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Abstract

This thesis contributes to a development project at General Acoustics e.K. (GA), a com-
pany in the environmental data measurement field. First, the design and implementation
of a module framework for sensor data management is shown. A second part presents
the development of a LOG aLevel 2.0 prototype, a product in development at GA. The
module framework should result in a library that assists in the development of modular,
configurable, and extendable applications. The framework should provide a middleware
layer that simplifies lifetime management, dependency handling, persistence problems,
and state control for the user. The goal of the prototype part was the implementation of
LOG aLevel functionality in a modular architecture by using the module framework. A
focus was put on the design of a structured data storage solution. The implementation
was done in C++ with SQLite as database technology. The prototype was developed for
a low-power Linux device.

The framework was designed based on related work and covers the requirements of GA.
It allows the creation of modular applications that can be composed at runtime over a
configuration file. The resulted prototype application provides three core functionalities.
It has a preprocessing interface to create human understandable measurement values
from raw sensor data. This data is stored in a SQLite-based structured data storage
solution. Advanced interval based algorithms can be integrated to postprocess the stored
data. The evaluation of the structured data storage solution has shown that a SQLite-
based implementation is suitable for the use in a LOG aLevel system. The development
project at GA will use the contributions of this thesis as groundwork. From there on,
the framework and the prototype implementation will be developed further until the new
LOG aLevel version reaches market maturity.
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Zusammenfassung

Diese Arbeit ist Teil eines Entwicklungsprojekts bei General Acoustics e.K. (GA), ei-
ner Firma welche sich mit der Messung von Umweltmessdaten auseinandersetzt. Design
und Implementation eines Modulframeworks werden in einem ersten Teil beschrieben.
Ein zweiter Abschnitt beschreibt die Entwicklung eines LOG aLevel 2.0 Prototypen, ein
zur Zeit in der Entwicklung steckendes Produkt von GA. Das entwickelte Framework soll
bei der Entstehung modularer, konfigurierbarer und erweiterbarer Anwendungen dienen.
Es soll eine Middleware Schicht zur Vereinfachung von Lebensdauer- und Statuskontrolle
sowie Abhängigkeits- und Persistenzmanagement bereitstellen. Das Ziel des Prototypen
war die Umsetzung von LOG aLevel Funktionalität in einer modularen Anwendung unter
Verwendung des Modulframeworks. Eine Kernaufgabe war die Integration einer struktu-
rierten Sensordatenspeicherlösung in den Prototypen. Die Implementation sollte mit C++
und SQLite als Datenbanklösung umgesetzt werden. Zielplattform des zu entwickelnden
Prototypen war ein stromsparendes Linux Gerät. Es wird der Kern der neuen LOG aLevel
Version sein.

Das Framework entstand unter Einbezug in Zusammenhang stehender Arbeiten und deckt
die Anforderungen von GA ab. Es ermöglicht die Erstellung von Anwendungen, welche zur
Laufzeit mit Hilfe einer Konfigurationsdatei zusammengesetzt werden. Die Prototyp An-
wendung verfügt über eine Schnittstelle zur Datenvorverarbeitung, einer Möglichkeit zur
strukturierten Datenhaltung, und erlaubt die Integration erweiterter Algorithmen zur Da-
tenaufbereitung. Die Evaluation der strukturierten Datenhaltung zeigte, dass eine SQLite
basierte Lösung für ein LOG aLevel System brauchbar ist. Das Entwicklungsprojekt bei
GA wird basierend auf den Resultaten dieser Arbeit fortgesetzt. Framework und Prototyp
werden weiterentwickelt bis die neue LOG aLevel Version Marktreife erreicht.
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Chapter 1

Introduction

With the rapid emergence and spread of the Internet of Things (IoT), traditional busi-
nesses face new challenges to stay competitive and adapt to the new technologies and
market trends in a quickly changing technological environment. The customers’ expec-
tations rise, new products must use the newest available technology, be connected to
everything and reachable from everywhere in a mobile first way. Massive amounts of data
are generated, enabled through the interconnected ‘Things’, and has to be analyzed and
presented to the customer in real-time. The pressure on the businesses forces them to
reinvent themselves to stay in the market.

An area where the IoT has entered, is the remote measuring of environmental data. The
remote sensing stations have gained connectivity and can now be pooled into remote
sensing networks. The ability to interconnect environmental data from various locations
allows advanced analysis of meteorological events that would not have been possible in
the past. This capability comes with a price. The massive amount of data from various
locations has to be collected, processed, stored, and in the end presented. Various research
efforts exist that evaluate best ways to handle the vast amounts of measured data [30][78].

One company in the environmental data measuring field that has to adapt itself to com-
ply with these new market trends is General Acoustics e.K. (GA) [25], located in Kiel,
Germany. GA is a leading-edge technology producer of special echo-sounders, water level,
and wave sensors as well as flow measuring systems. Initially, GA was mainly a hardware
developing company, and therefore, focused on the data generation. Based on project
requirements, the measuring systems could be enhanced by custom data processing and
presentation solutions. With the rise of the IoT, more and more additional hardware
functionality and data management services were expected by the customers. With the
current hardware generation at its limits and no unified strategy to handle the data, the
additional requirements became harder to satisfy. To counteract this situation, GA elab-
orated a plan on how to handle not only data acquisition, but also data processing, data
storage, and data presentation in an equal way. A data handling workflow concept was
created, on which the new product generation should be based on. The development pro-
cess was started with the redesign of one of the core products from GA, the LOG aLevel,
an ultrasonic level measuring station that can be extended by a wide range of other mete-
orological sensors. During the prototyping of the LOG aLevel software pieces, it became

1



2 CHAPTER 1. INTRODUCTION

clear that a monolithic implementation approach interferes with the wish for advanced
flexibility. Therefore, it was decided to implement a software framework. It allows the
implementation of the LOG aLevel software in a modular and flexible way.

This thesis, written at the University of Zurich, will be done in cooperation with GA. Two
contributions to the current development process at GA will be the content of this thesis.
First and foremost, the mentioned software module framework will be designed and im-
plemented. Second, a LOG aLevel 2.0 prototype application will be built as an additional
contribution. It will use the module framework as a basis for the implementation.

1.1 Description of Work

The work of this thesis can be divided into two parts. The first part is the design and
the implementation of a software module framework appropriate for the GA ecosystem.
The framework shall allow the implementation of modular applications that are simple
to develop, easily extendable, and can be configured without the need for recompilation.
Related work and requirements from GA should be used to design the framework.

As second part of this thesis, a LOG aLevel 2.0 software prototype should be imple-
mented. The design should follow the decisions made and elaborated in the sensor data
management workflow concept that was created by GA. The implementation should be
done in C++ and with the help of the developed software module framework. The focus of
this prototype should be the implementation of the structured data storage and advanced
data processing functionality, as both are new to the LOG aLevel ecosystem.

1.2 Thesis Outline

The rest of this thesis is structured as follows. Chapter 2 presents the background in-
formation on GA and their core products. Chapter 3 introduces the related work that
influenced the realization of this thesis. Chapter 4 presents the design of the software
module framework as well as the design decisions on the LOG aLevel 2.0 prototype soft-
ware. In Chapter 5 the detailed implementation process is shown. The thesis ends with
Chapter 6, in which the evaluation of the implementation is discussed, before the thesis
is concluded with Chapter 7.



Chapter 2

Background

This chapter provides background information on GA. It will be the foundation for the
work done in this thesis. First, the company is presented, current products are introduced
together with the ongoing development project that ultimately led to this thesis. Second,
the two central product lines at GA, the LOG aLevel and the UltraLab ULS, are presented
in detail. Further on, the General Acoustics Property Protocol (GAPP), which is heavily
used at GA, is introduced. Lastly, the sensor data management workflow concept and its
design process is shown. The concept was created before the start of this thesis at GA.

2.1 General Acoustics e.K.

GA is a leading-edge technology producer of special echo-sounders, water level, and wave
sensors as well as flow measuring systems. The company was founded in 1996 as an off-
shoot of a university research team specialized in acoustic and sensor technology, and is
now located in Kiel, in the north of Germany. Throughout the years, GA has established
a global network of distributors for its products in more than 60 countries. Numerous GA
systems and applications are installed and operating throughout all continents. GA is a
producer of unique ultrasonic level gauge and wave measurement systems for laboratory
and outdoor applications. The capability to measure dynamic water surfaces with high
resolution enables different applications for ship model basins, simulation facilities at
hydraulic laboratories, water resource management, coastal defense, hydrography, and
the oil- and gas industry. [25]

Core product lines at GA are the LOG aLevel system described in Section 2.1.1 and
the UltraLab ULS system described in Section 2.1.2. Both exist in variants and can be
adapted to customer wishes. The LOG aLevel is an ultrasonic water level measuring
and logging system, that can be equipped with various hydrological and meteorological
sensors to grow into a full environmental measurement station. The UltraLab ULS series
is a laboratory system to measure water levels or waves at highest precision and resolution
simultaneously on different locations. Another product at GA is a Sub-Bottom Profiler, it
can be used to display different ground layers and identify objects underground. Further
on, GA provides hydro-acoustic cut verification systems to detect cut-throughs in water
jet cutting scenarios deep under water [2].

3



4 CHAPTER 2. BACKGROUND

The core sensing technologies used in these products were developed in the early stages
of the firm. Throughout the years, the sensing hardware was optimized. The sensors
gained precision, much higher resolution, and could measure higher ranges. The power
consumption was cut down as much as possible. The development was driven by customer
projects that introduced new requirements, such as a long-range level measuring sensor
for offshore applications. This project-oriented development approach was primarily fo-
cused on the sensing hardware. The hardware to control these sensors remained basically
unchanged. The controlling hardware is a combination of various microcontrollers with
additional analog or digital components placed on one or more printable circuit boards
(PCB). Each microcontroller is equipped with its own firmware. A significant change to
one element would result in a complete redesign of the PCB’s as well as a rewrite of the
firmware. The development workload, as well as the risk of potential development issues,
would be too high to be carried by a single customer project. The hardware used in the
sensor controllers is getting old and slowly reaches its end of live state. Newer alterna-
tives exist on today’s market that provide much better performance at much lower power
consumption, which put in strong arguments for an upcoming redesign.

Not only the hardware situation strives for change, the IoT movement introduced in
Chapter 1 does too. As described, the customers’ expectations grew with the IoT and
new functionality for the ‘Things’ is required. The functionality requirements emerging
in the GA ecosystem include the use of sophisticated communication solutions for the
provided products as well as the possibility to offer advanced data handling services to
the customer. The core task of the current product generation is the data acquisition.
Besides raw data preprocessing, the hardware is designed to be a data source with the
ability to log data without additional functionality. All data processing and presentation
requirements are satisfied by a configurable and modular desktop application running on
a dedicated machine. The new requirements introduce a shift of functional requirements
to different locations. On one end, some data processing and presentation functionality
should now be done on the measuring hardware, e.g., a LOG aLevel should be able to
process the incoming data fully, log the raw data, and send only aggregated values to
a receiver to minimize the amount of transferred data. On the other end, a shift of
functionality towards the Internet can be seen. Live data should not only be visible on
one desktop computer in one software but as a dashboard all over the network.

The integration of these new functionalities into the current hardware and software ar-
chitecture turned into more and more complex tasks. The current controlling hardware
did not allow straightforward implementations. Therefore, to satisfy all requirements for
a customer project, unique solutions were found to ‘somehow’ integrate these new re-
quirements. The results of the specialized developments were a range of modified product
variants and data handling workflows. As most more significant customer projects had
a long-term character with support from GA, the simultaneous handling of different ver-
sions and workflows resulted in management overhead and was error-prone. Even with
the customization effort to adopt the products, some requirements could not be met due
to the lack of hardware capabilities. Especially data handling functionality, e.g., advanced
on-site data processing and presentation was impossible to integrate.
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To adapt the products to the new requirements, and to simplify the implementation of
new functionality, a dedicated development project was started at GA. The long-term goal
of this project is a hardware refresh of the product lineup based on state of the art tech-
nologies. On short-term, a new LOG aLevel version is targeted, it is primarily affected by
quickly changing requirements and the problems they create. To achieve a uniform han-
dling of data acquisition, data storage, data processing, and data presentation throughout
the product lineup, the development of the LOG aLevel should follow a data management
workflow. The creation of this data management workflow concept was done prior to the
start of this thesis and is documented in Section 2.3. During the concept development,
prototypes for various LOG aLevel functionalities were implemented. At the end of the
concept creation, it became clear that a monolithic software design approach could not
satisfy the flexibility needs of the concept. Thereof, the decision was made to implement a
module framework. The design and implementation of this module framework is the core
part of this thesis and shown in Section 4.2. As an addition, the LOG aLevel functional-
ities that were prototyped to some extent during the concept creation will be combined
and integrated into a modular application as second part of this thesis.

In the next section, the LOG aLevel system as it is today is introduced. That section
points out the parts of the system that can be improved for the next generation. In
Section 2.1.2 the second important product at GA, the UltraLab ULS is described.

2.1.1 LOG aLevel System

The LOG aLevel system is a modular environmental data measuring system. As indicated
by its name, the core functionality is the logging of measured water levels. Traditionally
it does so, by using specialized ultrasonic sensing hardware. Appendix A describes the
ultrasonic technology in detail. The core equipment of a LOG aLevel system consists of
three parts. A level sensing unit (green arrow in Figure 2.1), a reference unit (red arrow),
and a LOG aLevel controller (blue arrow) with a power supply and a data logger.

Figure 2.1: LOG aLevel sensing unit with reference lane.
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The reference is used to determine the current velocity of the ultrasonic sound waves. The
LOG aLevel system auto-calibrates itself with this reference velocity to current weather
conditions. The calibration mitigates environmental influences, like temperature or hu-
midity, and ensures highest precision. In Figure 2.1, the sensing unit is an array of three
ultrasonic sensors. The use of multiple sensors strengthens the acoustic pressure and re-
duces the spreading of the soundwave cone. The result is a smaller measurement footprint.
A single sensor may be used for smaller systems. The LOG aLevel system can measure up
to 30-meter distance and samples with up to 5 Hz. In rare cases, larger distances have to
be covered. Radar sensing technology is used in such situations. The LOG aLevel system
can be used for various applications. The core applications of such a system are water
level monitoring, wave measurement, and wave parameter analysis. Other applications
include event alerting systems for fast detection of storm tides, floods or tsunamis. The
LOG aLevel system can be extended by a wide range of hydrological and meteorological
sensors to provide a complete environmental monitoring station. Examples of addable
sensing hardware are temperature sensors for water and air. Others are air pressure,
wind, humidity or rain sensors. More advanced additions include visibility range sensors,
cloud height sensors or flow measuring systems like an acoustic Doppler current profiler
(ADCP) [53].

The complexity of the system varies depending on the configuration. Table 2.1 presents
sales per year for different LOG aLevel system configurations. Higher complexity systems
include the features of the lower ones. It is visible that more complex systems are sold
far less than pure level measurement stations. Yet, in recent years the revenue generated
by ‘Complexity 3’ sales exceed the revenue of the other sales by far. Consequently, GA
is anxious to offer more ‘Complexity 3’ systems with the corresponding environmental
information management and project-wide long-term support. The focus on more com-
plex systems with project character was troublesome. The requirements on the sensors
that were used as extensions changed rapidly over the years. The initial design was in-
tended for a small fixed set of additional sensors. The inclusion of more complex sensing
technology, as required by customer projects, is always accompanied by substantial de-
velopment stunts. Missing input-output (IO) lines and limited processing power of the
current LOG aLevel interfered most with the development.

Table 2.1: LOG aLevel system complexity compared to sales per year.

LOG aLevel
Complexity

Complexity 1
· level measurement
· LOG aLevel software

Complexity 2
· data logging
· simple sensors
(wind, temperature)

Complexity 3
· long-term support
· custom solutions
· advanced sensors
(ADCP, cloud height)

Sales
per Year

10 4 2

The numbers are of theoretical nature but reflect the current situation at GA.
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As shown in Section 2.1, various accumulating problems lead to a pure development
project at GA. The core of the development project is the refresh of the product lineup
based on a consistent data handling strategy. For the LOG aLevel, which is the first
refreshed product, the goal of the development is the adaption to an extended range of
possible data sources. The well-established modularity and scalability of the system should
thereby be preserved. Not only the hardware should be scalable. The corresponding data
management workflow should as well be structured into sub-functionalities. The modular
structure would be configurable to different configurations similar to the hardware. The
core component of such a redesigned LOG aLevel system is a new controlling unit. It
handles data from various data sources and serves the data over multiple interfaces. The
functionality of the controller should be simply extendable to store and process the data.
The design of the mentioned data management workflow concept was heavily influenced
by the characteristics of the LOG aLevel . The required LOG aLevel functionality exceeds
the requirements of other GA products. Other data controllers have a simpler structure,
and have to cope with one data source, or a range of identical data sources. For that
reason, the design of the concept focused on a well-designed solution for the LOG aLevel.
A modular design may then allow simple derivation to other products.

2.1.2 UltraLab ULS System

The UltraLab ULS System is the second crucial product for GA. It is a high speed and
calibration-free system based on ultrasonic technology. Various different applications ex-
ist. Base application for all devices is the measurement of water levels and waves. Applica-
tion sites vary from hydraulic laboratories, ship model basins, to towing tanks. Depending
on the product version, different configurations are possible. The number of measuring
channels ranges from 4 to 16 with one or three ultrasonic sensors per channel. The sam-
ple rate ranges from 10 Hz up to 250 Hz. The maximal measuring distance ranges from
30 mm to 600 cm. The channels are synchronized and can be used with an external
trigger. A reference line can be used to calibrate the ultrasonic sensors. Figure 2.2 shows
an UltraLab ULS Advanced. It has four channels with three sensing units per channel.
A switchable sampling rate of 50 Hz or 100 Hz can be used. The device is meant for high
precision measurements at very turbulent water with steep waves and maximum relative
wave speeds of 15 m/s.

Figure 2.2: UltraLab ULS Advanced.
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In contrast to the LOG aLevel system, the sensor configuration remains stable. UltraLab
ULS systems must only deal with a set of ultrasonic sensing hardware. The limiting
factor of the current design is a slow connection of the processing microcontrollers of each
channel to the master microcontroller over a Serial Peripheral Interface (SPI) bus. The
amount of data generated at each channel (up to 9 MB/s) reaches the limits of SPI at 16
channels with one sensor each. The real-time processing of this amount of data can be
currently done, but also reaches the limit of the possible.

2.2 GAPP Protocol

The General Acoustics Property Protocol is a stateless, message-based protocol. It was
derived from the National Marine Electronics Association (NMEA) protocol [52] and
adapted to the use cases of GA. As the name indicates, GAPP is centered around ‘prop-
erties’. In the GA environment, a property represents the state of an entity. This broad
definition of the term allows almost everything that has some state information to be
treated as a property. The main use case for the GAPP protocol is the communication
between GA products with external systems. Various properties exist in those systems.
For example, the measured values from the sensors are properties. But also configuration
settings of the systems like output rate or offset and calibration coefficients are handled
as properties. Two types of properties exist, active and passive properties. The value
of active properties can change internally without interaction with the GAPP protocol.
Examples are the measurement values of sensors. Passive properties, e.g., configuration
values have to be changed over a message.

The protocol follows the Representational State Transfer (REST) or the RESTful way to
communicate between systems closely. The term was introduced by Roy Fielding to design
Hypertext Transfer Protocol (HTTP) 1.1 and Uniform Resource Identifiers (URI). Since
then, if one refers to REST, habitually HTTP is implicitly meant as protocol. GAPP
follows the principles of a RESTful communication but has nothing to do with HTTP.
Roy Fielding defined the following principles of REST in his doctoral thesis [21]:

� Client-Server – Separation of user interface concerns and data storage concerns.

� Stateless – A request must contain all information needed for the server to handle
the request. It shall not depend on client state information on the server.

� Cache – Responses should be cashed on a client to improve network efficiency.

� Uniform Interface – a fundamental constraint in the design of a RESTful service.
It enables independence of the involved components by simplifying and decoupling
them. The interface should allow the identification of the resource in each request. A
request should allow the manipulation of resources through the requests meta-data.
Each message should be self-descriptive.

� Layered System – A client does not know if it is connected directly to the ‘final’
server or to an intermediate server.
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The GAPP Protocol mostly follows the REST principles. However, due to the nature of
active properties, some modifications had to be made. The core change introduced, is
the ability to push messages to the clients without a request. If a value is measured by a
sensor, the value shall be actively sent to all clients. Contrary to the REST way, where
the state of the sensor property has to be pulled actively. The client-server roles were
slightly modified and renamed to:

� Observer – It caches the incoming values from the source and is able to get or set
the values of a property held by a source.

� Source – The proprietor of the properties, it sends messages to all observers when
a property changes.

The statelessness of the communication is guaranteed through the self-contained messages
in the GAPP protocol. Two kinds of messages exist. A ‘query’ message, which corre-
sponds to a HTTP GET message and allows to ask a source for a property value. And
a ‘definition’ message, corresponding to a HTTP SET message, that can be used to set
the values of a property. A query can only be sent by an observer. An observer does
not hold any values and is not allowed to respond to a query. The response to a query is
sent as a definition message from the source back to the observer. If a definition is sent
to the source, the source acknowledges the definition only if the values for that property
have changed. In which case it sends a definition back to the observer. The cacheabil-
ity principle of rest is satisfied by an observer. The observer holds the current values of
the properties. In fact, contrary to REST, it always holds the currently correct value of
the properties due to the characteristics of the source that always broadcasts changing
properties to the observers.

Each message starts with the name of the property. The name can be prefixed by dot-
separated scopes to logically group the properties. SYS.SERIALNUMBER, LEVEL.OFFSET
or W (wind) are examples of property names. The property name can be extended with
an index when a range of identical properties exists. An UltraLab system may have a
range of channels, and each channel can be calibrated via coefficients. The names for this
property would be CHANNEL.COEFF[n], where n is the channel number.

A query message is formed only by the property name. A definition message is formed
by the property name, an equal sign (=), and a comma-separated list of values that
are needed to define the property. The value types may either be strings, integers, or
floating-point numbers. This message structure follows the RESTful way. It allows
to manipulate properties with a single definition request. At the same time, it vio-
lates one REST characteristic. It is not self-descriptive and does not provide informa-
tion over the transferred data. The GAPP protocol was designed for the use cases of
GA. Thus, a global dictionary with available properties and their type structure can
be created. This removes the need of type encoding in the messages. All in all, the
GAPP protocol allows a RESTful pull communication between observer and source with
the additional push functionality of the source to the observer. A layered approach
can be achieved by adding the role of a proxy. The proxy presents itself as a single
source. It uses internal observers to forward messages to multiple sources located deeper
in the hierarchies.



10 CHAPTER 2. BACKGROUND

Figure 2.3 shows an exemplary communication flow between an observer and a source.
Green arrows indicate the automatic pushes of the source. Some properties return more
than one line long messages. Such a situation is the querying of the system configuration.
In this case, one line with the definition of this property is returned followed by a range
of comment messages. A comment message is formed with // and a text string. In the
figure, an example is shown and marked with dark yellow. The properties that are handled
by GAPP may have access restrictions. If a violation of these restrictions is detected, the
source answers with an error message (blue arrow). The same behavior can be seen when
a wrongly formatted or semantically incorrect definition is sent to a source.

The GAPP engine used at GA is decoupled from the communication interfaces. Additional
layers can be included between the GAPP processing and the communication layer. Layers
for encryption or compression may be added. GA uses a checksum layer that adds a XOR
checksum to each message, which enhances the data integrity significantly.

Until now, the protocol is used for the communication between the measurement devices
and the end-user or a software solution by GA. The aim is to widen the use cases of the
protocol in the context of the developed data management workflow concept of Section 2.3.
The idea is the use of the protocol as inter-modular or inter-process communication to
unify the used interfaces, make the modules exchangeable and enhance the testability of
each part.

Figure 2.3: GAPP communication examples between source and observer.
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2.3 Sensor Data Management Workflow Concept

This section describes the sensor data management workflow concept of GA. It was de-
veloped before the start of this thesis. The concept was created in an attempt to organize
and structure the handling of measured environmental data. It should guide the devel-
opment of new hard- or software products to deal with the ever-changing requirements
of IoT. The workflow concept should cover the core requirements of the GA environment
and consider the project-oriented development process. The design process is described
in Section 2.3.1. A top-down approach was taken to design the workflow. Related work in
academia and the commercial sector was considered in the design, as well as requirements
and experiences by GA. Use case scenarios were crafted, to be prepared for possible cus-
tomer project in the future. The resulted workflow concept is described in four sections
(2.3.2 - 2.3.5). The degree of abstraction varied. Uncertainty on the hardware that will be
used for the next generation of products at GA hindered the design process. For example,
the data acquisition step of the workflow is only described on a more abstract level. It
shows the algorithms and protocols used, but it hides implementation specific details.
Data storage and data processing, on the other hand, were not depending on hardware
decisions and could be designed in a more detailed way.

2.3.1 Design Process

The design process of the workflow concept followed a top-down approach. In a first step,
current research in the environmental data measuring field was analyzed. Two different
approaches to the management of environmental sensor data were found. One approach
from Horsburgh et al. [30] was concerned with the handling of continuous time-series
data, where a real-time aspect is not as important. Their focus was on collaboration
between universities and a consistent data handling. An advanced database schema, the
Observational Data Model (ODM) was developed to support all kinds of environmental
data. The second approach from Wong and Kerkez [78] is focused on the real-time han-
dling of sensor data. They perform an adaptive sampling [5] [6] of water quality based
on current environmental values. Both environmental data handling workflows did not
cover the needs of GA. Horsburgh et al. lacked required real-time processing and presen-
tation capabilities of the data. Wong and Kerkez included external cloud services as data
storage facility, which is not suitable for GA from a security perspective. Other sensor
data handling workflows were searched in the commercial environment. Providers of such
workflows, e.g., Campbell Scientific Inc. [9] or OceanWise [54], try to deliver a complete
data handling experience for their systems. Some provide a relational database to handle
environmental data, mostly wrapped in closed source applications. Complete solutions
can be costly and may result in a lock-in effect.

The considered workflows in academia were research-oriented and present generalized so-
lutions applicable to a wide range of use cases [30] [78]. In contrast, the workflow designed
for GA had to be focused on their products, use cases, and requirements. A data manage-
ment workflow similar to the Campbell Scientific, Inc. [9] closed source data management
solution to support own products was intended. Albeit reduced and simplified to the
handful of use case scenarios that exist at GA. It was not the intent of GA to implement
full-fletched scenarios that could handle all kind of environmental data, as e.g., envisioned
by the ODM database scheme [32].
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After the current research was considered, the needed requirements to design a suitable
workflow for GA were engineered. The GA ecosystem had to be narrowed down, broken
into core pieces and analyzed in detail. A broader use case overview of the GA ecosystem
provides the basis. It is shown in Figure 2.4 in an Unified Modeling Language (UML) use
case diagram. On the highest abstraction level, a single use case exists – A GA customer
wants a GA solution to measure some form of environmental data. This data mea-
surement use case is composed out of four data management tasks. In the figure, the four
tasks are modeled as sub use cases. Data Acquisition and Data Processing are always
included in a GA system. Data Acquisition contains the physical data measurement.
This includes the timestamp management of the measured signals. Data Processing at
least contains the preprocessing of the raw data into human understandable values. In
more complex systems, the Data Processing use case can contain advanced processing
algorithms. They perform aggregate computations or calculate more complex values from
the measured data.

Depending on the customer requirements, the data measurement use case can be extended
by a Data Storage and a Data Presentation use case. Data storage adds the possibility
to store the measured data. The data is stored either as text-based log files or in a
structured storage solution with interval-based access to old data. Data presentation
adds new ways for the customer to access the data.

The architecture of the GA system influences the order and the structure of these sub use
cases in a provided customer solution. Some use cases may exist at multiple locations in
systems with spatially distinct components. For example, an offshore station with a server
station onshore or in a measuring network. Some use cases overlap. Some processing has
to be done before the data can be stored. The data presentation can happen at different
locations with the need to access the stored and processed data. Thus, a clear spatial
and chronological separation between the use cases is not possible. Five scenarios were
created in an attempt to structure the relationships between the four use cases. The
scenarios describe the main use case configurations in customer projects. They are based
on experiences with previous projects and expected market trends. The next paragraphs
describe the scenarios.

Figure 2.51 shows the simplest and most common use case scenario in GA systems. A
self-contained device, that measures data with one or more sensors, processes the mea-
sured values in some way and outputs the data as a GAPP data stream to the customer
system. The customer system is tasked with the management of the data such as data
logging, advanced processing or presentation. An environmental data measuring system
at GA is called a station, in the figure shown as a grey box. A station can be a single
physical device or a group of directly connected devices. Examples of this scenario are lab-
oratory devices (UltraLab ULS) or simple measuring stations without data management
needs (basic LOG aLevel configuration). The red shaded data acquisition component in
the figure is the core component in all GA system scenarios. It contains physical data
measurement and timestamp management functionality. Both are real-time critical.

1The four sub use cases can be seen as functional distinct components and are shown in the figures as
UML component diagram symbols
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Figure 2.4: GA core use cases.

To cope with changing sensing hardware requirements over time (see Section 2.1), it was
decided to implement an abstraction interface between the data acquisition and the re-
maining workflow components. The key idea of this interface is the decoupling of the
hardware-oriented real-time data acquisition part from the software-oriented data man-
agement part. The connection between the red acquisition component box and the blue
box represents this interface.

The second use case that is always present in a GA system in some form is data processing,
in the figure shown as a blue component box. Preprocessing may be the conversion of a
range of ultrasonic echoes to the correct level value, offset calibration of measured values,
or outlier fixer algorithms. The processing component presents the processed data over a
GAPP data stream where it can be accessed by the customer system. The components
described in this scenario are the foundation for all other scenarios and, therefore, are not
described again when their intent is clear.

Figure 2.5: Simple use case scenario.
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Figure 2.6: Use case scenario with data storage.

The second very common use case scenario is almost identical to the first scenario. Shown
in Figure 2.6, the green data storage component is the only addition. Self-contained mea-
surement stations with limited power supply and, therefore, no or limited communication
possibilities are typical stations where such a scenario is used. This scenario, with the
added data logging, is more and more common in GA solutions, even when the station
has a full connection to the customer system and a stable power supply. It serves as a
backup when technical problems arise.

The two introduced scenarios, moreover the stations of the scenarios cover what the cur-
rent product generation at GA can provide. Specialized functional additions are possible,
but introduce colossal development overhead as described in Section 2.1. The next sce-
nario, shown in Figure 2.7 shows the functionality blocks that should be covered by the
next hardware refresh at GA. Scenario three enhances the functionality of the measure-
ment station to comply with current customer requirements. The data acquisition stays
the same as in the previous scenarios, so does the interface to the processing as well as
the preprocessing step. From there on the data is not only logged to files, it can also
be stored in a structured data storage component, which allows an interval-based access
to old data. The green storage box was moved inside the processing component as it
interacts deeply with the added processing functionality: An interface has to exist that
allows the inclusion of advanced postprocessing algorithms into the station to generate
aggregated values. An example of a postprocessing algorithm would be the calculation of
wave characteristics from raw level values. Newly introduced in Figure 2.7 is the yellow
presentation component. Data presentation contains every way to serve the data to the
customer or the next system. The presentation functionality is optional and can vary
depending on requirements.

The three presented scenarios have focused on the measurement station and assumed
an integration into a customer system. Some station configurations, the ones with data
logging functionality, may even run without a connection to an external system. The
borders between the scenarios are not clear, mixes between scenario two and three emerged
in the last years. The goal of the developed scenarios was to present a minimal, a standard,
and a maximal equipped station scenario. The next two scenarios introduce situations
where GA provides the surrounding infrastructure for one or more stations. Which station
variant is used for the next scenarios is not relevant, but to cover all possible functionality,
a scenario three station is assumed.
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Figure 2.7: Advanced use case scenario with processing and structured data storage.

Figure 2.8 shows scenario four and introduces the concept of a measurement site. In
GA terms, a measurement site is a location where one or more stations are connected to a
station server, in the figure shown as a light blue box. A station server is used to collect
data from a station where it is processed, stored, and then presented to the customer.
Currently, the LOG aLevel (or UltraLab) desktop software fulfills all those tasks in a
modular and quickly adaptable way. It can be seen in Figure 2.8 that the components
in the station server are equal to the components in the station of Figure 2.7 apart from
the data acquisition. The goal of the future data management workflow, as described in
Section 2.1.1, is the structuring of the overall functionality into smaller sub-functionalities,
which can be better spread around in a system. Therefore, the components were designed
in a compatible way.

The last scenario is shown in Figure 2.9. It shows an environmental data measurement
network with multiple measurement sites and a datacenter. Projects with this structure
are targeted by GA but could not be done until now. The goal is a replication of the data
storage components in the station servers into the datacenter. Therefore, the presentation
component can present site overlapping data. The blue processing component is only
needed to manage the different storage components and provide unified access.

Figure 2.8: Use case of stations with a station server.
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Figure 2.9: Measurement network scenario with multiple measurement sites.

The five introduced scenarios cover the structure and distribution of the use cases shown
in Figure 2.4 based on real-world scenarios. A range of functional requirements for the
four use cases were presented in the introduction process.

Besides creating the use cases and use case scenarios, a Linux driven Data Handling
Unit (DHU) was added as a requirement in the station controllers. It introduces more
processing power and simplifies the software development with newer high-level technolo-
gies. Mapped to the scenarios, the DHU is responsible for everything behind the data
acquisition part, which has to be real-time driven. The inclusion of a Linux DHU implies
some architectural problems that have to be solved. The data acquired by the real-time
part, further called Real Time Unit (RTU), has to be transferred to the non-real-time
Linux system. Therefore, the abstraction interface was added as shown above. It hides
the implementation specific hardware details of the RTU from the DHU and decouples
both. The area of responsibility of the RTU is reduced to controlling the measurements
and timestamping the results. The DHU will perform all other data handling tasks. The
intention of this abstraction and the clear cut of responsibility division between the real-
time and the Linux component is a decoupling from the sensor hardware development and
the development of the data handling process afterward. The integration of new hardware
should not force a rewrite of all software components, only new hardware specific classes
should be added. Figure 2.10 shows a station with the added DHU (yellow) and RTU
(light red). Depending on the scenario, the DHU may contain functionality in different
complexity.

After the use cases and scenarios were elaborated, concrete requirements were created.
The design process of the workflow concept is not part of this thesis. Therefore, the
decision making on the requirements is not described2. One important fact that had to be
considered in the design of the workflow was the limited available development resources
at GA. They call for a pragmatic approach regarding implementability. GA should be
able to implement the workflow into their ecosystem with reasonable effort.

2 Further information on the requirement design can be requested at GA
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Figure 2.10: Separation of RTU and DHU in a station.

The final environmental sensor data management workflow concept is presented in the
next four sections. It serves as a basis for the work in this thesis. The resulting structure
of the software components to store and process the sensor data were prototyped at
GA . It became clear that a modular approach to develop the components is needed,
whose development is the core of this thesis. Further on, the LOG aLevel 2.0 prototype,
developed as the second contribution in this thesis, is also based on the workflow concept
shown in the next sections.

2.3.2 Data Acquisition

For GA as a measurement device producer, the data acquisition process belongs to the
core tasks of a data management workflow. This section introduces the data acquisition
part of the data management workflow concept. Compared to the following sections,
this section depends heavily on the hardware development department at GA. During
the concept creation, the hardware design changed multiple times, without resulting in a
concrete concept. Therefore, the data acquisition functionality is described from a higher
abstracted view, detailing only the concrete interface decisions. The data acquisition step
happens only in the stations, but it is present in every scenario.

As introduced in Section 2.3.1, a Linux DHU was added to the station. The result is
a functionality and responsibility separation between the real-time part and the DHU.
The inclusion of a DHU, which runs with a scheduler-based Linux operating system (OS),
requires data buffering on the RTU side as it is unsure when the Linux scheduler fetches the
queueing data. The key tasks of the RTU are the controlling of the sensor measurement as
well as the timestamp management. In most cases a Coordinated Universal Time (UTC)
synchronized pulse per second (PPS) signal is available for the RTU to set and correct the
internal master real-time clock (RTC). If no PPS signal is available, the correct time has
to be set by hand. A low-power central processing unit (CPU), ARM Cortex-M0 [4] or
similar, will be used to control the RTU. The sensors will be attachable to the RTU in a
configurable way. A unique sensor ID (SID) identifies each sensor. A physically identical
sensor at a different hardware port has a different SID. This unique identifier of the sensor
hardware together with a concise software interface is critical for the envisioned decoupling
of the sensing hardware and the following data management workflow. As mentioned, a
buffering mechanism is needed to transfer the measured data from the RTU to the DHU.
It was decided to use a ping-pong buffer system, where one buffer is read by the DHU
and the second is written by the RTU.
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Besides the hardware interface between the DHU and the RTU, the software interface is
critical for the decoupling of the RTU and the DHU. Apart from the globally unique SID
for each sensor entity, each data source has a two-byte long channel number assigned. A
sensor may have one or more channels assigned, for example a temperature sensor may
have a single channel assigned for its values while a level sensor with three ultrasonic
transducers may have at least three or more channels assigned. Even a time signal or
system status information can have a channel assigned, such channels can belong to a
virtual sensor. A contract is defined for each unique channel in the GA ecosystem. The
contract states what data belongs to the channel and the way the data is formatted.
Based on this contract, the RTU prepares the measured data and creates chunks that
contain the two channel bytes, a four-byte payload size, and a byte payload. As the buffer
mechanism has limited memory available, a memory optimized binary representation of
the data is preferred. The RTU writes incoming chunks to the buffer and keeps track
about the number of written bytes. When the write buffer is full, a four-byte number,
containing the complete number of written bytes, is written to the beginning of the buffer.
Therefore, the DHU knows how much data is available in the buffer. The concrete channel
configuration of the current system for each RTU is stored on the DHU. On every system
start, the RTU fetches the configuration from the DHU and adapt the firmware at runtime
to the current architecture.

The next section describes the data processing functionality of the workflow, which in-
cludes the handling and preprocessing of the chunks that were created by the RTU and
are accessible by the DHU over the buffer.

2.3.3 Data Processing

The data processing functionality is twofold. First, the chunk data that is acquired by
the RTU and passed to the DHU has to be preprocessed to create human understandable
values. This process is always present on a station. Second, interval-based postprocessing
of gathered data has to be possible on the station server and the station over clear defined
interface. After some general terms in the GA environment are introduced, the concept
for both, preprocessing and postprocessing, is described below.

In order to enable the understanding of the following data management workflow concept
steps, some GA specific terms have to be described. These terms emerged in the past
years as the number of data management oriented projects rose. Three terms are used to
classify the environmental data:

� Raw Data – Data that comes directly from physical sensors without any transfor-
mation. The chunks produced by the RTU is classified as raw data.

� Primary Data – Data that was preprocessed and brought into human understand-
able form.

� Secondary Data – Data that is based on primary data and was created by post-
processing algorithms.
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The concept of secondary data is context depending. The postprocessing of level values
on a station to create wave characteristics may, from a station viewpoint, be the creation
of secondary data. Viewed from an external system, the wave characteristics data can be
seen as primary data. Therefore, entities of an external scope may decide how they treat
data that is classified as secondary data in a local scope.

Further on, as described in Section 2.2, the communication with a station is done over the
GAPP protocol. Coupled with GAPP comes the concept of a Property. A property may
be anything that has a name with an associated value. Essential for the processing func-
tionality are properties that influence the processing algorithms, but also the properties
that directly model the measured and processed values. Good experiences with GAPP in
the past was a decision maker to use it more often in the new data management workflow,
and not only for the communication between station and station server. In compliance
with the idea to create a more structured, modular, and, therefore, configurable software
architecture, GAPP should also be used as intermodular communication between soft-
ware modules on the station and the station server. The benefits are a unified interface
and simpler testing of separated modules. The cost of an ASCII-based communication
between software modules has to be evaluated when the prototyping phase has started.

The first part of the processing functionality is the preprocessing of raw data to primary
data. The data acquisition is done by the RTU. Therefore, the preprocessing functionality
can be seen as the first module of the DHU, which is present in every configuration.
Figure 2.11 shows a component diagram of the preprocessing module. A station with
minimal configuration may be complete with this module.

The module is called Primary Data Unit (PDU). The black shadowed driver compo-
nent in the PDU handles the connection to the RTU and is able to process the chunks.
As described above, each sensor entity, physical or virtual, has a unique SID assigned.
These sensor entities are represented in the figure as multiple violet shaded components.
The sensor components contain the preprocessing functionality and output the primary
data. As input serve the chunks generated by the RTU, which contain the channel
number and the payload. Therefore, a sensor entity in the GA environment has the
following characteristic:

� Chunk Producer – Each physical or virtual sensor has at least one data source
that generates chunks. Additionally, the sensor objects in the PDU may produce
new chunks that may be consumed by other sensors.

� Chunk Consumer – Each sensor in the PDU consumes at least its own chunks to
generate primary data, it may use chunks that are produced by different sensors for
its calculation.

� Primary Data Producer – Each sensor in the PDU outputs primary data, which
is forwarded over GAPP.

An assigned channel ID (CID) to a specific SID as producer may not change under any
circumstance, whereas additional consumers of a chunk can be added. The driver dis-
tributes the chunks to the appropriate sensor object. The cardinality between CID and
SID mapping is N-to-N, a chunk may be distributed to many sensors, and a sensor may
need a range of different chunks to create its primary data.
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Each sensor object has preprocessing functionality, in the figure shown in blue. The algo-
rithm has the knowledge of the chunk format and keeps track of the arriving chunks. The
processing algorithm has access to the GAPP properties, which are handled by the GAPP
source colored in green. The dashed green arrows symbolize this access informally. The
properties may be used for the preprocessing algorithms. When the processing component
has gathered all necessary chunks for its algorithm to work, the algorithm processes the
chunks and creates a primary data value. Each sensor object is associated directly with a
property. The generated value is then handed to this property, from whereon the GAPP
engine is responsible for the further distribution. The primary data generator together
with the RTU covers the core functionality of the current hardware generation. The new
architecture allows a simple modification and addition of the hardware and the software.
The interface for the inclusion of new preprocessing algorithms for newly added sensors
is thin and clear defined. A developer has to implement a processing class based on an
abstract processor interface that only contains a single procedure.

The second processing functionality part is concerned with the postprocessing of primary
data to create secondary data. In contrast to the preprocessing, which operates element-
wise, the postprocessing algorithms generally work with intervals of measured data. These
algorithms could not be implemented on a station until now, as the limited hardware had
prevented the buffering of such an amount of data. The postprocessing was done on the
station server with the help of the LOG aLevel software.

In one project in Iraq, GA used a database solution to store the environmental data for
the first time. In this project, the postprocessing ran as a separate process and received
notifications from the database when enough data for the processing of an interval was
available. When a notification arrived, the process selected the interval of data from
the appropriate table, made its calculations, and inserted the created secondary data
into a different table. The workflow was working great, and the database provided more
flexibility to present the data to the customer than the file-based workflow. Therefore, it
was decided to integrate such a data storage solution into the workflow concept.

Figure 2.11: PDU component overview.
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Figure 2.12 shows the data storage unit (DSU) on the DHU. It is connected to the PDU
described above. Even if the postprocessing concept is shown for the station module, the
same functionality is intended for the station server with a slightly modified implementa-
tion. A GAPP observer handles the incoming GAPP data stream. Whenever a property
changes, the new value is inserted into the structured data storage solution. The solution
has dedicated storage for primary and secondary data. The primary data, coming from
the PDU, is inserted into the appropriate primary storage (marked with P). The storage
module knows the intervals of the postprocessing and checks at each insert if postpro-
cessing is needed. If it is, a notify event is sent to the postprocessing manager (violet).
The postprocessing manager fetches the needed data over the correct interval from the
primary data store. The processing algorithm processes the fetched data and inserts the
calculated data into the data store.

This concept is already in production on the station server in the Iraq project and has
proven to work very well. The notification concept allows triggering the secondary data
generation manually, which is vital for service purposes. The actual processing algorithms
expect a range of timestamp-value tuples and return a secondary data value. These
algorithms are independent of the actual implementation of the notification and data
access mechanisms and can be used on the station as well as on the station server.

Figure 2.12: DSU component overview with postprocessing mechanism.
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2.3.4 Data Storage

Storing the measured environmental data is an essential step in an environmental data
management workflow. This section presents a data storage concept for the workflow in
the GA environment. In contrary to the data acquisition functionality, which is strongly
dependent on the hardware development department of GA, the core decisions for the
storage functionality concept could be taken. The following paragraphs, first, introduce
the simple GAPP data stream logging functionality, as it is present in current stations.
Second, a solution for a structured data storage component, which can be used on a station
and a station server, is introduced. Lastly, the possibility to combine the structured
environmental data from a range of measurement sites into a datacenter is shown.

Each GAPP component has an associated IO manager, which coordinates the dispatch
and receiving of GAPP messages over the available hardware interfaces. This IO manager
can easily be extended to log the incoming and outgoing traffic to a file. To couple the raw
data logging to the GAPP interfaces opens up new possibilities in the data management.
With the intensified use of GAPP in the station and the station server, it is possible
to log the data at various locations. The outgoing traffic of a station, as well as the
incoming traffic of a station server, could be logged and compared to find issues in the
communication. Logging of output from various components inside the station could be
used for testing purposes and to detect bugs early in the workflow.

Two core decisions on the design of the structured storage component were taken during
the concept creation. First, the data storage technology had to be decided. Second, the
modeling of the data had to be specified. In the context of databases, the way how the
data is modeled is called a database schema.

Both decisions were made based on research, experience in past projects, and prototype
implementations. The decision on the data storage technology, which should be used
for the first implementation of the concept in the second part of this thesis, fell on a
Structured Query Language (SQL) solution. GA has built up knowledge in the SQL
database area in the past two years, which can ease the development process. Further on,
a SQL database implementation on a station server exists in the mentioned Iraq project,
from where some functionality can be reused. SQLite was used as an embedded library
in the data storage component, as it is the de-facto standard for embedded databases and
has a lot of available resources to simplify the development.

A conservative approach was chosen for data schema – it was decided to use a sensor data
schema that can be adapted to different data storage technologies. This results in a flat,
decentralized data schema for sensor data. Beside a decentralized schema for the actual
sensor data, which can be implemented with various data technologies, the relational meta-
data should be implemented with a SQL technology to allow a highly normalized data
schema. As the meta-data information rarely changes, eventual performance problems of
a SQL solution are not an issue.
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Figure 2.13: Concept of a database to store sensor data.

Figure 2.13 shows the chosen data model. The data schema is divided into two parts,
a relational and normalized meta-data section (blue colored tables) and a decentralized
non-relational sensor data storage section. As introduced in the previous section, different
tables exist for primary and secondary data. The light green colored tables with a p_

prefix show examples of primary data tables, whereas a prefix s_ indicates secondary
data tables. The meta-data section includes information about the sensors, the station,
and information about recordings. A recording is essentially an interval with a start- and
an end-timestamp where measurements happened in between. Further tables exist, which
are necessary for notification purposes of the postprocessing or other data storage relevant
mechanisms. A blog table lists every significant event that happened on a station, e.g.,
re-calibration of sensors, critical voltage supply, or other station state information.

A thin wrapper over the data storage solution has to be implemented on both, station
and station server to fulfill the data storage functionality requirements of the data storage
components. It provides an abstraction layer and allows for a unified interface on station
and station server despite the used technology. The following three interfaces have to be
abstracted from the used technology.

� Insertion – Single element- or bulk insertion on a single sensor data table has to
be available.

� Selection – Selection of a single element or an interval-based group of elements for
a single sensor data table has to exist.

� Notification – A conceptually equal interface for the postprocessing entities has to
exist.

With the use of a SQL solution on the station and the station server, presentation processes
or other components that need access to the measured data can access the database
directly without the need of a wrapped interface.
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Data replication between the station and station server is the last part that has to be
considered for the storage component. In cases of deliberate or unintentional connection
loss, the station server storage component must be synchronized. The regular data flow
from the station to the station server happens over GAPP. Behind the GAPP observer on
the server is the data storage component, which wraps the database. The wrapper keeps
track of the inserted data. It knows when a connection loss has happened, which may
indicate an inconsistent database. In such a scenario, the database wrapper can query
the station over a second protocol to get the missing data. The protocol allows querying
single sensor tables over a specified interval. The implementation of this protocol was
not planned during the concept creation and is also not planned for the thesis. For
the sake of documentation, this interface is preliminarily called General Acoustics Table
Protocol (GATP).

To complete the concept of the data storage functionality, some remarks had to be made
for the storage component on the station server and the datacenter. First, due to the
station servers processing resources, the need for a custom data storage solution does not
exist. If the currently used PostgreSQL [63] solution proves to be not powerful enough,
sophisticated NoSQL solution exist that are optimized for write heavy data, e.g., Apache
Cassandra [3], Riak TS [67], and others. Such solutions could scale horizontally if needed
and could replace a SQL-based solution. Second, the data center is intended to serve as a
backup and centralization of measured data at various measurement sites. No processing
is performed on a datacenter. Therefore, a read-only database replication to the data
center in a specified interval suffices for this purpose. The functionality can be reached
by using replication tools of the used database technology.

The next section is concerned with the data presentation to customers that are enabled
by the use of structured data storage components throughout the GA environment.

2.3.5 Data Presentation

The last step in a sensor data management workflow is the presentation of the measured
data to the end-user. The inclusion of a Linux DHU with a structured data storage
component into the products enables advanced presentation solutions. Functionality, like
the use of a small webserver on a station to visualize current data, could not be provided
with the current hardware generation. With the use of a Linux system, the possibilities to
present the measured data to the customers are significantly enhanced. A concrete design
of such presentation components was not the focus of the concept. After a core system has
been developed for production, additional presentation requirements by customers can be
implemented. Therefore, rather than designing presentation solutions for the workflow,
the new options to implement such solutions are listed.

� Network Stack – Through the use of a full Linux OS, an implemented and well-
tested network stack is available. Therefore, the focus can be on application-, and
high-level protocol development instead of rebuilding lower level networking layers.
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� File System – The use of a file system makes not only data logging to files simpler.
Configuration of the stations can be extracted from the application code, e.g., into
an Extensible Markup Language (XML) file, which reduces the need for different
binaries for different configurations. Persistent database files can be used with a
filesystem, whereas persistence solutions have to be found on systems without a
filesystem.

� Structured Data Access – The use of a structured data storage component to
store the measured sensor data on the station serves as a foundation for most ad-
vanced presentation functionality. Simple interval-based access to previously mea-
sured data, with optional aggregation, can be used for live visualizations on a dis-
play or a web server. The creation of daily or monthly reports also benefits from
the availability of such a storage solution.

� High-level Scripting – Various high-level programming- and scripting languages
can be used on the Linux OS. Those tools enable quick development of new func-
tionality that was not possible before. Regular tasks, e.g., daily email status no-
tifications can be implemented reasonably simple. Additional functionality for a
specific project can be added to the system without the need to modify the core
station applications as an additional process.

All the presented points, to enable the implementation of advanced functionality, exist
based on the decision to include a Linux driven DHU. The added presentation functionality
comes with the cost of losing absolute real-time characteristics of the data, as it has
to be buffered between RTU and DHU. In practice, the real-time characteristic to the
millisecond was not an important criterion. Critical was the correct time stamping of the
data and an accurate triggering of the measurements. Those tasks are performed by the
RTU and are not influenced by the inclusion of a DHU.

Not mentioned up to now in this section are the presentation solutions on the station
server and the database. Compared to the current workflow at GA, presentation of the
data on the station is new. Solutions for the station server or a database already exist
(LOG aLevel software) or can be developed if needed without architectural restrictions.
The use of a similar structured data storage component on the station server and the
station allows future implementation of presentation solutions for both locations.
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Chapter 3

Related Work

This chapter presents the related work on which this thesis builds. First, essential terms
used in this thesis are described. Later on, general related information on frameworks
to develop component-based software is shown. Afterwards, related work on component-
based application solutions in the embedded world is introduced. In the same context,
related work at GA is presented, which influenced the design of this thesis. Finally,
Section 3.5 provides background information to embedded C++ development, which is
used for the implementation part of this thesis.

3.1 Introduction

Chapter 2 introduced the current situation at GA and provided background information.
The sensor data management workflow concept, shown in Section 2.3, structured the
needed functionality into sub-functionalities. After the implementation of prototypes for
this functionality, it was concluded that a monolithic object-oriented (OO) approach does
not suffice to project the proposed flexibility and modularity into the software. The search
for a more modular design approach led to this thesis.

In a classic OO programming approach, a class is a collection of properties and methods
[23]. Instances of such a class, called objects, build the smallest composition unit of an
OO application. Programming with objects enables the use of design principles like en-
capsulation and polymorphism [19]. The design suggestions presented by those principles
simplify well-structured development. Despite that, each OO application has to solve the
same problems. The objects, more often a swarm of objects, have to be initialized in
some way. Afterwards, the lifetime of the objects has to be controlled. In most appli-
cations, the objects have dependencies between each other, which must be established
and managed by some instance. Finally, the persistence of objects has to be considered.
All of these common obstacles have to be solved in the development of an application.
Besides classes, programming languages provide additional facilities to simplify the han-
dling of those problems. Interfaces are used to decouple dependencies. Depending on the
programming language, a garbage collector controls the lifetime of the objects. Even with

27



28 CHAPTER 3. RELATED WORK

these facilities, the monolithic design of well-structured and flexible applications remains
difficult. Whenever the core logic of an application has to be adapted, the surrounding ap-
plication management infrastructure has to be changed as well. When a software reaches
a critical size, the needed effort to design the surrounding infrastructure exceeds the effort
needed to design the core logic. To remain efficient, such software is typically split into
smaller, self-contained parts. These parts can be maintained independently from other
parts or the main application. The application gains modularity and remains maintain-
able. Modularity is the degree to which a system or computer program is composed of
discrete components, such that a change to one component has minimal impact on other
components [27]. Prof. Bertrand Meyer [38] describes five requirements of modularity as
follows:

· Decomposability – “A software construction method satisfies Modular Decompos-
ability if it helps in the task of decomposing a software problem into a small number
of less complex sub-problems, connected by a simple structure, and independent
enough to allow further work to proceed separately on each of them.”

· Composability – “A method satisfies Modular Composability if it favors the pro-
duction of software elements which may then be freely combined with each other
to produce new systems, possibly in an environment quite different from the one in
which they were initially developed.”

· Understandability – “A method favors Modular Understandability if it helps pro-
duce software in which a human reader can understand each module without having
to know the others, or, at worst, by having to examine only a few of the others.”

· Continuity – “A method satisfies Modular Continuity if, in the software architec-
tures that it yields, a small change in a problem specification will trigger a change
of just one module, or a small number of modules.”

· Protection – “A method satisfies Modular Protection if it yields architectures in
which the effect of an abnormal condition occurring at run time in a module will
remain confined to that module, or at worst will only propagate to a few neighboring
modules.”

Various terms exist to describe modularity. Most commonly, the terms module and com-
ponent are used. Other terms that are used in the same context are assembly or package.
Clear definitions to differentiate the terms do not exist. The understanding of both no-
tions is context depending. All terms are closely related and mean the structuring of
software into smaller pieces. This thesis uses module and component interchangeably.

A change from a monolithic to a modular OO application design solves parts of the
problems of OO development, which were introduced above. Typically, the separate
modules solve dependency chaos and control their lifetime independent form the whole
application. Nevertheless, a development focus only on independent components does not
solve all problems. The self-contained group of modules has again to be “glued” together,
similar as the objects have to be managed in an OO oriented approach. Bruce Wallace
states that components without this glue are useless [76]. With a sufficient amount of
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modules, the same problems emerge as with the objects in a monolithic development
process. A solution is the use of module or component frameworks. Wallace highlights
the importance of such frameworks as glue for modular applications.

Component frameworks provide a middleware layer, which simplifies the composition of
components into an application. They provide a unified way to create, connect, and man-
age the components. Various frameworks exist. Section 3.2 introduces classical frame-
works, which simplify the creation of modular software. More specialized component
frameworks, aimed for embedded development, are introduced in Section 3.3. Finally,
the solutions at GA to build component-based applications are shown in Section 3.4. All
presented frameworks influenced the design of a custom module framework in this the-
sis, which targets the requirements of the sensor data management workflow shown in
Section 2.3.

3.2 Development Frameworks for Modular Software

As shown in Section 3.1, component frameworks are crucial to develop modular software.
A multitude of them exists. The Wikipedia page to component-based programming [77]
has a big list of frameworks. This section presents three of the most common compo-
nent ones. Section 3.2.1 introduces the Common Object Request Broker Architecture
(CORBA) [14]. Section 3.2.2 shows the Common Object Model (COM) from Microsoft
[45]. Finally, Section 3.2.3 introduces Sun Microsystem’s [70] JavaBeans and Enterprise
JavaBeans. A recapitulation over the presented frameworks is made in Section 3.3, where
the usefulness of the frameworks for embedded systems is evaluated.

3.2.1 CORBA

CORBA was created by the Object Management Group (OMG) and is an open standard
for application interoperability. The OMG is a group of over 400 software vendors and
object technology user companies [55]. Simplified, CORBA allows applications to commu-
nicate despite different execution locations or application creators. CORBA, therefore,
handles the component interoperability [8]. CORBA uses an Interface Definition Lan-
guage (IDL), which presents interfaces of components to the outer system. CORBA
components communicate only through these interfaces. The IDL is mapped to a wide
range of programming languages.

A core part of a CORBA system is the Object Request Broker (ORB). It is a middleware
layer that establishes the connection between client and server. A client can invoke a
method on the server, whose location is abstracted by the ORB. The ORB intercepts
the method call, finds the needed object, invokes the method, and returns the result
to the client. The client does not know where the object is located, on which OS it
is running, which programming language was used, or any other aspects that are not
related to the IDL. Therefore, the ORB introduces interoperability between applications
in heterogeneous distributed environments.
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CORBA is widely used in OO based distributed systems [80]. Even though it targets
mainly desktop- and server applications, there exist component-based embedded systems
that are built on CORBA specification. The OMG defined two standards for embedded ap-
plications: Minimum CORBA and Real-Time CORBA. Minimum CORBA defines a fully
interoperable subset of CORBA. It is appropriate for applications with limited resources.
Real-time CORBA extends CORBA so that it can be used in
deterministic applications.

3.2.2 COM

Microsoft introduced COM 1993 as a general architecture for component-based software
[8]. Microsoft states, that “COM is a platform-independent, distributed, object-oriented
system for creating binary software components that can interact” [46]. COM builds the
foundation higher-level software services like those provided by Microsoft’s OLE (com-
pound documents) [47] and ActiveX (Internet-enabled components) [48].

COM defines the fundamental concepts how the components interact. It prescribes a
binary standard for function calling between components. COM gives a provision how
to group functions into interfaces in a strongly-typed way. A base interface (IUnknown)
allows components to discover the interfaces that were implemented by other components.
Additionally, the base interface provides reference counting facilities, which allow compo-
nents to track their lifetime and delete themselves when necessary. A COM component
can implement one or more interfaces. An entity that implements multiple COM inter-
faces is called a COM class. The interaction between a COM client with another COM
component only happens over an interface pointer. To identify the components and their
interfaces uniquely, COM uses globally unique identifiers (GUIDs), which are guaranteed
to be unique across space and time. Finally, COM provides a component loader that
creates component instances from a deployment. [45]

COM depends on a number of parts that need to work together to created component-
based applications. The host system has to provide a COM-specification conform runtime
environment. A registry that keeps track where the components are installed needs to
be available. So does a service control manager, which locates the components and con-
nects servers with the clients. Windows provides these parts, in contrary to other OS.
Therefore, it is the main platform for the COM technology. Any programming language
can create COM components, as long as the language can create structures of pointers,
and call functions through pointers. OO based languages, like C++, provide program-
ming mechanisms that simplify the implementation of COM objects. In recent years,
COM has been superseded by the .NET technology [49], some of it is even deprecated in
favor of .NET.

An extension to COM is distributed COM (DCOM). It enables COM components to
communicate directly and secure over a network. It was designed to be used with var-
ious network transport protocols, including HTTP. DCOM replaces local inter-process
communication with remote communication over the network. The change of physical
connection is transparent to the components, neither client nor server is aware of it. The
use of COM in embedded applications is discussed in [37]. Other literature could not be
found on that subject, which indicates a rather low usage of COM in that field.
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3.2.3 JavaBeans

Sun Microsystem introduced a Java-based component model [70], which consists of two
parts. The JavaBeans are used for client-sided component development. Enterprise
JavaBeans (EJB) are the counterpart for server-side component development. The used
Java platform offers portability due to bytecode usage. Security is given through the
concept of trusted and untrusted Java applets. Therefore, it provides the technology that
enables the development of embedded enterprise applications.

Three types of components exist for EJB’s: EntityBeans, SessionBeans, and MessageDriven-
Beans. All beans are deployed over an EJB container. The container manages the com-
ponents at runtime, which includes state handling (start, stop, pause) and the handling of
performance, security, and reliability. EJB’s are tightly related to the Java programming
language, which requires a Java virtual machine (JVM) to execute the code. Therefore,
EJB’s offer high portability at the cost of a needed JVM, which restricts the embedded
use cases. For example, real-time use cases cannot be served with EJB because of the
needed virtual environment.

3.3 Module Frameworks in Embedded Environments

Section 3.2 has introduced three frameworks that are commonly used to create modular
software. Typically, these frameworks are used to build huge, possibly spatial distributed
applications. Even though the frameworks have subsets, which target the embedded
development, their primary use case targets desktop- and server development.

From GA’s view, the requirement for distributed module frameworks was not necessary.
The workflow concept of Section 2.3 imposed modularity, but did not require location
overlapping applications. Therefore, more suitable frameworks for embedded modular
development were searched.

3.3.1 Open Platform for Robotic Service (OPRoS)

A component framework, proposed by Jang et al., matches the expectations of GA best.
Supported by the Ministry of Knowledge Economy of Korea, they created OPRoS, a plat-
form for network-based intelligent robots [34]. OPRoS aims to simplify the development
of sophisticated robot software by introducing a robot software component model.

An OPRoS application is contained out of components. Two types of components exist,
an atomic component and a composite component. The composite component contains
a group of atomic components and presents itself as a single component to the outside.
An atomic component supports three mechanisms to interact with other components,
a remote procedure mechanism, a data flow mechanism, and an event mechanism. A
combination of components either type builds an OPRoS system application.
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Figure 3.1: OPRoS atomic component model

Figure 3.1 shows a high-level model of the atomic component from OPRoS. Song et al.
abstracted the interfaces to the components and called them ports. Three types of ports
exist:

Service ports, which expose the required and provided method interfaces,

Data ports to pass data between components, and

Event ports to transmit events.

A provided service port allows other components to execute one of a set of available
methods at the port. A required service port is a proxy, which let the component call
methods of another connected component. Data ports are either for data input or data
output. Both, input- and output port of two connected components must have the same
signature to enable data exchange. A data port may be queued or unqueued. The data
is then handled in the onExecute() method of a function. The event ports are similar
to the data ports, given that they both transfer some structured data. In contrast to
data ports, events on an event port are always processed immediately. Ports for data or
event transfer do not block when invoked, whereas service ports support both blocking
and non-blocking calls.
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The execution of OPRoS components can happen in three modes: periodic, non-periodic,
or passive. The onExecute() method of components in periodic mode is called repeatedly
in a defined interval. The non-periodic mode of components is used whenever the duration
of an onExecute() call is long or unpredictable. In that case, a dedicated thread is used to
run the component iteratively until it is destructed. Components in passive mode neither
have an own thread or an onExecute() callback. They are only active when triggered by
an event or a method invocation from other components.

Every custom component in the OPRoS framework inherits from a base-class called com-

ponent. This base class inherits a set of interfaces that abstract lifetime management,
port management, and property handling of the components. The created components
are held in a container object. The container has an executer object, which handles the
execution of the components. The available components are registered to the executor by
the container. Each component runs through a series of states during its lifetime. Every
time when a component transits to a new state, an appropriate callback method is called.
This lifetime management allows error handling and a recovering from errors. Composite
components are used to incorporate other components. They can be composed out of
either atomic or other composite components. The composite components abstract the
functionality of its inner components and presents only a single interface to the outside.
Calls to the interface of the composite component may be redirected to inner components.
The characteristics of a component are described in an XML file, which is called the ‘com-
ponent profile’. It stores information about port types, execution semantics or properties.
The XML file is interpreted by the component execution engine, which manages and exe-
cutes the components. It takes the responsibility from the developers to handle problems
like thread and state management or resource handling.

OPRoS was designed with the users of the framework in mind. The users would be
developers that want to build robotic software based on components. Therefore, the
creators of the framework implemented a set of development tools that simplify not only
the implementation of components, but also the composition of components into a robotic
application. Two plug-ins for the Eclipse IDE [20] were built. The component authoring
tool let the users specify port interfaces, callback functions, and the component profile.
The tool produces C++ skeleton code for the selected component parts. The skeleton
can then be extended by user specific code. The component binary is compiled into a
shared library. The library can be used by their second tool, the component composer. The
component composer allows the creation of robot applications, by composing components.
The components imported from the authoring tool are stored in a local repository. The
user of the component composer can graphically compose applications by using drag and
drop of components in the main diagram, and connect the different ports. Further on,
it allows the creation of composite components. Finally, the application is deployed to a
component execution engine on a robot over the network.

The OPRoS framework, as described in the last few paragraphs, solves many of the
requirements targets as shown in Section 4.1.1. That section also shows that OPRoS lacks
some of the flexibility requirements proposed by GA. Further on, the level of abstraction
provided by OPRoS and its development tools is not needed for the framework at GA.
Nevertheless, the OPRoS framework had significant influence on the design process of the
framework developed in this thesis, as shown in Section 4.2.
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3.3.2 Compound Object Model

A publication from Stepan Orlov and Natalia Melnikova [56] does not introduce a com-
ponent or module framework, but instead an object model to develop scalable systems
in C++. They introduce a model that allows the design of software packages with many
components to achieve a high level of code reuse. At the time this thesis was written,
the implementation of the model was closed source, albeit with the intent to open source
it after some refactoring work. Therefore, their paper was the only available information
about the model. It was written at a theoretical level and did not go into implementation
specific details. A description of the theoretical reasoning process is left out and can be
read in their paper ([56]), as it would exceed the scope of this thesis. Only the core design
decisions of their model are introduced in the next few paragraphs.

Orlov and Melnikova introduced the concept of a compound object. it is composed out
of one or more components that are connected to each other in a tree-like structure.
Figure 3.2 shows such a tree. The root is called a primary object. All other components
are called tear-off’s. An instance of a C++ class that follows the following conventions is
called a component: The class must inherit from either the primary object class or from a
tear-off class. The component class must also declare a numeric identifier, which is unique
for the entire system. Further on, component classes typically implement interfaces. The
compound model supports a set of interfaces, which are C++ classes with pure virtual-
or inline methods. All interfaces inherit from the same base class and have a unique
identifier. Tear-off components vary in their lifetime. They may be loaded together with
the primary object, or created on demand when an interface pointer is requested. Further
on, components implement a form of reference counter, which is a non-negative integer,
incremented whenever the user needs a component. When the counter reaches zero, the
component is deleted from the memory. The reference counting is made possible by using
smart pointers.

Figure 3.2: A compound object with interfaces.
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The object model specifies a configuration of all modules, components in each module, as
well as interfaces supported by each component in a file. The configuration file additionally
contains the configuration of the compound objects, which states the tree of tear-offs for
each primary object. After the object model is loaded, the objects can be created with
the help of an object factory. When a module is loaded, it performs initialization of
static variables at which stage all components of a module are registered in the class
registry. Afterwards, the factory is able to create components.

The object model uses three interfaces to create communication between the components.
A message receiver is a component-wide interface that allows exposing message handler
methods. Those methods are regular methods of components from a compound object.
A message target interface allows compound objects to receive messages, which are for-
warded to receivers in the compound that are interested. The message delivery interface
allows to send messages and to subscribe to targets for certain messages.

The introduced characteristics of the object model show the core functionalities that
influenced the design of the framework in this thesis. Other mechanisms on how to handle
document data or how to tackle serialization issues are present in the object model, but
are less relevant in the context of this thesis. To summarize this section, it can be said that
the compound object model targets a different goal than OPRoS. Its purpose is to enable
scalable component-based software written in C++ of any kind rather than focus on
problems of embedded robotic application like execution management, state management
or event handling. Nonetheless, both approaches were considered in the design of the
module framework in this thesis, shown in Section 4.2. The next section introduces the
component framework that is currently in use at GA for graphical applications.

3.4 Component Frameworks at GA

Section 2.1 introduced the current situation at GA. It was shown that, until now, most
data processing and presentation functionality was covered by modular and configurable
GUI applications. The foundation of these applications is a custom module framework,
called ModKit. ModKit was developed by Jan Schirrmacher to counter the ever-changing
customer requirements. The framework is developed in Delphi and proved crucial to
tackling the requirements.

The foundation of the ModKit framework is built by two characteristics. First, the mod-
ules are organized in a tree, similar to the compound object model introduced in Sec-
tion 3.3.2. A running ModKit application has a tree of modules similar to a Document
Object Model (DOM). The second characteristic is a meta-programming of the application
with the help of XML. It is possible to describe data flows, elements in the UI and overall
architecture structure in a single XML file. Therefore, the application can be adapted by
editing the XML file and without the need for recompilation. It is even possible to load or
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unload parts of the module tree, and replace it with different modules based on another
XML file at runtime. This approach has the following benefits:

· Object Relation - The modules hang in an object tree, similar to an XML DOM.
Therefore, a module knows its parent and its children. Path iteration allows a
module to find any of the other modules in the tree.

· Serializability - The object tree can be described in an XML document. With the
help of an XML library, it is possible to de-serialize or serialize the complete tree or
sub trees at runtime.

· Runtime Flexibility - A part of the application could be reloaded based on a
different XML file, which could fundamentally change the internal structure of the
modules without the need of recompilation or even a restart.

· Error Reporting - Controlled phases of XML loading, object creation, and ob-
ject instantiation allow a better error reporting. Rollbacks to previous phases and
distinctive error messages at each phase allow a quicker error localization.

The loading phase of a ModKit application not only considers the XML file, it considers
an INI file and registry entries in the process. Further on, the framework is used in a
model view controller (MVC) GUI development and relies on signal-slot mechanisms to
pass events around. Recent requirements to store and load different configurations of the
GUI added more functionality to the framework. The XML file can now contain template
code, which is expanded at runtime into a part of the configuration depending on the
loaded profile. ModKit uses high-level language features from Delphi to implement the
runtime flexibility. Meta-classes that provide runtime information over a class can serve
as a feature, which is not available in, e.g., C++. The latest beta version of ModKit
introduced interfaces and interfaced implementation delegation to attach functionality to
modules. Before that, the problem had to be solved by inheritance, which was limited
due to the single inheritance model of Delphi.

The ModKit framework had the most significant conceptual impact on the design of the
software module framework in Section 4.2 compared to the previous sections. Neverthe-
less, the context of this thesis’ framework differs, as it is not about GUI’s and is focused
only on business logic implementation. It must be portable and run at least on Linux,
which is not a requirement of ModKit.

3.5 Embedded C++ Development

The framework and the prototyping done in this thesis will be implemented in modern
C++. The decision was set by GA in order to create portable and efficient code. An
internal coding style guide will be used, which is oriented after current programming
habits at GA and Herb Sutter’s coding standard [71]. Scott Meyers ‘Effective Modern
C++’ book [39] is taken as a reference on how to use the modern C++ features in a
correct way. The knowledge of C++ at GA is based on the older C++03 standard, which
has evolved significantly in the last decade.



3.5. EMBEDDED C++ DEVELOPMENT 37

Embedded development of the product firmware at GA was currently done in C. Therefore,
information had to be gathered, which describes how C++ can be used efficiently in an
embedded environment. For newer hardware generations, the intention is to move to C++
for all firmware written at GA. In that sense, the prototyping done in this thesis serves
as a pioneer in order to gather experience in the embedded C++ field. It has to be said,
that the prototyping will be done on the low-power Linux driven ARM CPU. It provides
enough resources, strict housekeeping of the resources is not needed. Nevertheless, it is
a direction into the embedded world. Scott Meyers teaches seminars on modern C++
[40] and embedded C++ [41], the lecture notes from the embedded C++ seminar serve as
guidelines what can be done, and what shouldn’t be done in embedded C++ programming.

The slides provide insights on C++ feature implementations like vtables or offer informa-
tion about features that are ‘no-cost’ compared to C. Such features include:

· All C functionality, classes, namespaces

· Static functions and non-virtual member functions

· Function and operator overloading

· Constructors, single inheritance, virtual inheritance

On the contrary, temporary objects and templates can have a huge impact on embedded
C++ programs.

By implementing the software module framework, some principles of embedded program-
ming had to be sacrificed in order to achieve the required level of runtime flexibility.
Further decisions on the C++ programming were taken in Section 5.
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Chapter 4

Design Decisions

This chapter describes the design processes of this thesis. First, the requirements for the
module framework and the LOG aLevel 2.0 prototype are shown. Later, the design of the
software module framework is described in detail. Finally, the design decisions taken for
the prototype implementation of the LOG aLevel 2.0 are introduced.

4.1 Requirements

Chapter 3 introduced the related work on which the work in this thesis builds on. A
range of frameworks to create component-based applications were presented. This sec-
tion introduces the requirements of a component framework in the context of GA and
their sensor data management workflow concept shown in Section 2.3. Further on, this
section introduces the requirements of the LOG aLevel prototype, which will be based on
the software module framework. The requirements serve as a foundation for the design
decisions taken in Section 4.2 and 4.3.

4.1.1 Requirements: Module Framework

All frameworks introduced in Section 3, target the development of component-based soft-
ware. Each one tries to cover their specific requirements. These requirements differ in
various degrees from the requirement of GA for a framework to construct embedded and
modular applications. For example, the ‘big’ frameworks introduced in Section 3.2, like
CORBA or COM, are focused on distributed solutions in bigger environments. CORBA
even needs a dedicated middleware layer (the ORB) to accomplish object communication.
The OPRoS framework and the compound object approach, introduced in Section 3.3,
came closer to what GA envisioned. Both frameworks influenced the framework of this
thesis. Nonetheless, their target on usability to create new components and the high ab-
straction of the component model was not needed for the framework at GA. The compound
object model [56] provided valuable input on the aggregation of interfaces to composite
objects but lacked the broader view to create module-based applications in the embedded
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field. Finally, the ModKit framework from GA itself was developed with GUI applica-
tions in mind and works only on the Windows platform. However, the XML solution to
configure the application was one of the core factors that lead to the design shown in Sec-
tion 4.2. To be able to design a framework that is appropriate for the use cases at GA, the
requirements have to be known. The next paragraphs introduce the requirements from
the related work, the requirements implicated by the sensor data management workflow
concept, and requirements based on experience from GA.

The description of the GA ecosystem in Section 2 has shown that flexibility is one
of the core requirements for the hardware as well as for the software. Two different
ways of the flexibility requirement can be seen. On one end, the LOG aLevel system is
configurable based on customer wishes. Thus, the available software functionality should
be simply adaptable to different system configurations. On the other end, the software has
to be flexible enough to allow the integration of entirely new functionality requirements
without the need to re-develop the already available solutions. The introduction of a
module framework should provide this flexibility and take the responsibility of the software
developer. Further on, the framework should act as a middleware layer. It should free
the developer of modules from problems that appear in application development (see
Section 3.1). The following core requirements for the software module framework at GA
can be stated:

R01 – The framework should provide modularity, which allows better extensibility
by reducing coupling and dependencies.

R02 – The framework should provide meta-programming functionality, which allows
applications to be configured and adapted without the need of recompilation.

R03 – The framework should act as middleware for the application development.
It should handle...

· instantiation,

· lifetime management,

· dependency management,

· persistence problems, and

· state control.

Aside from these core requirements, the design of the framework has to account for the
limited resources available at GA. This includes reasoning on what the framework tries to
accomplish and what not. The core goal of the framework is assistance in the creation of
applications in the GA environment. Therefore, only the software developers at GA have
to work with it. This implies that there is no need to create supportive tools, e.g., GUIs to
generate and compose components as it was done for OPRoS. As one or two developers will
implement all modules that use the framework, high-level abstraction and introspection
mechanisms are not needed for a single module. Therefore, (R04) the framework should
focus on the core functionality and prioritize implementability.
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4.1.2 Requirements: LOG aLevel Prototype

Section 4.1.1 introduced the requirements of GA for a software module framework. This
section introduces the requirements of the LOG aLevel software prototype that will be
developed in a second implementation part of this thesis. In general, the prototype should
follow the sensor data management workflow concept of Section 2.3 closely. It should and
implement the functionality of a ‘station’. Due to the occupied hardware development
division of GA, parallel development of a LOG aLevel 2.0 hardware prototype could not
be accomplished. Therefore, the work surrounding the prototype software is focused on
the DHU functionality, which was shown in the workflow description. The data acquisition
part, including the RTU, will be ignored and abstracted.

Table 4.1 introduces a list of core functionality requirements. Those requirements were
extracted from the workflow concept presented in Section 2.3. The red shaded acquisition
requirements serve merely as context for the actual requirements of the PDU and the
DSU, which show the required functionality to process (blue) respectively store (green)
data. The LOG aLevel application prototype has to be designed around the module
framework. The workflow concept introduced the PDU and the DSU as separate units
that are connected over a GAPP interface. This separation is not a critical requirement
for the implementation of the prototype. It is more important to implement a working
system based on the module framework that covers the required functionality in distinct
modules.

The next sections present the design process. First, the design decisions and the archi-
tecture of the module framework are shown in Section 4.2. Afterwards, the design of the
LOG aLevel prototype software is shown in Section 4.3.

Table 4.1: Prototype requirements from the workflow concept.

ACQ-01
Implementation of an abstraction interface to decouple the real-time hardware
part form the following workflow.

ACQ-02 Use of a Linux DHU in the station controllers.

PRO-01
The data, which is collected by the acquisition part, has to be preprocessed
and brought into human understandable form.

PRO-02
An interface has to exist that allows the inclusion of advanced
postprocessing algorithms into the station to generate aggregated values.

PRO-03
The interface to the postprocessing has to be compatible with both station and
station server.

STO-01 Logging of raw data in a file based way is required.

STO-02
The sensor data has to be stored in a structured data storage component that
provides interval based access.

STO-03
The interface to the data storage component has to be compatible with
both station and station server.
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4.2 Design: Module Framework

This section introduces the design of the module framework. In a first part, general
design decisions, which were taken during the framework design phase are introduced
and reasoned. Later, the architecture of the framework with an overview of its core
components is presented.

Except for ModKit from GA, none of the introduced frameworks in Section 3 provided
the needed meta-programming flexibility (R02 of Section 4.1.1). Due to the available
knowledge and experience with the XML solution from ModKit at GA, it was decided to
integrate a similar meta-programming solution in the software module framework design.
The XML solution has been proven to work well with the data flow oriented data process-
ing. Which is needed at GA through the handling of real-time environmental data. This
knowledge of usability of the solution was a key driver to the decision to adopt this solu-
tion. Further on, an available implementation of the framework and a range of software
products that build upon it provided insight to the critical parts of such a solution.

Section 3.4 shows that the XML solution is used to describe the application architecture
with module dependencies and properties. This requires tight integration into the frame-
work. Therefore, the decision had a significant impact on the design of the framework.
The adoption of the XML solution implied architectural similarities to ModKit. Some
ideas of the module framework in this thesis may have been taken over from ModKit, but
the design and implementation were done with C++ in mind, utilizing its strengths and
minimizing its weaknesses. Developed in Delphi, ModKit can rely on advanced language
features for meta-programming and reflection, which simplify the implementation of the
compile- and runtime flexibility. With C++ being a low-level programming language and
only recently getting some generic functionality (C++11 and later), even simple tasks,
as the creation of a type based on its name, comes with significant effort and the need
to know every corner case of the language. Therefore, the focus was set on the core
functionality, stripped down to the necessary parts. Most of the runtime introspection
functionality from ModKit, which is needed for the GUI development, was omitted.

Despite ModKit, the other component-based frameworks shown in Section 3 had an im-
pact on the framework design as well. The compound object model gave input how the
module classes can be registered to the factory. The chosen implementation is shown in
Section 5. OPRoS had a range of interesting functionalities. The abstraction of the ports
was considered, as well as the concept of composite modules. In the end, it was decided
not to implement these functionalities in favor of the more important event loop mecha-
nism. The port abstraction may be useful for advanced introspection, but it complicates
the design and is not needed. Composite modules can be built by hand without signifi-
cant effort as is shown in the implementation section where sensor modules are grouped
together in a SensorContainer. A core addition, driven by OPRoS’ design, is the in-
tegration of execution modes for modules, which are handled by an execution engine.
Similarly, a lifetime control instance was integrated into the framework, again influenced
by OPRoS. It keeps track of the current state of the application and handles state chang-
ing events. The three heavyweight frameworks introduced in Section 3.2 helped in the
understanding of modular software but did not contribute directly to the design process
of the module framework.
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IModule

- owner : IModulePtr
- modules : Modules

- create() : void

- loadModules(xml : ElementPtr) : void 

- destroy() : void

- init(xml : ElementPtr) : void

- tryFind(path : string, module : IModulePtr) : bool
- find(path : string) : IModulePtr

ModuleApp

- sm : LifeTimeControl 

LifeTimeControl

- onEvent(info : ModuleEventInfo) : void

-startApp(xml : string) : void 

- taskrunner : TaskRunner

TaskRunner

- run() : void
- addPeriodicTask(task : Task) : void
- addPollingTask(task : PollingTask): void
- addTask(task Task): void 

ITaskRunner

ILifeTimeControl

IDestination
- createModule(xml : ElementPtr) : void 

- getState() : State

I ...

ISource

CustomModule

- link(xml : ElementPtr) : void

class

abstract
interface

aggregation

interface 
implementation

Figure 4.1: Class diagram of the module framework.

Figure 4.1 shows the core components of the module framework in an UML class diagram.
The diagram is simplified and presents only the members and objects of interest for the
understanding. More information about details of the architecture are given in the im-
plementation section. The framework was designed around the concept of a module. The
modules are located in a tree, where each module holds its child modules. The IModule

class is the base class of all modules. It provides convenience functions to find specific
modules in a module tree. Virtual functions to initialize, load, and unload a module are
meant to be overwritten by derived modules. A custom module always implements IMod-
ule and can add functionality by implementing from a range of interfaces. For example,
ISource or ISink should be used to unify data flow between modules.

Each application in development needs a controlling entity that coordinates the execution
of the application. In a simple solution, the main() routine of a C++ program is sufficient
for this task. A special module ModuleApp was added to the framework to encapsulate
the controlling functionality. The ModuleApp is intended as the root of the module tree.
It provides procedures for the start, execution, and termination of an application. The
ModuleApp aggregates two classes. A lifetime control manager and a task runner. The
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LifeTimeControl contains a state machine, which shows the state of an application and
handles transitions based on events. The TaskRunner enables different execution modes
for the modules. It provides an event loop, which serves as primary execution loop.
Both components are crucial for the controlling of modular applications. Thus, they are
presented in more depth further down. Not shown in Figure 4.1 is the factory mechanism
to register new module classes. The module factory presents a simple way to statically
register new module classes without the need to change any code of the framework and
recompile the library. The implementation section (5.2) introduces the used solution with
more technical details.

That said, the design choices described in the last two paragraphs were taken during
the implementation phase and have been proven to work as needed. Other application
structures could have been chosen. For example, a trunk module, which contains the
module tree with the root and includes the needed application controlling functionality
over aggregation. Due to the modularity, the actual structure is not too important. It
would be possible to refactor the framework to use a different structure without huge
efforts. The presented structure was chosen, as it worked best during the development.

Before the details of the execution engine and the application state manager are intro-
duced, the XML solution is explained. Listing 1 shows an exemplary configuration of a
module framework application. It must always contain a ModuleApp node. This node
may contain properties to configure the TaskRunner or the lifetime controller. Inside, the
configurations of the modules are stored as sub-nodes of the ModuleApp node. The path
to this configuration file is given to a newly created ModuleApp. When the startApp()

method of the ModuleApp is called, the XML configuration is loaded. The configuration
is then passed to the static methods of the IModule base class to load the module tree
(loadModules() and createModule()). A callback function is given to both methods,
which should be used to emit state changing events to the LifeTimeControl object. The
rest of the XML loading process is tightly coupled to the state machine of the ModuleApp.
It is shown in the next paragraph, where the lifetime management is described.

1 <? xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <ModuleApp Property1="xyz">

3 <DatabaseModule Class="SQLiteDatabaseModule" >

4 <SensorStore Name="p_levelus" >

5 <Notification Name="SLEVEL" Interval="60"/>

6 <Notification Name="LEVELAVG" Interval="300"/>

7 </SensorStore>

8 ...

9 </DatabaseModule>

10 ...

11 </ModuleApp>

Listing 1: General XML configuration of a module framework application.
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Figure 4.2: Default state diagram of a module framework application

The decision to design a dedicated LifeTimeControl class was influenced by the OPRoS
solution, which also aggregates a lifecycle manager into their application. In contrary to
OPRoS, the modules in the module framework do not contain an internal state machine.
This decision was made in an attempt to keep the base IModule class lean. Instead, it is
assumed that all modules are connected to the LifeTimeControl and communicate state
changes over events. This connection to the LifeTimeControl can only happen when
the modules already exist. This means that a different way of state management has to
be found during the time the modules do not yet exist. There, the previously mentioned
static IModule methods come into play.

Figure 4.2 shows a diagram of the state machine that a ModuleApp follows. When a
ModuleApp instance is created, the LifeTimeControl is instantiated immediately. The
application is then in an IDLE state. First, the ModuleApp connects itself to the Life-

TimeControl (LTC) to be able to emit events. When startApp() is called, a loadxml

event is emitted to the LTC, which transitions to the state XMLLOADING. A callback, which
was attached to the transition as transition action, is called. This callback initiates the
loading of the XML file into a XML DOM object. When the XML is loaded, and no
error appears, a xmlloaded event is emitted, which starts a transition into the XMLLOADED

state. The associated transition action calls the static functions to load and create the
module objects from the XML DOM. Due to their static property, they are not aware of
their context and are not informed about the LTC or event connections to it. Therefore,
a callback is passed to them as argument, which is intended to be used as event emitter.
First, a creating event is sent out to put the LTC into a CREATING state. Then, whenever
a module is constructed, a created event is thrown. When all modules were constructed,
an allcreated event puts the application into an ALLCREATED state. The construction
follows a postfix depth-first traversal of the XML DOM. Besides the construction, two
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additional tree traversals happen. All modules are initialized in the same order. The LTC

transitions to LOADING over a loading event. A loaded event is thrown for each initial-
ized module. When all modules are loaded, the applications transitions to LINKING over
the event allloaded. Afterwards, the connection between the modules are constructed
in a third linking traversal. For each linked module, linked is emitted. For example,
each module is linked to the LTC, which allows them to emit events directly. After all
modules are loaded, a final event allloaded transits the LTC to ALLLOADED. The static
loading methods are exited at this stage. From now on, all modules communicate directly
with the LTC. A start event puts the application in a RUNNING state. The modules can
emit onexecution events when they execute, if needed. A stop event, thrown from any
module, initiates the shutdown sequence. In the UNLOADING state, all modules of the tree
are unloaded, where each module that gets unloaded emits an unloaded event. After a
final terminate event, the application goes to STOPPED and destroys itself. Whenever an
error event is thrown, the application changes to an ERROR state. The LTC calls then
a callback, which was offered by the ModuleApp module. The callback handles the error
and initiates the shutdown of the application.

Besides an event sink and an internal state machine, the LTC has a signal where every
event is outputted again. Interested modules can attach to this signal, which allows them
to react on events. An example may be a log module, which logs all events. The benefits
of such a lifetime control come to shine in debugging situations. Each event is associated
with its creator module, the current path of the module in the tree, and other information
that signals the origin of the event. Based on this, and with a history of previous events,
the location of errors can be tracked accurately. Other designs of a lifetime control facility
were considered, especially a version where each module contains an own state machine.
Nonetheless, such a design would also need a centralized instance where the states of each
module are monitored. Therefore, this design was abandoned to keep the overhead of each
module low. The implementation specific details of the LTC are shown in Section 5.2.

Another important part of the module framework is the execution engine called TaskRun-
ner. The OPRoS approach, with different execution modes of the modules and an execu-
tion engine, inspired the design of this functionality. The decision to include a TaskRun-
ner tackled two situations that could be troublesome for users of the framework. First,
it provides a central place to register polling functionality of modules. Second, it allows
breaking up deep call stacks that could appear by chaining passive modules that react
on signals. Without a place where modules can request polling, an external entity needs
to know all modules that need polling, and it has to call them in a loop. This could be
accomplished by using a custom derived ModuleApp with a loop in the run() method,
by the cost of introducing dependencies and therefore tight coupling. The TaskRunner
solves this overhead and allows each module to register itself for polling. Deep function
call stacks are the second problem that can be circumvented by using the TaskRunner. It
allows adding one-time tasks to the loop that is executing the polling. Therefore, modules
that would signal other modules in a call chain could pass the signaling as a task to the
TaskRunner, and break the call chain. These breaks in the call chains reduce the threat
of long blocking calls and distribute the processing power more evenly over all modules.
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Figure 4.3: Task queue with task loop functionality.

Figure 4.3 shows an overview of the core functionality of the TaskRunner. A core piece is
the task queue, in the figure shown as a horizontal ladder. It contains callback functions
that should be called when a task is executed. A task loop, called with run() iterates over
the current items in the queue. Each task is popped and executed. If it is a repetitive
task, it is pushed back into the queue again, otherwise it is destroyed. A module can
insert one-time tasks at any time. Because the insertion operations are made thread save,
threaded modules can insert a task independent from the main application flow. Some
modules need to be called periodically. For that case, the TaskRunner allows to add tasks
with an interval. Whenever an interval has passed, it pushes the task into the queue.

The TaskRunner simplifies event-driven development and can be used to create asyn-
chronicity in the application. Execution modes of the modules similar to OPRoS are
possible. Together with the LTC and the XML configuration solution, the requirements of
GA are satisfied. The design decisions can be summarized in the following list:

· D01 – Use of a XML meta-programming solution to configure the modules. It is
an adapted and stripped down version of the ModKit solution used by GA.

· D02 – Use of a factory mechanism that allows the addition of new modules without
the need to recompile the core library.

· D03 – Functionality abstraction and decoupling by using a set of abstract interfaces.

· D04 – Introduction of a lifetime control entity, which overviews the state of the
application based on events emitted from the modules.

· D05 – Addition of a task runner, that controls the polling of modules and allows
asynchronous execution flows over a callback loop.

Section 5 shows the implementation of the module framework. It goes into architectural
details and introduces the core functionality based on code snippets. Before that, the
next section introduces the design of the LOG aLevel 2.0 prototype, which is based on
the module framework introduced above.
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4.3 Design: LOG aLevel Prototype

This section introduces the design of the LOG aLevel 2.0 prototype software. It follows
the design guidelines given by the workflow concept of Section 2.3 and should be built with
the help of the module framework, which was presented in Section 4.2. The scope of this
prototype implementation is confined by the requirement description in Section 4.1.2. It
was shown that an emphasis was put on the required core functionality and its integration
into a modular application that is driven by the module framework. Hence, other work
that needs to be done for a complete LOG aLevel, was not part of this thesis. Examples
of additional work may be a deep hardware integration, the accounting of sleeping phases,
or optimizing the implementation for an embedded environment.

This focus on functionality allowed some degree of freedom in the realization of the design.
As is shown in Section 4.1.2, the functionality of the PDU and DSU (see Section 2.3)
should be implemented. It was decided to implement the functionality of both, in a single
application. The inter process communication (IPC) over GAPP between PDU and DSU
was left out, to simplify design and development. Only a simple, not really performant
GAPP serial driver was implemented, which was another reason for this decision as it
would have meant additional effort to implement a better IPC driver.

The core design decisions for the prototype were already made during the workflow concept
development and can be found in Section 2.3. The use of a module framework was not
planned during the creation of the workflow concept. Despite not developed for it, the
designed architecture could be ported to a modular architecture without too much effort.
One can get a visual overview of the functionality by combining Figure 2.11 and 2.12
on page 20 and 21. The GAPP data that would leave the PDU over the source goes
directly into the structured data storage and the GAPP source of the DSU. Listing 2
presents the XML module configuration of the prototype. It captures the intent of the
modular architecture better than an additional figure. The listing is described on page 50.
Before, the following list summarizes the general design decisions that were made during
the workflow concept development:

· RTU Abstraction Interface – A chunk data (see page 17) source abstraction
should make the prototype independent form the current data source.

· Data Preprocessing – Sensor objects shall be added, that perform the conversion
of chunk data to human readable data.

· Data Storage – Structured data storage functionality with an interface to insert
and select data should be used. Interval based access has to be included.

· Database Design and Abstraction – SQLite shall be used as database technol-
ogy with an abstraction interface to allow different database technologies later on.
A database schema as shown in Figure 2.13 should be implemented.

· Data Postprocessing – Interval based postprocessing functionality has to exist.
A notification mechanism should be used to trigger the postprocessing.
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1 <? xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <ModuleApp>

3 <!-- Interface to the raw data -->

4 <ChunkDriver Class="FileChunkDriver" />

5

6 <!-- Preprocessing Sensor container -->

7 <SensorContainer Class="SensorContainer">

8 <Sensor Class="LevelSensor" SID="1"

9 DispatcherModule="../../ChunkDispatcher"/>

10 <Sensor Class="XYZSensor" SID="99"

11 DispatcherModule="../../ChunkDispatcher"/>

12 ...

13 </SensorContainer>

14

15 <!-- Primary data insertion into DatabaseModule -->

16 <DataInserterModule Class="DataInserter"

17 DatabaseModule="../DatabaseModule">

18 <InsertionTask ID="15" Sensorstore ="p_levelrd"/>

19 ...

20 <InsertionTask ID="10" Sensorstore ="p_levelus" Highspeed="true"/>

21 </DataInserterModule>

22

23 <!-- Structured data storage -->

24 <DatabaseModule Class="SQLiteDatabaseModule" >

25 <!-- Sensor stores -->

26 <SensorStore Name="p_levelus" >

27 <Notification Name="SLEVEL" Interval="60"/>

28 <Notification Name="LEVELAVG" Interval="300"/>

29 </SensorStore>

30

31 <SensorStore Name="p_wind" />

32 ...

33 </DatabaseModule>

34

35 <!-- Postprocessing Sensor container -->

36 <SensorContainer Class="SensorContainer" Name="SecondaryGenerators">

37 <Sensor Class="DefaultAVGSensor" SID="50" />

38 ...

39 </SensorContainer>

40

41 <!-- Property modules that contains properties from the GAPP module -->

42 <PropertyModule Class="PropertyModule" Name="SourceProps" >

43 <Property ID="10" Name="L" />

44 <Property ID="100" Name="XYZ" />

45 <Property ID="50" Name="L.10MAVG"/>

46 ...

47 </PropertyModule>

48

49 <!-- GAPP source to output data -->

50 <GAPPModule Class="GAPPModule" Kind="Source" />

51 </ModuleApp>

Listing 2: XML configuration of the prototype.



50 CHAPTER 4. DESIGN DECISIONS

Listing 2 introduces the module-based architecture of the prototype as an XML snippet
that can be loaded by the module framework. To keep the code snippet at a reasonable
size, recurring modules omitted by "...". For the same reason, only key XML attributes
are included. The module structure is similar to the theoretical component structure
presented in Figure 2.11 and 2.12 of the workflow concept, albeit as single application
without intermediate GAPP IPC: A driver exists, denoted as ChunkDriver XML element
at line four, so does a group of Sensor nodes at line seven for the preprocessing. Contrary
to the concept diagram, the sensor modules are wrapped in a SensorContainer module.
It provides helper functionality to access the different sensor modules and hides base
pointer casting. Instead of emitting the data only to the GAPP engine as in Figure 2.11,
the data is also inserted into a data storage module (line 24). This insertion is shown
in Figure 2.12 as an arrow, but instead from a GAPP observer, the data comes from a
DataInserter module. A second group of sensor modules is held by a SensorContainer

at line 36. The sensors listen on notifications and perform the postprocessing functionality
to generate secondary data, which is then emitted over the GAPP engine. A graphical
representation of the mechanism can be seen in Figure 2.12. Using the module framework,
the sensor manager component in the figure got obsolete as each sensor module is self-
responsible for the appropriate interaction with the data storage module and the source
properties. At line 50, a GAPP engine can be found. The use of the module framework,
therefore, a different way to manage the different application components forced certain
changes compared to the component structure proposed in Figures 2.11 and 2.12. The
separation of the GAPP source into a GAPPModule and a PropertyModule is one of the
bigger differences. The reason behind this decision is the ubiquitous use of the properties
in the business logic of most sensor modules. The separation causes a decoupling of the
properties from the GAPP engine. This allows the handling of the property objects based
on the requirements of the application without possible impact on the GAPP engine.
Other PropertyModule implementations that handle properties differently are possible
with this separation.

The presented modular architecture works as follows: The raw data is read by a module
called ChunkDriver. The FileChunkDriver specialization was implemented to read sim-
ulated data. Later on a RTUChunkDriver may handle the connection to the RTU. The
chunks handled by the driver are then passed to the SensorContainer module. It passes
the chunks over an IDispatcher interface to the sensor modules based on the chunk ID.
Each preprocessing sensor module (after line seven) connects to the SensorContainer

and registers the needed chunk IDs for dispatching. The sensors may implement ISource
or ISink interfaces, which allows them to connect to each other. The algorithms inside
the sensor classes analyze the arriving chunks and, if possible, calculate a primary data
sample. The according property for that sample is updated. The PropertyModule at line
42 is then informed over the change of a property. An onChanged event on the property
signals to the GAPPModule at line 50 that a message with the changed values has to be
emitted. The GAPPModule can receive messages to update property values from the out-
side, which in return signals a value change to all interested parties. Besides signaling
the GAPP engine of new values, the preprocessing sensors insert the GAPP values to the
DataInserter, who knows the mapping to the data storage tables and inserts them there.
The structured storage solution is one of the core additions to the LOG aLevel prototype,
and therefore, described in more detail.
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As mentioned in the requirement list above, SQLite shall be used as database technology
for the implementation of the prototype and an abstraction layer should decouple the
prototype implementation to allow the implementation of different technology later on.
Figure 2.13 of the workflow concept presents the database schema that shall be imple-
mented. It is two-fold, one part describes the storing of sensor data in a decentralized
way, the second part is concerned with the relational representation of meta-data. The
meta-data is particularly important when a workflow with multiple stations or even station
servers is realized. For the prototype implementation, where a single station is considered,
the importance of meta-data is not as high. Therefore, and to focus the implementation
efforts, it was decided to implement only the functionality needed for the data storage
and the postprocessing functionality. Advanced meta-data functionality can be added
later to the prototype or as a separate component in the DHU. The same goes for the
GATP interface that was introduced in Section 2.3.4, as it only needs read access to the
database, it can be implemented later on as an external module.

IDatabaseModule

- init(xml : ElementPtr) : void
- connectSlot(slot : DataSlot) : void

SQLiteNotificationManager

- onNotification : IDataSignal

- poll() : void
- connectSlot(slot : IDataSlot) : void

- poll() : bool
- insert( table : string, val : SensorRecord) : bool
- insert( table : string, vals : SensorRecords&) : bool
- select( table : string, interval : Interval, vals : SensorRecords&) : bool
- insertAsync(table : string, vals : SensorRecords&, cb : Task) : TransactionInfo
- selectAsync(table : string, interval : Interval, cb : DataEvent) : TransactionInfo
- insertTodo(record : TodoRecord) : bool
- selectTodos( notificationName : string, records : TodoRecords&) : bool

SensorStore

- checkEmitNotifications(ts : Timestamp)
- getInsertQuery() : string
- getSelectQuery() : string

- init(xml : ElementPtr) : void

SQLiteDatabaseModule

IPollable

ISource

- manager : SQLiteNotificationManager
- sensorStores : SensorStores - storeName : string

- sampleCount : int
- notifications : NotificationInfos
- activeTransactions : TransactionInfos

- notifications : queue

Figure 4.4: Data storage component structure as a class diagram.
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The XML module structure of the data storage module can be seen after line 24 in List-
ing 2. The class diagram in Figure 4.4 extends the listing and introduces the class structure
of data storage functionality. On line 24, a DatabaseModule can be found. It is an in-
stance of a descendant of the IDatabaseModule class, which specifies the postprocessing
notification interface (orange) and the interface to insert and select sensor data (green).
To take full advantage of the module framework design, asynchronous insertion and select
operations were added. Sensor data is held in records of the type SensorRecord, which
is a struct of a timestamp represented as double and a range of float values that contain
the measured data. The XML description of the database module contains SensorStore
nodes, e.g., at line 26. They specify the sensor ‘table’ name and the number of sample
columns a data store has. The implementation of the IDatabaseModule has to handle
the sensor store description.

A sensor store may have notifications as shown on line 27. A notification consists of a name
and an interval in seconds. The notifications are used to trigger postprocessing sensors to
start their work. The insertion functionality of a database module checks if a notification
has to be issued. It is up to the realization of the interface to implement the notification
mechanism. Different database technologies have fundamentally different ways how such
a mechanism would be implemented. For the serverless SQLite, the whole mechanism has
to be implemented by hand, whereas PostgreSQL already features a complete notification
mechanism for external processes.

Figure 4.4 shows the SQLiteDatabaseModule, an implementation of the IDatabaseModule
for SQLite. It uses helper classes to implement the interface functionalities. A SQLite-

DatabaseModule contains a SensorStore object for each sensor table. The SensorStore

class contains information over the specific table, its postprocessing notification entries,
and status information over running asynchronous operations. The NotificationMan-

ager offers the functionality to connect a notification slot. The manager is held by the
database module. A more detailed description of the notification mechanism is given in
Section 5.3, where the implementation for SQLite is discussed. The IDatabaseModule

interface was kept thin and covers the needs of the workflow described in Section 2.3.4,
where the core functionality of the storage component was listed.

With this modular approach, the architecture of the prototype is very flexible to different
use case scenarios. To add a new kind of sensor, be it a new physical sensor in the GA
ecosystem or simply an optimized preprocessor, the addition of a single class that derives
from ISensor is enough. Everything else can be configured over the XML file. In a
productive environment, it may be possible to change the internal structure on the fly
by automatically detecting the addition of physical sensors. With the current hardware
generation at GA such a hardware change always comes with the modification of the
firmware. The implementation of the prototype is shown in Section 5.3. There, the focus
will shift from the architecture to the implementation specific details. A focus will be on
the integration of SQLite as the database technology for the data storage components.



Chapter 5

Implementation

The previous section introduced the architectural design of the module framework and the
LOG aLevel 2.0 software prototype. This chapter describes the implementation details
of said components. Additionally, this section introduces helper libraries, which were
developed during the implementation period. The libraries provide basic functionality to
simplify the development of the other components in the GA environment.

The chapter concentrates on the transmission of the core ideas of the implemented solu-
tions to the reader. Selected implementation parts are introduced in more detail whenever
it is helpful for the overall understanding. Knowledge of recent C++ versions is assumed.
Various code snippets are shown in the chapter to illustrate the text. To keep the snippets
short, constructors, getter, and setters, but also lengthy error handling was omitted. The
snippets reflecte the state of the implementation at the this chapter was written. The
final implementation may vary from the shown snippets.

5.1 GALIB Libraries

The application development in Delphi over the past years at GA has led to a collection
of small libraries that encapsulate recurring tasks in the sensor data management field.
The libraries provide additional functionality to the standard libraries distributed with
Delphi. Grouped into a single library, the GALIB, those libraries provide the foundation
for more abstracted development. No dependencies to libraries outside of the GALIB exist.

Throughout the implementation phase of this thesis, the low-level orientation of C++
compared to Delphi became apparent. Even simple tasks, e.g., the trimming of a string,
resulted in significant code blow. With the number of such situations rising, the decision
was taken to create a GALIB_CPP library collection. Some libraries were ported from
Delphi, at least regarding functionality. Other libraries fill basic functionality needs that
are already covered by the Delphi standard library. It was neither the time nor the
idea to port the full GALIB to C++, only the required parts for the work of this thesis
were implemented. Later on, the implementation of the GALIB_CPP can be extended and
gradually adapted to the functionality of the Delphi libraries.

53
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Albeit some libraries needed significant effort to implement and have grown big and com-
plex, they were not the core work of this thesis. Additionally, a detailed implementation
description of all the libraries would be too much for the scope of this thesis. Therefore,
interested readers are referred to the source code of the libraries where the core ideas and
important implementation parts are described. The following libraries were implemented
throughout the work of this thesis:

� byteFns – A library to handle the conversion of numerical values to bytes and back.
This library is particularly important for binary communication, e.g., between the
RTU and the DHU.

� propFns – It provides the classes that are used for the GAPP communication. The
GAPP engine, property classes, and various value classes are the most prominent
parts of this library. The library was developed in parallel in Delphi and C++.

� sysFns – This library provides functionality that is too small to be grouped into a
single library. Currently, only overloaded enum class bit shift operators are imple-
mented, which allows the convenient use of an enum class as bit flags.

� textFns – The text functions library provides helper functions to split or trim a
string. Additionally, type to string and string to type conversion was implemented
for trivial types.

� timeFns – Timestamp management is essential for the management of sensor data.
Therefore, this library provides functions to convert a timestamp between string,
double, or internal TimeStamp representation. The library uses the C++ <chrono>

library and sets the internally used clock with precision to specify the TimeStamp

and Duration types.

� xmlFns – With the implementation of the module framework that relies on XML
files, a XML library was needed. The Delphi GALIB contained a well-tested XML
library that was specially built to work with the ModKit library. The library was
ported to C++ to ensure maximal compatibility between the C++ and the Delphi
library.
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5.2 Implementation: Module Framework

The design choices for the module framework were introduced in Section 4.2. This section
presents details on its implementation. First, the final decisions on the XML configuration
file mechanism are shown. Later on, the implemented factory mechanism is introduced, it
is one of the core pieces of the framework. Afterwards, the ModuleApp module is presented.
There, the loading mechanisms to create an application from a configuration file is shown
together with an introduction on the LTC. Finally, the description of the TaskRunner

implementation ends this section.

5.2.1 Signal-Slot Mechanism and Data Transport

As can be seen in Section 4.3, a lot of data communication between the modules exists.
The data flows from the input to the processing, into the data storage, and finally to the
output. The implemented framework relies on a signal-slot mechanism. With C++11,
std::function<> can be used as function pointer, which in turn can be used for callback
implementations. This functionality provides the most basic signal (the callable function
pointer) and slot (a function that binds to the pointer) mechanism. A disadvantage of
this mechanism is the 1-to-1 cardinality between the signal and the slot. Only one slot
can be bound to a pointer. For convenience, Boost.Signals2 [7] was used instead for
the signal and slots. Besides allowing N-to-N bindings, automatic live time management
between the signals and the slots simplifies the development significantly. The consequent
use of type aliases like

using DataSignal = boost::signals2::signal<void(IDataPtr)>;

allows exchanging of the used technology if needed. The Boost library introduces some
overhead. The implementation of a simplified signal-slot library, which fits to the GA use
cases, is intended later on, after the work of this thesis has finished.

Coupled to the used signal-slot mechanism is the use of a data base class IData. With the
help of shared pointers, arbitrary data can be passed through an application. Listing 3
shows an example of such a data class. It is a struct that inherits from IData, there-
fore, std::shared_ptr<IData> can be created from it. In the case, the snippet shows
the implementation of the chunk data format, containing the CID and a byte payload.

1 struct ChunkData : public IData

2 {

3 public:

4 ChunkData(){};

5 int CID;

6 std::vector<std::byte> data;

7 };

Listing 3: ChunkData implementation.
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Other data classes similar to ChunkData exist in the prototype implementation. The data
packages are created on the heap and referenced by using smart pointers. This allows
safe package transport by passing the pointers around in the application. A reference
count keeps track on the number of used pointers. If all pointers go out of scope, the data
pointed to will be freed.

5.2.2 Module Framework: XML Configuration

During the design phase, it was decided to use an adapted XML meta-programming
solution from ModKit. This section introduces the structuring of such a configuration file
and highlights the core decisions of the integration into the framework.

Listing 4 presents a dummy XML configuration to show the functionality. At the top, the
XML declaration gives information on the XML version and the encoding. It was decided
to integrate a versioning of the used syntax early on. For that purpose, the configuration
is wrapped in a ModKitLite element, which defines this version (see line two). As said in
the design section, the root of a module framework application is the ModuleApp module.
Therefore, a XML element with the tag ModuleApp, as on line three, is always present.
Each node in the configuration file can have an arbitrary number of properties as XML
attributes. Nodes of custom modules need to include a Class attribute, which specifies
the C++ class that should be used to instantiate it. An example is the CustomModule on
line four, which specifies CustomModuleImpl as target class. There may exist additional
XML nodes anywhere in the configuration, e.g. the NotAModule node at line nine. These
nodes are ignored in the module creation phase. It is up to the parent node to handle
them. Typically, a path through the module tree is built by having the root (ModuleApp)
as /, followed by the tags of the appropriate child modules. If multiple modules with the
same tag exist, the first one from top to bottom is chosen. To allow unique paths, a Name

attribute can be added, as it was done on line five and six. Only the name will now be
considered for path resolution.

1 <? xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <ModKitLite version="100">

3 <ModuleApp Property1="xyz" ... >

4 <CusotmModule Class="CustomModuleImpl" >

5 <EqualModule Class="ModClass1" Name="mod1" />

6 <EqualModule Class="ModClass2" Name="mod2" />

7 </CusotmModule>

8 ...

9 <NotAModule>

10 <Content/>

11 </NotAModule>

12 </ModuleApp>

13 </ModuleApp>

Listing 4: Dummy XML configuration of a framework application.



5.2. IMPLEMENTATION: MODULE FRAMEWORK 57

5.2.3 Module Framework: Module Registration

A core functionality requirement of the module framework is the possibility to add new
modules to an application without the need to change or recompile the framework library.
Advanced language features in Delphi, for example, class references (meta-classes), virtual
constructors, and a unit based initialization section, would simplify the implementation
of such a class factory mechanism. Because C++ misses these language features, an-
other way had to be found that the framework can provide an elegant interface to add
new modules.

Listing 5 shows the code for the factory mechanism. The first class is the factory itself,
called ModuleFactory. At line seven, the factoryFunctionStore map stores factory
functions for all registered classes. The static instance() function holds a static factory
instance and returns a pointer to that factory, which can be used to register a class or to

1 using FactoryFunction = std::function<IModulePtr(void)> ;

2

3 class ModuleFactory{

4 private:

5 ModuleFactory(){};

6 std::map<std::string, FactoryFunction> factoryFunctionStore;

7 public:

8 static ModuleFactory *instance(){

9 static ModuleFactory factory;

10 return &factory;

11 }

12

13 void registerClass(const std::string &className, FactoryFunction factoryFunction){

14 factoryFunctionStore[className] = factoryFunction;

15 }

16

17 IModulePtr create(const std::string &className){

18 IModulePtr instance = nullptr;

19 auto it = factoryFunctionStore.find(className);

20 if (it != factoryFunctionStore.end()) {

21 instance = it->second();

22 } else {

23 throw "Module: " + className + " not registered!";

24 }

25 return instance;

26 } };

27

28 template <typename T>

29 class Registrar{

30 public:

31 Registrar(const std::string &className) {

32 ModuleFactory::instance()->registerClass(className, [](void) -> IModulePtr {

33 return std::make_shared<T>(); });

34 } };

Listing 5: Module factory with registration functionality.



58 CHAPTER 5. IMPLEMENTATION

get an instance of that class. The registerClass() function at line 15 stores a factory
function in the factoryFunctionStore to register the class. The last method in the
ModuleFactory class at line 19 provides the functionality to create an instance of one
or the registered classes. The factoryFunctionStore is searched after the class name,
if the requested class is registered, an instantiation of it is returned. If the class is not
registered, an appropriate error message is returned. After the factory at line 32, a tem-
plated helper class Registrar is presented. It can be used by module implementations
to register a new module class. The Registrar constructor call gets a pointer to the
factory over the instance() method and calls registerClass(). Through the template
type, the registrar is able to create a lambda function that has the signature of a Facto-

ryFunction, creates the template class and returns a shared IModulePtr. This lambda
function is stored through the registerClass() function, and called when someone calls
ModuleFactory::instance()->create("classname").

The user of the framework has to link to the framework library and implement a module
that derives from IModule. Afterwards, a single line in the source code is enough to
register the class. static Registrar<Sensor> registrar("Sensor"); would be the
registration of a sensor class. Albeit not specified by the standard, current compiler
initialize the static variables at namespace scope before the program enters the main()

routine. Thus, it is guaranteed that all needed classes are registered in the factory before
the execution starts. One thing to be cautious of is the linking phase of the module
framework library. An aggressive optimizer may not export symbols that are not used at
link time, e.g., the registerClass() function is not in use at that time, as no modules
are registered. At least the GCC [26] linker needs a special -whole-archive flag to link
everything properly.

This module registration solution was based on an article by John Cumming [16]. Nu-
merous previous attempts to implement such a factory were not as elegant or needed to
revert to macro usage.

5.2.4 Module Framework: Base Class Functionality

The IModule class is the base class of each module. It contains convenience functionality
to find and access modules in the module tree. A crucial functionality of the base class
is the loading and instantiating of the modules from an XML configuration file. This
functionality is implemented in static class methods. Therefore, any entity that either is
a module or contains a module, is able to instantiate the module tree or parts of it.

The class method in Listing 6 shows this loading phase. The function receives a pointer
to a XML element. This XML element comes from the xmlFns library and contains the
deserialized XML file. The element contains a tree of nodes that have an INode base
class. Each node can be a Comment, Instruction, Text, or an Element node. The
element node passed to the IModule::loadModules() method contains the configuration
of the modules that should be loaded during the method call. In the chosen architecture
(see 4.2), a ModuleApp root module parses the XML file in its loadApp() function into
the Element. Afterwards IModule::loadModules() is called.
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In line two, a temporary struct is created to hold the loaded modules and the correspond-
ing XML subtree. A vector is used to store the module information object for each created
module. The core of the load function is the loadChilderen named lambda function at
line nine. For each node from type Element of the xml parameter, a second static method
createModule() is called. In case the element contains a Class attribute, the module is
created and returned. If the class does not exist in the factory, an exception is thrown.
If the element does not have a Class attribute, an empty std::optional is returned at
line 13. On successful module creation, the lambda calls itself for every child of the xml

parameter. Additionally to the recursive call, the resulted module with its XML subtree
is stored in a ModuleInfo object.

The lambda is first called at line 25, which performs a postfix depth-first iteration of
the XML file and creates every module. Afterwards, a double iteration over the created
modules initializes them. First, all necessary initialization of a module is done on line
28. In a second iteration, the interconnection between modules, which requires already
initialized modules, is done on line 32. Emitted events over the onStateChanged callback
were omitted to keep the code short.

1 void IModule::loadModules(IModulePtr owner, ElementPtr xml, ModuleEvent onStateChanged){

2 struct ModuleInfo {

3 IModulePtr module;

4 ElementPtr element;

5 };

6 std::vector<ModuleInfo> infos;

7

8 auto loadChildren =

9 [&] (IModulePtr owner, ElementPtr xml, ModuleEvent onStateChanged) -> void {

10 for(auto node : *xml){

11 if(typeid(*node) != typeid(Element)) continue;

12 auto element = std::static_pointer_cast<Element>(node);

13 auto module = createModule(owner, element, onStateChanged);

14 if(module){

15 ModuleInfo info;

16 info.module = module.value();

17 info.element = element;

18

19 loadChildren(module.value(), element, onStateChanged);

20 infos.push_back(info);

21 } } };

22

23 loadChildren(owner, xml, onStateChanged);

24

25 for (auto info : infos) { // Loading Stage One -> Initialization

26 info.module->init(info.element);

27 }

28

29 for (auto info : infos) { // Loading Stage Two -> Interconnection

30 info.module->link(info.element);

31 } }

Listing 6: Loading method to create the module tree from an XML file.
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1 bool IModule::tryFind(const std::string &path, IModulePtr &module) {

2 ModulePathIterator iterator(path);

3 IModulePtr current = shared_from_this();

4 bool result = true;

5 std::string item;

6 while (result && iterator.next(item)) {

7 if (item == "/") {

8 if (iterator.position == 1) {

9 current = getRoot();

10 }

11 } else if (item == "..") {

12 current = current->getOwner();

13 } else {

14 result = false;

15 for (auto m : *current) {

16 if (m->name == item) {

17 current = m;

18 result = true;

19 break;

20 } } } }

21

22 result ? module = current : module = nullptr;

23 return result;

24 }

Listing 7: Function to find a module in a module tree.

Another functionality of the module base class is the finding of a function in an exist-
ing module tree. Listing 7 shows a stripped down code snippet of the module finding
function, error handling, and appropriate formatting is omitted to safe space. A relative
path to the current module, something like "../../PropertyModule", is expected as an
input parameter. An IModulePtr reference is passed as an output parameter. A Mod-

ulePathIterator object is then created from the path at line two. This iterator provides
a method to iterate over the separate parts of the path based on the"/" path separator.
The while loop at line six iterates over the path parts. If the part equals a path separator
and the current iterator position is at the second character in the path, the root module
is chosen for further iteration. If a double-dot is the next part, the owner of the currently
selected module is selected as current. When the path part is something different, the
modules of the current module are iterated, if a module name equals the path part, it is
selected as current. After the path has been iterated, the result is returned. This search
algorithm only finds the first module of modules that have the same name. The option
to set a Name attribute in the XML instead of relying on the by default chosen XML tag,
circumvents this problem.

The implemented functionality of the module base class provides the foundation to im-
plement modular applications. Nonetheless, additional functionality is needed to be able
to create a working application. Therefore, a root module ModuleApp was added. The
next section introduces the implementation of it.
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5.2.5 Module Framework: ModuleApp

The ModuleApp module is the glue of a module framework application. As shown in
Section 4.2, it is always the root of a module framework application. The ModuleApp is
the only module that is instantiated by hand in the main function of a module application.
The main function calls startApp(), which initiates the booting of the application. A
path to the XML configuration is passed to the ModuleApp in this function call.

The class diagram in Figure 4.1 shows that the ModuleApp contains two core components.
The LTC and the TaskRunner. The implementation of both components is presented in the
following paragraphs. As introduced in the design section, the LTC oversees the state of
the application based on events. Its possibility to add callbacks on state transitions allows
the ModuleApp to control the application flow as needed. During the ModuleApp creation,
the state transitions are added to the LTC to model a finite state machine that looks like
the state diagram of Figure 4.2. A callback is attached to some of the transitions. On
the loadxml event, a call to loadApp() of the ModuleApp is added to launch the module
creation process. Similarly, a run() call to the TaskRunner is attached to the transition
from LINKING to ALLLOADED.

The ModuleApp adds a callback to an onStateChanged signal. The callback is shown in
Listing 8. It outputs event information to the standard output as seen on line three. This
callback makes the LTC useful, especially in the case of an error. Later on, a dedicated
logging module may be connected to that signal, which could provide advanced logging
mechanisms. The implemented callback is suited for debugging purposes, but it may
not be ideal for a productive environment. Other modules can act on state changes by
connecting to the same signal. Further on, the other modules can add states, events,
transitions, and even callbacks on transitions if they want to. This means that they can
modify the state machine to their need. For example, a module could add states and
events that form a separate state machine that is independent of the main state machine
and can be used for their purposes. Entry and exit actions on states were implemented in
an attempt to stay close to the UML state machine specification. Until now, a use case
for them could not be found. Future improvements, which should result in deterministic
and bug-free finite state machine for the use in embedded scenarios, may need a state
machine that is more compliant with the UML standard.

1 void onStateChanged(IDataPtr data){

2 auto eventinfo = std::static_pointer_cast<EventInfo>(data);

3 std::cout << "EVENT: " << eventinfo.getEvent() << std::endl \

4 << "\temitter: " << eventinfo.getSender() << std::endl \

5 << "\tpath: " << eventinfo.getSenderPath() << std::endl \

6 << "\tmessage: " << eventinfo.getMessage() << std::endl;

7 }

Listing 8: Callback function to output state changes.
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The second component that is held by the ModuleApp is the TaskRunner. Its main task
is the provisioning of a main loop for the application. At the heart of the TaskRun-

ner is a task queue. The queue holds tasks, which are callback functions of the type
std::function<bool(void)>;. The TaskRunner provides a run() method and three
ways to add different task types to the queue, as can be seen in Figure 4.1 on page 43.
The TaskRunner allows adding polling tasks. Such tasks would typically be hard-coded
in an endless loop within the main routine. Further on, it is possible to add single tasks
or tasks that should be executed periodically in a specified interval.

1 bool TaskRunner::run_once(){

2 bool result = true;

3 for(auto i = 0; i < tasks.size(); i++){

4 mutex.lock();

5 auto [task, repeated] = tasks.front();

6 tasks.pop();

7 mutex.unlock();

8 auto res = task();

9 if(repeated){

10 insertReccurringTask(std::move(task));

11 result = result && res;

12 }

13 }

14 return result;

15 }

16

17 void TaskRunner::addPollingTask(Task task){

18 insertReccurringTask(std::move(task));

19 }

20

21 void TaskRunner::addPeriodicTask(Task task, Milliseconds interval){

22 std::thread t([=](){

23 while(true){

24 std::this_thread::sleep_for(interval);

25 insertTask(task);

26 }});

27 t.detach();

28 }

29

30 void TaskRunner::addTask(Task task, Milliseconds timeout){

31 if(timeout > Milliseconds(0)){

32 std::thread t([=](){

33 std::this_thread::sleep_for(timeout);

34 insertTask(task);

35 });

36 t.detach();

37 } else{

38 insertTask(task);

39 }

40 }

Listing 9: Core functionality of the TaskRunner
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Listing 9 shows the implementation of the core functionality. The method run_once() at
line one is called endlessly in the run() method of the TaskRunner. The run() loop sleeps
for a few milliseconds if it run_once() returns false, as no work has to be done. Inside
the run_once() function, the task queue is iterated. At line five, the task at the front of
the queue is accessed using structured binding. At line six, the front is then popped from
the queue. The access operations to the queue are protected by a mutex, which enables
other threads in the application to enqueue tasks to the TaskRunner. At line eight, the
selected task is executed. If it is a repeated task, which means a polling operation, it is
enqueued again into the task queue. A Boolean value is built over the return values from
the polling tasks. It keeps track of work that has to be done or if the application can
sleep for a short time.

The other methods in Listing 9 show the different ways to add tasks to the queue. At line
17, addPollingTask() ads a recurring task to the queue. It calls a thread-safe insertion
function. The addPeriodicTask() method on line 21 does what its name inclines, and
ads a periodic task. This is done over a thread to which a lambda is passed at line 22. The
thread executes an endless loop, which sleeps for most of the time at line 24. Whenever
the interval is run out, the thread wakes up and inserts the task into the queue of the
main thread. The thread is detached at line 27. The last possibility is the insertion of
a single task. As shown on line 30, an optional timeout can be passed, which delays the
insertion of the task into the task queue. Similarly to before, a thread is used for this
purpose, but instead of a loop, the thread goes to sleep only once at line 33. If no timeout
is passed, line 38 inserts the task directly into the queue.

It must be said that this solution is a simple way to solve the needed functionality with
C++ language features. One could even implement priority scheduling of the tasks in the
future. There are downsides to this implementation, as will be assessed in Section 6.1.1.
However, it is the simplest platform overlapping solution that could be found.

With the description of the TaskRunner implementation, the introduction of the mod-
ule framework is complete. The framework provides the basic functionality to create a
modular application. The addition of the TaskRunner gives the possibility of creating
asynchronous applications to the user. The framework is evaluated in Section 6.1. First,
its functionality is assessed, then it is compared to similar frameworks from related work.
Finally, the usefulness of the framework for GA is determined. Before that, the imple-
mentation of the LOG aLevel prototype is shown in the next section. The prototype is
based on the module framework described above.

5.3 Implementation: LOG aLevel 2.0 Prototype

This section introduces the implementation of the prototype, which was done as second
part of this thesis. First, Section 5.3.1 provides general information on the implemented
prototype and introduces general modules. Section 5.3.2 shows the parts that implement
the preprocessing requirements. Finally, the postprocessing is shown in Section 5.3.3
together with the structured data storage component.
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5.3.1 Prototype: Core Modules

Listing 2 on page 49 has introduced the XML configuration of the prototype application.
This section presents the basic modules, which are needed to combine other, more on
specific functionality focused modules into a working prototype. It was tried to highlight
only the essential parts to keep the text at reasonable length in favor of a more detailed
description of the data storage and postprocessing components.

ChunkDriver Module

The first module of the ModuleApp shown in Listing 2 is the chunk driver. The binary raw
data has to be somehow passed to the processing modules as chunks. A chunk driver was
implemented to fulfill this functionality. Due to the missing RTU part of the prototype,
an IChunkDriver interface was introduced to keep the driver modules exchangeable. The
driver modules assume a ping-pong buffering from the RTU as described in Section 2.3.2.
Concrete details how this buffer mechanism will be implemented in the hardware were
not available. A chunk data generator (CDG) was implemented that provides a file based
buffer functionality. A FileChunkDriver that implements the IChunkDriver interface
was created. It looks for a file on a specific file path. If the file exists it reads the chunk
data into memory and deletes the file. The file deletion is recognized by the data creator,
and a new file is created. The size of the raw data file determines the simulated delay
through ‘buffering’ between the RTU and the DHU. A more sophisticated implementation
will be needed as soon as the RTU is developed by GA. The functionality required for
the prototype in this thesis is given by the implementation of the file based chunk driver.
The chunk driver calls a signal each time it has a chunk available for distribution. Other
modules can connect to this signal to receive the data.

GAPPModule

The last module in Listing 2 is the GAPPModule. It is a wrapper to make the propFns

library usable in the context of the module architecture. The snippet in Listing 10 shows
the thin wrapper class. It holds a GAPP::IProcessor object, which can either be a GAPP
source or observer engine. The GAPP engine needs an IO manager to work correctly. The
GAPP::IIOManager descendants are concerned with the sending and receiving of GAPP
messages. A SerialIOManager is used for the prototype. It allows asynchronous message-
based serial communication. Additional decoration layers can be implemented in the IO
Manager. Currently, a XOR checksum is added to the GAPP messages. Further imple-
mentations may add compression or an encryption layer. The poll() method at line nine
polls the IO manager for new incoming messages. Outgoing communication is made over
the GAPP engine or the properties. The processor and the IO manager are both created
in the creation of the module. The properties, which are held by the PropertyModule

described below, are connected to the processor with the connectProperties() proce-
dure. A map of properties (IProps) is passed where each property is associated with a
unique integer ID. To get a mapping to the GAPP name, a second map is passed, which
connects the name to the ID.
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1 class GAPPModule : public IModule, public IPollable

2 {

3 private:

4 IProcessorPtr processor;

5 IIOManagerPtr iomanager;

6 public:

7 void init(ElementPtr xml) override;

8

9 bool poll();

10 void connectProperties(IPropsPtr props, IPropIDsPtr propIds);

11 };

Listing 10: GAPPModule implementation.

PropertyModule

Coupled to the GAPPModule is the PropertyModule. It was introduced to create some
decoupling between the business logic and the GAPP engine. The decoupling was not
driven too far, property types of the GAPP library were used for convenience. The
module manages GAPP::IProp properties and connects them to the GAPPModule. The
combination of the PropertyModule with the GAPPModule in the implemented form is a
compromise. A clean solution how to handle these properties could not be found. Even
in the ModKit based LOG aLevel applications at GA, the property handling is one of the
structural problems. The addition of a dedicated value manager implies that the GAPP
engine has to monitor this manager and synchronize itself with it. A lot of casting and
copying of the values would be included. This was suppressed by keeping the connection
between both modules.

Listing 11 shows the class diagram of the PropertyModule. Visible at line six is the
connection to the GAPP source. This implementation is trimmed to having only one
GAPP source. In cases where a GAPP observer may exist, a new solution would have to
be found.

1 class PropertyModule : public IModule{

2 private:

3 GAPP::IPropIDs propertyids;

4 GAPP::IProps properties;

5 void addProp(const GAPP::PropInfo &info);

6 std::shared_ptr<GAPP::Source> source;

7

8 public:

9 virtual void init(ElementPtr xml) override;

10 virtual void link(ElementPtr xml) override;

11 bool getProperty(const std::string &propName, IPropPtr &prop);

12 IPropPtr getProperty(const std::string &propName);

13 };

Listing 11: Implementation of the PropertyModule class.
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5.3.2 Prototype: Preprocessing Functionality

The last section introduced essential core modules of the prototype implementation. This
section presents the modules that cover the preprocessing functionality requirements. Sec-
tion 4.3 has already introduced the architectural design. It was shown that a sensor con-
tainer exists, which contains a group of preprocessing sensors. The sensors take chunk
data as input and produce human understandable primary data. The data is emitted over
the GAPP module and inserted into the data storage module with the help of a data in-
sertion module. Before the sensor container and the preprocessing sensors are introduced,
the parent module of all sensor module is presented below.

ISensor Modules

Typical modules are the sensor modules that derive from an ISensor interface. The
final implementation went through various redesigns and refactorings. The original idea
was the use of a single Sensor class where only the internal algorithms were generic and
could be changed. The deep nesting of modules and necessary module casting made this
approach unusable.

The next implementation was the deviation directly from the ISensor base class. This
approach worked, albeit different sensor kinds lead to repeated code in the init() meth-
ods. Two sensor categories stood up The primary data generating preprocessing sensors
and the secondary data generating postprocessing sensors. Two subclasses to the ISen-

sor class were made. The UML class diagram in Figure 5.1 shows said structure. The
ISensor base class is concerned with the SID and other functionality that each sensor
has. The IPrimaryDataSensor and the ISecondaryDataSensor extend the functionality
for their respective domain. Most difference is in the init() method, where different
attributes have to be handled depending on the sensor kind. The inheritance hierarchy
is not visible to the module user, only the modules at the lowest layer will be registered
into the module factory. For a developer of a new module it is important to know that
parent::init() has to be called before the own loading mechanism is executed. The
importance of the different base classes for the actual sensor modules may grow in the
future when the implementation of specialized sensors modules is done. Only then, it is
possible to extract overlapping functionality into the respective base classes. Figure 5.1
shows two default sensor modules, one for each sensor category. The modules cover the
functionality needs of the prototype. They do not reflect the complexity of a productive
LOG aLevel system where advanced algorithms are involved. These algorithms would
have to be integrated into sensor modules, which was not a requirement of this thesis’
work. Both default sensors are described below after the SensorContainer module has
been shortly introduced.
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ISensor

- SID : int

IPrimaryDataSensor

- name : string

ISecondaryDataSensor

- db : IDatabaseModulePtr
- propMod: PropertyModulePtr

DefaultChunkConverterSensor

- sink(data : IDataPtr) : void

...

- init(xml : ElementPtr) : void

- init(xml : ElementPtr) : void

- init(xml : ElementPtr) : void

- init(xml : ElementPtr) : void

- sink(data : IDataPtr) : void

IModule

- sink(data : IDataPtr) : void

...

- outprop : IPropPtr
- onValue: DataSignal

DefaultAveragerSensor

- sink(data : IDataPtr) : void
- init(xml : ElementPtr) : void

- avgInfos: AveragerTasks

- onSelect(data : IDataPtr) : void

Figure 5.1: ISensor class diagram with the inheritance hierarchy.

SensorContainer Module

Section 4.3 has shown that the processing sensor modules are grouped into sensor con-
tainer modules. The SensorContainer module realizes the ISink and the IDispatcher

interface. In case of preprocessing functionality, the container takes ChunkData in over
the sink and distributes them based on CID to the sensors that have connected to the
dispatcher slot. Further on, the container module allows simple access to the sensors.

DefaultChunkConverterSensor Sensor Module

This paragraph describes the default primary data generating sensor that can be used to
convert raw data chunks of typical timestamp-value sensors into primary data. The class
can be seen above in Figure 5.1, it is called DefaultChunkConverterSensor. Listing 12
shows an example of a XML description for this sensor module. The first two attributes
are handled by ISensor, they are present on each sensor object. The attributes at line
five and six are handled by IPrimaryDataSensor, each primary sensor is connected to its
container that implements the dispatcher interface. Only the attributes at line eight to
ten are handled by the sensor implementation itself. Listing 13 shows the initialization
methods of the sensor. As shown in Section 4.2, the initialization process contains two
stages. One for the initialization and one for the interconnection of the modules. Line one
shows the initialization function. Line five the linkage function of the DefaultChunkCon-

verterSensor. Both functions call their parent implementation on line two and six. The
linking phase after line five is meant to interconnect the modules, which are properly
initialized after init() was called for all modules. In this case, the OutputPropertyID



68 CHAPTER 5. IMPLEMENTATION

1 <Sensor Class="DefaultChunkConverterSensor"

2 Name="Watertemp"

3 SID="10"

4

5 DispatcherInputIDs="20"

6 DispatcherModule="../../DispatcherModule"

7

8 OutputPropertyID="15"

9 PropertyModule="../../../PropertyModule"

10 SinkModule="../../DataInserterModule"

11 />

Listing 12: XML configuration of a DefaultChunkConverterSensor module.

attribute is read out at line eight and converted to an integer that describes the property
ID. Further, at line 14 the property module path is read out from the PropertyModule

attribute and searched in the module tree. If found, the property that corresponds to the
property ID is taken from the property module and stored in the sensor module. Finally,
the sink module is found at line 18 and connected to the output signal on line 23.

Further down in Listing 13, the core functionality of the DefaultChunkConverterSensor

is shown with the sink() procedure. This function represents the slot that is connected
to the dispatcher. Therefore, the function is called whenever the dispatcher executes the
associated signal. First, at line 27, a new value object is created based on the value of the
saved property. The base class value pointer is then cast to the appropriate timestamp-
float value. The same is done for the IDataPtr, which is cast to a ChunkDataPtr. At
line 31 and 32, the first eight bytes from the byte payload of the chunk are converted
to a double that represents the timestamp. For each sample that follows, four Bytes are
converted to a float, which represents a sampled sensor value. The timestamp and the
sensor values are then inserted into the property value. At line 40, the newly created value
is compared to the value that the output property is holding. In case they are different,
the new value is assigned to the property. The onChanged signal of the property is then
invoked. The signal leads to an emission of a GAPP message through the GAPP module.
Line 44 calls the output signal, which initiates the insertion of the new value to the data
storage module. Other, much more complex sensors may be implemented later on, but
the basic workflow to create primary data form chunk data is shown here.

5.3.3 Prototype: Storage and Postprocessing Functionality

This section introduces the implementation details of the data storage and data storage
functionality. The core design decisions were taken during the workflow concept creation
and can be found in Section 2.3. The design was extended and adapted for this thesis’
work. The design process can be found in Section 4.3 where the modular structure of
the functionality was introduced. Modules like the SensorContainer or the ISensor

descendants were introduced in the previous section. Similarly, the core mechanics of the
modular applications, e.g., the signal-slot mechanism, was already shown. Therefore, this
section is focused on the data storage modules and the postprocessing mechanism.
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1 void init(ElementPtr xml) override{

2 IPrimaryDataSensor::init(xml);

3 }

4

5 void link(ElementPtr xml) override{

6 IPrimaryDataSensor::init(xml);

7 sampleCount = xml->attrDef("Samplecount", 1);

8 int propID = xml->getAttrAsInteger("OutputPropertyID");

9

10 IModulePtr m;

11 if (!tryFind(xml->getAttrAsString(("PropertyModule"), m)) {

12 throw ControllerErr{"Could not find: PropertyModule"};

13 }

14 auto propModule = std::dynamic_pointer_cast<PropertyModule>(m);

15 if (!propModule->getProperty(propID, outprop)) {

16 throw ControllerErr{"Could not find Property with ID: " + propID};

17 }

18 auto path = xml->getAttrAsString(std::string("SinkModule"));

19 if (!tryFind(path, m)) {

20 throw ControllerErr{"Could not find: SinkModule"};

21 }

22 auto sink = std::dynamic_pointer_cast<ISink>(m);

23 onValue.connect(boost::bind(&ISink::sink, &*sink, _1));

24 }

25

26 void sink(IDataPtr data) override{

27 auto value = outprop->getValue()->newValue();

28 auto sensorvalue = static_cast<GAPP::TimestampFloatVectorValue *>(value);

29 auto chunkdata = std::static_pointer_cast<ChunkData>(data);

30

31 Bytes buf(chunkdata->data.begin(), chunkdata->data.begin() + 8);

32 sensorvalue->ts = ByteFns::toDouble(buf);

33 int offset = 8;

34 for (int i = 0; i < sampleCount; i++) {

35 Bytes buf(chunkdata->data.begin() + offset, chunkdata->data.begin() + offset + 4);

36 auto f = ByteFns::toFloat(buf);

37 sensorvalue->samples.push_back(f);

38 offset += 4;

39 }

40 if (!outprop->getValue()->isEqual(value)) {

41 outprop->getValue()->assign(value);

42 outprop->doChanged();

43

44 onValue(std::make_shared<ValueData>(value,outprop->getId()));

45 }

46 delete value;

47 }

Listing 13: Initialization and sink method of the DefaultChunkConverterSensor class.
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DataInserter Module

The data, which is generated by the primary data generating sensors, has to be inserted
into the structured database. This task is done with the help of a DataInserter module.
It implements the ISink interface. All primary data sensors are connected to this module
and call the data sink when a new value is available. Listing 14 shows the init() and
sink() method of the inserter. At line one to seven, the database module is found and
stored. Line nine loops through every insertion task node of the XML file (e.g., see line 18
on page 49). The tasks are inserted in a task map, which holds the GAPP property
ID as key. Two types of tasks exist. The default insertion task inserts each arriving
value directly into the database. The second insertion task was implemented to allow
transaction encapsulated inserts of multiple sensor values. Instead of directly calling an
insert if a value arrives, the task buffers the values until it has reached the predefined
buffer size. The buffered values are then inserted into the data storage module at once.
Each insertion task description with a "Highspeed" attribute uses buffered inserts. Later
advancements of this sensor may introduce a more intelligent buffering that can react to
different insertion frequencies and handles timeouts.

The use of buffered inserts was necessary as it improved the SQLite insertion performance
significantly. Section 6.2.2 provides more insight on these performance issues. The use of
the asynchronous insertion operation helped to improve the overall performance again as
it does not lock the main thread on insertion. Line 19 and following, shows what happens
if the sink function is called. The received IData is cast to ValueData. Finally, the correct
task is extracted from the map and executed.

1 void DataInserter::init(ElementPtr xml){

2 std::string path = xml->getAttrAsString(std::string("DatabaseModule"));

3 IModulePtr module;

4 if (!shared_from_this()->tryFind(path, module)) {

5 throw ControllerErr("Could not find: " + path);

6 }

7 this->dbmodule = std::static_pointer_cast<IDatabaseModule>(module);

8

9 for (auto e : *xml) {

10 if (typeid(*e) == typeid(Element)) {

11 auto element = std::static_pointer_cast<Element>(e);

12 if (element->getTag() == "InsertionTask") {

13 bool isHighspeed = element->attrDef(std::string("Highspeed"),false);

14 std::string name = element->getAttrAsString(std::string("SensorStore"));

15 int id = element->getAttrAsInteger(std::string("ID"));

16 addInsertionTask(id, name, isHighspeed);

17 } } } }

18

19 void DataInserter::sink(IDataPtr data){

20 std::shared_ptr<ValueData> value = std::static_pointer_cast<ValueData>(data);

21 insertionTasks[value->propID](data);

22 }

Listing 14: Initialization and sink method of the DataInserter class.
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Data Storage Abstraction

The design of the data storage abstraction interface was shown in Section 4.3. The class
diagram in Figure 4.4 introduced the IDatabaseModule base class. The implementation
of this abstract interface classes followed the class diagram closely. Listing 15 shows the
implementation of it. The addition of asynchronous operation, as shown on line 19 and
23, became unexpectedly complicated due to the introduced multithreading. The user of
the database module must have some handle to the started transaction, and it should be
ensured that the data is returned to the caller. Therefore, a TransactionInfo class was
created. It contains the type of the transaction (insertion or select), a unique transaction
ID as well as an error code in case something unexpected happened. For the prototype,
an error may be returned when a second asynchronous insertion call is made while the
first has not finished yet. The return values of an asynchronous select can be handled over
a DataEvent callback that can be passed to the function. It isinsured that the callbacks
are called in the main thread with the help of the module frameworks task runner.

1 class IDatabaseModule : public IModule, public IPollable, public ISource

2 {

3 public:

4 virtual void connectSlot(DataSlot slot) = 0;

5 virtual bool poll() = 0;

6

7 virtual void init(ElementPtr xml) = 0;

8

9 virtual bool insert(const std::string &table,

10 const std::vector<SensorRecord> &values) = 0;

11

12 virtual bool insert(const std::string &table,

13 const SensorRecord &value) = 0;

14

15 virtual bool select(const std::string &table,

16 const SensorInterval interval,

17 std::vector<SensorRecord> &records) = 0;

18

19 virtual TransactionInfoPtr selectAsync(const std::string &table,

20 const SensorInterval interval,

21 DataEvent callback) = 0;

22

23 virtual TransactionInfoPtr insertAsync(const std::string &table,

24 const std::vector<SensorRecord> &values,

25 Task callback) = 0;

26

27 virtual void insertTodo(const TodoRecord& record) = 0;

28

29 virtual void selectRemoveTodos(const std::string &notification,

30 std::vector<TodoRecord> &records) = 0;

31 };

Listing 15: Abstract IDatabaseModule class.
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SQLite Data Storage

Most development effort of the prototype went into the SQLite implementation of the
data storage abstraction interface. As shown in the class diagram of Figure 4.4, the
SQLiteDatabaseModule derives from the abstract interface. The serverless characteristics
of SQLite require more database management in the implementation as necessary for
an equal implementation with PostgreSQL as a database. Therefore, the SensorStore

class and the SQLiteNotificationManager class was added as shown in Figure 4.4. The
benefits thereof are that no external database preparation has to be made. If the database
does not exist, it will be created with the database schema on application start. A wrapper
around the C API from SQLite (SQLiteCpp [68]) was used to simplify the development.
The wrapper provides a modern C++ API and hides the low-level SQLite handling.

Listing 16 shows the init() procedure of the SQLiteDatabaseModule class. Line two
extracts the database path from the XML element. Line four creates the database if it
does not exist and opens a connection. The flags at line five and six indicate that the
database should be opened in read-write mode and that it should be created if it does
not exist. Other database settings follow afterward to optimize the database. Currently,
the write-ahead-log (WAL) is enabled for the database. It allows parallel reads while
another connection inserts data. Overall, the use of a WAL improved the SQLite perfor-
mance significantly at the cost of an additional temporary file. Line nine initializes the
SQLiteNotificationManager by passing the database name.

1 void SQLiteDatabaseModule::init(ElementPtr xml){

2 dbName = xml->getAttrAsString("Database");

3

4 defdb = std::make_shared<SQLite::Database>( dbName,

5 SQLite::OPEN_READWRITE |

6 SQLite::OPEN_CREATE);

7 defdb->exec("pragma journal_mode = WAL");

8

9 manager.init(dbName);

10 for (auto e : *xml) {

11 if (typeid(*e) == typeid(Element)) {

12 auto element = std::static_pointer_cast<Element>(e);

13 if (element->getTag() == "SensorStore") {

14 auto store = std::make_shared<SensorStore>();

15 store->init(element);

16 defdb->exec(store->getCreateQuery());

17 sensorStores[store->getName()] = store;

18 store->onTodo.connect(boost::bind(&SQLiteNotifyManager::insertTodo,

19 &manager,_1));

20 } } }

21 std::dynamic_pointer_cast<ITaskRunner>(

22 this->getRoot())->addPollingTask(

23 std::bind(&SQLiteDatabaseModule::poll, this));

24 }

Listing 16: Loading function of the SQLiteDatabaseModule class.
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Line 10 to line 19 of Listing 16 create and initialize the sensor data tables. A SensorStore

object is created for each XML node with attribute "SensorStore" at line 14. Line 15
initializes it with the sensor store element node. The sensor store table is created in the
database on line 16 if it does not exist. Line 17 saves the store pointer in a map, with
its name as the key. Finally, the onTodo signal is connected to the notification manager,
which lets the store emit notifications. At line 21, a polling task is added to the task
runner, which polls the database module for notifications.

Listing 17 shows methods that describe the core mechanics of the SensorStore class. The
first procedure after line one shows the initialization of the sensor store. Line two to five
extract the necessary information from the XML attributes like the name of the store or
its number of columns. Line seven to fifteen handle eventual postprocessing notifications

1 void SensorStore::init(ElementPtr xml){

2 storeName = xml->getAttrAsString("Name");

3 sampleCount = xml->attrDef("SampleCount", 1);

4 sampleColumnNames = TextFns::SplitString(xml-

>attrDef("SampleColumnNames",getDefaultSampleColStr()),',');↪→

5 allowOldData = xml->attrDef(std::string("AllowOldData"),false);

6

7 for (auto e : *xml) {

8 if (typeid(*e) == typeid(Element)) {

9 auto elem = std::static_pointer_cast<Element>(e);

10 if (elem->getTag() == "Notification") {

11 std::string intervalstr{"Interval"};

12 std::string namestr{"Name"};

13 int interval = elem->getAttrAsInteger(intervalstr);

14 std::string name = elem->getAttrAsString(namestr);

15 notifyInfos.push_back(NotificationInfo(name, interval));

16 } } }

17 insertquery = buildInsertQuery();

18 selectquery = buildSelectQuery();

19 updatequery = buildUpdateQuery();

20 createquery = buildCreateQuery();

21 }

22

23 std::string SensorStore::buildInsertQuery() {

24 std::stringstream ss;

25 ss << "INSERT INTO ";

26 ss << storeName << " (ts";

27 for (auto colName : sampleColumnNames) {

28 ss << ", " << colName;

29 }

30 ss << ") VALUES (?";

31 for (int i = 0; i < sampleCount; i++) {

32 ss << ",?";

33 }

34 ss << ");";

35 return ss.str();

36 }

Listing 17: Core functions of the SQLiteSensorStore class.
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that exist on a sensor store. For each notification, a NotificationInfo is created and
pushed into a vector that contains all notifications for the sensor store. Line 17 to 20 build
and cache SQL queries for insertion, update, selection, and creation. The method that
creates the insertion query is shown after line 23. Question marks are inserted on line 21
and 23 as parameters for the values that will be later bound to a prepared statement.

SQLite provides no notification mechanisms similar to PostgreSQL’s listen-notify system
[64]. Therefore, a solution had to be implemented by hand. Section 2.3.3 has shown the
core functionality of the notification interface. Postprocessing sensors register their noti-
fication slot to the database module. Internally, the slot will be connected to the onNoti-

fication signal of the notification manager. The database module can be polled for noti-
fications, which, when available, trigger the signal of the notification manager. The imple-
mented SQLiteNotificationManager is shown in Listing 18. It provides a queue to store
notifications that are created by the sensor stores with the checkEmitNotifications()

1 void SensorStore::checkEmitNotifications(double timestamp){

2 TimeStamp ts = TimeFns::toTs(timestamp);

3 for (auto &info : notifyInfos) {

4 TimeStamp pts = TimeFns::paceOf(ts, info.interval);

5 if (pts > info.lastTs) {

6 if(info.lastTs == TimeStamp()){

7 info.lastTs = pts;

8 return;

9 }

10 emitNotification(info, ts);

11 } } }

12

13 class SQLiteNotifyManager

14 {

15 private:

16 std::string dbName;

17 DataSignal onNotification;

18 std::queue<Notification> notifications;

19 void insertNotification(Notification note) { notifications.push(note); };

20 public:

21 void insertTodo(const TodoRecord &record);

22 void selectRemoveTodos(const std::string &notification, std::vector<TodoRecord> &records);

23 void init(const std::string& dbName);

24 void connectSlot(DataSlot slot) { onNotification.connect(slot); };

25 bool poll(){

26 bool result{false};

27 if (notifications.size() > 0) {

28 onNotification(std::make_shared<NotificationData>(notifications.front()));

29 notifications.pop();

30 result = true;

31 }

32 return result;

33 };

34 };

Listing 18: Notification mechanism for SQLite.
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function shown at line one. checkEmitNotifications() tests inserted timestamps to
each of these stored notifications. Line four of Listing 18 shows the TimeFns::paceOf()

function. It returns the next lower timestamp that conforms to the notification interval.
An input of "17:22:05" would result in "17:00:00" for an interval of ten minutes. This
timestamp is then compared to the last issued notification timestamp at line five. If it
is greater, a notification is issued at line ten. Two actions are triggered. A notification
is inserted into the queue at line 18 using the insertNotification() function at line
19, which was bound to the sensor store signal. Additionally, a todo record with the
information for this notification is inserted in the todo table. By polling the notifications
with the poll() method, the signal for the postprocessing is executed, and the queue
is reduced. The signaled postprocessing sensors can then select their todos by using
selectRemoveTodos() from the IDatabaseModule interface and begin with their action.

Most parts of the data storage module have been introduced. Missing is the description
of the actual data insertion and selection functionality. Listing 19 describes the asyn-
chronous selection method. Functionality that is not shown, like the data insertion into
the database, follows the same principals as the listed selection mechanism. Line five
extracts the data store that matches the table name. The next line acquires a new trans-
action from the sensor store class. If the store does not exists, an error is set in the
transaction on line nine, which is then returned on line ten. If the store exists, the value
of the std::optional is extracted and stored as direct data store pointer on line twelve.
The transaction type is set to the transaction on line 13, afterward, the transaction is
marked as active in the sensor store on the next line. Line 16 creates the thread that
executes the data selection. A lambda function with the source code for the thread is
passed. The lambda captures the important values by copy, otherwise by reference. Line
17 creates a read-only database connection. The next line creates a prepared statement
for the database connection and the select query of the sensor store. A transaction is
started on line 19. The next two lines bind the time interval of the data selection to
the prepared statement. The while loop on line 26 steps through the query result. A
SensorRecord is created for each result record. The record is filled with the timestamp of
line 28 and the sample values from the fore loop of line 30. The transaction is committed
and marked as finished in the sensor store on line 37 and 38. Finally, on line 41, a task
is added to the task runner. It consists of a lambda that calls the callback function by
passing a SensorRecordData object with the result records. The thread starts with the
instantiation of the thread object and is detached from the parent thread on line 47. If
this call is not made, the main thread blocks when the function goes out of scope because
it has to wait on the destruction of the thread. Line 48 ends the asynchronous selection
function by returning the transaction information.

The description of the prototype implementation is almost complete after the data selec-
tion was shown. As said, the other database interaction methods are alike if not simpler
to the method shown in Listing 19. The only missing piece are the postprocessing sensors
that are shown in the next section.
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1 TransactionInfoPtr SQLiteDatabaseModule::selectAsync(const std::string &table,

2 const SensorInterval interval,

3 DataEvent callback) {

4

5 auto store = getSensorStore(table);

6 auto tr = SensorStore::getTransaction();

7

8 if(!store){

9 tr->setError(TransactionError::teTableUnknown);

10 return tr;

11 } else {

12 auto storeptr= store.value();

13 tr->setType(TransactionType::ttSelect);

14 storeptr->startTransaction(tr);

15

16 std::thread t([&,this, callback, tr, sp = storeptr, interval ](){

17 SQLite::Database db(this->dbName, SQLite::OPEN_READONLY);

18 SQLite::Statement select(db, sp->getSelectQuery());

19 SQLite::Transaction transaction(db);

20 select.bind(1, interval.start);

21 select.bind(2, interval.stop);

22

23 auto data = std::make_shared< SensorRecordData>();

24 std::vector<float> floats;

25

26 while (select.executeStep()) {

27 floats.clear();

28 double ts = select.getColumn(0);

29 // one based for sqlite

30 for (int i = 1; i < sp->getSampleCount()+1; i++) {

31 float sample = static_cast<float>(select.getColumn(i).getDouble());

32 floats.push_back(sample);

33 }

34 data->records->push_back(SensorRecord(ts, floats));

35 }

36

37 transaction.commit();

38 sp->endTransaction(tr);

39

40 std::dynamic_pointer_cast<ITaskRunner>(this->getRoot())->addTask(

41 [=](){

42 callback(data);

43 return false;

44 });

45 });

46

47 t.detach();

48 return tr;

49 }

50 }

Listing 19: Asynchronous selection mechanism implemented for SQLite.
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Postprocessing Sensors

The last missing piece of the prototype is the postprocessing functionality. A Default-

AveragerSensor, to create ten minutes averages, was implemented to showcase the post-
processing. It derives from the ISecondaryDataSensor, which handles the connection to
the data storage module and the source property module. The sensor object connects to
the database module for notifications. When the database module executes the notifica-
tion signal, the sink() procedure from Listing 20 is called. First, the received IDataPtr is
cast to extract the notification on line two. The postprocessing tasks, also called ‘todos’,
are selected from the database on line four. Each selected todo is processed in a for-loop at
line six. Line seven to nine collect information that is needed to extract the sensor data
from the database module. Line ten initiates the asynchronous selection process. The
sensor store name, the selection interval, and a callback is needed for the selection call. A
lambda function is passed as a callback at line eleven. The lambda takes an IData object
as input parameter and calls onSelectData() of the processing sensor. The lambda cap-
tures timestamp, transaction ID, and notification. This gives the necessary information
to onSelectData() to average the selected values, insert them into the database module
as secondary data, and output them over the GAPP engine.

1 void DefaultAveragerSensor::sink(IDataPtr data) {

2 auto note = std::static_pointer_cast<NotificationData>(data);

3 std::vector<TodoRecord> recs;

4 dbModule->selectRemoveTodos(note->notification, recs);

5

6 for(auto r : recs){

7 auto [inputTable, outputTable, propID] = avginfos[r.notification];

8 double t2 =TimeFns::toDouble(TimeFns::toTs(r.utc)-TimeFns::toSeconds(r.period));

9 std::vector<SensorRecord> srecs;

10 auto tr = dbModule->selectAsync(inputTable,{t2,r.utc},

11 [&,this, note = r.notification, ts = r.utc](IDataPtr data){

12 this->onSelectData(data, trid, note, ts);

13 });

14 if(tr->getError()!= TransactionError::teNone){

15 throw ControllerErr("Asynchronous selection failed");

16 }

17 activeTransactions[trid] = tr;

18 trid++;

19 }

20 }

Listing 20: Input slot of the DefaultAveragerSensor class.
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Chapter 6

Evaluation

This chapter evaluates the work that was done throughout the course of this thesis. As
described in Section 1.1, two contributions to a development project at GA were the goal
of this thesis. The first contribution contained the design and implementation of a module
framework. The second was the implementation of a LOG aLevel 2.0 prototype that can
store sensor data in a structured way. The prototype should be built based on the module
framework. Both parts were designed around the requirements of GA. A focus was put on
the LOG aLevel product line due to the imminent product refresh. The implementation
should result in a LOG aLevel software prototype. Its core addition is the inclusion of a
structured data storage functionality.

The next sections assess the results of the work that was done. First, the module frame-
work is evaluated in Section 6.1 based on the functional requirements and the related
work. Further on, the evaluation of the prototype is done in Section 6.2. In a first step,
the prototype is evaluated regarding functionality, related work, and realization of the
workflow concept. A second phase evaluates the performance of the prototype. A final
passage at the end of each section shows the maintainability, usability, and extensibility
of the thesis results from the perspective of GA.

6.1 Module Framework Evaluation

This section evaluates the module framework, which was designed in Section 4.2. First,
the functional aspects are assessed in Section 6.1.1. The focus of that subsection is
the requirement coverage checking of the resulted framework. Second, the framework is
compared to the related work in Section 6.1.2. Finally, the framework is evaluated from
the perspective of GA in Section 6.1.3.

79
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6.1.1 Framework: Functional Evaluation

The idea of a module framework emerged as part of the sensor data management workflow
concept creation, which was introduced in Section 2.3. The requirements of that concept
have led to a flexible and extendable design. Prototypes of workflow parts, implemented
in a monolithic OO approach, could not satisfy the flexibility needs of the workflow. GA
decided that a framework should be used to implement the workflow applications in a
modular way. The design and implementation of it was part of this thesis’ work. The
design process should incorporate related work, which was introduced in Section 3, and
follow the requirements of Section 4.1.1. This section assesses the design decisions and
the results of the implementation in the context of the requirements. The next section
focuses on a comparison of the framework to the related work.

The framework was designed and implemented around the requirements shown in Sec-
tion 4.1.1. The implemented solution works as expected. A user of the framework is able
to create flexible and extendable modular software. As example serves the implementa-
tion of the LOG aLevel prototype application in Section 5.3. The framework simplifies
the implementation of such applications. It provides middleware functionality that covers
the requirements of R03. The following list details the requirement (see page 40) coverage
by stating the related design decisions (see page 47) and comparing both with the final
implementation result.

· R01 – This requirement is satisfied by providing an implementation of the module
class architecture, shown in Figure 4.1 together with the implemented design
decisions D01 to D03, which were described in Section 5.2. The modules in a
module framework are loosely coupled and can be compiled independently from
other modules. Only the XML configuration file introduces the dependencies
between the modules.

· R02 – The realization of D01 enables this functionality. The precondition is a careful
module design of the framework user. The use of abstraction interfaces (D03)
simplifies this task, as it allows modules to cast module base pointer to interface
pointers and eliminates the need to know the actual module class.

· R03 – The required middleware functionality is given with the implementation of the
design decisions D03 to D05. Additionally, the framework architecture, with
the ModuleApp as an entry point, stipulates a certain way how a modular ar-
chitecture has to be built. This way alleviates the application design for the
framework user. The lifetime control can provide good state and error informa-
tion if integrated with care. Similarly, the TaskRunner offers functionality that
can be used to create sophisticated asynchronously operating applications.

Not mentioned in the list is the R04. It states that the implementation should focus
on core functionality and implementability. The resulted implementation focused on the
features discussed above. These were necessary to cover the core requirements and made
an implementation of the LOG aLevel prototype possible. Advanced interface abstraction
functionality and runtime introspection of interfaces between modules were omitted due to
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time constraints and to keep the C++ implementation simple and less prone to obstacles
during the development. From an implementability viewpoint, it can be said that the
resulted source code was generally crafted using simple modern C++. Some functionality,
e.g., the factory mechanism, required advanced template programming. The use of it was
minimized as much as possible. This means that future contributors to the framework
should find themselves comfortable in the code.

6.1.2 Framework: Related Work Comparison

Significant differences can be seen in a comparison of the implemented framework with
the frameworks presented as related work in Section 3. The differences rise from varying
intentions of the respective frameworks. Almost no relation can be found in comparison to
the traditional component frameworks shown in Section 3.2 besides the core principle of
modularity. OPRoS of Section 3.3.1 came close from the idea but was focused on a different
use case with multiple separate framework users that collaborate and provide robotic
modules. The ModKit framework of GA shows strong similarities with the implemented
framework. This relatedness was a byproduct of design decision D01, where it was decided
to use a similar XML configuration solution.

Table 6.1 compares the general characteristics of the different frameworks. It can be seen
that only ModKit and the framework of this thesis contain an architecture description
language (ADL). In this thesis, ADL connotes the meta-programming functionality of
frameworks to describe modular applications. OPRoS does not contain such a mecha-
nism. The lack of it is compensated by the component composer application. It allows
a graphical aggregation of components into a modular application. COM, CORBA, and
EJB target a more distributed approach. The components in these frameworks build
self-contained entities and communicate loosely over interfaces. They rely on interface
introspection mechanisms to connect to each other. Thus, an additional architecture de-
scription is not needed. ADL and interface introspection mechanisms require a runtime
deployment of the components. Therefore, they provide the possibility to change the
component composition at runtime, at the cost of longer boot times. A comparison of
interface functionality is drawn after the description of the table is finished.

COM and CORBA components can be written in many languages. Languages for COM
components must know the concepts of pointers and classes. Despite the use of eventual
platform-independent programming languages, COM relies on Windows system features
like a registry and is therefore not portable. CORBA is portable due to different imple-
mentations of the object broker. EJB applications are written in Java. Therefore, they
require the JVM to interpret the bytecode and execute the application. EJBs are portable
for every platform that is able to run a JVM. OPRoS and the compound object model
are written in C++. They do not rely on external mechanisms and can be compiled to
any platform that provides a compiler. ModKit written in Delphi is currently locked-in
to Windows. Platform independence could be achieved by switching to the enterprise
version of the compiler. Such a switch would need a lot of work, all components that use
Windows specific optimizations and all GUI components would have to be rewritten. The
framework from this thesis is implemented in modern C++, which means that it features
full platform independence.
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Table 6.1: Comparison of related work frameworks and the framework in this thesis.

ADL Language
Platform

independence
Deployment

Interface
introspection

COM OO oriented
compile- and

runtime
X

CORBA
Multi-

language
X runtime X

EJB Java
X

with JVM
runtime X

OPRoS C++ X compile-time ∼
Compound

object Model
C++ X compile-time X

Modkit X Delphi runtime ∼
Thesis

Framework
X C++ X runtime

Interface introspection is an area where the framework of this thesis cannot compete with
the related frameworks. It means that a module can ask other modules about their avail-
able interface functionality. COM, CORBA, and EJB rely on this functionality. OPRoS
provides static introspection over the available port classes. The OPRoS component com-
poser creates the interconnection between the components before application deployment.
Dynamic interface introspection is not available. Each object of the compound object
model is able to access the interface of other compound objects, but a real introspection
does not exist. Again, due to its static deployment, such functionality is not needed.
ModKit provides some introspection. A module is available that visualizes the module
tree. The visualization includes the interconnected modules and, if available, their inter-
face type. The framework of this thesis has deliberately omitted interface introspection.
Thus, more development time for other essential functionality was available. Advanced
interface introspection is not needed in the small environment of GA. It can be assumed
that the hand full of developers know the interfaces of all modules.

Finally, lifetime control and task runner mechanisms are compared to the related frame-
works. COM, CORBA, and EJB do not have a predefined central entity of a component-
based application. The developer of such software has to create this by himself. Such
an entity includes the handling of application states and execution loop. The benefit of
this approach is the freedom to design any application architecture without restriction.
OPRoS introduced an execution engine, which executes all components. Further, each
component has its own state machine and reports state changes to the execution engine.
The compound object model has no such facilities and does not impose any application
design restrictions. Each ModKit application contains a processor module as an entry
point. The processor module contains a state machine module, which represents the ap-
plication states. The processor has to include the functionality to run the application.
The framework of this thesis introduced a task runner, based on the OPRoS execution
engine. It contains an event loop, which can be used by other modules to implement
asynchronous functionality. The task runner has to be used for all tasks that would be
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done in the main function of an application. The mandatory root module of this the-
sis’ framework contains the task runner and lifetime control. This design imposes some
restrictions on the overall application design possibilities, yet it offers the functionality
needed by GA.

6.1.3 Framework: Usefulness for GA

This section evaluates the usefulness of the implemented framework for GA. A modular
approach to software is not unfamiliar to the GA environment. The quickly changing
customer requirements enforce a flexible software development approach. The desktop
software of the LOG aLevel and the UltraLab systems is built in this way with the help
of ModKit. A current restriction of GA’s modular software is the platform dependency
to Windows. Other software at GA, like the firmware of the devices, is written with C
in a monolithic way. The design and implementation of the module framework in this
thesis provide a series of contributions to the GA ecosystem. The design of the frame-
work brought knowledge of current component architectures to GA. Reflections about
the core requirements and the architecture were made during the design phase, free from
any pressure of customer projects. The implementation in C++ provides GA with the
opportunity to implement platform independent and highly flexible and modular console
applications. Besides these benefits, the usefulness of the workflow concept is assessed
based on three criteria in the following list:

· Usability – The implementation of the framework in this thesis provides the ground-
work for future use at GA. Some implementation weaknesses, mainly the slow signal-
slot mechanisms, have to be improved until a productive deployment can be made.
Further adaption to the embedded hardware is suggested for the use in the new
LOG aLevel systems.

· Maintainability – The attempt to write clean and simple code was hindered by
C++’ own complexity. Even though, the class architecture is simple and understand-
able. Therefore, a developer with modern C++ knowledge should be comfortable
in the maintenance of the framework.

· Extensibility – The modular approach, even in the class design, makes it possible
to extend the framework without huge effort. Future implementation of modular
software will show where functionality has to be added.

The next section evaluates the LOG aLevel prototype. It was developed with the module
framework as a basis. This section has looked at the usability of the framework alone for
GA. Section 6.2.4 evaluates the usability of the prototype and draws a conclusion about
the overall usability of this thesis’ work for GA.
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6.2 Prototype Evaluation

This section evaluates the prototype implementation. First, a functional evaluation of
the software solution is performed in Section 6.2.1. It is based on the designed workflow
concept and the prototype requirements. Section 6.2.2 assesses the performance of the
prototype. A comparison to related workflow implementations and current solutions at
GA is drawn in Section 6.2.3. Finally, the usability of the solution for GA is evaluated in
Section 6.2.4.

6.2.1 Prototype: Functional Evaluation

The primary goal of the LOG aLevel 2.0 prototype was the implementation of the core
functionalities of a station as proposed by the workflow concept in Section 2.3. This
includes the implementation of preprocessing functionality, a structured data storage
component, and postprocessing functionality. The prototype should be built with the
module framework that was created as part of this thesis. Section 4.1.2 shows the precise
requirements. The results of the second thesis part were two software applications:

� cdg.exe – A data generator that simulates the RTU and produces chunk data. The
data is written into a file. Together with the implemented FileChunkDriver of the
prototype, the ping-pong buffering between the RTU and the DHU is simulated.
It was built using the module framework and can be configured over an XML file.
The generator is only a necessary tool to test the prototype. Therefore, it was not
described in the implementation section of this thesis.

� prototype.exe – The prototype takes chunk data from the CDG and preprocesses
the raw data into primary data. The data is outputted over GAPP and inserted
into a SQLite-based structured data storage solution. The insertion triggers post-
processing algorithms that generate secondary data. The secondary data is inserted
into the data storage component as well as outputted over GAPP.

Table 6.2 goes into details on the resulted prototype in comparison to the requirements.
The requirements of each use case are listed, below, the workflow results are summarized
in a ‘result’ row. It can be seen that all requirements were fulfilled. It can be remarked
that the workflow design resulted in two application. One for the preprocessing function-
ality. The other for the structured data storage with postprocessing functionality. As
motivated in Section 4.3, it was decided to merge the two applications for the prototype
implementation. The use of the module framework made the application flexible. A sep-
aration into two applications could be done later on with minimal effort. A reasonable
GAPP IPC module has to be implemented to make the separation usable.
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Table 6.2: Results of the prototype functionality compared to the imposed requirements.

ACQ-01
Implementation of an abstraction interface to decouple the real-time hardware
part form the rest of the workflow.

ACQ-02 Use of a Linux DHU in the station controllers.

Result

The use of the chunk protocol implements the decoupling. The described
interface remains at an abstract level due to the missing RTU
implementation. The prototype performance was evaluated additionally
on a low-level Linux controller. Therefore, both requirements are satisfied.

PRO-01
The data, which is collected by the acquisition part, has to be preprocessed
and brought into human understandable form.

PRO-02
An interface has to exist that allows the inclusion of advanced
postprocessing algorithms into the station to generate aggregated values.

PRO-03
The interface to the postprocessing has to be compatible with both station
and station server.

Result The prototype implements this functionality as was introduced in Section 4.3.

STO-01 Logging of raw data in a file based way is required.

STO-02
The sensor data has to be stored in a structured data storage component that
provides interval based access.

STO-03
The interface to the data storage component has to be compatible with
both station and station server.

Result

STO-01 is completed by the ability of the GAPP engine to log input to files,
and was not considered further. STO-02 and STO-03 were designed and
implemented, as also shown in Section 4.3. The storage
solution was implemented for the station prototype using SQLite. The
abstract interface allows the implementation of a different technology
for use on a station server.

The integration of the prototype into the low-power Linux board is not as deep as it might
have been with available station RTU hardware. A replication of current LOG aLevel
functionality was not the focus of the implementation. Thus, only default algorithms
that cover the basic workflow functionalities were implemented. Advanced processing
algorithms can be implemented later on by GA. A data converter sensor was implemented
to showcase the preprocessing. It can create GAPP data from binary timestamp-value
chunks. A default averaging sensor demonstrates the postprocessing workflow. It creates
10 minutes average values based on data in the data storage component. These modules
cover the needs of the prototype and demonstrate the processing interfaces. The prototype
depends on GAPP for input and output functionality. The GAPP engine itself was
developed together with GA at the beginning of this thesis. It was not relevant to the
design and implementation process of the thesis. A serial GAPP driver was implemented
to test the GAPP engine. This driver was used to get a working prototype implementation.
Other driver implementations, e.g., for the IPC were postponed as they were not necessary
for the prototype.
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The last paragraph has shown some restrictions on the prototype implementation con-
cerning LOG aLevel functionality and system integration into the hardware. In return,
the use of the module framework provides significant benefits for the prototype architec-
ture, and, on a longer term, for the implementation of the workflow at GA in general.
The following advantages can be seen:

� Architecture – The benefits of the module architecture, like object dependencies
and serializability, were mentioned in Section 3.1. Additionally, the event-based
architecture would allow simple integration into a GUI application.

� ExtenSibility – The presented module structure is flexible and can be extended.
New modules can be added to integrate new preprocessing or postprocessing func-
tionality. The unified data transfer mechanism allows the integration of new modules
that do not follow the workflow concept directly. Therefore, individual solutions can
be integrated without problems. An example could be ADCP data, which would
not be handled by the RTU.

� Configurability – Given that all necessary modules have been implemented, the
XML configuration provides a meta-programming layer to compose the applications.
No compilation is needed for changes to the XML configuration.

The last part of the functional evaluation is concerned with more technical implementation
details. As seen, the prototype was implemented using modern C++ features. CMake
[12] was used as the build system for all libraries and executables. CMake allows to
prepare the build process for different compilers in a single CMakeLists.txt file. Properly
configured, CMake is able to detect the build environment and execute the appropriate
build commands. The build targets were successfully built using the MSVC [50] compiler,
GCC [26] on MinGW [36], and GCC on a Linux computer. A custom GCC derivate for
ARM was used for the cross-compilation toolchain. Besides portability, CMake projects
can be imported into various integrated development environments (IDE). Visual Studio
[44] was used for its good profiling tools. Eclipse [20] to cross-debug the applications on
the low-power Linux controller. The software components were developed in Visual Studio
Code [51], a new editor from Microsoft [43] that provides basic debugging functionality.

6.2.2 Prototype: Performance Evaluation

This section evaluates the performance of the implemented prototype. First, the evalua-
tion setup is presented. Later on, the CPU usage, as well as the memory of the prototype
is assessed. A focus is put on the evaluation of the SQLite implementation of the data
storage component. Finally, some power consumption evaluations are made.
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Setup

The measurements of the developed software were executed on two different computing
devices. A high-performance device was used to test the maximum performance of the
implemented solution. A low-power Linux driven controller was used to test the developed
solution for their usability in a GA station.

A custom-built computer was used as a high-performance testing station. It had an Intel
Core 7th generation i7 CPU [33] running at 4.2GHz. One of the fastest currently available
solid-state disks, claiming up to 3500 MB/s reading- and 2100 MB/s writing speed [69]
was installed. The machine had 32 GB of double data rate fourth-generation (DDR4)
memory [15]. The device was built to hold up with high CPU loads. It was chosen for
performance measurements and for the profiling of the applications.

A Linux controller from Phytec [60] was used to test the station capabilities of the software.
A socket-on-module (SOM) with an ultra-low-power phyCORE-i.MX6 UL-G2 [62] CPU
was used. The CPU is based on the ARM Cortex-A7 architecture. The SOM has 512 MB
DDR3L memory and 512 MB NAND storage. The SOM was placed on a phyBOARD-
Segin [61] evaluation board from Phytec to make the it usable. The SOM will be used at
GA for the refresh of the LOG aLevel. Thus, performance tests with this CPU provide
essential feedback on the capabilities of this SOM. The carrier board, which provides
access to the peripherals and interfaces, will be custom-built by GA. It will contain the
RTU part of the workflow. The default Phytec Yocto distribution was used to run the
software. It is based on Poky [81], the default distribution from the Yocto project. A
virtual machine, provided by Phytec, was used to compile the sources. It contains the
necessary cross-compilation toolchain for the phyBOARD. Further interaction with the
board was done over SSH connections.

Two scenarios were evaluated. The first simulates a real-time scenario with a data flow
that has to be expected for the new LOG aLevel system. The simulation contained three
level sensors that sample with 20 Hz each. Seven other meteorological data sources were
included. They produce samples in intervals between three and 20 seconds. The second
scenario pushes the data flow to the limits. It tests the database throughput, CPU
performance, and power consumption under heavy load. To do that, the frequency of the
level sensors was raised up to 250 Hz each.

Performance

This thesis’ work focused on the architecture and functionality rather than the perfor-
mance of the developed solutions. Nevertheless, a performance analysis is essential for
the development project at GA. Eventually, the performance decides over the usability of
the prototype implementation and the workflow concept for GA. The focus of the perfor-
mance evaluation is on the data storage solution. The performance of the SQLite solution
is the biggest element of uncertainty in the workflow concept. There was no known related
work that showed the performance of SQLite on embedded systems together with the use
case of high-speed real-time sensor data. First, some impressions on the performance are
shown below, which directed the development process. Later, more concrete performance
measurements are made.
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The first measurements were made on the high-performance machine. At that time, the
prototype was split into two applications as shown in the workflow concept in Section 2.3.
The CDG and the prototype parts were executed. The CDG was configured to output
data as fast as possible. The prototype applications were not able to parse all generated
data from the CDG. The applications filled their buffers until they crashed. A profiling
showed two key weaknesses of the implementation:

� The implemented SerialIOManager was really slow and consumed around a third
of the whole CPU usage time.

� The implemented GAPP engine used the regular expression library from the C++
standard library to parse GAPP messages. It turned out that the parsing takes
again around 10 % of the CPU time.

The CDG data rate was adjusted that the prototype could consume, parse, and output
the data without crashing. Then, the first SQLite measurements were made. Around
120 inserts per second could be reached on the high-performance device with constant
disk writing speeds of around 2 MB/s. Both numbers caused some frowning. They were
way below the expected or envisioned numbers and would not have been enough for the
ideas of GA. Some research on SQLite performance brought a StackOverflow entry up.
There, it was shown that the insertion performance can vary significantly from 80 to
96000 inserts per second [74]. The encapsulation of multiple insertions into transactions
improved the performance instantly. The IDatabaseModule interface of the prototype
was extended to allow transaction-based batch inserts. Another decision was made to
minimize the impact of the GAPP IO manager. The two prototype parts were merged
into a single application. The intermediate GAPP IPC was not necessary anymore and
could be removed. New performance measurements were made with this setup. Insertion
speeds of 1000 up to 1800 inserts per second were measured on the desktop computer.
The activation of WAL on the SQLite database and code optimizations improved the
performance even more. Pleasing insertion speeds of 20000 up to 30000 inserts per second
could be reached. With the knowledge of sufficient SQLite performance, the prototype
implementation was finalized. The next paragraphs present measurements of the final
prototype implementation.

First, the prototype was evaluated in a real-time scenario. The CDG was configured to
output three level values at 20 Hz. Seven other meteorological sensors were included.
They sampled at a 20-second interval. Therefore, the total data rate was around 60
Hz. The applications were built in release mode with default optimization enabled. In a
first setup, the prototype was configured to insert each sample directly into the SQLite
database. The results can be seen in Table 6.3.All tables show average values over a
minute. The desktop computer performed reasonably well. The high memory usage for
the CDG comes from the raw data that was used to create the samples and was expected.
The CPU usage of the CDG and the prototype always stayed under 1.5 %, which was also
expected. The insertions per second into the database, in the table called throughput,
were at 59. The missing Hz was lost due to the not very exact data generation of the
CDG and the implemented file based buffering. The disk write speed was at 2 MB/s,
which is already high. Each insert comes with a write to a SQLite journal file before the
insertion is written to the database file. Different was the situation on the iMX6 controller.
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Table 6.3: 60 Hz data, inserted with single inserts.

Desktop iMX6-UL-G2
CPU 0.1 %

CDG
MEM 311 MB

CPU 1.2 %

MEM 1.4 MBPrototype
Throughput 59 p.s.

CPU 3.3 %
CDG

MEM 47 MB

CPU 47.2 %

MEM 0.7 MBPrototype
Throughput 59 p.s.

Both processes required more CPU time to do their work. The memory consumption of
the prototype is lower, which can be put on compiler- and architecture differences. The
throughput is equal to the desktop computer performance with 59. The CPU usage of
the prototype, on the other hand, is way too high. It varied between 35 and 55 % and
averaged at 47.2 %. Such performance is not unusable for a productive environment.

The single insertion measurements into the database showed the performance limits of
SQLite. The 60Hz was barely doable and ate away a lot of CPU time. There is not
much room for other processes in the system or even higher sample rates. The next
measurements were made with the use of transactions. 200 samples were buffered before
they were inserted all at once. Otherwise, the setup stayed the same as in the first
measurement. The results can be seen in Table 6.4. On the desktop side, the CPU usage
of the prototype came down to 0.1 % as did the disk write speed. A better performance
could not be expected. Similarly, the CPU usage of the prototype on the iMX6 went
down to a reasonable 5.72 % on average. Contrary to the performance of the previous
measurement, this performance is usable in a productive environment.

In order to test the capabilities of the prototype, a third measurement was made. This
time, the three level sensors were set to 250 Hz each, which results in a combined data rate
of 750 Hz. Transactions were used again to improve the insertion performance. Table 6.5
shows the results of the measurements. The desktop computer performed very well, CPU
usage was low, and the memory consumption remained constant. The final throughput
with 684 inserts per second does not reach the expected 750. The difference can again be
put on the CDG due to its inaccuracy in the data creation. A different picture can be
seen on the iMX6 controller. The CPU usage of the CDG went up to 19 %. Similarly,
the prototype needed an averaged 15.8 % of the available processing power. The memory
consumption remained stable. This indicates that the prototype was performant enough
to process all the data in time. A maximum throughput of 577 inserts per second was
reached, which can be considered as good.

Table 6.4: 60 Hz data, inserted using bulk insertion of 200 samples.

Desktop iMX6-UL-G2
CPU 0.1%

CDG
MEM 311 MB

CPU 0.1%

MEM 1.4 MBPrototype
Throughput 59 p.s.

CPU 3.2%
CDG

MEM 47 MB

CPU 5.72%

MEM 0.7 MBPrototype
Throughput 59 p.s.
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Table 6.5: 750 Hz data, inserted using bulk insertion of 200 samples.

Desktop iMX6-UL-G2
CPU 0.1%

CDG
MEM 310 MB

CPU 0.2%

MEM 1.6 MBPrototype
Throughput 684 p.s.

CPU 19%
CDG

MEM 47 MB

CPU 15.8%

MEM 1.1 MBPrototype
Throughput 577 p.s.

In all three measurements that were taken, the CDG introduced performance uncertain-
ties due to the inaccurate data generation. To minimize the effects on the data storage
measurements, it was decided to use a big chunk data File as data input. A test file was
created. It contained the 60Hz data stream that was used for the first two measurements.
The measurements led to the results shown in Table 6.6.

The resulting performance was fast. The desktop computer was capable of making 82000
inserts per second at 12 % CPU usage. The CPU has eight logical cores. Therefore, one
core was used entirely. The writing speed was at 25 MB/s. The MSVC compiler was
needed to get the maximum performance. GCC used other system calls and did only
reach 5-7 MB/s write speed, which slowed the whole performance down. The iMX6 was
able to insert around 5700 samples per second, but it needed to use 96 % of the computing
power. The memory consumption is much higher because the prototype reads the raw
data from the file into the main memory. The downward arrows indicate a sinking memory
as time progressed and the data was processed. For some reason, MSVC reserves a lot
more memory than GCC.

The performance measurements can be concluded as follows. A realistic sample frequency
for the new LOG aLevel at GA would be at around 30 Hz. The measurements in this
section started with sample rates of 60 Hz. It was shown that the iMX6 CPU and the
prototype can handle this data rate, thus a sample rate of 30 Hz is also achievable. Higher
data rates are possible at the cost of CPU time. Profiling during the development showed
that a lot of processing time is lost in deep call stacks. The Boost signal-slot mechanism
introduced a lot of nested calls and had a negative impact on performance. This issue
was reduced by switching to a signal-slot library that had less of an impact. Nonetheless,
the architecture of the module framework itself introduces a lot of nested calls. The task
runner with the queue of callable objects creates most of these encapsulated calls. It is a
cost of the gained flexibility. The iMX6 seems to be more vulnerable to huge call stacks.
Modern Intel CPUs seem to optimize function calls that directly call a nested function.
Further optimization of the signal-slot mechanisms will free processing time. All in all,
the section has proven that a SQLite solution provides the needed performance for the
LOG aLevel sensor data workflow.

Table 6.6: Unrestricted bulk insertion from a chunk data file.

Desktop iMX6-UL-G2
Throughput CPU MEM

Prototype
82000 p.s. 13% 118 MB ↓

Throughput CPU MEM
Prototype

5700 p.s. 96% 22 MB ↓
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Power Consumption

The missing piece of the prototype performance evaluation is an assessment of the power
consumption. In the very first thoughts about this thesis, the power consumption opti-
mization was one of the targets. A direction change was caused by first implementations of
some workflow concept parts. The design of a modular software architecture was preferred
at the cost of a deeper hardware integration. Nonetheless, some basic power consumption
considerations were made. Table 6.7 shows the results. The iMX6 SOM should draw
between 0.5 and 1 Watt. The phyBOARD around the SOM needs some power too. The
results vary between 1.09 and 1.33 Watt. This result is in the range that had to be ex-
pected. A custom board with a specialized RTU may save some energy in the future.

Table 6.7: Power consumption of the iMX6 controller in idle mode and under full load.

Idle Full Load
voltage [V] 24 V 24 V
current [mA] 45.4 mA 55.37 mA
power [Watt] 1.09 Watt 1.33 Watt

6.2.3 Prototype: Related Work Comparison

This section compares the prototype to related work. Because the core design of the
prototype architecture was made during the workflow concept design prior to this thesis,
the related work was just fairly mentioned during the concept introduction in Section 2.3.
Nonetheless, a comparison is made to the related workflows and current systems at GA.
Appendix B adds the missing information for interested readers. The concept of a station
is in the center of this comparison. Not all workflows or data collection systems of the
related work contain a component similar to a GA station. Therefore, only the imple-
mented workflow functionality is compared. It ranges from the data measuring up to a
data-collecting server.

Wong and Kerkez [78] (see 118) measure data using various sensors. The sensor data is
collected by a Cypress PSoC5LP based controller [17]. It uses a C program to put the data
into Xively feeds. From there on the data is managed by the Xively cloud. The adaptive
sampling is done over a Python script on a second server that can access the Xively data.
Based on Xively’s RESTful API, a web application was built to present the measured
data. Only the workflow until the Xively connection can be compared. The cloud can
be seen as external server entity. Compared to the prototype functionality, only the data
transfer functionality can be seen in their workflow. No data processing or data storage
functionality can be found. A benefit of that setup is the minimal power consumption
of the system due to the minimal tasks of the data collector. Without a connection to
Xively, the system from Wong and Kerkez does not work. Whereas a prototype station
could run as a self-contained device.
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Horsburgh et al. used a more comparable workflow setup as described in Section B.1. They
use a Campbell Scientific, Inc. [9] data logger to collect the data from various sensors. The
logger synchronizes CSV files to a LoggerNet server. The data is then taken by an hourly
executed Python script, and put into an ODM database on a second server. Similar to
Wong and Kerkez’s workflow, the data is just transferred to the server and put into a
database. The processing and presentation of the data do again not occur at the ‘station’
level. Their data logger is at that level. Compared to a prototype station, the functionality
of the station is limited. The difference in this case is, the data logger provides far
more functionality than actually used by Horsburgh et al. Campbell offers a custom
BASIC dialect CRBasic [10]. It can be used to implement data processing functionality
in the logger. Similarly, various data presentation modes can be programmed. The
data storage on the logger, however, is implemented using CSV files. Compared to the
prototype solution, the Campbell data logger lacks the fine-grained preprocessing and
postprocessing functionality. But the main distinction point is the lack of the structured
data storage solution. Additionally, the use of Campbell loggers is coupled with a lock-in
to the CRBasic and the Campbell Scientific Inc. world, other tools and languages cannot
be used.

The best comparison of the prototype solution can be made to current GA systems. The
current LOG aLevel was introduced in Section 2.1.1. Its functionality can be described
as a mixture of the RTU functionality with the preprocessing functionality. Timestamp
management with preprocessing of the data is provided. With a developed RTU and
implemented preprocessing algorithms the prototype fulfills the functionality of a current
LOG aLevel in a well-structured way. It that can be extended without problems, contrary
to the current LOG aLevel solution. The big difference of the prototype to the current
systems is the addition of the structured data storage solution. Based of it, the inclusion
of postprocessing functionality was possible.

The comparison can be concluded by pointing out that the two compared workflows did
not put a focus on the station and used them only as data relay. The data logger from
Campbell Scientific Inc. from in Horsburgh et al.’s workflow would provide processing and
presentation functionality with the cost of a lock-in effect. The implemented prototype
is best compared to current GA systems. The prototype implements the functionality of
these systems and extends it with the data storage and postprocessing functionality.

6.2.4 Prototype: Usefulness for GA

This section assesses the usefulness of the LOG aLevel 2.0 prototype for GA. The design
of the workflow concept prior to this thesis gave GA the opportunity to assess the current
situation, recapitulate the past years, and research current workflow in the environmental
data sensing field. No hard customer requirements had to be met at the time of the
concept creation. Therefore, a more abstract, top-down approach could be followed.
Thereof, theoretical benefits for GA were made. Guidelines were set on how to implement
such a workflow in a way that it covers the core requirements and can be extended
as needed. Abstraction interfaces and protocols were introduced and determined. The
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design and implementation of the module framework added more value to GA, as shown
in Section 6.1.3. It provided the needed environment to actually implement parts of the
workflow with the needed flexibility. The following practical benefits can be emphasized:

· Current C++ Knowledge – A big amount of C++ knowledge was acquired
during the time of this thesis. The knowledge of the CMake build system for plat-
form independent development and of the newer C++ standards was brought into
GA. With the developed code base for station controllers, the first steps into C++
controller firmware development were made, and can be continued by GA.

· GALIB_CPP – Parts from the GALIB, written in Delphi, were ported to C++. The
API’s were kept equal to provide as much similarity as possible between the libraries.
This provides the possibility for GA to implement applications in a similar way in
C++ or Delphi.

· Station Controller Prototype – The prototype provides the groundwork for
further station software at GA. The module framework introduces great flexibility
and extensibility. Low coupling allows the exchange of implementation parts without
too much effort.

· SQLite Evaluation – The biggest benefit for GA of this thesis’ prototype is the
performance evaluation of a SQLite data storage implementation. It has shown that
such a solution is practical and provides enough performance reserves to be used in
a productive low-power embedded environment.

The benefits of this thesis’ work for GA can be concluded as follows: The sensor data
management workflow concept has shown a structured way to handle IoT influenced re-
quirements of the GA customers. Complete productive workflows can be built if GA
works out the details of the hardware integration- and the data presentation functional-
ity. The implemented module framework provides a development environment to create
software applications that comply with the workflow requirements. The prototype of this
thesis introduces the knowledge and the tool-set to implement the workflow concept. It
provides the core libraries and prototypical implementations of the data processing and
storage functionality from the workflow.
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Chapter 7

Summary and Conclusions

GA, a hydro-acoustic measuring system producer, is refreshing its product lineup to follow
the current market situation. Two contributions to this GA development project were
made throughout the course of this thesis. In a first part, a module software framework
was developed. The Framework design was based on related component frameworks and
requirements from GA. As a result, the framework covers the required functionality. It
provides flexibility, extensibility, and a middleware layer to develop modular application.
A core feature is the XML configuration solution. The users of the framework can add or
change modules in the configuration file without the need to recompile the application.

The second contribution of this thesis was the prototyping of a LOG aLevel software. A
prototype has been developed that implements a part of the workflow concept. The use
of the before designed module framework guided the architecture of the prototype. As a
result, the developed application was built in a modular and flexible way. A structured
data storage component was implemented with SQLite as database technology. Other
technologies can be added later on, over an implemented abstraction layer. Aside from the
data storage functionality, the data processing functionality requirements of the workflow
concept were implemented by the prototype.

The evaluation of the thesis work lead to the following results: The implemented frame-
work follows the requirements of GA and the workflow concept. It can be used for
platform independent development of modular software. Further on, the framework is
simple and extendable, which is crucial for the ever-changing requirements at GA. The
requirements of the second part, the development of a LOG aLevel prototype with struc-
tured data storage and processing functionality, were fulfilled. It was built with the
module framework of the first thesis part. The performance evaluation on the iMX6
SOM, which will be used as CPU for the new LOG aLevel at GA, has shown that
the implemented solution with SQLite provides enough performance for the use on a
LOG aLevel station.
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Given the goal of the module framework design and the implementation of a LOG aLevel
prototype software, one can draw first conclusions: As it turned out, the design and
implementation of flexible and dynamic functionality in a statically compiled language as
C++, is a complex task. The implementation part of this thesis has shown that efficient
C++ development needs a lot of detailed knowledge on the language features. Custom
solutions to very simple tasks have to be found. Too often simple errors have slowed
down the implementation immensely due to unclear error messages. On a positive note,
it can be said that the implemented solutions cover all required functionality. The offered
performance surpasses the needs of current workflows at GA. All in all, the framework
and the prototype provide a good foundation for a productive usage.

Further on it can be concluded, that both thesis parts have limitations. The framework
was built with high-level platform independent C++. A productive solution would have
to implement specializations to utilize platform depending optimizations. Further on,
some frameworks were used for convenience rather performance. Both need to be done
in future work to create market-ready framework. Such future work can build upon
the groundwork done in this thesis. Similar, the prototype needs improvement to reach
market maturity. First, a better performing GAPP solution has to be implemented. The
development project at GA will be continued. Thus, the realization of the future work
will be done in a not too distant future, after this thesis has been finished.
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Glossary

Datacenter A datacenter in the context of this thesis, is a location in the GA workflow,
where databases from different measurement sites are brought together.

GAPP Definition A GAPP message that is used to set a property value. If the value
has been set successfully, a definition message is sent back to the sender.

GAPP Observer A GAPP engine that observes a GAPP data stream from a GAPP
source. It can send definition and query messages.

GAPP Property The values that are used by GAPP. The properties model sensor val-
ues or system settings in the workflow.

GAPP Query A GAPP message that is used to query a property value. A definition is
returned to the sender.

GAPP Source A GAPP engine that is the proprietor of GAPP properties. It is not
allowed to send query messages to the listening observers.

Measurement Site A measuring location that contains at least one station server and
a station.

Primary Data Describes preprocessed data. Distinction between primary and secondary
data is context depending. Secondary data on a station may be primary data on a
station server.

Raw Data Raw sensor data values, typically counter values or analogue voltages that
have to be preprocessed into primary data.

RESTful Something is RESTful if it conforms to the characteristics of Representational
State Transfer.

Secondary Data Postprocessed primary data. Distinction between primary and sec-
ondary data is context depending.

Station A measuring location in the GA workflow. Consists of a group of sensors and a
sensor controller.

Station Server A server, mostly onshore, to process, store, and visualize sensor data in
a current GA workflow.
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Appendix A

Ultrasonic Level Measurement

This section describes the ultrasonic level measurement technology. A large part of the
GA product lineup depends on this technology, therefore, continuous efforts exist at GA
to develop and improve the technology.

Figure A.1: Ultrasonic wave measurement.

Figure A.1 shows a schematic drawing of the functional principle. A sound burst is
emitted from an acoustic transceiver in direction of the water surface where it is reflected.
The reflected sound waves are read by an acoustic receiver. The elapsed time of travel is
measured between the start of the burst and its receiving. At the same time, a reference
sensor measures the exact speed of sound. The distance between the burst transceiver
and the water surface can then be calculated with the time of travel and the speed of
sound. The UltraLab ULS Advanced is able to measure a range of 200 to 1000 millimeter
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at a resolution of 360 microns with an uncertainty smaller than one millimeter with the
use of this technology. A relative wave speed of around 14 m/s can be measured with a
frequency of 100 Hz. In an ideal scenario, one perfect echo will be returned from a ping.
In reality,various echoes are returned, external factors lead to a series of echo types.

Figure A.2: Ultrasonic wave measurement echo types.

Figure A.2 shows a sketch of possible echoes. Green, the expected one-time reflected
echo. Red shows a lost echo, due to the angle in which the sound burst hits the water
surface, the waves are reflected away and cannot be received anymore. Sometimes the
sound waves are split when they hit the water surface. One part returns as an expected
echo, the other part can reflect somewhere in the environment, travel back to the water
surface, and hit the receiver with the correct angle but with a much higher runtime. These
are called multiple echoes and are drawn in yellow. Multipath echoes, shown in orange,
exist if sound waves reflect in the wrong angle, hit other objects in the environment and
finally reach the receiver with a wrong angle, but maybe with a reasonable running time.
The last possible echoes are false echoes, drawn blue, where sound waves floating through
the air are wrongly detected as echo by the receivers. The described echoes can exist
under normal conditions. When special environmental conditions are present, other cases
of error prone measurements exist. Heavy rain or extreme fume can lead to premature
reflections without reaching the water surface. Such errors typically result in huge outliers
in the final data.

The huge amount of probably erroneous echoes that can be received for a single measure-
ment, demands for evolved preprocessing algorithms. Especially complex is the determi-
nation of the correct echo from a range of echoes. The use of an improved track finding
algorithm (Akima Interpolation [1]) has helped significantly in rising the measurement ac-
curacy. Besides the selection of the correct echo, an outlier fixer algorithm based on linear
wave theory and statistical error calculation is used to minimize the effects of incorrect
measurements.

With the use of multiple acoustic burst transducers at the same time, the quality of the
measurements could be further improved. It allows to minimize the reflection area on the
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water surface and can generate a higher acoustic pressure for the measurements. Besides
that, the use of multiple transducers enables the possibility to measure wave directions.
By arranging three transducers in triangle form, each transducer measures the peak of a
wave at a slightly different time. This time shift can be used to calculate the direction of
the wave.

With the new developed and more powerful hardware, more advanced algorithms can be
run in real-time. Therefore, the technology is further developed, and brought to its limits.
With the processing of more parallel measurements, 3D wave or wave field sampling is a
possible development direction.
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Appendix B

Workflow Concept: Related Work

This Chapter presents the related work of the workflow concept introduced in Section 2.3.
Currently relevant research, and solutions under the topic of environmental sensor data
management are introduced in Section B.1 and Section B.2.

B.1 Environmental Sensor Data Management

The rise of reliable, low-cost wired or wireless communication technologies in recent years,
permits devices to be connected [22] [29]. This technological progress was also applied to
environmental sensor systems and led to “ubiquitous use of sensors and sensor networks
in environmental monitoring” [30]. The enhanced connectivity of the sensing technologies
enables use case scenarios with lot of spatially distinct measuring locations in rough terrain
where regular on-site visits are not possible.

The reasons behind the usage of environmental sensing systems vary depending on the
area of interest. Two environmental monitoring application domains can be noticed.
In academia, the possibilities offered through complex spatial distributed environmental
monitoring are leveraged for research efforts, e.g., to observe and understand environmen-
tal changes introduced by urbanizing areas or by climate changes. The second area where
environmental monitoring is increasingly applied is in the commercial sector.

The heavy use of environmental observation systems to collect data, in case of sensor
networks, data with spatial distribution, introduces challenges to handle the huge amount
of data. Not only the data acquisition may be troublesome due to the distributed data
sources and the high data volumes, but also challenges to preprocess, analyze, correct, and
publish the incoming data have to be solved. In academia, the solutions to these challenges
result as byproduct of the research where environmental observation systems were used.
The solutions are published and describe the used workflows. Some publications present a
generalized solution that can be applied to other environmental sensing applications [30]
[78]. The research efforts to solve the difficulties of environmental sensor data is focused on
the development of an automated data collection, processing, and presentation workflow.

Two different approaches to the management of environmental sensor data can be found.
One approach is more concerned with the handling of continuous time-series data, where a
real-time approach is not important. The second approach is focused on
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real-time handling of data to accomplish different needs, e.g. triggering actions based
on measured values.

A range of publications by Horsburgh et al. describe the workflows and tools used to man-
age sensor data in the context of a case study from the innovative Urban Transitions and
Aridregion Hydrosustainability (iUTAH) sensor network. The concrete workflow for the
iUTAH network was published in 2015 [30]. Three river sites were observed by multiple
stations, the Logan River, the Provo River, and the Red Butte Creek. On each observa-
tion site, a Campbell Scientific, Inc. [9] data logger was used to collect the data from the
sensors. Each logger sends the data to a LoggerNet [11] base station where text based
files of the data are generated. A python script loads the sensor data from the text files,
converts them into a custom Observational Data Model (ODM) by the Consortium of
Universities for the Advancement of Hydrology Science, Inc. (CUAHSI) Hydrologic Infor-
mation System (HIS) [32] and inserts them into a relational ODM database for each river
site. Additional tools in Python [57] provide quality control and processing capabilities
that work directly on the databases. A web application [75] is used to present the data
to the public. The core of this workflow is the ODM, designed by the CUAHSI HIS to
“store observational data along with complete meta-data to facilitate unambiguous inter-
pretation of data” [31]. The ODM is further described in Section B.2 where generic ways
to model environmental data are introduced. The data loader, that fills the database,
is run as a Windows Task every hour. Therefore, the target of this environmental data
management solution lies on the storage and presentation of measured data and not on
real-time measurements.

In contrary to Horsburgh et al.’s solution, Wong and Kerkez [78] present a workflow
that relies on the real-time character of measured environmental data. The solution was
developed around a use case to measure water quality in streams and rivers. Sensor tech-
nology, able to measure water quality like nutrients or bacteria on-site, is not available
or expensive [24] [18], therefore, automated samplers are used to mechanically draw and
store water samples. The number of samples, that can be collected by an automated
sampler, is limited, and the power consumption to collect a sample due to the motorized
mechanical components is huge [78]. The sample times and sample frequencies have to
be optimized to be able to effectively capture events of interest. Wong and Kerkez used
an adaptive sampling [5] [6] approach, where “a controller or algorithm persistently up-
dates a model of a phenomen using realtime data and then samples only during event
of interest” [78]. The environmental data workflow was centered around the Xively [79]
IoT cloud platform. The Xively platform provides a comprehensive C library, which
provides access to the online services over a RESTful application programming interface
(API). The sensor nodes connect to the IoT platform over feeds. In the case of Wong
and Kerkez, a CSV or JSON data format was used to send the sampled data over Trans-
mission Control Protocol/Internet Protocol (TCP/IP) to Xively. An adaptive sampling
controller, written in Python and also connected to the Xively cloud, analyzed the arriving
data. Depending on weather forecasts from the Internet and the current sampling values,
the sampling frequency and sleep phases were automatically adapted. A web applica-
tion was implemented with the help of the Xively JavaScript API to visualize the data.
The used workflow could react in seconds to a changing environment. When the water
level rises spontaneously due to a thunderstorm, the collection of water samples could be
initiated instantly.
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Both examples of environmental data management workflows are built around existing
data management components. Horsburgh et al. rely on advanced Campbell Scientific,
Inc. data logger and built their workflow on top of that. Wong and Kerkez use Xively as
cloud platform and attach custom components to it, to create their workflow. A complete
development of a full workflow for a single project may not be economical.

In the commercial sector, the need for environmental data management solutions has
been recognized. The efforts to satisfy the needs differ depending on the use case. Camp-
bell Scientific, Inc. [9] is an international group of companies around the world that is
specialized in scientific instrumentation. Their series of data collection and data logging
hardware is highly advanced and easily configurable, extendable, and usable for a wide
range of applications. Besides data loggers, they provide communication modules, power
supply and management systems, a wide range of sensing hardware, cases and mounting
hardware for the their products, as well as a data management and presentation system
for the measured data [9]. It is possible to build a complete environmental observation
workflow with Campbell Scientific, Inc. components. The only drawback comes from the
price level of these advanced hardware. GA has used a range of their products for bigger
projects, e.g. a data logger to collect data from a huge number of sensors in cases where
the current LOG aLevel could not satisfy all needs.

Another company that provides environmental data handling solutions is OceanWise [54].
OceanWise has specialized in handling marine environmental data. They present solutions
that range from the acquisition, management up to publishing of environmental data. In
contrary to Campbell Science, Inc. they are more focused on coastal and marine data,
and not on environmental data in general. Therefore, their business field is similar to
the ecosystem where the market niche of GA is located. Nonetheless, GA is focused
on the development of specialized ultrasonic sensing hardware, which is complemented
by custom workflows to provide a complete solution that fulfills customer requirements.
Whereas OceanWise does not provide measuring hardware, and is only concerned with
offering a complete workflow that starts with data logging. A proprietary database system
is used to store the environmental data. The database can be used on-premise on a local
server, or subscription based as a cloud, where it is offered as a service.

Further on, service provider like Xively emerge more frequently. Their use case is the
management of a wide range of big data. A commercial example is Amazon AWS IoT [?],
which is a managed cloud platform where connected devices can communicate securely
with cloud applications or different devices. Wong and Kerkez analyze and compare
a list of current IoT management providers [78]. Their main argument for the use of
cloud based data management solution providers is the simplicity of use and, therefore,
the ability to focus on the application development instead of system development and
administration. A drawback of such solutions is their cloud dependency. In security rel-
evant use case scenarios, such a solution may not be acceptable due to the loss of full
data control. Further on, these solutions do not deliver a full data management workflow
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and can rather be seen as a possible data storage and presentation step in a workflow, as
it was used by Wong and Kerkez. GA has had regular projects with customers from the
government sector with high security requirements. Therefore, such cloud based solutions
can not, and will not be considered further on.

In conclusion of the existing environmental data management workflow solutions, it can
be said that commercial providers try to deliver a complete data handling experience for
their systems. Some provide a relational database to handle environmental data, mostly
wrapped in closed source applications [54]. Complete solutions from a single provider
can be costly and result in a lock-in effect. Data management workflows in academia are
more focused on an open source approach and emphasize an information sharing strategy.
Therefore, the development process of these workflows were published and can be studied.
Two main workflow types can be found, one is concerned with the structured management
of environmental sensor data in the form of time-series. The other workflow type is focused
on the handling of real-time data, with the ability to react and trigger events based on
the measured real-time values.

Throughout most publications, an emphasis is put on the use of meta-data to bring mea-
sured data into context. The next section shows the reasons for the need of meta-data,
and drives into detail how environmental data is modeled and stored in
current research.

B.2 Environmental Sensor Data Modeling

Section B.1 introduced current research and workflows providing solutions to handle the
difficulties that emerge from the ubiquitous use of environmental sensing technologies.
The presented solutions focus on a workflow and data handling perspective of environ-
mental observation technologies. This section is only concerned with the data that is
produced by sensors or sensing systems in the environmental environment. First, the
characteristics of environmental sensing data are introduced. Second, current ontologies
that model environmental data are introduced. Finally, the importance of meta-data for
environmental data is emphasized.

The environmental data produced by sensors and sensor networks follows certain charac-
teristics. The vast majority of environmental sensor data are continuous time-series with
changing values over time and a fixed sensing location. Sensors for temperature, humidity
or level measurement typically emit series of <timestamp, value> pairs. Other sensors
may emit time-series that encode spatial distribution of measured values. An ADCP [53],
for example, measures the water current at different water levels and produces tuples
containing a timestamp and a range of vectors with the flow direction and velocity. Even
though these complex systems measure distinct locations, as long as the point of measure-
ment is fixed (where the device is located), the data can be seen as a location independent
series of tuples in the form of <timestamp, v1, v2, ..., vN>. Such time-series pro-
ducing measurement systems are used to gain continuous long-term data and are heavily
used in sensor networks.
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Besides data in time-series form, time independent environmental observation data exists.
Such data can be gathered e.g. by measuring or taking samples at various locations. In
contrast to the measurement at a fixed location, location specific data has to be collected
by actively moving the measurement devices. An example in the GA field is the Sub-
Bottom Profiler. By moving the device around, a two- or three dimensional image of the
layers under the earth is produced. An application is the bottom profiling of sea ports
to detect bottom surface structures and the characteristics of the underlying layers. The
generated data is bound to one, or maximal two timestamps, the start of the measurement
and eventually the end of the measurement. The measured values change over distance,
and not over time. A clear distinction between spatial- or temporal oriented data cannot
be made, spatial discrete and time independent data may be brought into the context of
a time depending scenario by adding additional meta information. In cases of physical
samples, e.g. soil samples, the sampling time point may be important if the sample results
are evaluated together with time-series data, e.g. temperature or rainfall statistics, to
analyze the bio-chemical reaction of the soil after events like thunderstorms [78]. Samples,
that have to be analyzed in a lab, do not only need their collection timestamp, but also
the timestamp of the lab examination.

Environmental observation data are for the most part continuous long-term time-series
with a fixed measurement location. Determined by the use case, environmental data
may be location critical but not time critical or the data may be both, spatial- and time
oriented but to various degrees. Despite most data follows the time-series ‘category’,
the various spatial and temporal kinds of data introduce difficulties to uniformly handle
environmental data.

Not only the different kinds of environmental sensor data impose problems to the handling
of the data. Every sensor system outputs the measured values differently. Sensors like
a PT100 temperature sensor [65], which is essentially a temperature depending platinum
resistor, measure a voltage proportional to the resistor value. At some point this analogue
voltage value has to be converted to a digital number. Such a conversion from the raw
analogue values to digital values (AD) is common for most sensing systems. At GA, so
called ‘digital’ sensors, are sensors that create digital values internally, add a timestamp,
and output them over standardized interfaces like TCP/IP or serial in text or binary form.
The ‘analogue’ sensors, e.g. a PT100, have to be embedded in a circuit that performs the
AD conversion and the time-stamping. Analogue sensors are mostly passive and have to
be actively triggered to measure a value, whereas digital sensors are generally active and
measure in a certain interval. The heterogeneity of the sensors and the fact, that each
sensing system implements a custom protocol to transfer the data, makes it difficult to
manage sensor data in general, and not only in the environmental field.

Section B.1 introduced the problems of environmental sensing networks, e.g. the huge
amount of data, sometimes a real-time data handling aspect. In the process of handling
this data, the kind of the data and the heterogeneity of its sources, described above,
have to be considered. But also, data quality considerations have to be made. Sensor
data may be noisy or faulty due to measurement interference, e.g. rain that reflects
ultrasonic waves before they hit the target. Measurement errors may happen, e.g. if
the power supply can not deliver enough current, or errors in the communication may
corrupt correctly measured values. All of these data uncertainty has to be considered and
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handled by an environmental data management workflow. Some solutions, presented in
Section B.1, try to solve those challenges by looking at semantics of the data [30]. They
created data models of the data to simplify the representation and management of the
data. The rest of this section presents research, how environmental sensor data with all
its characteristics can be modeled and represented.

A semantic model of environmental data is called an ontology. An ontology in the context
of information science is “an explicit specification of a conceptualization” [28] or more
generally, “a formal naming and definition of the types, properties, and interrelationships
of the entities that really or fundamentally exist for a particular domain of discourse” [58].
In 2009 the World Wide Web Consortium (W3C) started an incubator group to study
semantic sensor networks (SSN). They analyzed a series of existing ontologies and created
a new one based on the gathered information [13]. They came up with a complex data
model shown in Figure B.1 [35]. The data model is not only focused on the measurement
results (marked blue), but mainly on additional information called meta-data. Platform
sites or deployment events are modeled, information of the sensor device, its characteristics
and the available processes are covered. A property entity (marked red) encapsulates
information on the measurement properties like frequency, resolution, latency, battery
lifetime or measurement range.

This, albeit complex system, allows to describe a concrete sensor network in a structured
way. W3C uses the Web Ontology Language (OWL) [59], which is oriented at the Resource
Description Framework (RDF) [66] to represent its ontology specification.

Figure B.1: SSN ontology database model.
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In their report [35] every component is described in detail with examples how a sensor
network can be described and how it can be used. The completeness of this ontology
comes with the price of a huge description overhead, but allows for simple automated
querying on the description files and the data. It would be simple to create a relational
database schema out of this ontology to further facilitate the usefulness of such a semantic
description system.

Horsburgh et al. developed a similar ontology with CUAHSI HIS and used it in the
workflow described in Section B.1. It was called the Observational Data Model (ODM)
[32] and is presented as a database schema. Similar to the SSN, a strong emphasis is
put on the describing meta-data. The complex data schema was developed as a database
schema that can be applied to most available database systems [30]. The core of the
ODM are observations. An observation contains two elements: “an Action performed on
or at a SamplingFeature that produces an observation Result, and a Result that is
the outcome of that Action” [32]. Diverse schema extensions exist to widen the meta-
data description possibilities. An extended SamplingFeature schema allows the addition
of measurement cite information, e.g. location and name. The Result extension adds
result types for general measurement results (single observed value), time-series results of
a continuous measurement at a fixed site, section results (a series of values observed over
varying X (horizontal) and Z (vertical/depth) offsets for a variable) or transect coverage
result (a 2-dimensional transect line with varying x or y values).

The ODM was designed to be able to handle almost all possible kinds of environmental
data. Even subsample structures can be modeled accordingly. The goal was a simple
data management solution that can be used for a wide range of scenarios, and allows
simple data sharing and exchange. The events can describe additional actions on the
data, e.g. Quality Assessment (QA) or Quality Control (QC) where the data is tested for
correctness, and possibly corrected.

In both shown data models, the importance of meta-data can be seen. Michener [42] high-
lighted the importance and use of meta-data. In research, the data discovery is simplified
by the addition of meta information. Web-based data archives become searchable based
on keywords. Added meta-data can also simplify the data gathering, data understanding
and use of the data by humans, the additional information may provide research context,
status of the data set or at least the physical structure of the data. And lastly, the added
meta-information enables automated data discovery, processing and analysis. [42]

Figure B.2 introduces an end-to-end workflow that can be supported by the automated
addition of meta-data at each step. Therefore, the history of the data is completely visible,
which helps in the understanding of the final results. Through the meta-data history, it is
possible to revert some steps in cases where errors were made, even years after the initial
measurements.

To summarize this section, it can be said, that various kinds of environmental sensing data
exist. Each kind of data comes with its own challenges that have to be dealt with. Various
efforts exist to model environmental data in order to simplify the management of this data.
Both described environmental data modeling solutions make extensive use of meta-data to
structure the data. The SSN ontology is more focused on a semantic approach that allows
RDF-like syntax to describe environmental measurement networks and the resulting data.
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Figure B.2: Meta-data Workflow.

The ODM data scheme is focused on a database oriented approach and allows hierarchical
sampling structures of all kinds of observations. Overall, the opportunities from the use
of meta-data reach from enhanced understanding of the data, to optimized automated
workflows. The benefit of meta-data, that may be of importance for the GA environment,
is the fact, that the history of the data, including all modifications, is available after the
sampling is completed and post processing operations have finished.



Appendix C

Contents of the CD

� 01 source code - Contains the final source code with built binaries.

� 02 tex report - Contains the source code of the report, including the images and
the final printed PDF.

� 03 presentation - Contains the pptx from the presentation.

� 04 other - Contains various documents and files used for this project.

– cd label - The digital DC label used to print the CD’s,

– measurements - All relevant files that were used for the performance mea-
surements.
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