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Abstract

Im Zuge der zunehmenden Verbreitung der Blockchain Technologie sind insbesondere im
Hinblick auf Metadaten und 6ffentliche Schliissel in Self-Sovereign Identity (SSI)-Systemen
neue Datenschutzprobleme aufgetreten. Ein zentrales Problem bei blockchain-basierten di-
gitalen Identitatslosungen ist die Unklarheit dariiber, ob 6ffentliche Schliissel und Meta-
daten gemiss der Datenschutz-Grundverordnung (DSGVO) als personenbezogene Daten
gelten, trotz bereits bestehender Datenschutzrichtlinien. Um diese Liicken zu fiillen, un-
tersucht diese Arbeit die Datenschutzimplikationen von Metadaten in SSI-Systemen und
schldgt zwei Mechanismen zur Wahrung der Metadatensicherheit vor: Zero-Knowledge-
Proofs und Homomorphe Verschliisselung. Diese Mechanismen wurden als Prototypen
im CredChain-SSI-System auf der Ethereum-Blockchain implementiert und anschliessend
hinsichtlich ihrer Sicherheit, Ressourceneffizienz, Skalierbarkeit und DSGVO-Konformitét
umfassend evaluiert. Die Ergebnisse zeigen, dass beide Losungen die Sicherheit von Meta-
daten verbessern und fiir den téglichen Einsatz geeignet sind. Allerdings erweist sich der
Prototyp mit der homomorphen Verschliisselung als ressourcenintensiv, und die Speiche-
rung und Ubertragung von Daten auf der Blockchain stellt eine monetiire Herausforderung

dar.
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In the context of rising blockchain technology, new issues with data privacy have surfaced,
especially with regard to metadata and public keys in Self-Sovereign Identity (SSI) sys-
tems. A problem in blockchain-based digital identity solutions is the ambiguity whether
public keys and metadata are considered personal data under the General Data Protection
Regulation (GDPR), in spite of established data protection guidelines. In order to fill these
gaps, this thesis examines the privacy implications of metadata in SSI systems and pro-
poses two mechanisms for maintaining metadata privacy: Zero-Knowledge Proofs (ZKP)
and Homomorphic Encryption (HE). The methodology involves implementing these pro-
totypes within the CredChain SSI system on the Ethereum blockchain, followed by a
comprehensive evaluation of their security, resource efficiency, scalability, and GDPR com-
pliance. The results show that while both solutions enhance metadata privacy and are
feasible for daily use, the HE prototype is resource-intensive, and the current economic
feasibility of storing and transmitting data on the blockchain remains a challenge.
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Chapter 1

Introduction

With the emergence of blockchain technology, new data privacy challenges were intro-
duced. Data on the blockchain, as well as metadata generated by the blockchain can be
seen by anybody who has an internet connection. This leads to the question whether the
data can identify an individual and therefore be considered as personal data, as defined by
the General Data Protection Regulation (GDPR). Since public blockchains are immutable
and transparent, all data transmitted and stored on them can be collected and potentially
linked together. If such linking is successful, the data on the blockchain could be classified
as personal data, which, under the GDPR, must be deletable.

1.1 Motivation

Although data protection guidelines exist, the classification of metadata as private or
personal data is still up for debate in the real world of data protection and privacy con-
cerns. The ambiguity surrounding the status of metadata with regard to data privacy
has left a gap in blockchain-based digital identity solutions, particularly in Self-Sovereign
Identities (SSI). As of right now, there is no system in place to deal with removing data
from blockchain-based SSI systems [10]. Although data transparency and immutability
are guaranteed by the blockchain itself, it is unclear if metadata should be treated with
the same level of privacy.

Furthermore, the classification of public keys and whether they should be regarded as
personal data are topics of discussion [10]. Public keys are fundamental components of
blockchain-based SSIs, working as cryptographic identifiers for the identity holders. How-
ever, the lack of a definitive opinion on whether public keys qualify as personal data
introduces another layer of complexity to the data privacy discussion. More research is
therefore required to fully understand the privacy implications of public keys and meta-
data. It is essential to identify any potential risks and determine the extent to which
personal data may be unintentionally exposed as a result of those components.

1



2 CHAPTER 1. INTRODUCTION

1.2 Thesis Goals

This thesis investigates the privacy considerations of metadata and public keys in the
context of blockchain-based SSIs. In addition, the tightly coupled question of the deletion
of metadata from a ledger is discussed and an extensive analysis of attacks on metadata
in SSIs is conducted. In order to contribute to the blockchain and privacy evolution, the
thesis proposes two privacy-preserving mechanisms to improve metadata privacy in SSI
systems: a Zero-Knowledge Proof (ZKP) and a Homomorphic Encryption (HE) solution,
both of which allow the verifying party to verify the metadata without gaining any knowl-
edge about it. Both prototypes are implemented into CredChain, a SSI developed for the
Ethereum blockchain. The evaluation then compares the implementations in terms of
resource usage, gas cost and assesses them for GDPR-compliance and everyday-usability.

1.3 Thesis Outline

The thesis is structured as follows: Chapter 2 introduces the fundamental concepts of
blockchain technology and SSI systems which are essential to comprehending the topics
of the thesis. Chapter 3 provides an overview and comparison of related work. Chapter
4 covers the design and explanation of the two metadata privacy-preserving prototypes
and lists its requirements. Chapter 5 describes the used technologies and the details
of the implementation. Chapter 6 is a comprehensive evaluation of the data privacy,
computational resource utilization and requirements. Finally, Chapter 7 discusses the
findings and summarizes the thesis.



Chapter 2

Background

This chapter provides the theoretical foundation for this work. This section is intended to
familiarize the reader with blockchains and public keys, SSIs and metadata thereof, the
GDPR and its data protection principles, as well as two privacy-preserving mechanisms,
ZKP and HE.

2.1 Blockchain

A blockchain is a system of distributed ledgers that store data in blocks. A block is the
storage unit of the blockchain where a group of transactions are recorded and persisted.
One-way hash functions cryptographically encode blocks to ensure the integrity and im-
mutability of the historical record, thereby protecting the security of the blockchain. Each
block is linked to its predecessor, creating a seamless and secure chain of data custody
[2].

In a blockchain, every block typically holds two kinds of information: transactional data
and metadata. Transactional data usually includes, among others, the sender and recipi-
ent’s addresses, the transferred amount, and a digital signature for authentication. Meta-
data typically includes, among others, the hash of the previous block, the block creation
timestamp, and a Merkle root [61]. Other transactional data and metadata attributes
vary between the different blockchains.

The inherent nature of blockchains ensures that any changes to data are immediately
detectable by other participants in the network. If a block is altered, the hash of that
block would no longer match, causing a mismatch in the hash of the subsequent block
as well, thus signaling the tampering [39]. This characteristic, known as "immutability”,
makes public blockchains highly resistant to tampering and fosters trust in the system by
ensuring that data can not be altered without detection.
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2.1.1 Public Keys

Every user in a blockchain network possesses a unique public and private key. In a
blockchain, public and private keys are usually generated using the Elliptic Curve Digital
Signature Algorithm (ECDSA), specifically over the secp256kl curve y* = 23 + 7 [11].
When a user creates an address for the first time, his private key is generated which
is a cryptographically secured random 256-bit integer. The public key is created by
multiplying the generator point on the secp256kl curve with the 256-bit integer, the
private key. To obtain the wallet address, the last 20 bytes of the Keccak-256 hash of the
public key is taken. A transaction sender uses his private key to sign a transaction using
a digital signature technique. Other users can then confirm the transaction by using the
sender’s public key [2].

In order to create multiple addresses from one wallet, hierarchical deterministic (HD)
wallets are used. Typically, a mnemonic phrase of twelve or 24 words is created as the
seed phrase. The seed phrase is used to generate the master private key and a master chain
code using the HMAC-SHAbH12 hash function. Parent keys can extend child keys, which
can extend grandchild keys, and so on. This enables the presentation of an HD wallet as
having a tree-like structure [17]. To determine new public keys, a Schnorr signature [48]
is used that serves as the key for the child node. The public key of the child node is then
derived from the parent public key and the signature without revealing the private key
of the parent. This approach prevents privilege escalation attacks where once a derived
child private key coupled with a parent extended public key at any level of the tree is
leaked to the attacker, it will result in the leakage of all the child private keys generated
in that HD wallet [17].

2.1.2 Gas Fees

On the Ethereum blockchain, gas fees have to be paid for each transaction to be executed.
Higher gas fees incentivise validators to prioritize a transaction over others, due to the
higher reward the get upon successfully verifying and adding it to the blockchain. The
fees compensate the validators for their computational work and ensure the security and
efficiency of the Ethereum network. The base amount of gas units per transaction is 21000
Gwei. 1 Gwei is equal to 0.000000001 Ether (ETH) or 10~ ETH. The base amount is
multiplied with the addition of the base network fee and a priority fee. The base fee is
calculated by comparing the size of the previously validated block with the target size.
The target gas usage per block is set to 50% of the block gas limit, meaning if the gas
limit is 30 million gas, then the target gas usage is 15 million. The protocol automatically
increases the base fee if the gas in the previous block exceeded the target gas usage and
decreases it if less gas was used than the target gas. To have a transaction processed
more quickly, a priority fee similar to a "tip” can be added. This incentivises validators
to validate these transactions first [20].

When sending data via the Ethereum blockchain, additional gas is required based on the
data size. Each byte of non-zero data costs 16 gas whereas each byte of zero data costs
4 gas. To store data on the blockchain, 20000 gas is required to "activate” a 32-Byte
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slot. Now, another 20000 gas will be used to update the slot from zero to non-zero data.
Changing the data on the slot costs 2900 gas. When clearing a slot, therefore setting the
data back to zero, a refund of 4800 gas is given. The cost to read a 32-Byte slot is 2100
gas [57].

2.2 Self-Sovereign Identities

The concept of a SSI is a new decentralized identity management idea that allows entities
such as individuals, organizations, and things to have complete control over their digital
identity without relying on outside authorities [58]. The elimination of a third-party
allows entities to digitally identify and authenticate themselves and rules out the risk of a
single point of failure while improving trust, privacy, security, and various other qualities
including transparency, persistence, interoperability and minimalization [54]. Cucko et
al. defined 20 fundamental guiding principles of an SSI where security, verifiability and
authenticity, privacy and minimal disclosure, and ownership and control belong to the
most important attributes to be fulfilled [12]. Unlike other systems that depend on a
specific identity provider, SSIs are an immutable, secure and independent concept which
are separate from centralized services that have the ability to restrict, modify, or delete
the identity information [56].

2.2.1 Roles within SSIs

Identity management involves keeping specific attribute data separate and regulating who
can access it, which is a necessity in the modern digital landscape. Identity management
involves three important roles: identity holder, identity issuer, and credential verifiers.

A person, organization or thing that records a distinguishing attribute linked to particular
information within a specific system is defined as an identity holder or a Subject. The
identity holder stores and manages his credentials in a wallet, having full control of his
personal information.

A credential is a provable statement about an aspect of someone’s identity information
(such as their gender) and evidence (such as birth certificates) connected to that person.
The statement is approved and digitally signed by a credential issuer [30]. The holder
can decide which attributes he wants to provide as proof to service providers, which is a
feature called selective disclosure of credentials.

A credential verifier (also referred to as service provider) is an entity that asks for a par-
ticular credential from a trusted issuer and confirms its authenticity through the issuer’s
signature. When opening a new bank account for example, instead of the bank carrying
out the KYC (Know-Your-Customer) process, it could ask the client to send the necessary
credentials (i.e. full name, address, birthday etc.), which are then verified by a trusted
identity issuer.
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An identity issuer is a trusted identity provider that acts as a third party and offers
authentication and authorization of credentials to external service providers upon request.
It is common for service providers to also serve as identity issuers, since their own identity
management systems and databases can be used to authenticate and onboard new users
[56]. An example for a identity provider could be a university that issues degrees to
students that have completed their studies there. When asked by a service provider for
verification of a credential issued by the university itself, they also have the means to
verify the authenticity of it.

2.2.2 Digital Identifiers and Verifiable Credentials

A Decentralized Identifier (DID) is a newly developed form of identification that allows
for a trustworthy, autonomous digital identity of a user. DIDs are similar to Uniform
Resource Identifiers (URIs). They are exclusive references that point to DID documents
with the necessary public keys and associated metadata. In contrast to conventional
identifiers that are issued and supervised by centralized entities, DIDs are completely
managed by the owner of the identity [12]. The owner of the DID is able to make updates
or deactivate it without the permission from any central authority and have multiple DIDs
dedicated to different digital identities [60].

A Verifiable Credential (VC) is an electronic record that confirms certain statements
about a person’s identity, like age, nationality, or education. The credentials are issued
by a trusted entity (identity issuer) with a digital signature that enables independent
verification of its authenticity and integrity. VCs are held and managed by the creden-
tial owner and can be confirmed by others (verifiers or service providers) without having
to communicate with the issuer directly and therefore, eliminating the third-party be-
tween the credential holder and the service provider. The privacy and consent can be
maintained by holders presenting proofs from their VCs without disclosing the actual
credential, giving them control over the extent of information shared. This selective cre-
dential sharing guarantees confidentiality and approval in transactions [35]. The W3C
outlines a VC model in a JavaScript Object Notation (JSON) document. This document
includes credential metadata such as context, issuance and expiration dates, the issuer’s
DID, credential claims regarding the subject’s attributes, and credential proof with the
issuer’s digital signature in a JSON web signature, along with the algorithm used [13].

First, a person or organization generates a DID and utilizes it to securely handle access to
their digital identity. This DID references a DID document detailing the required public
keys and service endpoints for secure communication between the holder and the service
provider [12]. A trusted entity issues VCs, like a digital driver’s license or university
degree, connected to the individual’s DID. These VCs have cryptographic signatures,
ensuring their immutability and verifiability. In situations where an individual must
confirm specific details, like their age or education, to a service provider, they utilize their
DID to display the appropriate VC or evidence stemming from it. By verifying the issuer’s
digital signature against the public key in the DID document, the service provider can
confirm the VC’s authenticity and the information it includes [30].
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The standardized DIDs and VCs guarantee that an individual’s digital identity and cre-
dentials can be used across various platforms and services, promoting interoperability and
security. They are stored in the holder’s wallet and are under complete ownership and
control of the holder [12]. The basis of cryptography offers a strong level of security and
confidence, as only the identity owner has control over their DID and VCs, and any verifier
can verify the authenticity of the credentials on their own.

2.2.3 SSI Architecture

The components of an SSI system are arranged in a layered design that is reminiscent
of the Transmission Control Protocol (TCP)/Internet Protocol (IP) architecture or the
layered Open Systems Interconnection (OSI) model. The architecture outlined by the
Hyperledger Aries project is most frequently utilized [22]. Figure illustrates the four
layers that make up this design. The technologies for expressing and storing credentials are
defined in the first, bottom layer. While the Hyperledger Aries project uses the Sovrin
Ledger [22] to build this layer, alternative decentralized databases, distributed ledgers,
and blockchains can also be utilized. This layer is responsible for specifying DIDs and
assigning cryptographic keys to them. Furthermore, communication protocols are added
by the second layer to enable safe message exchanges between hubs, wallets, and agents
[42].

Authorities Agencies

+ || Governance (Authorities ) (_Agencies )

3 ( Framework )
|_

c

5

g Credential Exchange

2
= R '
.g || Communication a b c
£ 35

L. A

O = . ( Identity Data Syntax )
0]
[ Repository Technology (__Distributed Ledger System )

Figure 2.1: SSI layer-architecture adopted from [22].

The lower layers one and two provide the technical basis and are used as the foundation to
establish organizational and human trust at layers three and four. The creation, sharing,
and presentation of VCs are outlined in layer three. In layer four, the goal is to allow
these credentials to be utilized in more than one specific setting, which spans a governance
structure facilitating the cooperation and acceptance of credentials between organizations
[42].

2.2.4 Metadata in SSI

Different components in SSIs produce metadata. Metadata is defined as ”data about
[other] data” [26]. The most crucial issued metadata lies in the VCs. The metadata
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"id": "http://example.ch/credentials/123",
"type": ["VerifiableCredential", "StudentCredential"],
"issuer": "did:example:rstuvwxyz@987654321",
"issuanceDate": "2024-05-14T18:29:04Z",
"credentialSubject": {

"id": "did:example:1234567890abcdefghij",

"name": "Lisa",

"enrolledStudentAt": "University of Zurich",

"subject": "Computer Science"

Iy
"proof": {
"type": "Ed25519Signature2020",
"created": "2024-05-14T718:29:04Z",
"proofPurpose": "assertionMethod",
"verificationMethod": "did:example:rstuvwxyz@0987654321#key-1",
"jws": "pYw8XNil...Cky6Ed="

Figure 2.2: A simple VC [51].

includes an ID for the VC, the DID of the issuer, date of creation, validity period, proof
link and the credential’s type [52]. A credential subject’s metadata usually consists of the
DID of the subject, the name and other necessary attributes that are being transmitted
to the verifier i.e. the subject and the enrolled university, as seen in Figure[2.2] The proof
makes the VC immutable by employing digital signatures guaranteeing the authenticity
and integrity of a credential subject, which is often referred to as the claim of the VC.
This confirms that the user (Subject) has signed them with the metadata and their private
key derived from a public/private keypair which is mapped to the issuer DID. Therefore,
the integrity and authenticity of the VC is ensured [60].

2.3 The GDPR

The General Data Protection Regulation (GDPR) aims to protect individual privacy and
personal data. It establishes fundamental principles and legitimate grounds for processing
personal data, alongside outlining specific rights for individuals. The scope of the GDPR
is limited to personal data; non-personal data is not covered by it. This segment provides
insights into a selection of these components that are crucial to understand the challenges
public blockchain systems face in complying to GDPR requirements. These problems also
account for SSIs.

2.3.1 Personal Data

Article 4(1) |7] of the GDPR defines 'personal data’ as follows:

“any information relating to an identified or identifiable natural person (‘data subject’)”.
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Instead of just 'data’, the word ’information’ is used, indicating that the data must contain
some informational value. The distinction between information and data is not always
clear. The definition of a ’data subject’ is further expanded as:

“an identifiable natural person is one who can be identified, directly or indirectly, in
particular by reference to an identifier such as a name, an identification number, location
data, an online identifier or to one or more factors specific to the physical, physiological,
genetic, mental, economic, cultural or social identity of that natural person”.

Legal entities and deceased persons are excluded from the GDPR, as personal data must
relate to a 'natural person’. Additionally, it suggests that a single point of information
would not be considered personal data. However, information combined with other in-
formation can be regarded as personal data if the combination infers the identity of the
data subject. To conquer this problem, data pseudonymisation can be applied which is
defined as:

"the processing of personal data in such a manner that the personal data can no longer
be attributed to a specific data subject without the use of additional information, provided
that such additional information is kept separately and is subject to technical and organ-
1sational measures to ensure that the personal data are not attributed to an identified or
identifiable natural person”.

Based on Recital 26 [45], pseudonymised data can be regarded as personal data if the
information on how the pseudonymisation was carried out is known:

"Personal data which have undergone pseudonymisation, which could be attributed to a
natural person by the use of additional information should be considered to be informa-
tion on an identifiable natural person.”

Furthermore, the recital states that:

"to ascertain whether means are reasonably likely to be used to identify the natural per-
son, account should be taken of all objective factors, such as the costs of and the amount
of time required for identification, taking into consideration the available technology at
the time of the processing and technological developments”.

The key criterion is whether the means to identify an individual from the data are not just
possible but reasonably probable under typical conditions. It is unclear what 'reasonably
likely” means, as it heavily depends on the context. Furthermore, it can never be assessed
with certainty what data is already available or what data may be released in the future,
which makes the risk of re-identification through data linking unpredictable. Figure [2.3
visualizes the considerations in order to identify if data can be regarded personal or not.

2.3.2 Data Protection Principles

The GDPR establishes strict guidelines for data controllers and processors in order to
ensure that personal data is treated in a fair and lawful manner. Article 5 [8] sets seven
data protection principles to achieve this goal: (1.1) Lawfulness, fairness and transparency
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#" Identified Person: "%,
Is the information under yes
.. consideration explicitly (e.g., by
name) related to a
person?

Natural Person: yes
» Is this individual a natural |
Ll person (as opposed to Ll Personal Data
a merely legal one)?

no

Identifiable
Person 1:
Is the information under conside-
ration related to a person
through a resolvable
identifier?

Reasonably Likely:
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to happen?

yes
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| - costs required
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_______________________

"/ Identifiable
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out / interlinking / inference

,,,,,,,,,,,,,,,,,,,,,,,

no

Not Personal Data

\ 4

Figure 2.3: Assessment scheme for person-relatedness of data under the GDPR adopted
from [19].

requires the data subject to consent to its data being stored and processed in a lawful
way. Under ’fair’ conditions, data must not be processed in an unreasonably harmful,
unexpected or misleading manner to the data subject [25]. Additionally, clarity in the
processing techniques is essential to be provided openly. (1.2) Purpose limitation indicates
that personal data is only "collected for specified, explicit and legitimate purposes and
not further processed”. (1.3) Data minimisation demands data to be minimised to the
relevant part and only include data that is "necessary in relation to the purposes for which
they are processed”. (1.4) Accuracy implies that the data must be up-to-date and replaced
by old or inaccurate data. (1.5) Storage limitation mandates that data must be deleted
when it is no longer needed and should not be kept for longer than is necessary for the
purposes during which the data is processed. The storage period must be limited to a strict
minimum. (1.6) Integrity and confidentiality requires the data to be stored and processed
with proper security measures in order to protect the personal data. (1.7) Accountability
demands a party to assume responsibility for the data storage and processing, as well as
having appropriate measures and documentation in order to establish compliance.

Data subjects are given several rights in the GDPR. In order to comply with the GDPR,
controllers and processors must both fulfill certain obligations and duties regarding these
rights of data subjects. (2.1) Right to erasure, or right to be forgotten (RTBF), requires
controllers to delete data in specific cases. According to Article 6(1) |9, data must be
deleted when it is not necessary anymore for the purpose it was collected. Furthermore,
data subjects have the right to ask for the removal of any connected personal data, as
stated in Article 17 [4]. (2.2) Right to rectification (RTR) gives data subjects the right,
as stated in Article 16 of the GDPR [3], to request that incomplete or erroneous personal
data is updated to be accurate. As a result, this right is closely related to the previously
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discussed GDPR accuracy principle (1.4). (2.3) Right to be informed and right to access
mandates that data controllers notify data subjects about how their personal data is
processed and stored. The right of access broadens this right, which enables people to
request access to their personal data and obtain comprehensive information about the
lawful processing of their data and how it is handled. (2.4) Right to object and automated
decision making gives data subjects the ability to object to the processing of their personal
data. Additionally, Article 22 [5] entitles data subjects to not have their decisions made
exclusively on the basis of automated processing. (2.5) Right to data portability grants the
data subject to move, copy and transfer personal data securely and efficiently from one
electronic processing system to another, without compromising its usability. Furthermore,
data subjects may request a provision of their personal data in a standardised readable
computer format. (2.6) Right to restrict data processing allows data subjects in certain
situations to request the suppression or restriction of their personal data. Situations that
apply are inaccurate or incomplete personal data, unlawful processing, when the data
subject needs the personal data to establish, exercise or defend a legal claim, and finally,
if the data subjects have disapproved to processing their personal data.

(3) In Article 25 [6], the GDPR provides clear guidelines for the protection of personal
data, including data protection by design and by default. Data protection by default re-
quires controllers to implement appropriate organizational and technical measures de-
signed to enforce data protection principles effectively [10]. This should be done in a
manner ensuring that the data processing safeguards the rights of the data subjects. The
measures may include pseudonymising personal data as soon as possible to minimize risks.
Protection by design requires that only personal data which are necessary for each specific
purpose of the processing are processed. This applies to the amount of data collected, the
extent of their processing, the duration of their storage, and their accessibility.

2.4 Zero-Knowledge Proof

By default data is stored on the blockchain in plaintext [50]. The blockchain is a trans-
parent database, where anybody can see any sort of transactional data or metadata. This
data could be regarded as personal data and therefore the concept of the public blockchain
goes against the GDPR guidelines. A Zero-Knowledge Proof (ZKP) enables writing only
a proof of knowledge on the blockchain instead of the underlying data itself [27].

The concept of a ZKP is explained in the following example: Person A (prover) wants
to prove person B (verifier) that he knows the (secret) Personal Identification Number
(PIN) of his phone and therefore can unlock it without exposing the PIN to person B.
First, A shows his phone to B in the locked state. He then enters the PIN code without
person B seeing it and unlocks the phone. Now, A shows the phone in the unlocked state
to B and therefore proved that he indeed knows the PIN code to his phone. It is possible,
that person A just got lucky and typed in the correct PIN number. To rule out this case,
we assume that the numbers on the keyboard of the phone change every time A types
a digit, making it more difficult to enter the PIN by guessing. B asks A to unlock his
phone another 20 times and B is now very certain that A indeed knows the PIN code of
his phone with B having no knowledge of the actual PIN code.
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The most common type of a ZKP is a zk-SNARK (Zero-Knowledge Succinct Non-Interac-
tive Argument of Knowledge). They allow a prover to convince a verifier that the prover
knows a secret without revealing the actual data about that secret. It consists of four
main algorithms [31]:

1. Setup: This algorithm generates the initial public parameters that will be used to
generate the keys and create the proof.

2. Key Generation: The proving key and the verification key are generated based on
the setup parameters.

3. Proof: The proof is created with the proving key, a public statement and a secret.

4. Verification: Using the verification key, the public statement and the proof are
checked for their validity. The output of the function is true or false.

The prover executes steps 1 to 3 and the verifier executes step 4. Regarding security
requirements, zk-SNARKS satisfy the following fundamental properties of ZKPs:

o Completeness: If the statement is true, then the prover will convince the verifier.

e Soundness: It is not possible for the prover to generate a proof for the verifier
without a private key. Furthermore, it is not possible for the prover to generate a
proof without knowing the secret.

e Zero-Knowledge: The secret of the prover is protected, since it is not possible for the
verifier to calculate or access the private key of the prover from the public statement.

In comparison to other privacy-preserving mechanisms, ZKPs are relatively time efficient
and do not require a trusted third party, therefore allowing for peer-to-peer verification
[31].

2.5 Homomorphic Encryption

Homomorphic Encryption (HE) allows calculations to be performed directly on encrypted
data without the need for decryption first. The fundamental idea is to perform math-
ematical operations such as addition, multiplication or any other arbitrary function on
encrypted data, which leads to the same result as the computation on the original, unen-
crypted data and encrypting it at the end. By preserving data encryption throughout the
computational process, HE guarantees that sensitive data remains protected from unau-
thorized access and data breaches, thus complying with the GDPR requirements [43].
Figure illustrates a real-world use case of HE.

Ideal encryption algorithms eliminate any relationships between plaintext and the cor-
responding ciphertext, therefore only making it possible to determine the value of the
plaintext with the decryption key. However, plaintexts and ciphertexts must be related
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Figure 2.4: Basic application of HE where a third-party can only make use of the decrypted
result and never knows anything about the underlying data.

in order to be able to execute mathematical operations on homomorphically encrypted
data. The challenge is to implement the relationships such that an observer can not infer
these, otherwise the encryption would be compromised. There exist three HE schemes,
each varying in features, limitations and efficiency [1]:

e Partially Homomorphic Encryption (PHE) allows for a single mathematical func-

tion (addition or multiplication) to be performed on encrypted data an infinite
number of times. The limitation comes with the benefit of efficiency. Since only
one mathematical operation can be performed, PHE schemes like the Paillier cryp-
tosystem are designed, such that the introduced noise by the encrypted calculation
remains manageable. Thus, they do not require resource-intensive noise reduction
algorithms.

Somewhat Homomorphic Encryption (SHE) enables addition and multiplication
operations on encrypted data, however only for a limited number of times, because
every calculation adds a specific amount of noise into the ciphertext. The exact
number of operations that can be performed before hitting the noise limit depends
on the encryption parameters. Stricter encryption parameters i.e. larger key sizes,
smaller modulus, or higher security levels reduce the number of possible calculations.
Tighter security parameters usually involve more complex algebraic structures that
cause noise to accumulate more rapidly with each operation. Also, additions in-
crease the amount of noise linearly, while multiplications often induce noise at an
exponential rate.

Fully Homomorphic Encryption (FHE) is the most versatile scheme and allows for
an infinite number of additions and multiplications of ciphertexts. In order to handle
the exponentially growing amount of noise, different methods i.e. bootstrapping or
relinearization are employed after a homomorphic computation. Noise-management
algorithms however, are very computation- and storage-heavy and produce the most
additional overhead out of the HE schemes [306].
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Chapter 3

Related Work

This chapter provides an overview and analysis of related work that has been conducted on
the privacy consideration of metadata and public keys. It further outlines possible attacks
on metadata, mitigation strategies thereof and vulnerabilities of SSI systems. The chapter
concludes with arguments for metadata and public keys being regarded as personal data
and specifies the research gap that this thesis aims to fill.

3.1 Metadata and the GDPR

The GDPR significantly heightened the standards for privacy and data protection across
Europe, posing important questions about the nature and treatment of metadata under
these new regulations. Transactional data and public keys which can directly or indirectly
identify a person may be seen as personal data. This could occur through various meth-
ods, such as patterns of activity, linking a public key to an identity through additional
data, or associating it with real-world entities, such as through a KYC process. Encrypted
data might still be considered personal under the GDPR if the encryption key is accessi-
ble because it could potentially be decrypted and reveal personal information [10]. The
main challenges for metadata in complying with the GDPR laws are the following: First,
the RTBF is hard to achieve due to the immutable nature of a blockchain, where data
once written can not be altered or deleted. The GDPR requires a hard-deletion of the
affected data [60]. Gongalves et al. proposed the solution of storing personal data in the
InterPlanetary File System (IPFS), which allows for modification and deletion, instead of
on the blockchain [32]. Although the hashes are stored on the blockchain, they can not
be linked to the personal data on the IPFS if they have been deleted there. The second
difficulty is to protect and process personal data lawfully and transparently.

A possible solution to tackle the pseudonymisation and anonymisation problem is to utilise
ZKPs, which make it harder to link data back to an individual. The downside of them
is the high computational power, which the blockchain does not provide yet. Therefore,
ZKPs are computed off-chain.

15
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3.2 Attacks to Extract Metadata in SSI

Stokkink et al. [53] criticise current SSI approaches for their lack of network-level privacy,
arguing that without addressing it, SSIs can not fully ensure user privacy. Their proposed
solution, TrustChain IDentity (TCID), meets seven functional requirements to provide
these desired system properties: peer-to-peer communication, authenticity and integrity
of messages, network-level anonymisation, decentral synchronization of published informa-
tion, credential disclosure to identify users and accountability of subjects. It demonstrates
that while TCID introduces greater latency due to network-level anonymisation, it still
remains practical for use. The analysis emphasizes the need for broader focus in SSI re-
search beyond data disclosure protocols to include network-level anonymity for effective
privacy preservation. In the research, they do not detail specific attacks that directly ex-
ploit metadata on SSI platforms but emphasize general privacy concerns associated with
digital identities. It underlines the importance of network-level anonymity and highlights
the potential vulnerabilities that arise without it, suggesting that without measures to
mask the source-destination of messages, users’ identities could be compromised through
traffic analysis. [53]. This concern indirectly relates to metadata privacy, as metadata
(such as communication patterns and transaction times) could be used in such analyses.
The TCID system’s emphasis on anonymisation shows an approach to mitigate potential
attacks that could exploit metadata to undermine privacy.

Maesa et al. explore how ZKPs can protect attribute privacy but still leave room for
metadata attacks if not properly encrypted or isolated [13]. Metadata can be subject to
different attacks i.e. replay attacks and reusing proofs that were generated in the past
but related to expired values of the attributes of the identity holder. These could be
for example revoked values from VCs that are not valid anymore. To prevent fraudulent
proof attempts, it is crucial to have a reliable way to link the private attribute values to
the specific individuals they belong to. An immutable method, like hashing, can be used
to securely and efficiently establish this link, ensuring that the relationship between the
identity holder and their attributes can not be tampered with.

An evaluation of potential attack surfaces was carried out by Naik et al. [38]. The evalu-
ation distinguishes three potential attacks on an SSI system: faking an identity, identity
theft and Distributed Denial of Service (DDoS) attacks. A user might unintentionally
expose credentials without realizing the possible risks to their privacy. Even if the user
thinks he is anonymous, linking attacks can collect information from credential presenta-
tions to identify individuals by analyzing background data. Personal information that is
commonly gathered can be collected under various pseudonyms (DIDs), i.e. VCs can link
pseudonyms by matching data sets.

Naik et al. outlined three potential attacks on SSIs and created an attack tree for each of
them [37]. In order to produce fake credentials from an issuer, the attacker must either
acquire administrator credentials (through malware or social engineering) or store fake
credential information (by infiltrating the provider’s server or altering data). To get fake
credentials, a person can create fake credentials, pretend to be the issuer by spoofing,
alter legitimate credentials, or steal them. Three forms of spoofing include: posting a
fake issuer DID on the SSI network, making a duplicate issuer host, or decreasing trust in
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the real issuer through Sybil or Eclipse attacks. In order to alter credentials, the attacker
must either acquire the private key of the issuer (by gaining access to the issuer’s host
and finding the private key through social engineering or malware) or sign the modified
credential in the wallet. In order to steal credentials, the attacker must either take a
wallet (such as stealing a phone or attacking the user’s cloud storage) or pretend to be
the user (by obtaining and requesting credentials). Naik et al. [37] further discuss the
danger of acquiring personal information by highlighting three vectors: accessing the user’s
wallet without permission, background data attacks and credential creep. In order to gain
unauthorized access to the wallet, the attacker must acquire the user’s login information
(through malware or social engineering) and gain access to the wallet (either by stealing
the phone or obtaining remote access). When performing a background data attack, the
attacker has to acquire a confidential dataset and link data through a verifier request.
Credential creep can happen when extra information or user profiling is requested, such
as multiple verifier requests for credentials and linking DIDs to identify the user.

Le et al. conducted an in-depth cyber risk analysis highlighting different types of external
threats that could pose risk to metadata in SSI systems [28]. In order to achieve faster ac-
cessibility, wallets may store some sensitive information in plaintext on the user’s device.
Usually, tag names, record IDs and values are always encrypted, except when a certain
prefix is added to the name of the tag value. This is usually done to speed up complex
database searches. Also, should the Android or iOS device be rooted respectively jailbro-
ken, attackers may implement malicious code altering the execution of data and therefore
extract sensitive information [59)].

Griiner et al. [24] evaluated the attack surface of SSIs by applying the STRIDE model
to seven SSI components: user agent, VC store, organizational agent, trust, data store,
verifiable data registry and communication channels. STRIDE abbreviates for Spoofing,
Tampering, Repudiation, Information conflict of interest, Denial of Service, and Eleva-
tion of Privilege. They identified 35 SSI-specific threats and 15 protection measures and
conclude that the user agent, organisational agent and the verifiable data registry are the
most vulnerable to potential threats. Spoofing, denial, and repudiation of identity actions
pose significant risks to both the user and the organizational agent.

Frohlich et al. developed a user-centered threat model for cryptocurrency users, which
outlines different forms of attacks on cryptocurrency users in general [23]. Fraudulent
wallet software may send upon address generation the private key to the attacker giving
him access to the wallet, all funds and all the data which may include personal data. In
addition, the wallet provider could implement backdoors granting secret illicit access to
data and funds. Keyloggers installed by third-party apps or malicious wallet apps can
gather the user’s login credentials and send them to the attacker. Moreover, unintended
smart contract vulnerabilities may lead to the loss of funds or an exploit of personal data.
These threats could also pose risk to metadata being accessed in an unauthorized way
and stolen, which, however, is not mentioned in the research. SSIs are not mentioned
specifically, but the outlined threats i.e. a keylogger may gain unauthorized access of the
attacker to personal data stored in the SSI application.

Pohn et al. systematically analyzed and categorized related work in the field of secu-
rity threats concerning SSIs [42]. They analysed threats regarding the blockchain and
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evaluated if these threats can also apply for SSIs. They identified that only a handful
of blockchain threats affect SSIs. Potential SSI-specific threats were discovered on the
human layer (i.e. social engineering, human errors and wallet threats), data layer (i.e.
trusted third parties not following the laws) and network layer (i.e. Sybil and Eclipse
attacks) of the blockchain. They conclude that network layer threats to SSI can be mit-
igated through effective governance. Furthermore, the analysis of threats to SSIs is still
evolving, and the identified threats tend to be broad and not specific to any particular
implementation.

Table[3.I|summarizes the research papers that have been found concerning and mentioning
metadata within SSIs, personal data issues of the GDPR, attacks on and vulnerabilities of
SSIs, as well as outlined solutions to mitigate the threats. No research paper mentioned
the consideration of metadata being regarded as private data nor specific attacks on
metadata within a blockchain-based SSI system.

Table 3.1: Related work comparison.
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3.3 Public Keys and the GDPR

Public keys are visible on the blockchain to anyone. There has been a consensus in the
literature for public keys being considered as personal data, when associated with other
information, as public keys are often utilized to infer the origin of transactions |10]. For
example, when a user posts his public key online to receive donations, the public key
could be linked to his real-world identity especially if he doesn’t use a pseudonym. The
question however, still remains when public keys turn into personal data. For example,
when transferring the ownership of a house using the blockchain, the neighbor suddenly
could associate the public key containing the ownership of the house with the person
who owns it [18]. However, it is possible that the public key has not had any other
direct or indirect links to real-world entities before the transfer of ownership of the house.
Furthermore, regulatory requirements force centralized exchanges to enforce KYC and
Anti-Money Laundering (AML) obligations on their clients which lead to the disclosure
of real-world identities connected to public keys [14].

Additionally, when a natural person uses the same public key for several transactions, it
may be possible to analyse patterns which could identify the subjects behind the public
key [47]. However, a public key is not always linked to a natural person, as legal entities
also can issue public keys. Since the GDPR does not account for legal entities, public keys
would not be considered personal data [44]. When a key can not be reasonably linked or
does not belong to a natural person, it is anonymous [16].

3.4 Deletion of Metadata on Blockchains

In SSIs, metadata is generated upon execution of a transaction i.e. when issuing a VC.
The concern is whether the metadata can directly or indirectly infer a person’s identity
and therefore be considered as personal data. According to the GDPR, there must exist
a possibility to delete personal data. This is not possible on a public permissionless
blockchain due to its immutability. However, when using a consortium (permissioned)
blockchain where a selected group of participants have privilege rights, it is possible to
implement the deletion feature. The same possibility exists for private blockchains where
one single entity has full control of the blockchain [10]. The biggest problem of the latter
two blockchains is the missing trust and integrity, which goes against the nature of a fully
transparent, trusted and tamper-proof blockchain system.

When looking at the issuance date of a VC in the case of a university degree, as shown in
Figure [2.2] it is unlikely to link the metadata to a natural person. The issuer, in this case
the university, will most probably issue the VCs of the obtained degrees for all students
on the same day. With such a large number of VCs containing the same issuance date,
the privacy of credential owners is not threatened.

Assuming that the issuance date was linked to a natural person’s identity and that the
deletion of metadata on a public blockchain were possible, then naturally, the owner of
the VC or another party will delete that specific metadata from the blockchain, therefore
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exercising the RTBF. However, this would render his VC invalid, since the issuance date
of the VC is an essential part of the whole credential. Credential verifiers would not accept
the VC when presented to them for verification, therefore leading the credential owner to
ask for a new VC from the issuer.

3.5 Considerations of Metadata and Public Keys Being Per-
sonal Data

Research has shown that it is not entirely certain from the beginning, which and whether
metadata in SSIs or public keys are considered as personal data. The consensus is that as
soon as metadata and public keys have been generated and are visible on the blockchain,
they are not considered as personal data. The reason lies in the definition of personal
data by the GDPR that a single point of information would not be considered as per-
sonal data. Furthermore, it is generally not possible to know the exact moment, when
metadata or public keys become personal data. The most probable reason for them to be
labelled as personal data is through linkage, e.g. when a public key is being assigned via
KYC to a natural person registered at a central exchange. The metadata generated from
transactions from that public key will therefore also be considered as personal data.

Assuming that metadata in SSI and public keys are considered personal data under the
GDPR, the outlined key regulations (1.1) to (1.7) and (2.1) to (2.6) must be adhered,
as described in Section Since metadata on SSI are usually stored off-chain on the
user’s personal device, the user has the ability to manage, process and delete his personal
data according to the GDPR regulations.

Public keys on the other hand, are stored on-chain and can be seen by anyone without a
considerable amount of effort and cost. Therefore, it remains debatable whether public
keys are considered personal data. When a user utilises the blockchain for the first time
and assuming he creates a public key without deriving it from another public key, the
created public key can not be linked to another public key. This scenario also rules out
that the user did create an address via a third-party central exchange that requires KYC.
In that case the public key can not be linked to a real person.

In conclusion, it is assumed that metadata and public keys become personal the instant it
is feasible to identify the natural person behind them. Therefore they are initially, when
generated, not regarded as personal data and will remain non-personal until the linkage
to a real-world identity. The important concern is whether a particular dataset can be
linked with other datasets from the standpoint of availability rather than technological
feasibility. Therefore, data in the present is not considered legally qualified based on
the possibility that the entity in possession of the dataset may obtain or have access to
additional information in the future that, when combined, may enable identification.
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3.6 Problem Statement

This literature review has shown that no research has been done on whether metadata
in SSIs is considered to be personal data according to the GDPR. Most of the papers
mention that especially the RTBF or the RTR are essential for blockchain systems to be
GDPR-compliant which is hardly possible to achieve due to the blockchain’s immutable
nature. Metadata was never mentioned in connection to the GDPR and if, it did not
cover the main part of the research and usually was brought up in the introduction or
alongside other topics in the research section.

Furthermore, no research was found that specifically mentions attacks on metadata within
blockchain-based SSIs. Attacks on SSIs mostly concern the application as a whole or fak-
ing, modifying or stealing identities and credentials. Metadata in general is affected indi-
rectly and usually at risk due to user behaviour i.e. jailbraking or rooting the smartphone
and therefore reducing the security of the device allowing for unauthorized installation of
keyloggers or other malware that exploit metadata.

Since the deletion of metadata on a public blockchain is not possible, it must be ensured
that metadata can not reveal the identity of a natural person. Even if SSI-metadata is
stored on the user’s device, it is essential to protect the privacy of metadata to prevent
future linkage and therefore avoid metadata turning into personal data. This thesis seeks
to fill the research gap as presented in Table[3.1]and provide additional security for specific
metadata in blockchain-based SSI systems with the proposal of two privacy-preserving
mechanisms which are described in the next chapter.
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Chapter 4

Design

This chapter presents the design of two privacy-preserving mechanisms that ensure meta-
data privacy within blockchain-based SSI systems. First, the situation and the underlying
platform are explained on which the two prototypes are designed. The next part illus-
trates the communication and calculation sequences between the involved parties. Finally,
the prototype requirements are listed and additional security considerations for SSI ap-
plications are mentioned that help protect the privacy of metadata.

4.1 Situation to Evaluate

A student graduates from a university with his bachelor’s degree. He receives it in the
form of a credential from the university (issuer). When applying for a job, the company
wants to know when the university degree has been issued. The company demands an
"up-to-date” software engineering degree. Since this data could potentially be considered
personal, the system is designed to be GDPR-compliant to prevent future linkage to a
real-world identity. Furthermore, the design aims to minimize any additional overhead.
In the best case, the company (verifier) should not know the underlying timestamp of the
student’s degree issuance date.

The calculation of the task is as follows: The company requires the degree to have been
issued after Friday, January 1st 2010 00:00:00 which corresponds to the Unix timestamp
of 1262304000. The student’s degree was issued at Unix timestamp 1500000000 which
dates to Friday, July 14th 2017 02:40:00. To determine whether the degree was issued
after the company’s specified date, we subtract the issuance date from the company’s
threshold date. If the result is negative, then the degree was issued after the threshold
date, otherwise it was issued before.

23
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4.2 Architecture

CredChain is the underlying blockchain-based SSI platform architecture used in this pa-
per, which was developed by a team from UNSW Engineering at the University of Sydney.
CredChain allows for secure creation, sharing, verification and revocation of credentials.
The user can maintain control over their personal data, such as through selective disclo-
sure, therefore reducing the risks associated with traditional centralized identity systems

[40].

The underlying platform for C'redChain is Hardhat, a local Ethereum network designed for
smart contract development. Hardhat was developed by the Nomic Foundation and oper-
ates on TypeScript, which allows for an easy integration of comprehensive TypeScript and
JavaScript libraries [21]. It includes extensive debugging and performance measurement
functions which will be used in Chapter [0] for evaluation.

4.3 Proposed Privacy-Preserving Mechanisms

In the context of SSI systems, maintaining the privacy and security of sensitive metadata
while ensuring compliance with regulatory standards is crucial. The two GDPR~compliant
privacy-preserving mechanisms ZKP and HE have been chosen to enhance the privacy of
the student’s bachelor’s degree issuance date, in order to protect the underlying data
which is being transmitted between the two parties.

The two prototypes focus on preserving the privacy of the issuance date field in the cre-
dential, as it could be linked to a real-world entity when combined with other information.
Other metadata such as credential ID, DID of the issuer, validity period, proof link or
credential’s type have a significantly lower or no chance of identifying the person who
owns the VC. The credential ID is the identifier of the credential itself and not directly
tied to the individual’s identity. The DID of the issuer identifies the credential issuer, in
this case the university which is not a natural person. The validity period just indicates
the timeframe during which the credential is valid. The proof link verifies the authentic-
ity of the credential but does not contain personal details about the holder. Finally, the
credential type does not directly identify the credential holder.

These metadata attributes become potentially identifying when linked with additional
specific personal data. However, the question remains how much effort and data is needed
to link the metadata to a natural person in the future. Therefore, the prototypes focus on
the privacy-preservation of the issuance date, which has among the other metadata the
highest chance of being linked to a natural person.

4.3.1 Zero-Knowledge Proof

With ZKPs, an entity can cryptographically demonstrate to another that he is aware of
a piece of information without disclosing the real underlying information. There is no
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Figure 4.1: Design of a privacy-preserving solution for metadata in SSIs using a ZKP.

need for a trusted third party to verify the knowledge of the entity issuing the proof and
therefore it is a peer-to-peer privacy-preserving solution. Although ZKPs already have
been implemented in SSI systems to present credentials by not revealing the underlying
data [34], they have not been used as mechanisms to protect the privacy of metadata.

Figure 4.1 illustrates the design and sequence of functions of the ZKP-solution: The
student sets up the parameters in order to generate the ZKP proof. After the setup, the
witness is computed by checking if the issuance date is larger than the threshold date,
which would lead to the boolean output of true. Next, the proof that the degree was
issued after the threshold date is created without revealing the actual issuance date. The
student then sends the proof and the keypair which was generated during the setup to
the company. The company verifies the proof using the keypair and therefore confirms
or denies that the student’s issuance date is smaller or larger than the threshold date
specified by the company.

4.3.2 Homomorphic Encryption

The design of the HE-solution with its data transmission and calculation sequences is
illustrated in Figure The company sets and provides the encryption parameters.
After the initial setup, the company encrypts the threshold date and sends it with the
generated public key and the other encryption parameters to the student. The student
loads the received encryption parameters in order to encrypt his issuance date and perform
the calculation correctly. After the retrieving of the setup data is successful, the student
encrypts the issuance date and calculates the difference between the issuance date and
the threshold date. The obtained encrypted result is sent with the encrypted issuance
date back to the company. To verify that both parties calculated correctly, the company
performs the same calculation again with the received encrypted issuance date. Finally,
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Figure 4.2: Design of a privacy-preserving solution for metadata in SSIs using HE.

it verifies whether its result matches with the calculation result sent by the student and
therefore outputs the boolean values true or false.

4.3.3 Requirements

The following ten requirements outline the essential criteria for achieving a robust and
GDPR-compliant privacy-preserving solution in SSI environments for both mechanisms,

ZKP and HE.

Privacy and Security:

R1.
R2.

Privacy: The specific metadata (issuance date) must not be revealed to the company.

Integrity: Ensure that the encrypted data and results are not tampered with and

validate the integrity of the encrypted computations.

RS3.
RJ.

Security: Decryption keys must not be generated.

out the involvement of a trusted third party.

R5.

ulatory requirements.

Peer-to-peer architecture: The solution must operate in a peer-to-peer manner with-

GDPR-compliance: The privacy-preserving mechanism must comply with the reg-
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Performance and Efficiency:

R6. Additional overhead minimization: Both parties have to be able to encrypt, compute
or verify the calculations or proofs in a timely manner.

R7. Sufficient computational resources: The prototype uses ordinary CPU and memory
resources.

R8. Cost-efficiency: Minimization of gas (Gwei) consumption.
Compatibility and Usability:

RY. Interoperability: Ensure compatibility with existing systems and environments.

R10. Usability: The user should be able to easily generate and verify proofs.

4.4 Additional Security Considerations

To mitigate the risks of attacks on or leakage of metadata, as described in Chapter
the following procedures should be considered:

SC1. Jailbreak/root detection: To prevent malicious attackers to gain potential ac-
cess to data within the SSI application, the application should detect whether
the device it is running on has been jailbroken or rooted. Attackers may have
implemented malicious code that could change data execution and extract sen-
sitive information. The user should be warned that the data may be at risk by
using the application on his rooted device.

SC2. Integrated keyboard: The application should provide its own keyboard to pre-
vent spying of the phone’s manufacturer or other keyloggers.

SC3. Encrypted database: The data generated by the SSI should be securely stored
in an encrypted database on the user’s device, rather than in individual files
within the file system.

SCY. Network level security: In order to reduce the risk of metadata getting exploited
during transmission, a VPN (Virtual Private Network) should be used to en-
crypt the data and tunnel it to protect unauthorized entities to gain access to
it.

SC5. Public key privacy: The application should generate a new public key for each
credential it sends to another entity in order to prevent future linking.

These additional security considerations are not implemented in the two prototypes, as
they are security measures that the SSI application itself should consider and provide.
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Chapter 5

Implementation

This chapter provides a guide through both privacy-preserving prototypes proposed in the
previous chapter. The first section outlines the technologies, libraries, and explanations
used in the project. The second section details the implementation of the ZKP solution,
while the third section covers the implementation of the HE solution.

5.1 Tech-Stack and Technologies

The implementation in this section was done using a modified version of CredChain [49]
as template, which is a SSI system developed for the Ethereum blockchain. Unused files
were removed and the repository was renamed to CredChain-Privacy [55] containing the
two implemented privacy-preserving prototypes.

5.1.1 Languages

The development of CredChain involved the use of multiple programming languages and
technologies to create a robust and secure SSI platform. The core implementation which
includes a frontend and backend component was developed in JavaScript. The smart
contracts were written in Solitidy, the standard language for smart contract development
on the Ethereum Blockchain. Hardhat is the Ethereum development environment used
in CredChain which uses TypeScript as its programming language. The two privacy-
preserving prototypes for metadata (ZKP and HE) are developed in JavaScript, ensuring
easy integration and compatibility with the existing system. The benchmark evaluation
scripts are written in JavaScript, while the graphing scripts of the result were coded using
Python.

5.1.2 Libraries

Due to the open-source nature of blockchain-based applications, likewise open-source li-
braries were chosen to provide anybody with transparent code.

29
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5.1.2.1 ZoKrates-js

For the implementation of a ZKP in CredChain, the ZoKrates JavaScript library zokrates_js
[15] is utilized. ZoKrates is a toolkit that allows to integrate zkSNARKS on the Ethereum
blockchain using JavaScript. The library is light-weight enabling the integration directly
in the frontend of an application.

5.1.2.2 node-SEAL

The implementation of HE into CredChain was done utilizing node-SEAL [29], which
is a JavaScript wrapper for Microsoft’s Simple Encrypted Arithmetic Library (SEAL)
[33]. node-SEAL provides an easy-to-use interface to the SEAL library, enabling to per-
form encrypted arithmetic operations such as addition and multiplication directly within
JavaScript applications.

5.1.3 Explanations

The following terms will occur frequently throughout this thesis. For clarity, they are
explained:

e Prover: The student will be referred to as the "prover” who has to prove that the
issuance date of his degree is greater than the specified threshold date defined by
the company.

e Verifier: The company will be referred to as the "verifier” with the task to verify the
claim made by the prover (student).

e degreeIssuanceTimestamp: The issuance date of the student’s (prover’s) bach-
elor’s degree in form of a Unix timestamp.

e degreeThresholdTimestamp: The threshold date set by the company (verifier)
for the bachelor’s degree to be accepted in form of a Unix timestamp.

5.2 Zero-Knowledge Proof Prototype

The implementation of the ZKP prototype involves two main stages: generating the ZKP
by the student and verifying the ZKP by the company. This process ensures the privacy
and integrity of sensitive information, such as the issuance date of a degree, without
revealing the actual value of degreeIssuanceTimestamp to the verifier. This solution
assumes that the user already knows the degreeThresholdTimestamp, which has
been sent to him beforehand.
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5.2.1 Prover Side: Generating the ZKP

After initialization of the zokrates_js library, the source code used to create the proof
is compiled. The function in Listing takes two integers as input. The field degree-
Timestamp corresponds to degreeIssuanceTimestamp and the field threshold Times-
tamp to degreeThresholdTimestamp. The return value of the function is a boolean:
true, if the degreeTimestamp is valid and larger than the thresholdTimestamp, other-
wise false. The function also handles negative Unix timestamps which correspond to
dates before January 1st, 1970 00:00:00.

const source = ¢

def main(private field degreeTimestamp, field thresholdTimestamp) ->
bool {
return degreeTimestamp > thresholdTimestamp;

}

<.
’

const artifacts = zokratesProvider.compile(source);

Listing 5.1: ZoKrates program to validate the degree year.

The next phase consists of setting up the parameters that generate the cryptographic keys
for the proof. The setup function on line two in Listing [5.2] generates a keypair specifically
tailored to the provided source program in Listing 5.1} This setup phase requires initial
parameters that must be kept secret to ensure the security of the ZKP system and returns
two keys:

e Proving Key: Used by the prover (student) to generate a proof that a certain com-
putation was done correctly without revealing the actual inputs or computation
details.

e Verification Key: Used by the verifier (company) to check the validity of the proof
generated by the proving key. The verifier can be certain that the computation was
performed correctly if the proof is valid.

The setup and keypair generation is followed by the computation of the witness. The func-
tion computeWitness() takes the compiled ZoKrates source program (artifacts), the de-
greelssuanceTimestamp and the degreeThresholdTimestamp as inputs. Now,
the ZoKrates runtime executes the zkSNARK circuit using the provided inputs. The
output of the witness contains three components:

e Input values: Artifacts, degreeIssuanceTimestamp and degreeThreshold-
Timestamp.
e Intermediate values: values generated by intermediate calculations.

e Output value: the boolean value indicating whether the degree issuance timestamp
is valid according to the threshold.
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In this case there are no intermediate values as the source code contains exactly one
operation which is the comparison of the degreeTimestamp to the threshold Timestamp
resulting in a boolean value. Otherwise, each intermediate step can be verified and thus
it is evident to the verifier how the result and each step in between was achieved. Here,
even without intermediate values the witness still encapsulates the necessary information
to prove the correctness of the computation. It shows that:

1. The prover knows the values for degreeTimestamp (degreelIssuanceTimes-
tamp) and thresholdTimestamp (degreeThresholdTimestamp).

2. The prover can demonstrate that degreeTimestamp is greater than thresholdTimes-
tamp without revealing the underlying values of both timestamps.

The witness includes all the data required to prove that the computation was done cor-
rectly without revealing the underlying input values to the verifier and the validity of the
statement that the degree issuance date is valid. It is essentially preparing the data for
the next step, the generation of the proof.

// Setup phase
const keypair = zokratesProvider.setup(artifacts.program) ;

// Compute witness
const { witness } = zokratesProvider.computeWitness (artifacts, [
degreelssuanceTimestamp, degreeThresholdTimestamp]) ;

// Generate proof
const proof = zokratesProvider.generateProof (artifacts.program, witness,
keypair.pk);

Listing 5.2: Setup followed by witness computation and proof generation.

The last step on the prover’s side is to generate the proof with the proving key. The
generateProof() function uses the compiled source program, the created witness and the
proving key as input and executes the circuit. This step involves the recalculation of
constraints defined in the source program. Each constraint evaluation step represents a
recalculation, and the total number of recalculations depends on the number of constraints.
In this case there is exactly one constraint which evaluates whether the degreeTimestamp
is greater than the thresholdTimestamp, therefore resulting in one recalculation being
made. Finally, the proving key is used to encode this information into a proof, ensuring
that the proof can be verified independently without revealing the actual input values.

In the end the user has the cryptographic proof of the witness and the verification key
which he sends to the verifier. This proof can be verified using the verification key,
ensuring the computation’s integrity and privacy.

5.2.2 Verifier Side: Verifying the ZKP

The verifier receives the proof and the verification key from the prover. Before he can
start verifying he also initializes the zokrates_js library. The verification process checks
the validity of the proof against the given verification key.
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The code in Listing [5.3| interprets the result of the proof verification. The proof in-
cludes, among other fields, two "input” values, one being the hexadecimal value of the de—
greeThresholdTimestamp and the other being the hexadecimal representation of the
output of the source program which is t rue or false. The degreeIssuanceTimes—
tamp of the prover is not known to the verifier. Since the boolean result of the source
program is always found in proof.inputs[1], we can hardcode the message according
to the hexadecimal output. The output ”1” states it is true that the degreeIssuance-
Timestamp is larger than the degreeThresholdTimestamp whereas "0” means false.

const isVerified = zokratesProvider.verify(vk, proof);

// Interpret the result based on the inputs

const result = proof.inputs[1];

if (result === ’0
x0000000000000000000000000000000000000000000000000000000000000001°) {
console.log(’\tThe Issuance Date is after the Threshold Date.’);

} else if (result === ’0
x0000000000000000000000000000000000000000000000000000000000000000°) {
console.log(’\tThe Issuance Date is before the Threshold Date and

therefore INVALID.’);

} else {
console.log(’\tUnexpected result in proof inputs.’);
return false;

3

return isVerified;

Listing 5.3: Verification and interpretation of the proof.

In general, the proof itself is always valid, unless it has been tampered with. In that case
the witness can not be reconstructed using the verification key thus making the proof
invalid. In the rare case that the result of the source program is something other than
’0” or "1’, the function is set to return false, indicating the same scenario as an invalid
proof.

5.2.3 Summary

The integration of a ZKP using the ZoKrates library in CredChain provides a powerful
solution for secure and private verification of metadata. The approach shows that a
complex cryptographic mechanism can easily be integrated into an existing SSI platform.
There is no need for a trusted third-party and the verifier can prove the witness of the
prover without knowing the actual data. Furthermore, the usage of zZkSNARKs do not
require an interactive communication between the two entities. With only one interaction,
the verifier can be certain of the integrity and authenticity of the provided proof.

5.3 Homomorphic Encryption Prototype

The second prototype utilises HE and contains three main stages: Parameter setup by
the company (verifier), calculation by the student (prover), and recalculation and verifi-
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cation by the company (verifier). As with the previous prototype, the verifier does not
know the underlying value of the student’s degreeIssuanceTimestamp. Addition-
ally, in this solution, the prover does not know the underlying value of the company’s
degreeThresholdTimestamp.

5.3.1 Verifier Side: Encryption Parameters Setup

Upon initializing the node-SEAL library, the first step is to set the encryption parameters
which will be used by the verifier and the prover to encrypt their secret data, which the
other entity should not know. Listing outlines the various parameters required to set
the security properties for the encryption, which will be needed for the calculations at a
later stage. The solution uses the standard parameters recommended by the documen-
tation [46]. Choosing larger integers for the encryption settings such as the polynomial
modulus degree or the coefficient modulus bit sizes increases the security and allows for
more complex computations. The trade-off lies in exponentially larger memory usage and
calculation duration.

const schemeType = seal.SchemeType.bfv;

const securitylLevel = seal.SecuritylLevel.tcl128;

const polyModulusDegree = 4096;

const bitSizes = [36, 36, 37];
const bitSize = 20;

const parms = seal.EncryptionParameters (schemeType);

// Set the PolyModulusDegree
parms.setPolyModulusDegree (polyModulusDegree) ;

// Create a suitable set of CoeffModulus primes
parms.setCoeffModulus (seal.CoeffModulus.Create(polyModulusDegree,
Int32Array.from(bitSizes))) ;

// Set the PlainModulus to a prime of bitSize 20.
parms.setPlainModulus (seal.PlainModulus.Batching(polyModulusDegree,

bitSize));

const context = seal.Context (parms, // Encryption Parameters
true, // ExpandModChain
securityLevel // Enforce security 1level

);
Listing 5.4: HE parameters setup.

The type of HE used is the Brakerski/Fan-Vercauteren (BFV) scheme as defined in the
first line of Listing This scheme is usually classified as SHE which allows a limited
number of addition and multiplication operations. SHE is ideal for this prototype, because
it provides a balance between usability and cryptographic strength.

After the configuration of the encryption parameters according to the scheme type, the
expansion of the modulus chain and enforcement of security level, the encryption context
is created from which the following components are generated in Listing [5.5
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e Encoder: The batch encoder is used to encode plaintext values, i.e. the de-
greeThresholdTimestamp.

e Key Generator: The key generator creates public and private keys. This implemen-
tation does not create a private key to decrypt the encrypted result of the calculation
in order to preserve the privacy of the underlying value of the calculated result.

e Public Key: The public key is used to encrypt the encoded plaintext values.

e Encryptor: The encryptor encrypts the encoded plaintext values in context using
the generated public key.

const encoder = seal.BatchEncoder (context);

const keyGenerator = seal.KeyGenerator (context);
const publicKey = keyGenerator.createPublicKey () ;
const encryptor seal.Encryptor (context, publicKey);

// Encode the numbers
const plainText = encoder.encode(Int32Array.from([
degreeThresholdTimestamp])) ;

// Encrypt the PlainTexts
const cipherText = encryptor.encrypt(plainText);

// Create the JSON object
const companySetupData = {
parms: parms.save (),
publicKey: publicKey.save(),
cipherTextThreshold: cipherText.save(),
s

return companySetupData;

Listing 5.5: HE component generators.

The final step is to save the encryption parameters, the public key and the encrypted
degreeThresholdTimestamp into a JSON object. This JSON object is returned
by the verifier and passed (or sent) to the prover who will use the parameters for the
upcoming calculation.

5.3.2 Prover Side: Calculation on Encrypted Data

The prover receives the JSON object from the verifier and loads the three data compo-
nents. First, the encryption parameters are loaded from which the encryption context is
created. This step is important to ensure that the encryption format and homomorphic
calculation are consistent with those of the verifier. It is essential that both parties encrypt
and calculate in the same manner to be assured that the calculation has been done cor-
rectly. Using the context from the setup, the prover generates its own batch encoder and
encryptor. Additionally, a new evaluator is initialized which will perform the homomor-
phic operation. Subsequently, the public key and the encrypted degreeThreshold-
Timestamp from the verifier are loaded using the verifier’s context as shown in Listing
0.0l
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// Load the context with saved parameters
const parmsFromFile = seal.EncryptionParameters();
parmsFromFile.load (setupData.parms);

const contextFromFile = seal.Context(parmsFromFile, true, securityLevel)
const encoder = seal.BatchEncoder (contextFromFile);

const encryptor = seal.Encryptor(contextFromFile, publicKeyFromFile);
const evaluator = seal.Evaluator(contextFromFile) ;

const publicKeyFromFile = seal.PublicKey();
publicKeyFromFile.load (contextFromFile, setupData.publicKey);

const cipherTextFromFile = seal.CipherText ();
cipherTextFromFile.load (contextFromFile, setupData.cipherTextThreshold);

Listing 5.6: Loading the HE setup parameters from the verifier.

The next step is to encode and encrypt the prover’s degreeIssuanceTimestamp by
using the encoder, the encryptor and the public key from the verifier. To be able to
perform the calculation, the cipherTextResult object must be initialized. Now that both
values are in cipher text form, the homomorphic operation can be executed. The de-
greeIssuanceTimestamp (= cipherText) is subtracted from the degreeThresh-
oldTimestamp (= cipherTextFromFile). The sub() function of the evaluator performs
the calculation on the encrypted values and stores result in the cipherTextResult variable
as seen in Listing

The encrypted degreeIssuanceTimestamp and the encrypted result are packaged
into a JSON object, which is returned by the prover. The JSON object is then sent back
to the verifier, who will perform the same calculation again. For debugging purposes, this
data is written to a file.

// Encode the numbers

const plainText = encoder.encode(Int32Array.from([
degreelssuanceTimestamp]));

// Encrypt the PlainTexts
const cipherText = encryptor.encrypt(plainText);

// Subtract A from B and store it in cipherTextResult
const cipherTextResult = seal.CipherText ();
evaluator.sub(cipherTextFromFile, cipherText, cipherTextResult);

// Create the JSON object
const studentData = {
cipherTextIssuanceDate: cipherText.save(),
cipherTextResult: cipherTextResult.save ()
s

// Save the results to file
fs.writeFileSync(’studentData. json’, JSON.stringify(studentData));

return studentData;

Listing 5.7: Performing the HE calculation.
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5.3.3 Verifier Side: Recalculation and Verification

After the prover performed the homomorphic calculation on the two encrypted values and
returned them to the verifier, the verifier performs the same calculation again to verify
that he gets the same result and that the data has not been tampered with during the
transmission. First, the encrypted result needs to be loaded. The cipherTextResultStu-
dent object is initialized and then retrieved from the JSON object. The built-in load()
function of the node-SEAL library automatically checks the integrity of the ciphertext.
If the format of the ciphertext is incompatible with the given context, it throws an error
indicating that the data may have been modified or that different encryption parameters
have been used. The error is caught in the try-catch block which leads the verifier to
return false (Listing [5.8]).

const cipherTextResultStudent = seal.CipherText ();
try {

cipherTextResultStudent.load (context, studentData.cipherTextResult);
} catch (error) {

// Error occurs for "wrong" format, meaning if the result has been

altered
console.log("\tIncompatible cipher text format.");
return false;

Listing 5.8: Verifier loading the encrypted result from the prover.

If the encrypted result is successfully loaded, the verifier constructs the evaluator based
on the context from its initial setup phase. It then initializes the cipherTextResult ob-
ject which will store the outcome of the encrypted calculation. The same homomor-
phic calculation is performed again by subtracting the prover’s encrypted degreeIs-—
suanceTimestamp (= cipherTextIssuanceDateStudent) from the verifier’s encrypted
degreeThresholdTimestamp (= cipherTextThresholdDate).

After the calculation, the prover’s result and the verifier’s result in form of ciphertexts
are converted to strings. Listing [5.9| shows a simple string comparison to check if they
are identical. If the results are equal, it means the prover’s encrypted result is valid and
has not been modified. Otherwise, it indicates potential tampering. Finally, the verifier
returns the boolean value whether the result is valid or not.

// Company performs the same computation

const evaluator = seal.Evaluator (context);

const cipherTextResult = seal.CipherText ();

evaluator.sub(cipherTextThresholdDate, cipherTextIssuanceDateStudent,
cipherTextResult);

// Convert ciphertexts to strings for comparison
const companyResultString = cipherTextResult.save();
const studentResultString = cipherTextResultStudent.save();

// Compare the company’s computed encrypted result with the student’s
encrypted result

const isResultValid = companyResultString === studentResultString;

if (isResultValid) {
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console.log("\tEncrypted results identical");
} else {
console.log("\tEncrypted results NOT identical");

}

return isResultValid;

Listing 5.9: Recalculation and verification of results.

5.3.4 Summary

This prototype shows that two independent entities can agree on knowledge of one party
without knowing anything about the data used for the calculation. Both the prover and
the verifier transmit encrypted data and perform a calculation on these. Using the node-
SEAL library, it is straightforward to implement a complex privacy-preserving mechanism
into an already existing SSI platform. A trusted third-party is therefore not needed to
oversee the integrity of the calculation and encrypted values, since the verifier can detect
whether the encrypted values have been modified.



Chapter 6

Evaluation

This chapter evaluates the two implemented prototypes. Following a description of the
measurement setup, the analysis focuses on the security, privacy, and interception implica-
tions of the data, as well as its compliance with the GDPR. The next section measures the
used computational resources and the scalability aspect. Finally, the defined requirements
are summarized and evaluated.

6.1 Setup

The two prototypes were evaluated on a Windows 11 64-bit computer with an Intel Core
i7-1165G7 at 2.8 GHz base frequency and 16 GB of RAM. The Central Processing Unit
(CPU) contains 4 physical cores and 8 logical cores, allowing for hyper-threading. The
measurements were done in the "Performance-Mode” which provides a maximum clock
speed of 4.2 GHz. To measure the duration, CPU and memory occupation during the
test runs, the in-built Node.js library perf_hooks [41] was used.

6.2 Evaluation Criteria

To ensure compliance with the GDPR, the two prototypes are thoroughly evaluated in
terms of security, data privacy, and the potential for data interception during transmission
and its consequences. Given that enhanced security and privacy often come at the cost
of performance, the evaluation also covers resource usage and concludes with an analysis
of scalability.

6.2.1 Security and Data Privacy

When generating a proof and verification key for the same underlying statement, they
will never be identical. During proof generation, ZKPs incorporate randomness ensuring
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each proof and verification key to be unique. By including nonces or random numbers, it
is practically infeasible to link multiple proofs and verification keys together.

In HE, the encryption process of plaintexts follows a similar structure using nonces result-
ing in different ciphertexts for the same underlying data. Encrypting a plaintext multiple
times will always produce a different ciphertext, because of the randomness used for the
encryption process. Likewise, it is not possible to gain knowledge about the underly-
ing data and encryption relations between different ciphertexts, therefore ensuring data
privacy.

6.2.2 Data Interception

Data is being transmitted between the prover and the verifier in both prototypes. This
section evaluates the risks of them being intercepted and altered by an attacker.

Zero-Knowledge Proof

The prover sends the proof and the verification key to the verifier. If the proof gets
intercepted, the malicious actor can not find out the underlying value of the metadata,
since the proof alone is insufficient to reveal any private information about the metadata.
The interception of the verification key does also not provide any information about the
underlying metadata. If the attacker intercepts the proof and the verification key, it is
still infeasible to gain knowledge of the underlying data. Also, he can not derive any
additional information from having both.

The risk of a replay attack by sending the proof and verification key to another verifier is
reduced as well, since the proof proves that the degreeIssuanceTimestamp is larger
than the degreeThresholdTimestamp. The threshold may vary for different verifiers
or not even be part of the proof at all. To increase the security, TLS/SSL communication
channels should be used which protect the data during transit on the network layer [53].

Altering one or both parts of the data would result in the verifier being unable to verify
the proof and the verifier would know that the data has been tampered with.

Homomorphic Encryption

The first data transmission package consists of the encryption parameters and the en-
crypted degreeThresholdTimestamp which the verifier sends to the prover. Upon
interception of the encryption parameters, the security is not compromised. Essentially,
no decryption key is even created, therefore leaving no possibility for the verifier, prover
or anyone else to decrypt the data, since only the public key is being shared. The sec-
ond data transmission package contains the homomorphically calculated result and the
prover’'s degreeIssuanceTimestamp, which are both encrypted.

When intercepting data and sending an altered version to the next entity, the following
situations will occur:
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e Encryption parameters: First, the prover would either encrypt his data in the wrong
format or won’t be able to encrypt the data at all, because the corrupted parameters
can not be read correctly. Secondly, the calculation will result in an error since the
verifier’s encrypted degreeThresholdTimestamp will not be compatible with
the prover’s encrypted data, since it has been encrypted with different parameters.
As long as a strong HE scheme is used, such as BF'V or similar, the intercepted data
remains secure. This is typically ensured by default.

e degreeThresholdTimestamp, degreelssuanceTimestamp and encrypted
result: If the attacker exchanges these data points with its own correctly encrypted
values, the prover would calculate with wrong values and thus yield a wrong result.
However, the verifier re-calculates it using his original degreeThresholdTimes—
tamp and would therefore realise that his result is not equal to the prover’s result.

One possible way to mislead the verifier would require the following circumstances to
apply: The attacker knows what type of content and the context thereof in the data
transmission packages. We assume he knows that the prover must prove to the verifier
that his issuance date is after a specific threshold date. In that case, when knowing the
encryption parameters and the degreeThresholdTimestamp intercepted from the
first data transmission package, he can create and encrypt his own issuance date, execute
the calculation and send it to the verifier. In this highly unlikely scenario, the verifier
could be fooled. Otherwise it is practically infeasible to deceive the verifier. To mitigate
the risk of an attacker to intercept useful data, TLS/SSL protocols should be used to
protect the data during the transmission on the network layer [53].

6.2.3 GDPR-Compliance

By using the ZKP or the HE prototype, users and organisations can process and verify data
while ensuring privacy and security, therefore making both prototypes GDPR~compliant.
With HE, computations can be performed on encrypted data. The sensitive personal data
does not have to be decrypted and therefore remains private and secure. Although HE
allows for creating a decryption key, the prototype does not create it leaving the result of
the computation encrypted. The ZKP protocol disallows the generation of a decryption
key from the beginning. Furthermore, the users can select which part of data they want to
send to the other entity. The generated data is not stored on-chain, but locally at one of
the two parties in encrypted form and not revealing anything about the underlying data
itself. Finally, the fundamental feature of the CredChain environment allows the user to
revoke any credential sent to a verifier.

6.2.4 Computational Resources

The values for the performance of the prototypes result from running them 100 times
consecutively. When measuring the CPU usage for the functions, approximately 40-60%
of the test runs yielded the value 0. In that case, the value has been removed from the
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dataset and the remaining non-zero CPU measurements have been used in the graph.
Possible reasons for the zero measurements include asynchronous function calls, which
might prevent the CPU measurement from capturing the actual time spent accurately,
especially during short measurement periods. Another cause could be the operating sys-
tem’s process scheduler, which dynamically assigns processes among the cores influencing
the CPU measurements.

The performance of both prototypes are presented side by side in a box-and-whisker plot,
which contains the following components:

e Box: The main rectangular box of the plot shows the interquartile range of the
dataset, which lies between the first quartile and the third quartile containing the
middle 50% of the data.

e Median Line: The orange line within the box represents the median of the data. If
the median is exactly in the middle of the box, the data is distributed symmetrically.
Otherwise, it indicates skewness.

o Whiskers: These lines extending the box at the top and bottom show the smallest
and largest values within 1.5 times the interquartile range from the lower and upper
quartiles.

e Qutliers: Data points outside the whiskers are considered outliers and marked as
red dots.

Figures [6.1] [6.2] and [6.3] contain the graph and a table underneath with the corresponding
measured values of the respective functions outlined on the x-axis.

6.2.4.1 CPU Usage

The ZKP prototype clearly uses more CPU resources in comparison to the HE prototype,
as shown in Figure [6.1] The reason for that are computationally intensive mathematical
operations, especially when generating the proof like elliptic curve operations, polynomial
evaluations and interpolations, bilinear pairings, witness computation and more. All
of these are necessary to ensure the security and correctness of the generated proofs.
Surprisingly, the ZKP proof generation takes up about 8 times the amount of resources in
comparison to the HE calculation. It turns out that a simple one-operation computation
on encrypted values is efficient. On the other hand, the ZKP proof verification is designed
to be efficient and is less CPU-intensive than the ZKP proof generation. However, on
average it still uses 4 times as much processing power as the HE verification.

The majority of the CPU usage values for the ZKP proof generation exceed 100% of
one single core. This is possible since every physical core can handle two threads, i.e.
the maximum measured value of 114.1% shows that the proof generation used 100% of
one thread and 14.1% of another thread. It is also possible that the load is being split
more equally among the threads. With the median being above 100% it signifies that
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MAX 114.10 % 51.60 % 14.00 % 17.20% 17.10%
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MEDIAN 100.75 % 42.15% 9.40 % 10.95 % 9.40 %
MIN 46.95 % 32.80% 4.70% 6.30 % 470 %

Figure 6.1: CPU usage comparison between the ZKP and HE prototype functions.

most of the time more than one thread was used implying the proof generation to be
computationally heavy.

The noticeable outlier values for the ZKP proof generation could have occurred due to
different factors. A likely reason may be the interruption of system tasks that temporarily
take away CPU cycles during the proof generation. Also, in the Node.js environment,
garbage collection processes may start during program execution that run for a longer
period of time in combination with high CPU and memory usage. This clean-up process
uses CPU that temporarily reduces the resource for generating a proof.

6.2.4.2 Memory Usage

Figure visualizes a significantly smaller difference in memory usage in comparison to
the CPU usage between the two prototypes. It is noticeable that the median of both ZKP
functions but especially verifying the ZKP are at the bottom of the range, indicating
that they mostly occupy a similar memory amount. Although both have rather high
values that are far away from the median, most test runs used memory amounts near
the minimum measurement value. In contrast, the memory measurements for the HE
functions are distributed symmetrically, as indicated by the median being in the middle
of the box.
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Figure 6.2: Memory usage comparison between the ZKP and HE prototype functions.

The HE prototype generally uses about 60% more memory than the ZKP prototype. One
reason lies in the size of the ciphertexts. The plaintext degreeThresholdTimestamp
has ten characters, while its ciphertext contains around 118’000 characters. Calculating
with values of this size requires more storage. Another reason would lie in storing the
accumulated intermediary results. Furthermore, noise reduction would be applied which
is also memory-heavy. In this case, since the single homomorphic operation does not
store any intermediary results, this reason does not apply. Although the ZKP prototype
also generates intermediate data during the proof generation, its data is more compact in
comparison to the data in the HE prototype.

Outlier data points could be due to interference from other processes running during the
measurement period. The grouping of these outliers, specifically in the ZKP Generation
column suggests that these runs might have encountered other processes which used up
a larger amount of memory than the usual system processes. Alternatively, memory-
intensive processes may have terminated during the run, temporarily reducing memory
consumption for the HE Setup measurement.

6.2.4.3 Estimated Gas Costs

Both prototypes need to send and store data. The measurements assume an ETH price
of 2600 United States Dollars (USD) and a base network fee of 4 Gwei. The values can
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be obtained through the following formulas:

e Gas used (Gas): In Table the gas used does not account for storing the data
on-chain. Therefore, the formula totalGas = baseTransactionCost + gasFor Data.

Table [6.2] considers storing the data on-chain, leading the calculation of gas used
to be totalGas = baseTransactionCost + gasFor Data + numberO f StorageSlots x
(storageCostPerSlot + sLoadGasCost).

The composition of the variables is described in Section [2.1.2]

e Gas cost (ETH): gasCostETH = gasPriceETH x totalGas where gasPriceETH
is the base network fee.

e Gas cost (USD): gasCostUSD = gasCostETH x priceETH where priceETH is
the price of one ETH in USD.

Table illustrates the cost difference for sending the produced data to the other entity.
The data generated in the HE prototype is significantly larger than that of the ZKP
prototype. The HE setup parameters and ciphertexts are very long strings, resulting in
a combined storage requirement that is approximately 236 times greater than that of
the ZKP proof and verification key. Also in monetary terms, the two data transmissions
of the HE prototype are 114 times more expensive than the two ZKP prototype data
transmissions. While it would cost 0.033875 ETH or 88.08 USD to send the generated
HE data, it would only cost 0.000299 ETH or 0.77 USD to send the produced ZKP data.

Table 6.1: Estimated gas usage when sending data via the Ethereum blockchain.

HE setup data HE calc data ZKP verification key ZKP proof

Data Size (KB) 289.96 230.56 1.45 0.75
Gas used (Gas) 4715192 3753672 43444 31200
Gas cost (ETH)  0.018861 0.015014 0.000174 0.000125
Gas cost (USD) 49.04 39.04 0.45 0.32

When comparing the gas usage and gas cost of sending data in Table to the numbers
in Table it is clearly visible that storing data on the blockchain is expensive. The HE
prototype stores around 520 Kilobytes (KB) with a cost of over 1.5 ETH or 3916 USD,
which is 229 times more expensive than sending and storing 2.2 KB of ZKP data on-chain
for a cost of 0.006574 ETH or 17.09 USD.

Table 6.2: Estimated gas usage for storing data on the Ethereum blockchain.
HE setup data HE calc data ZKP verification key ZKP proof

Data Size (KB) 289.96 230.56 1.45 0.75
Gas used (gas) 209781092 166807472 1082144 561600
Gas cost (ETH) 0.839124 0.667229 0.004328 0.002246

Gas cost (USD) 2181.72 1734.8 11.25 5.84




46 CHAPTER 6. EVALUATION

This gas estimation clearly shows that it is not economically feasible to store generated
data on-chain on a regular basis. This explains why most data stored on-chain is in
plaintext, since its encrypted form would drive up the costs massively. The measurement
indicates that storing encrypted ciphertexts from the HE prototype is much more expen-
sive than storing a ZKP proof and its verification key. The gas estimation made it clear
that the HE prototype uses much more gas in comparison to the ZKP prototype for storing
and sending metadata and preserving its privacy. In general, credentials within SSIs are
transmitted through Hypertext Transfer Protocol Secure (HTTPS) or the Decentralized
Identifier Communication (DIDComm) protocol. Furthermore, the two resource-intensive
prototypes perform all computations off-chain, since these large-scale computations are
infeasible to be carried out on a blockchain at the moment.

6.2.4.4 Time Measurement

Figure [6.3] visualizes the difference in execution duration for the individual prototype
functions. The ZKP proof generation takes about 1 second on average and approximately
0.35 seconds to verify the proof. Multiple iterations of complex mathematical operations
to generate the proof require time and CPU resources to be computed, which explains
the large difference in execution time. In contrast, the HE prototype contains two single-
operation calculations on encrypted data, which are rather light-weight on a relative scale.
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Figure 6.3: Time measurement of the ZKP and HE prototype functions.
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The three HE functions average around 0.12 seconds to complete. Surprisingly, setting
up the HE parameters yielded the highest maximum, average and minimum values, even
if no calculations are performed in that function.

The generated additional time overhead for the ZKP prototype averages at 1.37 seconds,
which is 3.7 times more than the average time of the HE prototype taking 0.36 seconds
to complete. These measurements only include the computation, writing and reading of
data locally and do not factor in the time to transmit the data to the other entity.

6.2.5 Scalability

When comparing the scalability aspect of the two prototypes, the memory consumption
comparison stands out. Figure [6.4] shows the memory consumption of 1000 consecutive
iterations of both prototypes. There are four major observations:

1. Both ZKP function calls use the same amount of memory over time, but the val-
ues oscillate significantly between two ranges that gradually increase over time.
There are more measurements on the upper orange-purple line of points that range
from around 160 to 195 Megabytes (MB). Approximately every third measurement
yielded a lower value ranging from 120 to 140 MB represented by the lower orange-
purple line of points.

2. The first functions calls of the HE prototype utilize around 55 MB of memory. Over
time, the memory usage increases linearly at an approximate rate of 70 to 80 MB
per 100 prototype iterations.

3. After approximately 330 iterations, the memory utilization of the HE functions de-
cline and stagnate for 30 to 50 iterations. This is most likely due to the garbage
collection process, which reclaims memory that is not used anymore. Garbage col-
lection usually gets triggered after a certain memory threshold is crossed. Another
potential reason could be memory buffers that fill up and get flushed. As shown in
Figure the HE prototype stores around 520 KB of data in each iteration. After
330 subsequent iterations, an additional memory of 171 MB (= 520 KB * 330) is
occupied, thus triggering the clean up and memory optimization process.

4. During the first 50 iterations, both prototypes achieve different memory measure-
ments in comparison to further measurements. While the ZKP functions’ values are
more scattered, the HE function calls clearly utilize less memory than subsequent
function calls. This is due to the "warm-up” phase where the system does not know
exactly how much memory to allocate for the function calls. Memory pools might
not be fully utilized, therefore leading to an initial lower memory usage. After the
first HE garbage collection process at iteration 330, the measurement values are
much more uniform with less scattering. This further indicates that the system
tries to allocate only as much memory as needed.

The memory usage evaluation has highlighted the difference between both prototypes.
When evaluating CPU and duration values, no outstanding observations occurred. The
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Memory Usage Comparison during 1000 Iterations
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Figure 6.4: Memory usage of 1000 iterations for the ZKP and HE prototype.

CPU usage and time duration remained constant throughout the iterations, as visualized

in Figures [6.1 and

The scalability evaluation has shown that the ZKP prototype has a lower and more sta-
ble memory usage compared to the HE prototype due to the generation and storage of
large ciphertexts. This makes the ZKP prototype more suitable for memory-constrained
devices.

6.3 Requirements Evaluation

This section assesses whether the requirements defined in Section have been fulfilled
according to the evaluation of both prototypes.

Privacy and Security

The verifier (company) does not know the underlying value of the student’s (prover) is-
suance date, therefore keeping the metadata private as required in R1. The HE prototype
takes this a step further by ensuring that the prover does not know the threshold date
defined by the verifier, creating a zero-knowledge scenario for both parties. For R2, both
prototypes have checks implemented that verify the integrity of the received data. Should
they fail, then the prototype automatically returns false indicating that there was a
mistake when verifying the data meaning the data has been modified during transmission
or by the other party. The security requirement R3& is satisfied, because both prototypes
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incorporate randomness in the encryption of the data. It is infeasible to figure out the
relation between a plaintext and its corresponding ciphertext. Furthermore, the trans-
mitted data is not at risk when being intercepted, because the attacker can not harm
anyone. They can just verify the ZKP proof or the HE calculation. Although HE allows
the creation of a decryption key, the prototype does not generate one. Both prototypes
strictly communicate peer-to-peer and do not require a trusted third party to verify the
data, therefore adhering to R4. The implementations are GDPR-compliant, since the
metadata is being encrypted and the verifier has zero-knowledge of the underlying data.
In addition, it is not possible to link proofs and ciphertexts, thus satisfying R5.

Table 6.3: Evaluation of the prototype requirements.

Description ZKP | HE
R1 | Privacy: Demonstrated in Sections [5.2.1] [5.3.2 and | v/ v
R2 | Integrity: Demonstrated in Sections |5.2.2| and |5.3.3L v v
R3 | Security: Explained in Section[6.2.1] v v
R/ | Peer-to-peer architecture: Demonstrated in Figuresid.1/ | v v
and [4.2]
R5 | GDPR-compliance: Explained in Section |6.2.3|. v v
R6 | Additional overhead minimization: Shown in Figure | v v
[6.3]
R7 | Sufficient computational resources: Shown in Figures | (V) | Vv
and [6.2]
R8 | Cost-efficiency: Estimated in Table |6.1Jﬂ1d @l v X
R9 | Interoperability: Explained in Sectiﬁ[&ll. v v
R 10 | Usability: Explained in Sections |5.2.3| and |5.3.4|. v v

Performance and Efficiency

R6 is met although the ZKP prototype takes significantly longer to complete than the
HE prototype. The additional overhead of about 1.3 seconds is acceptable, especially
for single tasks that happen on a daily basis. The HE prototype proved to be fast and
CPU efficient. While the ZKP proof generation needed by far the most CPU resources
and pushed the processor to its limits, it still fulfills R7. The memory usage for both
solutions was rather low, again making the solutions ideal for everyday devices such as
smartphones and computers. However, the gas consumption of the HE prototype when
sending the generated data on-chain is too high, thus leading to large monetary costs for
both parties. In contrast to the ZKP prototype it does not satisfy R8. However, it is still
expensive to send the ZKP data via the blockchain. The evaluation therefore shows that
the data should not be sent and stored on-chain and rather be transmitted via traditional
protocols like HTTPS or DIDComm.

Compatibility and Usability

Both prototypes are implemented on the already existing SSI platform CredChain, which
was built for the Ethereum blockchain. The solutions are coded in JavaScript, which sup-
ports an easy web integration across all platforms and browsers. Moreover, the ZKP and
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HE libraries are open-source, therefore satisfying R9. At last, the usability requirement
R 10 is achieved by allowing the user to easily create a ZKP or execute a homomorphic
calculation with one click of a button.

Additional Security Considerations

The two prototypes generate, store and transmit data that can be intercepted. Since
R1 and R3 are fulfilled, there is no need to store the data in an encrypted database as
proposed in SC38, because the generated data already is encrypted or if intercepted, can
not be used on its own by the attacker. Furthermore, the usage of a VPN as recommended
in SC/4 is not necessary because it would encrypt already encrypted data. In addition,
if the encrypted data is intercepted, the attacker can not use it to his advantage, nor can
he try to decrypt or learn something about the data.



Chapter 7

Final Considerations

This final chapter is divided into two parts. The first part summarizes and reflects on
the work completed, while the second part outlines potential future research directions to
further advance the findings and address the remaining challenges.

7.1 Summary

This thesis contributed to the classification debate of metadata in blockchain-based SSI
and public keys as personal data. In conclusion, metadata is classified as non-personal
data, as it consists of data that does not identify a natural person. Furthermore, metadata
is essential to verify the integrity and credibility of an issued credential in a SSI. Therefore
they should not be deleted. Additionally, the GDPR only requires that personal data must
be deletable from a system. In SSIs, metadata is stored on the user’s personal devices
and therefore the user has full control of his data and can, if really wanted, delete the
metadata. Public keys are also considered non-personal data when generated and only
turn into personal data as soon as they can be linked to a real-world identity i.e. through
KYC or AML procedures from centralised exchanges. The same principle applies to
metadata when it is associated with a real-world identity, rendering it personal data the
moment the identification occurs.

The literature review analysed different forms of attacks on metadata in SSIs. In conclu-
sion, the attacks do not directly target the metadata but rather rely on bad user behaviour
such as rooting or jailbraking their device, on which the SST application runs. The attacks
focus on stealing or altering credentials but not specifically on metadata. This thesis lists
security considerations that SSI applications should implement to prevent these dangers
and also specifies the necessary requirements for metadata privacy-preserving mechanisms.

To enhance metadata privacy, this thesis proposed two prototypes that can be integrated
into a SSI system. The ZKP and the HE solution ensure that the credential-verifying
party does not know anything about the underlying metadata. Furthermore, the solutions
demonstrated that the transmitted data is safe from interception during transmission. The
attacker can also not learn anything about the underlying data, since the transmission
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data is encrypted by default through the ZKP and HE mechanisms. The evaluation has
further shown, that although both solutions are computationally intensive, they are still
scalable in terms of computational resources and ideal for daily usage on devices such as
smartphones or personal computers. Additionally, the evaluation of gas usage revealed
that the implementations, particularly the HE prototype, are not economically viable for
sending and storing the generated data on the blockchain.

7.2 Future Work

The two implemented privacy-preserving mechanisms are prototypes and still have to be
implemented and tested for real-world usage. In order for both implementations to fully
utilize the blockchain, the cost of sending and especially storing data on the blockchain
must decrease. Therefore, it would be of interest to explore and develop other privacy-
preserving solutions that generate less data which has to be sent, as the on-chain trans-
mission and storage costs are still very high, even with a low base network fee.

At the moment, FHE is still in its early stages and requires further development to com-
plete complex computations within a reasonable timeframe. The implemented HE proto-
type is fast, because only a single mathematical operation is being executed. However,
when increasing the security parameters, the calculation time will rise exponentially. Like-
wise, this thesis did not evaluate the performance of different security parameter settings.

Lastly, there is a crucial need in clarification from GDPR regulators concerning the treat-
ment of metadata and data on the blockchain. As blockchain technology continues to
evolve and integrate with various industries, the ambiguity surrounding how metadata
such as inter alia, public keys and timestamps should be classified under GDPR becomes
increasingly problematic. Future work by GDPR authorities should focus on providing
clear guidelines on whether metadata should be considered personal data and, if so, how
it should be managed in a blockchain context, where data is inherently immutable.
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Appendix A

Repository on GitHub

The GitHub repository containing the implementation of the two metadata privacy-
preserving prototypes can be found under the following URL:

https://github.com/cedric-vr/credchain-privacy

The repository contains:

HE prototype

ZKP prototype
e CPU, duration and memory measurement functions

Gas estimation function

Data plot generator

A.1 Installation

The following installation and operation guide can also be found directly on the GitHub
page. First, we need to compile and deploy smart contracts to the testnet. To do this,
make sure all dependencies are installed in your environment or install them using:

1 npm install

To deploy, start the hardhat node with:

1 npx hardhat node

Open another terminal window and deploy the contracts:

1 npx hardhat run --network localhost scripts/deploy.js
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A.2 Operation

This repository includes two metadata privacy-preserving prototypes to calculate and
verify that a university degree has been issued after a specific date (Unix timestamp).
Run the commands in the upmost folder of the repository.

Zero-Knowledge Proof (ZKP)
Run the following command to test the ZKP prototype:

npx hardhat test test/testZKP.js

Homomorphic Encryption (HE)
Run the following command to test the HE prototype:

npx hardhat test test/testHE. js

Evaluation

After running the above two privacy-preserving mechanism tests, you can run the following
commands to evaluate the performance.

Gas Estimation

This outputs the estimated gas cost of sending and storing the files which were generated
during the ZKP and HE process. By default, an ETH price of 2600 USD and a network
fee of 4 Gwei is used.

node utilities/gasEstimator.js

Use flags to modify one or all of the parameters for the gas estimation calculation. To
calculate the gas cost of storing the data on the blockchain, append the -storeOnChain
flag.

node utilities/gasEstimator.js --ethPrice=3200 --gasPriceGwei=40 --
storeOnChain

Duration, CPU- and RAM-Usage

Evaluate the benchmarks over a specified number of function runs. By default, it will run
50 times for the ZKP and the HE functions.

node evaluation/generateBenchmarks. js

Enter any integer to specify the number of runs for both prototypes.

node evaluation/generateBenchmarks.js 100

Plotting Data

This project uses Python 3.11.9 to plot data. It is recommended to use Python version
3.11 or newer to avoid any compatibility issues. Make sure that the libraries matplotlib,
pandas, and numpy are installed. Use the following command to plot the generated bench-
mark data. The plots are saved as .PNG files in the evaluation folder.

python evaluation/generateGraphs.py
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