryption schemes is the division into bit-wise and word-wise
encoding [52]. The first category includes the FHEW (fastest homomorphic encryption
in the west) and the TFHE (fully homomorphic encryption over the torus) scheme, while
examples of the second category are the BGV (Brakerski-Gentry-Vaikuntanathan), BFV
(Brakerski-Fan-Vercauteren) and CKKS (Cheon-Kim-Kim-Song) schemes [52]. In the
word-wise encryption schemes, BGV and BFV use integer values, while the CKKS is an
approximative scheme handling floating-point numbers.
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Learning with errors (LWE)

Since many fully homomorphic encryption schemes are based on a mathematical problem
called learning with errors [37], this shall be described briefly in the following section.
The problem consists of a set of equations modulo a large prime number p:

⟨s, a1⟩ ≈χ b1 (mod p)

⟨s, a2⟩ ≈χ b2 (mod p)

...

where s ∈ Zn
p (a vector of dimension n over the finite field Zp), ai are chosen at random

from Zn
p , and bi ∈ Zp. The errors in every equation are taken from a probability dis-

tribution χ. Learning with errors now describes the problem of recovering s from such
equations.

Since this notation is mathematically abstract, a short numerical example is provided
in the following [38]:

14s1 + 15s2 + 5s3 + 2s4 ≈ 8 (mod 17)

13s1 + 14s2 + 14s3 + 6s4 ≈ 16 (mod 17)

6s1 + 10s2 + 13s3 + 1s4 ≈ 3 (mod 17)

10s1 + 4s2 + 12s3 + 16s4 ≈ 12 (mod 17)

9s1 + 5s2 + 9s3 + 6s4 ≈ 9 (mod 17)

3s1 + 6s2 + 4s3 + 5s4 ≈ 16 (mod 17)

...

6s1 + 7s2 + 16s3 + 2s4 ≈ 3 (mod 17)

The goal is to recover the secret s ∈ Zn
p (here, s = (0, 13, 9, 11)). Without the errors, this

could easily be achieved via Gaussian elimination. Due to the small errors added on the
right side however, it is computationally hard to retrieve the secret.

Based on the hardness of the LWE problem, Oded Regev also proposed the following
public key cryptosystem [37]:

� Parameters: integer m, prime number p and probability distribution χ on Zp.

� Private key: s ∈ Zn
p chosen uniformly at random.

� Public key: Choose m vectors a1, . . . , am ∈ Zn
p independently from the uniform

distribution and e1, . . . , em ∈ Zp from the distribution χ. The public key now is
(ai, bi)

m
i=1, where bi = ⟨ai, s⟩+ ei

� Encryption: For encrypting a bit we choose a subset S of [m]. The encryption is
(
∑

i∈S ai,
∑

i∈S bi) if the bit is 0 and (
∑

i∈S ai, ⌊p
2
⌋+

∑
i∈S bi) if the bit is 1.
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� Decryption: The decryption of a pair (a, b) is 0 if b − ⟨a, s⟩ is closer to 0 than to
⌊p
2
⌋ modulo p. Otherwise the decryption is 1.

The encryption and decryption of 0 and 1 can easily be imagined with the help of a clock
dial [23]:

Figure 2.3: Visual representation of the decryption of 0 and 1 via LWE

Ring learning with errors (RLWE)

Ring learning with errors (RLWE) is a problem closely related to LWE, but with more
efficient computations involved [35]. It operates in polynomial rings, i.e. all values are
polynomials instead of field elements. This is the mathematical problem behind many of
today’s homomorphic encryption schemes.

Bootstrapping

The fundamental concept introduced by [17] to allow for the first fully homomorphic
encryption scheme is called bootstrapping, which is a creative way of reducing the noise
in a ciphertext after it has increased due to a homomorphic operation.
Before Gentry’s breakthrough, the problem in the construction of a fully homomorphic
encryption scheme was that noise increased with every operation performed. In figure 2.3,
this would correspond to a shift of an arrow around the dial from the original position
towards the opposite side. When the noise becomes too large, an encrypted bit can not
be correctly decrypted anymore.
Bootstrapping solves this problem by ”decrypting within an encrypted environment”, as
is very well illustrated in [12]:
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Figure 2.4: A simplified representation of Gentry’s bootstrapping procedure [12]

At first, the plaintext message m is encrypted with public key pk1, giving a ciphertext
with small noise, represented by the first blue box and the noise indicator next to it. After
performing the homomorphic operation φ, the noise has increased to an extent that does
not allow for further operations. Hence, the whole ciphertext is encrypted again with a
new public key pk2. The private key of the first encryption is also encrypted with the
second public key.
Within this new encrypted environment, the noisy ciphertext can be decrypted, resulting
in an encryption of φ(m) with reduced noise. Like that, arbitrarily many homomorphic
operations are possible, transforming a former SWHE scheme into an FHE scheme.

Leveled homomorphic encryption

In leveled homomorphic encryption, arbitrary logic gates can be evaluated, but the total
depth of the evaluation circuit is predetermined respectively limited [8]. Often, leveled en-
cryption schemes are less computationally costly than other encryption methods, making
them suitable for many practical applications.

2.2 Related Work

An encryption scheme is said to be fully homomorphic if it allows an unlimited amount of
additions and multiplications on encrypted data. In theory, all higher-level operations can
be built upon these two operations, but often these further operations are not implemented
in real-world encryption schemes. The comparison operation is one of these examples that
rarely exist in the bare encryption schemes. All comparison operations can be built from
the less-than and the equality function.
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For a totally ordered set S with binary relation <, the less-than and equality functions
can be defined as follows for x, y ∈ S [24]:

LTS(x, y) =

{
1 if x < y;

0 if x ≥ y;

EQS(x, y) =

{
1 if x = y;

0 if x ̸= y;

To get a less-than-or-equal function from this, the logical OR operation between these
two function is computed. To get the corresponding greater-than respectively greather-
than-or-equal functions, the positions of x and y are switched.

2.2.1 Methods for computing the comparison operation

Boolean circuits

An elegant solution for FHE comparison is the comparison via boolean circuits, such
as outlined in [9]. This solution works with bitwise encryption schemes such as TFHE
and FHEW, and only for integers represented using the two’s complement. In this ap-
proach, existing FHE submodules are used to construct homomorphic comparison: FHE
subtraction, FHE bit inversion and FHE equality check. All of these can be constructed
from basic FHE arithmetic operations. For example, FHE subtraction is possible via the
addition of the minuend with the two’s complement of the subtrahend, figure 2.5.

Figure 2.5: Boolean circuit for homomorphic subtraction [9]

This subtraction circuit can then be used to construct an FHE isgreater circuit thanks to
the fundamental properties of the two’s complement: In this representation, all negative
numbers start with a 1 in the most significant bit (MSB). Hence, it is sufficient to look at
the most significant bit of the homomorphic subtraction between two numbers in order to
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be able to compare them: If the first number was larger than the second, the difference
between them will be positive, otherwise negative [9]. Since this approach only works
for integers represented in the two’s complement and needs a way of extracting the most
significant bit from a number, other methods exist for different use cases.

Divide and Conquer

Computing the comparison operation on the bit-level as well, a divide-and-conquer ap-
proach was presented in [16, 50]. Since access to single bits is needed, this approach will
work in the bitwise schemes (TFHE, FHEW). The following expressions were used to
compare two single bits x and y:

x > y ⇔ xy + x = 1

x = y ⇔ x+ y + 1 = 1

This idea for single bits was extended to n-bit integers with the following auxiliary func-
tions:

� ti,j corresponds to the evaluation of the expression xi+j−1 · · ·xi > yi+j−1 · · · yi

� zi,j corresponds to the evaluation of the expression xi+j−1 · · ·xi = yi+j−1 · · · yi

where the two functions were defined as follows (choosing l = ⌈j/2⌉ in each iteration):

ti,j =

{
xiyi + xi j = 1

ti+l,j−l + zi+l,j−l j > 1

zi,j =

{
xi + yi + 1 j = 1

zi+l,j−lzi,l j > 1

This corresponds to the following divide-and-conquer scheme: The whole bit sequence is
repeatedly divided into two parts. Then, we check if either the MSB part (left part) of
one number is larger than the MSB part of the other, or the MSB parts are equal and
the least significant bit part (right part) of one number is larger than the LSB part of the
other. In formulas, this looks as follows:

msb(X)︷ ︸︸ ︷
xn−1 · · ·xl

lsb(X)︷ ︸︸ ︷
xl−1 · · ·x0 >

msb(Y )︷ ︸︸ ︷
yn−1 · · · yl

lsb(Y )︷ ︸︸ ︷
yl−1 · · · y0 ⇔

(msb(X) > msb(Y )) ∨ ((msb(X) = msb(Y )) ∧ (lsb(X) > lsb(Y )))
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Deterministic finite automaton

Another interesting approach for bitwise schemes is the use of a deterministic finite au-
tomaton (DFA), a concept commonly known from theoretical computer science, to com-
pute the comparison operation [13].

Figure 2.6: Deterministic finite automaton for comparing two numbers[13]

In this DFA, the bit sequences of the two numbers x and y are read from the most
significant bit to the least significant bit and start in state E, which means the two
numbers are equivalent. As long as we read the same bit from x and y, we end up in state
E again. As soon as we read a 0 from x and a 1 from y, we end up in state A, which
means that y is larger than x. We remain in this state when we have reached it since only
bits of lower significance are read thereafter. When reading a 1 from x and a 0 from y,
we end up in state B, which is opposite to A, and represents x > y.

Word-wise comparison

In word-wise encryption schemes, it is not possible to use techniques such as looking at
the most significant bit (MSB), since operations are not carried out on every individual
bit [24]. In these cases, mathematical theorems over finite fields can be used, for example
Euler’s theorem in the case of the equality operation.
For a positive integer m, Euler’s Theorem (ET) states the following:

xφ(m) ≡ 1 mod m

for any integer x coprime to m [14]. Two integers are coprime if 1 is their only common
divisor. Euler’s totient function φ(m) represents the number of integers coprime to m. In
the case where m is a prime number, Euler’s theorem can be reformulated as [14]

xm−1 ≡ 1 mod m

Using this theorem, [24] formulated the following equality function:

EQS(x, y) = 1− (x− y)p−1
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This function will be 1 if x = y, and 0 otherwise since (x − y)p−1 behaves according to
Euler’s theorem.

A similar but mathematically more elaborate approach can be used to interpolate the
less-than function. Generally, the comparison operation on word-wise encryption per-
forms worse than the bit-wise techniques [32].

Numerical approximations

[11] used an iterative numerical approximation to calculate the comparison operation.
The advantage of this approach is the very large speed on word-wise encryption schemes,
where the comparison operation was quite expensive to compute before. A disadvantage
is that a small error arises due to the approximate character of the method.

For example, the sign function can be regarded as a simple step function that is equal to
zero for negative numbers and equal to one for positive numbers:

χ(0,∞)(x) :=

{
1 if x > 0

0 otherwise.

This function is difficult to implement in the encrypted domain due to its discontinuity.
However, it can easily be approximated by sigmoid functions as shown in figure 2.7.

Figure 2.7: Approximation of the step function χ0,∞ by sigmoid functions [11]

In order for this function to be evaluated homomorphically and used for the compari-
son operation, the numbers to be compared must be subtracted and scaled. Then the
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comparison operation can be approximated by the following function:

comp(a, b) ≈ σk(log a− log b) =
ek log a

ek log a + ek log b
=

ak

ak + bk

In later work, this concept of numerical approximation was further refined [10]. By using
composite polynomials instead of the approximate equality above, the computational
complexity of the evaluation can be further reduced.

2.2.2 Encryption libraries compatible with comparison computation

TFHE-rs

TFHE-rs [55] is an implementation of the TFHE scheme (Fully Homomorphic Encryption
over the Torus), which operates on the bit-level, encrypting each bit separately. As the
name suggests, the library is written in the Rust programming language. This implemen-
tation allows for comparison operations out-of-the-box with 64-bit integers [56].
This out-of-the-box implementation is based on an approach similar to the boolean circuit
approach presented in [9], but with additional overflow handling [5]. To check for a po-
tential overflow in subtraction, the input and output borrow to the last bit are compared
- if they differ, an overflow has occured. By computing the XOR operation between the
overflow flag and the sign, the final less-than comparison operation can be evaluated.
This shall be illustrated by the following four-bit number subtraction scenario, figure 2.8.
Important to note is the fact that four-bit signed integers range from the values -8 to 7
in the two’s complement representation.

Figure 2.8: Comparison operation with overflow detection used in TFHE-rs implementa-
tion

In this example, the numbers -8 and 1 are compared. To be exact, we want to evaluate
the operation

−8 < 1 ⇒ true

To evaluate this expression, we subtract the two values, respectively add the negation of
1 (-1 = 1111 in two’s complement) to -8 (1000 in two’s complement). Since the input
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carry and the output carry of this addition to the last bit are not equal, an overflow has
occured and the overflow flag is equal to 1. This also makes sense intuitively because -9
is out of range for a four-bit number. The sign bit obtained in the calculation is 0. By
computing the XOR operation between these two, the final result of 1 (true) is obtained,
confirming that -8 < 1.

A speciality of the TFHE scheme is the so-called Programmable Bootstrap (PBS) op-
eration, which is extensively used in the algorithms of TFHE-rs [5]. This operation, like
bootstrapping, reduces the noise in ciphertexts to a fixed level. In addition to that how-
ever, the PBS operation also allows to evaluate a lookup table on the ciphertext, which
is equivalent to applying a univariate or bivariate function to it.

The developers of TFHE-rs also used parallel programming to make the encryption li-
brary more efficient. The bits of the ciphertexts are grouped together, and operations
evaluated on all the groups in parallel. After that, only operations that affect multiple
groups have to be computed (e.g. group carries).

HElib

[20] described in detail the design and implementation of the open source (Apache License
v2.0) library HElib [21], which provides the BGV, BFV and CKKS schemes as an API.
HElib is written in C++ and provides a large number of low-level routines as well as
automatic noise management. There are also a number of examples that can easily be
run for testing purposes and to get a better understanding of the library.

Together with the paper, [24] provided a GitHub repository which implements comparison
circuits. The library allows for automatic tests demonstrating the functionalities and can
also compute sorting functions and the minimum of an array. Once HElib and the library
are installed, the circuit can be started via a terminal by specifying some cryptographic
parameters as well as the number of experiments carried out:

./comparison_circuit circuit_type p d m q l runs print_debug_info

OpenFHE

OpenFHE [3] is an open-source fully homomorphic encryption library that has a large
functional range and includes design ideas from various other (prior) FHE projects. For
example, it includes ideas of Microsoft SEAL and HElib as well as several new concepts.
Since it supports boolean circuits, it is possibly suitable for the implementation of a
comparison operation.
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FHE Transpilers and Compilers

Various examples of FHE transpilers and compilers exist. Concrete [54] is an open source
software framework that targets easy use of FHE without deeper knowledge of the mech-
anisms behind it. Concrete is based on the TFHE scheme, like TFHE-rs. The software
is written in python and can be installed via PyPI or using the Docker image provided
by ZAMA. The framework can transform usual python functions to the encrypted do-
main with a compiler dedicated to do exactly this. A simple decorator can be added to a
function to compile it. Of course, the library has some limitations to it, e.g. the size of
integers is bounded.

Furthermore, Google presented a general purpose transpiler project [19] in 2021. It allows
to convert high-level code that works on unencrypted data into high-level code that works
on encrypted data. This potentially allows for the implementation of functions like the
comparison operation without in-depth knowledge on cryptography.

2.3 Problem statement

A comparison operation is needed to make homomorphic encryption a suitable option for
the use in a decentralized identity application. Specifically, such an operation is necessary
to securely verify the issuance date of a credential against a threshold. Even though
implementations of the comparison operation in homomorphic encryption exist, there is
no such implementation available in JavaScript. Prior to this work, there was hence no
possibility of extending the existing decentralized identity application prototype [40] with
a comparison operation. This is the gap this work attempts to fill by implementing an
encrypted comparison operation and integrating it into the prototype using an appropriate
protocol.



Chapter 3

Design

In this chapter, the fourth thesis goal is addressed:

� Design of a prototype that effectively uses the comparison operation in a decentral-
ized identity system

Section 3.1 discusses different protocols thinkable for integrating the homomorphic com-
parison operation into the existing prototype. In section 3.2, the choice of the encryption
scheme TFHE/FHEW is motivated. Different ways of porting this encryption scheme to
JavaScript are discussed in section 3.3 and the choice of TFHE-rs along with NAPI-RS
justified. The concept of serialization, which plays an important role in the creation of an
addon via NAPI-RS, is discussed in section 3.4. Since TFHE-rs provides the homomorphic
comparison operation out-of-the-box, no further design choices are necessary. However,
an experimental self-implemented version of the comparison operation will be developed
in chapter 4, to gain a deeper understanding of the challenges that come with the details
of such an implementation.

3.1 Protocol for Decentralized Identity Application

3.1.1 Existing protocol

This thesis can be considered follow-up work based on Schumm et al. [43]. In their work,
two prototypes for a decentralized identity application were built, focusing on preserving
the privacy of the issuance date of a credential. While one prototype uses Zero-Knowledge
Proof, the other is based on homomorphic encryption. Both prototypes have two parties
involved: a prover (e.g. a student) who holds a unix timestamp of the issuance date, and
a verifier who holds a unix timestamp of a threshold date. The goal is to compare the
two timestamps without revealing the value held by each party to the other party.

19



20 CHAPTER 3. DESIGN

In the HE prototype, the current implementation uses a trick due to the missing compar-
ison operation, see figure 3.1: The two timestamps are subtracted homomorphically by
the prover and then multiplied by a random floating point number to hide the absolute
value of the difference. The result is sent back to the verifier, who decrypts the data and
compares it with zero.

Figure 3.1: Sequence diagram of the original HE prototype [43]

This is a valid solution in principle, but it has a significant flaw. The generated random
float, even though it is a ”secure” random float, has a known statistical property: its
expected value. In the generator, a random float between zero and one is multiplied by
a randomly chosen magnitude in {1, 0.1, 0.01, 0.001}. The expected value E(R) of the
generated number is hence

1

4
· (0.5 + 0.05 + 0.005 + 0.0005) ≈ 0.138875
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The result sent to the verifier is calculated by (threshold timestamp - issuance timestamp)·
R, hence issuance timestamp = threshold timestamp− Res

R
. The exact value of R in each

iteration is unknown, but by averaging the results of multiple queries, the verifier can
hence derive the approximate value of the issuance date as follows:

issuance timestamp ≈ threshold timestamp− mean(Res)

E(R)

This was tested with a python script containing a list of 800 results. With an original
issuance timestamp of 14/07/2017, this method found a timestamp on 01/06/2017, which
is already quite close to the original value and shows the security impact.

3.1.2 Protocol using the comparison operation

From the previous section we can deduce that a protocol using the homomorphic com-
parison operation not only involves less steps, shown in figure 3.2, but also is more secure
from the prover’s perspective.

Figure 3.2: Adapted sequence diagram with comparison operation
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In this adapted approach, the prover simply compares the two encrypted timestamps
homomorphically using the less-than-or-equal operation and stores the result in the ci-
phertext Cg. This encrypted result is sent back to the verifier. The verifier can just
decrypt the received ciphertext using the private key and gets the result of the less-than-
or-equal operation (1 if Cv ≤ Cp and 0 otherwise). The less-than-or-equal operation was
chosen due to the following reasoning: In the existing implementation, the inequality

threshold timestamp - issuance timestamp ≤ 0

is computed after decryption. If the inequality is true, the issuance timestamp is valid,
otherwise the issuance timestamp is invalid. By rearranging the terms, the correct com-
putation using the homomorphic comparison operation can be found:

threshold timestamp ≤ issuance timestamp

Intuitively, the issuance timestamp should hence be a date equal to or later than the
threshold timestamp.

3.1.3 Security considerations

An important aspect to consider about fully homomorphic encryption schemes is the one
of underlying security assumptions, [51]. In the classical scenario with a client and a server
where the client requests some encrypted computation from the server, the assumption of
a honest-but-curious server is often made: The server would be interested in the results
obtained, but computes the correct homomorphic operation demanded by the client. This
is an assumption sufficient for regulatory compliance in many cases, but there are scenar-
ios where an actively malicious or compromised server has to be assumed. For this case,
various techniques exist to ensure integrity of calculations, e.g. Message Authentication
Codes, Zero-Knowledge Proofs and TEE attestation[51].

In the scenario of a decentralized identity application, more questions arise from a se-
curity perspective. The following possible manipulations were identified in both schemes
shown above:

1. The prover encrypts a random positive number (resp. +1 in case of the comparison
operation scheme) and sends this to the verifier without doing a computation

2. The prover encrypts a date surely complying with the verifiers demands instead of
the actual issuance date

3. The verifier sends multiple requests with different threshold dates to the prover to
find the issuance date with e.g. a binary search algorithm

The first vulnerability can possibly be mitigated by the use of verifiable homomorphic
encryption as described for the server/client scenario. With verifiable homomorphic en-
cryption, the verifier knows that the prover actually performed the computation and the
result was not just chosen by the prover.
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The second vulnerability is more tricky: Since the date is encrypted, it is not trivial
for the verifier to know whether the date was issued by the issuer or just created by the
prover themselves.

3.1.4 Role-switched protocol

To render such verification possible, an alternative role-switched protocol is thinkable,
figure 3.3:

Figure 3.3: Alternative Sequence Diagram for the HE Prototype
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In this alternative protocol, the encryption of the issuance timestamp could also be exe-
cuted by the issuer, who can digitally sign the encrypted issuance timestamp and hence
create a proof of its validity verifiable by the verifier. Since the prover decrypts the data in
this protocol and has some interest in influencing the result, the verifier ”hides” the actual
computation result at a random position among decoy results known to the verifier. When
the prover sends the decrypted result back to the verifier, the verifier can check with the
help of the known decoys whether the decryption was likely executed in the correct way
or not.

Hiding the actual computation among n − 1 decoys still gives the prover a high chance
( 1
n
) of guessing the correct position and manipulating that bit to their advantage. Hence,

a more rigid hiding strategy was developed:

� Exactly one half of the list elements are decoys

� The other half of the list elements are computation results, whereof . . .

� . . . on average 1
2
of the bits are flipped

This principle is illustrated by the following toy example, figure 3.4:

Figure 3.4: Example of decoy/non-decoy selection for n = 10

In the decoy/non-decoy selection, exactly one half of the elements are assigned to each
group instead of taking a random proportion. This decision is based on the need for
at least one computation result in the list, which cannot be guaranteed in conventional
random distributions. A more elaborate design might randomly choose the proportion
with a guarantee for at least one version of the computation result in the list. With
the described version, there are

(
n

n/2

)
possibilities of assigning the n positions to either

group. Hence, the probability of finding the used decoy/non-decoy configuration with
random guessing is 1

( n
n/2)

, which is already a large improvement compared to 1
n
. With the

additional random flipping of computation result bits, the final probability of finding the
used configuration becomes

1(
n

n/2

) ·
(
1

2

)n/2

(3.1)
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However, the prover can also randomly choose a bit sequence in the hope of finding the
one in their favor, with a probability of success of (1

2
)n. Since this probability is larger

than the one in expression 3.1, n should be chosen large enough to make (1
2
)n negligibly

small.

In TFHE-rs versions before v1.0, sharing the results of decrypted computations was not
secure since this could leak the secret encryption key, as mentioned in the security section
of the documentation [55]. With version 1.0 the security model was however updated,
making the risk of such leakage negligible. In technical terms, the newer versions are
secure in the IND-CPAD (indistinguishability under chosen plaintext attacks with de-
cryption oracle) model [27]. Therefore, the prover can safely share the decrypted decoys
and computation result with the verifier, assuming some ordinary end-to-end encryption
for this data transfer.

In the third possible manipulation, the verifier tries to find out the issuance date by
sending multiple requests to the prover. This could potentially be solved by restricting
the number of requests the verifier can send. Apart from this solution, the problem is
difficult to solve due to the variety of threshold dates in our scenario. In the seemingly
analogous scenario of age verification, the threshold typically is (current date - 18 years).
With only this one threshold date, it is possible to restrict the dates for which the verifier
can send a query. In the scenario of document issuance dates, thresholds can vary widely
between different verifiers, making this approach impractical.

In the protocol shown in figure 3.3, another manipulation related to the third point is
thinkable. Instead of encrypting decoys, the verifier could compute further comparison
operations with the prover’s encrypted issuance date and let the prover decrypt all of
these comparisons. Then, the verifier can also draw conclusions about the secret value of
the issuance date.

The decision between the two protocol types (prover vs. verifier doing homomorphic
computations) is dependent on the context. In a typical scenario, the verifier doing com-
putations however has some advantages. It allows to make the encrypted issuance date
verifiable, which usually is a core requirement in decentralized identity applications. The
verifier gets a statistical guarantee that the prover actually has a valid issuance date. If
the verifier is honest-but-curious, they will not use the malicious method of computing
results for different thresholds to infer information about the issuance date. However, the
role-switched protocol developed creates a lot of overhead due to additional computations
and decoys needed. The version where the prover does comparison computations is more
problematic from a security perspective. By giving the prover the possibility to influence
the result to their liking, the verifier cannot gain a lot of value from the given information.

3.1.5 Hypothetical protocol using multiparty homomorphic encryption

A possible solution to the problems of both the original and the role-switched protocol
is multiparty homomorphic encryption resp. Homomorphic Proxy Reencryption [28]. In
this method, two users can encrypt data with their respective private key, and a so-called
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Proxy in between can transform ciphertexts between the two encryption domains and per-
form homomorphically encrypted computations. With an encryption scheme supporting
Homomorphic Proxy Reencryption, the prover and the verifier could send the issuance
and the threshold date to some Proxy, who evaluates the comparison operation. Then,
the Proxy could send the result back to the verifier, encrypted with the verifier’s private
key.

Figure 3.5: Hypothetical protocol using Homomorphic Proxy Reencryption

To ensure authenticity of the issuance date, the prover could also first send the encrypted
issuance date to the verifier, who may check its authenticity with a digital signature before
sending both dates to the Proxy.

3.2 Encryption scheme

For the purpose of this work, the FHEW/TFHE encryption scheme will be used. This
is easily justifiable: Since two integers have to be compared with each other, the CKKS
scheme with focus on floating-point numbers and approximate arithmetic is not best suited
for this problem. Furthermore, research on the comparison operation in the BGV/BFV
scheme is still quite experimental with only very few, small implementations [24]. Also,
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while additions and multiplications are very fast in BGV/BFV, the comparison operation
is less efficient [32] since this is a word-wise encryption approach. FHEW/TFHE is the
most suitable homomorphic encryption scheme: Thanks to bitwise encryption, boolean
circuit techniques can be used for the comparison operation, which is also very performant.

The current prototype of the decentralized identity application is implemented using
node-seal [4] and the CKKS scheme (due to the multiplication with the random num-
ber, which is a floating-point number). At first, it might seem most reasonable to keep
using node-seal and transform the prototype using the approximative approach outlined in
[11]. However, changing the encryption library is straightforward due to similar interfaces,
and using the TFHE scheme is more reasonable since integers are compared.

3.3 Porting the TFHE/FHEW scheme to JavaScript

Theoretically, the following options exist to work with a TFHE/FHEW implementation
in JavaScript:

� Using an existing implementation of the scheme in JavaScript

� Implementing the scheme from scratch

� Building an addon from an implementation existing in a different programming
language

� Running an implementation existing in a different language in a child process

The four options shall be discussed in the following sections 3.3.1 to 3.3.4 before choosing
the most suitable approach and its limitations in sections 3.3.5 and 3.3.6.

3.3.1 Using an existing implementation of the scheme in JavaScript

There are existing implementations of bitwise encryption schemes in JavaScript. For ex-
ample, the OpenFHE project has a a WebAssembly port available on its GitHub page
[25], which theoretically allows for homomorphic calculations. However, the code base
of this implementation has not been updated for almost two years (except for a minor
change in the README file) and does not work with the current version of OpenFHE.
It is also marked as work in progress and seems to be highly experimental. The project
has a small number of three contributors. Overall, it seems unsuitable for the purpose of
this work.

Another implementation of a bitwise scheme is available in JavaScript: ZAMA provides
an API for WebAssembly of the TFHE-rs library. Even though this library allows for
key generation, encryption and decryption, it does not support FHE computations. The
functionality of computations might be added in the future, and the project remains an
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interesting possible option for future research. Still, the current lack of FHE computation
functionality makes it unsuitable for the purpose of this work, since comparison operations
have to be performed here.

3.3.2 Implementation from scratch of the scheme

Even though the basic concepts of homomorphic encryption schemes can be understood
quite easily, implementing a whole scheme from scratch takes a lot of time and resources.
Well-known implementations such as HElib[21] and OpenFHE[3] have thousands of com-
mits on their repositories and dozens of contributors, which would go beyond the scope of
this work. To make sure an implementation complies with security standards, extensive
review of the code is needed. Also, an implementation of the whole scheme in JavaScript
would most probably suffer from performance deficits compared to implementations in
lower-level languages. Performance is a key requirement for cryptographic libraries, which
is also the reason why most such libraries are written in languages like C, C++ or Rust.

3.3.3 Building an addon from a different programming language

Building an addon using Node-API

Node-API [34] is an API that allows to build native addons for Node.js. This means that
e.g. C++ code can be compiled in a way that the functions can be called and data struc-
tures can be used in Node.js. The addons are stored in the form of a binary file with .node

file extension. Especially noteworthy is the Application Binary Interface (ABI) stability
of this API. This means it is much more stable over version changes than previous similar
interfaces. Node-API can be used with CMake.js, a build tool based on the CMake build
system. There are various homomorphic encryption libraries written in C++ that are
built using CMake (Microsoft SEAL, HElib, TFHE, OpenFHE). This makes the combi-
nation of Node-API and CMake.js especially suitable for porting certain functionalities of
such libraries to Node.js. Node-API provides an extensive documentation.

Building an addon using NAPI-RS

NAPI-RS [31] is a framework very similar to Node-API, but designed for building addons
from the Rust programming language. Since Rust is a highly popular language that
also provides memory safety (preventing undefined behaviour on memory access), NAPI-
RS would also be a suitable tool for building an addon. The documentation of NAPI-
RS provides many details and examples on how to use the framework. In this thesis
specifically, it could be used to build an addon from TFHE-rs [55], which is a pure Rust
implementation of TFHE.
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Building an addon using a Foreign Function Interface

In addition to Node-API and NAPI-RS, various other Foreign Function Interfaces (FFIs)
exist for Node.js, among them the packages node-ffi, ffi, ffi-napi and ffi-rs [39]. The pack-
ages, similarly to Node-API and NAPI-RS, provide a way of making code written in
another programming language available to JavaScript. Many of the mentioned pack-
ages have however not been updated for multiple years and are mostly maintained by a
small group of developers. Also, they often do not provide in-depth documentation. The
interfaces are sometimes based on Node-API, adding overhead to the already sufficient
functionality of this library.

3.3.4 Running an implementation from a different language in a child
process

Another way of using an existing library from a language like C++ or Rust is the use of
the Node.js child processes module [33], which among other functionalities allows us to
execute shell commands from a JavaScript application. Like that, data could be encrypted
and decrypted and computations performed on it by repeatedly calling the corresponding
functions of the encryption scheme through the terminal. However, the code needed might
differ between platforms and executing shell commands could possibly be blocked by
malware protection software. Stability between different versions and operating systems
can not be guaranteed. Hence, this is not the most elegant solution for the purpose of
this work.

3.3.5 Most suitable approach

The most suitable approach for the purpose of implementing a homomorphically encrypted
integer comparison operation in JavaScript was evaluated to be the usage of TFHE-rs to-
gether with NAPI-RS. As mentioned before, TFHE-rs already provides an integer compar-
ison operation built-in. It is among the most actively developed homomorphic encryption
libraries at the moment, showing almost daily commits on GitHub. The library is free to
use under the BSD 3-Clause Clear license for research purposes, making it suitable for a
Bachelor’s thesis. For commercial use, a patent license has to be purchased by Zama - how-
ever, there are currently no plans of using this project for an application inside a company.

The use of NAPI-RS can also be justified easily. NAPI-RS is used in large projects such
as the Bitwarden password manager. It is actively developed and provides an extensive
documentation with examples. In contrast to child processes, it works independently of
the platform used and supports all important platforms. The (highly simplified) matrix
of comparison in figure 3.6 summarizes the decision-making further.
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Figure 3.6: Comparison matrix between different implementation approaches

3.3.6 Limitations

Even though the approach chosen is highly suitable for the given problem, it has some
limitations that are especially noteworthy if we want to extend the usecases. The most
obvious limitation is that we are restricted to integer and boolean arithmetic. Due to
this, the model will soon suffer from restrictions if we want to extend its use case beyond
the comparison of Unix timestamps. Furthermore, even though the TFHE-rs library is
highly optimized, it still suffers from speed limitations. This will be discussed in-depth
in the evaluation part, but it can already be estimated that the execution time will lie
in the order of magnitude of seconds instead of milliseconds. Also, the implementation is
dependent on the further development of TFHE-rs, which currently lies in the hands of
Zama. Zama is a relatively young cryptography startup founded five years ago. Given the
growing interest in homomorphic encryption and the presence of reputable cryptography
experts like Pascal Paillier at Zama, the development of TFHE-rs will however probably
not cease in the foreseeable future.

3.4 Serialization

An important concept needed for using the TFHE-rs library with NAPI-RS is serialization
[55]. Serialization is the process of converting programming objects into a persistent file,
for example into a binary or JSON file. Usually, objects are serialized in order to be
sent over a network. Since ciphertexts and keys of a cryptosystem typically are sent
over a network, most encryption schemes provide a serialization module built-in, from
which TFHE-rs is no exception. Serialization is not only useful for sending data over the
network, it also helps to handle data from Rust in JavaScript. Even though NAPI-RS
provides advanced features such as the conversion from Rust structs to Javascript classes,
this rapidly becomes highly complex. For example, converting the whole FheInt64 struct
(representing a 64-bit integer ciphertext) spread over multiple Rust crates would require a
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lot of handcraft. By using the serialization feature of TFHE-rs, such a complex structure
is converted into a simple Buffer and can be exchanged between Rust and JavaScript
out-of-the-box.
This is also how the implementation is designed: All data exchanged between the NAPI-
RS addon and the JavaScript program is converted to a simple data structure supported
by NAPI-RS right away.

Figure 3.7: Flow of serialization and deserialization between Rust and JavaScript by the
example of an encrypted 64 bit integer
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Chapter 4

Implementation

To implement the comparison operation with its standalone functionalities, the reposi-
tory HE_comparison_implementation [48] was created on GitHub. For its integration
into the existing credchain repository [40], the credchain repository was forked and
a new branch created on the fork [46]. This partitioning allowed for a more structured
development process and makes it possible to integrate the comparison operation into
different projects without having to extract it from the credchain repository first.

The implementation process was hence split into four parts. At first, the relevant parts
of the TFHE-rs library [55] were made available to Node.js by the use of NAPI-RS [31],
section 4.1. Secondly, all parts of the existing protocol using node-seal were moved to
this TFHE-rs addon and the subtraction/multiplication with random float replaced by
the comparison operation 4.2. In a third stage, the existing protocol was supplemented
with the second, role-switched protocol, see section 4.3. Lastly, the comparison operation
was implemented from scratch using OpenFHE [3] to gain a deeper understanding of it,
section 4.4.

4.1 Making TFHE-rs functionality available to Node.js

4.1.1 Usage of NAPI-RS

The NAPI-RS library [31] allows to run Rust code from a Node.js environment. It provides
an intuitive integration with Rust. The first thing needed for it to work is the package
manager of Node.js: npm. Once npm is installed, NAPI-RS can be installed via the
command

1 $ npm install -g @napi -rs/cli

Listing 4.1: Installation of NAPI-RS (command line)

It can then be added to Rust as a Cargo crate, adapting the Cargo.toml configuration
file, where the following specifications are needed as a minimum [31]:

33
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1 [package]

2 name = "tfhe_comparison"

3
4 [lib]

5 crate -type = ["cdylib"]

6
7 [dependencies]

8 napi = "2"

9 napi -derive = "2"

10
11 [build -dependencies]

12 napi -build = "1"

Listing 4.2: Configuration of NAPI-RS (Cargo.toml)

Quite self-explanatory, the [package] section defines the name and further information
about the Rust package to be built. Importantly, the [lib] section needs to specify
the crate-type as cdylib to ensure a dynamic system library will be produced. This
crate-type is used when a Rust library is to be loaded from another language [49], which
is the main purpose of NAPI-RS. The [dependencies] and [build-dependencies] are
the sections where the NAPI-RS crate is actually specified.

In the project we want to make available in Node.js, a build.rs file has to be created
with the following content:

1 // build.rs

2 extern crate napi_build;

3
4 fn main() {

5 napi_build ::setup();

6 }

Listing 4.3: Build script for NAPI-RS (build.rs)

When the crates have been imported, a function to be exposed to JavaScript can be
preceded by the attribute macro #[napi]:

1 #[napi]

2 fn example () -> i64 { ... }

Listing 4.4: Using attribute macro for exposing function to JavaScript (Rust)

On the JavaScript side, the package.json file also needs to be adapted. The package name
and build scripts have to be specified [31]:

1 {

2 ...

3 "devDependencies": {

4 "@napi -rs/cli": "^1.0.0"

5 },

6 "napi": {

7 "name": "tfhe_comparison"

8 },

9 "scripts": {

10 "build": "napi build --release",
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11 "build:debug": "napi build"

12 }

13 }

Listing 4.5: Node.js configuration for NAPI-RS (package.json)

Then, the package can be used in Node.js by simply requiring it:

1 const addon = require("./ tfhe_comparison.node");

Listing 4.6: Usage of NAPI-RS addon in Javascript (e.g. HomomorphicEncryption/

verifier.js)

Also noteworthy is the way NAPI-RS handles naming conventions. Since Rust is typically
styled in snake_case and JavaScript in camelCase, NAPI-RS automatically converts
between the two. For example, a function defined as get_keys() in Rust hence has to be
called as getKeys() in JavaScript.

4.1.2 Usage of TFHE-rs

TFHE-rs has a very simple interface and allows to use Rust’s built-in operators for most
FHE computations on ciphertexts. The only exception to this are the comparison opera-
tions since these are required to return booleans in Rust, which cannot be done in FHE
[55]. Hence, comparisons were implemented as follows:

1 let eq = a.eq(&b);

2 let ne = a.ne(&b);

3 let gt = a.gt(&b);

4 let lt = a.lt(&b);

Listing 4.7: Comparison operations in TFHE-rs (Rust)

4.1.3 Exposing TFHE-rs functions to Node.js

In order to use the functionalities of TFHE-rs in Node.js, the functions from TFHE-rs
were wrapped into further functions that provide a JavaScript compatible input-output
flow. This principle shall be illustrated by the following key-generation function:

1 #[napi]

2 fn get_keys () -> Vec <Vec <u8>> {

3 let config = ConfigBuilder :: default ().use_custom_parameters (...).

build();

4 let client_key = ClientKey :: generate(config);

5 let compressed_server_key = CompressedServerKey ::new(& client_key)

;

6 let compressed_public_key = CompressedCompactPublicKey ::new(&

client_key);

7
8 let mut client_key_ser = vec ![];

9 safe_serialize (&client_key , &mut client_key_ser , 1 << 30).unwrap

();
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10 let mut compressed_server_key_ser = vec ![];

11 safe_serialize (& compressed_server_key , &mut

compressed_server_key_ser , 1 << 30).unwrap ();

12 let mut compressed_public_key_ser = vec ![];

13 safe_serialize (& compressed_public_key , &mut

compressed_public_key_ser , 1 << 30).unwrap ();

14
15 return vec![ client_key_ser , compressed_server_key_ser ,

compressed_public_key_ser ];

16 }

Listing 4.8: Key generation and serialization in TFHE-rs (src/lib.rs)

In this function, the client key, server key and public key are generated as usual after set-
ting up the configuration. Then, the three keys are serialized using the safe_serialize
function of TFHE-rs, which uses the Serde framework [45] with some additional checks
[55]. After serialization, the three serialized keys are converted to Buffer objects (resp.
Vec<u8> which will be discussed later) and then combined into a vector with three ele-
ments. The vector of Vec<u8> objects is compatible with JavaScript and hence returned
from the get_keys() function.
In JavaScript, the function can then be called and keys separated with the following short
commands:

1 const keys = tfhe_rs.getKeys ();

2
3 const instances = {

4 clientKey: keys[0],

5 evaluator: keys[1],

6 publicKey: keys[2],

7 }

Listing 4.9: Key generation and their assignment to variables in JavaScript using TFHE-rs
addon built with NAPI-RS (HomomorphicEncryption/verifier.js)

4.2 Transition of prototype to TFHE-rs addon

4.2.1 Translation between node-seal and TFHE-rs

Since the encryption scheme used is changed from node-seal to TFHE-rs, the parallels
and differences between the two libraries were compared at first. In the following table
4.1, all steps of the encryption, evaluation and decryption processes are shown with the
corresponding commands.
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Table 4.1: Comparison between node-seal and TFHE-rs

Step Command

Server/Evaluation
key generation

node-seal: const evaluator = seal.Evaluator(context);

TFHE-rs: let (_, server_key) = generate_keys(config);

Client/Secret key
generation

node-seal: const secretKey = keyGenerator.secretKey();

TFHE-rs: let (client_key, _) = generate_keys(config);

Public key
generation

node-seal: const publicKey = keyGenerator.createPublicKey();

TFHE-rs: let public_key = PublicKey::new(&client_key);

Encryption
node-seal: const cipher = encryptor.encrypt(plain);

TFHE-rs: let cipher = FheInt64::encrypt(plain, &client_key);

Decryption
node-seal: const pResult = decryptor.decrypt(value);

TFHE-rs: let plain: bool = cipher.decrypt(&client_key);

As can be seen, the basic syntax is very similar between the two libraries. However, the
basic configuration setup is much more straightforward in TFHE-rs. With the single line

1 let config = ConfigBuilder :: default ().build();

Listing 4.10: Configuration creation in TFHE-rs (Rust)

a default configuration can be set up (however, note that the key generation and config-
uration setup were later refined to allow for compression and the usage of the compact
public key). In node-seal, the scheme type and all its configuration parameters (security
level, polymodulus degree, coefficient modulus, bit sizes) have to be set manually. Another
important difference between the two is that node-seal requires the extra steps of encoding
the data to the correct format before encryption and decoding it after decryption.

4.2.2 Integration with existing prototype

To integrate the TFHE-rs addon with the existing prototype [43], all Rust files were
added to the project. The package.json was adapted as described in the NAPI-RS
documentation. The files prover.js and verifier.js (and analogously student.js

and company.js) were identified to be the relevant parts of the project to be adapted to
the new design as a first step. In these files, all functions to be modified can be summarized
in the following tables 4.2, 4.3 and 4.4:
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Table 4.2: Functions in file prover.js and corresponding adaptions

Function Adaptions

generateSecureRandomFloat Delete function, not needed due to comparison operation.

signatureVerify No change required.

computeResult

Remove encoder from parameters in function definition,
use the addon’s greaterThan function instead of multi-
plication by random float.

proverEncodeEncrypt

Change to proverEncrypt, remove encoder from parame-
ters, use the addon’s encryptPublicKey function instead
of node-seal encrypt.

proverCalculate Remove encoder in all places, leave unchanged otherwise.

Table 4.3: Functions in file verifier.js and corresponding adaptions

Function Adaptions

generateEncryptionKeys

Remove encoder, replace encryptor, evaluator and decryp-
tor of node-seal with public key, server key and private key
of addon.

generateSignatureKeys No change required.

verifierSign No change required.

verifierEncodeEncrypt
Remove encoder, replace node-seal encrypt by addon’s
encrypt function.

verifierDecryptDecode
Remove decoder, replace node-seal decrypt by addon’s
decrypt function.

verifierSetUp Remove encoder everywhere in the function.

verifierProve Remove encoder everywhere in the function.

Table 4.4: Additional functions in files student.js and company.js with corresponding
adaptions

Function Adaptions

studentMain

Replace node-seal functions by addon and subtraction/-
multiplication by random number by greaterThan func-
tion.

companySetup
Remove encoder, replace node-seal encrypt by addon’s
encrypt function.

companyMain
Remove setup procedure by simpler procedure in addon,
replace node-seal decrypt by addon’s decrypt function.

4.2.3 Debugging memory consumption

After implementing these changes, the existing tests in the file test/textHE.js were
executed using the hardhat test environment. The execution of the tests was however not
successful and resulted in an error message:
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1 FATAL ERROR: invalid table size Allocation failed - JavaScript heap

out of memory

Listing 4.11: Error message from first tests with adapted credchain repository

According to the documentation, the maximum memory available to Node.js can be set
using the --max-old-space-size=SIZE option. However, even with a drastic increase
to 20GB of available memory (which triggers swapping on the machine used), the error
did not disappear. Hence, via a process of elimination, the key generation procedure was
identified to be the most memory-intensive function of the addon. Since the keys are
stored as vectors of unsigned 8-bit integers, the length of these vectors correspond to their
length in bytes. The following sizes were identified for each of the three keys using the
len() function of Rust vectors:

� client key: 24’126 bytes (ca. 24 kB)

� server key: 131’072’487 bytes (ca. 131 MB)

� public key: 2’151’679’908 bytes (ca. 2.15 GB)

Clearly, the public key has the largest impact on memory usage and has to be reduced
in size. As shown in the documentation of TFHE-rs, keys as well as ciphertexts can be
compressed to reduce the required storage. By using a compressed public key, its size
could be reduced to 1’050’562 bytes resp. approximately 1.05 MB. With this adaption,
the error was eliminated and all tests succeeded. At a later stage, the compressed public
key was replaced by the compressed compact public key for performance reasons based
on a conversation with the TFHE-rs technical support [53].

An effect related to the encountered error was observed when running the procedure of key
generation, encryption, comparison and decryption multiple times without compression
in a for loop. This led to an increase in memory consumption with every iteration, figure
4.1:

Figure 4.1: Increase in memory consumption with every iteration of the for loop

This phenomenon only occurred when using the addon in Node.js, but not when running
a similar for loop in Rust itself. It was therefore concluded that an implementation de-
tail of NAPI-RS caused this issue, possibly together with Javascript’s garbage collection.
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Most likely, the cryptographic keys are kept in memory even when they are not needed
anymore.
To reduce the impact of this, the server key was also compressed in the implementation,
reducing its size to 30’158’665 bytes (ca. 30 MB). With these adaptions, the memory
consumption increase per iteration was reduced to 43MB on average over 30 iterations,
which is still significant.

To fully eliminate this problem and not only reduce its impact, the data structure used to
transfer data between Rust and JavaScript was investigated. Even though a Buffer takes
the least space in absolute terms, the garbage collection seems not to eliminate buffer
objects from memory. Hence the data structure was changed to Vec<u8>. In a second
test run with this setup, there is a small downward dip in memory consumption every few
iterations of the loop, most probably showing the effect of garbage collection, figure 4.2.

Figure 4.2: Garbage collection taking effect and keeping memory consumption constant
over time

4.2.4 Redundancies in implementation and refactoring

In the existing project, some redundancies were identified. Especially, the renaming of
the entities from student/company to prover/verifier that took place before this work
left some inconsistencies in the code. For example, the unit testing folder contained one
test file for the functionality of student.js and a second file for the functionality of
prover.js, even though the two files serve the same purpose at their core. Hence, all the
files were harmonized to the prover/verifier naming convention and the redundant files
deleted. In the final implementation, the two files prover.js and verifier.js provide
the core functionality.

4.3 Implementation of role-switched protocol

In order to implement the second protocol with switched roles between the prover and the
verifier (described in section 3.1.4, especially the verifier’s code needed some adaptions.
In order to clearly separate the role-switched from the original protocol, a new folder
HEroleSwitched was created in the credchain repository. There, the files prover.js and
verifier.js were created to hold the adapted code. Also, the HEperformance file and a
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test file were created to evaluate and test the role-switched protocol. In a first step, the
verifier needs to be able to sample a secure random float in the range [0,1], which was
implemented with the following code:

1 let random = ()=> crypto.getRandomValues(new Uint32Array (1))

[0]/2**32;

Listing 4.12: Creation of a secure random float (HEroleSwitched/verifier.js)

Based on this random number generator, the function verifierChoose(n,r) was de-
signed, which allows to choose r indices from a total of n. With this, the verifier can
create decoy values. To achieve this, three arrays are initialized:

1 const decoyValueOrFlipped = [];

2 const cipher = [];

3 const computationIdxs = await verifierChoose(n, n/2);

Listing 4.13: Initialization of arrays needed in role-switched protocol (HEroleSwitched/
verifier.js)

The first array decoyValueOrFlipped holds the following information:

� if the item in the ciphertext array at position [i] is a decoy: decoyValueOrFlipped[i]
holds the bit value of the decoy (0 or 1)

� if the item in the ciphertext at position [i] is not a decoy: decoyValueOrFlipped[i]
holds the information whether the computation result bit was flipped (1 if the bit
was flipped, 0 otherwise)

The array cipher holds the actual ciphertext sent to the prover for decryption, while
computationIdxs contains the indices where the actual computation results (non-decoys)
are stored in the ciphertext array.

With this preparatory code in place, the decoy creation can be started with a for loop
from 0 to n− 1. In this for loop, two cases are considered:

� The position i contains a non-decoy ⇒ the threshold ciphertext is encrypted and
the comparison operation evaluated. The resulting encrypted bit is flipped in 50%
of the cases and then pushed to the ciphertext array

� The position i contains a decoy ⇒ a random bit is encrypted and pushed to the
ciphertext array.

1 for (let i = 0; i < n; i++) {

2 if (computationIdxs.includes(i)) {

3 const thresholdCiphertext = await verifierEncryptPublicKey(

thresholdPlaintext , encryptor);

4 let compResult = await verifierComputeResult(evaluator ,

thresholdCiphertext , issuanceCiphertext);

5 const flipBit = Boolean(Math.floor(random () * 2));

6 if (flipBit) {
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7 compResult = tfhe_rs.flipBit(compResult , evaluator);

8 }

9 decoyValueOrFlipped.push(flipBit);

10 cipher.push(compResult);

11 } else {

12 const decoyPlain = Boolean(Math.floor(random () * 2));

13 const decoyCipher = await verifierEncryptPublicKey(

decoyPlain , encryptor);

14 decoyValueOrFlipped.push(decoyPlain);

15 cipher.push(decoyCipher);

16 }

17 }

Listing 4.14: Setup of ciphertext array in the role-switched protocol (HEroleSwitched/
verifier.js)

A key point about this algorithm is the encryption of the threshold ciphertext in every
iteration, which makes sure all ciphertexts are different. If the threshold was encrypted
only once and reused in every iteration, all non-flipped non-decoy ciphertexts would be
identical, giving an unwanted hint to a malicious prover.

Once the ciphertext array is decrypted by the prover and sent back to the verifier, verifi-
cation is done analogously to the the decoy creation.

1 async function verifierVerify(plain , decoyValueOrFlipped ,

computationIdxs) {

2 let n = plain.length;

3 let validCount = 0, invalidCount = 0;

4 for (let i = 0; i < n; i++) {

5 if (computationIdxs.includes(i) && !decoyValueOrFlipped[i])

{

6 plain[i] ? validCount ++ : invalidCount ++;

7 } else if (computationIdxs.includes(i) &&

decoyValueOrFlipped[i]) {

8 !plain[i] ? validCount ++ : invalidCount ++;

9 } else {

10 assert(plain[i] === decoyValueOrFlipped[i], "tampered

result");

11 }

12 }

13 assert(validCount === n/2 || invalidCount === n/2, "tampered

result");

14 console.log(validCount === n/2 ? "\tVALID Issuance Date" : "\

tINVALID Issuance Date");

15 return validCount === n/2;

16 }

Listing 4.15: Verification of ciphertext array (HEroleSwitched/verifier.js)

In this code, all actual comparison results are used to check the issuance date for validity,
while the decoys are used to make sure the prover has not tampered with the decrypted
data.

Overall, the role-switched implementation works, but comes with a lot of overhead. Not
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only one, but n/2 comparison operations and approximately n encryptions and decryp-
tions are performed. To achieve a security level of 128 bit [6], an array of length n = 128 is
needed, which is a highly significant overhead compared to only a single encrypted value
transferred in the original protocol.

4.4 OpenFHE implementation

The TFHE-rs library provides a very convenient way of using the homomorphically en-
crypted comparison operation and can efficiently be exposed to Node.js via NAPI-RS.
Nevertheless, the main focus of this Bachelor’s thesis is the homomorphic comparison
operation itself, which is already ready-to-use in TFHE-rs. To gain a deeper understand-
ing of the challenges in implementing this comparison operation and to demonstrate the
practicability of theoretical algorithms described in section 2.2, the divide-and-conquer al-
gorithm for bitwise encryption schemes [16, 50] was translated to code using OpenFHE [3].

A few peculiarities had to be considered, the first of which are the indices used. In the
papers [16, 50], the index i starts from zero, while the index j is one-based. To make this
compatible with C++ and keep the implementation comprehensible from the paper, j was
kept one-based conceptually and all relevant C++ array positions simply decreased by one.
Furthermore, the binary calculations had to be translated to binary gates implemented
in OpenFHE. For example, the equality

ti,j = xiyi + xi

for j = 1 corresponds to xi ∧ ¬yi. Similarly, the other expressions were translated to
binary gates, according to the following table, where ⊕ corresponds to the exclusive OR
gate:

Table 4.5: Conversions of definitions to binary gates

Definition in [16, 50] Corresponding binary gates

ti,j = xiyi + xi, j = 1 ti,j = xi ∧ ¬yi
ti,j = ti+l,j−l + zi+l,j−lti,l j > 1 ti,j = (ti+l,j−l)⊕ (zi+l,j−l ∧ ti,l)

zi,j = xi + yi + 1 j = 1 zi,j = ¬(xi ⊕ yi)

zi,j = zi+l,j−lzi,l j > 1 zi,j = zi+l,j−l ∧ zi,l

In the OpenFHE implementation, the first expression for example looks as follows:

1 t[i][j-1] = cc.EvalBinGate(AND , cipherXBits[i], cc.EvalNOT(

cipherYBits[i]));

Listing 4.16: Implementation of ti,j = xi ∧ ¬yi in OpenFHE (node-api_OpenFHE/
greater_than_pke.cc)

As can be seen from the example above, the integers x and y were implemented as arrays
of encrypted bits (cipherXBits, cipherYBits). ti,j and zi,j are also arrays, but two-
dimensional ones. To extract the final comparison result, the value t[0][INTSIZE-1] has
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to be decrypted, where INTSIZE represents the size in bits of the integers to be compared.
For a 64-bit integer, this is the comparison over all bits from bit 0 to 63.

To make the program more user-friendly and allow for a simple input of the decimal
(base 10) number instead of an array of bits, the std::bitset class template was used,
which allows to convert a number to an array of bits. Then, each of these bits is encrypted
and pushed to the back of a vector of LWECiphertexts:

1 std::bitset <INTSIZE > plainXBits(plainX);

2 std::vector <LWECiphertext > cipherXBits;

3 for (int i=0; i<INTSIZE; i++) {

4 cipherXBits.push_back(cc1.Encrypt(cc1.GetPublicKey (), plainXBits[i

]));

5 }

Listing 4.17: Conversion of integer to array of bits and subsequent OpenFHE encryption
(node-api_OpenFHE/greater_than_pke.cc)

To test the compatibility with Node.js, the program was also implemented as an addon
via Node-API [34]. A few more steps are required in Node-API compared to NAPI-RS
when exposing a function to JavaScript.

1 napi_value GreaterThan(napi_env env , napi_callback_info info) {

2 size_t argc = 2;

3 napi_value args [2];

4 int64_t plainX;

5 int64_t plainY;

6 int64_t greaterThanResult;

7 napi_value output;

8
9 napi_get_cb_info(env , info , &argc , args , NULL , NULL);

10
11 napi_get_value_int64(env , args[0], &plainX);

12 napi_get_value_int64(env , args[1], &plainY);

13
14 greaterThanResult = greaterThan(plainX , plainY);

15
16 napi_create_int64(env , greaterThanResult , &output);

17
18 return output;

19 }

20
21 napi_value init(napi_env env , napi_value exports) {

22 napi_value greaterThan;

23 napi_create_function(env , nullptr , 0, GreaterThan , nullptr , &

greaterThan);

24 return greaterThan;

25 }

Listing 4.18: Usage of Node-API to expose C++ function to JavaScript (node-api_OpenFHE/
greater_than_pke.cc)

Here, the number of arguments of the addon’s function (argc), and an array storing the
actual arguments (args[2]) from JavaScript are defined first. The three int64_t values
are the arguments in C++ (plainX, plainY) respectively the variable for storing the
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result of the comparison operation in C++ (greaterThanResult). The output variable
is the napi_value returned to Node.js. After retrieving details about the environment
and arguments with napi_get_cb_info, the arguments are read from args and stored
in plainX, plainY with napi_get_value_int64. Then, the comparison operation is
computed with the corresponding function in C++ and the result stored in the output

variable via napi_create_int64.

This implementation was carried out primarily for the purpose of getting a deeper under-
standing of the inner workings of the homomorphic comparison operation. Since the main
implementation was created with TFHE-rs and NAPI-RS, further details like Serialization
of encryption keys, ciphertexts etc. were omitted in this part.
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Chapter 5

Evaluation

The evaluation of this work is conducted with two main focus areas:

� Comparison between the original (node-seal) protocol and its newly implemented
counterpart (TFHE-rs, without switched roles)

� Comparison between the ZKP prototype and the newly implemented protocol (TFHE-
rs, without switched roles)

Furthermore, an estimate of the overhead between native TFHE-rs and the corresponding
NAPI-RS addon is made. The role-switched protocol as well as the OpenFHE implemen-
tation is also be covered briefly, but in less detail than the main focus areas.

5.1 Measurement methods

5.1.1 Hardware and OS

For evaluating the performance of the new implementation, a commercially available note-
book with the following specifications was used:

� CPU: Intel® CoreTM i7-1360P (4×2.2 GHz and 8×1.6 GHz)

� RAM: 16GB (LPDDR5-5200)

� OS: Ubuntu 24.10 (64-bit)

The performance was evaluated in terms of CPU and memory usage as well as execution
time. The credchain repository already provides some mechanisms for evaluation, how-
ever these were partially adapted for more accurate results.

47



48 CHAPTER 5. EVALUATION

5.1.2 CPU usage

The CPU usage measurement was left unchanged from the original credchain measure-
ment method. The method uses the pidusage package to track the CPU usage of the
current Node.js process. Even though there is some overhead due to the measurement
environment, this gives a fairly accurate measure of the CPU usage. Important to note is
the compatibility scheme of the pidusage package, figure 5.12.

Figure 5.1: Compatibility scheme of the pidusage package [7]

For reproducing results, a Linux or macOS system should hence be used, since CPU usage
measurement is inaccurate on Microsoft Windows. Furthermore, as already mentioned in
[43], CPU usage is measured in % and percentages over 100% mean that multiple cores
were used in the computation.

5.1.3 Memory usage

When measuring the memory usage, a problem similar to the one appearing during imple-
mentation seemed to occur: With every iteration of the evaluation, memory consumption
increased. Since the initial problem has however been resolved by changing the data struc-
ture returned by Rust functions from Buffer to Vec<u8>, it was concluded that some
element of the evaluation measurement was causing the problem this time. Soon, the
problem could be identified in the return statement of the measureFunctionExecution

function:

1 return { cpu: Number(cpu.toFixed (2)), memory: Number (( memory / 1024

/ 1024).toFixed (2)), duration: Number(duration.toFixed (2)),

result };

Listing 5.1: Return statement of measureFunctionExecution

The last element of the returned object contains all the values returned by the function
for which the metrics are measured. Later, this function is used and the results are stored
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every iteration. With usual values, this will not create a lot of overhead, however the
cryptographic keys of the TFHE-rs library have a significant size. Hence, the measure-
ment environment itself has a non-negligible impact on the measured memory usage.
To mitigate this issue, the result value was removed from the objects stored in every
iteration, since they are not needed for calculating the statistics about memory usage.
After this, there is still a slight increase in memory usage in every iteration due to storing
the statistics. However, broken down this does not take any significant memory space:
According to the Mozilla Developer Network web docs [1], the Number type consists of a
64-bit value. For statistics, 9 such values are stored, which gives a total of 72 bytes per
iteration. Hence, even after hundreds of iterations, these will only occupy a few kB in
memory.

Storing the result during measurement will again be considered in the scalability sec-
tion as in [43], since the accumulated memory consumption can serve as a measure of
scalability.

5.1.4 Execution time

The execution time was measured with the perf_hooks package from npm, an API for per-
formance measurements in Node.js. The measurement functionality was already present
in the credchain repository. Before the execution of a function, a start mark is set, then
the function is executed, and after execution an end mark is set. In code, this looks as
follows [40]:

1 performance.mark(‘${label}-start ‘);

2 const result = await func (... args);

3 performance.mark(‘${label}-end ‘);

Listing 5.2: Measurement of execution time using perf_hooks

In this context, the label is a freely choosable name given by the user to the function to be
evaluated. After the measurement, the duration between start and end mark is extracted
as follows, using exactly this label:

1 const duration = performance.getEntriesByName(label)[0]. duration;

Listing 5.3: Extraction of duration

5.1.5 Costs

The costs of the implemented decentralized identity application prototypes were evaluated
by estimating the costs of storing the relevant data on the Ethereum blockchain. This is a
useful estimate for real-world application, since many decentralized identity applications
use blockchain technology as a distributed ledger on which public keys for signatures are
stored [42].
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5.1.6 Scalability

Estimating the scalability of software is a non-trivial task. In the real-world scenario,
it could be said that mainly the scalability of the verifier’s code has to be considered.
The prover probably rarely has to prove more than a few claims in parallel. However, if
e.g. a company (in the role of the verifier) gets thousands of applications to a job in the
seconds after opening an online portal, the resource consumption might be more relevant.
Nevertheless, both the verifier and the prover were considered in the analysis.

5.2 Comparison with original protocol

To summarize, the new prototype using TFHE-rs has similar CPU usage, higher memory
consumption and a longer execution time in comparison with the original prototype.

5.2.1 CPU usage

Figure 5.2: Comparison of CPU usage between original implementation and new TFHE-rs
implementation
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Table 5.1: CPU usage for the original and new HE functions (%)

Orig Gen Orig Cal Orig Ver Gen Cal Ver

Maximum 120.00 500.00 500.00 172.29 254.05 200.00

Average 108.44 183.39 177.24 156.21 234.70 117.39

Median 108.16 150.00 200.00 154.38 234.52 100.00

Minimum 102.04 66.67 100.00 150.13 221.58 100.00

From the data, similar average CPU usage is visible between the original and the TFHE-rs
implementation. However, there is a wider spread of the measurements in the original
implementation. This spread for the calculation and verification of the original HE proto-
type can possibly be explained by the short execution time, see section 5.2.3, not allowing
the CPU usage to stabilize in the same way as for the setup of the original prototype as
well as all three phases of the new prototype.

5.2.2 Memory usage

Figure 5.3: Comparison of memory usage between original implementation and new
TFHE-rs implementation
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Table 5.2: Memory usage for the original and new HE functions (MB)

Orig Gen Orig Cal Orig Ver Gen Cal Ver

Maximum 166.77 171.64 171.64 1712.76 1732.51 1732.51

Average 143.10 146.58 145.51 1655.25 1676.15 1676.15

Median 143.30 146.82 146.59 1664.49 1688.94 1688.94

Minimum 104.79 108.92 109.04 1065.26 1221.11 1221.11

The memory usage is significantly larger in the implementation using the TFHE-rs addon
than in the original implementation. Notably, no evaluation/server key is needed in node-
seal, whereas the server key is the largest key in TFHE-rs, which explains part of the
difference in memory consumption. However, the evaluation key size of approximately
100 MB does not explain the overhead of ∼1500 MB in the TFHE-rs addon. As discussed
later, the usage of TFHE-rs as a NAPI-RS addon instead of using it in pure Rust causes
an overhead of more than 1000 MB.

5.2.3 Execution time

Figure 5.4: Comparison of execution time between original implementation and new
TFHE-rs implementation
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Table 5.3: Execution time for the original and new HE functions (ms)

Orig Gen Orig Cal Orig Ver Gen Cal Ver

Maximum 503.24 49.03 8.73 4442.80 2012.36 3.86

Average 428.41 18.12 2.96 3867.24 1718.28 2.14

Median 431.62 16.28 2.52 3847.35 1710.94 2.00

Minimum 387.35 13.83 2.07 3751.96 1663.86 1.91

The execution takes significantly longer in the implementation using the comparison op-
eration. As will be discussed when contrasting TFHE-rs in pure Rust compared to its
NAPI-RS counterpart in JavaScript, a significant part of the time loss (approximately
3000 ms) can be explained by the usage of TFHE-rs as a JavaScript addon.

Since the user experience is an important factor for real-world implementation, the total
average waiting time for the user of 449.49ms resp. 5587.66ms can be analyzed from a
human-computer interaction perspective. According to [15], three categories of waiting
times can be distinguished:

� 0.1s: The user perceives the system as reacting instantaneously

� 1.0s: The user’s flow of thought remains uninterrupted, but the delay is noticed

� 10s: Limit for the user’s attention to remain focused on the dialogue

In this scheme, the original prototype falls into a more optimal category than the new pro-
totype using the comparison operation. While the original prototype does not interrupt
the flow of thought of the user, even though a slight delay might be noticed, the newer pro-
totype will interrupt the user’s flow of thought. However, according to this scheme, both
prototypes would keep the user’s attention focused on the dialogue of the decentralized
identity application. Also, as pointed out by [44], such thresholds are highly dependent
on the context. In a decentralized identity application, where users are often reliant on
the success of verification, the willingness to wait might exceed the limits mentioned.

5.2.4 Costs

To estimate the costs of storing relevant data on the Ethereum blockchain, an Ether
(ETH) price of 2600 USD was assumed, as well as a gas price of 4 gwei.

Table 5.4: Costs for the original and new HE functions

Orig. HE Key Orig. HE Cipher HE Key HE Cipher

Data (KB) 623.78 452.55 99323.48 1834.90

Gas 441’139’356 320’075’556 71’807’498’216 1’326’564’640

ETH 1.764557 1.280302 287.229993 5.306259

USD 4587.85 3328.79 746’797.98 13’796.27
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As seen in table 5.4, the costs for storing keys and ciphertexts on the blockchain sum up
to multiple thousand U.S. dollars. Therefore, it is not feasible in practice to store values
on a blockchain for either prototype.

5.2.5 Scalability

Figure 5.5: Memory increase with storage of results after each iteration

To measure the scalability, all results from the examined functions were stored in memory
over multiple runs (e.g. signature public key, signature, threshold ciphertext, HE public
key, HE server key and HE client key for the setup). With the new HE prototype, a
maximum of 8 runs could be executed with this method before the JavaScript heap went
out of memory. In the original HE prototype, this limit was not reached within 400 itera-
tions. For comparability, the memory usage of both prototypes is shown for 8 consecutive
iterations in figure 5.5.

During these 8 runs, memory increased from 1062.41 MB to 2767.02 MB for the veri-
fier setup of the TFHE-rs implementation, which corresponds to an average increase of
213.07 MB per iteration. In the original prototype, memory usage in the same protocol
phase went from 104.25 MB to 293.83 MB (increase of 23.70 MB per iteration). Clearly,
it is not practical to store the necessary keys and ciphertexts of thousands of verification
processes in memory with the new prototype. The original prototype is significantly more
scalable in terms of memory, but the memory consumption should nevertheless be kept
in mind in this prototype as well. To improve scalability for both prototypes, persisting
the data in the main storage is necessary.

Important to mention are the identical values of memory consumption in the new HE
prototype’s calculation and verification steps. This can be explained by the very small
resource needs of the verification step together with its short execution time described in
section 5.2.3, which does not allow garbage collection to take its effect in between.

A further argument speaking against the scalability of both prototypes are the costs
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of storing all necessary data on a blockchain, which was estimated not to be practical,
see section 5.2.4. Additionally, there is currently no way of running multiple verification
processes simultaneously, which would be necessary to keep the execution time constant
while increasing the number of users.

5.3 Comparison with ZKP

5.3.1 CPU usage

Figure 5.6: Comparison of CPU usage between ZKP implementation and TFHE-rs im-
plementation

Table 5.5: CPU usage for the ZKP and new HE functions (%)

ZKP Gen ZKP Ver Gen Cal Ver

Maximum 164.38 177.78 172.29 254.05 200.00

Average 122.90 155.29 156.21 234.70 117.39

Median 122.58 155.56 154.38 234.52 100.00

Minimum 117.46 144.44 150.13 221.58 100.00
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The HE protocol using TFHE-rs has slightly larger CPU usage for the setup and cal-
culation compared to the ZKP prototype, but lower CPU usage for the HE verification
process. As discussed in section 5.3.4, ZKP has a significantly smaller key size, naturally
leading to less intense computation and therefore lower CPU usage.

5.3.2 Memory usage

Figure 5.7: Comparison of memory usage between ZKP implementation and TFHE-rs
implementation

Table 5.6: Memory usage for the ZKP and new HE functions (MB)

ZKP Gen ZKP Ver Gen Cal Ver

Maximum 250.90 198.65 1712.76 1732.51 1732.51

Average 196.96 194.85 1655.25 1676.15 1676.15

Median 197.04 195.13 1664.49 1688.94 1688.94

Minimum 163.60 167.83 1065.26 1221.11 1221.11

The ZKP prototype has a slightly higher memory usage than the original HE prototype,
but its memory usage is still significantly smaller than the memory usage of the new HE
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prototype using TFHE-rs. As discussed in section 5.2.2, the main part of this overhead
comes from the usage of TFHE-rs as a Rust addon, not from TFHE-rs itself.

5.3.3 Execution time

Figure 5.8: Comparison of execution time between ZKP implementation and TFHE-rs
implementation

Table 5.7: Execution time for the ZKP and new HE functions (ms)

ZKP Gen ZKP Ver Gen Cal Ver

Maximum 802.22 306.23 4442.80 2012.36 3.86

Average 632.99 257.68 3867.24 1718.28 2.14

Median 625.42 253.54 3847.35 1710.94 2.00

Minimum 591.51 242.27 3751.96 1663.86 1.91

As for the original HE prototype, the ZKP prototype is significantly more performant
in terms of execution time. The ZKP falls into the same category as the original HE
prototype on the waiting time scheme presented in [15], not interrupting the flow of
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thought of the user. The ZKP prototype can therefore be considered more user friendly
than the new HE prototype.

5.3.4 Costs

Table 5.8: Costs for the ZKP and new HE functions

ZKP Key ZKP Proof HE Key HE Cipher

Data (KB) 1.45 0.75 99323.48 1834.90

Gas 1’082’408 561’492 71’807’498’216 1’326’564’640

ETH 0.004330 0.002246 287.229993 5.306259

USD 11.26 5.84 746’797.98 13’796.27

The sizes of the ZKP key and ZKP proof are significantly smaller than the size of HE key
and HE ciphertext, bringing the ZKP prototype closer to the possibility of a real-world
implementation. Nevertheless, the price of 11.26 USD resp. 5.84 USD is still too high to
sensefully scale the prototype.

5.3.5 Scalability

Figure 5.9: Memory increase with storage of all results after each iteration

During eight consecutive iterations, the ZKP prototype’s memory usage increased from
165.51 MB to 193.19 MB for the generation step, corresponding to a rise of 3.46 MB
per iteration. Hence, the increase in memory consumption due to the storage of results
is minimal in the ZKP version, especially compared to the new TFHE-rs prototype. As
mentioned, the ZKP prototype also has restricted scalability in terms of costs.
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5.4 Overhead in JavaScript compared to Rust

Figure 5.10: Comparison of CPU usage between pure Rust and addon

Table 5.9: CPU usage between pure Rust and JavaScript addon (%)

Rust Gen Rust Cal Rust Ver Gen Cal Ver

Maximum 504.17 917.29 17.98 172.29 254.05 200.00

Average 475.33 853.03 10.76 156.21 234.70 117.39

Median 471.37 852.45 11.50 154.38 234.52 100.00

Minimum 408.81 559.90 3.99 150.13 221.58 100.00

Compared to the JavaScript version, the setup and calculation steps have higher CPU
usage in the pure Rust version [47]. Verification seems to have lower CPU usage in
pure Rust, but this might be caused by the measurement environment. Since zeroes are
filtered out, many measurements in the JavaScript version are not counted. The Rust
measurement environment seems to be more precise and also catch values close to zero
accurately, making less zero values appear in total. Hence, the Rust version seems to have
higher CPU usage overall. This can be explained by the various optimizations in terms of
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parallelization used in TFHE-rs [5]. These optimizations are apparently only applicable
partially when used as an addon, leading to less parallelization and hence lower CPU
usage.

Figure 5.11: Comparison of memory usage between pure Rust and addon

Table 5.10: Memory usage between pure Rust and JavaScript addon (MB)

Rust Gen Rust Cal Rust Ver Gen Cal Ver

Maximum 508.33 453.81 453.81 1712.76 1732.51 1732.51

Average 474.15 420.80 420.80 1655.25 1676.15 1676.15

Median 488.53 434.18 434.18 1664.49 1688.94 1688.94

Minimum 42.91 152.33 152.33 1065.26 1221.11 1221.11

In contrast to CPU usage, the memory usage seems to be lower in the Rust implemen-
tation when compared to JavaScript. This overhead most likely comes from the type
conversions between Rust and Node.js, which probably cause the existence of multiple
copies of equivalent data structures in memory.
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Figure 5.12: Comparison of duration between pure Rust and addon

Table 5.11: Execution time between pure Rust and JavaScript addon (ms)

Rust Gen Rust Cal Rust Ver Gen Cal Ver

Maximum 799.31 499.82 0.04 4442.80 2012.36 3.86

Average 711.02 333.06 0.01 3867.24 1718.28 2.14

Median 721.11 336.40 0.01 3847.35 1710.94 2.00

Minimum 608.32 282.45 0.01 3751.96 1663.86 1.91

The execution time is significantly lower in the Rust version compared to JavaScript.
Possible explanations are the additional serialization and deserialization processes needed
as well as type conversions between Rust and JavaScript. Since less CPU cores are used
in JavaScript, this has an additional negative impact on the execution time.

5.5 Role-switched protocol

For the role-switched protocol, CPU usage was measured using the package cpu-percentage
instead of pidusage, since the latter reported an unrealistic CPU usage of 0% for all runs
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of the calculation phase.

Table 5.12: CPU usage for the role-switched protocol (%)

Gen Cal Dec Ver

Maximum 201.00 219.20 117.82 569.70

Average 187.28 211.28 106.65 225.61

Median 187.33 211.28 104.65 185.40

Minimum 175.06 202.21 100.72 113.60

The role-switched protocol shows a CPU usage comparable to the protocol without
switched roles, which is expected since the same fundamental building blocks were used.

Table 5.13: Memory usage for the role-switched protocol (MB)

Gen Cal Dec Ver

Maximum 1350.48 1145.71 1142.22 1127.74

Average 1300.73 1099.46 1092.66 1087.27

Median 1310.94 1112.15 1105.10 1100.75

Minimum 515.59 887.62 887.62 887.62

Surprisingly, the role-switched protocol shows lower overall memory usage than the ver-
sion without switched roles. Most likely, this again has to do with the measurement
method rather than actual significant differences. Since the memory usage measurement
is only executed at a single instance after the execution of the function, different garbage
collection timings can explain this result.

Table 5.14: Execution time for the role-switched protocol (ms)

Gen Cal Dec Ver

Maximum 3288.77 185’764.50 326.26 2.42

Average 2618.04 159’687.19 250.04 1.00

Median 2596.35 159’139.84 247.28 0.99

Minimum 2497.38 140’759.91 233.27 0.13

Execution time is significantly larger for the calculation phase in the role-switched pro-
tocol, which is expected since 128 ciphertexts have to be encrypted compared to a single
one in the protocol without switched roles.

5.6 OpenFHE implementation

Since every iteration of the comparison operation implemented in OpenFHE takes around
370 seconds, the number of iterations was reduced to 10 for the following measurement.
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Furthermore, CPU usage was measured using the package cpu-percentage instead of
pidusage, since the latter reported a CPU usage of 0% for all runs.

Table 5.15: Performance metrics for the OpenFHE comparison operation

CPU usage (%) Memory usage (MB) Execution time (ms)

Maximum 129.40 2440.26 382’239.95

Average 128.75 2372.26 373’377.87

Median 128.97 2439.19 376’488.98

Minimum 127.55 1771.70 363’165.57

The implementation in OpenFHE shows lower CPU usage, higher memory usage and
a larger execution time compared to the TFHE-rs addon. This is expected due to less
in-depth optimizations such as parallelization.
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Chapter 6

Final Considerations

6.1 Summary

During the course of this work, the comparison operation in homomorphic encryption and
its integration into a decentralized identity application was investigated. In the first phase,
the foundations of homomorphic encryption and decentralized identity applications were
discussed. Then, two protocols were designed: In the first one, the prover executes the
comparison operation, whereas the verifier computes this homomorphic operation in the
second protocol. Since the comparison operation needs to compare two 64-bit integers in
this use case, the bitwise encryption scheme TFHE was chosen as the most suitable variant
of HE. A Rust implementation of TFHE called TFHE-rs already provides the homomor-
phic comparison operation, which made it a suitable library for porting to JavaScript.
The port to JavaScript was achieved by means of NAPI-RS, which allows developers to
write native addons executable in JavaScript. Once functional, the addon’s encryption,
decryption and comparison operation were integrated into the existing repository of a
decentralized identity application prototype. This new HE prototype was then evaluated
against the original HE prototype as well as a prototype using Zero-Knowledge Proofs.

6.2 Conclusions

6.2.1 Achievement of objectives

The first objective of this Bachelor’s thesis was to establish a background on decentralized
identity systems and encryption. Since the focus was put on the homomorphic comparison
operation at first, this goal was addressed only in the second half of the time schedule.
Nevertheless, a thorough understanding of such systems was then established, integrating
the gained knowledge e.g. into considerations on the protocol designs.

A second key objective of this thesis was to conduct a comprehensive literature review

65
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on homomorphic encryption and different HE schemes as well as corresponding compar-
ison operations. This objective was fully met during this thesis. In-depth mathematical
mechanisms, available schemes and libraries as well as various approaches to the homo-
morphically encrypted comparison operation were explored.

Thirdly, the problem posed by homomorphic encryption and the lack of the compari-
son operation in various HE libraries was required to be outlined. This objective was
fulfilled.

Concerning the prototype design, which was the fourth goal of this Bachelor’s thesis,
all considerations and choices were critically discussed. In consultation with my supervi-
sor Daria Schumm, the design choice fell on a method not proposed in the task description
(integration of TFHE-rs as a plugin to Node.js). In addition to the discussion of possible
implementations of the comparison operation itself, different decentralized identity appli-
cation protocols were proposed, addressing some drawbacks of the given original protocol.

Since credential issuance and revocation was already provided by the code base, the main
part of the fifth goal (implementation of the comparison operation by extending the pro-
vided code base) consisted of integrating the comparison operation into the code. This was
achieved, and the second proposed (role-switched) protocol was also integrated into the
code base. In addition, an experimental version of the comparison operation implemented
from scratch was programmed to gain a deeper understanding of the mechanisms involved.

In the evaluation part, the newly implemented HE approach was compared with the
existing Zero-Knowledge proof (ZKP) approach in terms of performance, costs, and scala-
bility. Additionally, the new HE approach was also compared to the original HE approach.
Also, the role-switched protocol as well as the experimental OpenFHE implementation
were briefly discussed.

6.2.2 Key takeaways

A key finding from this work is that many different possibilities exist to implement the
homomorphically encrypted comparison operation in JavaScript, but that execution time
performance is the most significant limiting factor. The usage of the comparison oper-
ation was found to have benefits in terms of security compared to the previous version
using multiplication with a random number for obscuring the issuance date. Lastly, the
protocol used between prover and verifier was found to be a key factor for the usability
and security of the decentralized identity application. The decision which party executes
the comparison operation has a significant impact on the implied design needs.

6.2.3 Difficulties encountered

During the course of this work, quite a few difficulties were encountered. Finding a way
to reduce memory usage and prevent extensive accumulation of data in memory was chal-
lenging, since the specific problem was not documented and only some general information
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about it could be gathered. This required experimentation to find a working solution.

Another challenge encountered was the poor performance of the ”classical public key”
in TFHE-rs. Even though the documentation mentioned a smaller sized ”compact public
key”, it was not mentioned that this would also improve performance in terms of execution
time. This challenge was overcome by contacting the TFHE-rs technical support [53] and
asking about reasons for the poor performance. The team then emphasized the much
shorter execution time of the ”compact public key”.

Furthermore, getting a grasp of the mathematical concepts behind homomorphic en-
cryption was demanding. Many concepts were remotely familiar, but put together in
an unknown level of complexity. For this part, it helped that I had visited linear algebra
courses with mathematics students beforehand.

Additionally, it was sometimes difficult to keep track of both the highly specific view
on the comparison operation as well as the broader context of a decentralized identity
application.

Finding a meaningful ”information hiding strategy” for the role-switched protocol posed
another challenge. It took a lot of sketches and brainstormings to get to the current
solution. Nevertheless, the process was also a creative and interesting one, and helped to
better understand the usage of homomorphic encryption in decentralized identity appli-
cations.

The self-implemented comparison operation in OpenFHE was mainly challenging in the
translation of the algorithm from the theoretical paper to actual code. To find out the
correct implementation of indices, handwritten toy examples were played through, which
was a time consuming process.

6.2.4 Modifications to original scope

No major modifications to the originally arranged scope of this Bachelor’s thesis were
undertaken. The main deviation are the additional explorations of the role-switched
protocol and the experimental implementation in OpenFHE, which however do not change
the scope but only extend it.

6.2.5 Differences between proposed and actual schedule

The schedule outlined at the beginning of this Bachelor’s thesis was much more linear
than the actual schedule followed during writing. At many points, going back to previous
points or anticipating points planned at a later stage was necessary. Still, the rough
schedule was adhered to.
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6.3 Future Work

Further research building on top of this Bachelor’s thesis is possible in many different
directions. Firstly, more optimizations for the TFHE-rs plugin built with NAPI-RS could
be explored, since this is a major source of performance loss in comparison with node-
seal. Also, the TFHE-rs JS on WASM API might allow for homomorphic computations
at some point, providing an interesting subject for performance comparison. Another
possible topic for further research is the hypothetical protocol presented in section 3.1.5,
where approaches to implementing such a protocol could be investigated and its benefits
and drawbacks could be discussed in detail. Additionally, a general exploratory study on
possible uses of homomorphic encryption in decentralized identity applications could be
useful.

Since the prover’s algorithm will likely be executed on a mobile device, trying to run
parts of the prototype on devices with restricted hardware could bring this research closer
to a real-world implementation. Lastly, for performance reasons, it would also be bene-
ficial to discuss the possibility of moving parts of the prototype (e.g. the verifier’s code)
entirely to a more performant programming language such as Rust or C++.
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Appendix A

Contents of the Repository

The full code and implementation details are available at:

� https://github.com/gstegm/credchain/tree/HE_comparison (adapted cred-
chain repository)

� https://github.com/gstegm/HE_comparison_implementation (standalone com-
parison operations)

� https://github.com/gstegm/credchain_rust (pure Rust implementation of
credchain)

81


	Declaration of Independence
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Thesis Goals
	Methodology
	Thesis Outline

	Fundamentals
	Background
	Decentralized identity applications
	Private key and public key cryptography
	Zero-knowledge proofs
	Homomorphic encryption

	Related Work
	Methods for computing the comparison operation
	Encryption libraries compatible with comparison computation

	Problem statement

	Design
	Protocol for Decentralized Identity Application
	Existing protocol
	Protocol using the comparison operation
	Security considerations
	Role-switched protocol
	Hypothetical protocol using multiparty homomorphic encryption

	Encryption scheme
	Porting the TFHE/FHEW scheme to JavaScript
	Using an existing implementation of the scheme in JavaScript
	Implementation from scratch of the scheme
	Building an addon from a different programming language
	Running an implementation from a different language in a child process
	Most suitable approach
	Limitations

	Serialization

	Implementation
	Making TFHE-rs functionality available to Node.js
	Usage of NAPI-RS
	Usage of TFHE-rs
	Exposing TFHE-rs functions to Node.js

	Transition of prototype to TFHE-rs addon
	Translation between node-seal and TFHE-rs
	Integration with existing prototype
	Debugging memory consumption
	Redundancies in implementation and refactoring

	Implementation of role-switched protocol
	OpenFHE implementation

	Evaluation
	Measurement methods
	Hardware and OS
	CPU usage
	Memory usage
	Execution time
	Costs
	Scalability

	Comparison with original protocol
	CPU usage
	Memory usage
	Execution time
	Costs
	Scalability

	Comparison with ZKP
	CPU usage
	Memory usage
	Execution time
	Costs
	Scalability

	Overhead in JavaScript compared to Rust
	Role-switched protocol
	OpenFHE implementation

	Final Considerations
	Summary
	Conclusions
	Achievement of objectives
	Key takeaways
	Difficulties encountered
	Modifications to original scope
	Differences between proposed and actual schedule

	Future Work

	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	List of Listings
	Contents of the Repository

