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Abstract

The emergence of Network Function Virtualization (NFV) has yielded significant advan-
tages over traditional networking approaches, particularly regarding flexibility and cost-
efficiency. Nonetheless, certain issues remain, most notably the fact that the operation
of deploying Virtual Network Functions is still based on human interaction. Therefore,
deep infrastructure knowledge is required from network managers and such a process is
prone to errors and delays. However, Blockchain Signaling presents itself as a viable so-
lution to automate Virtual Network Function (VNF) deployment thereby amending the
aforementioned shortcomings. Hence, leveraging Smart Contract (SC) events, this work
proposes a novel approach for automatically deploying VNF without human interaction.
The system presented in this work provides users with the ability to perform VNF lifecycle
operations (e.g., create and delete) programmatically, with the possibility for a GUI-based
approach also being present. Furthermore, the system has been designed to be extensible
and generic, thus allowing for the incorporation of additional NFV frameworks. Evalu-
ations on the system revealed that its performance and interaction cost is dependent on
the selected blockchain’s block time and blockchain’s cryptocurrency price. Hence, they
may differ based on the choice of blockchain.
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Das Aufkommen von Network Function Virtualization (NFV) hat insbesondere im Be-
reich der Flexibilität und Kosteneffizienz zu bedeutenden Vorteilen gegenüber traditio-
nellen Netzwerkkonzepten geführt. Dennoch gibt es diesbezüglich immer noch gewisse
Schwierigkeiten, vor allem weil das Deployment von Virtual Network Functions (VNF)
auf menschlicher Interaktion beruht. Dies führt dazu, dass Netzwerkmanager tiefgreifende
Kenntnisse über die darunterliegende Infrastruktur benötigen. Zudem ist dieser Deploy-
mentprozess fehlerbehaftet und anfällig für Verzögerungen. Der Einsatz von Blockchain
Signaling bietet sich an, um das Deployment von VNFs zu automatisieren, was die oben
genannten Probleme beseitigt. Diese Arbeit präsentiert einen neuen Ansatz zum automa-
tisierten Deployment von VNFs (ohne menschliche Interaktion) mittels Smart Contract
(SC) Events. Das in dieser Arbeit präsentierte System bietet dem Benutzer die Möglichkeit
VNF Lifecycle Operationen (z.B. Erstellen und Löschen) programmatisch durchzuführen.
Zusätzlich wird ein GUI-basierter Ansatz zum Ausführen dieser Operationen angeboten.
Das System ist ausserdem erweiterbar und generisch, was die Anbindung weiterer NFV
Frameworks erlaubt. Die Evaluation des Systems hat aufgezeigt, dass dessen Performanz
und Kosten für die Interaktion massgeblich von der Blockzeit der ausgewählten Block-
chain, sowie vom Kurs der zugehörigen Kryptowährung abhängig sind. Daher können
Performanz und Kosten variieren, je nachdem welche Blockchain für den Betrieb des Sy-
stems ausgewählt wird.
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Chapter 1

Introduction

The concept of Network Functions Virtualization (NFV) proposes to host physical mid-
dleboxes in generic hardware using virtualization technologies, such as Virtual Machines
(VMs) [36]. With this virtualization approach, security functions, such as firewalls, Deep
Packet Inspection (DPI), and Load Balancers (LB), can be rapidly deployed in the net-
work infrastructure as Virtual Network Functions (VNF) to mitigate attacks (e.g., fire-
walls, and DPI) or to increase the overall network performance (e.g., LB). This work is
not only motivated by the emergence of NFV that allows such decoupling of Network
Functions (NF) from dedicated hardware to resource virtualization [36], but also by the
development of possibilities that Blockchain (BC) technology [53] started to offer (e.g.,
DDoS mitigation [49]).

In fact, the examination of existing work showed that the VNF deployment is a manual,
human-based process (cf. Chapter 3). Therefore, it is conceivable, that the automation
of VNF deployment would result in several benefits, such as faster deployment times,
event-based deployment triggers, or simply removing the human component from the
equation, eliminating one potential source of errors. Such deployment automation can be
addressed within the domain of BC technology. In particular, BC-based Smart Contracts
(SC), which provide a platform for event-based communication, that external systems can
then act upon, become apparent as a potential solution candidate. Further, by choosing
a BC-based solution, other advantages are inherently given, e.g., data immutability and
decentralization, leading to auditability possibilities [51].

With that in mind, this work proposes a concrete system utilizing the aforementioned
event-based approach to serve as an adapter between VNF Management and Orches-
tration (MANO) frameworks and applications that rely on VNF deployments. Hence,
applications that use the solution described herein may control at what point in time
which predefined VNF is to be deployed, with the responsibility of actually performing
the VNF deployments being delegated to the proposed system. The entry point for both
configuration of VNFs as well as for triggering deployments is a BC-based SC. Never-
theless, in addition to the automatic deployment, this proposed solution also offers the
possibility to trigger VNF deployments based on user input in a web application, providing
flexibility in how the solution can be used.

1



2 CHAPTER 1. INTRODUCTION

1.1 Description of Work

The work was developed in a number of subsequent stages. The first stage consists of a
literature review to form an understanding of the topics associated with this work, such
as NFVs, VNF frameworks, BCs, and BC-based SCs. This stage also includes compiling
and discussing a list of related works, to identify a research gap and provide a raison
d’être for this work.

In a second stage, requirements for the system-to-be are elicited and defined, such that a
design was proposed that served as the foundation of the implementation. Furthermore,
an appropriate NFV framework that matches the aforementioned design and requirements
was selected.

Following this, the third phase was reserved for the synthesis of the requirements into an
implementation of the separate system components, followed by their combination into a
functioning system. Moreover, the different components of the system were deployed on a
suitable platform, leading to a fully functional, non-local Proof-of-Concept (PoC) setup.

The final stage then serves as the evaluation of the PoC regarding a number of criteria
(e.g., costs and performance) that were defined based on the requirements from stage
two. In addition, the findings of the project were discussed, and potential future work
was explored.

1.2 Document Outline

The structure of the thesis is as follows: After the introduction, Chapter 1, the background
required to get a grasp of the thesis’ topic is introduced in Chapter 2. In Chapter 3 the
related work is explored, discussed, and compared against our work. This is followed by
the main chapter of the report, Chapter 4, where the design and the implementation of
the system are laid out, alongside several use cases. The evaluations are presented in
Chapter 5, finally followed by the conclusion and future work in Chapter 6.



Chapter 2

Background

The first part of this chapter covers the fundamentals of NFV. A comparison is made
between NFV and the traditional way of implementing and deploying NFs as well as the
benefits and challenges that arise from using NFV. Furthermore, the European Telecom-
munications Standards Institute (ETSI) NFV reference architecture (MANO) together
with selected NFV frameworks are presented. The second part of this chapter is dedi-
cated to the basic concepts of BC technology, with a special focus on the use of SCs.

2.1 Network Function Virtualization

NFs represent functional building blocks of the network infrastructure [36]. Convention-
ally, network operators used specialized proprietary networking hardware to provide NFs
such as firewalls or LBs [11, 36]. However, this hardware-centric approach has major
drawbacks: The specialized hardware is very expensive, both to procure and operate,
leading to high capital and operational expenses [11, 36]. In particular, any change in
the order of a chain of NFs implies changes of the underlying network topology, which
reduces flexibility [36].

The idea behind NFV is to decouple software from hardware [36] by utilizing virtualization
technology on top of high-volume industry hardware [11] to provide NFs. Thus, when it
comes to deploying and operating NFs, NFV offers more flexibility, but also agility as well
as the potential for automation and scalability compared to the traditional approach [36].
Essentially, changes in NFs take place in software instead of in hardware, which enables
quicker changes, as no changes to the physical infrastructure are necessary [36]. The use
of high-volume industry hardware makes it possible to make use of economies of scale,
reducing capital expenses [11].

2.1.1 Virtual Network Function

While conventional NFs are implemented on specialized vendor-specific hardware, VNFs
are NFs that run on VMs (i.e., in software [5]) instead [36]. VNFs can be chained together

3



4 CHAPTER 2. BACKGROUND

in a particular order to form Service Function Chains (SFC) [5]. While it is possible to
build SFCs with hardware-based NFs, this will result in static chains that are hard to
maintain. With VNFs, however, the order of NFs can be changed dynamically within an
SFC, leading to more flexibility and reduced operational expenses [5].

The authors of [47] show an example of an SFC that consists of multiple VNFs: The SFC,
in this case, is used to route all incoming TCP traffic on a specific port through the SFC
before forwarding it to the destination. The SFC consists of three VNFs that are chained
in the following order: The traffic is first processed by a firewall, which forwards the traffic
to an intrusion detection system, which again forwards the traffic to an LB. SFCs benefit
greatly from Software Defined Networking (SDN), as SDN allows to dynamically allocate
VNFs [34], increasing the flexibility of SFC composition.

2.1.2 Management and Orchestration (MANO)

Although NFV and SDN enable virtual computing and reduce network commissioning
and operating costs, a need for orchestration arises [32]. Therefore, to further leverage
the virtualized environment, the ETSI Industry Specification Group (ISG) proposed a
specification and architectural framework, labeled ETSI NFV MANO, that is intended
to serve as a framework reference and does not include a concrete implementation [32].
Specific implementations that follow the ETSI NFV MANO reference are illustrated in
Section 2.1.3. The NFV MANO has various responsibilities: It handles all VNF lifecycle
virtualization specific concerns, takes care of faults that may occur in VNFs, stores the
VNF’s state information, and allows for communication between various VNFs [4]. The
MANO framework, as shown in Figure 2.1, features three functional blocks [4, 6] and is
composed of the following components:

• Virtualized Infrastructure Manager (VIM): is responsible for the NFV Infrastruc-
ture (NFVI), and monitors and handles all resources available to the NFVI [4, 6],
including the compute, storage, and networking resources [32, 31].

• NFV Orchestrator (NFVO): The NFVO has two important responsibilities: It man-
ages global NFVI resources across various VIMs and manages the Network Services
(NS) [18, 52, 41]. For that reason, it includes controller and policy components to
manage the behavior of the VNFs [31] and handles the NFVI’s requests [52, 41]. It
is also known as the NFV Network Services Orchestrator [32].

• VNF Manager (VNFM): The VNFM is connected to the NFVO and VIM, and
one of its main purposes, is to achieve high interoperability by standardizing the
VNFs [31]. Therefore, the VNFM is responsible for the lifecycle management of
VNF instances [18, 32], more precisely, it controls all VNFs in a system, is constantly
monitoring them, and can scale, update and remove them as needed [3, 6].

Additional to the functional blocks, the NFV MANO includes four repositories that are
used to store component’s metadata [4, 32]:
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Figure 2.1: NFV MANO Reference Architecture [18]

• NFV Service: This repository includes templates that define a service’s lifecycle,
i.e., on-boarding, creation, and termination [32].

• VNF Catalogue: The catalog is managed by the VNFM [4], and includes templates
describing the VNF’s attributes [32].

• NFV Instance: This repository stores the VNF’s and NS’s data [32].

• NFVI Resource: Stores NFVI’s resources [32], which are orchestrated by the NFVO
[18].

2.1.3 Frameworks

While the ETSI MANO gives an architectural representation of an NFV Framework [6],
various implementations follow its architectural approach and use it as a cornerstone.

• FENDE [6] is described as “[. . . ] the first NFV ecosystem that provides a market-
place for VNF offering together with VNF and SFC creation and life cycle manage-
ment, as well as the infrastructure support needed for VNF and SFC instantiation”.
FENDE considers three different kinds of users [6]:
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– Developers implement VNFs and submit them for review to the FENDE mar-
ketplace.

– Reviewers perform reviews on the VNFs submitted by the developers. They
inspect the VNFs thoroughly and make a verdict for the publication of the
VNF, which is either approval or denial. After approval, VNFs are published
to the marketplace.

– Customers can browse the catalog of VNFs and acquire particular VNFs.
FENDE allows instantiating VNFs on public (i.e., cloud infrastructure such
as Microsoft Azure or Amazon EC2) or private infrastructure according to the
customer’s needs. Customers can also create VNF chains to form SFCs that
serve their purposes.

From an architectural standpoint, FENDE follows the ETSI NFV MANO reference
architecture. Figure 2.2 shows the architecture of FENDE. Note that the structure
of the NFV layer matches with the reference architecture shown in figure 2.1.

Figure 2.2: FENDE Architecture [6]

• OpenStack Tacker had been announced in 2015 and is part of the open-source
OpenStack Cloud Computing Platform, which predates the MANO framework, and
includes a variety of interrelated components [59, 10]. It intends to adopt the
ETSI MANO architectural framework [10] and is described as a “generic VNFM
and NFVO to operate NS and VNFs on an NFVI” [41]. The OpenStack Tacker
architecture is depicted in Figure 2.3. In terms of VIM, OpenStack Tacker offers
the choice between using an OpenStack or a Kubernetes cluster [41]. Tacker also
makes use of the descriptive language ‘TOSCA’ to define VNF’s meta-data defini-
tions [42, 10].

2.1.4 Challenges of using NFV

Apart from all the benefits, implementing NFV also involves challenges [11, 36], some of
which are highlighted in this section:
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Figure 2.3: OpenStack Tacker Architecture [42]

• Performance is a large concern in computer networks. In conventional networks,
specialized hardware usually performs very well. However, switching from special-
ized hardware to general-purpose hardware with virtualization can lead to perfor-
mance degradation [11]. For the performance loss to be as small as possible, it is
critical to identify bottlenecks when defining an NFV architecture [36].

• The authors of [11] argue that NFV should be able to improve network security
because of its dynamic nature, allowing quick reactions in case of an incident, leading
to higher resilience. According to [36], NFV services must have the following two
properties: Firstly, they must isolate the NFV services of different customers, such
that breaches do not cascade from one customer to another. Secondly, providers
must ensure that the virtualization infrastructure is not exposed beyond the scope
of NFV services.

• Scalability of NFV solutions is of utmost importance. In order to build scalable
NFV systems, a high degree of automation is necessary [36].

• NFV must provide support for legacy NFs, as these systems are unlikely to disappear
right away [36]. Providers must be able to run NFV in coexistence with their legacy
software, to gradually migrate physical NFs to VNFs [11].

While NFV on its own is a promising concept, its benefits are amplified when combined
with SDN and cloud computing [32]. NFV can be conveniently implemented on top
of cloud infrastructure, as cloud computing provides the virtual network infrastructure
needed for this purpose [36]. However, the challenge of using cloud computing to imple-
ment NFV is performance: Cloud providers are expected to provide (telephone) network
carrier-grade performance. Otherwise, implementing NFV on cloud infrastructure might
be infeasible except for PoC scenarios [36]. In other words, cloud computing is an enabler
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for NFV [11]. NFV and SDN complement each other very well [11]: Using SDN to imple-
ment NFV can lead to improved performance as the control plane is separated from the
data plane, thereby positively affecting network operations, e.g., simplification and faster
innovation. Another scenario is mentioned in [36]: SDN controller can be run as a VNF
inside an SFC.

Figure 2.4 summarizes the commonalities and differences of NFV, SDN, and cloud com-
puting. One essential point to notice is that each of these three concepts provides some
form of abstraction: NFV provides an abstraction over functions, SDN provides an ab-
straction over networking, and cloud computing yields an abstraction over computation
[36].

Figure 2.4: The commonalities and differences of NFV, Cloud
Computing, and SDN [36]
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2.2 Blockchain

The concept of BC was first introduced in 2008 when Bitcoin entered the market for
electronic cash solutions [53]. BC, the technology Bitcoin relied on, was what set it
apart from other electronic cash solutions, as it enabled Bitcoin to function in a practical
setting, solving the issue of ‘double-spending’, which refers to a given coin being spent
twice, without requiring any central authority or Trusted Third Party (TTP) to verify
transactions [53].

The rest of this chapter will detail different relevant aspects of BC technology in terms
of the work done in this project. Section 2.2.1 will serve as a high-level introduction to
the technical concepts and the consequently emerging properties of BCs. Following this,
Section 2.2.2 highlights how different BC implementations may vary from each other on a
technical level, depending on what kind of purpose or application a given implementation
is designed for. Additionally, the implications of those variations will be discussed. Lastly,
Section 2.2.3 offers a deep-dive into SCs, providing a general overview over SCs with a
particular focus on BC-based SCs.

2.2.1 Technical Introduction to BC Technology

A BC, at its core, is a distributed ledger, a data structure which is stored in a distributed
fashion, i.e., on multiple devices, that fulfills specific criteria regarding its implementa-
tion [33].

Structurally, a BC is organized as a chain of blocks, each containing multiple transactions
that have occurred on the BC [33, 64]. This BC data structure furthermore is append-
only, meaning new transactions can only be added as a new block to the tail-end of the
chain [64]. Appending a new block means creating a cryptographical link to the previous
block by including its hash value [33].

This leads to BCs being ‘tamper-resistant’, with that resistance increasing for a given block
as additional blocks are appended. Thus, the content of a block that is sufficiently old is
exceedingly difficult to change [64]. Should such an attempt at modifying a block nonethe-
less be successful, the change will be noticed, due to BCs being ‘tamper-evident’ [64].

Note that the property of ‘tamper-resistance’ is referred to by other authors as ‘immutabil-
ity’, as in e.g., [53, 33]. For the sake of consistent terminology, for the rest of this report,
the term ‘immutability’ shall be used, as its meaning, in our opinion, is easier to grasp.

In terms of networking, the devices which participate in the BC, called ‘BC Nodes’, are
organized as a peer-to-peer (P2P) network with, consequently, no governing centralized
authority [33]. Thus, it requires the state of the ledger maintained on the participating
devices to be coordinated, such that a global ‘consensus’ is reached [33]. To achieve said
consensus, so-called ‘PoX ’ or ‘Proof-of-X ’ mechanisms, such as ‘Proof-of-Work (PoW)’
(utilized e.g., in Bitcoin [64]) are used [33].
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2.2.2 BC Diversity

Different BC implementations may vary from each other in several ways, ranging from the
consensus mechanism and the amount of throughput, in terms of transactions per second,
to even the underlying data structure [53]. The BC Platform IOTA, for example, uses
a Directed Acyclic Graph (DAG) instead of the chain of blocks usually associated with
BC [53].

Another aspect in which BC implementations may differ is their ‘deployment type’ [53].
The deployment type is a combination of two axes of permissions, with ‘public’ and ‘pri-
vate’ concerning the read permissions and ‘permissionless’ and ‘permissioned’ representing
write permissions [53]. Figure 2.5 presents an overview over the four resulting deployment
types.

Figure 2.5: BC Deployment Types [53]

Note that according to [53] only implementations which are both public and permissionless
are to be categorized as BCs, from the perspective of analyzing a ‘distributed application’.
Thus, there are two sets of lenses through which categorization may be performed, one
which focuses only on the underlying data type, in which all of the four deployment types
are seen as BCs, and the other, which as previously discussed, only recognizes public
permissionless implementations as BCs [53].

The takeaway here should be that there is indeed diversity when it comes to BCs. [33]
discuss in depth that said diversity has implications on what kind of BC is the most fitting
given the use-case at hand. Furthermore, SCs are not supported by all BCs to the same
degree [53, 33].

Ethereum [8], e.g., allows for the writing of Turing-complete SCs in languages such as
e.g., Solidity, which then are executed on the Ethereum Virtual Machine (EVM) [53, 33].
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In contrast, the SCs supported by Bitcoin are simple scripts [53], which are run natively,
as they are an integral part of the Bitcoin protocol [33].

2.2.3 Smart Contracts

The concept of an SC is not exclusive to the context of BCs, as it has been introduced
before the invention of the BC [53]. Fundamentally, the idea of an SC is to serve as
a computerized program that enforces the terms of a contract between parties in an
automated fashion, thus removing the need for intermediaries in the form of TTPs [33].

The properties offered by the BCs, such as the decentralized nature and the immutability
of the stored data, make BC a very suitable medium for SCs [53]. BC-based SCs (note,
from here on out, the term SC shall refer to BC-based SCs unless stated otherwise) differ in
their implementation based on the BC platform in question as mentioned previously [53].

The rest of this section will be dedicated to exploring the differences between Turing-
complete and non-Turing-complete SCs and afterward provide more details specifically
regarding SCs on Ethereum [8], as most BC platforms implement the same model [53]
and our work will utilize Ethereum SCs. Lastly, some insights into Solidity, the SC
programming language of choice for our project, will be provided.

Turing-Complete vs. Non-Turing-Complete SCs

The term ‘Turing-complete’ (TC) is used in computer science to refer to the expressive
power of a given programming language [35]. A programming language is labeled as TC
if, by the application of a translation schema, it can be shown to have the capability to
“express the same computations as a Turing machine” [35].

To put it more succinctly, TC programming languages can perform “unbounded compu-
tations over unbounded values” [35]. In practice, this means that a TC programming
language may e.g., perform loops [53].

Non-TC programming languages are not as powerful in that respect and are thus less
expressive than their TC counterparts [35]. It is worth noting that all TC programming
languages are seen as equally expressive [35].

Returning to the topic of SCs, both platforms that provide TC and non-TC SC capabil-
ities exist, with an example for the former being Ethereum and one for the latter being
Bitcoin [53]. Given what was stated above, it is thus unsurprising that SCs written in a
TC programming language (such as e.g., Solidity) have a greater range of computations
they can perform when compared to their non-TC counterparts [50]. It would be an over-
sight, however, to present TC SCs as strictly superior, as with their higher expressiveness
there also come increased security risks [50].
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Ethereum SCs

Since our work will be based on Ethereum SC capabilities, it is essential to establish how
SCs operate on Ethereum beforehand.

Figure 2.6: Ethereum SC Deployment Software Stack [53]

Figure 2.6 depicts the software stack used for deploying and running SCs on Ethereum.
The contract itself is implemented in a high-level language such as e.g., Solidity, which is
fully TC [53, 33]. From that, so-called ‘EVM opcode’ is generated, which is then executed
on the EVM [53].

Each Ethereum Node must host an EVM instance [33]. The EVM is of vital importance,
as it ensures that ultimately the execution environment is identical at each node of the
system [53]. The EVM, as the name suggests, is a virtual machine, hence is isolated from
the node it runs on, but with the capability to interact with the host Operating System
(OS) [53].

One essential part of Ethereum SCs, is the concept of ‘gas’ [53]. Since SCs are executed
on the nodes running EVMs, Ethereum needs to put some system in place to prevent the
BC from effectively being DDoS-ed by e.g., deploying an SC that performs an infinite
loop [53]. That system, called an ‘incentive scheme’ by [53] is the aforementioned gas. In
simple terms, SCs which are more complex incur higher gas costs to account for the fact
that they are more costly to both deploy and operate [53].

Solidity

The official documentation describes Solidity as an “object-oriented, high-level language
for implementing smart contracts” [28]. It was inspired by programming languages such
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as C++, Python, and JavaScript and is specifically built to run on the EVM [28].

Solidity also is categorized as TC [53, 33] and is still being actively developed judging by
the version number and number of pull requests on their Github repository [27].

One feature of Solidity that will be of particular importance to this project is called
‘Events’. Events provide the ability to write data to EVM’s logging system, leading to
the data being persistent on the BC [28]. Applications outside the BC can subscribe
to these events through the use of an Ethereum client [28]. Notably, the events are
associated with the address of the SC that emitted them [28], which essentially allows
external applications to react to what happens on a given SC.

1 // SPDX -License -Identifier: GPL -3.0

2 pragma solidity >=0.4.21 <0.9.0;

3
4 contract ClientReceipt {

5 event Deposit(

6 address indexed _from ,

7 bytes32 indexed _id ,

8 uint _value

9 );

10
11 function deposit(bytes32 _id) public payable {

12 // Events are emitted using ‘emit ‘, followed by

13 // the name of the event and the arguments

14 // (if any) in parentheses. Any such invocation

15 // (even deeply nested) can be detected from

16 // the JavaScript API by filtering for ‘Deposit ‘.

17 emit Deposit(msg.sender , _id , msg.value);

18 }

19 }

Listing 2.1: Solidity Event Emission Example [28]

Listing 2.1 shows an example of how events are declared and emitted. The example is
taken from the official Solidity documentation page about events [28]. One thing worth
noting is the indexed keyword as used in lines 6 and 7 of the Listing. If a parameter is
marked as indexed, it is added to a part of the logging output called ‘topics’, with the
main benefit of having parameters in the structure of the topic being that they can be
used as filtering criteria when searching for events [28].
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Chapter 3

Related Work

This chapter presents related projects in the areas of NFV and BC. Starting with a section
on the combination of BC and NFV, a variety of solutions are presented. Furthermore,
the described solutions are compared and discussed in detail as well as distinguished from
this work.

3.1 BUNKER

The idea of BUNKER [51] is to provide a trusted immutable VNF package repository
without a centralized TTP. It addresses the problem of assuring that VNFs in the package
repository have not been manipulated. It does so by leveraging SCs on top of the Ethereum
BC, as the latter provides immutability and decentralization, eliminating the necessity of
relying on a centralized TTP [51].

BUNKER considers two kinds of actors [51]:

• Developers implement VNF packages and publish them to the repository. They
also collect the licensing fees of their packages.

• Users buy VNF packages from the repository and install them to their infrastructure
after verifying the VNF package integrity.

Figure 3.1 shows the architecture of BUNKER. In contrast to FENDE, BUNKER does not
implement the NFV MANO components but allows the use of third-party solutions [51].
BUNKER leverages the BC for two purposes: Licensing and verification. The former
involves the purchase of licenses for the usage of VNF packages, where the customer
performs a transaction on the BC to obtain a license. The latter involves the package
verification process when downloading a VNF package. In particular, the hash of the
downloaded package is computed and then compared to the hash stored in the BC. If
they match, the customer can be sure that the package had not been tampered with [51].
The verification process utilizes the immutability property of the BC, which ensures that
the original hash value cannot be altered after creation. When a license is acquired, an
SC event will be emitted, which causes subscribing applications to react accordingly [51].

15
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Figure 3.1: BUNKER Architecture [51]

3.2 BRAIN

BRAIN is described by its authors as a ‘blockchain-based reverse auction’ for infrastruc-
ture supply in Virtual Network Functions-as-a-Service (VNFaaS) [22]. BRAIN relies on
the fact that the introduction of NFV simultaneously leads to the creation of market
opportunities for competing VNF solutions [22]. Such a market allows infrastructure
providers to compete for customers to host VNFs on the providers’ respective NFV-
enabled infrastructure [22]. This competition is where BRAIN comes into play, as it
presents providers of NFV-enabled infrastructure with a way to compete for customers in
a less ‘static’ fashion [22].

The authors elaborate that traditionally, providers would pursue a strategy of marketing
their service openly, meaning the conditions and prices of the services are observable by
all potential customers, who then choose the service that best fits their use case [22].
The drawback of such a system is that ultimately the offers are not customized to the
customers’ needs leading to the competition between the providers to be, as the authors
call it, ‘rather static’ [22].

In contrast, the mechanism proposed by BRAIN implements a reverse auction, meaning
the sellers (in this case the providers) compete for buyers by, upon receiving a request
for VNF hosting, submitting a sealed bid to the prospective customer that ends up being
tailored much more closely to both the needs of the customer as well as the expenses of
the providers [22]. This is due to the provider being able to estimate on a per-customer
basis what the costs of providing their services would amount to [22]. From the customer
perspective, the fact that the mechanism, after all, follows sealed bidding, leads to overall
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lower prices, as the providers are not aware of the offers made by the competitors, hence
are incentivized to present offers at competitive prices [22].

The auction mechanism used in BRAIN is reliant on BC-based SCs and the immutability
provided by BC technology to facilitate permanent records of a given auction, including
the customer’s requirements regarding VNF hosting and the full history of bids, allowing
for bids to be audited [22].

Figure 3.2: BRAIN Architecture [22]

Figure 3.2 depicts the architecture of BRAIN’s implementation. Discussing the architec-
ture in its entirety would exceed the scope of this section. Instead, the following para-
graphs provide an overview of the process of holding an auction, including the components
involved in each particular stage.

The process starts with an end-user browsing a marketplace and acquiring a VNF [22].
The specifications (priorities of the end-user and requirements imposed by the purchased
VNF) are submitted to the so-called ‘SC Creator’ who creates an SC based on them [22].
Once done, the SC is deployed on the BC by the ‘Auctioneer’, who also notifies the
providers that an auction has been opened [22].

This notification is sent via the ‘Bid Manager’, who interfaces with the infrastructure
providers [22]. The bid manager furthermore implements an automated bidding mecha-
nism based on configurations provided by the providers as well as the current status of
the infrastructure [22].

Once the auctioneer terminates the bidding process, the bids are evaluated and the best
bid is communicated to the end-user at the marketplace [22]. The process then concludes
with the initialization of the VNF deployment [22].



18 CHAPTER 3. RELATED WORK

3.3 B-VNF

B-VNF, short for “Blockchain-enhanced Architecture for VNF Orchestration in MEC-
5G Networks”, is a project focused on utilizing BC technology to provide a secure way
of performing VNF orchestration for Multi-Access Edge Computing (MEC) enabled 5G
networks [37].

The purpose of MEC, according to [37], is to provide computational capabilities as well
as storage facilities at the edge of the given network. For MEC to perform optimally,
the network must be capable of migrating VNFs from cloud servers to the network edges
when they are required there [37].

Migrating VNFs poses several security issues: For instance, VNF requests between the
MEC node and the cloud may be subject to manipulation, or a VNF might be tampered
with during migration [37]. To combat such issues, B-VNF employs the capabilities of
BC technology by treating BC as an overlay P2P network built on top of the MEC-5G
network [37]. As a consequence, B-VNF can perform operations that are prone to security
issues, such as the said VNF requests and VNF migration, through BC transactions, which
then enhances their security [37].

Figure 3.3: B-VNF Architecture [37]

In Figure 3.3 the main components and types of interactions are shown. The following
paragraphs will highlight the main insights into this graph. For more detailed information,
refer to the original article by [37].

The ‘VNF Orchestrator’ is the component that is responsible for coordinating the dif-
ferent steps involved in the process [37]. Its tasks include accepting or rejecting VNF
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advertisements by third-party VNF providers, validating VNF requests from MEC nodes,
evaluating which VNF is most suitable for the given request by taking into account the
reputation system, as well as performing the VNF migration. Furthermore, it is responsi-
ble for facilitating secure payments to third-party VNF providers, as well as maintaining
the reputation system [37].

Third-Party VNF Providers advertise their product by uploading it to the InterPlane-
tary File System (IPFS), from where they receive the hash which uniquely identifies the
given VNF [37]. This hash then is used in a ‘Request Contract’, submitted to the VNF
orchestrator, detailing information about the VNF in question [37].

From a User Equipment (UE) perspective, B-VNF provides the ability to issue a ‘Service
Request’ to a given MEC node [37]. The MEC node then determines whether the VNF
requested by the service request has already been deployed. If so, the request is abandoned.
If not, the MEC node submits a ‘VNF Request’ to the VNF orchestrator, which then leads
to the migration of the requested VNF to the MEC node [37].

3.4 Xevgenis et al. (2020)

The authors of [63] propose a ‘distributed broker mechanism’ that aims to allow Network
Providers (NPs) to dynamically allocate computational and networking resources across
their administrative boundaries. With this mechanism then, the scope in which resources
can be traded is increased from within the network of a given NP to the entire collection
of networks that belong to the participating NPs [63].

Figure 3.4: B-VNF Architecture [37]

In Figure 3.4, the system architecture can be observed. The architecture laid out by [63]
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assumes that each participating NP runs a ‘MANO’ instance responsible for the orches-
tration of resources within the NPs network.

The trading mechanism which enables resource sharing between the different NPs net-
works is based on BC technology and requires the participating NPs to each operate a BC
node [63]. If a given network now requires additional resources, its MANO component
triggers the corresponding BC node via the use of oracles, which leads to the logic hosted
in the SC being executed [63].

The SC essentially searches for the best match in terms of the required resources by
comparing the resources offered by the other participating NPs [63]. Once that best
match is found, transactions on the BC facilitate the payment for the lent resources [63].

The authors put particular emphasis on the evaluation of the system in terms of feasibility
concerning the BC-based coordination mechanism [63]. Their BC of choice is a custom
Quorum network, as it has the capability of performing private transactions [63]. The
evaluation ultimately yields positive results ranging from, in the authors’ words, ‘adequate’
regarding throughput to ‘more than affordable’ in terms of costs [63].

3.5 BSec-NFVO

As NFV is often based on public cloud infrastructure, trust issues can arise in the life cycle
of VNFs and SFCs built on top of these infrastructures. In particular, these multi-tenant
and multi-domain environments with shared cloud infrastructures enhance the offers of
attacks, with potentially huge repercussions due to potentially large user bases [48]. BSec-
NFVO is a BC designed to overcome these trust issues by logging all orchestration in-
structions in an immutable manner. Therefore, BSec-NFVO implemented its own version
of a Practical Byzantine Fault Tolerance (PBFT) algorithm, as this allowed to rapidly
reach a consensus while promising robustness up to 1

3
malicious nodes [48].

The architecture of BSec-NFVO is depicted in Figure 3.5. Users can issue orchestration
instructions in the visualization module. These instructions are then signed and stored
onto the BC, which ensures auditability of user actions. The instructions are then for-
warded to the orchestration module, which processes them and protocols the execution of
the instructions in the BC. The BC module provides an interface for both visualization
and orchestration modules, and it also contains a copy of the BC itself [48].

As a result, all changes to the NFV infrastructure are immutably recorded in the BC.
Both the user issuing an instruction and the orchestrator executing the instruction are
logged, thereby establishing trust between the involved parties [48].

The authors note that a prototype has successfully been deployed, with the finding showing
that the additional BC and transaction validation did not greatly affect the system’s
throughput, and the system stayed stable when increasing the number of participants or
when increasing the instruction message sizes [48].
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Figure 3.5: BSec-NFVO Architecture [48]

3.6 VMOA

With virtualization being the underlying concept of NFV, the security of VMs is of utmost
importance. In [7], the authors present VMOA, which is an authentication mechanism for
the secure orchestration of VMs. While the original version of VMOA relied on a central-
ized database, there is also a decentralized version of VMOA leveraging BC technology
to authenticate orchestration commands.

VMOA is defined in terms of the following actors and components [7]:

• Orchestrators manage virtualization servers by issuing management commands to-
wards them.

• The Virtual Machine Manager (VMM) is an interface component that lives inside
the virtualization server. It represents the interface for communication with the
orchestrator.

• Virtualization servers are physical machines running virtualization software. They
are responsible for hosting the VMs.

• VMOA BC is a distributed ledger that is responsible for authenticating orchestration
commands. The authors of [7] plan a PoC based on Hyperledger Fabric, as it fits
the needs of VMOA.

Figure 3.6 shows an overview of the VMOA architecture. Orchestrators send a request
to VMOA in the shape of a transaction on the BC. The orchestrator then sends an
orchestration command to the VMM inside the virtualization server, which authenticates
the command using the VMOA BC. The authentication is successful if a BC transaction
for the respective command is found. In this case, the orchestration command is executed.
If the authentication fails, the command is not executed [7].

3.7 BloSS

In [49] BloSS was used in a defense system against DDoS attacks since centralized de-
fense systems are lacking hardware or software capabilities to mitigate large-scale DDoS
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Figure 3.6: VMOA Architecture [7]

attacks. Using a consortium-based BC and SCs, this approach allows the signaling of
DDoS attack information that (a) is reduced in complexity and (b) allows for the use of
financial incentives [49]. The system uses existing DDoS detection and mitigation frame-
works, and in Figure 3.7 the architecture in an SDN-based network is portrayed, though
the decentralized Application (dAPP) is not restricted to only SDN and includes three
layers [49]:

• The SCs, deployed on the Ethereum [8] BC, where a ‘central SC’ stores the IP
network addresses of each Autonomous System (AS) and the address of each AS’s
immutable SCs, which store the addresses that each entity manages.

• The dApp represents a client which serves as an interface to the Ethereum BC, as
well as databases storing persistent configurations.

• The SDN controller that monitors and enforces rules.

The system includes various ASes, and each uses operates IP networks and uses its own
SC [49]. When an AS detects an attack, it requests cooperative defense by performing a
transaction on the SC of the AS that operates the attacker’s IP address, e.g., requesting
to block the attacker’s IP address [49]. Upon completion of the block mining process, the
requested AS can, based on its own policies and threshold, decide which action to take,
e.g., whether to block the requested IP addresses [49].

The authors note that using a consortium-based BC enables security and trust since the
participating entities are known [49].
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Figure 3.7: BloSS architecture in a SDN-based network [49]

3.8 Alvarenga et al. (2018)

[2] proposes a BC-based architecture that enables the secure configuration management
and migration of VNFs. The usage of NFV and SFC inherently adds vulnerabilities to
the network. Thus, it is paramount to reduce the potential attack vectors and employ a
secure method to manage configurations since threats in the network core can potentially
affect a great amount of traffic flow and immediately also a large number of users [2].
The authors note, that a compromised VNF, such as a firewall or intrusion detection
system would endanger all traffic flow that is forwarded through this VNF [2]. Therefore,
auditability, non-repudiation, and immutability of the configuration history are key since
these aspects enable the identification of faults and compromised VNF configurations [2].
Hence, their proposed architecture is BC-based, since BC enables immutability and trace-
ability, offering the required auditability [2]. Furthermore, the consortium-based BC uses
PBFT to reach consensus due to its low latency and acceptance of malicious behavior
from up to 1

3
of nodes, enabling the integrity and consistency of transactions [2].

The architecture, cf. Figure 3.8, does not require any changes to the NFV or orchestration
platforms and is agnostic to hardware or cloud platform architectures, and contains three
modules [2]:

• BC Modules are located in the data centers and connected to other BC modules.



24 CHAPTER 3. RELATED WORK

They each host a replica of the BC and are responsible to reach a consensus with
the other BC modules.

• VNF Client Module are connected to one or more BC modules and run on each
VNF of the architecture, implying that a change to the VNF software is necessary
since the module requires installation and reading of configurations and pertinent
states.

• Tenant Client Module “is run by VNF owners” [2] and serves as an interface for the
configurations and sending transactions to BC modules.

Figure 3.8: Architecture of [2]

Their work includes two types of transactions, (i) configuration transactions, which are is-
sued by client modules to install the specified configuration, and (ii) configuration request
transactions, which are used to request configuration states of VNFs [2]. The idea is that
by employing asymmetric encryption on the transactions using various key pairs between
the modules, the anonymity of VNFs and tenants and the confidentiality of the VNF
configuration states are ensured while still offering auditing capabilities due to storing the
encrypted transaction information on the BC [2].

Next to configuration management of VNFs, their work also offers migration of VNFs,
since the authors note that VNF instances do not require past state information and are
destroyed when shut down. Hence, VNF instances can simply be migrated by creating a
new VNF instance in a new location, then transferring its configuration state, and finally
wiring up the new VNF instance in the SFC [2].
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3.9 Rebello et al. (2019)

Network slicing is often implemented on top of multiple cloud platforms, leading to trust
issues and security problems alike. The authors of [19] describe an architecture to secure
VNF orchestration and configuration by using BC technology for network slicing. Their
goal is to make all orchestration commands auditable by writing them to the BC as
a transaction. Concerning the VNF configuration management, each configuration is
persisted on the BC, such that non-repudiation of configuration changes is achieved [19].

The architecture as depicted in Figure 3.9 defines the following components [19]:

• A Network Slice consists of multiple VNFs depending on the needs of a particular
network segment.

• For each network slice, a separate BC is created by the BC creation server. Note
that the type and characteristics of each BC will depend on the requirements of
the corresponding network slice. The purpose of this BC is to track the VNF
configuration changes of a network slice.

• The Global Manager consists of four modules: NFV-MANO, management BC
server, BC creation server, and a user interface. The management BC server is of
particular interest, as it keeps record of all the orchestration requests issued through
the user interface by the users.

Figure 3.9: Architecture of [19]

For the prototype, the authors implemented two SCs: The first SC is deployed on the
management BC. It is responsible for handling VNF orchestration commands and no-
tifying the NFV-MANO component (NFV-MANO component polls for changes on the
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BC) when there is work for it to do. The second SC is deployed on a network slice BC
and is responsible for managing the VNF configuration changes of the mentioned network
slice [19].
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3.10 Comparison and Discussion

Although all solutions portrayed earlier in this chapter employ BCs to address particular
issues, their rationale for using BCs is different. Table 3.1 compares these solutions to the
solutions proposed in this report, highlighting their differences.

Table 3.1: Related Work Comparison

Solution BC Type MANO Aspect BC Signaling
Automatic VNF

Deployment
Use Case

[51] Public VNF Catalogue 3 7 Generic
[22] Public - 3 7 Generic
[63] Public/Private - 3 7 5G/6G
[37] Public NFVO/VNFM 3 3 5G
[48] Private NFVO 7 7 Generic
[7] Private NFVO 7 7 Authorization
[49] Consortium - 3 7 DDoS Defense
[2] Consortium VNFM 7 7 Conf. Management
[19] Any NFVO/VNFM 7 3 Network Slicing

This work Public NFVO/VNFM 3 3 Generic

Particularly, BUNKER [51] uses BC-based SCs both for their licensing and verification
system. For the licensing, the SC emits events whenever a license is acquired. The ver-
ification system stores hashes of the published packages into the BC [51]. Furthermore,
BRAIN [22] utilizes the power of BC-based SCs to create immutable bidding records
for each auction which then can be audited and thus offer non-repudiation [22]. Simi-
larly, BSec-NFVO primarily uses BC to offer auditability, non-repudiation, and integrity
possibilities to secure the orchestration operations [48]. B-VNF [37] takes yet another
approach and bases their orchestration architecture on a range of SCs that fulfill differ-
ent tasks within the system [37]. The project laid out in [63] similarly utilizes BC for
orchestration. In this case however, the BC is utilized for resources that are shared with
networks of other providers instead of resources within a given provider’s network. VMOA
leverages BC technology to authenticate VM orchestration commands to guarantee their
integrity [7]. The work by [2] uses BC to store encrypted configuration management
transactions and thereby also offers the migration of VNFs, enabling the auditability of
the configuration history in the process. The architecture described in [19] uses SCs on
multiple BCs to provide auditability and non-repudiation over VNF orchestration com-
mands as well as VNF configuration changes on particular network slices. In contrast to
the aforementioned works, BloSS [49] employs BC to allow for a distributed, decentralized
and less complex cooperation method in order to signal DDoS attack information [49].

This work differs from the aforementioned solutions in the way BC is utilized. While
in the other works, the BC is mainly used to achieve auditability, non-repudiation, and
integrity, this work specifically leverages BC signaling through SC-based events to allow
automatic VNF deployment.
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Chapter 4

Design and Implementation

Starting with a section on the capabilities and features, this chapter shows both design and
implementation of blockchain-v (BCV). The section on design provides an architectural
overview of the application. The implementation section focuses on the practical part of
this work. In particular, it shows how the presented architectural elements are realized in
terms of technology choices, including events, authentication, and authorization.

4.1 Capabilities and Features

This section shows the features and capabilities of BCV, focusing on functionality from
a user’s perspective. The architectural and technical details are presented in Sections 4.2
and 4.3 respectively.

• Register User: Users who want to use the BCV system must register to gain access
to the system. Thus, registration is the first step before any other action can occur.
Thus, it is the first step of authenticating the user, which is the precondition for
most other use cases.

• Unregister User: Users can unregister from BCV if they do not wish to use the
system anymore. This action revokes the user’s ability to interact with the system,
including VNF deployment and deletion. After unregistering, the user has no access
to the system anymore, apart from the option to perform a new registration to
obtain access again.

• Create VNFD: Registered users can create new VNF descriptors. These descrip-
tors are shared amongst all users and serve as templates for deploying new VNFs.
The templates can also contain parameters, which are to be filled in during the
deployment of a VNF.

• Create VNF: Creating a new VNF is the most critical use case of BCV. This feature
is available for registered users only. The user selects a VNF descriptor and fills in
the required parameter values. Afterward, the user can initiate the deployment of
the new VNF.

29
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• Delete VNF: Registered users can delete their created VNFs. This feature is only
available for registered users, as authentication is required to ensure that users can
only delete their VNFs.

• Show VNFDs: Users can list all VNF descriptors registered in the system, including
descriptors created by other users.

• Show VNFs: Users are provided an overview of their deployed VNFs, including the
technical details about each VNF such as IP addresses, the descriptor used to create
the VNF, and the life-cycle state.

4.2 Design

In the following section, an overview of BCV’s architecture is provided. In contrast to
the implementation section, this section is technology-agnostic, showing the components
and their respective responsibilities. The components described below are also depicted
in Figure 4.1.

Figure 4.1: Architecture of blockchain-v
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4.2.1 Frontend

The frontend provides a convenient way to interact with the BCV system. It is the entry
point for the user, and it consists of multiple components, which are defined as follows:

• User Interface: The User Interface (UI) acts as a facade between the user and
the rest of the system. It provides access to the backend to retrieve the details of
instantiated VNFs. Furthermore, the user can manage VNF descriptors on the UI,
which are persisted through the backend to the NFV Framework. The UI also offers
a way of interacting with the SC, namely for user registration and VNF life-cycle
operations.

• Blockchain Wallet: The BC wallet is used to interact with the BC. The user holds
his BC account in the BC wallet and uses it to call methods on the SC and listen
to events emitted from the BC.

• Smart Contract Connector: The SC Connector (SCC) enables a convenient way
for the frontend to interact with the BC by prompting the user to choose the BC
account desired for the interaction. Furthermore, it offers all the needed abstractions
to interact with the BC. The SCC also facilitates the creation of digital signatures,
which is used in BCV’s authentication scheme.

Note that the frontend is also substitutable by other applications, such as BloSS [49]. The
other BCV components are designed not to distinguish between the BCV frontend and
any other consumer of BCV’s services. This statement is true for both the SC’s RPC
methods and the backend’s REST API.

4.2.2 Smart Contract

The SC is responsible for signaling events between the frontend and the backend. Thus,
it provides RPC functions for the life-cycle management of VNFs and user management.
Users must register on the SC, as it enables restricting VNF life-cycle operations to the
owner of a VNF. Without authentication, it would be possible to alter the VNFs of other
users, which is not desired. The SC is the single source of truth for VNF allocations (i.e.,
which VNF belongs to whom).

Considerations have to be made regarding the data storage on the BC. While VNF-user
mappings can easily be stored by the SC (i.e., on the BC), VNF descriptors and VNF
details can be rather large in size. To avoid scalability issues, BCV manages these two
aspects in the backend.

4.2.3 Backend

The backend provides an abstraction of the NFV framework, i.e., it isolates the NFV
framework from the rest of the BCV system. Hence, it is the only component interacting
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with the NFV framework. Thus, the backend is the most integrated component of BCV,
as it interacts with the frontend, the SC, and the NFV framework. The backend consists
of the following components:

• Smart Contract Connector: Similar to the frontend, the backend also makes use
of an SCC. In this case, the SCC is used to subscribe to events emitted by the SC.
Also, the SCC enables the backend to retrieve a user’s VNF allocation. In addition,
the backend also calls the SC’s RPC methods to provide feedback concerning user
registration and VNF life-cycle operations.

• Event Listener: The event listener uses the SCC to listen to user registration and
VNF life-cycle events. These events represent commands for the backend to execute
against the NFV framework. Once the event listener detects an occurring event, it
reacts to it by executing the predefined action for this particular event. This action
involves calling the NFV framework connector to perform life-cycle operations or
interacting with the database accessor to handle user registrations.

• Database and Database Accessor: The database accessor is used to retrieve and
store user and authentication information on the database. The database accessor
and consequently also the database are used both by the event listener as well as
the REST API component.

• REST API: The REST API acts as a backend-for-frontend. It offers endpoints for
handling VNF descriptors, accessing VNF details, and authentication. The former
two endpoint types transfer data that would be infeasible to store on the BC because
of their size and frequency.

• NFV Framework Connector: The NFV framework connector is used by the REST
API and the event listener. It consumes the NFV framework’s REST API, which is
exposed by the backend to execute VNF life-cycle operations.

4.2.4 Authentication

The SC is responsible for user authentication, as it needs to know the addresses of users
who want to execute VNF life-cycle operations. In Solidity, msg.sender yields the address
of the caller, which is used for authentication in this case.

The backend is responsible for authenticating users when using the REST API. The
frontend first asks the backend for a nonce. Afterwards, the frontend asks the user to
digitally sign the nonce (to prevent replay attacks) and then submits the signature with
the nonce and the user’s address to the backend’s REST API via HTTP POST. The
backend verifies if the signature is valid. If the signature is valid, the backend generates
a token (e.g., JWT) and returns it to the frontend. If the signature is not valid, the API
denies the issuance of the token by returning HTTP status code 403.
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Figure 4.2: Process of obtaining an authentication token

4.2.5 Authorization

In terms of SC authorization, BCV distinguishes multiple scopes. First, only registered
users are allowed to deploy VNFs. Second, VNFs are only modifiable by their creators.
Third, registered users are allowed to retrieve their VNFs, including all the details stored
in the SC. Fourth, the creator of the SC can nominate a backend by registering its ad-
dress in the contract. Lastly, the report functionalities (i.e., reportDeployment, report-
Deletion, reportRegistration, and reportUnregistration) are only accessible to the
registered backend. The detailed permissions on the SC are shown in Table 4.1.

The backend allows users to retrieve their VNFs and all the registered VNFDs. The
authorization process requires a valid token (e.g., JWT) to identify the user and decide
on the authorization. This token is verified as follows (cf. Figure 4.3): The frontend
includes the token in the Authorization HTTP header. The backend validates the token,
which also involves checking whether the token has expired. It should be noted that



34 CHAPTER 4. DESIGN AND IMPLEMENTATION

Table 4.1: Permission matrix of SC operations

SC Operation User SC Creator Backend

registerUser 3 3 3

unregisterUser 3 3 3

deployVNF 3 7 7

deleteVNF 3 7 7

registerBackend 7 3 7

reportRegistration 7 7 3

reportUnregistration 7 7 3

reportDeployment 7 7 3

reportDeletion 7 7 3

getVnfs 7 7 3

the authors are aware that this implementation does not offer resistance against every
known attack vector. However, as the scope of this work is not the authentication and
authorization of REST APIs, this mechanism serves as a placeholder and could easily be
replaced with a standardized protocol (e.g., OpenID Connect [21]) in the future.

Figure 4.3: Process of verifying an authentication token
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4.2.6 NFV Framework

The NFV framework implements the MANO functionality by exposing a well-defined API.
This API is where BCV’s backend integrates with the NFV framework. Hence, BCV is
agnostic to such a framework’s implementation, meaning that the NFV framework is
interchangeable. For this purpose, only the NFV framework connector of the backend has
to be adjusted. Internally, the NFV framework comprises the following components:

• REST API: The REST API provides endpoints for all aspects of VNF management
and orchestration. These aspects include (but are not limited to) virtualization
infrastructure management, network configuration, VNF descriptor handling, and
VNF life-cycle operations. BCV uses primarily VNF descriptor and VNF life-cycle
endpoints, while the other aspects are pre-configured during setup.

• VNF Manager: The VNF manager offers the functionality behind the exposed
REST APIs, namely VNF life-cycle operations. It translates life-cycle requests to
orchestration commands on the VNF infrastructure.

• VNF Infrastructure: The VNF infrastructure represents the lowest level of the NFV
framework. It handles the virtualization aspects such that VNFs can be instantiated
on top of it.

4.3 Implementation

This section highlights the key aspects and details of BCV’s implementation. Thus, the
technologies used for the individual components are presented (cf. Figure 4.4), alongside
the interplay of these components, showing how the functionality specified in Section 4.1
is achieved from a technical standpoint.

4.3.1 Frontend

The technology of choice for the frontend was the JavaScript framework ‘Vue.js’ [66],
as the goal was to create a web application, and there was prior experience with the
framework within the team. As already alluded to in Section 4.2.1, the frontend is, by
design, not a required component of the system and can be substituted. Alternatively,
an entirely programmatic approach is also possible, where not frontend is used at all
and interactions with the SC and backend are performed directly, without a frontend
as intermediary. Consequently, this section only discusses aspects of the frontend that
provide functionality to the BCV system, which substitutes of the frontend also would
have to address.
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Figure 4.4: Components of BCV

State Management

To simplify the data flow between the individual Vue components of the frontend, the
decision was made to use the ‘Vuex’ library, which introduces state management patterns
that essentially result in a data store that is globally accessible within the entire frontend
application [29]. Thus, data from backend calls, contract calls, incoming contract events,
as well as just regularly accumulating state used to manage the UI could be easily made
accessible to whatever component or service required it.

Wallet and Ethereum API

The crypto wallet the frontend is designed to work with ‘MetaMask’ [1]. It is available
as an extension for various browsers, such as Google Chrome and Firefox. Its purpose for
the BCV system is to hold the accounts and keys with which transactions are sent from
the frontend to the SC, as well as to serve as part of the UI, such that users can confirm
transactions and, if needed, provided signatures.

From the perspective of the frontend codebase, the library ‘web3.js’ [23], was used to
connect to Ethereum nodes through the Ethereum API. The library enables the frontend
to initiate calls to the SC using the accounts selected in MetaMask, as well as subscribing
to web3’s BC event listeners such that the frontend can react to events emitted by the
SC. Additionally, the library provides methods to perform signatures using the connected
MetaMask accounts, which are used in the frontend for authentication purposes.

To perform contract calls, the SC must be identifiable for the frontend, meaning its
address on the BC and the specification of methods it exposes must be introduced into
the codebase somehow. In the case of BCV, the contract’s Application Binary Interface
(ABI) [26], or, more precisely, the JSON description of the ABI, is supplied in file format to
the codebase. This essentially specifies how the frontend has to encode Solidity contract
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calls for the EVM and, conversely, how to decode data from the EVM [16]. The SC
address, meanwhile, is supplied as an environment variable.

The thought process behind this design decision was that, whilst the ABI can be con-
sidered constant regarding method and event specification in the scope of this work, the
contract should still be able to be re-deployed without having to replace the ABI JSON
each time. Externalizing the contract address allows one to do so and essentially reduces
the coupling between frontend and SC, such that different instances of the contract can
be used interchangeably by simply altering the address in the environment variables.

Figure 4.5: VNF Deployment Frontend UI Excerpt
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Smart Contract Connector

The SCC’s role is to facilitate interactions between the frontend and the SC. At its core,
it consists of three services:

• truffleService.js: provides functionality regarding the connection with Meta-
mask, web3, and the contract ABI.

• contractCallService.js: provides methods for performing contract calls on the
SC methods specified on the contract’s ABI.

• eventListenerService.js: provides methods for handling SC events.

Figure 4.5 depicts an excerpt of the UI for Deploying VNFs. These controls allow the
user to interact with the SC, provided that they chose to use a frontend rather than a
programmatic approach. Here, selection of the desired VNFD and specification of name,
description and additional inputs in case of parameterization happen. Once the ‘Deploy
VNF’ button is pressed, the code shown in Listing 4.1 comes into play.

Listing 4.1 shows the general structure of a contract call at the example of the ‘De-
ployVNF’ functionality. A strict pre-requisite is that an Ethereum account is available for
actually sending the contract call in a transaction. Line 4 guards against the possibility
of proceeding without such an account. Next, the data required for the SC method in
question is read from the store (cf. Line 6), and in the case of this particular contract
call, the parameters object is constructed.

Once done, the request for the contract call has to be built (cf. Lines 22 - 25) with the
parameters as specified in the contract ABI and is subsequently sent to the contract in a
transaction on Line 28. In that send method, additional parameters have to be supplied,
such as from, meaning the account address from which the transaction is sent, as well
as the gasPrize and gasLimit, which are returned from the getDefaultCallParams

method.

Notably absent are return values. While the contract will return data upon completing
(or failing) the call, these values are not of interest to the BCV system. The relevant
return values are supplied at a later time through the event mechanisms described in
Section 4.2. To be able to receive such events and handle them properly, the frontend
employs the web3 library’s subscription and events mechanisms [24].

Listing 4.2 displays how BC events can be subscribed to with the use of the web3 library.
Note that the code has been simplified and stripped of elements that are not essential for
understanding the subscription mechanism for the sake of readability.

The key part is on Line 13, where, following the web3 documentation, the event subscrip-
tion occurs. Using the filter, the listener is told to only trigger the callback function for
events that specify the user in question. The exposed attacheEventListener method
then can then be used as demonstrated on Line 17. Accessing data sent within the event
then happens in the callback function by accessing the returnValues field in the error

respectively event parameter.
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1 const performContractCall_deployVNF = () => {

2 // grab ethereum account from vuex

3 const account = store.getters["contracts/getUserETHAccount"];

4 if (! _isNil(account)) {

5 // fetch data relevant for contract call from store and prepare

parameters argument

6 const callData = store.getters["contracts/getDeployVnfData"];

7 const VNFD_ID = callData[fieldNames.VNFDID ];

8 const parameters = {

9 name: callData[fieldNames.NAME],

10 description: callData[fieldNames.DESCRIPTION],

11 };

12 // attributes field has to be present no matter what

13 parameters["attributes"] = _isNil(callData[fieldNames.ATTRIBUTES

])

14 ? {}

15 : callData[fieldNames.ATTRIBUTES ];

16 // add config field to attributes if config present

17 const config = callData[fieldNames.CONFIG ];

18 if (! _isNil(config) && config !== "") {

19 parameters["attributes"]["config"] = config;

20 }

21 // build contract call

22 const deployVNFrequest = VNFContract.methods.deployVNF(

23 VNFD_ID ,

24 JSON.stringify(parameters)

25 );

26 deployVNFrequest

27 .send(getDefaultCallParams(account))

28 .then (() => { store.commit("appState/setAwaitingContract",

true) })

29 .catch((error) => {

30 console.warn("deployment transaction failed with error",

error);

31 store.commit("appState/setIsLoading", false);

32 });

33 } else {

34 console.log("no user account to make call with , rejecting");

35 }

36 };

Listing 4.1: Performing SC Call (annotated)
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1 // expose attaching method

2 export const attachEventListener = (eventType , callback) => {

3 let e;

4 // assign to e the ABI specification of the supplied eventType

5 return registerEventListener(e, callback);

6 };

7
8 function registerEventListener(

9 eventType ,

10 callback ,

11 filter = { filter: { user: [window.web3.eth.defaultAccount] } }

12 ) {

13 return eventType(filter , callback);

14 }

15
16 // example usage

17 attachEventListener(EventTypes.DeploymentStatus , myCallbackFunction(

error , event))

Listing 4.2: Attaching SC Event listeners (simplified & annotated)

Authentication and Authorization for Backend Calls

Before the frontend is allowed to perform calls to most of the backend’s endpoints (cf.
Sections 4.2.4, 4.2.5) it must authenticate itself with the backend. This is done by re-
questing a nonce from the backend, signing it using the user’s Ethereum account using the
web3 library’s signature mechanism, and sending a payload consisting of account address,
nonce, and signed nonce to the backend for signature verification (cf. Section 4.3.3).

Should the verification fail, indicating that the account in question is not registered with
the SC yet, the registration process is initiated, and afterward, the authentication flow is
run again. If the verification succeeds, the received authentication token is stored as a
cookie, which then is sent along in each backend call that requires authorization.

To illustrate the authentication process, Listing 4.3 shows the steps of the procedure
outlined above. The flow consists of two overarching methods, which are triggered by life-
cycle hooks of the Home.vue component and changes within the vuex store, the details of
which are omitted here.

In the first step of the authentication flow, the account is fetched (the presence of an
account at this step is guaranteed through routing guard mechanisms) and used to perform
a PUT call to the /token endpoint on Line 6.

Once a nonce is retrieved from the backend, the procedure continues with the second
part of the authentication flow. The crucial point here is the creation of the signature
on Lines 14 through 17, where the web3 library’s sign method is utilized to request the
nonce be signed using the user’s Ethereum account.

Once the signature is present, a POST call is made to the same /token route on Line 20,
such that the backend now has all the information it needs to authenticate the user.
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1 // first part of the flow

2 async initiateUserRegistrationCheck () {

3 this.$store.dispatch("appState/setIsLoading", true);

4 const account = this.$store.getters["contracts/getUserETHAccount"];

5 // get a nonce from the backend

6 await this.getNonce(account);

7 this.$store.dispatch("appState/setIsLoading", false);

8 }

9 // second part of the flow

10 async concludeUserRegistrationCheck () {

11 const account = this.$store.getters["contracts/getUserETHAccount"];

12 const nonce = this.nonce;

13 // sign nonce

14 const signedValue = await window.web3.eth.sign(

15 window.web3.utils.sha3(nonce),

16 account

17 );

18 this.$store.dispatch("appState/setIsLoading", true);

19 const payload = [nonce , signedValue , account ];

20 await this.performTokenCheck(payload);

21 this.$store.dispatch("appState/setIsLoading", false);

22 }

Listing 4.3: Authentication flow (annotated)

Note that the calls to the /token route are wrapped in their own methods called getNonce

and performTokenCheck respectively, with the details of those calls not being shown since
they are just regular HTTP requests.

4.3.2 Smart Contract

The VNF deployment SC of BCV was implemented in Solidity [27] on top of the Ethereum
BC [8]. The SC stores the mappings between users and their deployed VNFs, and acts
as an event bus between the frontend and the backend (i.e., BC signaling). For the
development process, Ganache [13] was used to run a development Ethereum BC. The
communication through the SC follows the same pattern: The user (i.e., frontend) calls
one of the initiation functions (i.e., registerUser, unregisterUser, deployVNF, and
deleteVNF) to emit an event, which is received by the backend. Then, the backend reacts
to these events and performs the specified task. After the completion of the task, the
backend calls one of the SC’s feedback functions (i.e., reportRegistration, reportUn-
registration, reportDeployment, and reportDeletion), which emits another event to
be received by the frontend.

The following sections detail the implementation of the most important features of the
BCV VNFDeployment contract, such as the user registration, VNF deployment, VNF dele-
tion, and VNF retrieval.
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User Registration

To use the SC and the BCV solution, the user has to register with the SC. For this
purpose, the user calls the registerUser function (cf. Listing 4.4), which emits an event
that is forwarded to the backend. Note that this function call does not alter the state of
the contract yet, as the registration might fail. Failure could occur, for example, if the
signature validation in the backend fails.

1 // Registers the sender of a transaction as a user

2 /// @param signedAddress signature of the user’s address

3 function registerUser(string memory signedAddress) public {

4 address user = msg.sender;

5
6 emit Register(user , signedAddress);

7 }

Listing 4.4: VNFDeployment::registerUser

Following the event being emitted, the backend checks the signature and reports the
registration status back to the SC by calling reportRegistration (cf. Listing 4.5). If
the registration was successful on the backend’s side, the SC registers the user in a mapping
and emits another event to the frontend to signal the success of the registration. In the
case of an error, the same event is emitted, but it notifies the user that something went
wrong during the registration process.

1 // Enables the backend to signal the status of user registration.

2 /// @param user User to be registered.

3 /// @param success Indicates whether the user was registered correctly.

4 function reportRegistration(address user , bool success) public {

5 require(msg.sender == backend , "Only the backend is allowed to call

this function.");

6
7 if(success){

8 users[user] = true;

9 }

10
11 emit RegistrationStatus(user , success);

12 }

Listing 4.5: VNFDeployment::reportRegistration

In addition, the SC offers functions to deregister users (i.e., unregisterUser), as well
as a feedback function for the backend (i.e., reportUnregistration) for this scenario.
Both functions work analogous to the registration functions but disable the user account
instead.

VNF Deployment

Once the user is registered, she can deploy VNFs. The SC stores VNFs in the VNF struct
(cf. Listing 4.6). It consists of the following fields:
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• deploymentId is the primary identifier for the SC to operate on VNFs. It is gener-
ated within the SC and uniquely identifies each VNF.

• vnfdId represents the identifier of the VNF descriptor used by the NFV framework
(e.g., OpenStack Tacker), denoting the template to be used for the deployment of
the VNF.

• vnfId is the VNF identifier assigned by the NFV framework. It is only available
after the VNF has been created successfully.

• owner contains the BC wallet address of the user deploying a VNF.

• parameters holds the parameter values required by the respective VNF descriptor
to instantiate a new VNF.

• isDeployed a boolean indicating whether the respective VNF has been deployed or
not.

• isDeleted a boolean indicating whether a particular VNF has been deleted or not.

Note that the SC does not store VNF descriptors. The reason for this decision is that
storage is costly on the BC, particularly for larger data structures, such as the TOSCA
templates inside the VNF descriptors. Instead, these descriptors are solely stored within
the NFV framework (e.g., OpenStack Tacker) and managed by the user on the frontend
(via backend).

1 struct VNF {

2 uint deploymentId;

3 string vnfdId;

4 string vnfId;

5 address owner;

6 string parameters;

7 bool isDeployed;

8 bool isDeleted;

9 }

Listing 4.6: VNFDeployment VNF Struct

To trigger the deployment of a new VNF, the user calls the deployVNF function (cf.
Listing 4.7) on the SC. After checking that the user is registered with the system, a new
VNF struct is populated. Note that at this point, the vnfId is not yet available, as the
VNF has not been deployed yet. The VNF struct is then added to the user’s list of VNFs.
The last step of this function is emitting an event to the backend, signaling the command
to deploy a new VNF.

1 // Deploys a VNF by emitting a deployment event.

2 /// @param vnfdId identifier of the VNF descriptor (VNFD), which is

3 /// the template to be used to create a VNF instance.

4 /// @param parameters instantiation parameters according to the VNFD

template.
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5 function deployVNF(string memory vnfdId , string memory parameters)

public {

6 address user = msg.sender;

7
8 require(users[user], "User not registered.");

9
10 uint deploymentId = createDeploymentId ();

11
12 VNF memory vnf = VNF(deploymentId , vnfdId , "", user , parameters , false

, false);

13
14 addVnf(vnf , user);

15
16 emit DeployVNF(user , deploymentId , vnfdId , parameters);

17 }

Listing 4.7: VNFDeployment::deployVNF

After the backend has triggered OpenStack Tacker to deploy a new VNF, it reports the
status of this operation back to the SC by calling the reportDeployment function (cf.
Listing 4.8). Note that the backend passes along the vnfId of the created VNF. The SC
adds the vnfId to the existing VNF record of the user. If the deployment has failed on the
backend side, the VNF is removed from the user’s VNF list. In any case, the last action
is to emit an event for the frontend, informing about the status of the VNF deployment.

1 // Enables the backend to signal the status of VNF instantiation

2 // by handing over the VNF resource identifier of the backend.

3 /// @param deploymentId VNF identifier as specified in this contract.

4 /// @param user User owning the VNF

5 /// @param success Indicates whether the VNF was instantiated correctly.

6 /// @param vnfId VNF identifier specified by the backend.

7 function reportDeployment(uint deploymentId , address user , bool success ,

string calldata vnfId) external {

8 require(msg.sender == backend , "Only the backend is allowed to call

this function.");

9
10 uint index = findVnfIndex(deploymentId , user);

11
12 require(vnfs[user][index]. deploymentId > 0, "VNF must exist in order

to be activated.");

13
14 if(success){

15 // add vnfId to existing VNF record

16 vnfs[user][index].vnfId = vnfId;

17 vnfs[user][index]. isDeployed = true;

18 } else {

19 // remove vnfId from registered VNF list

20 removeVnfHard(deploymentId , user);

21 }

22
23 emit DeploymentStatus(deploymentId , user , success , vnfId);

24 }

Listing 4.8: VNFDeployment::reportDeployment
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VNF Deletion

If a user wants to delete an existing VNF, she calls the deleteVNF function (cf. List-
ing 4.9). This function first checks if the user is authorized to delete the particular VNF
(by ensuring that the user owns the VNF) and then emits an event to initiate the deletion
of the VNF on the backend.

1 // Deletes a VNF by emitting a deletion event.

2 /// @param deploymentId identifier of the VNF instance to be terminated.

3 function deleteVNF(uint deploymentId) public {

4 address user = msg.sender;

5
6 require(users[user], "User not registered.");

7
8 uint index = findVnfIndex(deploymentId , user);

9
10 require(vnfs[user][index].owner == user , "VNF must exist and can only

be deleted by its owner");

11
12 emit DeleteVNF(user , deploymentId , vnfs[user][index].vnfId);

13 }

Listing 4.9: VNFDeployment::deleteVNF

Once the backend has deleted the VNF by calling OpenStack Tacker, it reports the deletion
of the VNF back to the SC by calling the reportDeletion function (cf. Listing 4.10).
The VNF is then marked as deleted. Finally, the frontend is notified of the deletion status
by the emitted event.

1 // Enables the backend to signal the status of VNF deletion.

2 /// @param deploymentId VNF identifier as specified in this contract.

3 /// @param user User owning the VNF

4 /// @param success Indicates whether the VNF was instantiated correctly.

5 function reportDeletion(uint deploymentId , address user , bool success)

public {

6 require(msg.sender == backend , "Only the backend is allowed to call

this function.");

7
8 if(success){

9 removeVnf(deploymentId , user);

10 }

11
12 emit DeletionStatus(deploymentId , user , success);

13 }

Listing 4.10: VNFDeployment::reportDeletion

VNF Retrieval

The SC is the single source of truth for storing the mapping between the user and the
deployed VNFs. Hence, it provides a straightforward way of retrieving all VNFs of a



46 CHAPTER 4. DESIGN AND IMPLEMENTATION

particular user. For this purpose, it offers the getVnfs function (cf. Listing 4.11), which
is a read-only function. The read-only property is essential, as calling this function does
not involve any cost, making it safe to use in the backend, where it is called frequently.

1 /// Returns all the VNFs of the calling user

2 function getVnfs(address user) public view returns (VNF[] memory) {

3 require(msg.sender == backend , "Only the backend is allowed to call

this function.");

4
5 return vnfs[user];

6 }

Listing 4.11: VNFDeployment::getVnfs

4.3.3 Backend

The backend was implemented using Python [45], which was chosen since all team mem-
bers are familiar with the technology, and the connection to the BC could be done with
the popular ‘Web3.py’ library [57] for Python. Similar to the frontend and the database,
the backend has been set up as a Docker container [14] to allow for an easier deployment
pipeline and virtualization advantages. As described in Section 4.2.3, the backend in-
cludes several responsibilities, and their implementation will be discussed in the following
subsections, though the parts regarding the ‘Database’ will be documented in its own
separate Section 4.3.4.

REST API

The REST API component of the backend has been set up using OpenAPI [40]. It
allows for a concise overview and provides documentation of the API routes that the
backend offers to clients. Additionally, Flask [43] is used as a framework to serve the
API routes. In Figure 4.6 the API routes are depicted, and additionally, request and
response message formats, as well as HTTP response codes, are specified and documented,
such that potential other clients would be able to connect to the REST API effortlessly.
Furthermore, all API routes, except for the ones to create a token, are secured, i.e., require
a valid authorization token, cf. Sections 4.2.4 and 4.2.5.

Token issuance

To create a valid authorization token, cf. Sections 4.2.4 and 4.2.5, the clients must first
request a nonce and provide their valid address. Listing 4.12 depicts the static cre-

ate_nonce method, which is part of the TokenService class. It expects an ‘AddressRe-
quest’, which is an instance of a class that models HTTP requests, which provide a user
address in the data body. The method returns an error if a given request’s address is
invalid or if an exception occurred during the creation of a nonce. If the creation of a
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Figure 4.6: OpenAPI specifications of the REST API

nonce was successful (cf. Line 10), the HTTP code 201 is returned to the client, along
with the newly created nonce.

1 @staticmethod

2 def create_nonce(address_request):

3 """

4 :param address_request: AddressRequest

5 :return: Response

6 """

7 if not w3.isAddress(address_request.address):

8 return "Error", 403

9 nonce = TokenService.create_nonce_handler(address_request.

address)

10 if nonce:

11 return {"nonce": nonce}, 201

12 else:

13 return "Error", 403

Listing 4.12: The create_nonce method

The actual nonce creation is delegated to the create_nonce_handler method, cf. List-
ing 4.13. This method uses the ‘uuid’ module from the Python standard library [46], which
is used to create unique IDs, which are then used as nonces (cf. Line 10), and returned.
The new nonce and the corresponding user address are then stored in the database (cf.
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Line 11). Saving this association between nonce and user address prevents other users
from creating tokens with nonces that do not belong to them. Also, to avoid clients having
multiple nonces at once, all previously issued nonces from this user’s address are deleted
from the database when this method is called (cf. Line 9).

1 @staticmethod

2 def create_nonce_handler(address):

3 """

4 Stores new nonce in the db and returns new nonce for a user and

deletes the previously issued nonce that belonged to that

user

5 :param address: string

6 :return: nonce_val : string : a new nonce

7 """

8 try:

9 Nonce.objects(address=address).delete ()

10 nonce_val = "0x" + uuid4().hex

11 Nonce(address=address , value=nonce_val).save()

12 return nonce_val

13 except Exception as e:

14 log.error(f"Creating nonce failed {e}")

15 return False

Listing 4.13: The create_nonce_handler method

When users have received a nonce, they are allowed to create tokens for their session. To
do so, the method create_token is called, cf. Listing 4.14. It expects a ‘TokenRequest’,
an instance of a class that is used to model requests for tokens, that includes the attributes
‘address’, ‘nonce’, and ‘signed nonce’. This method verifies whether a user is registered
(cf. Line 7-9), before calling the create_token_handler method. This verification is
done since tokens are only issued to registered users. Once a token has been created, the
nonce can be seen as consumed and is deleted from the database (cf. Line 16). Lastly,
Line 19 shows that the token is returned to the client, along with a flag whether the user
is registered, similarly to the case in Line 9, when the user is not yet registered, which is
required for the frontend to distinguish between both cases.

1 @staticmethod

2 def create_token(token_request):

3 """

4 :param token_request: TokenRequest

5 :return: Response

6 """

7 is_registered = userService.service.is_user_registered(

token_request.address)

8 if not is_registered:

9 return {"isRegistered": False}, 200

10 token = TokenService.create_token_handler(

11 token_request.nonce , token_request.signed_nonce ,

token_request.address

12 )

13 if token:

14 # nonce has been consumed
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15 try:

16 Nonce.objects(address=token_request.address).delete ()

17 except DoesNotExist:

18 pass

19 return {"token": token , "isRegistered": is_registered}, 201

20 else:

21 return "Error", 403

Listing 4.14: The create_token method

Similarly to the create_nonce method, the create_token method also delegates the
creation of tokens to a handler method, create_token_handler, cf. Listing 4.15. This
method’s responsibility is to issue JSON Web Tokens (JWT) [61], which are then used
for stateless authentication, once issued, implying that there is no need to store tokens
in the database. To do so, the ‘PyJWT’ library [58] is used to encode the user’s address
and the expiration date into the JWT. The token’s validity has been arbitrarily chosen as
24 hours. However, this step is only done after the check_auth method, cf. Listing 4.18
verified the provided authentication credentials of the user.

1 @staticmethod

2 def create_token_handler(nonce , signed_nonce , address , secret=config

.JWT_SECRET):

3 """

4 Creates and returns new jwt token for a user if the passed nonce

is valid

5 :param nonce: string

6 :param signed_nonce: string

7 :param address: string

8 :param secret: string

9 :return: token : string

10 """

11 try:

12 if check_auth(claim=nonce , signed_claim=signed_nonce ,

address=address):

13 token = jwt.encode(

14 {

15 "address": address ,

16 "exp": datetime.utcnow () + timedelta(hours =24),

17 },

18 secret ,

19 )

20 return token

21 else:

22 return False

23 except Exception as e:

24 log.error(f"Creating token failed {e}")

25 return False

Listing 4.15: The create_token_handler method
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Authentication & Authorization

In the case of the secured API routes, which are depicted in Figure 4.6, the method
authorize, cf. Listing 4.16, is implicitly called. This method verifies if the token belongs
to a registered user (cf. Line 7), which is shown in Listing 4.17 and returns to the called
API controller method the ‘userAddress’ as a string that was decoded from the token.
Hence, with this setup, all secured controller methods have direct access to the address
of the user.

1 def authorize(token):

2 """

3 Authorizes a user and returns the user address

4 :param token: str

5 :return: dict

6 """

7 if not verify_token(token):

8 return abort (401)

9 user_address = get_address_from_token(token)

10 return {"userAddress": user_address}

Listing 4.16: The authorize method

Listing 4.17 shows the method that is responsible for checking if a user’s address that was
provided in a token actually belongs to a user, i.e., that the user is also registered. To
do so, the provided token is decoded (cf. Line 8), and it is checked in the database that
a user with this given address exists. Additionally, if the token is not valid anymore, an
‘ExpiredSignatureError’ exception is raised, and ‘False’ is returned.

1 def verify_token(token_str) -> bool:

2 """

3 Verifies if a given token exists and is still valid

4 :param token_str: str

5 :return: bool : is the token valid

6 """

7 try:

8 token_data = decode_token(token_str)

9 user = User.objects.get(address=token_data["address"])

10 return len(user) > 0

11 except (InvalidTokenError , ExpiredSignatureError , DoesNotExist) as e

:

12 log.info(f"token errored: {e}")

13 return False

Listing 4.17: The verify_token method

The method check_auth, cf. Listing 4.18, is responsible for checking whether the provided
authentication credentials are valid. It has two variants, that are similar in concept, (i)
verifying a claimed address, cf. Listing 4.19, which is used in the user registration process,
and (ii), verifying a claimed nonce, cf. Listing 4.20, which is being used in the token
issuance context. The appropriate method is chosen depending on whether an ‘address’
was passed as a keyword to this method (cf. Line 12).
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1 def check_auth (*args , ** kwargs):

2 """

3 Verifies a claim (e.g. an address) by comparing it to its value that

was recovered from a digitally signed string

4 :return: bool

5 """

6 try:

7 address = kwargs.get("address")

8 claim = kwargs.get("claim")

9 signed_claim = kwargs.get("signed_claim")

10 return (

11 _check_auth_for_address(claim , signed_claim)

12 if address is None

13 else _check_auth_for_nonce(claim , signed_claim , address)

14 )

15 except:

16 log.info("failed to verify authentication signature")

17 return False

Listing 4.18: The check_auth method

The idea behind both variants is to hash the provided claim that was given either from
the SC in the case of the user registration process or from the frontend while issuing
a nonce. The hashing is done using the ‘solidityKeccak’ function from ‘Web3.py’ [57],
to ensure that the same hashing algorithm is used in the SC, frontend, and backend.
Subsequently, the address is recovered from the hashed string using the digital signature,
i.e., the ‘signed claim’ and it is verified if the recovered address is equal to the passed
user address. This implies that the address belongs to the user.

1 def _check_auth_for_address(claimed_address , signed_string) -> bool:

2 """

3 Verifies a claimed address by comparing it to its value that was

recovered from a digitally signed string

4 This is used for the user registration , where claimed_address

represents a user address ,

5 and signed_string represents the digitally signed user address.

6 :param claimed_address:

7 :param signed_string:

8 :return: bool

9 """

10 try:

11 # use same hash function as in contract to hash the userAddress

12 hashed_claim = w3.solidityKeccak (["address"], [claimed_address ])

13 address = _recover_address(hashed_claim , signed_string)

14 return claimed_address == address

15 except (InvalidAddress , ValueError) as e:

16 log.info(f"check auth for address failed {e}")

17 return False

Listing 4.19: The check_auth_for_address method

The recovery of the address from the hashed string using a digital signature string is
shown in Listing 4.21, where the ‘Web3.py’ [57] method ‘recoverHash’ is used.
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1 def _check_auth_for_nonce(nonce , signed_nonce , user_address) -> bool:

2 """

3 Verifies a claimed nonce by comparing it to its value that was

recovered from a digitally signed string

4 :param nonce:

5 :param signed_nonce:

6 :param user_address:

7 :return: bool

8 """

9 try:

10 # match passed nonce , userAddress pair with db entry first

11 if not verify_nonce(nonce , user_address):

12 return False

13 # use the same hash function as in frontend to hash the nonce

14 hashed_claim = w3.solidityKeccak (["bytes32"], [nonce])

15 address = _recover_address(hashed_claim , signed_nonce)

16 return address == user_address

17 except (InvalidAddress , ValueError) as e:

18 log.info(f"check auth for nonce failed {e}")

19 return False

Listing 4.20: The check_auth_for_nonce method

1 def _recover_address(hashed_claim , signed_string):

2 """

3 Recovers the address from the hashed_claim using the signature.

4 This is done to check whether the digital signature was issued by

the claimed userAddress

5 :param hashed_claim: str

6 :param signed_string: str

7 :return: address : str

8 """

9 return w3.eth.account.recoverHash(hashed_claim , signature=

signed_string)

Listing 4.21: The recover_address method

Smart Contract Event Listening

While fundamentally different, the SC event listening has been set up similarly to the
‘Observer’ design pattern [55, 62]. As such, for each SC event, an observer instance is
created. Listing 4.22 depicts the DeployVNFObserver class, which upon creation attaches
itself to the list of observers and starts the SC event listening by creating an event filter
and starting a new thread for this particular event. In the case of the DeployVNFObserver
class, upon an event update, the creation of a VNF is delegated to the vnf_service class
to deploy a VNF along with event’s arguments (cf. Line 12).

The event listening is shown in Listings 4.23 and 4.24, which were influenced by the official
documentation of the ‘Web3.py’ library [44]. The idea here is to create a new thread for
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1 class DeployVNFObserver(AbstractObserver , AbstractPolling):

2 """ Observer for vnf deployment events """

3
4 def __init__(self , observable , vnf_service , poll_interval =5):

5 super().__init__(poll_interval=poll_interval)

6 self.event = "DeployVNF"

7 self.vnf_service = vnf_service

8 observable.attach(self)

9
10 @log_event

11 def update(self , event , *args , ** kwargs):

12 self.vnf_service.deploy_vnf(event.args)

Listing 4.22: The DeployVNFObserver class

each event filter, cf. Listing 4.23, to continuously poll new event entries, and call the
update method of an observer in the case of a new event, cf. Line 10 in Listing 4.24.

1 def _evt_listen(self , observer):

2 """

3 create a contract event filter for an observer and set up a new

thread to start event listening

4 """

5 event = observer.event

6 event_filter = self.contract.events[event]. createFilter(

fromBlock="latest")

7 worker = Thread(

8 target=self._event_loop , args=( event_filter , observer),

daemon=True

9 )

10 # store to join later

11 observer.worker = worker

12 worker.start()

Listing 4.23: The _envt_listen method

1 def _event_loop(self , event_filter , observer) -> None:

2 """

3 gets new events based on the type of event this thread is

listening to

4 :param event_filter:

5 :param poll_interval: int

6 :return: None

7 """

8 while True:

9 for event in event_filter.get_new_entries ():

10 observer.update(event)

11 time.sleep(observer.poll_interval)

Listing 4.24: The _event_loop method
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Smart Contract Reporting

The backend listens for SC events and handles them by initiating the appropriate actions.
After completing the respective action, the backend reports to the SC whether the action
has been performed successfully, sometimes including parameters. This sequence is dis-
played in greater detail in Section 4.3.6. Listings 4.25 and 4.26 show the exemplary VNF
deployment-related functions, though the idea is the same for the other events.

Listing 4.25 depicts the deploy_vnf method, which is part of the VNFService class,
which is called from the DeployVNFObserver, cf. Listing 4.22. On Line 12 the creation
of the VNF is delegated to an ‘nfv client’, which is passed to the VNFService class using
dependency injection [60]. This ensures greater reusability, in the sense that multiple
NFV frameworks can be used, and the class itself does not need to be concerned with the
NFV framework and its details [60].

The actual reporting calls can be seen in Lines 18-19, 24-25, with the difference between
these two cases being in whether the VNF has been successfully deployed. In fact, if
deployment of a VNF was erroneous, the error message from the NFV framework is
stored in the database (cf. Line 27-31), allowing the client to query the error details
while keeping the details of the error message private to ensure that no accidental leakage
of e.g., VNF deployment details is possible.

1 def deploy_vnf(self , event_args_dict) -> None:

2 """

3 Deploy a vnf

4 :param event_args_dict : dict from the event args

5 """

6 creator_address , deployment_id , vnfd_id , parameters = itemgetter

(

7 "creator", "deploymentId", "vnfdId", "parameters"

8 )(event_args_dict)

9 log.info(f"{creator_address}, {deployment_id}, {vnfd_id}, {

parameters}")

10 try:

11
12 res , status_code = self.nfv_client.create_vnf(

13 parameters=parameters , vnfd_id=vnfd_id

14 )

15 success = status_code == 201

16 if not success:

17 raise AssertionError

18 smartContractService.service.report_vnf_deployment(

19 deployment_id , creator_address , success , res["id"]

20 )

21
22 except Exception as e:

23 log.info(f" deployVNF error {e}")

24 smartContractService.service.report_vnf_deployment(

25 deployment_id , creator_address , False , ""

26 )

27 errormsgService.service.store_errormsg(

28 address=creator_address ,
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29 deployment_id=deployment_id ,

30 tacker_error=TackerErrorModel.from_dict(res.get("

TackerError")),

31 )

Listing 4.25: The deploy_vnf method

While the previous Listing 4.25 showed the caller of the reporting, the actual reporting
function is shown in Listing 4.26. The report_vnf_deployment method calls the SC’s
reportDeployment function (cf. Line 30), however, the transaction needs first to be
built (cf. Lines 18-25) and subsequently signed (cf. Line 26-28). Once the transaction
has been sent, the transaction receipt is logged (cf. Line 31-32). Noteworthy is that
the signing requires the actual transaction count that has been sent from the backend’s
account [44] (cf. Lines 15-17), also requiring the backend to have its own address.

1 def report_vnf_deployment(

2 self , deployment_id , creator_address , success , tacker_vnf_id

3 ):

4 """

5 Reports whether an attempt to create a VNF has been successful.

6 Calls the SC function reportDeployment.

7 :param deployment_id: int : SC internal identifier for the VNF

8 :param creator_address: str: address of the user whom the VNF

belongs to

9 :param success: bool: signs whether the VNF has been

successfully created

10 :param tacker_vnf_id: str: id of the newly created VNF , empty

string if unsuccessful

11 :return:

12 """

13 try:

14
15 nonce = w3.eth.get_transaction_count(

16 SC_BACKEND_CONFIG["SC_BACKEND_ADDRESS"]

17 )

18 txn = self.contract.functions.reportDeployment(

19 deployment_id , creator_address , success , tacker_vnf_id

20 ).buildTransaction(

21 {

22 "from": SC_BACKEND_CONFIG["SC_BACKEND_ADDRESS"],

23 "nonce": nonce ,

24 }

25 )

26 signed_txn = w3.eth.account.sign_transaction(

27 txn , private_key=SC_BACKEND_CONFIG["

SC_BACKEND_ADDRESS_PKEY"]

28 )

29
30 w3.eth.send_raw_transaction(signed_txn.rawTransaction)

31 tx_receipt = w3.toHex(w3.keccak(signed_txn.rawTransaction))

32 log.info(f" transaction receipt: {tx_receipt}")

33 except Exception as e:

34 log.info(f"report_vnf_deployment error {e}")

Listing 4.26: The report_vnf_deployment method
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NFV Framework Connector

Since the backend acts as a facade for the NFV Framework, a AbstractNFVFramework

class has been set up as a base class for the connection to NFV frameworks, with an excerpt
from the class shown in Listing 4.27. This design allows for an easier implementation and
connection to various concrete NFV frameworks.

1 class AbstractNFVFramework(ABC):

2 """

3 Abstract baseclass for a nfv framework with default implementation

for header and requests

4 """

5
6 def __init__(self , token , base_url):

7 self._headers = None

8 self._token = token

9 self._base_url = base_url

10
11 @property

12 def headers(self):

13 return {"X-Auth -Token": self.token , "content -type": "Application

/JSON"}

14
15 @headers.setter

16 def headers(self , headers):

17 self._headers = headers

18
19 ...

20
21 @abstractmethod

22 def _get_token(self):

23 """Get an auth token """

24 pass

25
26 @abstractmethod

27 def get_vnfs(self):

28 """Get all vnfs """

29 pass

30
31 @abstractmethod

32 def get_vnf(self , vnf_id):

33 """

34 Get a vnf by vnf_id

35 """

36 pass

37
38 ...

Listing 4.27: An excerpt of the AbstractNFVFramework class

Due to this project’s choice of using ‘Openstack Tacker’ as an NFV framework, the class
Tacker inherits from AbstractNFVFramework, and implements the missing and abstract
methods. In Listing 4.28 its create_vnf method is shown. It receives from the SC event
listener the required parameters for the NFV framework to deploy a VNF (cf. Line 8)
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and posts these to ‘Tacker’, shown on Line 21. In the case of errors (cf. Lines 23-24),
the error message from Tacker, and its status code are returned to the VNFService, as
shown in Listing 4.25.

1 @get_token_if_401

2 def create_vnf(self , parameters , vnfd_id , *args , ** kwargs):

3 """

4 Create a vnf with the given parameters in tacker.

5 :param parameters: str

6 :param vnfd_id: str

7 """

8 parameters = json.loads(parameters)

9 data = {

10 "vnf": {

11 "tenant_id": self._tenant_id ,

12 "vnfd_id": vnfd_id ,

13 "vim_id": self._vim_id ,

14 "placement_attr": {"region_name": "RegionOne"},

15 }

16 }

17 data["vnf"]["attributes"] = parameters.get("attributes")

18 data["vnf"]["name"] = parameters.get("name")

19 data["vnf"]["description"] = parameters.get("description")

20
21 response = self._reqPOST("vnfs", data)

22 log.info(f"{response}")

23 if not response.json().get("vnf"):

24 return json.loads(response.text), response.status_code

25 return response.json().get("vnf"), response.status_code

Listing 4.28: The create_vnf method

4.3.4 Database

Concerning the database, MongoDB, a NoSQL document database, has been chosen for
BCV, due to its ease of use and flexible data models [38], in conjunction with Mon-
goEngine [39], to map the BCV backend’s objects to the database. Therefore, three
document schemata for the database have been defined in the BCV backend, as it is the
only component in the system that directly interacts with the database. Furthermore, the
database is deployed in a separate Docker [14] container.

User

Listing 4.29 illustrates the schema for registered users in the database. Only the user’s
addresses are essential since passwords are avoided using the authentication flow, cf.
Section 4.2.4, though the registration date has been added as well.
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1 class User(db.Document):

2 """

3 Stores registered Users related information

4 """

5 address = db.StringField(required=True , unique=True)

6 registration_date = db.DateTimeField(default=datetime.datetime.now)

7 meta = {"collection": "user"}

Listing 4.29: The document schema for the user

Nonce

Listing 4.30 depicts the schema for nonces, that are used for the issuance of tokens in the
authentication flow, cf. Section 4.2.4. Note that both ‘value’ and ‘address’ have to be
unique, implying that a user can only have one pending nonce during the authentication
process, and the nonces themselves have to be unique. Furthermore, their issue date is
stored, since during the authentication flow their age must be less than one day or they
are invalid.

1 class Nonce(db.Document):

2 """

3 Used to issue tokens

4 Nonces get deleted when

5 - a token is issued

6 - a new nonce is requested

7 They are one day valid.

8 """

9 value = db.StringField(required=True , unique=True)

10 address = db.StringField(required=True , unique=True)

11 issue_date = db.DateTimeField(default=datetime.datetime.now)

12 meta = {"collection": "nonce"}

Listing 4.30: The document schema for the nonce

Tacker Error

Listing 4.31 shows the document schema for Tacker’s deployment errors. This schema has
been added since invalid VNF configurations may be submitted when attempting to deploy
a VNF, which results in errors and a deployment failure. Due to the VNF deployment
process going through the SC, passing the error message through the SC could potentially
leak sensitive information about the VNF or its deployer. Thus, to completely obviate
this issue, potential VNF deployment errors are stored in the database. Upon receiving
the deployment failure signal, a BCV client can query the stored error message through
the BCV backend.
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1 class TackerError(db.Document):

2 """

3 Used to store tacker deployment errors into the db, so that clients

can query for the errors.

4 As such , no private informations are leaked through the smart

contract

5 """

6 address = db.StringField(required=True , unique=False)

7 deployment_id = db.IntField(required=False , unique=True)

8 vnf_id = db.StringField(required=False , unique=False)

9 type = db.StringField(required=False , unique=False)

10 message = db.StringField(required=False , unique=False)

11 detail = db.StringField(required=False , unique=False)

12 meta = {"collection": "tacker_error"}

Listing 4.31: The document schema for the tacker errors

4.3.5 NFV MANO

BCV uses OpenStack Tacker [41] (Wallaby release) as NFV framework, running inside
a VM (Ubuntu 18.04.6 LTS [9]). This particular combination of operating system and
Tacker release has proven to be the most stable to operate in the setting of BCV. Tacker
provides a REST API that is consumed by the BCV backend. While Tacker provides
multiple API versions, version 1.0 appeared to be the most stable, which is why it was
selected for connecting the BCV backend to Tacker. The backend uses a technical user
to authenticate with Tacker’s API. This user is configured through Tacker, which occurs
during setup. Note that the BCV backend is the only component connected to OpenStack
Tacker, thereby providing a layer of abstraction for both frontend and SC. A more detailed
overview of OpenStack Tacker is provided in Section 2.1.2.

4.3.6 Events

BCV uses a series of events to implement BC signaling. Figure 4.7 depicts BCV’s events in
their respective contexts, showing the order of execution as well as source and destination.
While, in principle, any actor could subscribe to any of the listed events, the events can
be categorized into two distinct sets: The first set of events (i.e., Register, DeployVNF,
DeleteVNF, Unregister) are destined for the backend, which utilizes an event listener to
subscribe to these events. The other set (i.e., RegistrationStatus, DeploymentStatus,
DeletionStatus, UnregistrationStatus) consists of status events destined for the fron-
tend. They carry the feedback of the backend to the frontend. The following paragraph
delves into the properties of each event used in BCV:

• The Register event is fired when a user initiates the user registration via SC. It
carries the user’s BC wallet address and the signature of the user’s address.
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• The RegistrationStatus contains the feedback of the backend concerning the suc-
cess of the user’s registration request. The user is identified by her BC wallet
address.

• DeployVNF contains the data for instantiating a new VNF. This data includes the
user who triggers the deployment, but also the contract-managed deploymentId.
Furthermore, it also contains the identifier of the VNF descriptor for creating the
VNF. Finally, the event contains the parameter values as required by the TOSCA
template. When the event is processed by the backend, a new VNF is created on
OpenStack Tacker.

• DeploymentStatus is the feedback event destined for the frontend after the backend
has executed a deployment. It signals either success or failure for the instantiation
of a particular VNF. In case of success, it also contains the VNF identifier of the
deployed VNF.

• The DeleteVNF event initiates a VNF deletion request on the backend. It references
the VNF to be deleted by its deploymentId, as well as its VNF identifier.

• The DeletionStatus event notifies the frontend about the status of a VNF delete
operation.

• Unregister indicates the user’s request to deregister from BCV. For this purpose,
it contains the user’s BC wallet address as the only parameter, as this is the only
information required by the backend to perform this operation.

• UnregistrationStatus is the feedback event allotted to the frontend, indicating
whether a user’s deregistration request was successfully fulfilled.
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Figure 4.7: Sequence of events in blockchain-v
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Chapter 5

Evaluation

This chapter evaluates different aspects of BCV. First, a cost analysis is presented in
Section 5.1, which details the cost of operating BCV on the Ethereum BC. Section 5.2
shows the results of a performance analysis, where BCV was deployed in two different
environments, namely Ganache [13] and Ethereum Ropsten [15]. Finally, section 5.3
discusses the evaluation findings.

5.1 Cost Analysis

In BCV, the SC represents the primary cost driver for operating the system. This sec-
tion focuses on the cost components of the SC, and the cost of using BCV on a use case
basis. The goal is to show the operational costs for both the user and the provider when
interacting with BCV’s SC. From a methodological standpoint, the cost numbers are cal-
culated as follows: Using the Remix IDE [25], all functions of BCV’s SC have been called.
Remix allows inspecting the transaction receipts for each function call, which includes
the consumed gas for each transaction. Thus, to obtain representative gas consumption
numbers, each function has been called multiple times (n = 10) to derive the mean gas
cost for calling each function. Determining the mean is necessary, as the gas cost varies
for operations that search for particular VNFs. For this purpose, a loop is used to find
the respective VNF inside the array of all VNFs. Thus, the number of loop iterations
required to find the VNF depends on the total number of VNFs.

Table 5.1 shows the results of the analysis, describing the costs of calling each SC function
in terms of Gas (rounded to closest integer), Ether (ETH) (calculated according to [56],
rounded to 7 decimal positions), and US Dollar (USD) (rounded to 2 decimal positions).
For this purpose, the Gas price (154.95 gwei [65]) as well as the ETH price (2427.4406
USD [20]) have been considered at the time of writing (i.e., January 27, 2022). Due
to the high conversion rate between ETH and USD, the effective cost of calling an SC
function is significant. For example, initiating a VNF deployment requires the user to
spend 64.61 USD, while a simple user registration costs the user 10.59 USD. A notable
exception to the high prices is the getVnfs function. Calling it results in no cost at all,
as it is implemented as a read-only function, which can be executed free of charge [12].
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Table 5.1: Cost of contract function calls as of 27.01.2022.

Function Gas Cost (ETH) Cost (USD)

registerBackend 28’405 0.0044014 10.68
registerUser 28’166 0.0043643 10.59
reportRegistration 43’780 0.0067837 16.47
unregisterUser 22’549 0.0034940 8.48
reportUnregistration 30’679 0.0047537 11.54
deployVNF 171’779 0.0266172 64.61
deleteVNF 42’153 0.0065316 15.86
reportDeletion 125’425 0.0194346 47.18
reportDeployment 86’145 0.0133482 32.40
getVnfs 0 0 0

While the cost per function call already indicates the cost related to running BCV, ana-
lyzing the cost on a use case (i.e., End-to-End (E2E)) basis provides a more realistic view.
Table 5.2 lists the cost of executing E2E processes within BCV. Each use case consists of
multiple primitives (i.e., function calls as listed in Table 5.1), contributing to the overall
cost. In analogy to the previous example, the overall price of deploying a VNF sums up
to 97.01 USD, where the user registration results in a charge of 27.06 USD. Again, the
process of listing VNFs is free, as this process only uses the getVnfs method of the SC,
while the rest of the data is retrieved from the Tacker NFV framework.

Table 5.2: Gas consumption and cost for one execution of the listed use cases.

Use Case Function Calls
Cost
Percentage

Gas Cost (ETH) Cost (USD)

Register
User

registerUser

reportRegistration

39.15%
60.85%

71’946 0.0111480 27.06

Unregister
User

unregisterUser

reportUnregistration

42.36%
57.64%

53’228 0.0082477 20.02

Deploy
VNF

deployVNF

reportDeployment

66.60%
33.40%

257’924 0.0399653 97.01

Delete
VNF

deleteVNF

reportDeletion

25.15%
74.85%

167’578 0.0259662 63.03

List
VNFs

getVNFs - 0 0 0

However, it is crucial to not only analyze the cost of executing a particular use case but
also to verify the cost division between user and provider in each scenario. Figure 5.1
depicts the cost ratio between the user and the provider of the backend for executing
a particular use case. The x-axis represents the accumulated gas cost, and the y-axis
delineates the use case. For the deployment of a VNF, the user pays the major share of
the cost (66.6%), whereas deleting a VNF is more expensive for the provider (74.85%).
For user registration and deregistration, the provider pays for most of the cost, namely
60.85% for registration and 57.64% for deregistration, respectively. Simply listing the
VNFs is free for both provider and user.
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Figure 5.1: Gas consumption per use case, divided into costs for the user and costs for
the provider.

5.2 Performance Analysis

Due to the decentralized nature of BCV, its performance depends on multiple factors
(e.g., network latency, BC performance, and available hardware resources). This section
presents the results of the performance analysis of BCV. It aims at determining the in-
fluence of each BCV component on the overall performance. The performance analysis
has been conducted on a Dell XPS 8500 (Intel Core i7-3770 CPU @ 3.40GHz x 8, 32 GB
of system memory) to run OpenStack Tacker, the backend, and the frontend. OpenStack
Tacker ran inside an Ubuntu 18.04.6 LTS virtual machine with 24 GB of system mem-
ory assigned. BCV’s frontend and backend (including the database) run inside Docker
containers.

For the analysis, two scenarios have been considered: The first scenario involves deploying
the SC to an Ethereum development network on Ganache [13]. This configuration repre-
sents the best case possible in terms of performance from the BC’s side. For this reason,
Ganache’s “automining” feature was enabled. The second scenario represents a more re-
alistic setup by deploying the SC to the Ethereum Ropsten [15] test network, which has
similar properties to Ethereum Mainnet. An Infura [30] endpoint was registered to access
the Ropsten network. Note that the results might differ in a scenario where a local geth
node is used instead of Infura, potentially reducing network latency when accessing the
BC.

In the Ganache scenario, 10 rounds of measurements for each action (deploying and delet-
ing a VNF) were performed. Each round consisted of a set of 6 timestamps. In the
Ropsten scenario, the number of rounds was increased to 20 to address the emerging vari-
ance. This variance originated from two factors: the block time of Ropsten and the timing
of sending a transaction (i.e., at which point in time between two blocks). Note that the
VNF was based on an identical VNF descriptor in all cases, without any parametrization
or additional configuration objects attached. The timestamps collected per round (cf.
Figure 5.2) are as follows:
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• t0: Frontend initializes call: The moment at which the user initiates the contract
call by pressing the ‘Deploy VNF’ button (cf. Figure 4.5) respectively the ‘Delete
VNF’ button. Note that the timespan from this stamp to the next one is influenced
by user actions, as the transactions have to be confirmed manually in Metamask.

• t1: Block timestamp request processed: The timestamp of the block in which the
transaction responsible for processing the request and emitting the ‘DeployVNF’
respectively ‘DeleteVNF’ event was mined.

• t2: Backend received request: Marks the time when the backend controller receives
the emitted event.

• t3: Backend initializes report: Denotes the time in the backend before the report
VNF deployment or VNF deletion transaction is sent.

• t4: Block timestamp report processed: The timestamp of the block in which the
transaction responsible for processing the backend report and emitting the corre-
sponding events is mined.

• t5: Frontend notified by contract: Marks the moment at which the event listeners
that target the reporting events emitted by the SC are notified.

The timestamps were read from console logging output for those originating from the
frontend or backend, respectively. The block timestamps were obtained from the Ether-
scan [17] website, using the transaction hashes from the transaction receipts, which iden-
tify the block in which the transactions were ultimately processed. In the local scenario
using Ganache, block times were read from the Graphical User Interface (GUI) of the
Ganache desktop client.

Initially, the goal was to create a complete timeline using all six timestamps. However,
the timestamps were collected from three different systems, hence the respective system
clocks were not guaranteed to be consistent with each other. This issue became apparent
when looking at the timestamps as if they were from a single system, with multiple
occurrences of e.g., the backend timestamp for receiving a request from the contract (t2)
being chronologically earlier than the block time of the block responsible for processing
the request (t3). This inconsistency of timestamps resulted in a faulty timeline.

t0 t5

Frontend
Initializes  

Call

Block Timestap
Request Processed

Backend
Receives Request

Backend
Initializes Report

Block Timestamp 
Report Processed

Frontend  
Notified 

Backend Time

On-Chain Time

End-to-End (E2E) Time

Figure 5.2: Performance Evaluation Scheme
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Figure 5.2 illustrates the pursued scheme. The collection of six timestamps per round
was maintained, but only the timestamps originating from the same system are now
in fixed relation to each other. In other words, the timestamps indicate exactly how
long the procedure took on each of the three systems (frontend, backend, blockchain)
independently. This results in the three timespans shown in Figure 5.2, with the innermost
(t2 to t3) span representing the total time elapsed on the backend, the second (t1 to t4)
span representing the time it took for the action to be completely processed on the BC,
and the outermost (t0 to t5) span representing the total E2E time elapsed.

As for where exactly the timespan of a procedure on one system (e.g., the time elapsed
on the backend) is located within the timespan of the encompassing procedure on another
system (e.g., time spent on the chain), the evaluation cannot answer. All that can be
stated is that it must be somewhere within the bounds of the timespan of the encompassing
procedure, as the events marked by the timestamps are causally linked.

The Figures 5.3, 5.4, and 5.5 use the same four scenarios for the analysis: VNF deploy-
ment on Ganache (blue), VNF deployment on Ropsten (red), VNF deletion on Ganache
(yellow), and VNF deletion on Ropsten (green). In all of these Figures, the x-axis denotes
the scenario, whereas the y-axis shows the time elapsed (i.e., duration) in seconds.

Figure 5.3 depicts time elapsed on an E2E basis, which conforms to the interval t0 to t5

in Figure 5.2. Figure 5.5 is in line with the interval t1 to t4 in Figure 5.2, which repre-
sents the time until each scenario is completely processed on the BC. Finally, Figure 5.4
corresponds to the interval t2 to t3 in Figure 5.2, illustrating the time elapsed on the
backend for each of the selected scenarios.

5.3 Discussion

The high cost of operation that comes with the use of the SC shows the significance of
BC choice for such a system: The selection process [54] has to be performed with great
diligence and scrutiny, gauging between the impact of choosing a particular BC, as well
as its consensus algorithm, as these two factors influence operational costs substantially.
However, for this work, the cost is not the primary concern as the prototype was imple-
mented to show the technical feasibility of implementing such as system. For real-world
operation, the underlying BC would have to be replaced with a more cost-efficient im-
plementation. A possible option would be to use Ethereum with a different consensus
algorithm, such as Proof-of-Stake (PoS) or Proof-of-Authority (PoA), which could reduce
the overall costs [53].

The performance analysis evaluation showed that for the E2E evaluations, similar results
were reached in the deployment of VNF and deletion of VNF in the Ropsten Testnet. In
fact, the resulting median values are very close, cf. Figure 5.3. Nevertheless, the E2E
Ropsten Testnet data shows a high variance since the values are spread out from the mean,
and high outliers in the data can be observed. Since the backend results showed stable
performance results (cf. Figure 5.4) it is noticeable that the high outliers from the E2E
test directly result from the differences in chain timestamps (cf. Figure 5.5). This finding
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Figure 5.3: E2E time elapsed, G = Ganache, R = Ropsten

implies that there is no processing time guarantee regarding the BC. In fact, in most cases,
the processing was done on two subsequent blocks. In other instances, this was not the
case, which resulted in those outliers. This wide range of values follows from an inherently
random factor of the BC since it cannot be controlled in which block a transaction will
ultimately emerge. Furthermore, the human factor in the evaluation also introduces noise
in the collected data, though it can be argued that due to the given duration ranges, small
differences in the order of a second would not influence the expressiveness of the results.

Additionally, as depicted in Figure 5.4, it is apparent that the backend was faster in
the local Ganache case than in the Ropsten Testnet case. Despite applying the same test
procedure in both cases, the results showed a difference in execution time of a few hundred
milliseconds. This difference can potentially be explained by the fact that the SC event
listener, which is run in background threads, is more computationally expensive in the
Ropsten Testnet scenario than in the local case since the events have to be continuously
polled from the chain, due to the use of the web3 Python library, resulting in those small
differences.
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Figure 5.4: Time elapsed on backend, G = Ganache, R = Ropsten
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Figure 5.5: Time until completely processed on chain, G = Ganache, R = Ropsten



Chapter 6

Summary, Conclusions, and Future Work

This chapter concludes this work with a summary, including the main findings and con-
clusions reached. Furthermore, potential areas for future work are highlighted based on
the insights gained during the development of this work.

6.1 Summary and Conclusions

The primary goal of this work was to develop the prototype of a system for deploying
VNFs using the BC as an event bus to determine the feasibility of such an approach. For
this purpose, the basics of NFVs, VNF frameworks, BC, and BC-based SCs have been
elaborated. Subsequently, existing systems in the area of BC and NFV have been inves-
tigated, indicating that the concept of using BC signaling to deploy VNFs automatically
had not been applied before. In that sense, this work presents a novel approach for auto-
matically deploying VNFs via BC signaling. BCV was designed to be open and generic,
providing extensibility for future requirements and features.

This work proved that the concept of using BC signaling to deploy VNFs is feasible. How-
ever, one caveat proved to be the cost involved in running BCV on a public permissionless
BC (i.e., Ethereum). Due to the high conversion rate between ETH and fiat currency at
the time of writing, BCV would have been very expensive and unpredictable in terms of
cost when run in a real-world setting. Thus, to achieve better cost efficiency, it might be
more suitable to deploy BCV’s SC onto a BC with a different consensus algorithm such as
PoA or PoS. Another caveat regarding the BCV prototype is security. The authentication
protocol used to authenticate users inside the backend only serves as a placeholder. In
a real-world scenario, the protocol at hand should be replaced with a standardized au-
thentication protocol (e.g., OpenID Connect [21]). However, integrating a standardized
authentication protocol was not within the defined scope of this work. In terms of per-
formance, BCV’s execution type deploying and deleting VNFs primarily depends on the
underlying BC. Both frontend and backend did not cause harmful effects on the overall
performance in both evaluated scenarios (i.e., Ganache, Ropsten).

71



72 CHAPTER 6. SUMMARY, CONCLUSIONS, AND FUTURE WORK

6.2 Future Work

While BCV proves that the concept of using BC signaling to deploy VNFs works, there is
potential for extending the prototype, including integration with other systems, but also
achieving higher scalability, security, and performance.

One task could be to connect BloSS [49] to the backend and the SC of BCV. By doing
this, BloSS could react to cyber-attacks by deploying a VNF using BCV (e.g., a firewall)
to defend against the attack.

Another possible integration could be registering BCV as a VNF provider in BRAIN [22].
This integration would implicate the design and implementation of the economic mecha-
nisms to compete in BRAIN’s reverse auctions. If BCV was to win a particular auction,
BRAIN could signal the deployment of a VNF via BCV’s SC directly and then forward
the details of the created VNF to the user.

With this prototype, the operating costs (cf. Section 5.1) were found to be high. Future
work could involve adapting the SC to be deployed on another BC with a more suitable
consensus algorithm. This work leveraged Ethereum, which uses a PoW consensus al-
gorithm. However, there are more efficient consensus algorithms available, which could
enable large cost-savings as well as performance improvements.

Another task could be to extend the SC to support multiple backends, which would allow
for better horizontal scalability. Furthermore, extensions to connect other NFV frame-
works to the backend would be beneficial. The backend is already built with extensibility
in mind. Thus, implementing connectors for other NFV frameworks could be a feasible
next step.

In terms of security, this prototype uses its own authentication protocol. However, in
the scope of this work, this mechanism is only considered a placeholder. A standardized
authentication protocol (e.g., OpenID Connect [21]) could be integrated. Additionally,
for BCV to be used in a real-world environment, it would have to undergo a security
analysis followed by a hardening process.
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Appendix A

Installation Guidelines

The system’s source code has been hosted on Github, and can be found under the fol-
lowing link: https://github.com/blockchain-v. The installation guidelines for each
part of the system can be found in the appropriate ‘Readme.md’ files for each respository.
Additionally, the installation guidelines are also found in the submitted ‘Readme.md’

This project assumes the following structure:

• blockchain-v/bcv-contract

• blockchain-v/bcv-frontend

• blockchain-v/bcv-backend

• blockchain-v/bcv-docker

A.1 Configuration Files

Since the .env files are used to change configurations, they have to be adjusted to the
local scenario.

• bcv-backend/.env:

– W3_URL: Has to point to the internal IP address where Ganache is hosting the
Blockchain

– W3_CONTRACT_ADDRESS: Insert Ethereum Smart Contract address

– SC_BACKEND_ADDRESS: Ethereum address of the backend

– SC_BACKEND_ADDRESS_PKEY: Private key of the backend’s Ethereum address

– SC_BACKEND_ADDRESS_FROM: Ethereum address of the Smart Contract creator

– SC_BACKEND_ADDRESS_FROM_PKEY: Private key of the Smart Contract creator
address
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• bcv-frontend/.env:

– VUE_APP_CONTRACT_ADDRESS: Insert Ethereum Smart Contract address

– VUE_APP_BACKEND_URL: Has to point to internal IP address using backend’s
port

• bcv-docker/docker-compose.yml:

– extra_hosts: Has to point to internal IP address

A.2 Docker Installation

This installation guideline is to be used to run the system in a containerized environment.

1. Requirements: Ganache, Truffle, Metamask, Docker

2. Start the Tacker VM

3. Start Ganache, optionally add the truffle-config.js as project to read the smart
contract values and see event details

4. cd into bcv-contract/src and run truffle migrate −−reset

5. cd into blockchain-v/bcv-docker directory:

• docker compose build

• docker compose up

A.3 Local Development Installation

This installation guideline is to be used for local development of the system.

1. Requirements: Ganache, Truffle, Vue, Python, Docker, Metamask

2. Start Ganache, optionally add the truffle-config.js as project to read the smart
contract values and see event details

3. cd into bcv-contract/src and run truffle migrate −−reset

4. Run the database:

• Inside the blockchain-v/bcv-docker directory: docker compose up db

5. Run the frontend: (might require .env changes): In blockchain-v/bcv-frontend

directory: yarn install && yarn serve
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6. start the Tacker VM

7. Run the backend: in blockchain-v/bcv-backend directory:

• pip3 install -r test-requirements.txt

• python3 -m openapi_server
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Appendix B

Contents of the CD

This project has been submitted in digital form only, as per agreement with our supervi-
sors. Consequently, it consists of a .zip file (instead of a CD) with the following contents
was handed in:

• Project.zip, a .zip file containing the LaTeX source code for the project.

• Project.pdf, a .pdf file containing the report.

• Evaluation, a directory containing the evaluation script and the data.

• BCV.zip, a zip holding the entire source-code for the BCV implementation. This
includes some local-only files such as .env files.

• Materials, a directory containing the source files for the graphics, calculations, etc.
of the report.

• Presentations, a directory containing the slides for the midterm presentation, held
on December 16, 2021, and the slides for the final presentation, held on March 3,
2022.
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