Communication Systems Group, Prof. Dr. Burkhard Stiller

BACHELOR THESIS

University of
Zurich™

7

Security, Privacy, and Transparency
Improvements in CoMaDa

Michael Balmer
Suhr, Switzerland
Student ID: 12-923-363

Supervisor: Corinna Schmitt, Bruno Rodrigues
Date of Submission: February 1, 2018

University of Zurich
Department of Informatics (IFI) SG
BinzmuUhlestrasse 14, CH-8050 Zirich, Switzerland

Bachelor Thesis

Communication Systems Group (CSQ)
Department of Informatics (IFI)

University of Zurich

BinzmUhlestrasse 14, CH-8050 Ztirich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

The work of this Bachelor thesis includes the development for improving security, privacy
and transparency functionalities in CoMaDa (Configuration, Management, and Data han-
dling) which is part of the SecureWSN project at the University of Zurich. These tasks are
merely separated in two work processes. The first one addresses the security functionality
of CoMaDa. Therefore a two-factor user authentication is implemented to ensure only
WSN owners can enter the functionality of CoMaDa. The other aspect concerns SQL-
query injection hence a check is implemented that a WSN only contains of letters and
numbers. The second task engages the improvement of privacy and transparency. This
builds on my assignment and the therefore implemented filtering option. Hence the filter-
ing option is extended by adding more fine grained filter options explicitly the selection
of a certain sensor, the selection of not just the date but also time range. Furthermore
to reach 100 percent transparency allowing the filtering of push messages performed by
either the data owner or an authorized user and an additional option for the owner to in-
spect the log of the filtering, meaning each executed filtering is logged by time, requested
filter options and if an output file was created or not. Exactly those output files are
now additionally secured by encryption. As a result of the performed tasks the existing
database solution had to be extended by tables for logging. In addition the changes in
CoMaDa which affect WebMaDa are performed as well.

1

Zusammenfassung

Die Bachelorarbeit beinhaltet die Entwicklung von Verbesserungen im Bereich der Sicher-
heit, dem Datenschutz und der Nachvollziehbarkeit der Funktionen von CoMaDa (Confi-
guration, Management, and Data handling), welches teil des SecureWSN Projekts an der
Universitéit Ziirich ist. Die Arbeit ist dadurch mehrheitlich in zwei Teile gegliedert. Der
erste Teil behandelt die Funktionen von CoMaDa beziiglich der Sichherheit. Deshalb wird
beim Start von CoMaDa eine 2-Faktor Authentifizierung implementiert, welche sicher-
stellt, dass nur der Besitzer des WSNs Zugriff auf die Funktionalitdten darin hat. So wird
ebenfalls eine Priifung des Benutzer vor Eintritt in die Filtering Option hinzugefiigt, da
darin sensible Daten punktgenau ausgelesen werden kénnen. The andere Aspekt betrifft
die Einddmmung der Moglichkeit einer SQL-Query injection dafiir wird eine Uberpriifung
des WSN-Namens vorangeschickt, ob dieser nur aus Buchstaben und Nummern besteht.
Der zweite Aufteilungsschritt befasst sich mit der Verbesserung des Datenschutzes und der
Nachvollziehbarkeit. Dies baut auf meiner Vertiefungsarbeit auf und der dabei hinzuge-
fiigten Filteroption. Infolgedessen ist diese Option mit weiteren Moglichkeiten zum Filtern
erginzt worden. Darunter gehort das Auswéhlen bestimmter Sensoren und die Auswahl
der exakten Uhrzeit und nicht nur des Datums. Zusétzlich um die angestrebte 100% Nach-
vollziehbarkeit zu erreichen, ist es moglich nach Pushnachrichten vom Dateninhaber als
auch von berechtigten Nutzern zu filtern ausserdem wird eine weitere Méglichkeit hinzuge-
fiigt um das Logging des Filtering einzusehen. Das bedeutet, jedes durchgefiihrte Filtering
wird mit Zeitstempel, angewéhlten Filteroptionen und Uberpriifung ob ein Outputfile er-
stellt wurde gespeichert. Um den Datenschtutz zu erhohen, ist eben das oben genannte
Outputfile zusédtzlich noch mit einer Verschliisselung versehen. Als Result dieser Ausfiih-
rungen musste die existierende Datenbanklosung erweitert werden um die Log-Daten zu
speichern. Ausserdem sind Anderungen in CoMaDa, welche WebMaDa betreffen auch
erginzt worden.

iii

v

Acknowledgments

First, I would like to sincerily thank my supervisor Dr. Corinna Schmitt for her support,
time and endurance and her valuable and motivating inputs and comments during all
phases of the Bachelor Thesis. I would also like to thank Prof. Dr. Burkhard Stiller for
his support and the possibility to complete this Bachelor Thesis at the Communications
Systems Group at the Department of Informatics of the University of Zurich.

vi

Contents

Abstract

Zusammenfassung

Acknowledgments

1 Introduction

1.1
1.2
1.3

Motivation
Description of Work oo

Thesis Outline

2 Related Work

2.1
2.2

2.3
2.4

SecureWSN oL
CoMaDa
2.2.1 Filtering Option CoMaDa
WebMaDa

Findings

3 Design Decisions

3.1
3.2
3.3

Security and Privacy risks in CoMaDa
Traceability
Transparency
3.3.1 Transparency inside the filtering option
3.3.2 Filtering extensiono

3.3.3 Output options

vil

iii

viil

4 Implementation

4.1 Database Adjustments
4.2 Filter extensions

4.21 Dateand Time

4.2.2 Show filtered data

4.2.3 Show the filter log

43 Login.
43.1 Clientside
4.3.2 Serverside.

4.3.3 Logintrack

5 Evaluation

5.1 Proof of Operability

6 Summary and Conclusions

Bibliography

List of Figures

CONTENTS

37

................ 37

43

45

46

Chapter 1

Introduction

1.1 Motivation

Due to the growth of the Internet and the device diversity together with their communi-
cation capability the Internet of Things (IoT) is a hot topic. The IoT is not limited to
Peer-to-Peer (P2P) networks and devices like server, computers, and routers any more. It
also includes wireless sensor devices connectd in a Wireless Sensor Network (WSN). [1]

The application range goes from intelligent homes, logistic, health care to environmental
monitoring. All applications have in common a huge amount of collected sensor data (e.g.,
temperature, brightness, humidity) under different operating systems. Exactly such kind
of data can be sensitive and it is important to be accessed only by authorized personal.
In this case especially data owners have concerns on security and privacy. Therefore only
data owners should be able to control the data flow and have the possibility to follow the
data access and enter the filtering options for special data extraction. [6]

This bachelor thesis builds on the existing framework SecureWSN, which was developed to
manage and configure WSNs using different security algorithms for communication, data
processing and accessing possibilities, and visualisation solutions. Inside the SecureWSN
framework exists the Configuration, Management, and Data handling framework (Co-
MaDa) which represents the server side of the network. It shows the data flow within the
interface and allows hardware configuration, management of network components, data
storage as well as the visualization of the data [2]. In the current setup in CoMaDa the
data owner can only see his collected data and granted rights to authorized users and
only the database administrator can access the database where all the collected data is
stored. Therefore, the contribution of my last assignment was to allow the data owner
to access a user-friendly view with filtering options to display who, when and what data
was collected for all his users. With this solution a user is able to filter current and old
data to gain access control and partial transparency. This thesis now aims to gain further
security and transparency as well as solve privacy concerns for data owners in CoMaDa.

2 CHAPTER 1. INTRODUCTION

1.2 Description of Work

The task of this Bachelor thesis is to improve the security and privacy functionalities of
SecureWSNs CoMaDa part. To reach this goal the following work is two-folded and needs
to be done: The first part of the task focuses on security improvement and the second
part on privacy improvement together with transparency. For improving security a two-
factor-user-authentication on CoMaDa needs to be realized. This is necessary, because
when CoMaDa is started the credentials are stored on the hosting machine and are not
further checked when the data is analysed or accessed (e.g., data filtering for transparency
and privacy purpose in case of data access control). Second, for securing the total system
against SQL-query injection for setting up a new WSN;, a special security check need to be
integrated in the total system checking the naming of new WSNs only includes letters and
numbers. For improving privacy together with transparency of the system this Bachelor
thesis builds on the performed assignment of M. Balmer [11] by extending the already
developed filtering options to gain 100% transparency and integrating security feature
for the filtering results. Therefore, the existing filtering solution needs to become more
fine-grained, in order to allow the data owner to filter the data for selected sensors and
data within data/time range as well as including filtering of push messages distinguished
between pushes performed by the data owner and granted to authorized users. For both
the existing data base solutions needs to be extended in its existing structure (e.g., adding
new tables with corresponding information). Further, the performed filtering request
needs to be logged in the system including among other information about performing
time, requested filtering, and if the result was printed in a PDF or not. Currently a
printing of the filtering result is possible but insecure. This needs to be solved by securing
the printed PDF using encryption. Finally, to optimize the use-friendly idea of CoMaDa a
description of filtering options need to be included and in case CoMaDa updates will effect
WebMaDas configuration this must be addressed, too. The result of this Bachelor will be
a user-friendly GUI extension for CoMaDa addressing existing security and privacy issues
together with addressing the 100% transparency request of data owners offering different
filtering options allowing specific information requests.

Through the motivation and description of work the following research questions omitted.

e How can the security and privacy risks in CoMaDa be reduced?

e What extensions for the filtering option addressing transparency need to be imple-
mented?

e How can we gain further transparency and traceability?

1.3 Thesis Outline

The rest of the thesis report is structured as follows. Chapter 2 includes related work to
give a brief overview of the works done in the assignment and the works related to this
thesis. Chapter 3 discusses the design decisions to reach consensus on security, privacy and

1.3. THESIS OUTLINE 3

transparency questions. Chapter 4 show the process of the implementation. In Chapter
5 an evaluation concerning workflow, filtering and performance will be done by a proof of
operability. In the final Chapter 6 the conclusion is drawn.

CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

This chapter goes over the relevant topics for making the work possible. Therefore a closer
look is taken at the SecureWSN framework with its two parts CoMaDa and WebMaDa
as this is the workplace for this thesis. For this reason we will show the communication
between CoMaDa and WebMaDa for a better idea about their relationship and the au-
thentication process. A more detailed part explains the functionality of CoMaDa with a
special section about the existing filtering option.

2.1 SecureWSN

In the beginning of project SecureWSN [2] the goal was to develop an efficient data
transmission protocol. Messages within a WSN have in common that they include meta
information and measure values at the same time which are send automatically in a
predefined interval. [2] As the project evolved the security request by the users was taken
on. Therefore three different security solutions which keep the device resources in mind
have been implemented. To take care of the user friendliness, a graphical user interface
(GUI) was designed in SecureWSN. The framework to Configure, Manage and handle
Data (CoMaDa) fulfils exactly this purpose. To address the mobility requirement of
the user, the Web-based Mobile Access and Data Handling Framework (WebMaDa) was
designed. [2] All those components together present the current SecureWSN framework.
For a better understanding all the relevant components are shown in Figure 2.1 in a
simplified way. It shows CoMaDa which is used only by a specific WSN owner and
is the framework where a WSN is deployed. The Web-based part in the SecureWSN,
WebMaDa is available for Guests as well as WSN owners and is connected to CoMaDa via
the Communication System Groups (CSG) Infrastructure, which contains of the MySQL
Database for WebMaDa and CoMaDa as well as the Webserver for making the connection
possible.

Another overview on the SecureWSNs components and especially the communication
paths is shown in Figure 2.2. It can again be seen, that CoMaDa is responsible for the
deployment of a WSN. For the data transmission between the two components an Upload
and Pull interface was implemented by Claudio Anliker [10].

CHAPTER 2. RELATED WORK

(=) Owner @D

22} Guest WebMaDa
-« Bidirectional
Communication

CSG Infrastructure
CoMaDa
- Webserver

- Database

WSN

Figure 2.1: Components of SecureWSN

/CoI\-IaDal.l \\ /“-"ebl‘\laDal.l \\

Core | ., Pull Interface Pull Interface User Interface
s (Client Side) | | (Server Side) [
1 ﬂ z
5‘:}3 Backend
@
é Upload Upload
b Interface * Interface =
(Client Side) (Server Side) [* . Database

o DN 4

Figure 2.2: Overview of Upload/Pull interface [10]

2.2. COMADA 7

2.2 CoMaDa

The framework for Configuration, Management and Data Handling (CoMaDa) was built
with a user-friendly GUI to simplify the operations with wireless sensor networks. There-
fore a local webserver is started to display this GUL. The WSNDataFramework [2] is
written in Java and allows the configuration and communication between nodes in a

WSN. This is the main task of the backend of CoMaDa.

In a newer version there is also a PostGreSQL-Database [9] integrated in CoMaDa to
display the graphical visualization of sensor data from Tim Strasser [8] offline. Both works
were important for the assignment [11]. As the new database deployment on CoMaDa
allows a simplified access to the data on the database as the interface is also implemented
for a graphical visualization. It leads to the other part of CoMaDa the frontend and
its GUIL. CoMaDa is built in Modules so is the frontend, which are mainly HTML and
Javascript-Files. Those communicate through a WebServer integrated in the backend with
the rest of the system. [11]

2.2.1 Filtering Option CoMaDa

In the assignment of Neva Silvestri [12] and Michael Balmer [11] a user-friendly extension
for WebMaDa and CoMaDa was introduced. On a new filtering page a WSN owner is
able to filter sensor data for users, date and push/pull option. The owner of the WSN
then sees the selected sensor data. Additionally the owner can download the data as a
PDF file. For this bachelor thesis exactly this filtering function on the CoMaDa side is a
main subject.

Filter

All users. Start date:| 06 /07 /2017
Z:;“e Select either one or both [Push and Pull ¥ | End date:| 96,@7,/2017

Select one or more user/s | Mibalm

Show filtered data | | Save filtered data

‘WSN Name - ‘WSN User IsPull Timestamp Value Unit Sensortype
3RF4G20ICD mibalm t 2017-06-07 18:40:21.821221 31.05 C Temperature
3RF4G20ICD nsilve t 2017-06-07 18:42:21.954926 2.92 v Voltage
3RF4G20ICD mibalm t 2017-06-07 18:46:48.048031 69122 sec NodeTime
3RF4G20ICD mibalm t 2017-06-07 18:46:48.048031 3179 C Temperature
3RF4G20ICD mibalm t 2017-06-07 18:46:48.048031 2.92 v Voltage
3RF4G20ICD mibalm t 2017-06-07 18:46:48.048031 22.32 % Humidity

Showing 1 10 6 of 6 entries

Figure 2.3: Filter option in CoMaDa [11]

In Figure 2.3 the filtering option is shown in CoMaDa. It allows a WSN owner to search
a certain set of data from the WSN. The users who operated on the WSN can be selected.
The type of request namely Push or Pull or Both and a Start and End date. By pressing
the "Show filtered data” button the result is then displayed in a datatable together with
the exact timestamp the selected fiter options and the sensor data. The "Save filtered
data” button creates a PDF of the current datatable and saves it in the download folder.

8 CHAPTER 2. RELATED WORK

2.3 WebMaDa

Web-based Mobile Access and Data Handling Framework WebMaDa is an extension for
CoMaDa to bring mobility support to the CoMaDa framework. It consists of the following
four components: An Online Database written in MySQL which contains tables including
access rights, active WSNs, and corresponding data including datastream, topology, and
raw data. With the management tool in WebMaDa a user is able to set the access right of
different users according the needs. Therefore, three tables in the database manage these
rules. This module requires successful authentication of the account and then pushes all
monitored data to the online database storage that is linked to the web site. In the backend
of the system tables are created that log the deployed WSNs and display them to the user
on the website. According to the access rights, a user must first authenticate himself on
the website before he can visualize data similarly to CoMaDa because depending on the
access rights the user is able to see currently active WSNs or not. [13]

2.4 Findings

The biggest part of this work lies within the CoMaDa framework with the extension of the
filtering option which uses the back- and frontend. For this part the assignment "CoMaDa
Extension Addressing Transparency Request for Data Owners” of Michael Balmer [11] is
the reference model as is the assignment of Neva Silvestri [12] for WebMaDa. The upload
and pull interface also gains on importance as it is used to write information to the
WebMaDa database. This knowledge can be acquired from the work of Claudio Anliker
[10] who implemented the newer versions 1.1 for CoMaDa and WebMaDa.

Chapter 3

Design Decisions

In this chapter a conclusion for the design choices will be made. Therefore we refer to the
research questions in the introduction:
e How can the security and privacy risks in CoMaDa be reduced?

e What extensions for the filtering option addressing transparency need to be imple-
mented?

e How can we gain further transparency and traceability?

and figure 2.1 of the components of SecureWSN. Putting those two togther gives us a
combination as shown in figure 3.1

Owner o .
Guest WebMaDa

-« Bidirectional
Communication

Am | the
owner of the
network?

A
4

CSG Infrastructure

- - Webserver
- Database

Who accessed
my data?

How can | get a
report?

Figure 3.1: Research questions in SecureWSN

10 CHAPTER 3. DESIGN DECISIONS

Therefore these three questions are processed in different chapters to make the design
decisions.

e Am I the owener of the network?
e Who accessed my data?

e How can I get a report?

The first question refers to the security and privacy concerns in CoMaDa and is discussed
in Chapter 3.1 Security and Privacy risks in CoMaDa. The second question takes up
the further transparency and traceability gain and is examined in Chapter 3.2 Traceabil-
ity. The final question refers to the filtering options and its transparency request and is
reviewed in Chapter 3.3 Transparency.

3.1 Security and Privacy risks in CoMaDa

The current solution of CoMaDa assumes that only the WSN owner has access to it. This
setting is similar to a locked room where only authorized personal has access to. But
usually the reality looks different. As the sensor data on a WSN can also be sensitive
it is even more important to take security seriously. The current implementation looks
as follows: A user in WebMaDa can request a WSN ID from an admin to configure the
config file in CoMaDa and gain access to all features in CoMaDa eg. deploy a WSN, filter
data and extract it. For this reason the first assumption that only the WSN owner has
access to CoMaDa is not secure enough as no further security check is performed. Taking
everything into consideration it can never be guaranteed that only a WSN owner has
access to CoMaDa as not only technical but especially organisational measures matters.
Thus for this work only technical measures can be realized. A two-way authentication to
check the credentials would increase the security. Therefore a new login screen before the
filtering page must be implemented. A mockup for such a login screen is shown in figure
3.2.

Another security issue appears as soon as sensitive data can get extracted from CoMaDa.
This feature was implemented together with the filtering option on the assignment of
Michael Balmer [11]. The PDF file is stored in the download folder and can be opened
by any person on the workstation. This offends the security and privacy measure of an
authentication. Therefore the output files need to be encrypted.

3.1. SECURITY AND PRIVACY RISKS IN COMADA

http:/flocalhost:8000/index/filter

Filter

Username

Password

Figure 3.2: Mockup for the login screen

11

12 CHAPTER 3. DESIGN DECISIONS

3.2 Traceability

In this chapter we evaluate the question "Who accessed my data?” in depth. For a data
owner it is essential to have the possibility to track the activity in CoMaDa. This can be
for statistical evaluations or up to clearing cases of fraud. In order to make this possible
certain movements in CoMaDa need to be logged. Hence interesting aspects are security
and privacy relevant activities. Addressing these security and privacy relevant activities
the database needs to be revisited. In Figure 3.1 an overview of the current database
tables is shown. The left side of the overview shows all tables which are created for every
WSN. They are mainly used for sensor relevant data and the tables exist in the WebMaDa
as well as in the CoMaDa database. The right side shows the tables which are created
just once. This tables are only available on the MySql database in WebMaDa. The main
purpose for the tables is the administration for User and their WSNs in WebMaDa.

13

3.2. TRACEABILITY

1 pejdnoodap ale sa|ge] Aal

— — @9|qelay} ul diysuonejal @y} Moys saul| payseq

-— foy Aewud

0] foy uBizlo diysuone|al ayp MOYS pua ay} Je SMOLIE UM Saur
Aay] ublalo4 pue AuewiLd Si plom ay] ‘ased syl y1oq S|

shoy ubialo4 ale splom UBLLM die)

shay Alewud aie spiom uspum Apjog

- — — — - — - — —

ppesuodsey| plepoN | piodey

\i Hoday

adfispoN] sue

N | PprapoN

8poN

| | Y

e
jlews | sweuse] wEmEE_n__ piomssed _mEmEm.ﬂ

uoneljily
7 Jesn
Y Y
i bwepposueg| sniep _ piuodsy _ plpiosay swewssn | Ings| EEmﬁmE_._._Emmno%wm
v . plodsieleq asuodsay
| mEmZSm:@L adAL _ E:,&S _mEmEmmD L
7 sy
\
i | adA] apopy vEszmnom
e v adfjspoNoLlosuas
e apoD r — —| —% piomssed [swewesn |« edfliosueg] yun pweniosuegppsidisig| ppuswe
BPOQUOIENAU| | Ry || Josues
- - - - - = Hn [prueans [awenpoed
) weagseleq
sabpaiialdi plomssed [swewssn| sweN | plusm |
NSMaARaY 1HOEM | 1994Vl | 308N0S INn | 3nTvA | 3dAL | 3WWN [ar Wnival ar 3aoN
AD0T0d0L YLva

$9|ge) UOWILLIOD

pajeald ale s3|ge) 95U NS/ Alans Jo4

Figure 3.3: Overview database tables [12]

14 CHAPTER 3. DESIGN DECISIONS

One part for gaining more privacy and transparency is by logging the use of the filtering
option. This assures traceability for a WSN owner in case of forbidden usage. In order
to achieve this, the selected filtering options need to be stored in a table. Figure 3.4
shows such a table. The Filter_Log table consists of seven columns. The Wsnld is the
first column with datatype character varying to recognize which WSN is currently active
on CoMaDa. The Owner is the second column with datatype character varying which
represents the WSN owner. The Timestamp shows the timestamp on the moment the
query for the filtering was made. The last four columns contain the information on the
filtering. Column Users with datatype character varying consists of all selected Users
in the filtering. PP_Type contains the option Push/Pull or both. SDate and EndDate
include the selected Start and End Date with datatype timestamp.

Filtering_Log
Wsnid Owner Timestamp‘ Users ‘PP_Type SDate ‘EndDate

Figure 3.4: Table Filtering_ Log

An additional way for more privacy and transparency that involves database adjustment
would be a tracking for the login into the filtering option. This table could look like in
Figure 3.5. This table consists of five columns. To track the login the most important
columns are the Wsnld for the active WSN, the Username for the user who gained access
or was denied as well as the Timestamp when the query was sent. The last two columns
contain additional information on the login. The Role includes information whether the
username entered is the WSN owner or a guest. The Access Type shows whether the
login was successful or got rejected.

Login Track

Wsnld Username Timestamp Role Access Type

Figure 3.5: Table Login Track

3.3. TRANSPARENCY 15

3.3 Transparency

In the assignment the filtering option was implemented with multiple filtering options
to gain transparency for the data owner. Therefore these options include WSN Users
according to the activated WSN, a start date and an end date and finally the option to
chose between Push and Pull. Concerning the extension of the filtering page a closer look
is taken on three different parts. The first section will take care of the 100% transparency
request. In a second step a more fine grained filtering option is discussed. The last point
talks about the possibilities for the output of the filtered data.

3.3.1 Transparency inside the filtering option

The transparency question was already addressed in the work of my assignment. As a
result a transparency of 75% could be acquired in other words the filtering option allows
the owner to filter the currently selected WSN in CoMaDa for users ,date and push/pull.
The restriction lies within the pushed data, which only shows the owners data who pushes.
Therefore to gain full transparency in the filtering, exactly those pushes from users need
to be included in the data. This can only be achieved by checking the users within a WSN
about their rights. This table is only available in WebMaDa. Therefore the mentioned
pull interface in the related works needs to be extended to obtain the necessary data.

3.3.2 Filtering extension

As in figure 3.6 can be witnessed, a WSN owner can select the WSN users, the date and
the push/pull option.

Filter

All users Start date: |06 /dd /2017
nsilve

chott Select sither nne ar haoth | Pull ¥ End date: | 06 /dd /2017

Select one or more user/s | Mibalm

Show filtered data Save filtered data

Figure 3.6: Filter possibilities

The filtering extension addresses the problem that a WSN owner is not able to limit the
filter options enough especially only with date. As a whole day of data can be a large
number of sensor data. Therefore the filtering option will be extended to date and time,
which allows the WSN owner to select not only the date but also hours and minutes.

16 CHAPTER 3. DESIGN DECISIONS
3.3.3 Output options

The existing implementation allows a WSN owner to download a PDF-File of the currently
selected filtered data. The file is then saved in the download folder under the name of the
WSN with the timestamp. This can be seen in figure 3.7.

ul
Start date: 2017-06-07 End date: 2017-06-07

Figure 3.7: Example of PDF file

For the downloaded data the same security requirements have to be met. As only WSN
owner should be able to read the data the security issue can be resolved by encrypting
the data and providing it with a password. As the password should make sure only the
owner of the WSN can open the file, it makes sense to use the owners password stored in
the database.

Chapter 4

Implementation

This chapter documents the implementation of the previous discussed design decisions.
It is structured in the following way. The first section shows the database adjustments to
increase the traceability. The next section shows the added features in the filtering option
namely, more accurate filter options, the log of the selected filtering and the encryption of
the output file. The last chapter shows in detail the implementation of the login process.

4.1 Database Adjustments

The tables in the design decisions were implemented as described. Figure 4.1 and Figure
4.2 show these tables in PostGresql respectively. The columns selected proofed to be
accurate for their purpose. The detailed table insertion will be discussed in the previous
chapters. Therefore the _filter_log table is picked up again in the subsection Filtering Log
in the chapter Filter extensions whereas table _logintrack is picked up again in the login
process within chapter Login.

Exactly these tables have also been created in the WebMaDa database as all the features
shall be carried over to WebMaDa in a later phase.

17

18 CHAPTER 4. IMPLEMENTATION

-- Table: public. filter log
-- DROP TABLE public. filter log;

CREATE TABLE public. filter log
-
wsnowner character varying(56) NOT NULL,
tstamp filter timestamp without time zone NOT NULL DEFAULT now(),
fuser character varying(58) NOT NULL,
pptype character varying(5@) NOT NULL,
sdate timestamp without time zone NOT NULL,
edate timestamp without time zone NOT NULL,
wsnid character varying(20)

—IWITH (
OIDS=FALSE

w |
ALTER TABLE public. filter log
OWNER TO wsnadmin;

Figure 4.1: PostGres filter log Table

-- Table: public. logintrack
-- DROP TABLE public. logintrack;

CREATE TABLE public. logintrack

=(
wsnid character varying(2@) NOT NULL,
username character varying(5@) NOT NULL,
"timestamp" timestamp without time zone NOT NULL DEFAULT now(),
role character varying(5@),
access type character varying(58)
A
—JWITH (
OIDS=FALSE

)i
ALTER TABLE public. logintrack
OWNER TO wsnadmin;|

Figure 4.2: PostGres logintrack Table

4.2. FILTER EXTENSIONS 19

4.2 Filter extensions

This chapter will go over the added features in the Filtering page in a process like manner.
Therefore the first section presents the more accurate version from Start date and End date
together with Start time and End time. The second section goes over the implementation
of the filter log and the final section shortly presents the password protected output file.

4.2.1 Date and Time

The date and time was a request as filtering just for the date was too inaccurate. As an
active WSN pushes data around every five seconds by default. A search for data in a time
range of one day is not meaningful enough. Figure 4.3 shows such a filtered datatable. It
can be witnessed that the search for only one person and at one day gives 1872 entries.

Filter

All users Start date: | @7/03/2017
nsilve

chott
Select ane or more userss |MIDAIM _ ~

Select either one or both | Push v | Enddate: §7/03/2017

Show filtered data | | Save fillered data

Show [10 ¥ | entries Search:

'WSN Name - ‘WSN User IsPull Timestamp Value Unit Sensort type
2NN649QAKU mibalm f 2017-07-03 15:39:07.543008 1885 sec NodeTime
2NN649QAKU mibalm f 2017-07-03 15:39:07.543008 34.58 c Temperature
2NN649QAKU mibalm f 2017-07-03 15:39:07.543008 2.92 v Voltage
2NNG649QAKU mibalm f 2017-07-03 15:39:07.543008 274 % Humidity
2NN649QAKU mibalm f 2017-07-03 15:39:14.147343 1892 sec NodeTime
2NN649QAKU mibalm f 2017-07-03 15:39:14.147343 34.58 o) Temperature
2NN649QAKU mibalm f 2017-07-03 15:39:14.147343 292 v Voltage
2NN649QAKU mibalm f 2017-07-03 15:39:14.147343 274 % Humidity
2NNG49QAKU mibalm f 2017-07-03 15:39:20.917408 1898 sec NodeTime
2NN649QAKU mibalm f 2017-07-03 15:39:20.917408 34.58 c Temperature

Showing 1 to 10 of 1,872 entries Previows [1 | 2 3 4 s

Figure 4.3: Filtered data with date

The date picker has automatically the date preselected the first time data was received
in the Start date as well as the last time data was received in the End date. This prede-
fined data comes from the function ”ArrayList<String> getDate()” in the DBAccessPost-
gresql.java file. Exactly this function is illustrated in Figure 4.5. The updated function
has new SQL Queries for not just the date but a new time format as recognizable in the
SQL statement on line 364 and 365. It selects the maximum timestamp and minimum
timestamp in a "YYYY-MM-DD HH24:MI” format. Those timestamps are then added
to the result arraylist on line 370 and 373. The result of this function is sent to an ajax
function in the WSNHTTPIndexController.java file. This serves as communication point
between the frontend and the backend of CoMaDa. From there on the data is forwarded
to the http.get request in the Filterwidget.js file displayed in Figure 4.5.

The updates in this function concern the new date format forwarded. Therefore in line
56-59 and line 61-64 the format is split into two segments the date and the time. Those
values are added to the new corresponding datetime element throughout the block on line

20 CHAPTER 4. IMPLEMENTATION

353¢ @0verride
354 public ArrayList<String= getDate() {
355 Connection connection = connect(host, user, password);
356 PreparedStatement stmnt = null;
357 PreparedStatement stmnt2 = null;
358 ArraylList<String> result = new ArraylList<=();
359 if (connection != null){
360 try{
361
362 // get max/min date and max/min time on this date
363
364 stmnt = connection.prepareStatement("SELECT to char(MAX(timestamp), 'YYYY-MM-DD HH24:MI') FROM response");
365 stmnt2 = connection.prepareStatement("SELECT to_char(MIN(timestamp), °YYYY-MM-DD HH24:MI') FROM _response");
366
367 ResultSet un = stmnt.executeQuery();
368 ResultSet un2 = stmnt2.executeQuery();
369 while(un.next()){
370 result.add(un.getString("to char"))
371 }
372 while(un2.next()){
37 result.add(un2.getString("to_char"));
374 }
375
376 }catch (SQLException e) {
77 System.out.println("Statement creation Failed!");
378 e.printStackTrace();
379 }inally {
380 try {
381 if (stmnt 1= null){
382 stmnt.close();
383 }
384 connection.close();
385 }catch (SQLException e) {
386 System.out.println("Couldn’t close connection!");
387 e.printStackTrace();
388 }
389 }
390 System.out.println(result);
391 } return result;
392 }

Figure 4.4: getdate in DBAccessPostgresql.java

71 until line 85. The result of this function is represented in Figure 4.6 which shows the
Start date/time and the End date/time.

4.2. FILTER EXTENSIONS

21

$http.get(’'/index/getdate').then(function(data) {

K

var dates = data.data;

var max = dates[8];

var maxstamp = max.split("
var maxdate = maxstamp[6];
var maxtime = maxstamp[1];

var min = dates[1];

var minstamp = min.split("
var mindate = minstamp[@];
var mintime = minstamp[1];

/* alert("date: "+ maxdate + " time: " +
/* add values to html object date/time

document.getElementById("startDate").min
document.getElementById("startDate").max

maxtime); */
*/

= mindate;
= maxdate;

document.getElementById("startDate").value = mindate;

document.getElementById("endDate").min
document.getElementById("endDate").max
document.getElementById("endDate").value

document.getElementById("startTime").min
document.getElementById("startTime") .max

mindate;

= maxdate;

= maxdate;

= mintime;
= maxtime;

document.getElementById("startTime").value = mintime;

document.getElementById("endTime").min = mintime;

document.getElementById("endTime") .max

maxtime;

document.getElementById("endTime").value = maxtime;

Figure 4.5: getdate in Filterwidget.js

Start date:

06 /07 /2017

02:54 PM
End date:

1lo0/603/2017

08:34 PM

Figure 4.6: Start date/time and End date/time

22

CHAPTER 4. IMPLEMENTATION

The result of the new date/time in the Filtering option is illustrated in Figure 4.7. The

time range of the Start date and End date only adds up to one minute which results in
a datatable set of only 32 entries and a more fine grained possibility to search for certain

data.

Filter
All users Select etther one or both | Push Start date:
“:‘("“"e 10/03/2017
et ane o e A+ ETEFI
10/03/2017
08:34 PM
| Showfiltered data | | Show Log of Filtering | | Save filtered data |
Show[10 ¥ Jentries search
WSN Name 'WSN User IsPull Timestamp Value Unit Sensortype
2NNG49QAKU mibalm f 2017-10-03 20:33:06.464336 477 sec NodeTime
2NNG49QAKU mibalm f 2017-10-03 20:33:06.464336 30.72 C Temperature
2NN649QAKU mibalm f 2017-10-03 20:33:06.464336 2.92 v Voltage
2NNG649QAKU mibalm f 2017-10-03 20:33:06.464336 37.64 % Humidity
2NN649QAKU mibalm f 2017-10-03 20:33:13.357298 483 sec NodeTime
2NNG649QAKU mibalm f 2017-10-03 20:33:13.357298 30.74 [Temperature
2NN649QAKU mibalm f 2017-10-03 20:33:13.357298 2.92 v Voltage
2NNG49QAKU mibalm f 2017-10-03 20:33:13.357298 37.64 % Humidity
2NNG49QAKU mibalm f 2017-10-03 20:33:20.140259 490 sec NodeTime
2NNG49QAKU mibalm f 2017-10-03 20:33:20.140259 30.76 [Temperature

Showing 1 to 10 of 32 entries

Figure 4.7:

Date/time example

Previous

1

2

3

4

Next

4.2. FILTER EXTENSIONS 23

4.2.2 Show filtered data

The change from date to date/time changed the request on the current database. There-
fore an adjustment has been made in displaying the filtered data. As the filter log table
uses the same data from the selected filter options this task is integrated in the imple-
mentation on how to display filtered data. The workflow is identical to the one described
in section Date and Time. First a request with help of an ajax call is done towards the
WSNHTTPIndexController.java file where the request is forwarded to DBAccessPost-
gresql.java file for the actual data manipulation and database access. In Figure 4.8 the
snippet of the additionally added code is shown. For the query on the filtered data it was
possible to directly us the statements from the passed arguments, the only simple change
in the query from datatype date to timestamp, which is not illustrated as it is trivial. On
the other hand it shown how to add selected filter options to the filter_log table. In a
first step the data to be inserted had to be prepared. Therefore from line 529 up to line
538 the current timestamp is created as well the arguments Start date and End date are
parsed into a timestamp to match the datatype in the filtered_log table. The part from
line 543 up to line 555 and from line 558 up to line 567 respectively shows the query for
the insertion of the filtered options. The arguments listed are put into the insert function
wsn_add_filter_log. Exactly this stored procedure is illustrated in Figure 4.9. For every
column a value is assigned to insert the specific data. With this additional code snippet
on pressing the "Show filtered data” button the selected filter options are also successfully
logged.

24 CHAPTER 4. IMPLEMENTATION

522 //Startdate and Enddate for Query

523 String sd = statements.get(2);

524 string ed = statements.get(3);

525 stmnt.setString(1, sd);

526 stmnt.setString(2, ed);

527

528 //timestamp

529 Date date = new Date();

530 long time = date.getTime();

531 Timestamp current = new Timestamp(time);

532

533 //Change sd / ed to Timestamp

534 String sdate = sd + ":00";

535 Sstring edate = ed + ":00";

536 System.out.println(sdate);

537 java.sql.Timestamp sqglsdate = java.sql.Timestamp.valueOf(sdate);
538 java.sql.Timestamp sqledate = java.sql.Timestamp.valueOf(edate);
539

540 // Add Filter data to Filter Log table

541 PreparedStatement stmnt filter log = null;

542

543 if (users.contains("ALL users") == false) {

544 for (int i = 8 ; i < numuser; i++) {

545 string stmnt_user = splitArray[i];

546 stmnt_filter log = connection.prepareStatement("SELECT wsn_add filter log(?,?,?,7,7,7,7):");
547 stmnt_filter log.setString(l,owner);

548 stmnt_filter log.setTimestamp(2, current};
549 stmnt filter log.setString(3, stmnt user);
550 stmnt_filter log.setString(4, pp);

551 stmnt_filter log.setTimestamp(5, sqlsdate);
552 stmnt_filter log.setTimestamp(6, sqledate);
553 stmnt_filter log.setString(7, wsnid);

554

555 stmnt_filter log.executeQuery();

556 }

557 } else {

558 String all = "All users";

559 stmnt_filter log = connection.prepareStatement("SELECT wsn_add filter log(?,?,7,7,7,7,7);");
560 stmnt filter log.setString(l,owner);

561 stmnt_filter log.setTimestamp(2, current);

562 stmnt_filter log.setString(3, all);

563 stmnt_filter log.setString(4, pp);

564 stmnt_filter log.setTimestamp(5, sqlsdate);

565 stmnt_filter log.setTimestamp(6, sqledate);

566 stmnt_filter log.setString(7, wsnid);

567 stmnt_filter log.executeQuery();

568 }

569

Figure 4.8: getfilteredData in DBPostGresql.java

- Function: public.wsn add filter log(character varying, timestamp without time zone, character varying, character varying, timestamp without time zone, timestamp without time zc
- DROP FUNCTION public.wsn add filter log(character varying, timestamp without time zone, character varying, character varying, timestamp without time zone, timestamp without tim

CREATE OR REPLACE FUNCTION public.wsn add filter log(
p_owner character varying,
p_timestamp timestamp without time zone,
p_all character varying,
p_pp character varying,
p_sd timestamp without time zone,
p_ed timestamp without time zone,
p_wsnid character varying)

RETURNS void AS

$BODY$BEGIN
T INSERT INTO filter log(wsnowner, tstamp filter, fuser, pptype, sdate, edate, wsnid) VALUES (p owner, p timestamp, p_all, p pp, p_sd, p_ed, p wsnid);

END$BODYS
LANGUAGE plpgsql VOLATILH
COST 106;

ALTER FUNCTION public.wsn add filter log(character varying, timestamp without time zone, character varying, character varying, timestamp without time zone, timestamp without time
OWNER TO postgres;

Figure 4.9: stored procedure wsn_add_filter_log

4.2. FILTER EXTENSIONS 25

4.2.3 Show the filter log

This subsection explains the implementation of the feature to display the content of the
table filter_log. The start is the retrieval of the data from the table. This is done in
the getFilterLog function in the DBAccessPostgresql.java file as shown in Figure 4.10.
The data is retrieved with the query on line 437. The data is then processed and every
element is added to the Arraylist "res”. This Arraylist is then sent to the ajax module
filter_log in the WSNHTTPIndexController.java file shown in Figure 4.11. This ajax
function forwards the data to the filterWidget.js file in the front end. The part responsible
within filterWidget.js is illustrated in Figure 4.12. The actual initialization of the above
described workflow can be found on line 91 with the http.get request after the "Show Log
of Filtering” button was pressed. The returning data is then added row by row on line
100 and pushed into a datatable for each column on line 106 to 112. This datable is then
displayed on the filtering page. An example of such a datatable is shown in Figure 4.13.

426= @verride

427 public ArraylList<Map<String, String=> getFilterLog() {

428 Connection connection = connect(host, user, password);
429 Preparedstatement stmnt = null;

430

431 ArrayList<Map<String,String=> res = new ArrayList<>();
432 if (connection !'= null){

433 try{

434

435

436 // Get Filter data from the Filter Log table

437 stmnt = connection.prepareStatement("SELECT * FROM filter log");
438

439 ResultSet rs = stmnt.executeQuery();

440 ResultSetMetaData rsmt = rs.getMetaData();

441 int columnCount = rsmt.getColumnCount();

442 while(rs.next()){

443 Map<String,S5tring= resultMap = new HashMap<=();
444

445 for(int 1 =1 ; i <= columnCount; i++){

446 resultMap.put(rsmt.getColumnName(i).toLowerCase(),rs.getString(i));
447

448 }

449 res.add(resultMap);

450 }

451 }catch (SQLException e) {

452 System.out.println("Statement creation Failed!");
453 e.printStackTrace();

454 }finally {

455 try {

456 if (stmnt !'= null){

457 stmnt.close();

458 }

459 connection.close();

460 }catch (S0LException e) {

461 System.out.println("Couldn't close connection!");
462 e.printStackTrace();

463 }

464 }

465 }

466 return res;

467 1

Figure 4.10: getfilterlog in DBPostGresql.java

26 CHAPTER 4. IMPLEMENTATION

/xx

ajax update action, returns the filter log data
@param request

@param response

LA

@author Michael Balmer
*/

public void getfilterlogAction(HTTPRequest regquest, HTTPResponse response) {
Map<String,Object> jsonResult = new HashMap<String,Object=();

response.body = JSONValue.toJSONString(jsonResult).getBytes();
IDBAccessLayer dbAccess = new DBAccessPostgresql(this.getServerModule().app().getProperties());

jsonResult.put("data", dbAccess.getFilterLog()});
response.body = JSONValue.toJSONString(jsonResult).getBytes();

}
Figure 4.11: get filterlog ajax call

[+7]
89 document.getElementById('showLogBtn').addEventListener('click', function() {
98
91 $http.get('/index/getFilterLog’).then(function(data) {
9z if (data.data.data '= @) {
93 document.getElementById('filteredData').style.display = "none";
94 $('#filteredData’).parents('div.dataTables wrapper').first().hide();
95 $('#filterLogData’).parents('div.dataTables wrapper').first().show();
96 document.getElementById('noData’').style.visibility = "hidden";
97 document.getElementById('filterLogData').style.display = "";
98 $("#filterLogData tr:gt(@)").remove();
99 var outter = [];
100 for (var key in data.data.data) {
181 var entry = data.data.data[key];
182 var keys = Object.keys(entry);
183 var values = data.data.data[key];
104
185 var inper = [];
186 inner.push(data.data.data[key].wsnowner});
187 inner.push(data.data.data[key] .wsnid};
168 inner.push(data.data.datalkey].tstamp filter);
189 inner.push(data.data.data[key].fuser);
110 inner.push(data.data.data[key].pptype);
111 inner.push(data.data.data[key].sdate)};
112 inner.push(data.data.data[key].edate)};
113 outter.push({inner);
114
115 }
116 var table = $('#filterLogData’').DataTable();
117 table.clear().rows.add{outter).draw();
118
119
120 telse{
121 document.getElementBylId('filterLogData').style.display = "none";
122 document.getElementById('filteredData').style.display = "none";
123 document.getElementById('noData').style.visibility = "visible";
124 L

Figure 4.12: Show filter_log javascript

4.2. FILTER EXTENSIONS

27

| Show filtered data | | Show Log of Fitering | | Save fitered data |
show[10 ¥ | entries Search:
WSN Owner - WSNID Timestamp Filtered User Push or Pull Selected Startdate Selected Enddate
mibalm 2NNG49QAKU 2018-01-23 00:15:29.28 mibalm Push 2017-07-03 00:00:00 2017-07-03 00:00:00
mibalm 2NNG49QAKU 2018-01-23 00:48:51.441 mibalm Pull 2017-06-07 14:54:00 2017-10-03 20:34:00
mibalm 2NN649QAKU 2018-01-23 01:09:11.395 mibalm Push and Pull 2017-06-07 14:54:00 2017-10-03 20:34:00
mibalm 2NN649QAKU 2018-01-23 01:09:33.666 mibalm Push and Pull 2017-06-07 14:54:00 2017-10-03 20:34:00
mibalm 2NN649QAKU 2018-01-23 01:22:25.374 nsilve Push and Pull 2017-06-07 14:54:00 2017-10-03 20:34:00
mibalm 2NN649QAKU 2018-01-23 01:22:25.374 chott Push and Pull 2017-06-07 14:54:00 2017-10-03 20:34:00
mibalm 2NN649QAKU 2018-01-23 01:22:25.374 mibalm Push and Pull 2017-06-07 14:54:00 2017-10-03 20:34:00
mibalm 2NN649QAKU 2018-01-23 01:22:33.321 nsilve Push and Pull 2017-06-07 14:54:00 2017-10-03 20:34:00
mibalm 2NN649QAKU 2018-01-23 01:22:33.321 chott Push and Pull 2017-06-07 14:54:00 2017-10-03 20:34:00
mibalm 2NN649QAKU 2018-01-23 01:22:33.321 mibalm Push and Pull 2017-06-07 14:54:00 2017-10-03 20:34:00

Showing 31 to 40 of 46 entries

Figure 4.13: Datatable log of filtering

Previous

1 23‘4‘5

28 CHAPTER 4. IMPLEMENTATION

4.3 Login

The new Login functionality is the main security feature added. In this section the files
involved are revisited and the implementation is explained. For a better understanding
this section is divided in two parts. The first one is the Client side which shows the usage
of the upload interface on CoMaDa. The second part shows the data processing on the
Server side in this context the WebMaDa part of the upload interface.

4.3.1 Client side

In this subsection the implementation of the CoMaDa part to upload the login credentials
is described. The entry point of the workflow is the Login screen shown in Figure 4.14.

Filter
Username
mibalm

Password

Figure 4.14: Login Screen

The code of the Login screen is displayed in Figure 4.15. The code snippet shows the
inbuilt javascript part of the filter.html. On line 20 and 21 we read the input of the
document elements username and password. From line 24 to 31 we make a simple ajax
call to the getloginlog handler in WSNHTTPIndexController.java. The code after the
ajax call will be discussed in a later stage.

The Ajax call handler is illustrated in Figure 4.16. On line 567 and 568 the given argu-
ments are read and converted to type String and forwarded as arguments of the function
LoginLog on line 571. Function LoginLog also resides in the DBAccessPostgresql.java file.

The function is shown in Figure 4.17. This is where the function is called to upload the
credentials to WebMaDa for the login check. To make this work the upload interface from
Claudio Anliker [10] had to be extended. An upload can be triggered with a call to a
BasicUploaderStarter.java method. This happens on the line 307.

As mentioned to make this work the upload interface had to be extended. The first file
is the LoginUploadFacade.java its a simple method to set the username and password
within it. The idea behind the file is to store only the important data for the upload if
more data would be sent than necessary.

The next file shown in Figure 4.19 is a specified variant of a DefaultUploader It is needed
to manipulate the UploadMessageType and the received arguments.

4.3. LOGIN 29

14 =script type="text/javascript"s

15

16

17 $(document) . ready(function{){

18 $('#loginButton').click({function(}{

19 <!--location.href = "/index/widgets/filter/filterWidget.html" --:
28 var username = document.getElementById("username").value;
21 var password = document.getElementById("password").value;
22

23

24 $.ajax({

25 "url": "/index/getloginlog",

26 "data": {username, password},

27 "dataType": "text",

28 success: function(data){

29 | ¥

36 error: function(){},

31 1)

32

33 |

34

35 var login = data;

36

37

38

39 if (login == true) {

40

41 var x = document.getElementById("widgetFilter");
42 if (x.style.display === "none") {

43 x.style.display = "block";

44 } else {

45 x.style.display = "none";

46 }

47 var y = document.getElementById("login");
48 if (y.style.display === "none") {

49 y.style.display = "block";

50 } else {

51 y.style.display = "none";

52 }

53 telse{

54

55 alert("Username or password wrong!"};

56 1

57

58 1)

59 1)

Figure 4.15: filter.html
In Figure 4.20 the function uploadLogin on line 103 in the BasicUploadStarter.java file is
added. This handler is used to instantiate the upload of the login data.

This functionality is needed to upload the credentials. Therefore in Figure 4.17 on line 296
a LoginUploadFacade is instantiated at first. From line 297 up to line 301 is implemented

30 CHAPTER 4. IMPLEMENTATION
555 J¥

556 * ajax update action, check login data and log it.

557 * @param reguest

558 * [@param response

559 *

560 * @author Michael Balmer

561 B4

562

563c public void getloginlogAction(HTTPRequest request, HTTPResponse response) {

564 boolean jsonResult;

565

566

567 String username = request.arguments.get("username”).toString();

568 String password = request.arguments.get("password").toString();

569

570 IDBAccesslLayer dbAccess = new DBAccessPostgresql(this.getServerModule().app().getProperties());
571 jsonResult = dbAccess.LoginLog(username, password);

572 response.body = JSONValue.toJSONString(jsonResult).getBytes();

573 }

Figure 4.16: Ajax call loginlog

for an additional authentication to the upload interface. In line 305 the dataUploader is
instantiated as a BasicUploadStarter with the secure connection parameters. Finally on
line 307 the login credentials are sent to the server side of the upload interface.

4.3. LOGIN

289= @override

-290 public boolean LoginLog(String username, String pw) {

291 Connection connection = connect(host, user, password);

292 PreparedStatement stmnt = null;

293 boolean res = true;

294 string suc;

295

296 LoginUploadFacade login cred = new LoginUploadFacade(username, pw);
297 cosm = new CosmAPI("tumi8", "c8ROrBphAZ2b3lkhePtdKBDS0rqSAKxZTWSsMkZKZGhgMDeg");
298 IUploaderFactory factory = new BasicUploaderFactory(appPro, cosm);
299 IHttpConnector httpConn = new BasicAuthenticator(new HttpConnector(appPro),
300 new UploadCredentials(appPro.getProperty(“upload.password”),
301 appPro.getProperty("wsn.id")));

302 //UploadLogin login data = new UploadLogin(username, pw);

303 //IHttpConnector httpConn = new BasicLogin(new HttpConnector(appPro), login data);
304

305 dataUploader = new BasicUploadStarter(factory, httpConn);

306

307 dataUploader.uploadLogin(login cred);

308

3089 if(response == "S_AUTH SUCCESS" }{

310 res = true;

311 suc = "sucess";

312

313 telse{

314

315 res = false;

316 suc = "denied”;

317 1

318

319

320 if (connection !'= null){

321 try{

322 Date date = new Date();

323 long time = date.getTime();

324 Timestamp current = new Timestamp(time);

325

326 stmnt = connection.prepareStatement("SELECT wsn add logintrack(?,?,7,7,7);");
327 stmnt.setString(1, wsnid);

328 stmnt.setString(2, username);

329 stmnt.setTimestamp(3, current);

330 stmnt.setString(4, "");

331 stmnt.setString(5, suc);

332

333 stmnt.executeQuery();

Figure 4.17: Loginlog in PostGres.java

32 CHAPTER 4. IMPLEMENTATION

1 package de.tum.in.net.WSNDataFramework.Modules.Web.Upload.Facade;

2

3

40 [**

5 * Facade-like helper class to encapsulate Login data for the handling
& * at the upload interface.

'I||I *

8 * @author Michae]]

9 *

18 */

11 public class LoginUploadFacade {

12

13 private String username;

14 private String password;

15

16

17= public LoginUploadFacade(String username, String password){
18 this.password = password;

19 this.username = username;

20 }

21

22 protected String getPassword() {
23 return password;

24 }

25

26= protected String getUsername() {
27 return username;

28 }

29 }

30

Figure 4.18: LoginUploadFacade

4.3. LOGIN

package de.tum.in.net.WSNDataFramework.Modules.Web.Upload.Factory;

@ import de.tum.in.net.WSNDataFramework.Modules.Web.Upload.UploadMessage;|]

= _,l'r""
* Uploader to handle login uploads.

*

* @author Michael
r.}.l‘
public class LoginUploader extends DefaultUploader{

= @iverride
public UploadMessage formMessage(Object input) {
if(input instanceof LoginUploadFacade){
return new UploadMessage(UploadMessageType.C_LOGIN, input);
}

System.out.println("no login data");
return null;

}
}
Figure 4.19: LoginUploader in Factory
lee= [**
181 * This handler initiates the upload of the login data.
la2 */
183= public void uploadLogin(LoginUploadFacade content) {
184 UploadMessage toUpload = LoginUploader.formMessage(content);
185 LoginUploader.upload(toUpload, httpConn);
166 }
187 }

Figure 4.20: Function uploadLogin in BasicUploadStarter

34 CHAPTER 4. IMPLEMENTATION

4.3.2 Server side

When the client side sends a message. The incoming message is handled by the index.php
file in the upload folder. In Figure 4.21 the index.php is presented. In the beginning
of the file the multiple different handlers for the messagetypes are instantiated. The
triage for the different handlers happens on line 50 and 51, where the messagetype is
checked and forwarded to the correct Handler file. In case of messagetype "C_LOGIN”,
the LoginHandler.php is started.

18 $loginhandler = new LoginHandler;

= $loginhandler;
= &datahandler;

19 Shandlers['C

20 Shandlers[’'

21 $handlers[’ $nodehandler;

22 S$handlers[= §sensorhandler;

23 S$handlers[= new StreamHandler;

24 Shandlers| E'] = new RawPackageHandler:

26 SuploadPde = null;

27 [if(!$auth->ensurePost ()) {

28 return;

1 if (!1§auth->handle (§_POST['message’], SuploadPdo))
2 B

33 return;

& [if({$uploadPdo === null){

7 error_log('upload pdo is null');

38 return;

Smessage = json_decode (§ 1. true);

sset ($message|

Clif (! isset (Smessage[
sendResponse ('5_
return;

48 Stype — Smessage['messageTyps']:

Clif (isset (Shandlers[Scype])){
$handlers[$type] ->handle ($message, $uploadPdo);

function sendResponse ($messagelype, S$content)

=

S$message = array(
=> SmessageType,
=> Scontent,

28)
$response = json_encode (Smessage) ;
61 echo Sresponse;

Figure 4.21: Upload index.php

The LoginHandler.php implementation can be seen in Figure 4.22 the incoming message
is first checked on several parameters to make sure, the correct messagetype has been
provided as well as the content is complete. Afterwards the passwordhash of the provided
user is written into a variable on Line 38. On line 40 starts the credential check on which

s outcome a S_LAUTH_ERROR or a S_LAUTH_SUCCESS is returned.

4.3.

=] o b

[T & -]

(=TT]

[T Ve T = TS (R I B S L B % I =

[Y S VI S

-1 & i

[T]

L T T L O B O L T B R

[Y S 4
[T ¥ 0 Y S S T % T)

s
-]

i}

tnononoen NN s
[T R L T N S AT

1
]

LOGIN 35

J]class LoginHandler extends AbstractHandler
=11

public function handle (Smessage, &SuploadPdo)
E i
= if (Smessage['messageType’'] !== C_LOGIN) {

$this—>sendResponsetS_hUTH_HISS, 'Expect a C LOGIN message.'):
return false;

else {
Scontent = Smessage['content']:
if (! {isset (Scontent ['password'])
= |l !(isset($content['username’])})}){

$this—>sendRespnnse[S_AUTH_HISS, 'Incomplete C LOGIN provided.'}):
return false;

fpas=s = fcontent['password']:

fusername = Scontent['username’'];

= /* Get a user's data from database to compare the provided
* password with the hash stored.

- :-e!

= function getUserFromDatabase ($username) {

ZgetUserHandle = Config::$loginPdo-»prepare {'CRLL GetPasswordHash (?):'
ZgetlUserHandle->bindValue (1, Susername);

SgetUserHandle->execute () ;

Suser = $getUserHandle->fetch (PDO: :FETCH_AS50C) ;
SgetUserHandle->closeCursor() ;

return Suser;

/fcheck credentials

= try{

gpdo = Sthis->createTemporaryPdo()
fuserFromDbk = getUserFromDatabase (Susername) ;

= if [passwnrd_verify[$pass, SuserFromDb ['password'])) {
else {
$this—>sendﬁespanse[S_AUTH_ERROR, '"Wrong password: ' . Spass);
return;

catch (PDOException 5e) {
$this—>sendRespnnsetS_AUTH_ERROR, fe-rgetMessage ())
return false:

SuploadPdo = &pdo:

$this—>sendResponse[S_AUTH_SUCCESS, 'Credential check successful');
return true;

Figure 4.22: LoginHandler in WebMaDa

36 CHAPTER 4. IMPLEMENTATION

4.3.3 Logintrack

The Logintrack implementation is done in the LoginLog function which we earlier visited.
Depending on the outcome of the logincheck the variable on line 331 is either way success
or denied. The query is handled by a stored procedure named wsn_add_logintrack. In

Figure 4.23 exactly this procedure is presented. For each variable exists an argument for
the INSERT command.

320 if (connection '= null){

321 try{

322 Date date = new Date();

323 long time = date.getTime();

324 Timestamp current = new Timestamp(time);
325

326 stmnt = connection.prepareStatement ("SELECT wsn_add logintrack(?,?,7,7,?);");
327 stmnt.setString(1l, wsnid);

328 stmnt.setString(2, username);

329 stmnt.setTimestamp(3, current);

330 stmnt.setString(4, "");

331 stmnt.setString(5, suc);

332

333 stmnt.executeQuery();

334 }eatch (SQLException e) {

335 System.out.println("Statement creation Failed!");
336 e.printStackTrace();

337 }inally {

338 try {

339 if (stmnt !'= null){

340 stmnt.close();

341 }

342 connection.close();

343 }catch (SQLException e) {

344 System.out.println({"Couldn't close connection!");
345 e.printStackTrace();

346 }

347 }

348 }

349 return res;

350 }

Figure 4.23: Logintrack in LoginLog function in DBPostgre.java

- Function: public.wsn_add_logintrack(character varying, character varying, timestamp without time zone, character varying, character varying)
-- DROP FUNCTION public.wsn add logintrack(character varying, character varying, timestamp without time zone, character varying, character varying);

CREATE OR REPLACE FUNCTION public.wsn_add_logintrack(
p_wsnid character varying,
p_username character varying,
p_timestamp timestamp without time zone,
p_role character varying,
p_acc_type character varying)
RETURNS void AS

$SBODYSBEGIN
T INSERT INTO logintrack(wsnid, username, timestamp, role, access type) VALUES (p wsnid, p username, p timestamp, p role, p acc_type);

ENDSBODYS
LANGUAGE plpgsql VOLATILE
COST 180;

ALTER FUNCTION public.wsn_add_logintrack(character varying, character varying, timestamp without time zone, character varying, character varying)
OWNER TO postgres;

Figure 4.24: Stored procedure wsn_add_logintrack

Chapter 5

Evaluation

5.1 Proof of Operability

The evaluation is done by a Proof of Operability as it is best fit to test the running system.
The testing includes the Login, the time/date filtering option, the show log of filtering
functionality and the logintrack in the background.

37

38 CHAPTER 5. EVALUATION
Testsetting: username: mibalm pw: korrekt

Expected: Console S_AUTH_SUCCESS
Result: Correct

Filter

Username

jmibalm

Password

|t“t“th|

Login

Figure 5.1: Login Test 1

Authenticate at upload interface...

Response: {"messageType":"S AUTH SUCCESS","content":"Authentication successful"}
Authentication at upload interface was successful!

Response: {"messageType":"S AUTH SUCCESS","content":"Credential check successful"}

Figure 5.2: Console output Test 1

5.1. PROOF OF OPERABILITY

Testsetting: username: mibalm pw: falsch
Expected: Console S_AUTH_ERROR
Result: Correct

Filter

Username
mibalm

Password

TREERE

Login

Figure 5.3: Login Test 1

Authentication at upload interface was successful!
Response: {"messageType":"S AUTH ERROR","content":"Wrong password: falsch"}

Figure 5.4: console output Test 2

39

40 CHAPTER 5. EVALUATION
Testsetting: Start Date: 10/03/2017 End Date: 10/03/2017

Start Time: 08:33 PM End Time: 08:34 PM
Exected: Correct data

Result : Correct

Filter
All users Select etther one or both | Push v| Startdate:
n:::‘e 10/03/2017
et ane o e TG < [pa:33 o
10/03/2017
08:34 PM
| Showfiltered data | | Show Log of Filtering | | Save filtered data |
Show[10 ¥ |entries Search
WSN Name v 'WSN User IsPull Timestamp Value Unit Sensortype

2NNG49QAKU mibalm f 2017-10-03 20:33:06.464336 477 sec NodeTime
2NNG49QAKU mibalm f 2017-10-03 20:33:06.464336 30.72 C Temperature
2NNG49QAKU mibalm f 2017-10-03 20:33:06.464336 2.92 v Voltage
2NNG649QAKU mibalm f 2017-10-03 20:33:06.464336 37.64 % Humidity
2NN649QAKU mibalm f 2017-10-03 20:33:13.357298 483 sec NodeTime
2NNG649QAKU mibalm f 2017-10-03 20:33:13.357298 30.74 [Temperature
2NN649QAKU mibalm f 2017-10-03 20:33:13.357298 2.92 v Voltage
2NNG49QAKU mibalm f 2017-10-03 20:33:13.357298 37.64 % Humidity
2NNG49QAKU mibalm f 2017-10-03 20:33:20.140259 490 sec NodeTime
2NNG49QAKU mibalm f 2017-10-03 20:33:20.140259 30.76 [Temperature

Showing 1 to 10 of 32 entries Previous f‘ 23 4 Next

Figure 5.5: Date/Time Test

5.1. PROOF OF OPERABILITY

Testsetting:

41

Expected: Display Log of Filtering and show previous time/date filtering
Result: Correct

Show[10 ¥ |entries Search:
WSN Owner - ‘WSNID Timestamp Filtered User Push or Pull Selected Startdate Selected Enddate
mibalm 2NNG49QAKU 2018-01-23 01:27:45.818 All users Push and Pull 2017-06-07 14:54:00 2017-10-03 20:34:00
mibalm 2NN649QAKU 2018-01-23 01:28:02.88 mibalm Push 2017-06-07 14:54:00 2017-10-03 20:34:00
mibalm 2NNG49QAKU 2018-01-23 01:29:46.036 mibalm Push 2017-06-07 14:54:00 2017-10-03 20:34:00
mibalm 2NN649QAKU 2018-01-23 01:31:00.89 All users Pull 2017-06-07 14:54:00 2017-10-03 20:34:00
mibalm 2NNG49QAKU 2018-01-23 01:31:19.254 mibalm Push 2017-06-07 14:54:00 2017-10-03 20:34:00
Push |
mibalm 2NN649QAKU 2018-02-01 20:55:52.894 mibalm Push 2017-06-07 14:54:00 2017-06-07 14:56:00
mibalm 2NN649QAKU 2018-02-01 20:56:03.733 All users Push and Pull 2017-06-07 14:54:00 2017-06-07 14:56:00

Showing 41 10 48 of 48 entries

Figure 5.6: filterelog Test

Previous

™

42

CHAPTER 5. EVALUATION

Chapter 6

Summary and Conclusions

The goal of this thesis to improve the security, privacy and transparency functionalities
of CoMaDa are met. Additional filter extensions allow the WSN owner to search more
accurate eg. the search for date and time has been added which allows the WSN to search
for data accessed within one minute this clearly leads to an increase in transparency. The
Logging functionality for the filtering options as well as the logintrack allows the WSN
owner to track the movement on the CoMaDa side leading to more privacy and trans-
parency. The concern about security issues could be reduced with the new login screen
which implements an extend version of the upload interface to transmit the credentials to
the WebMaDa server side and perfom an login check. This functionality allows only the
WSN owner to get access to the more sensitive filtering option and the log options.

The work on this thesis showed me that CoMaDa could be made more secure and the
threat for miss use could be reduced for sure. The work with the Upload/Pull interface was
characterized by many difficulties. As it included many modules and dependencies which
first had to be spotted. In the end it can be said that the extension of the Upload/Pull
interface could bring even more transparency to CoMaDa it self. Therefore an extension
for gaining data from the WebMaDa database would be an increase in any aspect of
transparency and privacy this work treated.

43

44

CHAPTER 6. SUMMARY AND CONCLUSIONS

Bibliography

[1]

[10]

H.Karl and A. Willig, Protocols and Architectures for Wireless Sensor Networks,
John Wiley and Sons, Vol 1, ISBN: 0470519231, GB, 2007.

SecureWSN, URL: http://www.csg.uzh.ch/research/SecureWsN, last visited Jan-
uary. 29, 2018.

C. Schmitt, T. Strasser, B. Stiller, Third-party-independent Data Visualization of
Sensor Data in CoMaDa; 12th IEEE International Conference on Wireless and Mo-
bile Computing, Networking and Communications, New York, NY, U.S.A., Oct. 2016,

pp 1-8.

C. Schmitt, T. Strasser, B. Stiller, Efficient and Secure Pull Requests for Emergency
Cases Using a Mobile Access Framework; in: M. Sheng, Y. Qin, L. Yao, B. Benatallah
(Edt.), WoT-book-Managing the Web of Things: Linking the Real World to the Web,
Elsevier, New York, NY, U.S.A., Feb. 2016, pp 1-19.

Andr”e Freitag, Corinna Schmitt, Georg Carle, CoMaDa: An Adaptive Framework
with Graphical Support for Configuration; 9th International Conference on Network
and Service Management, Ziirich, Switzerland, October 2013, ISBN 978-3-901882-
53-1, pp 211-218.

Communication Systems Group (CSG), URL: http://www.csg.uzh.ch/, last visited
January. 15, 2018.

C. Schmitt, M. Keller, and B. Stiller, WebMaDa: Web-based Mobile Access and Data
Handling Framework for Wireless Sensor Networks (Demo Paper); In International
Conference on Networked Systems (NetSys), Cottbus, Germany, March 2015.

T. Strasser, Method for Graphical Visualization of Sensor Data; Assignment, Univer-
sity of Zurich, Communication Systems Group, Department of Informatics, Ziirich,
Swizerland, March 2016.

C. Ott, Database Solution for Offline Graphical Visualization of Sensor Data; As-
signment, University of Zurich, Communication Systems Group, Department of In-
formatics, Ziirich, Switzerland, January 2017.

C. Anliker, Secure Pull Request Development for TinyIPFIX in Wireless Sen-
sor Networks; Master’s thesis, Department of Informatics, University of Zurich,
Ziirich,Switzerland, Nov 2015.

45

46

[11]

[12]

[13]

[14]

[15]
[16]

[17]
[18]

BIBLIOGRAPHY

M. Balmer, CoMaDa FExtension Addressing Transparency Request for Data Owners;
Assignment, University of Zurich, Communication Systems Group, Department of
Informatics, Ziirich, Switzerland, July 2017.

N. Silvestri, WebMaDa Extension Addressing Transparency Request for Data Owners;
Assignment, University of Zurich, Communication Systems Group, Department of
Informatics, Ziirich, Switzerland, July 2017.

WebMaDa, URL: https://webmada.csg.uzh.ch/, last visited January. 29, 2018.

W3SCHOOLs, URL: https://www.w3schools.com/jquery/jquery_intro.asp,
last visited January 15 , 2018.

datatables, URL: https://datatables.net/, last visited January. 15, 2018.

oracle, URL: http://docs.oracle.com/javase/tutorial/jdbc/basics/
prepared.html, last visited January. 15, 2018.

mySql, URL: https://dev.mysql.com/doc/, last visited November. 21, 2017.

postGreSql, URL: https://www.postgresql.org/docs/9.1/static/index.html,
last visited November. 30, 2017.

List of Figures

2.1 Components of SecureWSNo oo 6
2.2 Overview of Upload/Pull interface [10] 6
2.3 Filter option in CoMaDa [11] 7
3.1 Research questions in SecureWSN 9
3.2 Mockup for the login screen 11
3.3 Overview database tables [12] 13
3.4 Table Filtering_ Log 14
3.5 Table Login Track 14
3.6 Filter possibilities 15
3.7 Example of PDF file 16
4.1 PostGres filter log Table 18
4.2 PostGres logintrack Table 0oL 18
4.3 Filtered data with date oo 19
4.4 getdate in DBAccessPostgresqljava 20
4.5 getdate in Filterwidget.js o 21
4.6 Start date/time and End date/timeo oL 21
4.7 Date/time example 22
4.8 getfilteredData in DBPostGresql.java 24
4.9 stored procedure wsn_add_filter_log 24
4.10 getfilterlog in DBPostGresql.java 25

48

4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24

5.1
5.2
5.3
5.4
5.5
5.6

LIST OF FIGURES

get filterlog ajax call 26
Show filter_log javascript 26
Datatable log of filtering 27
Login Screen 28
filter.html o 29
Ajax call loginlog 30
Loginlog in PostGres.java 31
LoginUploadFacade 32
LoginUploader in Factory 33
Function uploadLogin in BasicUploadStarter 33
Upload index.php 34
LoginHandler in WebMaDa 35
Logintrack in LoginLog function in DBPostgre.java 36
Stored procedure wsn_add_logintrack 36
Login Test 1 o . 38
Console output Test 1 38
Login Test 1 39
console output Test 2 39
Date/Time Test o o 40

filterelog Test L 41

