
Database Solution for Offline
Graphical Visualization of Sensor

Data

Christian Ott
Zürich, Switzerland

Student ID: 12-723-896

Supervisor: Dr. Corinna Schmitt
Date of Submission: January 10, 2017

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

A
S

S
IG

N
M

E
N

T
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Assignment
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

This report documents the development process of a database solution for offline graphical
visualization of sensor data. The database solution should be integrated into CoMaDa.
CoMaDa is a Java framework that offers a graphical user interface for configuration, net-
work management and data handling of wireless sensor networks. The new developed
database solution should be integrated in the visualization component of CoMaDa to
extend the current functionality. With the database connected to CoMaDa, the visualiza-
tion component should be able to visualize historical sensor data, contrary to the current
state, where only real-time sensor data could be visualized. It was decided to implement
a database inside the CoMaDa environment, using PostgreSQL as database technology.
The database schema was reused from an already existing database in WebMaDa, an ex-
tension to CoMaDa offering mobile access to the sensor networks. The integration of the
database into CoMaDa framework was done in a flexible way using a database abstraction
layer. The abstraction layer decouples CoMaDa from the used database technology. The
existing graphical visualization solution was optimized and adapted to use the database
as data source. The results of the implementation were then evaluated regarding perfor-
mance and usability.

i

ii

Zusammenfassung

Diese Arbeit präsentiert den Entwicklungsprozess einer Datenbanklösung für eine offline
Methode zur graphischen Visualisierung von Sensordaten. Das Ziel war die Integration
einer Datenbanklösung in CoMaDa. CoMaDa ist ein Java Framework welches eine be-
nutzerfreundliche graphische Schnittstelle zur Konfiguration, Netzwerkmanagement und
Datenhandhabung von drahtlosen Sensornetzwerken anbietet. Die neu entwickelte Daten-
banklösung sollte in die graphische Visualisierungskomponente integriert werden, um
deren aktuellen Funktionsumfang zu erweitern. Durch die mit CoMaDa verbundene
Datenbank soll die Visualisierungskomponente, im Gegensatz zur aktuellen Situation,
die Möglichkeit erhalten, historische Messdaten anzuzeigen. Es wurde entschieden eine
Datenbank in der CoMaDa Umgebung mit PostgreSQL als Datenbanktechnologie zu im-
plementieren. Das Datenbankschema konnte aus einer, schon existierenden Datenbank in
WebMaDa, wiederverwendet werden. WebMaDa ist eine Erweiterung zu CoMaDa und
bietet Fernzugriff auf verbundene Sensor Netzwerke. Die Integration der Datenbank in
das CoMaDa Framework wurde auf flexible Weise über eine Datenbankabstraktionsschicht
umgesetzt. Die Abstraktionsschicht entkoppelt CoMaDa von der genutzten Datenbank-
technologie. Die existierende graphische Visualisierungslösung wurde verbessert und für
die Verwendung der Datenbank als Datenquelle angepasst. Die Resultate der Imple-
mentation wurden schlussendlich mit Bezug zu Performanz und Gebrauchstauglichkeit
ausgewertet.

iii

iv

Acknowledgments

First, I would like to sincerely thank my supervisor Dr. Corinna Schmitt for her continuous
support, guidance, patience and her valuable inputs and comments during the last three
months.
I would also like to thank Prof. Dr. Burkhard Stiller for the possibility to complete this
assignment at the Communications Systems Group at the Department of Informatics of
the University of Zurich.

v

vi

Contents

Abstract i

Zusammenfassung iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 2

1.3 Thesis Outline . 2

2 Related Work 3

2.1 SecureWSN . 3

2.1.1 CoMaDa . 5

2.1.2 WebMaDa . 7

2.1.3 Offline Data Visualization for CoMaDa 9

2.2 Database Solutions . 10

2.2.1 SQLite . 10

2.2.2 MySQL . 11

2.2.3 PostgreSQL . 11

vii

viii CONTENTS

3 Design Decisions 13

3.1 Database Decisions . 13

3.1.1 External Database . 14

3.1.2 Database in WebMaDa . 15

3.1.3 Database in CoMaDa . 16

3.1.4 Mixed Database in CoMaDa and WebMaDa 17

3.2 Implementation specific Decisions . 18

3.2.1 Database Design . 18

3.2.2 Database Integration into the Graphical
Visualization Component . 20

3.3 Summary of Decisions . 21

4 Implementation 23

4.1 Database . 23

4.2 CoMaDa Backend Integration . 26

4.3 CoMaDa Frontend Integration . 32

5 Evaluation 37

5.1 Improvement possibilities of the
SecureWSN Frameworks . 37

5.2 Database Solution . 39

5.3 Database Integration . 40

6 Summary and Conclusions 45

Bibliography 47

Abbreviations 51

List of Figures 51

List of Tables 53

CONTENTS ix

List of Listings 55

A Installation Guidelines 59

A.1 Database Installation . 59

A.2 Configuration Possibilities . 60

B Contents of the CD 61

x CONTENTS

Chapter 1

Introduction

1.1 Motivation

Due to the growth of the Internet and the device diversity together with their commu-
nication capability, the Internet of Things (IoT) determines a highly relevant topic as of
today. IoT is not limited to Client-Server (C/S) architectures, Peer-to-Peer (P2P) net-
works, and well-known devices like server, computer, and routers any more. It especially
includes wireless sensor devices connected within a Wireless Sensor Network (WSN) [17].

The application range of those WSNs reaches from intelligent homes via logistics and
health care to environmental monitoring. All applications have in common a huge amount
of collected sensor data (e.g. temperature, brightness, humidity). In general, this data is
stored in a database and accessible over time. One case of analysis is the value development
over time. The simplest way to visualize this development is to plot the data in curve
diagrams. This can be done using online solutions like Xively [34] or offline solutions like
Google Charts [12]. The latter solution is independent of a third party like Xively and
offers same functionality except the possibility to access data that was recorded previously,
and then stored by Xively. Currently this problem has been partially solved for CoMaDa
by writing the data that is used to generate the charts to the session storage [30]. By
using session storage, the data is stored until the user closes the tab or window and starts
a new session. Although all the recorded sensor data is stored in several text files by
CoMaDa [11] on the client machine there exists no solution to store the data client side
in a structural or relational manner and thus, there is no possibility to access older data
and visualize it.

The main contribution of this thesis to CoMaDa is the implementation of a database so-
lution to improve the shortcomings of the current solution with Google Charts described
above. This database integration in conjunction with the already implemented visualiza-
tion solution finally allows to display historical WSN data.

1

2 CHAPTER 1. INTRODUCTION

1.2 Description of Work

The work of this assignment is manifold. In a first step, current existing solutions in
CoMaDa 1.1 and WebMaDa 1.1 should be analyzed to gain an understanding of the
frameworks. As a result of the first phase, a list of possible improvements should be
generated. During the implementation phase a selection of these improvements may be
corrected, at least for the adapted parts of the frameworks. Due to the recent additions
by various student assignments, functionality was greatly improved, unfortunately this
lead to some degree of code fragmentation, and inefficiencies may have been aggregated.
The second phase of this assignment consisted of the design and implementation of a
database solution for the sensor data in CoMaDa. The database solution should be inte-
grated into CoMaDa and work as a data source for the offline sensor data visualization
method developed by Tim Strasser [30]. The implementation of this database solution will
improve the existing CoMaDa environment by adding the possibility to analyze historical
senor data.
During the third phase of this assignment, the solution of the second phase underwent a
rigorous testing process. The solution was tested under various sensor network configura-
tions. The test results served as foundation for an evaluation of the developed solution.

1.3 Thesis Outline

The rest of this paper is structured as follows. Chapter 2 presents the related work that
influenced the realization of this assignment. Chapter 3 describes the design choices made
throughout the development process. The decisions both architectural and implementa-
tion specific are reasoned based on the related work in Chapter 2.
In Chapter 4 the detailed implementation process is shown. The report end with Chap-
ter 5, in which the evaluation of the implementation is discussed, before the report is
concluded with Chapter 6.

Chapter 2

Related Work

This chapter highlights the related work on which this project was built on. First, the
research area Secure Wireless Sensor Networks (SecureWSN) is introduced. SecureWSN
is researched at University of Zurich (UZH) and sets the context for this thesis. It con-
tains two main components: Conguration, Management and Data Handling Framework
(CoMaDa) and Web-based Mobile Access and Data Handling Framework (WebMaDa),
both described in detail. For the implementation part of this assignment CoMaDa is cru-
cial, thus it is described in a more detailed manner than WebMaDa. Second, the current
visualization solution in CoMaDa is presented. In the third part of this chapter, possible
relational database solutions for this project are highlighted.

The latest important work which lead to this assignment were two contributions to Co-
MaDa and WebMaDa. The base for the database integration into SecureWSN was done
by Claudio Angliker [3], by introducing a new database schema into WebMaDa and re-
structuring CoMaDa in a way, that a sophisticated intra-applicational communication
was possible. Further on Tim Strasser integrated an offline method for visualizing sensor
data into the CoMaDa [30]. He implemented a session based visualization methods us-
ing Google Charts [12]. Both contributions influenced the design decisions done in this
assignment described in Section 3.

2.1 SecureWSN

One research area of the Communication System Group (CSG) at the Department of
Informatics at UZH are Secure Wireless Sensor Networks (SecureWSN) [7]. The main
goals in this research area are efficient and secure data transmission in WSNs as well as
providing a framework for WSNs. These goals imply a variety of requirements that need
to be fulfilled. Two categories of requirements can be recognized. Requirements that
fall into the first category are requirements for WSNs itself, e.g. efficient data transmis-
sion, encryption and authentication in WSNs and pull mechanisms to retrieve data from
WSNs on demand and anywhere. The second category of requirements focuses on the
management of WSNs, e.g. extensible management frameworks, mobile access to WSNs
(see Subsection 2.1.1 and 2.1.2), fine-grained access privileges, secure mobile access and
informative visualization of the WSN sensor data.

3

4 CHAPTER 2. RELATED WORK

Many of those requirements were met by numerous contributions over time. Each contri-
bution fulfills some requirements while simultaneously generating new requirements and
opportunities to improve the SecureWSN area. The requirement of a database solution
for the previously contributed visualization solution built the context of this thesis.
The term SecureWSN framework refers to all software components developed by the re-
search group. SecureWSN framework mainly consists of CoMaDa and WebMaDa. The
current high level architecture of CoMaDa 1.1 and WebMaDa 1.1 is shown in Figure 2.1.

WSN

WSNData

Framework

CoMaDa GUI

Backend

Frontend

DB

HTTP Entry Server

Secure

Pull / Push

Interface

Existing Secure Pull / Push Interface

 User Data

 WSN Data

Figure 2.1: Current architecture of CoMaDa 1.1 and WebMaDa 1.1

A CoMaDa instance, thoroughly introduced in Subsection 2.1.1, contains a WSN repre-
sented by a cloud symbol, the WsnDataFramework and the graphical user interface (GUI)
to manage the sensor nodes and presents the WSN data to the user. A WSN is a collection
of sensor nodes that communicate with a base node. The base node is connected over USB
to the machine running the WsnDataFramework application. The WsnDataFramework
contains two parts; the server backend and the GUI frontend. In Figure 2.1, the CoMaDa
GUI is shown separately from the WsnDataFramework to indicate the semantical distinc-
tion between the CoMaDa frontend and the backend.
WebMaDa (Subsection 2.1.2) is an extension to CoMaDa, it is a web application and pro-
vides mobile access to a WSN as well as a sophisticated user management. As shown in
Figure 2.1, CoMaDa and WebMaDa are connected over two secure two-way authenticated
interfaces; a pull interface to actively pull data from CoMaDa and an upload interface
to receive data from CoMaDa. WebMaDa has a single access point through an entry
HTTP server, from there a backend application serves a Bootstrap [5] built frontend and
maintains a database to store user data and WSN data from connected CoMaDa’s. Both
frameworks are described more detailed in the following subsections.

2.1. SECUREWSN 5

2.1.1 CoMaDa

The CoMaDa framework [11]provides a GUI that offers all needed functionality for cre-
ating and managing a WSN in a single standalone application. In the source code, the
CoMaDa application is called WsnDataFramework. This is also the term used further on
in this thesis for refences to the source code. The WsnDataFramework is implemented
as a modularized Java application in a client-server architecture. The server part can be
seen as an abstraction layer of a WSN. The server uses different communication drivers
to communicate with various sensor node types over a stack of specialized protocols, e.g.
TinyIPFIX [10]. The client part, the frontend, consists of HTML, JavaScript [14] and
CSS files that combined build the web-application. The HTTP server on the server side
serves the files of the GUI to the user and therefore connects the both parts.

The server side of the WsnDataFramework is completely written in Java. It follows a
very modularized implementation approach as shown in Figure 2.2. There is a module
HTTPServer serving the frontend, a module Web that orchestrates the communication with
WebMaDa over a secure pull and an upload interface.

HTTPServerHTTPServer

MessageBus

LogModulLogModul

<
m
o
d
u
l
e
>

W
e
b

<
m
o
d
u
l
e
>

W
e
b

<
m
o
d
u
l
e
>

W
e
b

<driver>

NodeDriver
WSNApp

createscreates

createscreates

createscreates

createscreates

createscreates

Serves

CoMaDa Gui

Serves

CoMaDa Gui

<portocol>

ProtocolStack

createscreates

u
s
e

s
u

s
e

s

TinyOSHelper

Module

TinyOSHelper

Module

u
s
e

s
u

s
e

s

createscreates

WSN

Connection

WSN

Connection

ContikiModuleContikiModule

u
s
e

s
u

s
e

s

createscreates

createscreates

CoMaDa GUI

Pull InterfacePull Interface

Upload

Interface

Upload

Interface

WebMaDa

...... Modules... Modules InterfacesInterfaces

<driver> WSN node drivers<driver> WSN node drivers <portocol>
WSN communication

Protocols
<portocol>

WSN communication

Protocols

WSNApp
WSN main

application

All Modules

communicate over

MessageBus,

connections are left

out for a better

overview

All Modules

communicate over

MessageBus,

connections are left

out for a better

overview

Figure 2.2: Simplified component diagram of the server side from CoMaDa 1.1

6 CHAPTER 2. RELATED WORK

All modules are loaded and instantiated into a WSNApp instance on the application start.
The modules communicate either through thrown events and their respective handler or
through a MessageBus. Each module can specify custom messages based on an interface
and publish them to a message bus instance. The modules are able to subscribe to the
message bus for specific message types and handle the incoming messages. It is possible
that more than one module subscribes for a message as the name ‘message bus’ already
implies.

The WSNApp uses a set of exchangeable drivers and protocols (indicated in the figure with
<driver> and <protocol>) to communicate with the actual WSN. The used driver and
the protocols have to be specified in the code before compilation to adapt the application
to the used sensor type. Currently, two operating systems are used for the sensor nodes,
one is TinyOS [33] the other is Contiki [8]. Both operating systems are represented
in the WsnDataFramework as modules (TinyOSHelperModule and ContikiModule) and
present an abstraction layer over the used protocols and drivers for other modules keen on
interacting with the WSN. At the time this report was written, only the TinyOS module
was implemented in a functional way. Important further on in the thesis is the LogModule,
it stores incoming WSN data as ordered text files. Currently this is the only way CoMaDa
stores the WSN data.
Other, in this context unimportant or unused modules exist in the WsnDataFramework,
they were left out of the figure to simplify the visualization. Regarding the figure, it
has to be remarked that even if the overall architecture seems elegantly decoupled and
easy understandable, there are lots of intermodular dependencies in the framework that
complicate the understanding heavily. Therefore, the figure omits the visualization of
dependencies in a reasonable way to simplify the diagram. A correct treatment of all
dependencies would make the resulting visualization useless.

The structure of the frontend can be seen in Figure 2.3, essentially all frontend code is lo-
cated in the html folder of the WsnDataFramework. The nodes in the figure represent the
project folder structure. The ‘index’ node in the diagram represents the entry point of the
GUI with its according CSS, JavaScript and HTML files for each subpage. The node ‘wid-
gets’ contains reusable components e.g., the grid structure of the GUI pages. Otherwise
the widgets folder mainly contains the implementation of different WSN visualizations.
The graphical visualization widget in the node ‘charts’ were written as AngularJS direc-
tives and described more detailed in [30] as well as in Subsection 2.1.3. The integration
of the database solution developed in this work will primarily happen in the JavaScript
file singelNodeWidgets.js of the chart widget. The ‘topology’ node contains the imple-
mentation of the visualization of the current node configuration, ‘protocols’ contains the
implementation of the raw data package visualization. The other unmentioned nodes as
‘help’ or ‘pdfs’ contain static files used in various pages.

The current structure of the WsnDataFramework was further analyzed to find problems
and design flaws introduced through the huge number of different independent contribu-
tions. The results of this analysis as well as possible solutions are presented in Section 5.1.

2.1. SECUREWSN 7

HTML

cosm help index

css img js pdf d templates widgets

index.html

charts.html

visualization.html

...

...

protocols gridcharts topology

chartsWidget.css

chartsWidget.html

chartsWidget.js

singelNodeWidget.html

singelNodeWidget.js

Figure 2.3: Code structure of the client side from CoMaDa 1.1

2.1.2 WebMaDa

WebMaDa extends CoMaDa and provides remote access to registered WSNs. WebMaDa
was introduced 2014 at the UZH to close the mobility gap of CoMaDa [25].The WebMaDa
GUI is built upon the Bootstrap framework [5] and allows to monitor WSNs devices, as
well as actively pull current data from the WSN sensors. WebMaDa has a fine-grained
privilege and access management where the owner of a WSN can grant specific access
rights to other users of a WebMaDa.
Figure 2.1 at the beginning of this section presents a course-grained overview of the
current architecture of WebMaDa. It can be seen that all traffic from a CoMaDa enters
through a HTTP server as a single access point, the so-called entry server. Incoming
traffic is redirected from the entry server to the PHP based upload interface. A Tomcat
server serves the WebSocket endpoints and runs a Java applet for the pull interface. The
backend of WebMaDa itself is written in PHP using Ajax to execute the PHP scripts
asynchronously. The frontend consists of the Bootstrap web application which is served
by an Apache server.
The backend stores the WebMaDa user data and the WSN data in a MySQL database.
The MySQL database access is handled over stored procedures to prevent SQL injection
and a set of database users with different access rights depending on the executed actions

8 CHAPTER 2. RELATED WORK

to maximize database security. The stored procedures are again called by PHP scripts.
The database can only be accessed locally over the pull and push interface, which means
that no external access outside of the physical machine is possible.

WebMaDa in this state was mostly developed by Claudio Angliker in his master thesis
[3] where he introduced the current database design. The database is both concerned
with the user management of all WebMaDa users as well as with the WSN data from
each attached CoMaDa system. For the work in this thesis, the handling of the WSN
data in WebMaDa, specially the database scheme directly influences the design decisions
of Section 3. Therefore, the WSN data part of the WebMaDa database is in detail
described in the following paragraphs, for information’s on the user management part of
the database the reader may be referred to Claudio Angliker’s thesis [3] where he explains
his implementation in Section 4.5.2.

Figure 2.4: WSN Data scheme in Craw’s Foot notation [3]

Figure 2.4 presents the database scheme for the WSN data developed by Claudio Angliker
in craw-foot notation. Each connected CoMaDa has the six presented tables prefixed with
the ID of the WSN and, therefore, guarantees full independence between the stored Co-
MaDa’s. The tables Node, SensorToNodeType, and Sensor store meta information about
the sensor nodes, e.g., the unit of a sensor ’Temperature’ on the node with NodeId 15.
The tables Response, Report, and DataRecord depend on each other and store informa-
tion on a recorded data value. Response stores meta information about the measurement
initiator as well as the timestamp of the measurement and if it was a pull or a push
measurement. Response creates for each entry a unique ID which is used by Report

as a foreign key. The Report table stores the node ID of the sensor node used in the

2.1. SECUREWSN 9

measurement as well as the response ID. Report creates again a unique ID, this ID is
used by DataRecord as foreign key to build the connection to Report and Response. The
DataRecord table stores the measured value together with the sensor name. The foreign
key constrains define the insertion order of a new measurement into the database. First,
the meta information must be inserted into Response, afterwards the Report table has
to be filled, and finally the actually measured value can be inserted into the DataRecord

table. The insertion order enforces the data integrity of the database. Partially complete
values will not be inserted.

2.1.3 Offline Data Visualization for CoMaDa

The database solution developed throughout this assignment had to be integrated into
the current data visualization solution. Tim Strasser introduced a visualization solution
based on Google Charts [12]. He used AngularJS [2] directives to build dashboard widgets
that show the values of each node sensor (e.g. temperature) as well as aggregated views
where the values of a sensor type are shown for all available nodes. Figure 2.5 shows
the aggregated view of temperature for a range of nodes. The AngularJS directives

Figure 2.5: Layered chart showing temperature values of several nodes [30]

were written in JavaScript and use HTTP-Get requests to get current information on all
available sensor nodes. After the active nodes of the WSN are known to the directives,
the current values of the nodes are requested repeatedly, also over HTTP-Get requests.
The data of the nodes is then stored in the browsers session storage. After each new data
entry Google Charts is triggered to redraw the displayed charts.

10 CHAPTER 2. RELATED WORK

The downside of the solution is the session based data storage, it can store incoming data
and shows them in the graphs, but only as long as the browser tab is not closed. The
integration of the database solution into the directives is shown in Section 4.3.

While investigating this visualization solution, a serious memory leak was discovered.
After each redraw the used memory increased consistently. The effects of this memory
leak could only be seen after a few hours of displaying the data. After collecting enough
data points the cumulated memory allocated on each redraw, reached a point where the
web application became unresponsive and eventually crashed. Section 4.3 describes the
problems evoked through this leak in more detail.

2.2 Database Solutions

A key factor in this thesis’ work is the database solution used. This section presents
the most popular open source relational database solutions. The characteristics of each
database solution, as well as reasons for and against the usage of a particular solution are
highlighted.
Chapter 3 will evaluate the database solutions and reason the final decision on the used
database solution based on requirements of the SecureWSN ecosystem.

2.2.1 SQLite

SQLite “is an in-process library that implements a self-contained, serverless, zero configu-
ration, transactional SQL database engine” [1]. It is a library that needs to be embedded
into the application, which intends to use the database. SQLite is very popular and in-
tegrated in a lot of applications and operating systems e.g. iOS or Android [26]. It runs
serverless and without any additional processes involved other than the host application
that uses the library, therefore no installation efforts are required. SQLite is single file
based, the whole database including all tables, triggers, and views are stored in a single
disk file. The database files are completely cross-platform and are not depending on the
operating system or its endianness. A database file can simply be copied over to another
environment and runs without a problem. The library allows multiple reads at the same
time, but only a single write access at any time. In contrast to more complex server based
database solutions, SQLite has no user management and does not allow stored procedures.
SQLite is favored for applications with embedded databases. The direct file access offers
high performance without the need of additional communication channels like sockets or
ports. In general SQLite is useful when the application needs to be portable or does not
require expansion, e.g. single-user local applications.
Not favored is SQLite in scenarios where multi-user access is needed. First, because
SQLite has no user management and, therefore, access privileges on databases and ta-
bles are not possible. Second, the single writer limitation of SQLite is a bottleneck, and
the application running the SQLite would need to schedule multiple simultaneous write
operations accordingly. Further on it is not advised to use SQLite when the database is
intended to hold huge amounts of data. [32]

2.2. DATABASE SOLUTIONS 11

2.2.2 MySQL

MySQL [18] is the most popular open source database management system looking at dy-
namic web application backends. MySQL has a rich feature set and is easy to start with.
Developers have huge amounts of information available on the Internet and can choose
from a wide range of third-party applications, tools and integrated libraries that help in
the development. To optimize performance MySQL tries not to implement the full SQL
standard, but a sophisticated access privilege management as well as the possibility of
stored procedures are available. MySQL, unlike SQLite, is a stand-alone database server,
and the applications need to talk to MySQL daemon processes to access the database
itself.
For the usage of MySQL speak the advanced security features with a fine grained access
management as well as a good scalability, MySQL can handle a lot of data and supports
a lot of concurrent connections. Through the limitations in the SQL standard implemen-
tation MySQL gains performance compared to other database solutions like PostgreSQL.
Not favored is MySQL in scenarios where SQL compliance is important. In cases where
an integration into a SQL compliant database solution has to be considered, a switch from
MySQL may not be easy. Even though MySQL has a rich feature set, it can lack certain
features, e.g. a full-text search, which may be important in certain use cases. [32]

2.2.3 PostgreSQL

PostgreSQL [23] is the most advanced, open-source relational database solution and has
the main goal of being standards-compliant and extensible. PostgreSQL intends to fully
adopt the ANSI/ISO SQL standards. PostgreSQL is programmable and extendible, it
allows custom stored procedures not only in SQL but also in other programming languages,
e.g., pl/Perl [20] or pl/Python [22]. The stored procedures can be used to simplify complex
and repeated database operations, they allow to implement business logic of an application
into the database. Again, similar to MySQL, PostgreSQL offers advanced security features
and has an access privilege management system. PostgreSQL strongly enforces data
integrity through absolute atomic transactions.
Use cases where PostgreSQL may be favorable, include scenarios where data integrity
has a high priority, the database has to perform complex business logic or when possible
migrations to other database solutions are desired. Specially migrations to proprietary
database systems (e.g., Oracle) are easy to handle.
Not favored is PostgreSQL in scenarios where speed is the critical factor, in such cases
MySQL may deliver better results. The high complexity of PostgreSQL’s configuration
for optimal performance may be an over-kill for simple setups.

12 CHAPTER 2. RELATED WORK

Chapter 3

Design Decisions

This chapter presents the design choices made in this project. First, architectural consid-
erations on the database integration in the SecureWSN ecosystem are evaluated. Various
architecture possibilities are discussed and based on the results, the decision for the im-
plemented solution is justified. Later on, implementation specific choices are motivated
based on the findings in Section 2.

3.1 Database Decisions

The main task in this assignment was the implementation of a database solution, which
allows the graphical visualization component described in Section 2.1.3 to visualize his-
torical sensor data. Based on this requirement, it had to be evaluated where the database
for the sensor data should be located. Figure 3.1 recapitulates the current architectural
solution as described in Section 2.1.2. WebMaDa contains a MySQL database, in the
figure represented as a data storage bin inside the WebMaDa cloud. The database is
integrated into WebMaDa and can only be accessed through the entry HTTP server. It
stores user management data and the WSN data from all connected CoMaDa instances,
the communication takes place over a secured push and pull interface, which guarantees
user validation at any communication step. On the CoMaDa side, all incoming data is
logged in files. These given circumstances influenced the decision making in the evalua-
tion process for the location of the database solution. Four possible architectural solutions
emerged during the evaluation process:

1. Single database outside of CoMaDa and WebMaDa

2. Single database only inside WebMaDa

3. Database for WSN data only in CoMaDa, database only for user man-
agement in WebMaDa

4. Database for WSN data in CoMaDa, fully replicated database with user
management and WSN data in WebMaDa

13

14 CHAPTER 3. DESIGN DECISIONS

WSN

WSNData

Framework

CoMaDa GUI

Backend

Frontend

DB

HTTP Entry Server

Secure

Pull / Push

Interface

Secure

Pull / Push

Interface

 User Data

 WSN Data

Figure 3.1: Current database architecture of CoMaDa and WebMaDa

In the next subsections, each potential solution will be discussed. For each variant, the
upsides and downsides will be shown, especially in regards to security concerns, impact
on the current architectural solution as well as impact on further development of the
SecureWSN ecosystem.

3.1.1 External Database

This architecture, visualized in Figure 3.2 builds on a single database for WSN sensor
data outside of CoMaDa and WebMaDa. A WebMaDa instance would need to store the
user data either in the external database or separately in the backend. The WSN data
flows from CoMaDa into the database, and both WebMaDa and CoMaDa need to pull
the data from the external database for the visualization.

A positive aspect of this database architecture is the single data storage point, external
from CoMaDa and WebMaDa. Such an architecture would provide the ability to store
data for more than one WebMaDa. A ‘Database as a Service’ model could be used by a
potential distributor of a commercial SecureWSN application.
On the downside, the CoMaDa and WebMaDa frameworks need a new authentication
service to access the database that works together with the current WebMaDa access
solution. New secure ways to access the database would have to be introduced since
the already proven push and pull mechanism between WebMaDa and CoMaDa would
be bypassed. Most likely this would mean a dedicated communication protocol and a
wrapper around the database. Such an approach would increase the communication traffic
massively, since both CoMaDa and WebMaDa need to pull the data from the database
for visualization purposes.

3.1. DATABASE DECISIONS 15

WSN

WSNData

Framework

CoMaDa GUI

Backend

Frontend

HTTP Entry Server

Secure

Pull / Push

Interface

DB

Secure

Pull / Push

Interface

Not secured

data connection

 User Data

 WSN Data

DB

Figure 3.2: External database architecture

The implementation of the external database solution into the current SecureWSN ecosys-
tem requires huge efforts, implementation wise as well as structural. New authentication
measures have to be created and the current well established pull and push mechanism
would not be important anymore. Considerations to implement this solution only make
sense if the whole SecureWSN project would undergo a complete restructuring.

3.1.2 Database in WebMaDa

This architecture is almost identical to the current situation described above in Section 3.1.
One database instance inside WebMaDa that contains all data. The data access occurs
only over the secure HTTP pull and push interface. The difference to the current imple-
mentation is, CoMaDa has the ability to pull data from the database in WebMaDa to
satisfy the visualization needs.
In such an architecture, the single data storage point stands out positively. Additionally,
the current database could be used without modification and the security concept remains
the same.
Downsides would be that the secure pull and push mechanism needs to be extended to
allow data retrieval for the data visualization in CoMaDa. The CoMaDa system depends
on the availability of WebMaDa to access old WSN data. Like the previous architecture,
increased data transfer would be a result of this architecture - the data that already went
through CoMaDa has to be retransferred from WebMaDa to CoMaDa just for visualiza-
tion purposes.

16 CHAPTER 3. DESIGN DECISIONS

For the implementation of this assignment, the pull and push mechanism would have to
be extended and adapted in a way that CoMaDa has the possibility to retrieve data from
WebMaDa for visualization purposes. If the changes to the pull and push interface are
implemented properly the security of the solution remains unchanged, as the communica-
tion goes through the already tested protocol.
For further development of the SecureWSN frameworks, this solution is best suited when
the development focuses on a single application approach by combining CoMaDa and
WebMaDa. Through the merging of both frameworks, the CoMaDa part could access
the database without security concerns or communication performance restrictions. To
achieve a complete single application state, an additional database connection layer would
be needed in CoMaDa.

3.1.3 Database in CoMaDa

The third database architecture, visualized in Figure 3.3, is a combination of a main
database for the WSN sensor data in CoMaDa and a small database for the user manage-
ment data in WebMaDa. CoMaDa needs a database access layer to access the database
directly. Also, the secure push and pull interface needs functionality that allows Web-
MaDa to pull data from the database for data visualization.

WSN

WSNData

Framework

CoMaDa GUI

Backend

Frontend

HTTP Entry Server

Secure

Pull / Push

Interface

Secure Pull / Push

Interface adapted for

WSN Data transfer

 DB WSN Data

 User Data

 DB

Figure 3.3: Database for WSN data in CoMaDa

Positively stands out that the WSN data is stored locally in CoMaDa, therefore no addi-
tional external communication is needed to visualize the data in CoMaDa.
The main challenge with this approach would be, that the secure pull and push mech-
anism would have to be extended to allow data retrieval for the data visualization in
WebMaDa. Again, redundant data transfer would be present - the data that already
went into WebMaDa has to be retransferred from CoMaDa to WebMaDa just for data
visualization.

3.1. DATABASE DECISIONS 17

The implementation of this approach contains an implementation of a database access
layer into CoMaDa as well as an extension of the current pull and push interface for Web-
MaDa to access the old WSN data. Additionally, the parts of WebMaDa that currently
access WSN data need to be rewritten and pull the data from CoMaDa. The workload
required to bring this concept completely to work would exceed the timeframe of this
assignment.
This approach can be a good option if further development of CoMaDa and WebMaDa
tends to go in a clear two component way. This would mean that CoMaDa instances could
exist and run without a WebMaDa instance and thus also without Internet connection.
Such an implementation also needs a dedicated authentication service for CoMaDa which
must be kept in synchronization with WebMaDa.

3.1.4 Mixed Database in CoMaDa and WebMaDa

Presented in Figure 3.4 this architectural solution relies on two databases containing the
WSN data. The user management data is exclusively stored in the WebMaDa database.
Since the replication happens implicitly through the current pull and push mechanism,
no changes to the communication interface have to be done.

WSN

WSNData

Framework

CoMaDa GUI

Backend

Frontend

HTTP Entry Server

Secure

Pull / Push

Interface

Secure

Pull / Push

Interface

 DB

 WSN Data

 User Data

 WSN Data

 DB

Figure 3.4: Replicated database architecture of CoMaDa and WebMaDa

The following arguments are in favor of this approach: The current database scheme
could be used, on the CoMaDa side only the database scheme parts important for the
WSN data will be reused. No additional security measures are needed - the database in
CoMaDa can only be accessed locally through the WsnDataFramework application and,

18 CHAPTER 3. DESIGN DECISIONS

thus, no further authentication is needed. The data is locally available for visualization in
CoMaDa, no latency through network communication is involved as well as no redundant
data transfers. All WSN data goes once into CoMaDa, is there stored in the database,
then once into WebMaDa and is again stored in the second database.
On the negative side of this solution could be mentioned that implementation efforts
on the WsnDataFramework would be needed to integrate the database into CoMaDa.
Further on, it could be said that the complexity of the solution rises due to two databases
that both need to be managed.

In terms of further development of the SecureWSN ecosystem this approach is the most
flexible solution compared to the other three. If the development steers into a single
application approach, e.g. the collapse of CoMaDa and WebMaDa into a single server
application with a single frontend, the database integration in CoMaDa can be reused for
a single database in the new application due to the identical database scheme.
If the future contributions to CoMaDa and WebMaDa follow a more separated approach,
this architectural solution can also be applied. A more separated approach in this context
means that a CoMaDa system can be executed independent from the WebMaDa instance
e.g. when no internet connection is available.

For the implementation part of this assignment the mixed database approach was chosen.
The main reasons for this decision were the high flexibility of the solution for further
development on CoMaDa and WebMaDa, also crucial in the decision was the fact that
the secure communication between CoMaDa and WebMaDa underlies no changes, which
reduces the risk of new security holes in the communication protocol.

3.2 Implementation specific Decisions

After the decision on the architectural structure, implementation specific details regarding
the database and the method of integration into the visualization component had to be
decided. In this section, first, the database technology selected for the implementation is
presented including the motivations that lead to the decision. Later on the decision on
the used database scheme is motivated again including the critical decision factors. After-
wards, design considerations regarding the implementation of the database into CoMaDa
are presented. Finally, the decisions on how the database solution should interact with
the visualization component upon integration into CoMaDa are described.

3.2.1 Database Design

In Section 3.1.4 the architectural decision on the database was made. It was decided to
implement a database into CoMaDa and leave the existing one on the WebMaDa side
as is. For the implementation phase of this assignment, more technical aspects on the
implementation of the database had to be decided. The first decisions that had to be
taken were the used database scheme as well as the used database solution. The current
database in WebMaDa was implemented with MySQL, other possible technologies were
described in Section 2.2.

3.2. IMPLEMENTATION SPECIFIC DECISIONS 19

The decision on the database schema was implicitly given through the fact that the
data in CoMaDa should be replicated in WebMaDa. Therefore, the database should be
implemented using the same database schema as in WebMaDa (see Figure 2.4) to unify
the database approaches.

In the decision process, it was noticed that the used database technology should not
be determined once and for all, it must be possible to exchange the used technology
without huge implementation efforts. On the WsnDataFramework side, such technology
independence should be achieved by using a database abstraction layer that provides a
database access interface. The interface specifies functionality required by CoMaDa, later,
specialized implementations for a specific database technology implement this interface.

<<Interface>>

IDBAccessLayer

<<Interface>>

IDBAccessLayer

DBAccessPostgresqlDBAccessPostgresql DBAccessMySQLDBAccessMySQL DBAccessSQLiteDBAccessSQLite

Figure 3.5: Database access layer as interface with possible specializations

Figure 3.5 visualizes the intended Java database access layer interface IDBAccessLayer

with possible specializations. For the database, PostgreSQL was decided to be used as
database solution, thus the DBAccessLPosgresql had to be implemented. In the figure,
other not jet implemented possibilities were drawn as dashed rectangles. In Section 2.2
it can be seen that PostgreSQL is more or less feature equal to MySQL e.g. it supports
the implementation of stored procedures which are heavily used in the database schema
in WebMaDa. The translation of the database scheme to PostgreSQL therefore was not
a problem. SQLite misses stored procedures functionality, thus the translation of the
database scheme would have resulted in a bigger implementation effort. SQLite would
be closely integrated into the application and would remove the possibility to use the
database when CoMaDa would not be running. A second motivation to use PostgreSQL,
was that the database schema would be implemented using a second database technology
besides MySQL, further development could revert to either one of the database scheme
implementations.

In Section 2.1.1 the component based structure of CoMaDa was shown. To comply with
this approach, it was decided to implement a new DBAccessModule which acts as database
access module. The module is connected to the MessageBus and, therefore, allows other
modules to connect to the database. Figure 3.6 presents the new module structure in-
cluding the database module. The module connects to the database over the previously
introduced IDBAccessLayer and its specializations.

20 CHAPTER 3. DESIGN DECISIONS

Database

HTTPServerHTTPServer

MessageBus

LogModulLogModul

<
m
o
d
u
l
e
>

W
e
b

<
m
o
d
u
l
e
>

W
e
b

<
m
o
d
u
l
e
>

W
e
b

<driver>

NodeDriver
WSNApp

createscreates

createscreates

createscreates

createscreates

Serves

CoMaDa Gui

Serves

CoMaDa Gui

<portocol>

ProtocolStack

createscreates

u
s
e

s
u

s
e

s

TinyOSHelper

Module

TinyOSHelper

Module

u
s
e

s
u

s
e

s

createscreates

WSN

Connection

WSN

Connection

ContikiModuleContikiModule

u
s
e

s
u

s
e

s

createscreates

createscreates

CoMaDa GUI

Pull InterfacePull Interface

Upload

Interface

Upload

Interface

WebMaDa

...... Modules... Modules

InterfacesInterfaces

<driver> WSN node drivers<driver> WSN node drivers

<portocol>

WSN communication

Protocols

<portocol>

WSN communication

Protocols

WSNApp
WSN main

application

 DBAccessModule DBAccessModule

Database

Connection

Database

Connection

createscreates

All Modules

communicate over

MessageBus,

connections are left

out for a better

overview

All Modules

communicate over

MessageBus,

connections are left

out for a better

overview

Figure 3.6: New database access module in CoMaDa

3.2.2 Database Integration into the Graphical
Visualization Component

In the evaluation of the current graphical visualization component, not only the memory
leak broached in Section 2.1.3 was found, but also general performance problems using
the Google Charts API for huge data sets were discovered. There are no restrictions on
the data size from Google Charts [13], but practically the visualization solution became
unusable with more than 3000-4000 data points per chart and nine open charts. Nine
Charts equal a WSN with two sensor nodes and three sensors on the node, three charts
for each node and three aggregated charts for the three sensors. The problem was not the
data size itself, but the recurring redrawing of all charts whenever a new data value has
arrived. JavaScript in the browser is at the time single-threaded [16] and, therefore cannot
make use of modern multi core central processing units (CPU). The website becomes
unresponsive when the browser is not capable to redraw all charts in time. More concrete
performance analyzations were made in Section 5.3 where the graphical visualization
component was evaluated.
Before the database was integrated into the visualization component, the performance
problems could only be seen after a few hours, when enough data points were collected.

3.3. SUMMARY OF DECISIONS 21

With a database linked to the visualization solution, the performance shortcomings were
immediately evident. The graphs had to visualize historical data and the website was not
usable from the beginning.

To counter the performance issues, two possible solutions emerged. First, the visualization
component could be rewritten for the use of D3.js [9]. D3.js is a sophisticated high
performance visualization library and would allow to add new data points on the fly
without having to redraw the entire graph. Such a solution would not only reduce memory
consumption, it would significantly reduce the CPU power needed to draw all charts. The
drawback of the D3.js solution would be the immense implementation effort needed to
adapt the current solution to the more complex D3.js, therefore, this solution is not
practical for this assignment. The second possible solution would be restrictions on the
overall drawn amount of data.
At the time this report was written, no practical solution other than restrictions on the
displayed data to bypass the performance problems was available. Therefore, it had to be
decided to reduce the displayed data in order to keep the visualization solution in working
state at acceptable performance.
There are two main ‘optimization’ points where the amount of displayed data can be
reduced. Either over downsampling of old data to reduce the number of data points in a
specified interval or over restrictions on the displayed timeframe of the data. Depending of
the usage scenario a combination of both may be preferable. A reason for downsampling
is also the pointlessness to render more data than available display pixel.
The graphical visualization in CoMaDa is intended to be a ‘live component’ and is not
meant as a data analysis tool for year-old data. It presents the current state of a WSN
and therefore the interest in historical data focusses more on the short past.

For the implementation of this assignment it was decided to provide a server sided resam-
pling of the old WSN data, as well as the possibility to restrict the timeframe depending
on the use case. Further on, the number of maximal displayed data points in a chart can
be configured. All restrictions should be implemented in a configurable way to leave all
possibilities open to the user of CoMaDa.

3.3 Summary of Decisions

This section summarizes the decisions on this assignment taken in the previous sections.
(1) A database had to be implemented into the CoMaDa infrastructure. The database uses
the same database scheme as available in WebMaDa, only the WSN data is stored in Co-
MaDa. (2) A database access module had to be implemented into the WsnDataFramework
that uses an (3) abstracted database access layer to access the database. A specialization
for the chosen database technology (4) PostgreSQL of the database access layer had to
be implemented. (5) Finally, the database solution had to be integrated into the current
visualization component, where restrictions on the amount of displayed data had to be
enforced to keep the visualization component usable. (6) Server sided downsampling as
well as displayed timeframe restrictions had to be introduced.

22 CHAPTER 3. DESIGN DECISIONS

Chapter 4

Implementation

This chapter gives detailed insights on the implementation of the work done in this assign-
ment. First, the implementation of the database itself is shown. Second, the integration of
the database into the Java backend of CoMaDa and the resulting architecture is presented.
Finally, the integration into the graphical visualization component on the frontend side is
described.

4.1 Database

This section describes the implementation of the database server as well as the according
database scheme. As shown in the design decisions in Section 3 it was chosen to use a
PostgreSQL database server [23]. The database scheme from WebMaDa should, based on
the decisions, be ported from MySQL to PostgreSQL.
For this assignment the most recent version of PostgreSQL, PostgreSQL 9.6 was chosen,
it provides a set of new SQL language features like the ON CONFLICT statement, which
simplify the porting of the database schema to PostgreSQL significantly. As this version
was not yet available over the standard apt-get installation command, it had to be
installed manually over the PostgreSQL apt repository. Listing 1 shows the commands
needed to install the PostgreSQL database.

Listing 1: Installation commands of PostgreSQL 9.6 on Ubuntu Linux

1 sudo add-apt-repository "deb http://apt.postgresql.org/pub/repos/apt/ xenial-pgdg main"

2 wget --quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo apt-key add -

3 sudo apt-get update

4 sudo apt-get install postgresql-9.6

23

24 CHAPTER 4. IMPLEMENTATION

The first line adds the repository to the Linux package manager, the second adds the
repository validation key to the package manager. The third line updates the list of
available packages, and the last line installs the PostgreSQL 9.6 database. The complete
installation and configuration process of the database server is thoroughly documented in
Appendix A.

PgAdmin III or 4.1 [19] can be used to access and manage PostgreSQL databases, it offers
a GUI to interact with the database. Throughout the development, it was discovered that
PgAdmin 4.1, the one that officially supports PostgreSQL 9.6, is unstable and hard to use,
therefore a combination of both versions is recommended. PgAdmin is able to connect
to a database remotely and has not to be located on the same machine as the database.
After the installation, a database named wsndb was created using PgAdmin, afterwards
a database role wsnadmin was added to the database server for further encapsulation.

Claudio Angliker delivered a SQL script of the database schema described in Section 2.1.2
for a MySQL database as part of his master thesis [3]. This script called manual-

setup.sql, contained all information to setup the complete database, including stored
procedures. The script was translated part by part to comply with PostgreSQL syntax.
On the pure SQL side, e.g. the creation statement of the tables, the differences between
MySQL and PostgreSQL were minimal and mostly syntax based. Some type names dif-
fered as well as the syntax to describe autoincrementing columns. One big difference
was the way of executing the table creation statements. In the WebMaDa database, the
tables for the WSN data were created dynamically with a prefix of the current WSN, for
the PostgreSQL solution in CoMaDa, one set of tables was created when the complete
database was set up. Listing 2 and 3 present the creation statement of the DataRecord

table in MySQL syntax as well as in PostgreSQL syntax.

Listing 2: MySQL statement to create the DataRecord Table

1 SET @s = CONCAT(

2 'CREATE TABLE ', p_wsnid, '_Datarecord

3 (

4 RecordId INT(128) NOT NULL,

5 ReportId INT(10) NOT NULL,

6 Value VARCHAR(30) NOT NULL,

7 SensorName VARCHAR(50) NOT NULL,

8 PRIMARY KEY(RecordId, ReportId),

9 FOREIGN KEY (ReportId) REFERENCES ', p_wsnid, '_Report(ReportId),

10 FOREIGN KEY(SensorName) REFERENCES ', p_wsnid, '_Sensor(SensorName)

11);');

12 PREPARE stmt FROM @s;

13 EXECUTE stmt;

14 DEALLOCATE PREPARE stmt;

The creation statement itself is the same in the end, due to the dynamic execution of
the MySQL statement based on the wsnID, the creation statement had to be constructed
appropriately with CONCAT() before the statement could be executed.

4.1. DATABASE 25

Listing 3: PostgreSQL statement to create the DataRecord Table

1 CREATE TABLE _datarecord (

2 recordid integer NOT NULL,

3 reportid integer NOT NULL,

4 value character varying(30) NOT NULL,

5 sensorname character varying(50) NOT NULL,

6 CONSTRAINT pk_datarecord PRIMARY KEY (recordid, reportid),

7 CONSTRAINT fk_datarecord_report FOREIGN KEY (reportid) REFERENCES _report(reportid),

8 CONSTRAINT fk_datarecord_sensor FOREIGN KEY (sensorname) REFERENCES _sensor(sensorname)

9);

The transition of the stored procedures is shown in Listing 4 and 5. Similar to the table
creation statements, the stored procedures perform the task of a value insertion in a similar
way. Again, the dynamic structure imposed through the wsnID enforces the precreation
of the statement in the MySQL example. The PostgreSQL syntax of a stored procedure
follows more the classic ‘function’ syntax known through other programming languages
like Java. A MySQL stored procedure is formed through a collection of SQL statements.
PostgreSQL allows the use of other languages than pure SQL. In the Listing 5 plpgsql

[21] was used which extends SQL into a more ‘classic’ programming language. Other
languages that could have been used would be pl/PERL [20] or pl/Python [22].

Listing 4: MySQL statement to create a stored procedure

1 CREATE PROCEDURE Upload_AddResponse(

2 IN p_wsnid VARCHAR(30),

3 IN p_ispull TINYINT(1),

4 IN p_username VARCHAR(50))

5 BEGIN

6 SET @p_ispull = p_ispull;

7 SET @p_username = p_username;

8

9 SET @s = CONCAT('INSERT IGNORE INTO ', p_wsnid, '_Response(IsPull,Username) VALUES (?,?);');

10 PREPARE stmt FROM @s;

11 EXECUTE stmt USING @p_ispull, @p_username;

12 DEALLOCATE PREPARE stmt;

13 SELECT LAST_INSERT_ID() AS LAST_ID;

14 END //

15 DELIMITER ;

In the end, all WSN related parts of the database scheme were ported for PostgreSQL
from the script created by Claudio Angliker. The final database code was again stored in
a script that can be executed by PgAdmin or through the command line of PostgreSQL.
The next step was the integration of the database into the WsnDataFramework, this
implementation step is described in the next section.

26 CHAPTER 4. IMPLEMENTATION

Listing 5: PostgreSQL statement to create a stored procedure

1 CREATE FUNCTION wsn_add_response(p_ispull boolean, p_username character varying)

2 RETURNS integer

3 LANGUAGE plpgsql

4 AS

5 $body$

6 DECLARE

7 res integer;

8 BEGIN

9 INSERT INTO _Response(IsPull, Username) VALUES (p_ispull, p_username);

10 SELECT max(responseid) from _response INTO res;

11 RETURN res;

12 END

13 $body$;

4.2 CoMaDa Backend Integration

CoMaDa was built in a very modularized manner as described in Section 2.1.1. The im-
plementation of the database integration followed this approach closely. A new module
DBAccessModule was introduced, this module implemented the predefined module inter-
face WSNModule. The database module uses a database handler BasicDBHandler that lis-
tens on messages and events from other modules and is used to interact with the database.
For this interaction a new abstracted database access layer was introduced following the
decisions of Section 3. This interface IDBAccessLayer is used by the BasicDBHandler to
connect to the database. As realization of the interface a DBAccessPostgres class was
introduced, it implements the IDBAccessLayer interface and handles all connections to
the physical database.
Figure 4.1 presents the class diagram of the new introduced classes described above. For
simplicity, only the important methods were listed.

<<Interface>>

IDBAccessLayer

<<Interface>>

IDBAccessLayer

DBAccessPostgresqlDBAccessPostgresqlDBAccessModuleDBAccessModule

getLink()

BasicDBHandlerBasicDBHandler

getName()

_shutdown()

_init()

_run()

_postShutdown()

insertNode()

insertMeasurement()

insertSensorData()

addNode()

assignSensorToNodeType()

addSensor()

addResponse()

addReport()

addDataRecord()

getDataTable()

addNode()

addSensor()

addResponse()

addReport()

addDataRecord()

getDataTable()

assignSensorToNodeType()

WSNModuleWSNModule

...

...

_shutdown()

_init()

_run()

_postShutdown()

createscreates

Figure 4.1: Class diagram of the implemented database access module

4.2. COMADA BACKEND INTEGRATION 27

Listing 6: Database access module for the WsnDataFramework

1 public class DBAccessModule extends WSNModule{

2 private BasicDBHandler dbHandler;

3 private String wsnId;

4 private Properties appProperties;

5 private PullIntegration pull;

6

7 public String getLink() {

8 return wsnId;

9 }

10

11 /* overridden methods */

12 @Override

13 public String getName() {

14 return "DB Module";

15 }

16 @Override

17 protected void _init() {

18 _subscribeTo(WSNProtocolPacketProcessedEvent.class, "_event");

19 _subscribeTo(WSNDatastreamChangeEvent.class, "_event");

20 _subscribeTo(WSNTopologyUpdatedEvent.class, "_event");

21 _subscribeTo(WSNNodeUpdatedEvent.class, "_event");

22 }

23 @Inject

24 public DBAccessModule(Properties properties, BasicDBHandler dbHandler){

25 appProperties = properties;

26 wsnId = appProperties.getProperty("wsn.id");

27 this.dbHandler = dbHandler;

28 _setRunning("up and running");

29 }

30 /** list of provided events **/

31 @SuppressWarnings("unchecked")

32 protected Class<? extends Event>[] providedEvents = new Class[]{};

33

34 /** handler, called everytime the module is connected to a new WSN */

35 @Override

36 protected void _run() {

37 try {

38 // wait for module to shutdown

39 this.waitForShutdown();

40 } catch (InterruptedException e) { } finally {}

41 }

42 /** handler that is called everytime the module gets shutdown */

43 protected void _shutdown(){}

44 /*handler that is called everytime the module was shutdown properly*/

45 protected void _postShutdown() {}

46 }

Listing 6 presents the straight forward code of the new module class. In the _init()

method, the module subscribes itself to available events and is therefore able to receive
information from other modules in the WsnDataFramework. The constructor DBAc-

cessModule(Properties properties, BasicDBHandler dbHandler) sets the module
parameters passed by properties and the database handler that communicates between

28 CHAPTER 4. IMPLEMENTATION

the other modules and the database. The module may provide events (line 34), but this
functionality was not needed. The _run() method simply waits until the module is inter-
rupted for a shutdown event. Not shown in the listings are the event handler functions,
they simply redirect the events to the BasicDBHandler.

Listing 7: Insertion function to insert sensor measurements into the database

1 /**

2 * This handler initiates the insertion of a sensor measurements

3 * (precisely, it inserts ({@link de.tum.in.net.WSNDataFramework.

4 * Modules.Web.Pull.QueryHandling.Response}) Responses into the database.

5 */

6 @Handler

7 public void insertMeasurements(NewResponseMessage message) {

8 boolean isPull = message.getResponse().isPull();

9 String userName = message.getResponse().getUserName();

10

11 Response response = message.getResponse();

12 response.getReports();

13 // insert response

14 int responseId = dbAccess.addResponse(isPull, userName);

15

16 List<Report> reports = message.getResponse().getReports();

17

18 for(Report rp : reports){

19 int nodeId = rp.getNodeId();

20 // insert report

21 int reportId = dbAccess.addReport(nodeId, responseId);

22

23 List<Record> records = rp.getRecords();

24

25 int recordId = 1;

26 for(Record rc : records){

27 if(rc.getSensorName().equals("Type") ||

28 rc.getSensorName().equals("NodeID")){

29 continue;

30 }

31 String value = rc.getValue();

32 String sensorname = rc.getSensorName();

33 System.out.println("sensorname: " + sensorname);

34 // insert record

35 dbAccess.addDataRecord(recordId, reportId, value, sensorname);

36 recordId++;

37 }

38 }

39 }

The database handler BasicDBHandler handles message bus messages as well as redirected
event calls from the class using the handler. In Listing 7 shows the function that is called
when a new sensor measurement message is available on the message bus to inserts the

4.2. COMADA BACKEND INTEGRATION 29

data into the database. The ‘measurement’ message contains a Response object that is
intended for the upload to WebMaDa. In a first step, the user name that initiated the
measurement with the information if it was a pull request, is inserted into the database
using the addResponse() stored procedure. Then, for all reports in the response object, a
report is inserted into the database with addReport() using the node ID and the response
ID generated from the previous insertion statement. Finally, for each report the actually
measured data values are inserted into the database using addDataRecord(). It can be
seen that a datarecord depends on the report which again depends on the response. This
dependency of the tables is also enforced through primary- and foreign key constraints in
the database schema as shown in Section 3. The other functions in the BasicDBHandler

follow the same implementation approach and are not further described.
The database access layer interface IDBAccessLayer that is used by the BasicDBHandler

has stubs for all methods used to interact with the database. These methods cover all
functionality that is used by the WSNDataFramework at the moment. It can be easily
extended for future use cases where additional database interaction may be desired. Java
enforces the implementation of all method stubs in the specializations, therefore it is
guaranteed that all functionality is implemented.

A specialization for the PostgreSQL database of the IDBAccessLayer interface was imple-
mented. The class, called DBAccessPostgres implements all methods from the interface.
A Java PostgreSQL library [24] was used to connect to the database. Listing 8 presents
the method that is used to gather historical data from the database. The function is the
most complex one in the class and is too long to be presented on one page, therefore it
was split and Listing 9 presents the second part of the function.
In the first listing, the SQL statement that should be executed on the database is de-
scribed. The statement is dynamically composed depending on the current state of the
WSN. For each field of a current node, a JOIN operation is added to the statement. The
result of the joins is a table containing the timestamp column and a column for each
measured value, e.g. temperature, humidity, and voltage of a specific node ID.

The database connection properties as well as restrictions on the requested data can be
set by the user in a configuration file. The properties are forwarded to the according
modules. In line six to eight from Listing 8 the database connection is established with
the configured values. After the SQL statement was composed some parameters had to
be set. The node ID was set in line 30, line 36-37 set the start and end interval that
should be queried from the database. Decision (6) of the design decisions in Section 3.3
was partly satisfied with the specification of the interval, the downsampling restriction
was satisfied later in Listing 9. As seen in line 34 the interval of the requested data was
also configurable over a configuration file. In the end, the SQL statement was executed
at line 38, and the results put into a hashmap.

The second part of the function to fetch historical data from the database is shown in
Listing 9. The listing shows the downsampling restriction decided in Section 3.3. Again,
the downsampling was implemented in a configurable way over a configuration file. If the
number of returned rows is higher than the specified number of allowed data values in
line nine, the data values are downsampled using averaged values.

30 CHAPTER 4. IMPLEMENTATION

Listing 8: Data retrieval function for historical WSN data (1)

1 @Override

2 public ArrayList<Map<String, String>> getDataTable(Properties prop, int nodeId,

3 ArrayList<Map<String, String>> fields) {

4 Connection connection = null;

5 try{

6 connection = connect(prop.getProperty("db.host"),

7 prop.getProperty("db.user"),

8 prop.getProperty("db.pw"));

9 }catch (SQLException e) {

10 System.out.println("DB Connection Failed!");

11 }

12 PreparedStatement stmnt = null;

13 ArrayList<Map<String,String>> res = new ArrayList<>();

14 if (connection != null){

15 try{

16 String stmnt_str = "SELECT r.timestamp as \"Time\"";

17 String from_stmnt=" FROM _response r LEFT JOIN _report rp ON rp.responseid = r.responseid ";

18 int cnt = 0;

19 for (Map<String,String> map : fields){

20 cnt++;

21 stmnt_str += ", d"+cnt+".value as \"" + map.get("name") + "\"";

22 from_stmnt += " LEFT JOIN _datarecord d"+ cnt + " ON d" + cnt +

23 ".reportid = rp.reportid and d" + cnt + ".sensorname = '"

24 + map.get("name") + "'";

25 }

26 stmnt_str += from_stmnt;

27 stmnt_str += " WHERE rp.nodeid = ? and r.timestamp is not null and r.timestamp > ?

28 and r.timestamp < ? ORDER BY \"Time\";";

29 stmnt = connection.prepareStatement(stmnt_str);

30 stmnt.setInt(1,nodeId);

31

32 long time = System.currentTimeMillis();

33 java.sql.Timestamp ts1 = new java.sql.Timestamp(time -

34 props.getProperty("chart.maxdays")*24*3600*1000);

35 java.sql.Timestamp ts2 = new java.sql.Timestamp(time);

36 stmnt.setTimestamp(2,ts1);

37 stmnt.setTimestamp(3,ts2);

38 ResultSet rs = stmnt.executeQuery();

39 ResultSetMetaData rsmt = rs.getMetaData();

40 int columnCount = rsmt.getColumnCount();

41 while(rs.next()){

42 Map<String,String> resultMap = new HashMap<>();

43 for(int i = 1; i <= columnCount; i++){

44 if (i == 1){

45 String date = String.valueOf(rs.getTimestamp(i).getTime());

46 resultMap.put(rsmt.getColumnName(i).toLowerCase(),date);

47 } else {

48 resultMap.put(rsmt.getColumnName(i).toLowerCase(),rs.getString(i));

49 }

50 }

51 res.add(resultMap);

52 }

53 }catch (SQLException e) {

54 ...

55 }

4.2. COMADA BACKEND INTEGRATION 31

Listing 9: Data retrieval function for historical WSN data (2)

1 @Override

2 public ArrayList<Map<String, String>> getDataTable(Properties prop, int nodeId,

3 ArrayList<Map<String, String>> fields) {

4

5 ...

6

7 ArrayList<Map<String,String>> res_resamepled = new ArrayList<>();

8 if (res.size() > 0){

9 int size = res.size();

10 if (size > props.getProperty("chart.downsampling_nr")){

11 int resample_cnt = (size/props.getProperty("chart.downsampling_nr"));

12 while (res.size() > 0) {

13 Map<String, String> avg = res.remove(0);

14 int cnt = 1;

15 for (int i = 1; i < resample_cnt && res.size() > 0; i++) {

16 Map<String, String> tmp = res.remove(0);

17 for (Map.Entry<String,String> e : tmp.entrySet()){

18 if(e.getValue() != null){

19 if(e.getKey().equals("time")){

20 Long old_val = Long.valueOf(avg.get(e.getKey()));

21 Long new_val = Long.valueOf(e.getValue());

22 Long avg_val = (old_val + new_val) / 2;

23 avg.replace(e.getKey(), String.valueOf(avg_val));

24 }else{

25 Float old_val = Float.valueOf(avg.get(e.getKey()));

26 Float new_val = Float.valueOf(e.getValue());

27 Float avg_val = (old_val + new_val) / 2;

28 avg.replace(e.getKey(), String.valueOf(avg_val));

29 }

30 }

31 }

32 }

33 res_resamepled.add(avg);

34 }

35 return res_resamepled;

36 }

37 else{

38 return res;

39 }

40 }

41 return res_resamepled;

42 }

With the implementation of the previously described components, the database integra-
tion into the WsnDataFramework was completed. Decisions (1) up to (6) except decision
(5) imposed in Section 3.3 were implemented. The dataflow into the database was working,
together with the possibility to extract and resample old sensor data. The last implemen-
tation step was the integration of the database access into the graphical visualization
component and is described in the next section.

32 CHAPTER 4. IMPLEMENTATION

4.3 CoMaDa Frontend Integration

After the data was successfully populating the newly integrated database, the integra-
tion into the graphical visualization component turned out to be more complicated than
previously anticipated. Implementation wise the work was quickly done. One additional
HTTP request needed to be handled by the CoMaDa HTTP server to fetch historical data
from the database. On the frontend, the AngularJS directives for the visualization had to
be adapted in a way that they could request the old data every time the directives were
executed for the first time. Both implementation parts are described in detail further on,
after the memory leak mentioned in Section 2.1.2 is explained.
After the changes were implemented, the visualization worked as expected in the first few
minutes. Old historical data was loaded once at the beginning, from there on new data was
added periodically. But after some time, more exactly, after enough data points (400-500)
were available, the website with the visualization component started to get unresponsive.
The development machine that was used had an Intel i5 CPU and 32GB available ran-
dom access memory (RAM), performance problems due to hardware limitations could
be excluded. Information’s from the system performance analyzing tools showed massive
memory consumption on the website’ process after short execution time. The values rose
steadily after each redraw of the graphs in a linear way, and reached from 1.5 GB RAM
after a half hour up to 2.6 GB Ram after 1-2 hours until the browser instance crashed.
It has to be remarked that at that time, testings were done with a WSN containing two
sensor nodes. The maximal number of graphs that could be visualized was nine.
A memory leak was suspected. A first analysis of the code written by Tim Strasser and
adapted for the historical data ended without result. Live inspections on the website with
the Google Development Tools [6] were also not conclusive. Only the currently active
website components were accessible and could be measured, the memory consumption
for the active elements was in a low few hundred megabytes which had to be expected
given the number of displayed graphs. The precompiled AngularJS JavaScript code was
minified before execution, and therefore a meaningful analysis of function calls was not
possible, in the debugger function names like e.Vv() were the only indications.
Research on performance problems of the Google Charts library indicated memory leaks
inside the framework [27] [28]. Most of these leaks were corrected in current API versions,
one possible solution mentioned in various comments [27] was the clearing of a chart ob-
ject before a redraw. This possible solution was tested and ended again without a result.
After days of research and debugging sessions it was assumed that the memory accumu-
lates somewhere in a place where it was neither accessible by the debugger because it was
already out of scope, nor accessible by the garbage collector. The theory was that the
graph objects fall out of scope at a redraw, and are ignored by the garbage collector for
unknown reasons.

Throughout further development, various refactoring’s of the code were tried to minimize
the number of objects that were created and later destroyed. Local variables were lifted
into a scope that would only be destroyed once or twice. The final solution that prevented
the memory leak was the restructuring of the redrawing function.

4.3. COMADA FRONTEND INTEGRATION 33

Listing 10: JavaScript code of the drawing method for the graphs

1 function drawChart(field) {

2

3 if(ready){

4 var fieldDiv = $(iElem).find('#' + field);

5

6 // Create a new chartWrapper

7 // The nodeID in the containerId is needed because Google Chart

8 // API searches the whole document for the container with this ID

9 var options = {

10 title: field,

11 height: '50%',

12 width: '95%',

13 vAxis: {

14 title: realUnits[field]

15 },

16 hAxis: {

17 format: "dd.MM.yyyy '\n' HH:mm:ss"

18 },

19 legend: {

20 position: 'none'

21 }

22 };

23

24 var chartWrapper = new google.visualization.ChartWrapper({

25 'chartType': 'LineChart',

26 'containerId': nodeID + '_' + field.toLowerCase() + '_chart_div',

27 'options': options,

28 'view': {

29 'columns': [0, columns[field]]

30 }

31 });

32 scope.data.charts[field] = chartWrapper;

33

34 // Get the time filter

35 filters[field].setContainerId(nodeID + '_' + field.toLowerCase()

36 + '_timefilter_div');

37

38 // Draw the dashboard

39 var dashboard = new google.visualization.Dashboard(fieldDiv[0]);

40 dashboard.bind(filters[field], chartWrapper);

41 dashboard.draw(scope.data.dataTable);

42 }

43 }

Listing 10 shows the redraw function before the refactoring. It can be seen that the
chartWrapper object with the chart as well as the dashboard are recreated at each draw.
Normally, such a situation would not have negative effects on memory, as soon as the
function is finished the memory should automatically be deallocated.
A clear answer why the memory did not get deallocated could not be found, an assump-

34 CHAPTER 4. IMPLEMENTATION

tion was stated that the browsers garbage collector had problems detecting the objects
through the nested AngularJS directives in the final HTML code. Various Google Chart
examples used the technique where the objects are recreated repeatedly [29] but no ex-
ample could be found using AngularJS directives to discount this theory.
With the memory leak resolved, the memory consumption of nine graphs, each displaying
2500 data points, reached between 200 and 400 MB depending on the machine display-
ing the website. The memory remained stable over 48 hours of testing. All in all the
performance was satisfactory and allowed the use the visualization component without
limitations.

Listing 11: Ajax function returning historical WSN data to the frontend

1 /**

2 * ajax action, returns odldata about the node with the given id

3 * @param request

4 * @param response

5 *

6 * @author Christian Ott

7 */

8 public void olddataAction(HTTPRequest request, HTTPResponse response) {

9 String nodeId = request.arguments.get("id").toString();

10 System.out.println(nodeId);

11

12 Node node = this.getServerModule().app().wsn().node(nodeId);

13 Map<String,Object> jsonResult = new HashMap<String,Object>();

14

15 // add fields

16 ArrayList<Map<String,String>> fields =

17 new ArrayList<Map<String,String>>();

18 for (Datum field: node.data()) {

19 Map<String,String> f = new HashMap<String,String>();

20

21 f.put("type", field.getType());

22 f.put("unit", field.getUnit());

23 f.put("name", field.getName());

24 fields.add(f);

25 }

26 jsonResult.put("fields", fields);

27

28 IDBAccessLayer dbAccess = new DBAccessPostgresql();

29

30 jsonResult.put("data", dbAccess.getDataTable(toInt(nodeId),fields));

31 System.out.println(jsonResult);

32 response.body = JSONValue.toJSONString(jsonResult).getBytes();

33 }

On the server side of CoMaDa an additional HTTP request function was added to the
WSNHTTPIndexController.java file of the HTTP server. The function was linked to
the HTTP-Get request with the URL /index/oldData?id=NodeID by the HTTP server
module over the naming of the function. Listing 11 presents this function. It is named
olddataAction therefore the HTTP server listens on oldData requests. First the function

4.3. COMADA FRONTEND INTEGRATION 35

extracts the node ID from the HTTP-Get request, then the information’s on the node
with this ID are collected in line 13. Afterwards all available fields of the node are added
to the response. In a last step, the database is queried with help of the database access
layer for the historical data of this node. The received data is later added to the response,
which is sent back to the browser.

Listing 12: Clientside HTTP-Get request to fetch historical WSN data from the database

1 $http.get('/index/oldData?id=' + nodeID).then(function(data) {

2

3 if (data.data != null && data.data != undefined) {

4

5 // Add the time column to the data table that will hold timestamp value

6 scope.data.dataTable.addColumn('datetime', 'Time');

7 var flds = ['time'];

8 for (var key in data.data.fields) {

9 var entry = data.data.fields[key];

10 if (scope.data.blockedFields.indexOf(entry.type) < 0) {

11 // Add the column for this data type to the dataTable

12 scope.data.dataTable.addColumn(chartUnits[entry.type], entry.type);

13 flds.push(entry.name)

14 }

15 }

16

17 for (var key2 in data.data.data) {

18 var entry2 = data.data.data[key2];

19 var keys = Object.keys(entry2);

20 var row = [];

21 for (var k in flds){

22 if (k == 0){

23 var d =new Date(entry2[k]);

24 row.push(new Date(parseFloat(entry2['time'])));

25

26 }else{

27 row.push(parseFloat(entry2[flds[k].toLowerCase()]));

28 }

29 }

30 scope.data.dataTable.addRow(row)

31 }

32 dataready = true;

33 }

34 });

On the frontend side the most important changes were made to singlenNodeWidget.js,
it contains the AngularJS directive that is used to draw the visualizations of a single node.
This directive is further used to get new data values regularly from the WsnDataFrame-
work. The directive was adapted to request the old sensor data from the WsnDataFrame-
work every time it is executed. Listing 12 lists the HTTP-Get snippet used to fetch the
old data from the database.

36 CHAPTER 4. IMPLEMENTATION

After the data is received, a Google Visualization DataTable is populated with the data.
Such a data table can be used as data input for the Google Chart visualizations. Because
the HTTP-Get call is made asynchronously, the rest of the directive has to be informed
when the data is ready, therefore a flag dataready is set to true after the function was
executed.

With the integration of the database solution into the graphical visualization component
completed, the implementation phase of this assignment was brought to an end. All
important implementation goals could be completed. The design decisions listed in Sec-
tion 3.3 were closely followed during the implementation phase. Despite the delay caused
by the unexpected problems in the integration of the database into the visualization com-
ponent, the implementation phase could be completed in time. The result was a flexible
database solution in the CoMaDa framework and an enhanced graphical visualization
component in the CoMaDa frontend. The next chapter tests and evaluates the results of
the implementation phase.

Chapter 5

Evaluation

As described in Section 1.2 the main goal of this assignment was the implementation
of a database solution in CoMaDa. The database should be integrated in the existing
graphical visualization component to enhance its functionality and enable the visualization
of historical sensor data. Before this assignment, the visualization component was session
based and could only display real-time sensor data. In the development process, the
current state of CoMaDa and WebMaDa should be analyzed as a further task in the
assignment. In Section 2.1.1 and 2.1.2 the current state of the frameworks was described
in detail.

Section 5.1 describes possible improvements of the frameworks found during the analyza-
tion process of the SecureWSN ecosystem prior to the implementation phase. Theses
improvement possibilities may serve as ideas for further contributions to the SecureWSN
ecosystem.

Section 5.2 and 5.3 evaluate the results ot the implementation phase in comparison to the
previous SecureWSN state. The developed database solution is compared to the existing
database solution in WebMaDa. The integration into the visualization component is
tested with various WSN configurations and evaluated on performance and scalability.

5.1 Improvement possibilities of the

SecureWSN Frameworks

The state of the SecureWSN framework was analyzed in the first phase of this assign-
ment. The familiarization period with the WsnDataFramework and the WebMaDa back-
end code took longer than estimated, hurdles and information gaps on the mechanics of
the SecureWSN had to be overcome. The information’s needed to understand the system
were distributed over various places. Most information was forwarded over direct verbal
communication from previous contributors and the assignment supervisor. Other sources
of information were a student wiki [31] where previous work of all students was sparsely

37

38 CHAPTER 5. EVALUATION

documented, including informative ‘How-Tos’. The reports of the previous contributors
contained clear information’s on their design decisions whereas the technical documenta-
tion details were described on an abstracted level. All collected information including the
available source code documentation was sufficient for a start of the development phase,
albeit a few days of research and experimentation had to be scheduled.
For future contributions, stricter rules on code documentation would, after some time,
result in quicker adjustment times. An example what is meant as good documentation
would be a structured header on the top of every source code file with the characteristics,
dependencies, and internal mechanics of that file, a log of the changes made by each con-
tributor would also be helpful. The naive commenting of the code logic can be helpful but
is irrelevant in the understanding most of the time. Throughout the development process,
all adapted files were documented this way, if this process can be continued in the next
contributions, the respective adjustment times will drop immediately.

More technical remarks on the current state of the frameworks include usability, portabil-
ity, and configurability of the applications. The WsnDataFramework is heavily coupled
with the underlying operating system. Changes to this predefined system, e.g. through
distribution of the framework to a newly installed environment, result in path changes
throughout the whole source code. Some of them were only detectable at runtime. There-
fore, a welcome addition would be the refactoring of the code to set path variables as
well as other configuration parameters in one or more configuration files. Changes to the
configuration could be made without the need of recompilation. The work done in this
assignment tried to follow this configuration based way and made all settings configurable.

The structure of the WsnDataFramework grew through the various additions over the
past few years. Naturally, every contributor was focused on his implementation part and
a few dependencies to other nodules or components did not have a high impact. System
wide these ‘few’ dependencies per contribution accumulated to a chaos of structural de-
pendencies. The JetBrains Intellij development environment [15] allows the creation of
class diagrams from source code. In CD of the submission a zoomable pdf image with the
current dependency structure was included, since it would be too big to be included in the
report. It can be seen that even if the architecture of the modules may seem decoupled
and clearly separated, in reality a web of dependencies exists.
The refactoring that needs to be done to decouple the WsnDataFramework and introduce
a clean structure is a rather boring work. Therefore, the refactoring has to be added
part by part to future contributions as an additional contribution goal. To begin with,
a networking abstraction layer could be introduced that encapsulates the communication
to the sensor nodes and presents a standardized interface ready to be used by the other
modules. A lot dependencies to current protocols, drivers, and WSN abstraction objects
could be resolved.

On the WebMaDa side the code documentation is similarly sparse. The backend contains
a set of PHP scripts that originate from two contributions, some of the scripts are currently
unused. The decentralized character of WebMaDa, including the database, a HTTP entry
server, an Apache server for the frontend, a Tomcat served java servlet for the upload
interface, and the PHP scripts as ‘glue’ between the components, the understanding of
the structure involves some efforts. Since the WebMaDa framework was not the core of
this assignment, a deep analyzation was not performed. Generally, it can be said, a better

5.2. DATABASE SOLUTION 39

documentation of the code together with a technical file describing the whole WebMaDa
architecture including which files are currently in use and which are unused legacy files,
would resolve many understanding issues.

To conclude the state of the SecureWSN frameworks, it can be said that, even though
some problems or downsides of the current solutions were found, described, and possible
improvements proposed, a running system built from ten to fifteen individual contributions
is a major achievement. Some caution has to be taken, that further contributors are
able to productively develop on the system in reasonable adjustment time. Therefore, a
centralized and controlled documentation process is suggested.

5.2 Database Solution

This section evaluates the implemented database solution with regard to flexibility, secu-
rity, and scalability. The implemented database solution can be compared to the already
existing database in the WebMaDa framework. The database exists as a local standalone
server in both cases. The database access is restricted to the applications using the
database, no external access is allowed. Both databases have the same database schema
for the WSN data, WebMaDa additionally stores user data. The main difference is the
used database technology, PostgreSQL was used to implement the database on the Co-
MaDa side, MySQL was previously used for WebMaDa. Both databases can be installed
quickly and are ready to use without huge configuration efforts.
A second database option in the SecureWSN ecosystem was provided through the im-
plementation of the PostgreSQL technology, further implementations on the SecureWSN
frameworks have the ability to choose which technology suits their needs best. In the cur-
rent form the databases could be easily exchanged due to the identical database schema.
The linkage of the database to the WsnDataFramework was implemented in using an
abstraction layer and therefore provides best possible flexibility for further development.
The access layer could be adapted to use a secure communication protocol and com-
municate with an external database. Or the development could be pushed towards a
more self-contained solution using SQLite. SQLite would then be embedded into the
WsnDataFramework, no additional database servers would be needed. The interface to
access the database over the access layer provides the minimal functionality needed to use
the database from within the WsnDataFramework, further contributions may extend the
usage of the database. Even in the WsnDataFramework integrated automated database
creation and destruction may be possible.
An assessment of the database performance was not necessary in the context of the as-
signment. The current data flow does not exceed one or two insertions per second and
one extraction once in a while. Both database technologies are able handle this workload
without problems. Further, more complex usage scenarios, including complex and time
consuming SQL queries may profit from a better configured PostgreSQL server for the
best possible performance.

40 CHAPTER 5. EVALUATION

To summarize the evaluation of the implemented database solution it can be said that the
chosen solution offers additional value due to the use of an alternative database technology.
The implemented database functionality from a WsnDataFramework perspective may be
minimal, but the flexible way of the implementation compensates this feature shortness.
Further contribution may steer the database development in any direction, the currently
implemented structure is able to serve as foundation.

5.3 Database Integration

This section evaluates the result of the database integration into the graphical visualization
component with regard to functionality, performance, and restrictions. In the evaluation
process the finally developed solution is compared to the visualization component before
the implementation of this assignment.

The integration process of the database was more complicated than expected. One prob-
lem was the memory leak presented in Section 4.3, the other problem was the increased
number of data points that had to be drawn from the beginning with the database con-
nected to the visualization component. Before the database was connected the charts
started with zero data points and eventual performance problems could only be detected
after some time. The memory leak could be eliminated, which increased the performance.
Nonetheless with enough collected data in the database there were massive performance
problems when too much data had to be visualized. As seen in Section 3, this problem
was countered with restrictions on the amount of displayed data.
The finally implemented visualization component provided the same functionality as the
original visualization solution with the addition of one big improvement. It was now pos-
sible to display historical data from a database. Every time the chart is drawn the first
time, the old data is fetched from the database. Figure 5.1 presents a screenshot of the
old visualization component.

Figure 5.1: Screenshot of the old visualization component

5.3. DATABASE INTEGRATION 41

The figure contains around 30 data points for every node, and presents more or less a
snapshot of the current humidity situation of various sensor nodes. If the browser tab
would be accidently closed, the data would be lost.

Figure 5.2 presents the exact same situation at the same time with the newly developed
database integrated visualization solution.

Figure 5.2: Screenshot of the new visualization component

The presented figure has a completely different impact on the user. One can see at first
glance how the humidity progressed over 10 hours. The figure displays 500 data points.
The number of displayed points was configured before the CoMaDa instance was started.
The database contains a significantly higher amount of data points, sampled at a rate of
five seconds per data value. This amount of data had to be downsampled to reach an
acceptable performance.

The current Google Charts solution is a trade of between the number of information
(data points) presented in a single chart and the overall performance of the solution.
The number of data points that shall be displayed in each graph can be configured as
well as the interval on how far back the data should be fetched from the database. The
downsampling of the database data can be configured too, and should be set equal or
below the number of displayed data points. The performance of the final visualization
solution was measured with various configurations to find an indication on the maximal
possible number of data points drawable per graph. The same measurements were made
using the old visualization component.

The first performance testing setup was a WSN with five sensor nodes containing each
three sensors. Therefore, including the aggregated graphs a maximum of 18 graphs could
be displayed at the same time. To test the limits of the visualization solution the refresh

42 CHAPTER 5. EVALUATION

rate of the graphs were set to four seconds. For the measurements with the old visualiza-
tion an additional time factor was considered since the component starts at zero points,
and slowly collects the incoming data. For the developed visualization component, time
was not a factor, the number of displayed data points stayed the same and, because the
memory leak was eliminated, the resulting memory consumption remained also constant.
Table 5.1 presents the result of the measurements with eighteen open graphs, colors indi-
cate the usability of the solution. It can be seen that memory consumption was quickly
rising in a linear way despite the low number of data points. The CPU workload settled
at around 35% after 10 minutes, it seems that the browser throttles the CPU or it is
only able to use one CPU core for the session. After 10 minutes the website got slightly
unresponsive, after 20 minutes it was almost unusable, and shortly afterwards the website
crashed due to the memory limit in the browser.

Table 5.1: Measurements on 18 open graphs with the old visualization component

Time Memory CPU Data Points
5 Minutes 500 MB 10 % 60
7 Minutes 750 MB 30 % 80
10 Minutes 1000 MB 33 % 100
15 Minutes 1500 MB 35 % 150
20 Minutes 2000 MB 35 % 200

Such a visualization component is unusable for a WSN of this size. With the memory
leak a long term surveillance of the sensors even in a smaller WSN fails after a few hours.

A similar measurement was done with the adapted visualization component with the
connected database. The results are presented in Table 5.2. The measurement started
with 500 data points for a single node visualization. At 500 data points per graph,
the website had to visualize 15000 data points all 4 seconds (including the aggregated
graphs). At 1000 data points per graph 30000 data point were drawn and first signs of
unresponsiveness could be observed. Until 1500 data points the visualization component
remained useful, afterwards the website was too unresponsive to be useful. With a reduced
refresh rate to 10 seconds, the 2000 data points per graph were usable again. Thus, it
can be concluded that the performance limiting factor is the single threaded JavaScript
routine. If the CPU is not fast enough to draw all graphs until the next refresh round
starts, the website shows signs of unresponsiveness. The memory consumption depends
on the number of data points drawn, but was not a critical factor anymore.

Table 5.2: Measurements on 18 open graphs with the new visualization component

Data Points Memory CPU
500 200 - 350 MB 5 - 15 %
750 400 - 550 MB 8 -25 %
1000 450 - 600 MB 10 - 30 %
1500 600 - 850 MB 15 -30 %
2000 700 - 1000 MB 35 %

5.3. DATABASE INTEGRATION 43

The implemented visualization solution underwent a second test using a smaller WSN of
only two sensor nodes. In this test scenario, a high number of 4500 data points had to
be displayed. With the smaller WSN, a maximum of 9 graphs could be displayed at the
same time. Using 4500 data points for each single node chart, a sum of 54000 data points
had to be displayed. Given the case, the data was sampled by the database in 10 minute
intervals, a graph could display roughly a month of data using 4500 values.

The performance of the visualization component was measured based on the refresh in-
terval of the graphs. The intention was to find a rough estimation what refresh rates were
possible with a high number of data points. The results of the second measurement can
be seen in Table 5.3:

Table 5.3: Measurements on 9 open graphs each displaying 4500 data points

Refresh Rate Memory Peak CPU
30 s 500 - 600 MB 15 %
20 s 500 - 600 MB 25 %
15 s 500 - 600 MB 30 %
10 s 500 - 600 MB 35 %
5 s 500 - 600 MB 35 %

With 30 seconds as refresh interval, the CPU was most of the time idle at 0% and rose to
maximal 15% when the charts were redrawn, the website was responsive all the time. At
a redraw rate of 15 seconds, some small stutters could be seen when scrolling through the
charts, but only while the charts were drawing. At ten seconds, the time stutters could
be seen rose significantly, and at five seconds the website was not usable anymore, and
the CPU remained constantly in the thirties.

To conclude the evaluation of the adapted graphical visualization component with the
integrated database, it can be stated that the final solution provides a significant en-
hancement to the previous visualization option. The performance of the visualization
component was optimized and can now be used for long term monitoring of WSNs.

44 CHAPTER 5. EVALUATION

Chapter 6

Summary and Conclusions

The SecureWSN framework has been enriched with a flexible database solution to store
WSN data on the CoMaDa side in the course of this assignment. The database was
implemented in PostgreSQL, a second database technology was introduced besides the
already existing MySQL database in WebMaDa. Both databases use the same database
scheme to store the WSN data. The access to the new database was restricted to the
WsnDataFramework, external access was not allowed to preserve the security model of
the SecureWSN frameworks. A flexible implementation solution was chosen for the in-
tegration of the database. The resulting flexibility allows the use of different database
technologies without huge switchover efforts as well as a simple extension of the developed
database functionality in CoMaDa.
The database was integrated into the existing graphical visualization component. The
integration enhanced the usability of the visualization solution. With the database con-
nection, it is now possible to view historical sensor data, even if the browser session was
closed. To preserve the performance of the solution, restrictions on the amount of dis-
played data had to be implemented. The restrictions can be configured based on the use
case.

Given the goal of a database integration into CoMaDa and the work presented during
this thesis, one can draw a first conclusion: The implementation of the database solution
was intuitive and could be completed without many challenges. The integration of the
database solution into the graphical visualization component however, was intensive and
troublesome. Not only an inexplicable memory leak in the visualization solution hindered
the development, also performance issues of the used Google Chart technology had to
be overcome. The resulting tradeoff, where the number of displayed information is re-
duced to gain performance is acceptable considering ‘live’ visualization of sensor data as
the main task of the visualization. Future contributions may add a new visualization
component, with focus on the analysis of historical data to the CoMaDa ecosystem. For
such a statistical component, the ‘live’-characteristic falls away and therefore, a different
implementation approach on the data exchange between the CoMaDa backend and the
frontend could be chosen. An additional statistical visualization component would com-
plement the work developed in this assignment into a complete solution to performantly
visualize live data as well as historical data.

45

46 CHAPTER 6. SUMMARY AND CONCLUSIONS

Bibliography

[1] About SQLite, URL: http://www.sqlite.org/about.html, last visited Jan. 8,
2017.

[2] AngularJS Homepage, URL: https://angularjs.org/, last visited Jan. 8, 2017.

[3] C. Anliker, Secure Pull Request Development for TinyIPFIX in Wireless Sen-
sor Networks ; Master’s thesis, Department of Informatics, University of Zurich,
Zurich,Switzerland, Nov 2015.

[4] Apache Software Foundation: Apache HTTP Server Project ; URL: https://httpd.
apache.org/, last visited Jan. 8, 2017.

[5] The Bootstrap Framework, URL: http://getbootstrap.com/, last visited Jan. 8,
2017.

[6] Chrome DevTools, URL: https://developers.google.com/web/tools/

chrome-devtools/?hl=en, last visited Jan. 8, 2017.

[7] Communication Systems Group (CSG), URL: http://www.csg.uzh.ch/, last visited
Jan. 8, 2017.

[8] Contiki: The Open Source OS for the Internet of Thing ; URL: http://www.

contiki-os.org, last visited Jan. 8, 2017.

[9] D3.js: Data-Driven Documents ; URL: https://d3js.org/, last visited Jan. 8, 2017.

[10] B. Ertl: Data Aggregation using TinyIPFIX in Wireless Sensor Networks; Master’s
thesis, Department of Informatics, Technische Universität Mänchen (TUM), Aug
2011.

[11] A. Freitag, C. Schmitt, and G. Carle. CoMaDa: An Adaptive Framework with Graph-
ical Support for Conguration, Management, and Data Handling Tasks for Wireless
Sensor Networks ; In Proceedings of the 9th International Conference on Network
and Service Management, CSNM, pages 211–218. IEEE, Oct 2013

[12] Google Charts, URL: https://developers.google.com/chart, last visited Jan. 8,
2017.

47

48 BIBLIOGRAPHY

[13] Google Groups - Google Visualization API, URL: https://groups.

google.com/forum/#!searchin/google-visualization-api/data$20size/

google-visualization-api/5bnCXUms7jo/x-6VJ_7VVC4J, last visited Jan. 8,
2017.

[14] JavaScript, URL: https://www.javascript.com/, last visited Jan. 8, 2017.

[15] JetBrains: IntelliJ IDEA; URL: https://www.jetbrains.com/idea/, last visited
Jan. 8, 2017.

[16] I. Kantor: Events and timing in-depth; URL: http://javascript.info/tutorial/
events-and-timing-depth, last visited Jan. 8, 2017.

[17] H. Karl and A. Willig: Protocols and Architectures for Wireless Sensor Networks ;
John Wiley and Sons, Vol. 1, ISBN 0470519231, West Sussex, Great Britain, 2007

[18] MySQL: The world’s most popular open source database ; URL: https://www.

mysql.com/, last visited Jan. 8, 2017.

[19] PgAdmin : PostgreSQL Tools ; URL: https://www.pgadmin.org/download/, last
visited Jan. 8, 2017.

[20] PL/Perl: PL/Perl - Perl Procedural Language; URL: https://www.postgresql.

org/docs/current/static/plperl.html, last visited Jan. 8, 2017.

[21] PL/pgSQL: PL/pgSQL - SQL Procedural Language; URL: https://www.

postgresql.org/docs/current/static/plpgsql.html, last visited Jan. 8, 2017.

[22] PL/Python: PL/Python - Python Procedural Language; URL: https://www.

postgresql.org/docs/current/static/plpython.html, last visited Jan. 8, 2017.

[23] PostgreSQL: The world’s most advanced open source database ; URL: https://www.
postgresql.org/, last visited Jan. 8, 2017.

[24] PostgreSQL JDBC Driver, URL: https://jdbc.postgresql.org/, last visited Jan.
8, 2017.

[25] C. Schmitt, M. Keller, and B. Stiller: WebMaDa: Web-based Mobile Access and Data
Handling Framework for Wireless Sensor Networks (Demo Paper); In International
Conference on Networked Systems (NetSys), March 2015.

[26] SQLite: Well-Known Users of SQLite; URL: https://sqlite.org/famous.html,
last visited Jan. 8, 2017.

[27] Stackoverflow: Google Chart Constant Redrawing Memory In-
crease; URL: http://stackoverflow.com/questions/18805964/

google-chart-constant-redrawing-memory-increase, last visited Jan. 8,
2017.

[28] Stackoverflow: Memory leak using google charts with
ajax ; URL: http://stackoverflow.com/questions/18686041/

memory-leak-using-google-charts-with-ajax?rq=1, last visited Jan. 8, 2017.

BIBLIOGRAPHY 49

[29] Stackoverflow: Redraw Google Chart after every Ajax
call ; URL: http://stackoverflow.com/questions/18840178/

redraw-google-chart-after-every-ajax-call, last visited Jan. 8, 2017.

[30] T. Strasser, Offline Method for Graphical Visualization of Sensor Data; Assignment,
University of Zurich, Communication Systems Group, Department of Informatics,
Zürich, Swizerland, March 2016.

[31] Student Wiki, URL: https://wikistudi.corinna-schmitt.de, last visited Jan. 8,
2017.

[32] O. Tezer: SQLite vs MySQL vs PostgreSQL: A Comparison
Of Relational Database Management Systems.; Digital Ocean,
2014, URL: https://www.digitalocean.com/community/tutorials/

sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems,
last visited Jan. 8, 2017.

[33] TinyOS, URL: http://www.tinyos.net, last visited Jan. 8, 2017.

[34] Xively, URL: http://xively.com, last visited Jan. 8, 2017.

50 BIBLIOGRAPHY

Abbreviations

API Application Programming Interface
C/S Client-Server
CoMaDa Conguration, Management and Data Handling Framework
CPU Central Processing Unit
CSG Communication System Group
CSS Cascading Style Sheet
GUI Graphical User Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IoT Internet of things
P2P Peer-to-Peer
PHP PHP: Hypertext Preprocessor
RAM Random Access Memory
SecureWSN Secure Wireless Sensor Network
SQL Structured Query Language
URL Uniform Resource Locator
USB Universal Serial Bus
UZH University of Zurich
WebMaDa Web-based Mobile Access and Data Handling Framework
WSN Wireless Sensor Network

51

52 ABBREVIATONS

List of Figures

2.1 Current architecture of CoMaDa 1.1 and WebMaDa 1.1 4

2.2 Simplified component diagram of the server side from CoMaDa 1.1 5

2.3 Code structure of the client side from CoMaDa 1.1 7

2.4 WSN Data scheme in Craw’s Foot notation [3] 8

2.5 Layered chart showing temperature values of several nodes [30] 9

3.1 Current database architecture of CoMaDa and WebMaDa 14

3.2 External database architecture . 15

3.3 Database for WSN data in CoMaDa . 16

3.4 Replicated database architecture of CoMaDa and WebMaDa 17

3.5 Database access layer as interface with possible specializations 19

3.6 New database access module in CoMaDa 20

4.1 Class diagram of the implemented database access module 26

5.1 Screenshot of the old visualization component 40

5.2 Screenshot of the new visualization component 41

53

54 LIST OF FIGURES

List of Tables

5.1 Measurements on 18 open graphs with the old visualization component . . 42

5.2 Measurements on 18 open graphs with the new visualization component . . 42

5.3 Measurements on 9 open graphs each displaying 4500 data points 43

55

56 LIST OF TABLES

List of Listings

1 Installation commands of PostgreSQL 9.6 on Ubuntu Linux 23
2 MySQL statement to create the DataRecord Table 24
3 PostgreSQL statement to create the DataRecord Table 25
4 MySQL statement to create a stored procedure 25
5 PostgreSQL statement to create a stored procedure 26
6 Database access module for the WsnDataFramework 27
7 Insertion function to insert sensor measurements into the database 28
8 Data retrieval function for historical WSN data (1) 30
9 Data retrieval function for historical WSN data (2) 31
10 JavaScript code of the drawing method for the graphs 33
11 Ajax function returning historical WSN data to the frontend 34
12 Clientside HTTP-Get request to fetch historical WSN data from the database 35

57

58 LIST OF LISTINGS

Appendix A

Installation Guidelines

This chapter explains how a CoMaDa environment can be extended for the use of a
database. Ubuntu Linux in a recent version is assumed as operating system. The con-
figuration possibilities introduced in the development of this assignment are explained as
well.

A.1 Database Installation

As described in Section 4.1 a recent PostgreSQL version has to be installed. After fol-
lowing the installation instructions in Listing 1 the database is installed completely and
is accessible over localhost:5432. For development purposes, a remote access to the
database may be desirable. To accomplish this task, two configuration files have to be
adapted. In ostgresql.conf the entry listen_addresses has to be set to * or the IP of
the remote machine. In pg_hba.conf a new entry host all all 0.0.0.0/0 md5 has to
be inserted. The entry allows any database user to access all databases on the PostgreSQL
server from any remote address. Attention! - revert this changes after development of
the database to ensure security!
The Installation of PgAdmin on the development machine is strongly suggested. Since
the access for development purposes can occur from a remote machine, the installation
of PgAdmin differs depending on the operating system of the host system, therefore the
installation instructions from [] may be followed.

After the installation of the database server, a new database user has to be created. After
PgAdmin successfully connected to the database server, a new user can be added by right-
clicking on ‘Login Roles’ -> ‘New Login Role..’. As username should wsnadmin be
chosen.
With the new database user, a new database can be created. This can be done by right-
clicking on ‘Databases’ -> ‘New Database...’. The name should be wsndb and the
owner the newly created user wsnadmin.
After the database was created, the database scheme for the wsndb could be built. The
content of the file wsndb-setup.sql (delivered on the CD of the submission) can be

59

60 APPENDIX A. INSTALLATION GUIDELINES

executed with PgAdmin. After the execution, the WSN database is ready to use for
CoMaDa.

A.2 Configuration Possibilities

The developed solution can be configured in the config.properties file, located in the
directory WsnDataFramework/conf. The database connection can be described using the
db.host, db.user and db.pw entries. If the installation process described above was
closely followed, only the password set by the user has to be changed.

The developed visualization component can also be configured in the config.properties
file. The property chart.maxdays is used to describe how many days backwards the
database should be queried for historical data. The downsampling of the data cam be
configured using chart.downsampling_nr, it specifies the degree of the downsampling.
The refresh rate of the charts has to be configured in the JavaScript files. For the single
node charts, the file singleNodeWidget.js in the directory WsnDataFramework/html/in-

dex/widgets/charts, line 33 has to be adapted. A value of 10000 results in a refresh rate
of 10 seconds. For the aggregated charts, the file chartsWidget.js in the same directory
must be changed.
In these files the maximal number of displayed points can be specified in line 336 respec-
tively line 218. This value should be equal or higher than the number specified for the
downsampling.

Appendix B

Contents of the CD

The attached CD contains the following files and directories:

� thesis.pdf: PDF of the submission

� abstract.txt: Plain text version of the English abstract

� zusfsg.txt: Plain text version of the German abstract

� code: Directory containing the CoMaDa source code, as well as the files needed for
database generation

� tex: Directory containing the sources of this report

� presentation: Directory containing the final presentation

61

