Communication Systems Group, Prof. Dr. Burkhard Stiller

ASSIGNMENT

University of
Zurich™

7

CoMaDa Extension Addressing
Transparency Request for Data
Owners

Michael Balmer
Suhr, Switzerland
Student ID: 12-923-363

Supervisor: Corinna Schmitt, Sina Rafati
Date of Submission: July 4, 2017

University of Zurich
Department of Informatics (IFI) SG
BinzmuUhlestrasse 14, CH-8050 Zirich, Switzerland

Assignment

Communication Systems Group (CSQ)
Department of Informatics (IFI)

University of Zurich

BinzmUhlestrasse 14, CH-8050 Ztirich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

This work handles the development of a user-friendly user interface the CoMaDa (Con-
figuration, Management, and Data handling) framework used for wireless sensor network
(WSN) administration addressing the transparancy request of the collected data within a
sensornetwork, without using databaseaccess as before. The development takes place in
the Java framework CoMaDa, which contains a graphical user interface for networkman-
agement, configuration and visualization of data in a sensor network. The new request
interface is implemented fitting into the existing user interface. The new graphical user
interface (GUI) includes multiple filtering options like WSN User, return option(pull /
push) and date. The request is returned in a table with the set filter options and the
sensor data. Sensor data includes the sensor name as well as the values. To ensure the
data representation mostly HTML and Javascript is used. After the request the user
has the possibility to print the request directly or save it as a PDF-File. The evaluation
of the implementation is done as a proof of operability to proof the requested filtering
functionality.

1

Zusammenfassung

Der Inhalt der Arbeit umfasst die Entwicklung einer benutzerfreundlichen Oberflache auf
CoMaDa (Configuration, Management, and Data handling) zur transparenten Abfrage
von gesammelten Daten in einem Sensornetzwerk. Dies soll einem WSN owner ohne wie
anhin nur mit direktem Datenbankzugriff moglich sein. Die neue Abfrageoberflache wur-
de passend in die bestehende Benutzeroberfliche in das Java framework eingebettet. Die
neue Oberfliche beinhaltet mehrere Filteroptionen, wie WSN Name, Benutzer, Rueckga-
beoptionen(Push/Pull) und das Datum. Die Riickgabe erfolgt in einer Tabelle mit den ge-
wahlten Filteroptionen und den Sensordaten. Zu den Sensordaten gehoren der Sensorname
sowie deren Werte. Um diese Datenreprisentation zu gewaehrleisten wird hauptséchlich
HTML und Javascript verwendet. Nach der Abfrage besteht die Moglichkeit, diese Daten
im PDF-Format speichern zu lassen. Die Auswertung der Implementation wurde anhand
eines Proof of Operability auf Funktionalitéit getestet.

iii

v

Acknowledgments

First, I would like to sincerily thank my supervisor Dr. Corinna Schmitt for her support,
time and endurance and her valuable and motivating inputs and comments during the
assignment. [would also like to thank Prof. Dr. Burkhard Stiller for his support and
the possibility to complete this assignment at the Communications Systems Group at the
Department of Informatics of the University of Zurich.

vi

Contents

Abstract
Zusammenfassung
Acknowledgments

1 Introduction

1.1 Motivation
1.2 Description of Work
1.3 Thesis Outline

2 Related Work

2.1 SecureWSN - framework oo
21.1 CoMaDa
2.1.2 WebMaDa

2.2 Research question

2.3 Findings

3 Design Decision

3.1 Accesss on view ’access control”
3.2 Filtering Lo
3.3 Saving filtered Data for printingo

vil

iii

viii CONTENTS

4 Implementation
4.1 Front end prototype L
4.2 Representing first data in frontendo

4.3 Integration of data table with filter options

5 Evaluation

5.1 Proof of operability

6 Summary and Conclusions

Bibliography

List of Figures

List of Tables

A Contents of the CD

27
27

33

35

36

38

41

Chapter 1

Introduction

1.1 Motivation

Due to the growth of the Internet and the device diversity together with their communi-
cation capability the Internet of Things (IoT) is a hot topic. The IoT is not limited to
Peer-to-Peer (P2P) networks and devices like server, computers, and routers any more.
It also includes wireless sensor devices connectd in a Wireless Sensr Network (WSN). [1]

The application range goes from intelligent homes, logistic, health care to environmental
monitoring. All applications have in common a huge amount of collected sensor data (e.g.,
temperature, brightness, humidity) under different operating systems. As the collected
data can also be sensitive or might only be accessed by authorized persons. It is important
for a data owner to specifically know the data flow, especially who accessed which data
and at what time. [6]

The goal of this assignment is to develop an extention feature for the existing frame-
work SecureWSN, which was developed to manage and configure WSNs using different
security algorithms for communication, data processing and accessing possibilities, and vi-
sualisation solutions. Inside the SecureWSN framework exists CoMaDa which represents
the server side of the network. It shows the data flow within the interface and allows
hardware configuration, management of network components, data storage as well as the
visualization of the data [2]. The drawback in the current setup in CoMaDa is that the
data owner can only see his collected data and granted rights to authorized users and
only the database administrator can access the database where all the collected data is
stored. Therefore, the contribution of this assignemnt is to allow the data owner access
to a user-friendly view with filtering options to display who, when and what data was
collected for all his users.

2 CHAPTER 1. INTRODUCTION

1.2 Description of Work

The work for this assignemnt is to develop a user-friendly view for CoMaDa with multiple
filtering options allowing the data owner to keep track of his data, especially who accessed
the data and when. Therefore, in a first step, the existing database using PostGreSQL [9]
needs to be analysed on how the data is stored and is linked together for each network.
In a second phase, the question how the database can be accessed in a secure manner
is worked on. This includes how the data can be extracted and ported to the view in
CoMaDa to display the information to the data owner as well as the handling of a secure
access to the view only for the data owner. In a next step the implementation takes
place. This includes the integration of the access and data transfer solution as well as the
implementation of a user-friendly GUI with filtering options like date and user. In a final
step, the implementation is evaluated concerning the performance as well as based on a
proof of operability.

1.3 Thesis Outline

The rest of the assignment report is structured as follows. Chapter 2 includes related work
which correlates with this assignment and gives a brief overview of the works. Chapter
3 contains the design decisions concerning access security and the user-friendly GUI. In
chapter 4 the process of the implementation is shown. Chapter 5 presents the evaluation
of the implementation. It includes a short evaluation on performance and a more thorough
proof of operability. The conclusion is drawn in the final Chapter 6.

Chapter 2

Related Work

This chapter goes deeper into the relevant topics for this work. Therefore, a closer look
is taken at the framework SecureWSN on which this work builds on. The focus lies on
CoMaDa for the backend integration including the database communication and on the
otherhand the front end integration for displaying data in the GUIL. A quick look is taken
at the communication between CoMaDa and WebMaDa mainly for authentication reasons
and their relationship.

2.1 SecureWSN - framework

The goal in the beginning of the project SecureWSN [2] was to develop different solutions
for secure and efficient data transmission in wireless sensor networks. In a later stage a
GUI was developed, which would allow the user to configure the WSN in a handsome
manner. Therefore, the Configuration, Management and Data Handling Framework (Co-
MaDa) was designed which is one of the main components. The other main component is
the Web-based Mobile Access and Data Handling Framework (WebMaDa) allowing users
to deploy their WSN data online [10].

The figure above illustrates the cooperation between all components in the established
SecureWSN (status 2015)[2]

Q

Pull requestor

=
Wireless Sensor Network supporting
different security solutions (e.g.,
TinySAM, TinyTO, TinyDTLS) and
using TinyIPFIX as data format

.
__/

Zoom-in: TinyIPFIX supported Wireless Sensor Network

‘Aqgmgamr nodes perform message aggregation

Aggregator node performing data aggregation
(here aggregation function is MAX)

(incl. TinyDTLS Server)|

© Corinna Schmitt, 2016

(2) https://
upload.webmada.csg.uzh.ch

(1) https://
webmada.csg.uzh.ch

(3) wss://

~ puliwebmada csg-uzhich

CHAPTER 2. RELATED WORK

HTTPS
— — Web Socket Secure (wss)
HTTP

|)
| i
N i
I .
|
| g
I Datab
1¢
_J atabase

WebMaDa @ CSG

Web Server

Tomeat

Data received
from the WSN

oriver |

WSN Driver

Decoded TinylPFIX data and

Zoom-in: CoMaDa Visualization using Google Charts

‘additional information
(e.g. value type and value unit)

Xivel

Matiab

Export/import Client

m@

Virtual of
W

Visualization by Xively

Managment of Network
Components

GUI Framework

Network Status Visualisation

Data Visualisation

Information Storage

Hardware Configuration

Figure 2.1: Cooperation between all components in the SecureWSN [2]

2.2. RESEARCH QUESTION)

2.1.1 CoMaDa

The framework for Configuration, Management and Data Handling (CoMaDa) was built
with a user-friendly GUI to simplify the operations with wireless sensor networks. The
WSNDataFramework [2] is written in Java and allows the configuration and communi-
cation between nodes in a WSN. This is the main task of the back end of CoMaDa. In
a newer version there is also a PostGreSQL-Database [9] integrated in CoMaDa to dis-
play the graphical visualization of sensor data from Tim Strasser [8] offline. Both works
are important for this assignment. The new database deployment on CoMaDa allows a
simplified access to the data on the database as the interface is also implemented for a
graphical visualization. It leads to the other part of CoMaDa the frontend and its GUI.
CoMaDa is built in Modules so is the frontend, which are mainly HTML, Javascript-Files.
Those communicate through a WebServer integrated in the backend with the rest of the
system.

2.1.2 WebMaDa

Web-based Mobile Access and Data Handling Framework WebMaDa is an extension for
CoMaDa to bring mobility support to the CoMaDa framework. It consists of the following
four components: An Online Database written in MySQL which contains tables including
access rights, active WSNs, and corresponding data including datastream, topology, and
raw data. With the management tool in WebMaDa a user is able to set the access right of
different users according the needs. Therefore, three tables in the database manage these
rules. This module requires successful authentication of the account and then pushes all
monitored data to the online database storage that is linked to the web site. In the backend
of the system tables are created that log the deployed WSNs and display them to the user
on the website. According to the access rights, a user must first authenticate himself on
the website before he can visualize data similarly to CoMaDa because depending on the
access rights the user is able to see currently active WSNs or not. [10]

2.2 Research question

Developing a user-friendly extension for CoMaDa with different filtering options to receive
data about the usage of his own WSN. It is important to make sure the connection to the
database is secure as well as to ensure that only a rightful owner of a WSN can request
certain data. To make sure the user can use the requested data, a printing or saving
option is a must as well as ordering the data as wished.

2.3 Findings

The most essential part for this work lies within the CoMaDa framework. The imple-
mentation takes place in its back- and frontend. Especially the work of Christian Ott [9]

6 CHAPTER 2. RELATED WORK

for an more simple accesss to the database which is a great part of this assignment to
ensure the database requests for the filtering options. The link to WebMaDa can be found
within the managment tool and its data within the database. Therefore with an addtional
credential check the rightful owner of mulitiple WSNs can be determined and the correct
data can be displayed. The printing/ saving option can be compared the export/import
option within CoMaDa.

Chapter 3

Design Decision

In this chapter the design choices for this assignment will be clarified. This includes three
primary steps. First the secure access to the filtering view and the database connection
will be discussed. The second step handles the architectural design decision for the new
GUI view. In a last part multiple options for saving the filtered data will be discussed.

3.1 Accesss on view ’access control’

The current existing solution of CoMaDa assumes that only the WSN owner has access
to it. This setting is similar to a locked room where only authorized personal have access
to. But usually the reality looks different. Thus, an additional authorization check must
be integrated. The answer to this question lies within the filtering option within the new
view. A WSN-owner has to identify himself to gain access to all sensor networks he owns
which is not recognisable just with the access control into CoMaDa.

3.2 Filtering

During the development of the structural design of the new view. Multiple filtering
options emerged. Starting with the WSN-Name, a WSN-Owner can choose between one
or multiple WSNs he owns to filter data. The second option includes the WSN User which
one of the main goal of this assignment to reach transparency for the data owner. This
amount of WSN users is variable according to the selected WSN-Names. Therefore no
user can be selected who is not part of a sensor network, like in the previous option one
or multiple WSN-Users can be selected. The third option includes the action in a sensor
network. Thus a data owner can choose between Push and Pull. The decision for the final
filter option concluded in the Date option as it is highly required to make a reasonable
request. Its importance is underlined by all other visualizations as a timestamp or date
filter option like in "charts” cannot miss. Therefore a start date earlier than the enddate,
which can be chosen as the actual clock time has to be set. After setting up the filter

7

8 CHAPTER 3. DESIGN DECISION

http:/llocalhost:8000/index/filter

Filter

Username

Password

Figure 3.1: Mockup for the login screen

options, the requested data is shown in a table, where it is possible to order the data
according to any filter option given.

hitp:ilocalhost:8000/index/fiterwidget

Filter

| showfitereddata |

WSN User 4 Option 4 I Date |

Figure 3.2: Mockup with available filter options

3.2. FILTERING

http:Mocalhost:8000/index/filterWidget

Filter
| showfitereddata |

Option 4 I Date |

WSN User

All Users

[m] Paul
[Maria
[eeb
[m] Alice

Figure 3.3: Mockup for WSN-User dropdown menu

hitp:#Mocalhost8000/indexfilterWidget

Filter
[Showfitereddata |
WSN User 4 Option | Date
Push/Pull
E Push
Cpu

Figure 3.4: Mockup for the request options

CHAPTER 3. DESIGN DECISION

http:focalhost8000/ndexffilterWidget

Filter
Show filtered data
WSN User 4 Option 4 Date
1 Juni 2017 »

Mo Di Mi Do Fr 5a So
2930 31 1 2 304}
5 60718 9 10 11
12 13 14 15 16 17 18
19 20 A 22 3 4 25
2% 27 8 ¥ 30 1 2
3 4 56 7 8 9

Figure 3.5: Mockup for the date filter

http:Mocalhost:8000/indexfilterWidget

Filter

[Showfitereddata |

WSN User 4 Option 4 | Date |

ey - R NS N ==y |
3IRFAG20JCD | Alice Push EHAR 55203 NodeTime
3RF4G20JCD Alice Push B 333 Temperature-TzlosB)
3IRF4G20JCD Alice Push 2015aes 292 Voltage
3RF4G20JCD Alice Push | 28.26 Humidity-TelosB
3RF4G20JCD Alice Push B 55267 NodeTime
3RF4G20JCD Alice Push /e 33.26 Temperature-TelosB)
IRF4G20JCD Alice Push LI 292 Voltage
3RF4G20JCD Paul Push nInEE 28.29 Humidity-TelosB
3RF4G20JCD Paul Push ey 55273 NodeTime
3RF4G20JCD Paul Push Ry 3323 Temperature-Telose
3RF4G20JCD Paul Push HineEr 2.89 Voltage

Figure 3.6: Mockup for the requested table

3.3. SAVING FILTERED DATA FOR PRINTING 11

3.3 Saving filtered Data for printing

After successfully displaying the selected data a data owner should be able to save his
request. Therefore, two options are at hand. First an immediate print out and secondly
the creation of a PDF file. The question has been raised how name the files as well as
tag them inside the file. Not many options came into conclusion. Therefore, the decision
fell for WSN Name_Date_time because it can be easily sorted within a directory. It is
therefore possible to chronologically order the files by date_time. Inside the file the header
also includes the WSN_Name, the selected WSN users and date_time. This allows for an
easy overview of the selected filter options inside the file.

12

CHAPTER 3. DESIGN DECISION

Chapter 4

Implementation

This chapter gives a deeper insight into the implementation. For this implementation a
specific WSN was chosen to implement the filter options as the information about active
WSNs lies in the WebMaDa database from which no data could be retrieved yet.

4.1 Front end prototype

For the front end a prototype of the filter view is implemented. As shown in the figure
4.1 a new widget folder with a CSS, HTML, and Javascript file has been created.

[# Package Explorer 8 = = ¥ =g
=21

¥ (=index
b= css
k(= img
P js
b= pdfs
b= templates
iz widgets
b= charts
| vefler
filterwidget.css
@ filterwidget.heml
 filterwidget.js
» = grid
» (= protocols
» (= topology
@ charts.html
@ dynamic.html
@ Filter.html
@ hardware.html
@ index.html
@ logs.heml
@ nodes.html
@ protocols.html
@ shutdown.html
@ under_construction.html
@ visualisation.html
P = ipfix

Figure 4.1: Filter widget folder

13

14 CHAPTER 4. IMPLEMENTATION

In a first step the HTML file has been modified to yield all filter options in a basic layout
with dummy data to get an overview on the containers to use. In figure 4.2 the first
prototype of the GUI can be seen. Therefore, containers for selecting the WSN users, the
pull and push option as well as a calender for the start- and enddate.

4 @ | [localhost:8000/index/filter
TinyOS WSN Driver: Nothing received yet. Is the IP-Tunnel open?

'WSN Administration

Home | Network Management - | Visualiation - | About

Filter

WSN User v

chott
mibalm
nsilve

schmitt
Options v

start date: mm/dd / yyyy
End date: |mm/ dd/ yyyy

Show filtered data.
WSN Name WSN User Option Date Value Sensor Data

3RF4G20JCD

® 0 Elements Console Sources Network Timeline Profiles Resources Audits

© ¥ <topframe> ¥ (I Preserve log

Figure 4.2: Overview filter page

After the implementation of the GUI Elements, it was necessary to fill up the WSN user
container as well as the date container with data from the database to ensure only available

options can be selected.

4.2 Representing first data in front end

To access the database and forward the data to the FilterWidget javascript methods in
multiple existing modules had to be integrated. Figure 4.3 highlights the three modules

in the package explorer.

4.2. REPRESENTING FIRST DATA IN FRONT END

f# Package Explorer &2

» = WebSocketServer
v WSNDataFramework
v ;2 src/mainfjava
b # de.tum.in.net. WSNDataFramework
b de.tum.in.net.WSNDataFramework.Crypto
b i de.tum.in.net.WSNDataFramework.CUSTOM
» 8 de.tum.in.net.WSNDataFramework.Event
» § de.tum.in.net.WSNDataFramework.Events
b B de.tum.in.net. WSNDataFramework.Exceptions
b 5 de.tum.in.net. WSNDataFramework.Guice
P #1 de.tum.in.net. WSNDataFramework.MessageBus
P i3 de.tum.in.nec.WSNDataFramework.MetaData
* if de.tum.in.net.WSNDataFramework.Modules.Authone
» 3 de.tum.in.net.WSNDataFramework.Modules.Contiki
b # de.tum.in.net WSNDataFramework.Modules.Cosm
¥ i de.tum.in.net.WSNDataFramework.Modules.DBaccess
P [J] BasicDBHandler.java
» [J] DBAccessModule.java

» 1] DBAccessPoskgresgl.java

IDBAccessLayer.java
b 5 de.tum.in.net.WSNDataFramework.Modules.FileLogger
¥ i de.tum.in.net.WSNDataFramework.Modules. HTTPServer
b [J] HTMLDocument.java
b [J] HTTPController.java
P [J] HTTPRequest.java
P [J] HTTPResponse.java
b 1)) HTTPServer.java
» [} WSNHTTPController.java
P [J] WSNHTTPHelpController.java
Ib_,l WSNHTTPIndexController.java |
k) WSNHTTPServerModule.java
Pk [J] WSNHTTPSettingsController.java
b i de.tum.in.net.WSNDataFramework.Modules.IPFIX
P 2 de.tum.in.net.WSNDataFramework.Modules.Locating
» 8 de.tum.in.net.WSNDataFramework.Modules.SSHServer
P & de.tum.in.net. WSNDataFramework.Modules. TinyOs

Figure 4.3: Package explorer with back end files

i
i
4

15

16 CHAPTER 4. IMPLEMENTATION

The highest level to manipulate the data is inside the DBAccessPostgresql.java file. There-
fore, the two methods in figure 4.4 and 4.5 have been created.

291= @override
2292 public ArraylList<String= getUser() {
293 Connection connection = connect(host, user, password);
294 PreparedStatement stmnt = null;
295 ArrayList<String> result = new ArrayList<=();
296 if (conmection != null){
297 try{
298 stmnt = connection.prepareStatement("SELECT DISTINCT UserMame FROM response");
299
300 //System.out.println(sensorname);
301 ResultSet un = stmnt.executeQuery();
302 while(un.next()){
303 result.add(un.getString("UserName")};
304
365 } //System.out.println({result);
306
307 }catch (SQLException e) {
308 System.out.println("Statement creation Failed!");
309 e.printStackTrace();
318 }finally {
311 try {
312 if (stmnt !'= null){
313 stmnt.close();
314 }
315 connection.close();
316 }catch (SOLException e) {
317 System.out.println("Couldn't close connection!"};
318 e.printStackTrace();
319 }
320 }
321 } return result;
322 }

Figure 4.4: Code for getUser DBAccess

To enable the database access, a connection object has to be created. Together with a
prepareStatement as it enables the writing of a query with JDBC. In figure 4.4 on line
298 together the query is formulated ad on line 301 it gets executed. The returning result
is given back in a ResultSet, which is then processed row by row and saved in the return
ArrayList<String> result. The result ArrayList<String> now yields all Wsn users who
are stored in the database meaning who actively participated in using the WSN.

4.2. REPRESENTING FIRST DATA IN FRONT END

250= @0verride

251 public ArraylList<String> getDate() {

252 Connection connection = connect(host, user, password);
253 PreparedStatement stmnt = null;

254 Preparedstatement stmnt2 = null;

255 ArrayList<String> result = new ArrayList<>();

256 if (connection !'= null){

257 try{

258 stmnt = connection.prepareStatement("SELECT date(MAX(timestamp)) FROM _response");
259 stmnt2 = connection.prepareStatement("SELECT date(MIN(timestamp)) FROM response");
268

261 //System.out.println(sensorname);

262 ResultSet un = stmnt.executeQuery();

263 ResultSet unz = stmnt2.executeQuery();

264 while(un.next()){

265 result.add(un.getString(“date"));

266 }

267 while(un2.next()){

268 result.add(un2.getString("date"));

269 }

278

271

272 //System.out.println(result);

273

274 }catch (SQLException e) {

275 System.out.println("Statement creation Failed!");
276 e.printStackTrace();

277 Hinally {

278 try {

279 if (stmnt != null){

280 stmnt.close();

281 }

282 connection.close();

283 }catch (SQLException e) {

284 System.out.println("Couldn't close connection!");
285 e.printStackTrace();

286 }

287 }

288 } return result;

280 1

Figure 4.5: Code for getDate DBAccess

18 CHAPTER 4. IMPLEMENTATION

Similarly to the getUser() function the getDate() function has been implemented. The
return value in this function is again a ArrayList<String> containing the max and min
timestamp in the database. These values can be used as Start and Enddate in the date
container on the filter page. The steps can be veryfied in figure 4.5. Finally to make these
functions available for use in other modules. They need to be added to the IDBAccesss-
Layer as shown in figure 4.6.

2& * DESCRIPTION.

15

16 package de.tum.in.net.wWSNDataFramework.Modules.DBaccess;

17

18® import java.util.ArrayList;[]

28

21 public interface IDBAccessLayer {

22 void addNode(int nodeId, String name, String nodeType);

23 void assignSensorToNodeType(String sensorname, String nodeTypew);

24 void addSensor(int elementId, int enterpriseld, String name, String unit, String type);
25 int addResponse(boolean isPull, String username);

26 int addReport(int nodeId, int responseld);

27 void addDataRecord(int recordId, int reportId, String value, String sensorname);

28 ArraylList<Map<String,String=> getDataTable(int nodeld, ArraylList=Map<String, String=> fields);

9 ArraylList<String> getUser();

] ArrayList<String> getDate();|

31 ArrayList<Map<String, Strings> filteredTable(ArrayList<String> statements);
32 }

23

Figure 4.6: Code for IDBAccessLayer

Now that the function is made available through the IDBAccessLayer. The implemen-
tation of the method in the WSNHTTPIndexController coud be done. The methods
implemented can be seen in figure 4.7. These are mainly asynchronious http requests and
responses, which are used to enable the communication to the front end specifically the
filterWidget.js file. For example in the getuserAction method a dbAccess object is cre-
ated containing our getUser() method. The return value of our getUser() method is then
added to a ArrayList<String> called jsonResult, which is converted into a JSONString
and added to the http response body.

4.2. REPRESENTING FIRST DATA IN FRONT END

4496
497
498
499
500
501
502%
503
204
505
506
507
508
509
510
511
512
513
514
515
516
517=
518
519
520
521
522
523
5245
525
526
527
528
329
530
531
532
533
534
535
536

=
%
%

*/

@param request
@param response

@author Michael Balmer

public void getuserAction(HTTPRequest request, HTTPResponse response) {

}

*/

ArrayList<String> jsonResult = new ArrayList<String=();
//System.out.println(jsonResult);

response.body = JSONValue.toJSONString(jsonResult).getBytes()
//System.out.println(response.body);

IDBAccessLayer dbAccess = new DBAccessPostgresql(this.getServerModule().app().getProperties());

jsonResult.addAll({dbAccess.getUser())
//System.out.println("blabla");
//System.out.println(jsonResult);

response.body = JSONValue.toJSONString(jsonResult).getBytes()

ajax update action, returns min and max date of available data
@param request
@param response

@author Michael Balmer

public void getdateAction(HTTPRequest request, HTTPResponse response) {

}

ArrayList<String= jsonResult = new ArraylList<String=();
//System.out.println(jsonResult);

response.body = JSONValue.toJSONString(jsonResult).getBytes()
//System.out.println(response.body);

IDBAccessLayer dbAccess = new DBAccessPostgresql(this.getServerModule().app().getProperties());
jsonResult.addAll(dbAccess.getDate())
//System.out.println("Datum:");

//System.out.println(jsonResult);
response.body = JSONValue.toJSONString(jsonResult).getBytes()

Figure 4.7: Code for AJAX calls

19

20 CHAPTER 4. IMPLEMENTATION

The final step for the representation of our values on the filterWidget.html page takes
place in the filterWidget.js file.

38 $http.get('/index/getuser').then(function(data) {
39 var select = document.getElementById("selectUser");
40 var options = data.data;

41 /*console.log(data) ;*/

432 for(var i = ®; i < options.length; i++) {

43 var opt = options[i];

44 var el = document.createElement("option");
45 el.textContent = opt;

46 el.value = opt;

47 select.appendChild(el);

48 }

49

58

51 1

52 $http.get('/index/getdate’).then{function(data) {
53 /*console.log(data);*/

54 var dates = data.data;

55 var max = dates[8];

56 var min = dates[1];

57 document.getElementById("startDate”).min = min;
58 document.getElementById("endDate").min = min;
59 document.getElementById("startDate").max = max;
60 document.getElementById("endDate") . .max = max;
61

62 1)

a3

Figure 4.8: Code in filterWidget javascript file

Figure 4.8 shows the implementation of the http.get() which is a call to the methods just
recently added in the WSNHTTPIndexController. Namely the getuserAction on line 38
and the getdateAction method on line 52. Afterwards the received data is processed like
in the getuser part, where the wsn users are iterated over and dynamically added to a
multiselect option container in the html file.

4.2. REPRESENTING FIRST DATA IN FRONT END 21

IF 0 s administration >

14 @ | [localhost:8000/index/filter

TinyOS WSN Driver: Nothing received yet. Is the IP-Tunnel open?

WSN Administration

Home | Network Management Visualisation

Filter
All users ~ Start date:| 06 /dd /2017 2 V|
nsilve -
Select either one or both [Pull] End dtes|
chott June 2017 ~ «|le
Select one or more user/s Mibalm
Sun Mon Tue Wed Thu Fri Sat
1 2 3
Show filtered data | | Save filtered data 4 5 5 7 8 9 10

11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

Figure 4.9: Preset of filter options

22 CHAPTER 4. IMPLEMENTATION

With this final step added we can see the result of our chain of actions in Figure 4.9. The
user is able to select multiple WSN users which have been active in the WSN and within
the date window, we can see that just one date is white which indicates the date with
data activity.

4.3 Integration of data table with filter options

In this section, the final implementation of the filtered data is described. This is done
from backend to frontend like in the previous section.

324= @0verride
+325 public ArrayList<Map<String, String== filteredTable(ArrayList<String= statements) {

326 Connection connection = connect(host, user, password);

327 PreparedStatement stmnt = null;

328 ArrayList<Map<String,String=> res = new ArraylList<=();

329 if (connection != null}{

330 try{

331

332 // Query option with users selected

333 String stmnt us = " AND (";

334 String users = statements.get(®);

335 String[] splitArray = users.split(",");

336 int numuser = splitArray.length;

337 if (users.contains("All users") == false) {

338 for (int i = 0 ; 1 < numuser; i++) {

339 String stmnt_user = "Username = '" + splitArray[i] +"' or ";
340 stmnt_us += stmnt_user;

341 }

342 String stmnt end = ")";

343 stmnt us = stmnt us.substring(®, stmnt us.length() - 4);
344 stmnt_us += stmnt_end;

345 //System.out.println(stmnt us);

346

347 }

348

349

350 String stmnt _str = "SELECT Username, IsPull, TimeStamp, Value, Unit, SensorType FROM Response, Report, Datarecord, _Sens
351 String stmnt pp = " AND IsPull = ?::bool";

352 String stmnt date = " AND date(TimeStamp) >= 7::date AND date(TimeStamp) <= 7::date ";
353 stmnt str += stmnt date;

354 stmnt_str += stmnt_us;

355

356

357 stmnt = connection.prepareStatement(stmnt str);

Figure 4.10: Code for filteredData DB Access 1

4.3. INTEGRATION OF DATA TABLE WITH FILTER OPTIONS

364 stmnt_str += stmnt pp;

365 stmnt = connection.prepareStatement(stmnt strj;
366 stmnt.setString(3, "True");

367 }else if (pp.equals("Push")) {

368 //System.out.println("PUSHH ITT");

369 stmnt_str += stmnt pp;

370 stmnt = connection.prepareStatement(stmnt strj;
371 stmnt.setString(3, "False");

372 }

373

374

375

376 //Startdate and Enddate for Query

377 String sd = statements.get(2);

378 String ed = statements.get(3);

379 stmnt.setString(l, sd);

380 stmnt.setString(2, ed);

381

382 ResultSet rs = stmnt.executeQuery();

383 ResultSetMetaData rsmt = rs.getMetaData();

384 int columnCount = rsmt.getColumnCount();

385 //System.out.println(columnCount);

386 while(rs.next()){

387 Map<String,String> resultMap = new HashMap<>();
388 //Print one row

389 for(int i = 1 ; i <= columnCount; i++){

398

391 // System.out.print(rs.getString(i) + " "); //Print one element of a row
392 resultMap.put(rsmt.getColumnName(i).toLowerCase(),rs.getString(i));
393

394 1

345 res.add(resultMap);

396 }

397 }catch (SQLException e) {

398 System.out.println("Statement creation Failed!");
399 e.printStackTrace();

400 Hinally {

401 try {

402 if (stmnt != null){

483 stmnt.close();

404 1

405 connection.close();

406 }catch (SQLException e) {

407 System.out.println("Couldn't close connection!");
408 e.printStackTrace();

489 }

418 }

411 }

412 return res;

Figure 4.11: Code for filteredData DB Access 2

24 CHAPTER 4. IMPLEMENTATION

In figure 4.10 and 4.11 the method for the queries to the database is shown. As variables
we receive an ArrayList of Strings containing the selected options for filtering. According
to these statements we concatenate the query statement. Like in between line 333 and
344 whether the filter is set to All Users, multiple WSN users or even just a single user.
The method then returns a ArrayList of a Map<String, String> which is filled starting
from line 386 where each row is processed and stored together with its column name.

538= f**

539 * @jax update action, returns all data for the filter options

540 * @param request

541 * [@param response

542 *

543 * @author Michael Balmer

544 */

545

546= public void filteredtableAction(HTTPRequest request, HTTPResponse response) {
547 //ArrayList<Map<String,String>> jsonResult = new ArraylList<>();
548 Map<5String,0Object> jsonResult = new HashMap<String,Object=();
549 ArrayList<String> jsonArguments = new ArraylList<String>();

5560 String users = reguest.arguments.get("users”).toString();

String pp = request.arguments.get("pp").toString();
String sd request.arguments.get("sd").toString();
String ed = request.arguments.get("ed").toString();
jsonArguments.add(users);

jsonArguments.add(pp);

jsonArguments.add(sd);

jsonArguments.add(ed);

//system.out.println(jsonResult);
//Bystem.out.println("jsonArguments? " + jsonArguments);
response.body = JSONValue.toJSONString(jsonResult).getBytes();
//System.out.println(response.body);

Lo B L N Iy S Ry e

IDBAccessLayer dbAccess = new DBAccessPostgresql(this.getServerModule().app().getProperties());
String wsnname = this.getServerModule().app().getProperties().getProperty("wsn.id");

jsonResult.put("wsn _name", wsnname);

jsonResult.put(“data", dbAccess.filteredTable(jsonArguments));
//System.out.println("Kiev me dataaa");
//System.out.println(jsonResult);

response.body = JSONValue.toJSONString(jsonResult).getBytes();

A UA A OA 0RO RO OO O TR O TR O R TGO OO R
=l O Ch On OO0 O OO0 O S LR LN LR LN LR LA LR oLnoLn
LN s W Ny WH Iy S Ry e e e

~J

= O W o

Figure 4.12: Code for filtereddataAction

Figure 4.12 is an important point of communication between the Javascript file and the
PostGreSqlAccess file. In the first part we receive the arguemnts from the selected filter
options and add those to an ArrayList of Strings called jsonArguments. Like in the previ-
ous two Action methods a dbAccess object is generated on which we call our filteredTable
method together with the selected options. The result from the query is then stored and
assigned to the response body.

4.3. INTEGRATION OF DATA TABLE WITH FILTER OPTIONS

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
118
111

document.getElementById('showBtn').addEventListener('click', function() {

var e = document.getElementById("selectPushPull”);

var pushPull = e.options[e.selectedIndex].text;

var users = $('#selectUser’).val();

var startDate = document.getElementById("startDate").value;
var endDate = document.getElementById("endDate").value;

var conusers = users.toString();
/*console.log("real users?" + users);*/

var parameters = {'Users': users, 'PushPull': pushPull, 'StartDate': startDate,
/*console. log(parameters);*/

$http.get('/index/filteredtable?users=" + users + '&pp=' + pushPull + '&sd=' + startDate + '&ed=' + endDate).then(function(data) {

/*console.log(data.data.data[@]); =/

/*console. log(data.data.data. length);*/
if (data.data.data !'= 0) {

/*console.log("ben im if");*/
document.getElementById('noData').style.visibility = "hidden";
document.getElementById('filteredData').style.display = ""
$("#filteredData tr:gt(e)").remove()

var wsnname = data.data.wsn_name;

var trHTML = '<tbody>';
for (var key in data.data.data) {
var entry = data.data.datalkey];
var keys = Object.keys(entry)
var values = data.data.datalkey];
/*console.log("values ", values); */

'EndDate': endDate};

25

trHTML += '<tr=<td class="tg-body" align="center" valign="middle">' + wsnname + '</td><td class="tg-body" align="

}

TrHTML += '</tbody>";

$('#filteredData’).append(trHTML)

§('#filteredData').DataTable();

} else {
/*console.log("ben im else");*/
document.getElementById (' filteredData').style.display = "none";
document.getElementById('noData').style.visibility = "visible";

1

Figure 4.13: Code for displaying data in javascript

26 CHAPTER 4. IMPLEMENTATION

On hitting the show filtered data button this whole cascade of events is triggered. As can
be seen in figure 4.13. On line 66 the selected filter options are read and sent with the
http.get() on line 81. When the data returns we iterate through each row on line 94 and
display in the table on the html file (line 100).

Chapter 5

Evaluation

As Evaluation a proof of operability is done as the functionality of this assignment is best
tested and shown at work. The expected results are taken from queries on the database.

5.1 Proof of operability

Filtersettings: nsilve,schmitt / PushPull / 7/3/2017 Expected: 4 pulls of schmitt Results:
correct

I O wsN Administration x
(4 @ | [localhost:8000/index/filte: P
TinyOS WSN Driver: Nothing received yet. I the IP-Tunnel open?

'WSN Administration

Home | etwork Management | Visuistion - | About

Filter
nsilve < Start date: |07 /03/ 2017
chott Sel the both | Push and Pull ¥
mibalm elect either one or bot ush and Pul End date:| 07/03/2017
Select or more user/s | SChMItt

Show filtered data | [Save filtered data.

Show[10_¥] enties Search

WSN Name . WSN User IsPull ‘Timestamp Value Unit Sensortype
2NN649QAKU schmitt t 2017-07-03 15:22:09.627128 292 v Voltage
2NN649QAKU schmitt t 2017-07-03 15:30:01.91265 292 v Voltage

2NN649QAKU schmitt t 2017-07-03 15:31:20.600578 3446 c Temperature
2NNG49QAKU schmitt t 2017-07-03 15:31:20.600578 292 v Voltage

Figure 5.1: Evaluationsatz 1

27

28 CHAPTER 5. EVALUATION

Filtersettings: All users / Pull / 6/7/2017 - 7/3/2017 Expected: 16 rows Results: correct

I 0w ”ministrtio < S WVt
< @ [localhost:

TinyOS WSN Driver: Nothing received yet. Is the IP-Tunnel open?

'WSN Administration

Home | Network Management - | Visualisation

Filter
Allusers ~ Start date:|06/07 /2617
nsilve e E—
chott Select either one or both | Pull v| Enddate:07/03/2017

Select one or more user/s Mibalm _ ~

Show filtered data | | Save filtered data.

Show[10_7] enres Search
'WSN Name - 'WSN User IsPull Timestamp Value Unit Sensortype
2NN649QAKU mibalm t 2017-06-07 18:40:21.821221 31.05 C ‘Temperature
2NN649QAKU nsilve t 2017-06-07 18:42:21.954926 292 v Voltage
2NN649QAKU mibalm t 2017-06-07 18:46:48.048031 69122 sec. NodeTime
2NN649QAKU mibalm t 2017-06-07 18:46:48.048031 3179 c ‘Temperature
2NN649QAKU mibalm t 2017-06-07 18:46:48.048031 292 v Voltage
2NN649QAKU mibalm t 2017-06-07 18:46:48.048031 2232 % Humidity
2NN649QAKU mibalm t 2017-07-03 15:19:35.285252 292 v Voltage
2NN649QAKU mibalm t 2017-07-03 15:19:35.285252 29.12 % Humidity
2NN649QAKU schmitt t 2017-07-03 15:22:09.627128 292 v Voltage
2NN649QAKU schmitt t 2017-07-03 15:30:01.91265 292 v Voltage
2NN649QAKU schmitt t 2017-07-03 15:31:20.690578 34.46 C ‘Temperature
2NN649QAKU schmitt t 2017-07-03 15:31:20.690578 292 v Voltage
2NN649QAKU schmitt t 2017-07-03 15:40:55.185938 292 v Voltage
2NN649QAKU schmitt t 2017-07-03 15:41:14.493949 2012 sec. NodeTime
2NN649QAKU schmitt t 2017-07-03 15:41:14.493949 292 v Voltage
2NN649QAKU schmitt t 2017-07-03 15:41:29.887695 292 v Voltage

Figure 5.2: Evaluationsatz 2

5.1. PROOF OF OPERABILITY 29

Filtersettings: mibalm / Push / 6/7/2017 - 7/3/2017 Expected: 1872 Results: correct

7 © W Administraior < QNN Sl
€ € [localhost:8000

TinyOS WSN Driver: Nothing received yet. Is the IP-Tunnel open?

'WSN Administration

Home | Network Management - | Visualisation

Filter
Allusers = Star date:[87/03/2017
g Select ither one or both [Push | Enddue07/03/2017

Seleet one or more user/s| Mibalm _ +

Show filtered data | | Save filtered data.

Show[10 7] enres Search
'WSN Name - 'WSN User IsPull ‘Timestamp Value Sensortype

2NN649QAKU mibalm f 2017-07-03 15:39:07.543008 1885 sec NodeTime
2NN649QAKU mibalm f 2017-07-03 15:39:07.543008 34.58 C ‘Temperature
2NN649QAKU mibalm f 2017-07-03 15:39:07.543008 292 v Voltage
2NN649QAKU mibalm f 2017-07-03 15:39:07.543008 27.4 % Humidity
2NN649QAKU mibalm f 2017-07-03 15:39:14.147343 1892 sec NodeTime
2NN649QAKU mibalm f 2017-07-03 15:39:14.147343 3458 C Temperature
2NN649QAKU mibalm f 2017-07-03 15:39:14.147343 292 v Voltage
2NN649QAKU mibalm f 2017-07-03 15:39:14.147343 27.4 % Humidity
2NN649QAKU mibalm f 2017-07-03 15:39:20.917408 1898 sec NodeTime
2NN649QAKU ‘mibalm f 2017-07-03 15:39:20.917408 34.58 C ‘Temperature

‘Showing 1 to 10 of 1,872 entries Previous m 2 3 4 5 188 Next

Figure 5.3: Evaluationsatz 3

30

CHAPTER 5. EVALUATION

Filtersettings: schmitt / Pull / 7/3/2017 Expected: 8 pulls of schmitt Results: correct

I7 0 s it < QSR

@ [localhost:8000/in

TinyOS WSN Driver: Nothing received yet. Is the IP-Tunnel open?

'WSN Administration

7 | Emm - | @

Filter

Select one or more user/s SCMItt

Start date:| 07 /03/2017

Select cither one or both [PUIl Y| Enddae:|07/03/2017

Show filtered data | | Save filtered data

Showing 1 to 8 of & entries

show[10 V] entries Search:

WSN Name B WSN User IsPull Timestamp Value Unit Sensortype
2NNE49QAKU schmitt t 2017-07-03 15:22:09.627128 292 v Voltage
2INNG49QAKU schmitt t 2017-07-03 15:30:01.91265 202 v Voliage
2NNG49QAKU schmitt t 2017-07-03 15:31:20.690578 34.46 c Temperature
2NNG49QAKU schmitt t 2017-07-03 15:31:20.690578 292 v Voltage
2NNG49QAKU schmitt t 2017-07-03 15:40:55.185938 292 v Voltage
2NNG49QAKU schmitt t 2017-07-03 15:41:14.493949 2012 sec NodeTime
2NNG49QAKU schmitt t 2017-07-03 15:41:14.493949 292 v Voltage
2NNG49QAKU schmitt t 2017-07-03 15:41:29.887695 292 v Voltage

Figure 5.4: Evaluationsatz 4

5.1. PROOF OF OPERABILITY 31

Filtersettings: chott / Pull / 6/7/2017 - 7/3/2017 Expected: none Results: correct

< @ [localhost:g:

TinyOS WSN Driver: Nothing received yet. Is the IP-Tunnel open?

'WSN Administration

Home | Netork Mansgement | Visaliain | About

Filter

Allusers ~ Start date: | 06./07/2017
nsilve —
P Select either one or both [Pull v] Enddae:[07/03/2017

Select one or more user/s Mbalm _+

Show filtered data | | Save filtered data.

There are no results with these filter options
Show[10 ¥] entries Search:

| Number-Converter |
BOP P DS B swere

Figure 5.5: Evaluationsatz 5

32

CHAPTER 5. EVALUATION

Chapter 6

Summary and Conclusions

A user-friendly GUI has been added to the existing WSN framework on CoMaDa. There-
fore, a view exists addressing the active transparency request of the collected data within
a sensor network without database access as before. For the new view all requested fil-
tering options are implemented including the WSN user , option (pull / push) and date.
The filtered data is displayed in a table with all requested columns additionally the table
owns a sorting functionality. To keep a certain filtered table a save button is integrated,
which allows the user to save the current table as a PDF.

As a first conclusion it can be said, that given the goals of adding a user-friendly GUI
addressing the transparency request of the collected data within a sensor network without
database access could be implemented. Although it was challenging to work into CoMaDa
and understanding the modular structure and the relationship between them.

33

34

CHAPTER 6. SUMMARY AND CONCLUSIONS

Bibliography

[1]

[10]
[11]

H.Karl and A. Willig, Protocols and Architectures for Wireless Sensor Networks,
John Wiley and Sons, Vol 1, ISBN: 0470519231, GB, 2007.

SecureWSN, URL: http://www.csg.uzh.ch/research/SecureWsN, last visited
June. 6, 2017.

C. Schmitt, T. Strasser, B. Stiller, Third-party-independent Data Visualization of
Sensor Data in CoMaDa; 12th IEEE International Conference on Wireless and Mo-
bile Computing, Networking and Communications, New York, NY, U.S.A., Oct. 2016,

pp 1-8.

C. Schmitt, T. Strasser, B. Stiller, Efficient and Secure Pull Requests for Emergency
Cases Using a Mobile Access Framework; in: M. Sheng, Y. Qin, L. Yao, B. Benatallah
(Edt.), WoT-book-Managing the Web of Things: Linking the Real World to the Web,
Elsevier, New York, NY, U.S.A., Feb. 2016, pp 1-19.

Andr’e Freitag, Corinna Schmitt, Georg Carle, CoMaDa: An Adaptive Framework
with Graphical Support for Configuration; 9th International Conference on Network
and Service Management, Z urich, Switzerland, October 2013, ISBN 978-3-901882-
53-1, pp 211-218.

Communication Systems Group (CSG), URL: http://www.csg.uzh.ch/, last visited
June. 6, 2017.

C. Schmitt, M. Keller, and B. Stiller, WebMaDa: Web-based Mobile Access and Data
Handling Framework for Wireless Sensor Networks (Demo Paper); In International
Conference on Networked Systems (NetSys), Cottbus, Germany, March 2015.

T. Strasser, Method for Graphical Visualization of Sensor Data; Assignment, Univer-
sity of Zurich, Communication Systems Group, Department of Informatics, Z™urich,
Swizerland, March 2016.

C. Ott, Database Solution for Offline Graphical Visualization of Sensor Data; As-
signment, University of Zurich, Communication Systems Group, Department of In-
formatics, Z"urich, Switzerland, January 2017.

WebMaDa, URL: https://webmada.csg.uzh.ch/, last visited June. 6, 2017.

W3SCHOOLSs, URL: https://www.w3schools.com/tags/att_select_multiple.
asp, last visited June. 29 | 2017.

35

36 BIBLIOGRAPHY

[12] tablegen, URL: http://www.tablesgenerator.com/html_tables#, last visited
June. 29, 2017.

[13] oracle, URL: http://docs.oracle.com/javase/tutorial/jdbc/basics/
prepared.html, last visited June. 29, 2017.

List of Figures

2.1 Cooperation between all components in the SecureWSN [2] 4
3.1 Mockup for the login screen L. 8
3.2 Mockup with available filter options 8
3.3 Mockup for WSN-User dropdown menu 9
3.4 Mockup for the request options L. 9
3.5 Mockup for the date filter oo 10
3.6 Mockup for the requested table L. 10
4.1 Filter widget foldero 13
4.2 Overview filter pageo 14
4.3 Package explorer with back end files. 15
4.4 Code for getUser DBAccess 16
4.5 Code for getDate DBAccess L 17
4.6 Code for IDBAccessLayer L 18
4.7 Code for AJAX calls 19
4.8 Code in filterWidget javascript file 20
4.9 Preset of filter optionso 21
4.10 Code for filteredData DB Access 1 22
4.11 Code for filteredData DB Access 2 23
4.12 Code for filtereddataAction 24
4.13 Code for displaying data in javascript 25

37

38

5.1

5.2

5.3

5.4

5.5

LIST OF FIGURES

Evaluationsatz 1 27
Evaluationsatz 2 28
Evaluationsatz 3 29
Evaluationsatz 4 30
Evaluationsatz 5o 31

List of Tables

39

40

LIST OF TABLES

Appendix A

Contents of the CD

The attached CD contains the following files and directories:

e Thesis VA Michael Balmer.pdf: PDF of the submission
e code: Directory containing the CoMaDa source code
e tex: Directory containing the latex sources of this report

e presentation: Directory containing the final presentation

41

