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Abstract: While wireless sensor networks (WSN) offer potential, their limited programmability and
energy limitations determine operational challenges. Thus, a TinyIPFIX-based system was designed
such that this application layer protocol is now used to exchange data in WSNs efficiently. The new
prototype is based on the Espressif ESP32-WROOM-32D Internet-of-Things (IoT) platform, which is
becoming famous, as it is inexpensive but powerful compared to older generations of IoT devices.
The system implementation is provided in the programming language MicroPython, which provides
a simple and efficient implementation, compared to a lower-level programming language. Therefore,
this approach focuses on value creation rather than platform-specific implementation difficulties. The
system is evaluated in smart home use cases and displays valuable overhead, reliability, and power
efficiency. TinyIPFIX outperforms the data overhead of the type–length–value (TLV) paradigm by a
factor of 7% when a TinyIPFIX data message carries only two records, and one TinyIPFIX template
message is sent per three TinyIPFIX data messages. A further decrease in overhead is observed
when the number of data records per message and the number of TinyIPFIX data messages sent
per one TinyIPFIX template message increase to larger values. The message delivery between end
devices and the application server resides at a very high level, close to 100%, when the transmission
reliability is secured with acknowledgments and retransmissions. The energy efficiency resides at the
limited level, as the experienced deep sleep power consumption of the ESP32 device resides at the
milliwatt level.

Keywords: wireless sensor network (WSN); Internet-of-Things (IoT); TinyIPFIX; Espressif ESP32-
WROOM-32D

1. Introduction

Typically, a sensor is a module designed to sense the environment and forward this
information to other components, determining a distributed system out of computers
or servers. Due to low prices, the deployment of sensors, considered to be constrained
Internet-of-Things (IoT) devices, has become ubiquitous. Furthermore, sensors organizing
themselves in complex structures, such as networks of a multi-hop nature, are referred to
as wireless sensor networks (WSN).

WSNs reflect many beneficial use cases and can support, for example, agriculture,
energy, health, smart city, smart home, or supply chain monitoring settings [1]. For example,
for the smart home/city and energy area, one can consider energy measurements among
each household to plan for precise energy production such that an adequate consumption
is backed by suitable production, avoiding energy waste.

With such potentials provided by WSNs, significant challenges also exist, preventing
their massive deployment. One such challenge is (a) the limited programmability of sensor
devices. Very constrained devices, heavily limited in CPU (central processing unit) cycles,
RAM (random access memory), and network capacity, are difficult to program and typically
require the knowledge of specialized low-level programming languages. Another challenge
is related to the fact that sensors are typically battery powered. This requires them to (b)
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run very energy-efficient operations, while frequent replacements of batteries might be
impossible if hundreds of devices are deployed in the field for a specific use case.

A three-fold approach is considered in this work to deal with those two limitations:
(1) A new generation of sensor devices is selected, which relaxes the constraints put on
the CPU, RAM, and networking. (2) A high-level programming language is considered
to program energy-efficient operations easily. (3) Optimal protocols are demonstrated to
transport information within the environment toward applications.

Thus, the Espressif ESP-WROOM-32D [2,3] module is selected, which offers extended
capacity. An ESP-WROOM-32D supports high-level programming languages, such as
MicroPython [4] or JavaScript, through an appropriate firmware. The ESP-WROOM-32D
device is enriched with the Digi XBee platform [5], which supports a highly constrained
and energy-efficient IEEE 802.15.4 network [6]. Furthermore, this work deploys the tiny
Internet protocol flow information export (TinyIPFIX) [7], which sends metadata and actual
sensor data in separate messages and decreases the communication overhead and energy
cost in comparison to other protocols in this domain. As a result, TinyIPFIX enables WSNs’
operation to run longer on a single battery charge than regular application protocols, such as
message queuing telemetry transport (MQTT) or hypertext transfer protocol (HTTP) [8,9].

The remainder of this paper is structured in the following way. Section 2 introduces
those technologies used for this approach as a background that this work builds upon.
While Section 3 discusses different design decisions and offers concrete examples of the
implementation, Section 4 evaluates the implementation. Finally, Section 5 summarizes the
work, draws key conclusions, and outlines future work.

2. Related Work

The Internet protocol flow information export (IPFIX) [10,11] is an application layer
protocol with the purpose of sending information about traffic flows in a network. Traffic
flow information may be required for administrative purposes, such as billing. IPFIX
organizes data into template and data records. This way, redundant meta-information,
which is sent in template messages, may be sent less often than the actual data sent in data
messages. IPFIX first sends meta information in a template record set and then multiple
data record sets that contain very little meta-information. IPFIX is push-based, which
means that the sender sends data when they are available. No method allows a receiver to
request data; thus, IPFIX messages are only sent in one direction. It implies that there is
no way for the sender to recognize whether its sent packet arrived at the destination. The
push-based unidirectional traffic is divided into data and template records, which provides
IPFIX with data and energy-efficient communication.

2.1. TinyIPFIX

TinyIPFIX [7] is an application layer protocol derived from IPFIX optimized for con-
strained WSNs. TinyIPFIX has a similar purpose to other protocols in the IoT domain,
such as HTTP, Constrained Application Protocol (CoAP), or message queuing telemetry
transport (MQTT). TinyIPFIX [8] has less overhead than IPFIX due to the introduction of
(1) template and data messages, similar to IPFIX as well as (2) in-network aggregation [12].
There are several implementations of TinyIPFIX [8,13,14] provided in the literature. Ref. [8]
evaluates TinyIPFIX implementation [13] in C on MoteLab [15] consisting of 40 TelosB
nodes [16]. Ref. [14] provides a Python-based implementation of TinyIPFIX for the Rasp-
berry PI [17] platform and C++ implementation for ESP32 [3] devices implemented in
the Arduino integrated development environment (IDE) [18]. However, the low-level
implementation of a custom protocol is time-consuming due to difficulties introduced
by low-level programming languages. Higher-level languages such as Python do not
introduce such problems. Therefore, they are better adapted for value creation.

TinyIPFIX is based on the unidirectional push-based communication paradigm. As with
IPFIX, TinyIPFIX splits its messages into template and data messages. Data messages are sent
more often than template messages to save energy, while template messages only contain
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information on decoding corresponding data messages. This is reasonable because template
messages (meta-data) repeat themselves and do not often change like data messages, which in
turn carry actual sensor readings. Templates usually do not change on a device. For example,
a device, which always sends a 4-byte (i.e., float type) temperature reading, does not suddenly
provide an 8-byte (i.e., double type) humidity reading. The reason for the retransmission
of template messages is that lost template messages, which are not retransmitted, cause the
following data messages to be unusable, as they cannot be decoded.

2.1.1. TinyIPFIX Messages

Figure 1 gives an overview of the TinyIPFIX message structure.

Figure 1. TinyIPFIX Message

The figure can be read in the following way. Each field contains an element of a
TinyIPFIX message. When a field is indicated with an arrow leaving this field, it signals
an expanded in-depth presentation of that field indicated by that arrow. For example, the
leftmost field “TinyIPFIX message” is constructed of a “TinyIPFIX message header” and
one (or more) “TinyIPFIX set”. Sending a TinyIPFIX message implies sending a TinyIPFIX
header and a couple of TinyIPFIX sets. Fields that are not provided with arrows (those with
green numbers) are considered atomic. The green numbers indicate how long the fields
are in bits. Greyed-out fields are optional and do not have to be present in a TinyIPFIX
message. A TinyIPFIX message has one or multiple TinyIPFIX sets, but either all of those
sets are template record sets or data record sets. Different TinyIPFIX set types cannot be
present in the same message.

2.1.2. TinyIPFIX Message Header

The TinyIPFIX message header is the first part of each TinyIPFIX message. It contains
the fields E1, E2, SetID lookup, length, and sequence number. Additionally, it can have
either one or both fields, i.e., extended sequence number and extended SetID.

The E1 field gets a value of zero or one. In the case of one, the extended SetID field
is present. In turn, the extended SetID field is absent in the case of zero. The E2 field also
gets zero or one. Should the value be one, the extended sequence number field is present.
Otherwise, it is absent. The field SetID lookup is set to zero in this work, as its definition is
not clear in RFC 8272 [7], which specifies TinyIPFIX. The length field stores the total length
of the TinyIPFIX message in bytes. The total length includes the length of the TinyIPFIX
message header and all the sets in the message.

The field sequence number holds the sequence number of the TinyIPFIX message.
The first message that a particular sender sends to a particular receiver has the sequence
number 0. Then, the sequence number is increased by one with every packet sent. This way,
the receiver knows whether it has received all messages. If one message gets lost, this is
logged, but nothing can be done about this fact. If E2 is zero, the sequence number is 8 bits
long (i.e., the maximum value of the sequence number is 255). If E2 is one, the sequence
number is 16 bits long, which means it can have a maximum value of 65,535. When the
maximum value is reached, the sequence number restarts from zero. The extended SetID is
never present in this work, assuming E1 is always zero.
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Comparing this header with the header of TinyIPFIX messages, it can be noticed that
the IPFIX header is 16 bytes long, while the TinyIPFIX header is only 3 bytes long in the
case of E1 = E2 = 0. The smaller header is achieved using field compression (e.g., the length
field is only 10 bits instead of 16 bits), the two optional fields that can often be omitted,
such as the export time. If the export time is needed, it can be sent as a field value in the
data record. TinyIPFIX provides a minimum overhead, which can be clearly demonstrated
by comparing the IPFIX header with the TinyIPFIX header.

2.1.3. TinyIPFIX Template Records Set

After the header, there are one or more TinyIPFIX sets in a TinyIPFIX message. A mes-
sage can either contain template record sets or data record sets, but not both simultaneously.
Template record sets contain information on how to decode data record sets.

Set Header

A template record set has a set header, which contains a tiny set ID and a length field,
as seen in Figure 1. The tiny set ID is always set to two for template record sets, while the
length field stores the total length of the template record set in bytes (including the header).

Template Record

After the header, a template record follows. Template records define the structure
and meaning of data record sets. The template record is started with a template record
header. The template record header contains a template ID and a field count. The template
ID is a number between 128 and 255, uniquely identifying the template record (i.e., no two
different template records may have the same template ID). Data record sets have a tiny set
ID equal to a template ID of a template record. This shows the data record set defined by
the template record. The field count stores the number of field specifiers in the template
record. The data record sets specified by a template record must also have the same number
of field values as the number of field specifiers in the template record.

Field Specifier

A field specifier specifies the format and meaning of a field value from a data record
set. A field specifier must specify each field value of a data record set. Each field specifier
has an enterprise bit, an information element identifier, a field length, and an optional
enterprise number. The enterprise bit is either zero or one. If it gets zero, the enterprise
number is not present, and the field specifier is a default field specifier defined by the
internet assigned numbers authority (IANA). Using default field specifiers from IANA
ensures that they are the same no matter which company uses them and where in the world
they are used. If the enterprise bit is one, the enterprise number is present, and the field
specifier is a custom one defined internally in a company.

The information element identifier is a unique identifier for an information element.
The specification of an information element can then be found using the information
element identifier. The specification defines, for example, the data type and description
of the information element. This information can then be used to make sense of the field
values from a data record set. The field length stores the length of the field value specified
by the field specifier in bytes. An enterprise number is a number that is registered with
IANA and uniquely identifies the company or organization. Using the information element
identifier, the meaning of a field value can be searched on IANA [19]. If the enterprise bit
is one, then the information element identifier and the enterprise number can be used to
find the specification of the field value inside the company. For this, the company has to
prepare a file where they store the specification of the field value.

2.1.4. TinyIPFIX Data Records Set

The TinyIPFIX data record set contains two main elements: Set Header and Field
Values.
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Set Header

Data record sets also start with a set header. This header contains a tiny set ID and a
length field. The tiny set ID is between 128 and 255 (just like the template ID is between
128 and 255) and corresponds to a template ID. The length field stores the length of the set
in bytes, including the header.

Field Values

After the header, there follow as many field values as are field specifiers in the template
record set that corresponds to the data record set (the template record set with template
ID equal to the tiny set ID of the data record set). The meaning (e.g., a temperature value)
and data format (e.g., unsigned16) of the field value can then be searched using the field
specifier.

2.2. Communication Protocols for IoT Applications

The analysis of underlying communication protocols, which serve as the foundation
for TinyIPFIX-based IoT systems, is required to fully understand the benefits of TinyIPFIX.
To properly support IoT use cases, several facets, such as communication range, data rates,
maximum transmission units (MTUs), communication protocol dependability, and energy
efficiency, are required. The IEEE 802.15.4 standard was created specifically for IoT devices
in the range of a personal network, i.e., wireless personal area network (WPAN). Prototype
IoT applications are often developed and analyzed in the context of low power wide
area networks (LPWAN), where Long Range (LoRa) wide area network (WAN), Sigfox,
IngenuRPMA, Weightless-N, Long Term Evolution (LTE) machine type communication
(MTC), i.e., LTE Cat-M or Narrowband-IoT (NB-IoT), communication technologies are
currently under deployment.

A brief overview of IoT communication technologies, based on [9,20,21], is summa-
rized in Table 1. These technologies are characterized in terms of communication range,
throughput, and medium access control (MAC) MTU sizes.

Table 1. Performance Comparison

Technology Communication Range Throughput MAC MTU (Byte)

LoRaWAN 2–5 km urban, 15 km
suburban

0.3 to 50 kbps 256

SigFox 10 km urban, 50 km
suburban

100 bps Fixed 12

IngenuRPMA 20–65 km up: 624 kbps
down: 156 kbps

64

Weightless-N 5 km urban 30 km
suburban

30 kbps to 100 kbps max. 20

LTE-M 12 km up: 1 Mbps
down: 1 Mbps

1500

NB-IoT 15 km 200 kbps 1600

IEEE 802.15.4 10 m 250 kbps 127

TinyIPFIX is especially of interest for communication technologies supporting very
short MTUs, such as LoRaWAN, SigFox, IngenuRPMA, Weightless-N, or IEEE 802.15.4.
However, the impact of TinyIPFIX will be limited in cellular applications providing MTUs of
1600 bytes because there is no need to save space in the case of a large MTU. Furthermore,
TinyIPFIX is best suited for technologies allowing for in-network aggregation [12,22]
like IEEE 802.15.4. Therefore, the advent of the LoRa mesh network [23], which enables
in-network aggregation on LoRa concentrators, can have a stimulating impact on the
development of TinyIPFIX.
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3. TinyIPFIX-based System Architecture

Critical design decisions do impact the resulting architecture. The following specifies
the architecture of this work [24].

3.1. TinyIPFIX Sensor Network

Figure 2a provides an overview of the WSN provided, in which end devices measure
the environment using a sensor and create TinyIPFIX data packets that contain the sensed
data provided as the payload. The packets created are sent either toward a concentrator or
directly to the collector. To send, an end device, i.e., ESP32 devices [2,3], passes the data
packet to the IEEE 802.15.4 [6] device over the universal asynchronous receiver–transmitter
(UART) connection, which in turn sends it using the IEEE 802.15.4 protocol. The packet
sent toward a concentrator, or the collector, first arrives at the corresponding IEEE 802.15.4
adapter and is then forwarded over UART to the ESP32-based concentrator or collector
node. IEEE 802.15.4 is selected as the transmission protocol because it is a widely used
standard for indoor environments and has low-power requirements.

TinyIPFIX packets arriving at a concentrator are aggregated with other packets, and
TinyIPFIX messages are derived on the concentrator using their own sensors. Once the
desired number of distinct TinyIPFIX packets is aggregated, the packet aggregated is
sent to the collector. Moreover, it is also possible to install multiple concentrators from
an end device to the collector. To alleviate the problem of packets growing indefinitely,
concentrators offer a configurable maximum packet size. If a packet reaches the maximum
size, it is then not aggregated further on, but instead, it is directly sent to either the next
concentrator or the collector.

As one can observe in Figure 2, transmissions (i.e., solid arrows) are always directed
from an end device to a concentrator or from a concentrator, but never the other way
around (i.e., from a collector to a concentrator or from a concentrator to an end device). This
is because the specification of TinyIPFIX is purely push based and does not implement pull
mechanisms to obtain the most recent sensor data immediately. This decision was made
to keep TinyIPFIX as energy efficient and straightforward as possible. Finally, TinyIPFIX
specifies three kinds of devices within a network.

(a) (b)

Figure 2. Interactions in the Network. (a) Sensor Network. (b) Collector and Publish/Subscribe
Network
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3.1.1. TinyIPFIX Device (End Device)

A TinyIPFIX device is the simplest device. It measures the environment using sen-
sors and sends the data toward TinyIPFIX concentrators or TinyIPFIX collectors. In the
TinyIPFIX network, the majority of devices are TinyIPFIX devices.

3.1.2. TinyIPFIX Concentrator

In the TinyIPFIX network, there exist TinyIPFIX concentrators. The concentrators
measure the environment, just like TinyIPFIX devices do, but they additionally receive
data from other devices. Concentrators aggregate the received data with their own sensed
information into a single TinyIPFIX message. This aggregation has the effect that fewer
messages, but bigger ones, are sent in the network. Overall, this saves energy because there
are more relevant data than overhead in aggregated messages. Another critical task that
concentrators satisfy is that they allow multi-hop forwarding if the collector is out of reach.
This allows for more extensive networks, while otherwise, the TinyIPFIX device would
have to be placed in the range of the collector.

3.1.3. TinyIPFIX Collector

Figure 2b provides an overview of the collector and publish/subscribe (Pub/Sub)
broker. While the WSN handles measurements of the environment and ensures that
all packets are sent to a central point, the collector and Pub/Sub network handles the
processing of the data that arrives from the sensor network. Packets from the sensor
network (cf. Figure 2) arrive at the IEEE 802.15.4 interface of the collector. The IEEE 802.15.4
interface passes the packet over universal serial bus (USB) to the non-constrained device
that runs the collector module.

Therefore, Figure 2b shows an IEEE 802.15.4 network connected to a non-constrained
device, which provisions a collector. All packets of the entire sensor network have to
arrive at the collector eventually. The collector module parses these packets received.
Furthermore, if a packet containing template records arrives, the unknown template record
is stored, while the known ones are ignored. If a packet contains data records, the data
are extracted from the packet using known templates already stored. The data are shared
with other modules using a Pub/Sub broker, e.g., zero message queue (ZMQ) [25]. Within
the Pub/Sub engine, the data are published using the corresponding TinyIPFIX set ID (i.e.,
SetID) as the Pub/Sub topic. Applications may then subscribe to SetIDs of interest and
process the data further. The Pub/Sub engine allows for manageable implementations.
An application can access the desired data with just a few lines of code without worrying
about how TinyIPFIX works.

3.2. Implementation

To describe a systems approach and its proof of concept, two applications were
developed: one just prints all data received at the console on the application server and
a second one receives the data subscribed to and stores them in a relational database
management system (RDBMS) database, such as MySQL. These cases are supported by the
prototypical implementation of the TinyIPFIX protocol and the data processing in detail.
The code is available at GitHub [26].

3.2.1. ESP32 Firmware Preparation

The setup of the hardware infrastructure needs to be provided first, such that the
microcontroller may be programmed with the desired functionality. This approach used
two different ESP32-based boards, i.e., ESP32 DevKitC V4 [27] and SuperB [28], cf. Figure 3a.
ESP32 devices may be programmed from a regular PC with USB connectors. The ESP32
DevKitC V4 features a USB port on its own; for the SuperB, the Sparkfun XBee Explorer
Dangle is used (i.e., a USB-to-XBee layout connector). Both ESP32-based devices need to be
equipped with MicroPython (i.e., appropriate firmware) [4] to be able to parse code written
in MicroPython.
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At first, the MicroPython firmware has to be downloaded. Then the ESP32-based
devices need to be put into download mode to flash them up. The ESP32 DevKitC V4
supports buttons for flashing. To put the ESP32 DevKitC V4 in the download mode, the
boot button must be pressed, the EN button must be pressed and released, and finally, the
boot button can be released. Putting the SuperB into download mode is more complex
because the SuperB does not feature buttons. The IO0 pin of the device has to be grounded
(also referred to as pulled-low or provided with zero), then, while keeping IO0 grounded,
ground is applied to and removed from the EN pin, and is finally removed from the IO0
pin. Once the ESP32 based device is in download mode, the MicroPython firmware may
be flashed on the device, which allows the ESP32-based device to be programmed with
MicroPython. The MicroPython instructions may be transferred to the ESP32 directly using
serial communication or an integrated development environment (IDE) that stores code
files on the ESP32 device. MicroPython may parse the code files; the code stored in the
main.py file is automatically executed upon every boot of the ESP32 device.

3.2.2. Connecting the ESP32-Based Device with XBee

Since UART is used to connect the ESP32-based device with Digi XBee [5], i.e., the
IEEE 802.15.4 communication device, cf. Figure 3a, two lines need to be connected between
the two devices (i.e., ESP32 and XBee). Additionally, two lines are used to power up the
XBee using the ESP32 power and ground pins. If the device is to be used as an end device,
two additional lines need to be used to control the XBee awake and sleep periods.

Figure 3a gives an overview of the pins that were used in this work. For a Digi XBee,
all marked pins need to be used according to the corresponding ones labeled. For the
ESP32-based devices, the pins labeled power and ground also need to be used for ground
and power, respectively, but the other pins, i.e., transmit (TX), receive (RX), clear to send
(CTS)-XBee, and wake-up-XBee, may also be replaced with other general purpose input
output (GPIO) pins. The change of pins needs to be acknowledged in the program code.

To connect the ESP32-based device with XBee, the ESP32 TX (respectively, RX) pin
needs to be connected to the XBee RX (respectively, TX) pin. The ESP32-based devices are
powered and grounded via USB or a battery. To power the XBee, the ESP32 pins can be
used. To this end, the ESP32 power (resp. ground) pin needs to be connected with the XBee
power (resp. ground) pin. Should a given device be used as a TinyIPFIX End Device, the
wake-up-XBee (resp. CTS-XBee) pin from the ESP32-based device needs to be connected
with the sleep-control (resp. CTS) pin of the XBee. If the wake-up-XBee pin transitions from
high to low, the XBee wakes up (for this purpose, however, the XBee has to be configured
accordingly). When the Xee remains awake and is idle (does not receive data over UART)
for a predefined amount of time, it automatically goes to sleep again. When the XBee is
awake and ready to send data, the CTS-XBee pin has a low value. This pin is used to check
that the XBee is fully awakened before sending data to the XBee device over UART. Once
these connections above are established and configured, the ESP32-based device may talk
to XBee (and vice versa) over UART. Figure 3b,c shows how the pins of a ESP32 DevKitC
V4 and SuperB need to be connected to the pins of an XBee, when those ESP modules are
used as an end device.

3.2.3. Configuring XBee Devices

To configure XBee devices, software released by the manufacturer of the XBee—called
XCTU [29]—is used. XCTU deployed the IEEE 802.15.4 TH function with the firmware
version 2003 on XBee devices. Furthermore, XCTU sends AT (attention) commands to the
XBee with the help of a graphical user interface (GUI) while also providing explanations
for all options. It is, therefore, easier to use XCTU than to send raw AT commands over the
command line. To flash an XBee connected to a computer in XCTU, an appropriate button
or CTRL+SHIFT+D can be pressed. When the update button is pressed, the XBee function
set to be flashed on the device can be chosen.
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The XBee network has one personal area network (PAN) coordinator (i.e., IEEE
802.15.4) that manages the network and multiple end devices. The TinyIPFIX collector
device is chosen to be the coordinator, while the rest of the XBee devices become IEEE
802.15.4 end devices. The reason for this decision is that the IEEE 802.15.4 coordinator is a
single point of failure. Furthermore, the TinyIPFIX collector is a single point of failure as
well. Therefore, choosing the TinyIPFIX collector to be the IEEE 802.15.4 PAN coordinator
leads to one single point of failure instead of two otherwise, which is also beneficial.

These XBee modules can configure many settings, but particularly interesting for this
work are the communication channel (CH), PAN ID (ID), upper 32 bit of the destination
address (DH), lower 32 bit of the destination address (DL), 16 bit source address (MY),
coordinator enable (CE), MM (MAC mode), defining whether acknowledgments for the
transmission are configured, and DIO7 configuration (D7) enabling the CTS flow control.

(a)

(b) (c)

Figure 3. ESP32/Digi XBee Wiring. (a) Pin Overview; (b) Connecting the ESP32 DevKitC V4 with the
XBee (End Device). (c) Connecting the SuperB with the XBee (End Device).

3.2.4. TinyIPFIX Protocol Implementation

Figure 4 shows the class diagram that was developed in this work. The figure facilitates
the understanding of the implementation details that follow. All classes related to the
TinyIPFIX protocol implementation are gathered in the tinyIPFIX.py file on the ESP32
device. For more details on the concrete implementation, the GitHub repository [26] may
be consulted.
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Device
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Figure 4. Class Diagram

TinyIPFIX Helper Functions Class

TinyIPFIX helper functions class is the foundation of the TinyIPFIX implementation.
The helper class contains useful functions needed for the implementation of other classes. It
contains functions allowing for representing TinyIPFIX messages as byte objects (i.e., strings
of bytes) and bit strings (i.e., strings of bits). Every TinyIPFIX message may be modified on
the byte and bit level. The helper class may convert a bytes object (a string of bytes) into a
bit string object (a string of bits) in which distinct bits are manipulated one by one. Finally,
the bit string can be converted back into a resulting bytes object. Although the conversion
from bytes objects to bit strings seems complex, it allows for simple modifications of bits
in comparison to bit-wise operations on bytes objects. Other valuable functions specified
relate to TinyIPFIX. Among various methods, there is a function distinguishing between
TinyIPFIX data and template messages or a method accepting a bytes object containing
an array of TinyIPFIX messages and converting the bytes object into a list of bytes objects,
each containing a TinyIPFIX message within.

Tiny IPFIX Message Specific Classes

The remainder of the classes represents different parts of the TinyIPFIX message
structure. The generic message class does not specify any distinct attributes, but it offers
one function, which is to convert the message object instance to a bytes object that may be,
in turn, immediately sent over the IEEE 802.15.4 network. The message may be derived
with the help of more specific classes, such as message header, template records set, or
data records set classes. The template records set class allows for the derivation of all
template records of a template message kept in the message object. The received message
class is used to derive the message object from the bytes object received from the network.
The received message class accepts a bytes object and returns the corresponding message
instance. In such a way, the bytes object can be converted to a message object at the receiver.

Device-Related Classes

The device class offers many functions that are all concerned with creating, sending,
and receiving messages and setting the clock or using sensors. It also maintains attributes,
which are defined upon the instantiation of the device object. The device class has two main
attributes: the real time clock (RTC) for handling timers and UART, which is the object
used to send and receive data through peripherals. The TX and RX attributes, maintained
by the end device class and the concentrator class, define which pin is used to transmit
and receive data over UART. Furthermore, every node maintains a node number, a unique
number assigned to each ESP32 device, and a sequence number, an integer increased upon
every message sent.
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The end device class (for end devices) and the concentrator class (for concentrators)
are inherited from the device class. They specify the data measure interval, template
measure interval, and data set message attributes. These attributes reflect the data and
template measure interval, i.e., the time elapsed between two consecutive data record sets
or template record sets sent. On the concentrator, the data measure interval defines the
time interval that the concentrator should use to periodically check for new messages to be
received from neighboring nodes. The data sets per message attribute defines how many
data records a message should contain. If this is set to two, as soon as the device produces
two data record sets, it packs them into a TinyIPFIX message and sends them out. The end
device does not need any attributes concerning template sets per message, because they
always send the same template message with the template record sets they maintain. The
concentrator, in turn, maintains template sets per message attribute, because it also receives
third-party templates. Due to this fact, the concentrator may send different templates. The
concentrator has another attribute called set size, which defines the maximum number of
bytes a message may have before it is sent. This ensures that messages do not grow too
large due to the aggregation of too many messages. A variable dict attribute from the end
device is used to store variables permanently, which is necessary for end devices because
they use the deep sleep mode whenever they do not need to send or create messages, and
in deep sleep mode, all the content of the non-permanent storage is lost.

For device implementation purposes, a parent class named device and two child
classes named concentrator and end device are provided. The device class handles the
reading of sensor values, the connection to the XBee (reading and sending data), and the
creation of TinyIPFIX messages using the sensor values. The device class implements two
functions to create the template record set and message. Those functions are responsible
for creating the template message that contains meta-information about data messages.
Similarly, the functions create data record’s set and create data message are responsible for
the creation of data messages. Those functions instantiate a TinyIPFIX message object using
different classes that help to derive various components of the message in the protocol.

The class variables’ data measure interval, template measure interval, and read interval
hold values on the elapsed time between two data measures, two template creations, and
two UART reads. The reading interval should not be too large to receive all packets sent
from buffers. The value depends on how many devices send data to the concentrator.

Regarding timers (cf. the RTC attribute), datai, templatei, and readi hold a timer to
the next data measure, template creation, or UART read. Initially, templatei is set to zero;
this ensures that a template is sent before data are sent and that the data may be always
decoded at the receiver. If datai, templatei, and readi are greater than zero, the device does
not need to do anything and is set to sleep until one of the timers expires. When the timer
expires (i.e., reaches 0), the device needs to perform a given action (e.g., perform a UART
read).

When a measurement is performed, the device checks whether it needs to send the
message or whether it can still perform other measurements. This is configured in variables
containing the maximum message size and maximum sets length. Should the data message
be sent and the template record set list is not empty, a template message is sent first
containing all template records sets that are currently in the template record set list. This
ensures that newer data are never sent before the corresponding template (i.e., containing
the prescription on decoding the data). The implementation of the run function on the end
device class is similar to the run function from the concentrator class. The fundamental
difference, however, is that the end device only creates and sends messages and does
not read and aggregate messages. Furthermore, the end device class has a deep sleep
functionality, which requires some parameters to be stored on flash permanently, even if
the device is in the deep sleep mode (i.e., powered off).
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Implementation of Collector and Application Related Classes

Three classes are created and named collector, subscriber database, and subscriber
print. As noted earlier, these three classes are implemented using Python as a programming
language, while all other classes depend on MicroPython. The collector class has a list of
templates as an attribute that stores all templates known to the collector. It has a serial port
that is used to talk to the XBee connected. Furthermore, it offers a ZMQ port, a context, and
a socket which are used to publish data. To publish data, it uses the publish function that
uses the above-mentioned attributes. The function ‘read one message’ reads a message
using the serial port, and the function process read message then publishes the data if a
data message is read, or adds a template to the known templates if it is a template message
containing a yet unknown template. While an application database class subscribes to
messages published from the collector class and then stores them in a MySQL database, the
application print class subscribes to messages published from the collector class and then
prints them on the console.

The collector class receives and decodes all messages from the entire network. For the
decoding of data messages, it keeps a list of template messages stored in the cache. Then,
it publishes the messages using the SetID as the topic used by the broker (ZMQ broker
topic). Finally, the two application classes, i.e., Subscriber_Database and Subscriber_Print,
subscribe to the topic of interest, allowing them to receive messages based on their sub-
scription. The Subscriber_Database application stores all data received in a database, while
the Subscriber_Print class application prints all data received at the console.

4. Evaluation

To perform a realistic system’s evaluation, devices are placed within a home setup
providing an IEEE 802.15.4 connected structure. There are seven devices in total, i.e., one
collector, two concentrators, and four end devices.

4.1. Network Configuration

All devices are set the same CH, ID, and DH to values of 26, 7,385, and 0, respectively
(cf. Section 3.2.3). The value of DL is variable on every device. When DH is set to zero
and DL is set to a value smaller than 0xFFFF, the IEEE 802.15.4 16-bit address resolution is
used for transmission (i.e., instead of 64 bit address resolution). However, the IEEE 802.15.4
65536 (0xFFFF) address resolution is still perfectly acceptable in smart home application
scenarios. MY is a variable 16 bit source address, CE is sent to the coordinator mode on the
PAN coordinator (i.e., TinyIPFIX collector) or in end device mode on all other devices. The
collector and the concentrator set SM equal to no sleep, while end devices are set to cyclic
sleep with a pin wakeup. In this mode, the XBee goes to sleep when it is idle for a time and
can be woken up using a pin. D7 is set to disabled for the collector and concentrators, and
set to CTS flow control for end devices. If set to CTS flow control, then the XBee CTS pin can
be used to find out whether the XBee is ready to send data.

Table 2 shows the MY (source) addresses and DL (destination low) addresses of each
XBee. The DL address of the collector XBee is a randomly chosen unused address because
the coordinator never sends anything. Additionally, the MY address of the end devices is
not important because it never receives anything. In future work, a pull mechanism can
be implemented, in which case the MY address of end devices becomes important and
the DL address of the collector XBee can be set as well. All devices form a tree structure,
with end devices (i.e., A.1, A.2, B.1., and B2), concentrators (i.e., A and B), and collector
being the leaves, branches, and the root, respectively, using the simple static tree routing
implemented for packet forwarding. One can see in Table 2 that End Device A.1 forwards
packets to the address A00A, which is Concentrator A. Concentrator A, in turn, forwards
its packets to C001, which is the collector in this network.
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Table 2. XBee MY and DL Addresses

Device Name MY DL

Collector C001 E99E

End Device A.1 E0A1 A00A

End Device A.2 E0A2 A00A

End Device B.1 E0B1 A00B

End Device B.2 E0B2 A00B

Concentrator A A00A C001

Concentrator B A00B C001

4.2. Sensor Configuration

One temperature record set is defined and transported between all devices (i.e., con-
centrators and end devices) and the application server. The record consists of a hardcoded
node identifier (2 bytes), temperature readout (4 bytes), and textual timestamp (19 bytes).
The temperature value is provided by the hall temperature sensor residing on the ESP32
chip. The hall sensor returns an elevated temperature compared to the current room tem-
perature. At the time of writing this article, the hall sensor provided the authors with
around 27 °C, when the experienced room temperature was around 23 °C. However, ESP32
is compatible with many sensors (e.g., based on UART connectors or providing a signal
as voltage) attached to the input/output pins of the device. Finally, the timestamp is
derived from the RTC attribute, which exposes a daytime function. The daytime returned
is converted into the textual timestamp of 19 bytes on the sensor.

4.3. Data Overhead

The overhead of transmission in TinyIPFIX is now compared against the overhead of a
simple type–length–value (TLV) approach [8,13]. In a TLV data representation, a message is
constructed by combining the type, length, and value elements within the message fields. A
message, carrying three parameters measured in the environment, will carry type1, length1,
value1; type2, length2, value2; and type3, length3, value3. Typically, type and length fields
have a fixed length, while the value field has a variable length defined by the length
field. To provide a fair comparison, the TLV system of a similar resolution is compared
against TinyIPFIX. TinyIPFIX can support 215 internet assigned numbers authority (IANA)
predefined information elements. Additionally, 232 enterprises, identified by the enterprise
number, may define another 216 information elements. Under the assumption that only
one enterprise number is provided within a network, TinyIPFIX could support 216 different
information elements, which corresponds to 216 different types that have to be encoded
within a 2-byte type field. Furthermore, the length field is assumed to be 1 byte long,
which corresponds to a regular size of the length field in TinyIPFIX. In TLV, the relative
overhead is calculated as O = (∑i len(typei) + ∑i len(lengthi))/ ∑i len(valuei), where the
len(·) function provides the length of the corresponding field in the message. Only the
value field is the actual payload, while type and length fields are the message overhead.

Considering an assumption that one record consists of a 2-byte sensor identifier, a
4-byte float sensor value (e.g., a temperature readout), and a timestamp, which equals
19 bytes that correspond to a textual timestamp used by MySQL [30], a TLV packet would
maintain a 3-byte overhead per data item (i.e., 2 bytes for the type field and 1 byte for the
length field) accompanying all items, i.e., the 2-byte sensor identifier, the 4-byte temperature
readout, and the 19-byte timestamp. In total, 9 bytes of overhead and 25 bytes of data are
sent in such a record, which results in 36% overhead per record.

The total overhead displayed by TinyIPFIX comprises the overhead introduced by
TinyIPFIX template messages and data overhead provided within TinyIPFIX data messages.
In this example, a TinyIPFIX template message has to maintain one template definition,
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in which the enterprise number is provided. However, the TinyIPFIX-specific extended
sequence number and extended SetID may be abandoned (cf. [7]). Additionally, a template
message provides 7-byte fixed overhead as well as an additional 7-byte overhead for every
field specifier. In this setting, a TinyIPFIX template message shows a 28-byte overhead
i.e., when a TinyIPFIX template message is sent with three field specifiers in one record.
Furthermore, a data message contains a fixed 5-byte header, a 2-byte set header, and a
variable amount of data per set. Therefore, the total overhead of TinyIPFIX is dependent on
the frequency of template messages, i.e., how many data messages are sent per template
message, and the number of data records per data message sent. Figure 5 shows the
overhead of TinyIPFIX compared to the TLV approach, depending on these parameters
mentioned above.

TinyIPFIX ten records per Data Message (Experiment)

TinyIPFIX ten records per Data Message (Theory)

TinyIPFIX five records per Data Message (Theory)

TinyIPFIX two records per Data Message (Theory)
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Number of Data Messages Sent

Data Messages per Template Messages

D
at
a
O
ve
rh
ea
d
[%

]

45403530252015105

10987654321

70

60

50

40

30

20

10

Figure 5. TinyIPFIX and TLV Overhead Comparison

As demonstrated in Figure 5, TinyIPFIX may, in specific settings, outperform the
TLV reporting method. TinyIPFIX assumes that template messages are re-sent after many
TinyIPFIX data record sets. In the worst case, the delayed template message may lead
to a loss of several data packets, while the sink is unable to decode them immediately.
However, typically, non-decoded data packets remain in a cache on the collector and wait
for the corresponding template messages to come. Finally, the item cached may become
successfully decoded once the corresponding TinyIPFIX template packet arrives. Figure 5
displays the constant overhead of 36% for the TLV method represented with a violet
horizontal line. Furthermore, the variable data overhead of TinyIPFix is provided for the
various number of records stored in a data message and the varying frequency of data
messages per templates messages sent (i.e., the bottom x-axis), indicated with the green,
blue, and orange lines.

The black line represents an experiment in which only Collector and Concentrator A
are activated in the network. The concentrator is configured to send its identifier (i.e.,
2 bytes), a temperature readout (i.e., 4 bytes), and a timestamp (i.e., 19 bytes). The number
of data messages per template message is configured at 3 (i.e., the concentrator sends three
data messages per one template message), while the number of value fields is configured at
two (i.e., there are two measurements gathered in a data message). It is worth noting that
only data values count as the payload, while other TinyIPFIX-related fields (e.g., headers)
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count as the overhead. The relative data overhead of the TinyIPFIX scheme is calculated.
To obtain the relative data overhead, the absolute overhead (i.e., in bytes) is divided by the
size of the data payload sent. The black line displays the relative overhead as a function of
data messages sent (i.e., top x-axis). As the experiment holds two field values and uses the
three data messages per template message transmission scheme, a red vertical line is drawn
at x = 3, according to the bottom x-axis, i.e., three data messages per template message
that crosses the green line (i.e., TinyIPFIX holding two records per data message). Then,
another red horizontal line is drawn, which connects the aforementioned crossing with
the y-axis. This line displays the asymptotic performance of the TinyIPFIX holding two
items in a data message, where three data messages are issued per template message. It is
well observed that the black line reflecting a real experiment asymptotically approaches
the horizontal red line when the number of data messages sent grows along the top x-axis.
Furthermore, this TinyIPFIX scheme (i.e., black line) suffers an asymptotic overhead of
around 33.5% overhead. Thus, it already outperforms the TLV constant overhead of 36%,
i.e., by a factor of around 7%.

However, TinyIPFIX data messages provide two or more data field values at a time.
In the case that 10 data field values per TinyIPFIX data message are sent, while a TinyIP-
FIX template repeats every 10 consecutive TinyIPFIX data messages, the data overhead
decreases to around 10%.

4.4. Transmission Reliability

To measure the transmission reliability (i.e., how many data record sets sent by end
devices or concentrators arrive at the collector), the test network (cf. Section 4.1) runs for
one hour. This work measures the number of data record sets arriving at the collector and
concentrators as the function of packets originating at end devices.
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Figure 6. Transmission Reliability

Multiple measurements were performed, where two parameters were altered between
measurements. The first parameter is the distance between devices. Initially, these devices
spanned a distance of 1 m, i.e., the distance between end devices and the concentrators,
and the distance from the concentrators to the collector was set to 1 m. Then, further
measurements were performed, where the distance between devices was set to 2, 5, 10,
and 20 m. The second parameter was the MM (cf. Section 3.2.3), which controls the IEEE
802.15.4 acknowledgment. All devices in the WSN were configured to create a data record
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set every 10 s and send a data message as soon as two data record sets were created. Figure 6
shows the results of these measurements.

For every setup, it was measured how many data record sets arrived at the collec-
tor and how many were lost during an hour. For the distances of 10 and 20 meters, it
was additionally measured how many data record sets arrived when the XBees was con-
figured to use retransmissions and acknowledgments, i.e., re-send a message when an
acknowledgment corresponding to a given message did not arrive.

Overall, it can be observed that most of these data record sets sent successfully arrived
at the destination. The only measurement providing quite disappointing reliability was
at a distance of 5 m. Unfortunately, no clear explanation could be found. One possible
explanation could be that some other device was sending on a similar frequency at that
very moment. It can also be observed that data messages sent by the concentrator were
received more reliably, which was to be expected because data messages of end devices
have to be sent twice (once by the end device and once by the concentrator) until they
reach the collector. Furthermore, it can be observed that placing devices at longer distances
does not significantly reduce the transmission reliability when acknowledgments are used.
These measurements also confirm that the implementation of TinyIPFIX was successful
and reliable. All data record sets were successfully created, and all data items received
were decoded and stored in the database. The concentrator works in the desired way and
aggregates the defined number of messages into one message, ensuring that a data message
is never sent before the template message.

4.5. Energy Consumption

A Drok UM25(C) USB power meter [31] was used to measure the energy consumption
of the devices in different configurations. The power meter plugs into a USB port (e.g., a
PC) which powers the meter. Then, a measuring device is connected to the power meter
also over USB (i.e., on the other end). Finally, the power meter shows how much power is
used in milliwatts (mW) and over which period.

Table 3 outlines the power consumption of different devices in different states. In the
table, ESP32 refers to the ESP32 DevKitC V4, while SuperB refers to the Macchina SuperB.
When end devices are in the deep sleep mode, the XBee of the end device automatically
enters its sleep mode. SuperB uses less energy than the ESP32 DevKitC V4. End devices
save lots of energy compared to concentrators because they go into the deep sleep mode
and put the XBee to sleep mode as well. For concentrators (currently, grid powered), the
deep sleep mode is not currently implemented because they do not only need to send
messages, but they also need to receive them, which is not possible while being in the deep
sleep mode.

Table 3. Energy Consumption based on Device Type and State

Deep Sleep Idle Sending Receiving

ESP32 End Device 35 mW 190 mW 344 mW -

SuperB End Device 20 mW 158 mW 308 mW -

ESP32 Concentrator - 328 mW 334 mW 390 mW

ESP32 without XBee 35 mW 192 mW - -

XBee without ESP32 - 168 mW - 168 mW

Figure 7 shows the ESP32-based end device and concentrator current. In this setup,
the end device is configured to send measurements roughly every 10 s. It is visible that in
the deep sleep mode (i.e., between readings), the device consumes around 35 mW, while
the peaks are at 260 mW.

The current consumed by Concentrator A is measured when no end devices are
attached to it. The concentrator works by consuming 355–400 mW power. As the power is
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measured in a dynamic state, the power values might differ between this experiment and
the previous experiment, in which the measured setup was static, i.e., residing in a given
state for a longer duration (cf. Table 3).

Figure 8 shows the energy consumption of different devices as a function of messages
sent per hour. One can observe that sending more messages greatly increases the energy
consumption for end devices, while it does not matter in the case of concentrators. This
has to do with the fact that end devices are in the deep sleep mode most of the time, while
concentrators are only in idle mode such that they do not lose any arriving messages. The
energy consumption mainly depends on the time that devices are in the sleep or deep sleep
mode. Using as a battery an alkaline battery of 4200 mWh, the SuperB device reporting one
data record per hour could last for around 9 days. Thus, the implementation of TinyIPFIX
in these settings is considered a success; however, the currently configured energy expenses
of ESP32 devices are still high due to elevated deep sleep power consumption of 20 mWh.
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Figure 8. Energy Consumption based on Message Sending Interval

5. Summary, Conclusions, and Future Work

This work implemented a TinyIPFIX platform using Espressif ESP-WROOM-32D
devices. TinyIPFIX was selected as a wireless sensor network (WSN) data transport mecha-
nism. As soon as data arrives at the sink, TinyIPFIX messages are provided to the Pub/Sub
engine, implemented with the help of the ZMQ message broker. Finally, two applications
using the message broker were implemented.

Two ESP-WROOM-32D devices were chosen as the hardware platform: Espressif
ESP32 DevKitC V4 and Macchina SuperB. These devices were pre-paired for programming
using MicroPython. Then, each ESP device was equipped with a Digi XBee board, which
features the IEEE 802.15.4 standard, allowing for low power communication among devices
in the WSN. Furthermore, all components of the network were implemented with the help
of MicroPython (i.e., end devices and concentrators) or Python (i.e., the collector). Finally,
the energy consumption of those devices running TinyIPFIX was evaluated successfully,
since the primary method of reducing the energy consumption in the WSN is to leave
devices as long as possible in the deep sleep mode (i.e., ESP32 and XBee devices).

In conclusion, TinyIPFIX maintains a more negligible data overhead in specific appli-
cation scenarios than regular type–length–value (TLV) data transfer. Furthermore, it was
demonstrated experimentally that the Python-based TinyIPFIX works well in a home-based
IEEE 802.15.4 network, providing almost a 100% delivery ratio. Thus, this solution offers
a uniform Python-based implementation spanning multiple elements of the system, in-
cluding TinyIPFIX end devices, concentrators, and the collector, as well as the ZMQ broker
and applications residing on the application server (i.e., the collector). The Python-based
environment provides much faster value creation than older systems do, depending on
low-level programming languages.

In the near future, different improvements will be considered. A time synchronization-
based solution will allow concentrators to enter the deep sleep mode without losing any
data packet coming from end devices. As a result, this will reduce the energy consumed
by concentrators. Additionally, the elevated deep sleep current currently experienced on
ESP32 devices (e.g., 20 mW on the SuperB device in milliamperes) has to be decreased,
allowing for an extensive life span of the network.
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