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Abstract

Open Source Software (OSS) is widely prevalent these days. Most software contains in-
tegrated OSS to some extent. Nevertheless, many OSS projects are not pursued and
maintained sufficiently due to the lack of funding. Although a significant number of do-
nation platforms exist to support open-sourced projects, it is cumbersome for developers
to keep up with receiving enough financial reassurance to sustain an OSS project. Flat-
FeeStack is a project that aims to solve this problem by allowing sponsors to donate a flat
fee and pay the developers transparently using a decentralized approach. However, pre-
vious research on such a donation platform showed that performing a payout with viable
transaction fees is challenging. Hence, in this thesis, an improved design is proposed in
comparison to related work and supported by the implementation of a Proof-of-Concept.
The solution uses a signature mechanism in combination with a batched payout, preserv-
ing important properties such as transparency. Conducted evaluations on two different
blockchains (i.e., Ethereum and Neo N3) show strong indications that on-chain fees can
significantly be reduced. When high transparency is desired, the proposed approach de-
creases the payout fees on Ethereum on average by 76.5% up to 99%. Utilizing Neo N3,
the fees can be reduced further by up to 99%.
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Open Source Software (OSS) ist heutzutage weitgehend verbreitet. Die meiste Software
beinhaltet integrierte OSS in gewissem Umfang. Dennoch werden viele OSS Projekte auf-
grund mangelnder Finanzierung nicht genügend weiterentwickelt und aufrechterhalten.
Obwohl zahlreiche Spendenplattformen existieren, die Open Source Projekte unterstüt-
zen, ist es mühsam für Softwareentwickler genügend finanzielle Mittel zu sichern, um ein
OSS Projekt zu unterhalten. FlatFeeStack ist ein Projekt mit dem Ziel, dieses Problem
zu lösen. Es erlaubt Sponsoren, eine Pauschalgebühr zu spenden, und bezahlt die Soft-
wareentwickler mithilfe eines dezentralisierten Ansatzes transparent aus. Jedoch haben
bisherige Erkenntnisse bezüglich einer solchen Spendenplattform ergeben, dass eine sol-
che Auszahlung mit einer realisierbaren Gebühr anspruchsvoll ist. In dieser These wird
daher ein verbessertes Design vorgestellt und mit einer Implementation konzeptionell de-
monstriert. Die Lösung beinhaltet einen Signatur-Mechanismus in Kombination mit einer
gebündelten Auszahlung, welche wichtige Eigenschaften, wie beispielsweise Transparenz,
bewahrt. Durchgeführte Evaluationen auf zwei Blockchains (d.h. Ethereum und Neo N3)
zeigen starke Indizien, dass on-chain Gebühren signifikant reduziert werden können. Wenn
hohe Transparenz erwünscht ist, dann reduziert der vorgeschlagene Ansatz die Gebühren
auf Ethereum im Durchschnitt um 76.5% bis zu 99%. Wenn Neo N3 zur Auszahlung
benutzt wird, können die Gebühren nochmals zusätzlich um bis zu 99% reduziert werden.



Acknowledgments

First, I would like to thank everyone that supported me in any way during the time I
was working on this thesis. I want to express my gratitude to Dr. Guilherme Sperb
Machado and Prof. Dr. Thomas Bocek for the many valuable brainstorming sessions and
their technical assistance. Their passion when technical topics are involved is inspiring.
Further, I would like to thank Eder John Scheid for his guidance in structuring and writing
this thesis. Finally, I would like to thank Prof. Dr. Burkhard Stiller for providing me the
opportunity to write my Master’s Thesis at the Communication Systems Group.

iii



iv



Contents

Abstract i

Acknowledgments iii

1 Introduction 1

2 Background and Related Work 3

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Signatures and Asymmetric Encryption . . . . . . . . . . . . . . . . 3

2.1.2 Distributed Ledger Technology . . . . . . . . . . . . . . . . . . . . 5

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Approaches to Donation Platforms . . . . . . . . . . . . . . . . . . 8

2.2.2 Takeaway on Fee Optimization . . . . . . . . . . . . . . . . . . . . 10

3 Design 13

3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Signature Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Signature Invalidation . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.2 Pre-signed Transaction . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.3 Signature Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Payout Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Fee Charging Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Smart Contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



vi CONTENTS

4 Implementation 25

4.1 Signature Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Ethereum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.2 Neo N3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Smart Contract Functionalities . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Exclusion Functionality . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.2 Emergency Fallback . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Ethereum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Smart Contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.2 Implementation Alternatives . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Neo N3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.1 Smart Contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.2 Implementation Alternatives . . . . . . . . . . . . . . . . . . . . . . 39

4.4.3 Implementation Optimization . . . . . . . . . . . . . . . . . . . . . 40

5 Evaluation and Discussion 43

5.1 Fee Comparison of Payout Options . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Initial Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Scenario Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.1 Use Case Scenario #1 . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.2 Use Case Scenario #2 . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.3 Use Case Scenario #3 . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Conclusion and Future Work 57

Bibliography 62

Abbreviations 63

List of Figures 65



CONTENTS vii

List of Tables 67

Listings 69

A Installation Guidelines 71

A.1 Signature Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.2 Ethereum Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.3 Neo N3 Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B Contents of the CD 73



viii CONTENTS



Chapter 1

Introduction

Software that is Open Source can be accessed by anyone to inspect, extend and utilize.
Most Open Source Software (OSS) projects are bound to a license which has to be accepted
when using the software. It restricts the user from applying the software only in the means
of the license holder. Provided that an OSS project’s license conditions are complied
with, it can be integrated and reused in any project. OSS is widely prevalent nowadays
as most projects contain integrated or reused OSS to some extent in a wide variety from
libraries like Tensorflow [1], code style improvement tools like ESLint [2], or full-fledged
programming languages like Rust [3].

Compared to OSS, closed source software does not share the source code with the open
community. Such software is produced internally with only a limited number of developers
having insight, while in OSS, the whole open community can access the source code. More
visibility ultimately leads to more trust because anyone can verify what the software is
processing in detail. Since the entire code base is public, this further allows the user to
choose whatever build or version there was in the past and also the possibility to customize
or adapt the software to any specific use case.

It was shown in [4] that most OSS projects are only sustained less than ten days. Disen-
gaging a started OSS project may have various reasons, such as, e.g., the lack of interest
in the community, the lack of time by the developer, or just the lack of any support.
However, [5] found that the main driver to disengage in a project is the lack of funding.
Often it is hard to find a sponsor. Foundations usually request an extensive plan and
an existing project base to accept a funding request. This effort out scales any smaller
project so that only bigger projects will ever consider applying to a foundation.

As there are many platforms to apply for sponsorships and receive donations, OSS con-
tributors are incentivized to sign up on multiple platforms to increase their visibility to
potential sponsors. This also reflects on the sponsors, as they may have to create multiple
accounts on different platforms as well to find and support the projects they would like
to back. Naturally, different donation platforms use different payment providers, such
that sponsors, as well as contributors, carry the burden of maintaining multiple payment
accounts. Eventually, involved parties find themselves in a complicated process where
they have to maintain unnecessary many platforms and services.

1



2 CHAPTER 1. INTRODUCTION

In past research, [6] proposed a payment flow for a donation platform that offers a fair
and transparent distribution of funds to OSS developers. Contributors should be able
to verify that actual donation funds are present. Therefore, a decentralized approach
with the Blockchain (BC) technology was chosen. The payment to the contributor would
eventually be issued utilizing cryptocurrencies to maintain transparency. It was found that
the fees for the payout to the developer are not viable, and as the demand for distributed
ledger (DL) solutions is driving prices higher, a scalable solution that optimizes fees is
required. This thesis answers the following research question:

Is it possible to design a transparent donation payment mechanism while lowering the
payout fees significantly?

In this thesis, a potential solution approach is presented and evaluated. This approach
aims to maintain the transparency of the former approach by [6] and lower the costs of
the payout to the developers. A scalable operation should be enabled, and further sup-
port the possibility to be adapted generic within different BCs. The favored approach is
presented, which combines the fee optimizations of the BC-based payments while improv-
ing transparency for the developer. The design is developed and thoroughly tested in a
Proof-of-Concept (PoC) implementation for the BCs Ethereum and Neo N3. It includes
multiple options for developers on how to receive or withdraw earned funds. These options
are evaluated in realistic scenarios and compared to each other. Further, the emerging
fees are compared between the implementations for Ethereum and Neo N3.

Firstly, related work and background information is described and discussed. Current
problems in the area of OSS are specified and exemplified, and involved concepts within the
same context are shown. Then, the design of the solution approach is closely elucidated.
Afterward, the implementation details of the involved services and smart contracts (SC)
are closely described while also providing implementation-specific optimizations. Finally,
in Chapter 5, the constructed SCs for Ethereum and Neo N3 are evaluated by comparing
the payout options on both BCs, as well as comparing the proposed solution with the
former approach by [6] that has been implemented on Ethereum.



Chapter 2

Background and Related Work

This chapter provides background information and discusses related work that has been con-
ducted.

2.1 Background

In this section, background information that is essential for the content of this thesis
is described.

2.1.1 Signatures and Asymmetric Encryption

Asymmetric encryption is an encryption process that makes use of a key pair to en-
crypt and decrypt messages [7]. A key pair consists of a private key (PK) and a pub-
lic key (PubK). The PubK is derived from the PK, which is why it is called a pair.
Retrieving the PubK from a PK is simple, while deriving the PK from the PubK is ex-
tremely computationally expensive. Therefore, the PubK can be visible to anyone without
any security concerns. In order to securely transmit a message from one person to another,
the recipient holds a PK and provides the sender with the corresponding PubK without
bearing any risk.

As exemplified in Figure 2.1, George holds a PK, and Fred wants to send a private
message to George. For Fred to encrypt the message, the PubK of George can be used
on the message. The encrypted message can then be sent without bearing the risk of
anyone being able to read it since only the PK belonging to the used PubK can decrypt it
and retrieve the original message. As George receives the encrypted message, he can now
use his PK to decrypt and read the original message. Generally, a message to be signed
can be arbitrarily large. However, to sign larger messages, more computational power
is required. Hence, usually, a one-way hashing algorithm like SHA-256 [8] is applied to
reduce the size of the message.

3



4 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: Asymmetric encryption process

When an encrypted message is received, the originator can not be verified. Anyone could
have intercepted the transmission of the encrypted message between Fred and George
and provided George with a fraudulent encrypted message since the PubK can be openly
shared. Digital signatures [9] are used to verify the originator of a message. In order
for George to verify that it was Fred that sent him the message, Fred can add a digital
signature to the message. This message does not necessarily have to be encrypted since
the signature process approaches a different issue. However, encryption and signature
may also be used conjointly to keep a message private and ensure that the originator
who encrypted that message can be verified. As the encryption of a message requires the
recipient to hold a PK and share its corresponding PubK, the originator has to hold a key
pair when creating a signature. Fred can use the PK on the message and then transmit
the message together with the signature. George can then use Fred’s PubK, the message,
and the signature to derive the signing PubK. If Fred’s PubK matches with the resulting
PubK, the signature is valid, and George can be confident that Fred was the originator
of the message.

Figure 2.2: Signature process
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2.1.2 Distributed Ledger Technology

A DL is a decentralized database that is maintained by multiple participating nodes.
Updates to the database are issued through transactions. These transactions are required
to follow specific rules that are defined in the protocol of the ledger. Depending on
its protocol, either through voting or reaching a consensus between all or just a subset
of all nodes, the update is accepted and included in the ledger. Since in a DL, the
presence of malicious nodes is anticipated, it motivates robust consensus algorithms or
stable voting restrictions to be adapted, such that transactions are ensured to follow the
required rules strictly.

A BC is a particular case of a DL. It packs state updates in blocks where every new block
that is created is dependent on the previous one, thus chained together. Since blocks
are linked to the previous block, every future block is dependent on every previous block
that was ever included in the chain. This provides high transparency due to the fact
that not just the current state is public knowledge but also every change that was ever
made to the ledger. Every block that is created consists of metadata called the block
header, which includes the hash of the previous block and various additional information
like a timestamp or its block number. A block further contains the accepted state changes
referred to as transactions that have been issued to be included in the BC. Transactions
are state updates executed on the BC to change its state.

Most BCs have a natively integrated fungible token as a digital asset that can be trans-
ferred within the BC. Such tokens are called cryptocurrency, whereas conventional paper
money is referred to as fiat money. Usually, BCs use a fuel token that is spent to pay
for issuing transactions, hence updating the state of the BC. The payment that has to
be made is called the transaction fee and depending on different protocols, that fee is
handled differently when paid. Usually, the fee is either burned, or distributed among
one or multiple validators that verified the correctness of the issued transaction, or both,
partially distributed and partially burned. In most BCs, there are additional fuel tokens
minted and distributed every block. This is mandatory on BCs that burn parts of the fee
to never run out of the token.

The participating entities in a BC are represented by addresses. An address holds a bal-
ance of the BC’s token that allows it to interact with the BC and thus issue transactions.
There are addresses that are derived from a PK and PubK pair (i.e., externally owned
accounts (EOA)), and addresses that belong to a Smart Contract (SC) (i.e., accounts that
are controlled by code).

Smart Contracts

A SC is a software program that is running on a DL and follows specified rules as to how
to change the state of the ledger. Due to the fact that in a BC, every block is connected
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and strictly dependent on the previous block, the algorithms of a SC are required to be
deterministic as to derive the same state whenever executed again. On a BC, SCs can
be embedded in different kinds of ways. The most common is as a script or on top of a
virtual machine (VM) [10]. As the earliest BC, Bitcoin [11] is based on scripting, which
allows executing simple programmable algorithms such as to transfer ownership of assets
from one PubK to another. Later, [12] invented the concept of running SCs on top of
a VM, which enables enormously greater possibilities for BC use cases. While scripting
SCs can only execute simple stack-based operations, SCs that are implemented utilizing
instructions of a VM can include far more complex algorithms as to how to handle and
execute payments or borrow or lend tokens for interest, to name a few.

In the BC space, the terms transaction and transfer are largely used interchangeably.
However, transactions on BCs are more than just a transfer of assets. Transactions contain
additional information such as its hash, a timestamp, the block hash of the block it was
included in, or signatures that allow verifying that assets may be spent. Further, a
transaction also contains the script that should be executed on the BC. In VM-based
BCs, this script holds instructions in the form of opcodes of that VM and additional
bytes depending on what opcodes are used and what arguments this opcode requires to
run on the VM. Thus, a transfer is merely a script to move assets from one account to
another and is part of a transaction. In this thesis the terms transaction and transfer are
used accordingly.

Ethereum

When the concept of running a VM integrated into a BC was introduced by [12], the
Ethereum Virtual Machine (EVM) was born, which resulted in the development of the
Ethereum BC. Ethereum allows the implementation of Turing-complete programs for the
EVM utilizing the Solidity programming language [13]. It has a natively integrated token
called Ether (ETH). ETH is divisible with 18 decimal places and is used to pay the
emerging fees for transactions. The smallest unit of ETH is called wei and since there
is a huge gap between one ETH and one wei, another widely used abstraction is called
gigawei (gwei), which is equivalent to one billion wei. Further, Ethereum runs on a Proof
of Work (PoW) consensus protocol, incentivizing network participants to build the next
block by rewarding them with tokens for any new block added to the BC. These block
builders are called miners.

In Ethereum, to execute a transaction, an amount of gas based on its script and size is
required. Network participants can choose what maximal price they are willing to pay per
gas and hence for their transaction. The fees are derived in an exclusively auction-based
form where a maximum fee could be specified, and miners would choose the ones with
the highest bids as the fees of all transactions in a block were rewarded to the miner. In
August 2021, a controversial upgrade to the Ethereum protocol has been executed, referred
to as the London hard fork [14]. It introduced a new concept of calculating the emerging
fees of transactions defined in [15]. With the London hard fork, the Ethereum protocol
introduced a base price per gas consumed by a transaction. The base fee is calculated
based on the previous block’s gas fee and a targeted value. To include a transaction, the
issuer can now specify a maximum amount of gwei to pay for the base fee and add a tip
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to it. When a transaction is included in a block, the base fee is burned, and the tip is
rewarded to the miner.

Neo N3

The Neo BC [16], initially branded as AntShares, is a project that was founded in 2014.
Recently, in August 2021, the latest update Neo N3 was launched. Neo N3 is a VM-based
BC that runs with a delegated Byzantine Fault Tolerance (dBFT) protocol [17]. The
consensus is based on 7 validator nodes and 14 committee nodes that together form the
Neo Council. It is responsible for running the network and can control various network
settings with a single majority.

Neo N3 is based on a dual Token system with the native NEO and GAS tokens. NEO is an
indivisible token that allows holders to participate in Neo N3’s governance. NEO holders
can vote for a node to get elected into the Neo Council, whereas one NEO counts as one
vote. Anyone can issue a transaction to register as a candidate node. The 21 candidate
nodes with the most votes form the Neo Council, out of which the top seven nodes are the
validators that derive a consensus for each new block utilizing the dBFT protocol. GAS
is Neo N3’s utility token that allows taking part in using the BC. It is divisible with eight
decimal places and is used for the emerging fees to interact with the BC. Every block, a
number of GAS specified in the network settings is minted and distributed among NEO
holders, voters, and council members.

Neo N3 features various natively integrated functionalities such as an oracle service, de-
centralized file storage, or a name service. Utilizing the dBFT protocol, Neo N3 supports
one-block finality, which means that once a transaction is included in a block, the transac-
tion will persist. Further, Neo N3 allows multi-language support, such that decentralized
application developers can implement SCs and interact with N3 in commonly known pro-
gramming languages such as Java, Python, Golang, and C# among others.

Other than Ethereum, Neo N3 uses a different approach to transaction fees. The network
settings that the Neo Council can adjust consist of several parameters, such as a network
fee per transaction byte or an execution fee factor that can define different kinds of fee
factors. Basic transaction fees on Neo N3 consist of a system and a network fee. The
system fee is based on the transaction script. Every opcode in the Neo N3 VM (NVM)
is allocated a price, and the sum of all opcode prices multiplied with the execution fee
factor specifies the system fee of a transaction. The network fee is derived by multiplying
the network fee factor with the number of bytes the transaction consists of. Together,
the system and network fee of a transaction form the total fee that has to be paid. An
additional priority tip can be added to the network fee as the network fee is rewarded to
the validator of the block while the system fee is burned.

2.2 Related Work

This section provides an overview of related work and discusses approaches to decrease
transaction fees.



8 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.1 Approaches to Donation Platforms

Various solutions exist to donate to projects and other kinds of contributions. In the
following, a few of them are elaborated on.

GitHub Sponsors

With a direct integration in the most prominent OSS supporting platform GitHub, GitHub
Sponsors [18] is a well-known option to donate or apply for sponsorships. Both the bene-
factor as well as the developer to be sponsored are required to own a GitHub account and
an additional GitHub Sponsors profile. As a benefactor, a one-time or monthly recurring
payment can be made to sponsor a single developer or a full organization that applied
and supports GitHub Sponsors to receive donations. As the project runs integrated with
GitHub, the benefactor is required to own a GitHub account. Donations can be issued
from a user account or from an organizational profile. The idea behind donations from
organizational profiles is that developed projects in that organization can give something
back to the developers of libraries or other OSS dependencies it is based on. The pay-
ment is issued through the global payment service Stripe Connect [19]. GitHub Sponsors
itself does not currently charge a fee. However, it is noted that in the future, fees will be
added to donations [20]. Currently, that means that just Stripe Connect may charge a fee
between 1% and 2% in addition to potential fees depending on different account options.

Gitcoin

Gitcoin [21] is a project that pays developers to work on OSS in the Web3 space that is
based on public BCs. Developers can earn cryptocurrency by tackling bounties on open
GitHub issues, taking part in organized hackathons, or applying for grants. Gitcoin intro-
duces quadratic funding, which increases the funding amount for a project substantially
when more community participants support a project. Developers, as well as sponsors,
have to own a GitHub profile and link it with the Gitcoin website. Sponsors can open
issues and provide a bounty in the form of BC tokens for developers to solve them. Gitcoin
charges 10% on top of that bounty as a platform fee, while developers that solve the issue
are not charged any fee for the payout.

Open Collective

Open Collective [22] is a platform that offers transparent donations to various kinds
of contributors, such as Open Source projects, clubs, or non-profit organizations. The
sponsor can decide what project or which contributor to support and whether to issue
one-time or recurring donations. The fee structure varies since there are multiple different
fiscal hosts that can be chosen to issue a transfer of the donations to the beneficiary’s
bank account. The platform charges fees that span from 0% up to 30% with additional
fees charged by the payment processor.
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Flattr

Flattr [23] is a sponsoring platform that allows supporting developers, content creators,
or projects. As Flattr is not bound to a strict platform where sponsorship applicants
make contributions, sponsors and applicants for sponsorships are required to sign up and
create a profile on Flattr. It provides the option of a one-time payment or a subscription.
The sponsor can specify a payment amount and then choose the creators or projects to
support. The chosen donation amount is then split evenly among all chosen beneficiaries.
The payment is executed through the payment provider MangoPay [24]. Together with
the fees charged by MangoPay, a donation on Flattr results in 10% fees, which leaves 90%
of the total donation to be paid to the beneficiaries.

FlatFeeStack

Flatfeestack [25] is a project that aims to enable developers to make a living from OSS
contributions. It introduces a flat fee donation approach that complies with the standard
budget structures of companies and a transparent payout utilizing the DL technology. It
supports version control management software, such as git. Sponsors can sign up for a flat
fee subscription and then choose any and as many repositories as they intend to support.
FlatFeeStack allows donations on projects rather than developers directly with the intent
that companies can back the projects they are using. By sponsoring a project, they
provide support for any future development of it. Other than most donation platforms, a
donation to a project is only paid once further development has taken place.

In past research in the scope of FlatFeeStack, [26] developed a contributions analysis
engine that can retrieve the commits of any public repository on GitHub, evaluate its
commits of a specified time frame and provide a distribution of how much each developer
contributed. Based on the results of the engine, donations issued to a repository are then
split among the contributing developers. In order to maintain transparency, [6] found
that with the use of SCs on Ethereum and Tezos, developers have to deal with a trade-off
between trusting the donation platform and fewer fees for the payout transactions. As
only direct payouts and less frequent transactions could lead to fewer fees, developers are
required to fully trust the platform to execute the payment eventually. It was explicated
that the payment process including funding the SC and the developer withdrawing the
funds, a fee of about USD 1.08 emerged considering the ETH price trading at about
USD 335 and the average gas price being approximately 60 gwei at the time.

Table 2.1 shows, that besides FlatFeeStack only Flattr provides the option of a flat do-
nation. Considering the other platforms, sponsoring more projects ultimately leads to
spending more funds on donations. Companies usually plan their budget in a periodical
manner, usually quarterly or annually. For a company to consider a donation, it precedes
careful evaluation of a project by the company as they would be required to specifically
spend additional not planned expenses. This approach strongly favors already established
projects compared to smaller projects, where the effort outweighs the matter. With a flat
donation approach, companies can plan their budget accordingly and then change or add
further projects to the sponsorship without budget concerns.
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Table 2.1: Comparison of related donation platforms
GitHub Sp. Gitcoin Open Col. Flattr FlatFeeStack

Flat donation 7 7 7 3 3

Quality evaluation 7 7 7 7 3

Transparent payments 7 3 7 7 3

Payout fees - - 0-30% 10% ∼ USD 1.10

Further, only FlatFeeStack tackles an approach that includes an evaluation of contribu-
tions to fairly distribute donation funds in an OSS project. As for transparent payouts,
FlatFeeStack aims to maintain transparency to the developer. However, with the current
solution approach by [6], high transparency can only be delivered if the donations of a
developer reach high monetary value. For developers that earn only small amounts of
donations, the current solution is not viable as the transaction fees of the payout would
diminish the paid amount. Hence, the funds would only be issued to the SC to be with-
drawn as soon as it would become viable while there is no transparency up to that point.
The fees for the payment to the developer do not seem too high for FlatFeeStack. How-
ever, it needs to be considered that at the time of the evaluation by [6], the market price of
one ETH was about 7% of the current price, and with the grown demand in the network,
the transaction fees have increased even more since then. GitHub Sponsors, as well as
the Gitcoin platform, currently does not charge any fees utilizing the platform. However,
it was mentioned that this might change for GitHub Sponsors in the future [20]. Fur-
ther, Gitcoin charges a pay-in fee from the sponsor that is added on top of the sponsor
amount. Furthermore, the payout fees tend to become higher for the other mentioned
platforms compared to GitHub Sponsors, Gitcoin, and FlatFeeStack. Finally, while Open
Collective, Flattr, and GitHub Sponsors only consider fiat money, the Gitcoin platform
and FlatFeeStack utilize a payout with cryptocurrencies.

2.2.2 Takeaway on Fee Optimization

With the ever-growing demand in the BC space, the prices of cryptocurrencies have been
growing enormously. As more people are using Ethereum, the network’s capacity has
been reached, which drives the fees to include a transaction in a block higher than ever.
Transferring an ERC-20 token, as the technical standard on the Ethereum BC is called,
costs around USD 26 at the time of writing [27, 28]. Invoking a complex SC method will
derive an even higher fee eventually. Scaling solutions on Layer-1 are slowly implemented
and integrated since it comes with risks that have to be assessed carefully, and ultimately
a consensus in the community is required to fork the BC to upgrade the Layer-1 imple-
mentation. Thus, adapting the consensus to a less wasteful Proof of Stake or introducing
sharding to increase scalability in the Layer-1 takes a long time.

In order to scale the use of BCs further, Layer-2 solutions are currently being developed
with the aim to increase the transaction throughput and ultimately lower fees. Layer-2
solutions are implemented off-chain. Hence, they do not affect the implementation of
Layer-1. The computational workload is done on Layer-2 while Layer-1 is utilized for
verifying its correct execution. The most prominent approaches of Layer-2 solutions are
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optimistic and zero-knowledge rollups, as well as plasma and state, or payment channels,
respectively [29, 30, 31].

Channels are already widely established. The most prominent projects are the Light-
ning Network [32] for Bitcoin, and the Raiden Network [33] for Ethereum. In channels,
a connection can be established in Layer-1 between two parties to exchange payments or
allow state updates that concern both parties off-chain. A channel is opened on Layer-1
by locking the required token amounts by both parties in the channel. While the channel
is open, the two parties can send tokens to each other off-chain or execute state changes.
As soon as the channel is closed, the payments or state changes are updated on Layer-1,
and the locked tokens are unlocked and distributed accordingly. While payment chan-
nels only support simple token transfers, state channels further allow agreeing on more
complex state changes that are possible on SC supporting BCs.

In 2017, plasma was introduced by [34] as a framework that potentially could significantly
increase the scalability of Ethereum. In plasma, sidechains are attached to another chain
arranged in a tree structure, while the root chain is the Layer-1 of Ethereum. The proposed
mechanism promised to vastly scale Ethereum. However, other problems arose under
development. Each participant would have had to check the sidechains’ state every, e.g.,
two weeks to ensure no malicious state update was executed by the operator, a long period
had to be waited to withdraw funds, and there turned out to be a problem when many
participants would want to exit a sidechain in a short timeframe [34]. Subsequently, rollup
approaches were introduced to solve the problems introduced by plasma while promising
significant scalability improvements.

Within the last year, optimistic rollup projects have started to reach production. Two
examples of optimistic rollups that are already running on Ethereum’s Mainnet are the op-
timistic rollup chains Optimistic Ethereum [35], and Arbitrum [36]. In optimistic rollups,
transactions are sent to an operator on Layer-2 that executes these and changes the state
root accordingly on the Layer-2 chain. The state changes are then batched and rolled-
up to the corresponding Layer-1 SC by storing data of these changes without executing
transactions and thus not requiring further computational effort on Layer-1. Since with
optimistic rollups, transactions are not actually executed on-chain, the rolled-up data’s
correctness may be challenged by issuing a fraud proof (i.e., a claim that a batch is in-
valid). The Layer-1 SC specifies a timeframe (e.g., one week) within which a rolled-up
batch can be challenged. When a fraud proof is issued, it is verified on-chain in the rollup
SC. In case it is valid, the rolled-up batch is reverted as well as every batch that descends
of it. If a fraudulent rolled-up state change is not challenged by a fraud proof within
the specified timeframe, the changes are final and can no longer be challenged. Thus,
optimistic rollups require the participating parties to wait for the specified time for the
certainty of executed changes.

In order to incentivize an operator to act truthfully, the operator is required to deposit
an amount of ETH in the rollup SC. Additionally, participants of the Ethereum BC are
incentivized to issue potential fraud proofs and hence pay for such a transaction on Layer-
1 by rewarding the fraud prover with ETH tokens and returning a part of the emerged
transaction fees. Consequently, in case a fraud proof is issued, and its correctness is
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verified, the deposited ETH tokens of the operator are partly burned while another part
is rewarded to the fraud prover [30].

Different to optimistic rollups, zero-knowledge rollups create a validity proof that is rolled-
up to the rollup SC on Layer-1. A validity proof is a cryptographic proof that the reached
state after the transactions of a batch have been executed is correct. Other than with
optimistic rollups, where state changes are only final after there has not been any valid
fraud proof been issued, validity proofs are verified whenever the state of Layer-2 is rolled-
up to Layer-1. Thus, a batch that is rolled-up utilizing validity proofs is immediately
final [37]. Few projects already provide zero-knowledge rollups on the Ethereum Mainnet
(e.g., the Hermez network [38], or the Starknet network [39]).

While most optimistic rollups are compatible with the EVM and Solidity, zero-knowledge
rollups mainly support simple payments and are still in early development to support the
EVM and potentially Solidity. With optimistic rollups supporting the EVM and Solidity,
any transaction that may be executed on Layer-1 can also be executed on Layer-2 in
the same way. Further, this allows designing, implementing, and optimizing an approach
utilizing the tools of Layer-1.

Due to the fact that rollup solutions are not yet fully established, they have not been
considered in the PoC implementation as it would add practical complexity that is out of
the scope of this thesis. However, the proposed PoC implementation could be deployed
and evaluated on Layer-2 solutions that support both the EVM and Solidity in the future.
Nevertheless, adopting the proposed design on a Layer-2 rollup would ultimately optimize
the fees on that Layer-2’s fee level since the proposed design attempts to optimize fees
on Layer-1.



Chapter 3

Design

This chapter presents the developed design of a fee optimized payout mechanism to OSS
contributors. This mechanism has to meet specific requirements, which are described in
the Section 3.1 before it is described in detail in the Sections 3.2, 3.3, and 3.4.

3.1 Context

On the FlatFeeStack platform, an end-user has to register and create a profile in order
to interact with its services. Since a version control management system (e.g., git) uti-
lizes email addresses to identify the author of a commit, developers have to link their
FlatFeeStack profile with the email address they use when contributing commits in that
system. To issue a payout payment through a SC, they must provide and link a valid
address of the BC they want to receive their payment. A FlatFeeStack profile can then
be associated with contributions and a payout address.

For a sponsor to interact with FlatFeeStack, a profile has to be created, and a donation
subscription can be chosen that specifies what amount is sponsored each month. Sponsors
can then search for projects and star the ones that they would like to support. The
timeframe in which a project is starred by a sponsor and the number of starred projects
are later considered when evaluating which contributor earns how much.

In the former architecture of FlatFeeStack depicted in Figure 3.1, the analysis engine
represents the commit evaluation engine introduced by [26]. The engine is triggered by
the scheduler and evaluates the contributions of each project that is supported through
FlatFeeStack. Whenever the payout is triggered by the scheduler, it queries the values
resulting from the evaluation and calculates each developer’s earned amount depending on
the donations of the sponsors. The deployed SC holds a mapping that stores each address
with its corresponding amount. The payout engine updates these values by issuing a
transaction that includes the addresses and their calculated values. After this transaction
has been executed, the developers can withdraw their earned funds from the SC to get
paid for their contributions.

13
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Figure 3.1: Former FlatFeeStack architecture [6]

The former payout design by [6] introduces multiple issues that reduce transparency and
hinder its scalability. For example, transparency is only provided to the developer once
FlatFeeStack updates the state of the SC. The funds are sent with the transaction of
such an update. This means that the developers only see the funds once a transaction to
update the SC’s state has been executed. However, to show the developers beforehand
that FlatFeeStack has funds at their disposal, the SC could be funded in advance (e.g.,
at the beginning of every month). This would solve the problem with transparency to
some extent. However, for a developer to verify that a specific amount of funds can be
withdrawn, FlatFeeStack always has to execute a transaction first. The transparency of
how much a developer has earned is therefore bound to the frequency that FlatFeeStack
executes such transactions.

Consequently, [6] found that for small earned amounts of a developer, it is not viable to
update the developer’s balance in each transaction. The part of the transaction fees that
emerges by including the developer would out scale the earnings. Thus, a developer with
small earnings would have to wait for future earnings to reach the point where it would
become viable to update the balance. This reduces transparency considerably. In addi-
tion, as soon as a balance update is executed eventually, the developer has transparency.
However, another transaction is still required to withdraw those funds.

Since the former solution approach only provides transparency once an update of the
SC has been issued by FlatFeeStack, the use of a push and pull payment through a SC
is difficult to justify. The transfer of tokens could be integrated directly, which would
reduce the summed-up cost eventually by lowering the number of required transactions.
However, the scalability problem that transparency is bound to transactions persists. In
order to release the tie to transactions, in this thesis’ proposed approach, transparency is
delivered by providing signatures off-chain.

The adapted FlatFeeStack architecture shown in Figure 3.2 illustrates the changes this
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thesis introduces to optimize the payout while maintaining transparency. In order to
integrate the changes into the current system, the former payout engine and the SCs are
replaced, and a new component that provides signatures is included. The API needs
minor adaptions, such as an added service to retrieve a signature, and the database
requires updates based on the way a user’s balance is tracked.

Figure 3.2: FlatFeeStack architecture

3.2 Signature Mechanism

One of the major aspects of this thesis is that the payout should be as transparent as
possible, enabling developers to verify what balance they earned. The proposed signature
mechanism solves this problem by providing developers with signatures to withdraw their
current earnings.

Transferring assets from one address to another requires the owner of the sending address
to witness such a transaction, i.e., the owner has to sign the transaction so that it can be
verified that the holder of the sending address has authorized that transfer. In case assets
are held in a SC, the PK that derives the SC’s address is not known. Therefore, no signa-
ture can be created, and no transaction can be signed without knowing the corresponding
PK. However, SCs contain algorithms that can mathematically specify when a transfer
is authorized to move assets away from the SC. One simple use case is that an EOA is
stored as the owner of that SC, and whenever a transfer is executed, the algorithm checks
whether its owner has witnessed that transaction. This way, the owner – and only the
owner – is authorized to transfer funds away from that SC.

The proposed signature mechanism provides another algorithmic way of authorizing the
withdrawal of assets from a SC. The designed SC holds a method that allows the with-
drawal of assets without the SC owner signing a transaction. Developers can withdraw
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earned funds by providing their address, their earned amount of funds, and a signature
of the SC owner. This signature has to be created by the SC owner, while the message
must match both the developer’s address as well as the earned amount of funds. Since
signatures are created by signing one single message, the bytes of the developer’s address
and the number of the earned funds are concatenated to form the message. It is then
signed by the SC owner and provided to the developer. The developer can now use the
corresponding address, the number of the earned funds, and the received signature as
parameters to the SC’s method and invoke it to withdraw the earned funds.

Within the method, the concatenated message is recreated from the provided parameters.
The signer of the message and the signature parameter is then recovered and compared
to the SC owner. In case the recovered signer and the SC owner match, the parameters
are valid. The transfer is then authorized with the developer’s address as the receiver and
the provided amount of funds as the transfer amount.

As shown in Figure 3.3, the developer can request a signature through an API call. The
returned response includes the current amount of earned funds and a signature that was
created by the SC owner’s PK. With that signature, the developer can issue a transaction
on the SC to withdraw funds from the SC. The developer can withdraw the funds from the
SC at any time in the future since the provided signature does not expire and remains valid.

Figure 3.3: Signature mechanism

The signature provider component is responsible for creating signatures. Therefore, it
requires access to the SC owner’s PK. Since the PK is sensitive information, the component
is detained in a decoupled separate service. This makes sure that only the signature
provider component has access to the PK. Whenever a request for a signature is handled,
the signature provider component receives the address and the number of earned funds
and returns the bytes of the corresponding signature.
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Developers can request a signature at any time. Hence, the received signature repre-
sents the current state of their amount of earned funds that is stored on the database
of FlatFeeStack. Transparency is, therefore, provided synchronously with FlatFeeStack’s
database. Whenever the analysis engine runs and calculates how much every developer
earned, the database is updated, and ultimately, any request for a signature will represent
the current state of the database.

3.2.1 Signature Invalidation

Developers could reuse a signature to withdraw the same amount of funds again. In order
to prevent this, signatures need to be invalidated once a withdrawal has taken place.
Since signatures remain valid over time, they need to be invalidated indirectly within the
SC so that funds can only be withdrawn once. Therefore, the number that is provided
as the earned amount of funds is constantly increasing. Thus, it represents the total
earned amount (tea) of a developer. Thus, when a developer earns funds, the newly
earned amounts are added to the stored tea value in FlatFeeStack’s database. Whenever
a withdrawal takes place, this number is stored on the SC, and the transfer amount is
calculated as the difference between the provided and the previously stored number on
the SC. Any signature that represents a tea value that has already been withdrawn is
hereby invalidated.

3.2.2 Pre-signed Transaction

Unlike on Ethereum, where only one sender is allowed to sign a transaction, on Neo N3,
transactions can hold up to 16 signers that witness a transaction. These signers are ordered
in a list where the first entry is the sender of the transaction and, therefore, is applicable to
pay the emerging fees. This feature of Neo N3 allows authorizing additional functionality
to be executed within one transaction script. Besides just providing a signature supporting
Neo N3, FlatFeeStack can offer another option, which is a pre-signed transaction. Instead
of requesting a signature, developers can request a pre-configured and signed transaction.
This pre-signed transaction fulfills the same intent as the signature. Nevertheless, there
are significant differences.

While a plain signature never expires, a pre-signed transaction contains a field validUn-
tilBlock [40] that specifies a period in which a transaction is considered valid. As soon
as the validity period has passed, the pre-signed transaction is invalid and no longer us-
able to withdraw funds. Due to the expiration of a pre-signed transaction, this option
is intended to be used merely in case a withdrawal is wished to be executed in the near
future. As of the time of writing, this period is approximately equal to three days. The
main advantage of a pre-signed transaction is that it is already created and needs to be
signed by the developer before executing it.

Further, the fees should still be paid by the developer, which means that FlatFeeStack’s
signer cannot be the first signer. This means that a signer is required to be set as first in
the list, which is up to the developer to decide. Therefore, when requesting a pre-signed
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transaction, the developer has to specify what address should pay for the fee. This address
could be the developer’s own address, as well as some other address that would sign that
transaction to cover the transaction fees, such as a third-party service. This provided
address will then be included as the first signer of the transaction, while FlatFeeStack will
be put in the second index of the list.

Neo N3 transactions contain signers and witnesses. The signers are referred to as informa-
tion about what address and with what scope the signature of this address may be used.
A witness is the counterpart of a signer. It holds the signature data of the corresponding
signer. The list of signers is included in the transaction data that is considered to be
signed. Thus the signer list is final once FlatFeeStack pre-signs a transaction, which, after
all, means that the first signer that pays for the fees of the transaction has to be fixed by
the time it is signed.

3.2.3 Signature Workflow

Figure 3.4 shows the entire workflow with a provided signature or pre-signed transaction.
FlatFeeStack funds the SC beforehand whenever donations are received in a simple trans-
fer transaction. The developers contribute to the OSS platform continuously, and the
FlatFeeStack backend collects the contributions periodically (e.g., daily). These contribu-
tions are then evaluated with the analysis engine, and the tea on the database is updated
for each developer according to the evaluated contributions and the donated values. The
developer can then request the current state of the tea and further request a signature
for this amount. This signature can then be held by the developer with the guarantee
that the corresponding funds can be withdrawn at any time. Then, on the developer’s
initiative, a signature (i.e., the signature for the highest tea) can be used to withdraw the
funds from the SC.

3.3 Payout Engine

While the signature mechanism provides increased transparency to the FlatFeeStack plat-
form, executing the payout in single transfer transactions still requires an additional
transaction for each developer. In order to optimize the payout, a method in the SC
is introduced that allows multiple developers to get paid in one single transaction. It
takes as parameters a list of all developer’s addresses to be included and a list of their
corresponding teas. Further, it is restricted to the SC owner so that only the signature
of the transaction needs to be verified to authorize the SC to transfer the correspond-
ing funds. Hence, this batched payout is a service that is provided by FlatFeeStack for
the developers since only FlatFeeStack as the SC owner can invoke this method. For
FlatFeeStack to determine which developers to include in a batched payout, developers
can subscribe to this service. Thus, developers are not automatically included.
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Figure 3.4: Signature workflow

The batched payout works similar to a withdrawal with a signature in terms of updat-
ing the SC with the stored teas. Thus, the signatures of the developers included in a
batched payout are indirectly invalidated by updating their tea value in the SC alongside
transferring the earned fund. Figure 3.5 shows the batched payout workflow. Developers
can subscribe to the batched payout service (e.g., by subscribing on the FlatFeeStack’s
website in their profile). Whenever FlatFeeStack plans to execute a batched payout (e.g.,
every end of the month), the backend retrieves all subscribed addresses and their corre-
sponding teas, builds the batch transaction, and then executes these transactions to pay
the developers their earned tokens. Since there are limitations to the size of a transaction
or a block, multiple transactions may be required depending on how many developers are
considered to be paid.
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3.3.1 Fee Charging Mechanism

The proposed batched payout functionality rises the issue that the transaction fees are paid
by FlatFeeStack. As the batched payout is a service, the developers should be applicable
to pay for their share of the emerging costs. Since the signatures can be received at any
time and need to be invalidated, subtracting a service fee from the tea and use this reduced
value for the payout is not eligible as it does not invalidate a potentially already provided
signature by storing a lower value on the SC. An additional parameter referring to a
service fee could be passed and subtracted from every tea value to consider the reduced
value for calculating the payout amount. However, this increases the transaction fee due
to a greater transaction size and additional calculations.

In order to charge a fee without the need to adopt a change on the SC and keep the
algorithm on-chain as simple as possible, a fee charging mechanism is shown in Figure 3.6.
The database requires an additional attribute called include next batch to check whether
an account has already covered the service fee. In case the attribute value include next -
batch of that account is set to true, the service fee has been covered. Ultimately, if a
batched payout transaction is created, this column is checked for all subscribed accounts,
and only if it is set to true for an account, the account is included in the transaction since
the service fee was paid. After the transaction is successful, these fields are set to false
for all accounts that have been included in the batched payout transactions.

The service fee is paid indirectly by subtracting it from the tea when contributions are
evaluated. As mentioned, it cannot be subtracted from a tea that has potentially already
been included in an issued signature. Therefore, it is only subtracted whenever there
is an update to the tea of an account in the database. Further, the update to the tea
referred to as newly earned amount is required to be greater equals the service fee, since
otherwise, the tea stored in the database would become smaller than a previously stored
tea for which potentially already a signature was provided.

3.4 Smart Contract

The SC completes the proposed design. It is deployed on a BC and holds the necessary
methods to fulfill the signature mechanism and the batched payout. The SC provides a
method to withdraw funds with a signature and a method to pay out multiple addresses as
described in the Sections 3.2 and 3.3. In order to retrieve information of the SC’s storage,
the SC offers methods to get an address’s tea value or the SC owner. Additionally to
these methods, the SC supports an exclusion functionality and an emergency fallback.

If a developer wants to change the receiving address, FlatFeeStack might not be able to
verify whether a signature was provided for funds that have not been withdrawn. Hence,
FlatFeeStack cannot provide a new signature for a different address without invalidating
potentially created signatures for the former address beforehand. Therefore, the SC offers
the functionality for the SC owner to update an address’s tea to a greater value without
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initiating a payment. By updating the tea value on the SC, any provided signature is indi-
rectly invalidated and can no longer be used to withdraw funds from the SC. FlatFeeStack
can now exclude this address from its database and reject developers from attaching it to
their FlatFeeStack profile. After the update is performed on the SC, the developer can
choose another address, and the tea value is adopted to the amount that was earned and
had not been withdrawn yet.

Providing signatures is a sensitive task. In case there is a bug in FlatFeeStack’s backend,
signatures could be provided that match to tea values that are greater than the actual
values. Developers who receive such a signature could then potentially withdraw funds
from the SC that they have not earned. The SC, therefore, offers the functionality for
the SC owner to change the SC owner as an emergency fallback. When the SC owner is
changed, all provided signatures are immediately indirectly invalidated since the recovered
signer of an existing signature will no longer match the SC owner. Thus, they can no longer
be used to withdraw any funds. FlatFeeStack is still required to notice such a bug and
act quickly to prevent the loss of funds.
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Figure 3.5: Batch payout workflow
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Figure 3.6: Service fee mechanism for batched payout
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Chapter 4

Implementation

The changes to optimize the previous FlatFeeStack design described in Chapter 3 were
implemented as a PoC. It consists of a SC for Neo N3, a SC for Ethereum, tests to verify
the correct behavior of the algorithms programmed in the SCs, and a signature provider
library with methods to generate signatures and deliver them to the FlatFeeStack’s API
service. The code is available at [41, 42, 43].

4.1 Signature Provider

The signature provider was implemented in Golang utilizing the neo-go Software Devel-
opment Kit (SDK) for Neo N3 and go-ethereum for Ethereum, respectively [41]. The
signature in Ethereum is different from the one created for Neo N3. This section elaborates
on these different implementations.

4.1.1 Ethereum

Listing 4.1 shows how the message that is used for the signature verification on the SC is
created for Ethereum. The address in hexadecimal is transformed to lowercase, and the
tea in wei is padded to 32 bytes. These values are then concatenated, and its prefix 0x

is trimmed. These modifications are necessary since the concatenation of this message is
executed on the SC where the bytes of the address are handled in lowercase, and the tea
is handled as a 256-bit integer.

1 // Concatenates the address in lowercase with the tea padded

↪→ to int64 and removes the prefix ’0x’.

2 func getMessage(dev common.Address , tea *big.Int) string {

3 addressLowercase := strings.ToLower(dev.Hex())

4 paddedTea := padInt64(tea.Int64 ())

5 return strings.TrimPrefix(addressLowercase+paddedTea , "0x")

6 }

Listing 4.1: Concatenation of developer’s address and tea

25
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With the introduction of the EIP-712 signing standard [44], signed messages in Ethereum
are prepended with a string of format \x19Ethereum Signed Message:\n and the length
of the message. In Listing 4.2 the message is retrieved by the method getHashedMessage

which gets the in Listing 4.1 declared message and hashes it. As on line 5, the hash’s
bytes are then prepended by the bytes of \x19Ethereum Signed Message:\n66 before it
is hashed again. These final hash bytes now match the signing standard and can be used
to sign with the PK.

1 // Prepends the ’Ethereum Signed Message ’ string and message

↪→ length to the hashed message and returns the hash of

↪→ that.

2 func prepareForSigning(dev common.Address , tea *big.Int)

↪→ []byte {

3 hashedMessage := getHashedMessage(dev , tea)

4 ethSignedMessage := []byte("\x19Ethereum Signed

↪→ Message :\n66")

5 return ethcrypto.Keccak256(append(ethSignedMessage ,

↪→ hashedMessage ...))

6 }

Listing 4.2: Adoption of EIP-712 signature scheme

The code presented in Listing 4.3 employs the use of the method introduced in Listing 4.2
and signs the prepared byte array utilizing the sign method of go-ethereum. The signa-
ture is now almost finished. However, the sign method of go-ethereum uses a recovery
parameter of either 0 or 1, while they are required to be 27 or 28, respectively. These are
changed accordingly, and then the signature is returned.

1 // NewSignatureEth Creates the hashed message from dev and

↪→ tea and signs it with the provided private key.

2 // If changeRecoveryBit is true , the recovery bit is changed

↪→ to 27 or 28, respectively.

3 func NewSignatureEth(dev common.Address , tea *big.Int ,

↪→ signingKey *ecdsa.PrivateKey , changeRecoveryBit bool)

↪→ []byte {

4 preparedForSigning := prepareForSigning(dev , tea)

5 signature , _ := ethcrypto.Sign(preparedForSigning ,

↪→ signingKey)

6 if changeRecoveryBit {

7 // The Sign method sets the recovery parameters by

↪→ default to 0 or 1, while in some cases they are

↪→ required to

8 // be 27 or 28, respectively.

9 return setCorrectRecoveryParameter(signature)

10 }

11 return signature

12 }

Listing 4.3: Method NewSignatureEth
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4.1.2 Neo N3

While Ethereum handles integers strictly as 256-bit values, Neo N3 aligns the needed
bytes according to the passed integer value. Hence, no padding is required. Further, there
also does not exist a signing standard that requires any prepending bytes. Listing 4.4
shows the message creation for Neo N3. The bytes of the developer’s script hash (i.e.,
another representation of an address) are concatenated with the bytes of the tea value.

1 // Concatenates the bytes of the dev public key with the

↪→ bytes of the tea integer.

2 func prepareMessage(dev util.Uint160 , tea *big.Int) []byte {

3 return append(dev.BytesBE (), bigint.ToBytes(tea)...)

4 }

Listing 4.4: Method prepareMessage

As shown in Listing 4.5, the prepared message is then passed to the method Sign provided
by the neo-go SDK. There are no additional changes required. Thus, the returned byte
array represents a signature that can be provided to the developer.

1 // NewSignatureNeo Signs the message created from the dev

↪→ and tea with the provided private key.

2 func NewSignatureNeo(dev util.Uint160 , tea *big.Int ,

↪→ signingKey *keys.PrivateKey) []byte {

3 message := prepareMessage(dev , tea)

4 return signingKey.Sign(message)

5 }

Listing 4.5: Method NewSignatureNeo

4.2 Smart Contract Functionalities

Table 4.1 shows an overview of the implemented SCs’ functionalities. The purpose of
each functionality is briefly explained. Further, it is shown whether the functionality is
restricted to the SC owner (i.e., the corresponding transaction has to be signed by the
SC owner), or if anyone can issue a transaction to utilize it. Neo N3 supports all listed
functionalities, while Ethereum offers a subset of it. The withdrawal with a pre-configured
and pre-signed transaction is only applicable on Neo N3 since it requires multiple trans-
action signers.

4.2.1 Exclusion Functionality

The method setTea allows the SC owner to update the tea of an address without any
payout. By setting the tea of an address higher or equal than the highest tea that was
ever signed in a message for the corresponding address, all signatures that potentially have
been provided for that address are thus invalidated without any payout for this address.
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Besides excluding an address, this method further allows a developer to request to use
another payout address. This could happen due to multiple different reasons, of which the
most obvious would be that the developer lost the PK data. In case the currently stored
tea on the SC equals the highest provided signed message, the address can be changed
in the off-chain backend without any change on-chain. Otherwise, the SC owner needs
to ensure that every signature provided for that address is invalidated before providing
any signature for her new address since it cannot be verified that the PK data is lost.
Thus, an update of the SC is necessary to assure this address cannot be used without any
additional signature.

4.2.2 Emergency Fallback

In case of a bug in FlatFeeStack’s backend, sensitive information could leak, or signatures
may have been provided with tea values that are higher than the actual values. Thus,
providing the opportunity for developers to withdraw more funds than earned. In order to
invalidate all signatures that have ever been provided, the method changeOwner may be
used to change the SC owner. Ultimately, the recovered signer of every signature provided
leads to the former SC owner, which would no longer match the new SC owner’s address
in a withdrawal transaction and consequently would trigger a failed transaction. This
action would invalidate both plain signature data and pre-signed transactions for Neo N3.
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4.3 Ethereum

This section presents the implementations for the developed Ethereum SC [42]. The SC
was developed in Solidity [13] and has been tested utilizing the Hardhat development
environment [45].

4.3.1 Smart Contract

As shown in Listing 4.6, the SC holds a mapping teaMap that stores the developer’s
addresses and their corresponding paid out teas. Further, it holds the SC owner that is
set when deploying the SC. Listing 4.7 shows the receive method that allows the SC to
accept funds that are sent to the SC’s address. Formerly, the method fallback was used
for this. However, since there may arise security issues when including this method just
for receiving funds, the method receive was introduced in Solidity 0.6.x to handle plain
transfers to a SC [46].

1 mapping(address => uint256) public teaMap;

2

3 address public owner;

4

5 constructor () {

6 owner = msg.sender;

7 }

Listing 4.6: SC tea mapping

1 receive () external payable {

2 }

Listing 4.7: Method to receive funds

Listing 4.8 shows the withdraw method. It requires five parameters, which include the
developer’s address, the tea and the signature split into its three values. For a developer to
withdraw funds, two requirements have to be fulfilled. The first is that the tea parameter
is larger than the stored value for this address in the teaMap, and the second is that
the signature matches with the address, the tea, and the SC owner. When checking
the signature, the complete recovering of the signer is inlined to reduce transaction fees.
First, the tea and the address are concatenated with abi.encodePacked. It is hashed
with keccak256. Then, it is prepended according to Ethereum’s signing standard, which
is hashed again with keccak256 before recovering the signer of this message and signature
with ecrecover, and checking whether it matches the SC owner.

If these two requirements are met, the withdrawal is executed by first reading the old tea
value, then updating the teaMap and transferring the difference between those two. The
transfer is executed utilizing the transfer method. There is no need to check whether
the transfer was successful since it throws an exception and reverts the transaction if it
was not successful. The transfer method passes a fixed amount of gas to the recipient
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in order to be able to execute potential additional instructions in the receiving method
if the recipient is a SC. This could run into future problems in case that specific EVM
instruction costs are changed. Ultimately, it is not recommended to use this method [47].
However, the use case in this thesis does not require transferring funds to a SC, and
transferring funds to an EOA does not incur any additional gas fees as there are no
additional instructions that could consume more gas. Therefore, it is assumed that the
recipients are EOAs and not SCs.

In order for FlatFeeStack to verify that an address is an EOA and not a SC, a mechanism
could be implemented in FlatFeeStack’s backend to inspect any address that developers
want to link as their payout address. For example, this implementation could request a
signature from the developer that matches the provided address. If a signature can be
provided, there is a strong guarantee that the developer holds the corresponding PK and
the address is not a deployed SC.

Nevertheless, if payments should support SCs as recipients, Listing 4.9 shows an alterna-
tive approach to transfer funds according to [47]. Due to the mentioned reasons and since
this replacement leads to a higher fee cost, it is not considered further in this thesis.

1 function withdraw(address payable _dev , uint256 _tea , uint8

↪→ _v , bytes32 _r, bytes32 _s) public {

2 require(_tea > teaMap[_dev], "These funds have already

↪→ been withdrawn.");

3 require(ecrecover(keccak256(abi.encodePacked("\x19Ethereum

↪→ Signed Message :\n66",

4 keccak256(abi.encodePacked(_dev , _tea)))), _v , _r , _s)

↪→ == owner ,

5 "Signature does not match owner and provided

↪→ parameters.");

6 uint256 oldTea = teaMap[_dev];

7 teaMap[_dev] = _tea;

8 // transfer reverts transaction if not successful.

9 _dev.transfer(_tea - oldTea);

10 }

Listing 4.8: Method to withdraw with a signature

1 (bool sent , bytes memory data) = dev.call{value: tea -

↪→ oldTea }("");

2 require(sent , "Failed to send Ether");

Listing 4.9: Alternative implementation to transfer assets

Listing 4.10 shows the batched payout method. It is restricted to the SC owner with the
modifier onlyOwner shown in Listing 4.11. The batched payout method consumes two
lists, of which one holds all addresses of the developers and the other holds all teas. These
are required to have the same length since every address is mapped to its corresponding
tea value. The modifier onlyOwner is a simple check whether the message sender is equal
to the SC owner to make sure only FlatFeeStack can execute this method. Then, in the
loop that iterates through all entries in the address list, the corresponding developer, the
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tea and the according oldTea that is in storage is fetched, and only if the provided tea is
greater than the oldTea, the transfer is executed. Generally, it should never happen that
the tea in storage would be greater. Otherwise, the backend of FlatFeeStack would have
provided an incorrect value in a signature, or this method was invoked with an incorrect
value, and the backend would need to be checked for other errors. While unlikely, it is
still possible that a signature was provided, and while this batch transaction was set up
and sent, a developer would have used the signature to withdraw with an equal tea value.
In that case, a transfer of zero would lead to higher gas fees and is therefore ignored.

1 function batchPayout(address payable [] memory _devs ,

↪→ uint256 [] memory _teas) public onlyOwner () {

2 require(_devs.length == _teas.length , "Arrays must have

↪→ same length.");

3 for (uint256 i = 0; i < _devs.length; i++) {

4 address payable dev = _devs[i];

5 uint256 oldTea = teaMap[dev];

6 uint256 tea = _teas[i];

7 if (tea <= oldTea) {

8 continue;

9 }

10 teaMap[dev] = tea;

11 // transfer reverts transaction if not successful.

12 dev.transfer(tea - oldTea);

13 }

14 }

Listing 4.10: Method batchPayout

1 modifier onlyOwner () {

2 require(msg.sender == owner , "No authorization.");

3 _;

4 }

Listing 4.11: Modifier onlyOwner

Listing 4.12 shows the implementation of the method setTea. This method may be used
by FlatFeeStack to update a tea value due to, e.g., an address change. Besides the newTea
value that should be set on the SC, the former value oldTea that is expected to be equal to
the value in the storage, has to be passed in order to verify that no immediate withdrawal
has taken place. This method is also provided with the same three parameters as lists
to update multiple teas in one transaction. In order to ensure no transaction reversion
in case an oldTea value is no longer correct, the update for the corresponding address is
ignored as seen in Listing 4.13 on line 7.

1 function setTea(address _dev , uint256 oldTea , uint256

↪→ newTea) public onlyOwner () {

2 require(oldTea == teaMap[_dev], "Stored tea is not equal

↪→ to the provided oldTea.");

3 require(newTea > teaMap[_dev], "Cannot set a lower value

↪→ due to security reasons.");
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4 teaMap[_dev] = newTea;

5 }

Listing 4.12: Method to set tea

1 function setTeas(address [] calldata _devs , uint256 []

↪→ calldata oldTeas , uint256 [] calldata newTeas) public

↪→ onlyOwner () {

2 require(_devs.length == newTeas.length , "Parameters must

↪→ have same length.");

3 for (uint256 i = 0; i < _devs.length; i++) {

4 address dev = _devs[i];

5 uint256 storedTea = teaMap[dev];

6 uint256 newTea = newTeas[i];

7 if (( oldTeas[i] == storedTea) && (newTea >

↪→ storedTea)) {

8 teaMap[dev] = newTea;

9 }

10 }

11 }

Listing 4.13: Method to set multiple teas

4.3.2 Implementation Alternatives

Alternative implementations have been developed and compared based on their gas cost.
These alternative implementations were less optimized and thus have been superseded by
the previously shown method variations.

Listing 4.14 shows an alternative for a withdraw method. Other than in the implemen-
tation shown in Listing 4.8, the signed message is not further hashed after concatenating
the address and the tea. This results in a longer message to verify and ultimately a
greater gas consumption. Further, considering reducing the size of the tea value using
only 128-bit integers results in a higher cost, due to the fact that Ethereum matches this
value to 256-bit, which requires an additional operation and ultimately does not reduce
the message length.

1 function withdraw(address payable _dev , uint256 _tea , uint8

↪→ _v , bytes32 _r, bytes32 _s) public {

2 require(_tea > teaMap[_dev], "These funds have already

↪→ been withdrawn.");

3 require(ecrecover(keccak256(abi.encodePacked("\x19Ethereum

↪→ Signed Message :\n106", abi.encodePacked(_dev ,

↪→ _tea))), _v, _r, _s) == owner , "Signature does not

↪→ match owner and provided parameters.");

4 uint256 oldTea = teaMap[_dev];

5 teaMap[_dev] = _tea;

6 // transfer reverts transaction if not successful.
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7 _dev.transfer(_tea - oldTea);

8 }

Listing 4.14: Withdraw method with unhashed message

In Listing 4.15 an alternative is shown for the batched payout. The proposed method
includes charging a service fee to each developer. The provided tea is treated the same was
as shown in Listing 4.10. However, the transfer value is deducted with the provided service
fee, thus the developer pays the fee for FlatFeeStack’s service with the earned tokens. This
variation introduces an additional parameter and further arithmetic operations in each
iteration, such that the gas consumption is strictly higher than the variation proposed in
Listing 4.10.

1 function batchPayout(address payable [] memory _devs ,

↪→ uint256 [] memory _teas , uint256 _serviceFee) public

↪→ onlyOwner () {

2

3 require(_devs.length == _teas.length , "Arrays must have

↪→ same length.");

4 for (uint256 i = 0; i < _devs.length; i++) {

5 address payable dev = _devs[i];

6 uint256 oldTea = teaMap[dev];

7 uint256 tea = _teas[i];

8 if (tea - _serviceFee <= oldTea) {

9 continue;

10 }

11 teaMap[dev] = tea;

12 // transfer reverts transaction if not successful.

13 dev.transfer(tea - oldTea - _serviceFee);

14 }

15 }

Listing 4.15: Batch payout method with service fee

4.4 Neo N3

This section shows implementation details for the developed Neo N3 SC [43]. The SC for
Neo N3 was developed in neow3j [48] utilizing its devpack and compiler. The SC has been
tested with a running Neo N3 private network [49].

4.4.1 Smart Contract

Each SC on Neo N3 has its own storage context which is retrieved with the method shown
in Listing 4.16. This variable is static so that it is always loaded upon any invocation of
the SC. The storage of a Neo N3 SC is based on key value pairs. Listing 4.18 shows how a
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map is created. Listing 4.17 shows the contractMap which is used to store the SC owner.
The ownerKey on line 2 represents the key to retrieve the SC owner.

1 static final StorageContext ctx =

↪→ Storage.getStorageContext ();

Listing 4.16: SC storage context

1 static final StorageMap contractMap = ctx.createMap(new

↪→ byte []{0 x01});

2 static final byte[] ownerKey = toByteArray ((byte) 0x02);

Listing 4.17: Storage key to store the SC owner

1 static final StorageMap teaMap = ctx.createMap(new

↪→ byte []{0 x10});

Listing 4.18: Key prefix for teaMap

1 @OnDeployment

2 public static void deploy(Object data , boolean update) {

3 if (! update) {

4 ByteString pubKey = (ByteString) data;

5 // ECPoint instantiation checks valid public key length.

↪→ Thus , makes sure that the data cannot be a Hash160.

6 assert checkWitness(new ECPoint(pubKey)) : "Passed

↪→ public key must match a witness.";

7 contractMap.put(ownerKey , pubKey);

8 }

9 }

Listing 4.19: Deployment method

Neo N3 provides multiple native SCs that handle different aspects, e.g., deployment, hash-
ing, or executing an oracle request. The deployment of a Neo N3 SC is executed through
an invocation to the native ContractManagement SC. Deploying a SC is done by invoking
the deploy method of the ContractManagement SC with the information about the SC
that should be deployed and arbitrary data as parameters. Within the deployment pro-
cess, the ContractManagement SC initializes the new SC by invoking its deploy method
with the provided data parameter. Listing 4.19 shows the deployment method of the
FlatFeeStack SC. It contains the required parameter inputs and only executes instruc-
tions upon deployment as seen on line 3. The deploy method of a SC requires to have a
boolean update, since SC on Neo N3 may also be updated through the ContractManage-
ment SC, however, SC updates are not considered in this thesis.

The fungible token standard on Neo N3 is the NEP-17 standard [50]. If a SC should receive
NEP-17 tokens, it is required to hold a method onNep17Payment. neow3j introduces this
method with the annotation OnNEP17Payment as shown in Listing 4.20. It allows to
transfer NEP-17 tokens directly to the SC address and does not require any other specific
invocation on the SC. With this method included, the SC can also receive the native
tokens NEO and GAS, since they both support the NEP-17 standard.
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1 @OnNEP17Payment

2 public static void onNep17Payment(Hash160 from , int amount ,

↪→ Object data) {

3 }

Listing 4.20: Method to receive NEP-17 tokens

In Listing 4.21 the withdrawal with a signature is shown. It requires the script hash
of the developer’s account in the type Hash160, which is the type for 160-bit hashes in
neow3j, the tea as an integer, and the signature data as a ByteString, which represents an
immutable byte array. The method first verifies the signature with the provided values and
the SC owner to ensure that the withdrawal is authorized. Then, the current value on the
teaMap for the corresponding account is read, and the amount to withdraw is calculated.
This value is required to be greater than zero since otherwise, this signature has already
been used, and the funds have already been withdrawn. After these checks, the teaMap

is updated with the new value, and the transfer is executed with the SC as the sender.
In order to set the SC as the sender, the method Runtime.getExecutingScriptHash is
used to retrieve its script hash.

The verification of the signature utilizes the native CryptoLib SC that supports the method
verifyWithECDsa. This method verifies whether a signature, a message, and a PubK
match. It requires an input of type ECPoint, which corresponds to a PubK. Thus, the
FlatFeeStack SC requires to hold the PubK of the SC owner. Further, the verifyWith-

ECDsa method requires the curve that was used to create the signature. The set value 23

corresponds to the elliptic curve secp256r1. An option to change this curve was dismissed
due to the fact that changing it would invalidate existing signatures.

Due to the need of the SC owner’s PubK, upon deployment shown in Listing 4.19, instead
of the SC owner’s script hash, the PubK has to be passed in the field of the arbitrary
data, which is then set as the SC owner. The instantiation of an ECPoint is necessary
since it checks whether the value’s length equals to the length of a PubK, which is 33
bytes. An alternative would be to cast the data to an ECPoint. Casting the data does
not check its length, and thus, passing a script hash would still pass the witness check,
since Runtime.checkWitness accepts either a script hash or a PubK, and would thus
successfully be deployed. However, the withdrawal method would no longer be usable
since the initialization of an ECPoint would fail, and the signature verification would run
into an error, resulting in a corrupted SC.

1 public static void withdraw(Hash160 account , int tea ,

↪→ ByteString signature) {

2 assert CryptoLib.verifyWithECDsa(

3 new ByteString(concat(account.toByteArray (),

↪→ toByteArray(tea))), // the message

4 new ECPoint(contractMap.get(ownerKey)), // the contract

↪→ owner

5 signature , // the signature

6 (byte) 23 // the curve

7 ) : "Signature invalid.";
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8 int amountToWithdraw = tea -

↪→ teaMap.get(account.toByteString ()).toIntOrZero ();

9 assert amountToWithdraw > 0 : "These funds have already

↪→ been withdrawn.";

10 teaMap.put(account.toByteString (), tea);

11 assert GasToken.transfer(Runtime.getExecutingScriptHash (),

↪→ account , amountToWithdraw , null) : "Transfer was not

↪→ successful.";

12 }

Listing 4.21: Method withdraw with a signature

Listing 4.22 shows the withdrawal with a pre-signed transaction. Other than the with-
drawal method in Listing 4.21, it runs a Runtime.checkWitness to check whether this
transaction is authorized to be executed instead of a signature verification on the Cryp-
toLib native SC. Similar to Ethereum, transactions on Neo N3 also hold one sender that
signs the transaction and pays for the transaction fees. However, transactions on Neo N3
are further allowed to be signed by up to 16 signers in total. This allows checking the
authorization of complex method invocations in a simple way. The signers of a trans-
action are included in the transaction data and thus are part of the transaction bytes.
These bytes are signed by the specified signers, and signatures are then appended to the
transaction. When all required signatures are present, the transaction can be sent.

The sender of a transaction is always the first signer in the list of transaction signers.
Since the signers are included in the transaction bytes, this order is fixed once the trans-
action has been signed. The pre-configured withdrawal method requires FlatFeeStack’s
signature. However, FlatFeeStack does not want to pay transaction fees for the developer.
Thus, when requesting a pre-configured withdrawal transaction, FlatFeeStack creates the
transaction and orders the signers so that the developer’s account is the first signer and
FlatFeeStack is the second signer. That way, FlatFeeStack can witness the transaction
without paying for the transaction fees itself.

1 public static void withdraw(Hash160 account , int tea) {

2 assert Runtime.checkWitness(new

↪→ ECPoint(contractMap.get(ownerKey))) : "No

↪→ authorization";

3 int amountToWithdraw = tea -

↪→ teaMap.get(account.toByteString ()).toIntOrZero ();

4 assert amountToWithdraw > 0 : "These funds have already

↪→ been withdrawn.";

5 teaMap.put(account.toByteString (), tea);

6 assert GasToken.transfer(getExecutingScriptHash (),

↪→ account , amountToWithdraw , null) : "Transfer was not

↪→ successful.";

7 }

Listing 4.22: Method withdraw with a pre-configured and signed transaction

Listing 4.23 shows the batched payout method. It requires two lists of the same length
with the script hashes of the developers and their corresponding teas, and it is restricted
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to be invoked by the SC owner. For each index of the lists, the stored tea is read, and
the payout amount is calculated. In case it is greater than zero, the teaMap is updated,
and the transfer is executed. Each transfer is required to execute successfully. Otherwise,
the transaction returns a Fault state, which means that no change occurring from this
transaction persisted.

1 public static void batchPayout(Hash160 [] accounts , int[]

↪→ teas) {

2 assert checkWitness(new

↪→ ECPoint(contractMap.get(ownerKey))) : "No

↪→ authorization";

3 int len = accounts.length;

4 // Note: If teas had fewer items than accounts , the code

↪→ would run into out of bounds anyways , but the other

5 // way around that is not the case , thus this check is

↪→ required.

6 assert len == teas.length : "The parameters must have the

↪→ same length.";

7 for (int i = 0; i < len; i++) {

8 Hash160 acc = accounts[i];

9 int tea = teas[i];

10 int payoutAmount = tea -

↪→ teaMap.get(acc.toByteString ()).toIntOrZero ();

11 if (payoutAmount <= 0) {

12 continue;

13 }

14 teaMap.put(acc.toByteString (), tea);

15 assert GasToken.transfer(getExecutingScriptHash (), acc ,

↪→ payoutAmount , null) : "Transfer not successful.";

16 }

17 }

Listing 4.23: Batched payout method with list parameters

As well as the implementation for Ethereum, the Neo N3 SC contains a method setTea to
update a tea value. Listing 4.24 shows the implementation of this method for Neo N3. It
is restricted to the SC owner and the value oldTea must match the currently stored value
to ensure no withdrawal in the meantime. The Neo N3 SC further supports a method
setTeas to update multiple tea values in one transaction.

1 public static void setTea(Hash160 account , int oldTea , int

↪→ newTea) {

2 assert checkWitness(new

↪→ ECPoint(contractMap.get(ownerKey))) : "No

↪→ authorization.";

3 int storedTea =

↪→ teaMap.get(account.toByteString ()).toIntOrZero ();

4 assert oldTea == storedTea : "Stored tea is not equal to

↪→ the provided oldTea.";
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5 assert newTea > storedTea : "The provided amount is

↪→ lower than or equal to the stored tea.";

6 teaMap.put(account.toByteString (), newTea);

7 }

Listing 4.24: Method to set teas

In order to change the SC owner on the Neo N3 SC, the implementation shown in List-
ing 4.25 was developed. It requires a transaction that invokes this method to be signed
by the current SC owner and the new SC owner. In this method, the newOwner does not
require an additional check for a valid PubK length since the parameter type restricts
that value from containing any invalid value. Thus, the Runtime.witness method with
the PubK parameter is called and not the overloaded method that accepts a script hash.

1 public static void changeOwner(ECPoint newOwner) {

2 assert checkWitness(new

↪→ ECPoint(contractMap.get(ownerKey))) : "No

↪→ authorization";

3 assert checkWitness(newOwner) : "The new owner must

↪→ witness this change.";

4 contractMap.put(ownerKey , newOwner.toByteString ());

5 }

Listing 4.25: Method to change the SC owner

4.4.2 Implementation Alternatives

Different implementation variations have been developed and compared to each other.
The following alternatives have been evaluated to emerge higher fee costs.

In Listing 4.26 an alternative method to the batched payout method in Listing 4.23
is shown. The NVM supports a map stack item that allows passing information in a
map with key-value pairs. The method in Listing 4.26 makes use of that by passing
the developer’s addresses and their teas as key value pairs in a map parameter. Besides
iterating through the key values of the map instead of a list’s indexes, the methods are
identical. However, the method supporting two list parameters consumes fewer fees and
is thus favored.

1 public static void batchPayout(Map <Hash160 , Integer >

↪→ payoutMap) {

2 assert checkWitness(new

↪→ ECPoint(contractMap.get(ownerKey))) : "No

↪→ authorization.";

3 for (Hash160 acc : payoutMap.keys()) {

4 int tea = payoutMap.get(acc);

5 int payoutAmount = tea -

↪→ teaMap.get(acc.toByteString ()).toIntOrZero ();

6 if (payoutAmount <= 0) {
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7 continue;

8 }

9 teaMap.put(acc.toByteString (), tea);

10 assert GasToken.transfer(getExecutingScriptHash (), acc ,

↪→ payoutAmount , null) : "Transfer not successful.";

11 }

12 }

Listing 4.26: Batched payout method with a map parameter

Other alternative methods have been compared for the batched payout, that e.g., included
an additional parameter to deduct a service fee. However, these methods result in higher
fees, and since a service fee can be charged off-chain as shown in Section 3.3.1, these
variations have not been considered for the final SC.

4.4.3 Implementation Optimization

On Neo N3, no value might belong to the provided storage key when retrieving a value.
In that case the returned value is null. In order to calculate the payout amount for a
developer that withdraws or is paid out for the first time, the corresponding tea value is
null. Therefore, a null check is required. This can be implemented in different variations.

In Listing 4.27, the tea value is preset to zero in case the value in the SC storage is null.
If it is not null, it is converted within the if statement on line 4. Without presetting
the tea value to zero, an if..else statement can achieve the same outcome while first
handling a value being null (cf. Listing 4.28), or first handling a value that is not null

(cf. Listing 4.29). Another alternative implementation toIntOrZero was developed in
neow3j that circumvents a presetting or a if..else statement by either returning zero in
case the value does not exist or an integer if it is present [51]. This method reduces the
logic of the previously mentioned implementations to one single line (cf. Listing 4.30).

1 ByteString teaByteString = teaMap.get(account);

2 int tea = 0;

3 if (teaByteString != null) {

4 tea = teaByteString.toInt ();

5 }

Listing 4.27: Method toInt (preset value to 0 with if != null check)

1 ByteString teaByteString = teaMap.get(account);

2 int tea;

3 if (teaByteString == null) {

4 tea = 0;

5 } else {

6 tea = teaByteString.toInt ();

7 }

Listing 4.28: Method toInt (if..else with == null check)
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1 ByteString teaByteString = teaMap.get(account);

2 int tea;

3 if (teaByteString != null) {

4 tea = teaByteString.toInt ();

5 } else {

6 tea = 0;

7 }

Listing 4.29: Method toInt (if..else with != null check)

1 int tea = teaMap.get(account).toIntOrZero ();

Listing 4.30: Method toIntOrZero

In order to decide which of these implementation variations to use, the emerging GAS
costs have been compared based on each implementation’s fee consumption when exe-
cuted integrated in a withdraw method. As shown in Table 4.2, the implementation of
Listing 4.27 and 4.29 derive in a slightly lower fee consumption when no value exists on
the teaMap for an account. However, as Table 4.2 shows, using the method toIntOrZero

reduces the gas consumption to a greater extent. Considering scalability, an account that
is paid a second time already compensates the first payout of five other accounts that
have only been paid once, and further reduces the overall cost in each future withdrawal.
Hence, the introduction of toIntOrZero not only reduces the implementation size but
also decreases the fee consumption when considering paying accounts more than once.

Table 4.2: Comparison of toIntOrZero with non-existing storage value
Implementation option GAS cost (fractions) Difference to toIntOrZero

toIntOrZero 1816152 0
if..else with == null 1816152 0
if..else with != null 1816146 -6
Preset to 0 with if != null 1816146 -6

Table 4.3: Comparison of toIntOrZero with existing storage value
Implementation option GAS cost (fractions) Difference to toIntOrZero

toIntOrZero 1630713 0
if..else with == null 1630743 +30
if..else with != null 1630749 +36
Preset to 0 with if != null 1630752 +39



42 CHAPTER 4. IMPLEMENTATION



Chapter 5

Evaluation and Discussion

This chapter evaluates and discusses the design and implementation shown in the previ-
ous chapters.

In Section 5.1 the different payout options of the proposed approach are compared to
each other based on their cost. Section 5.2 shows the evaluation of the former approach
by [6] in order to provide necessary data for the comparison of use case scenarios that are
obtained in Section 5.3. Finally, in Section 5.4 the results are discussed.

5.1 Fee Comparison of Payout Options

Cryptocurrencies tend to have high volatility. In 2021, the price of ETH fluctuated be-
tween a low of USD 736 in January to USD 4843 in October [52]. The gas price on
Ethereum also fluctuates considerably. From October to December 2021, the lowest daily
average was 50.96 gwei per gas, while the highest was 198.02 gwei per gas [28]. Similar
to the fluctuation of Ethereum related prices, the prices in the Neo N3 ecosystem have
been volatile as well. GAS tokens have been traded at a low of USD 1.50 in January 2021
up to a high of USD 19.79 in April 2021 [52]. For the following evaluation, approximate
averages derived from the last three months have been considered (cf. Table 5.1).

Table 5.1: Evaluation factors
Factor Value
Ethereum gas price 100 gwei
ETH price USD 4300
Neo N3 GAS price USD 6

The cost evaluation of the Ethereum SCs (i.e., the SCs of the proposed and the former
approach by [6]) has been conducted utilizing Hardhat’s development environment [45]
with a built-in local Ethereum network node. The gas consumption of each transaction
was estimated using the london hard fork version of Ethereum. After each gas estimation,
the corresponding transaction was executed, and its correct state change was verified to

43
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ensure the correctness of the estimated values. The derived gas price values have then
been multiplied with the Ethereum gas price and the price of one gwei according to the
prices shown in Table 5.1.

For the cost calculations of Neo N3 transactions, the local private network neo3-private-

net-docker [49] was used. In the same way, as with the evaluation of Ethereum trans-
actions, each transaction fee calculation was followed by an execution of the transaction
and a verification of the correct state changes. Transaction fees on Neo N3 consist of a
networkfee and a systemfee. While the networkfee is based on the byte size of a transac-
tion, the systemfee is based on the execution complexity of the transaction script. The
following evaluation concerning Neo N3 transactions considers only the full transaction
fee that is equal to the sum of the networkfee and the systemfee.

Figure 5.1 depicts the costs of the batched payout in Ethereum using the method batch-

Payout with accounts that are paid out for the first time, i.e., no SC storage has been
used by these accounts. The method was executed in order to pay different amounts of ac-
counts. A maximum of 512 accounts can be paid since the execution of such a transaction
reaches the maximal gas that is allowed per block. Thus, an entire block on Ethereum
would be needed to include such a transaction.

The fees per account decrease when increasing the included accounts from 1 to approxi-
mately 20 accounts. While the fee per account is around USD 37, if only one developer
is paid, the fee per account decreases to less than USD 26 for about 20 developers. The
fee per account only decreases marginally when including more developers in the batched
payout. With 50 included accounts, the fee per account costs USD 25.34, while it costs
USD 25.12 for the maximum size of a batched payout with 512 accounts.
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Figure 5.1: Costs of batched payout on Ethereum
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Using additional storage on Ethereum results in a higher transaction fee. Therefore, when
a SC’s storage entry is already allocated and is updated in a transaction, the emerging
fee from this transaction to allocate that storage is not charged again. Hence, whenever
a developer is paid out again, the fee is smaller than in the first payout. Figure 5.2 shows
the costs of batched payouts in Ethereum where all accounts have already been paid out
at least once before. The costs of accounts repeatedly using the batched payout option
results in an approximately 30% cheaper transaction fee than payouts for new accounts.

1 50 100 150 200 250 300 350 400 450 512
Accounts

0

500

1000

1500

2000

2500

3000

3500

To
ta

l f
ee

 [U
SD

]

8

10

12

14

16

18

Fe
e 

pe
r a

cc
ou

nt
 [U

SD
]

Total fee [USD]
Fee per account [USD]

Figure 5.2: Costs of batched payout on Ethereum with existing teas

The cost evaluation of the batchPayout method on the Neo N3 SC (cf. Figure 5.3)
presents a similar steep percental decrease in the transaction cost when including 1 to 20
developers. Only including one account in the batched payout results in a fee of USD 0.12,
whereas including 20 accounts results in a fee of USD 0.089 per account. A maximum
of 1012 accounts can be paid in a single transaction. This threshold is based on the
maximally allowed stack items allowed in a Neo N3 transaction. Paying 1012 accounts in
a transaction results in a fee of USD 0.88 per account. Thus, the decrease from including
20 accounts to 1012 accounts is only marginally smaller.

Similar to Ethereum, when paying out accounts another time after their address has
been stored in the SC storage, updating that storage results in a smaller transaction fee
compared to the initial payout. However, the difference is not that great, as it still costs
about 90% of the initial payout costs (cf. Figure 5.4).
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Figure 5.3: Costs of batched payout on Neo N3
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Figure 5.4: Costs of batched payout on Neo N3
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As shown in Figure 5.5, the fee per account included in a batched payout in Ethereum is
exceedingly higher than when using a batched payout on Neo N3. Considering including
20 accounts in a batched payout, the developers paid on Neo N3 only need to pay USD
0.089, which equals 0.34% of the fee paid when utilizing the batched payout on Ethereum
(i.e., USD 25.82).
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Figure 5.5: Cost of batched payout on Ethereum and Neo N3

With the signature mechanism, the proposed solution approach provides transparency
without a transaction on a BC. Using a signature provided by FlatFeeStack for the first
withdrawal results in the transaction costs shown in Figure 5.6. Whenever a developer
withdraws again, the withdrawal cost on Ethereum is USD 20.74, while the cost on Neo N3
is USD 0.122 using a withdrawal with a signature, or USD 0.112 for a withdrawal with
a pre-signed transaction, respectively (cf. Figure 5.7). The differences between such a
transaction in Ethereum and Neo N3 are so high that the bars for a withdrawal transaction
on Neo N3 are barely visible and therefore visualized in an additional subplot. The
withdrawal with a signature is slightly higher due to the creation of the signed message
and the call to the native CryptoLib SC to verify the signature while verifying the witness
signature of a transaction signer is executed before the transaction script is executed,
which is cheaper.
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Figure 5.6: Costs of withdrawal options
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Figure 5.7: Costs of withdrawal options with existing teas

Figure 5.8 shows an overview of the different payout options. While the withdrawal costs
the same regardless of how many developers execute a transaction, the fee per account
decreases with the batched payout the more accounts are paid out in one transaction.
With existing tea values stored on the SC, the payout is cheaper for all different payout
options (cf. Figure 5.9).
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Figure 5.8: Costs of all payout options (without existing teas)

1 5 10 20 40 500
Accounts

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fe
e 

pe
r a

cc
ou

nt
 [U

SD
]

Ethereum - Batched
Ethereum - Withdrawal
Neo N3 - Batched

Neo N3 - Withdrawal (Signature)
Neo N3 - Withdrawal (Witness)

1 5 10 20 40 500
Accounts

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fe
e 

pe
r a

cc
ou

nt
 [U

SD
]

Neo N3 - Batched
Neo N3 - Withdrawal (Signature)

Neo N3 - Withdrawal (Witness)

Figure 5.9: Costs of all payout options (with existing teas)

5.2 Initial Solution Approach

The former approach proposed by [6] is based on a push and pull payout mechanism as
explained in Section 2.2.1. Its payout transparency consists of invoking a fill method on
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the deployed SC that receives the token amounts and updates each developer’s balance
accordingly. Thus, the degree of transparency is based on how frequently an invocation
of the fill method is executed, including this developer’s information.

Figure 5.10 shows the transaction fees of invocations of the fill method. The decrease
of transaction fees resembles the decrease of the batched payouts’ fees of the proposed
approach since it also consists of iterating through a list of all developer’s addresses and
their corresponding token amounts. Considering existing storage values the transaction
fees decrease to approximately 30% of the transaction fees (cf. Figure 5.11).
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Figure 5.10: Costs of former approach’s fill method without existing storage values
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Figure 5.11: Costs of former approach’s fill method with existing storage values

5.3 Scenario Comparison

This section shows different use case scenarios. The fees for each scenario are calculated
for each payout option, i.e., the former approach by [6], the proposed payout approach
on Ethereum, and the proposed payout approach using Neo N3. In each scenario, it is
assumed that there are a total of 100 developers. Since the payout amount does not
influence the emerging transaction fees, it is assumed that the payout amount of each
developer is always higher than the emerging transaction fee per account. Further, for
the proposed approach on Neo N3, the withdrawal with a signature is considered since it
has a slightly higher emerging fee cost. Finally, the scenarios are evaluated based on the
emerging costs after one year of operation.

5.3.1 Use Case Scenario #1

In scenario 1, one hundred developers earn a token amount every week. Thus, every week
the earned amounts should be communicated accordingly in a transparent way. Twenty
developers wish to receive a payout every week, and eighty want to get paid every month.

The former solution approach requires FlatFeeStack to invoke the method fill on the
former payout SC 52 times in a year to provide transparency to the developers. Twenty
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developers immediately release their payment upon the updated balance of the trans-
action by FlatFeeStack, i.e., 52 times in a year. The remaining 80 developers release
their earned tokens every month, i.e., 12 times a year, which results in a total of 2000
release invocations.

Using the proposed approach on Ethereum and Neo N3, the developers receive a signature
each week, which does not incur any transaction fees. FlatFeeStack executes a batched
payout every week that includes 20 developers, while in twelve of those transactions, all
developers are included. Alternatively, developers could invoke the withdraw method to
retrieve their payment, which would result in 2000 withdraw invocations.

Table 5.2 shows the resulting fees that emerge within one year considering the use case
in scenario 1. The batched payout of the proposed approach requires only 30.34% of the
transaction fees compared to the approach by [6]. Additionally, the signature mechanism
provides transparency for free even though its emerging fees are still high when using a
signature to withdraw earned funds.

Table 5.2: Resulting costs in scenario #1 in USD
Approach Blockchain Payout option Transparency cost Total cost
Approach by [6] Ethereum Push and pull 17’577 49’267

Thesis proposal
Ethereum

Batched payout 0 14’948
Withdrawal 0 41’487

Neo N3
Batched payout 0 157
Withdrawal 0 244

The costs per developer in scenario 1 are shown in Table 5.3. For a developer that wants
to be paid weekly on Ethereum, the batched payout of the proposed approach costs about
40.3%, while for monthly payouts, the fees decrease to about 23.5% compared to the
former approach by [6]. Using Neo N3, the batched payout fees are significantly lowered
to about 1.1% compared to the proposed approach in Ethereum. Further, the withdrawal
costs only result in lower costs if used more rarely.

Table 5.3: Resulting total costs per developer in scenario #1 in USD
Approach Blockchain Payout option Weekly Monthly
Approach by [6] Ethereum Push and pull 999.72 365.91

Thesis proposal
Ethereum

Batched payout 402.76 86.17
Withdrawal 1’078.66 248.92

Neo N3
Batched payout 4.16 0.92
Withdrawal 6.33 1.46
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5.3.2 Use Case Scenario #2

In scenario 2, one hundred developers earn a token amount every week. Thus, every week
the earned amounts should be communicated accordingly in a transparent way. Twenty
developers want to move their earned tokens to their own account every week, 60 every
month, and 20 every six months.

For this scenario, the former approach requires invoking the fill method on the former
payout SC 52 times a year to provide transparency. The release method is invoked a
total of 660 times.

Using the proposed approach, the developers receive a signature each week, and Flat-
FeeStack issues a batched payout transaction twice with all developers, 10 times with 80
developers and 40 times with 20 developers.

Table 5.4 shows the emerging fees within one year considering the use case in scenario 2.
While the transparency of the former approach costs the same, fewer payouts result in a
smaller total fee in all payout options compared to scenario 1.

Table 5.4: Resulting costs in scenario #2 in USD
Approach Blockchain Payout option Transparency cost Total cost
Approach by [6] Ethereum Push and pull 17’577 46’098

Thesis proposal
Ethereum

Batched payout 0 13’548
Withdrawal 0 37’338

Neo N3
Batched payout 0 142
Withdrawal 0 219

In Table 5.5 the cost per developer in scenario 2 is shown. With the same frequency
of providing transparency as in scenario 1, the developers that get paid less often in a
batched payout result in a fee cost of about 6.9% compared to the former approach by [6].
Further, when using a batched payout Neo N3, the fees are reduced to about 1% of the
batched payout costs on Ethereum.

Table 5.5: Resulting total costs per developer in scenario #2 in USD
Approach Blockchain Payout option Weekly Monthly Half-yearly
Approach by [6] Ethereum Push and pull 999.72 365.91 207.46

Thesis proposal
Ethereum

Batched payout 403.21 86.62 14.36
Withdrawal 1’078.67 248.92 41.49

Neo N3
Batched payout 4.17 0.92 0.15
Withdrawal 6.33 1.46 0.24
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5.3.3 Use Case Scenario #3

In scenario 3, one hundred developers earn a token amount every day. Thus, the earned
amounts should be communicated accordingly in a transparent way every day. Forty
developers want a payout every month, another 40 wish to be paid quarterly, and 20 de-
velopers want to be paid at the end of the year.

For this scenario, the former approach requires invoking the fill method 365 times a
year to provide transparency. The release method is invoked 660 times.

Using the proposed approach, the developers receive a signature each day. FlatFeeStack
executes a batched payout transaction once with all developers, three times with 80 de-
velopers, and eight times with 40 developers. Alternatively, developers could use the
withdraw methods instead of utilizing the batched payout. The withdraw method would
be invoked 660 times a year.

Table 5.6 shows the emerging fees within one year considering the use case in scenario 3.
With the increased demand for transparency, the former solution approach requires many
additional transactions that increase its total cost to an enormous amount. The batched
payout on Ethereum in the proposed approach results in a total cost of about 3.6%
compared to the approach by [6]. Using the batched payout on Neo N3 further reduces
the cost to 1.1% compared to the batched payout on Ethereum.

Table 5.6: Resulting costs in scenario #3 in USD
Approach Blockchain Payout option Transparency cost Total cost
Approach by [6] Ethereum Push and pull 123’379 133’836

Thesis proposal
Ethereum

Batched payout 0 4’836
Withdrawal 0 13’690

Neo N3
Batched payout 0 51
Withdrawal 0 80

In Table 5.7 the costs per developer in scenario 3 are shown. The fee for developers who
require the least frequent payouts results in about 0.57% of the fee cost compared to
the approach by [6]. When using Neo N3, the fees are further reduced to about 1.1%
compared to the proposed approach on Ethereum.

Table 5.7: Resulting total costs per developer in scenario #3 in USD
Approach Blockchain Payout option Monthly Quarterly Yearly
Approach by [6] Ethereum Push and pull 1’423.93 1’297.17 1’249.63

Thesis proposal
Ethereum

Batched payout 88.46 28.85 7.18
Withdrawal 248.92 82.97 20.74

Neo N3
Batched payout 0.94 0.31 0.08
Withdrawal 1.46 0.49 0.12
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5.4 Discussion

The previous sections show that the proposed approach strongly indicates that on-chain
fees can be reduced significantly when high transparency is desired. With the signature
mechanism, transparency is no longer bound to on-chain interactions and thus reduces
the overall emerging fees considerably. Further, with a batched payout as a service of
FlatFeeStack, the payout fees can be lowered significantly considering that no transactions
are required for transparency reasons.

Even though a withdrawal with a signature is more expensive than being included in a
batched payout, signatures provide reliable protection for developers. It increases their
independence and certainty of earned funds and the option to withdraw at their cho-
sen time. Especially considering the high volatility of cryptocurrencies, the signature
mechanism provides a valuable option to withdraw funds independently. Furthermore,
compared to the former approach, developers are no longer dependent on the timing of a
costly update of their balance. Instead, they receive full transparency for free.

Ultimately, there exist trade-offs between the batched payout and the withdrawal option.
While the batched payout lowers the fee cost for the developers, they are dependent on
FlatFeeStack as a centralized entity. Developers can decrease their dependence on Flat-
FeeStack by utilizing the withdrawal option. However, the payout cost of withdrawing is
higher than in a batched payout. Nevertheless, there is no need to dispense with receiving
signatures in order to increase independent certainty of earned funds from a batched pay-
out service. Thus, combining both by utilizing a centralized triggered batched payout to
optimize fee costs while still receiving signatures to remain independent, developers can
benefit from the best of both worlds.

Finally, the evaluation showed that the emerging fees utilizing Ethereum are significantly
higher than the emerging fees on Neo N3. Since Ethereum currently has considerably more
transactions to handle and the price of ETH has increased by a factor of approximately ten
within the last two years, this was to be expected. However, a potential higher demand
for transactions on Neo N3 needs to be considered in the future. Nevertheless, Neo N3
provides a far more promising transactions per seconds (tps) output [53] than Layer-1 of
Ethereum [54]. Further, in case of the GAS token price increasing significantly, Neo N3
supports multiple network factors, such as, e.g., an execution fee factor, or a network
fee per byte value that the Neo Council can adjust accordingly to provide reasonable
transaction fees.
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Chapter 6

Conclusion and Future Work

Nowadays, Open Source Software (OSS) is integrated or reused in most software projects.
Nevertheless, many OSS projects are not pursued and maintained due to insufficient
funding. Even though many donation platforms exist, it is cumbersome for developers to
sustain an OSS project without the reassurance of financial support. FlatFeeStack is a
project that aims to ease developers’ exposure to intransparent funding while accommo-
dating sponsorships to the conventional budget plan of companies.

In previous work conducted by [6], a decentralized approach by utilizing the Blockchain
(BC) technology was developed in a Proof-of-Concept (PoC) implementation. It was
found that the implemented push and pull mechanism for the payout to OSS developers
is not viable due to high on-chain transaction fees. Developers that only produce small
contributions would ultimately have to continue contributing to OSS without transparency
of what they have earned so far.

This thesis developed a mechanism for BC-based payments to OSS contributors inte-
grated into the FlatFeeStack project. The mechanism decreases the amount of on-chain
transactions while preserving transparency to the developer. Further, it provides trans-
parency regardless of the amount of OSS contributions by a developer. A PoC of the
design has been implemented for Ethereum and Neo N3. These implementations have
been thoroughly tested and optimized. The evaluation of the implementations consisted
of the emerging transaction fees of the approach by [6] and the proposed payout options
in real-world use cases. Further, the transaction fees on Ethereum and Neo N3 were
compared for the proposed approach.

Aiming to answer the research question in Chapter 1, the findings based on the conducted
evaluation and the scenarios discussed in this thesis show that it is possible to reduce on-
chain transaction fees significantly compared to the former approach by [6]. Transparency
is achieved by providing developers with signatures off-chain that allow them to withdraw
their earned funds at any time. In order to lower the number of required transactions for
a payout, a service can be provided to batch multiple payouts and thus, reduce the fee
per developer to receive a payment. When high transparency is required, the proposed
approach decreases the payout fees on Ethereum by 76.5% up to 99% compared to the
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former approach by [6]. Under the same circumstances, utilizing the proposed approach
on Neo N3 further reduces the fees by up to 99%.

In future research, the proposed design should be adopted for Layer-2 solutions on Ethereum
or other Layer-1 BC systems to detect potential improvements. Furthermore, since pro-
viding signatures is highly sensitive, potential security risks (e.g., Smart Contract vul-
nerabilities) should be assessed. Finally, surveys should be conducted to identify OSS
developers’ preferences toward transparency and the frequency of batched payouts.
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Appendix A

Installation Guidelines

The code for the PoC implementations can be found on GitHub [41, 42, 43]. In the
following, each repository is briefly described.

A.1 Signature Provider

The signature-provider repository [41] contains methods to create a signature that can
be used with the implemented Ethereum and Neo N3 SCs [42, 43].

The file signature-eth.go contains the method NewSignatureEth that can be used to
create a signature for the Ethereum SC. The file signature-neo.go provides the method
NewSignatureNeo to create a signature that can be used for the SC on Neo N3.

Examples to create a signature with specific inputs are provided in the file /main/main.go
which uses helper methods for Neo N3 that can be found in the file examples-helper-

neo.go.

A.2 Ethereum Smart Contracts

The payout-eth-contracts repository [42] contains the PoC implementation of the
Ethereum SC, tests, and helper and evaluation scripts. The SCs are located in the folder
/contracts. The file PayoutEth.sol contains all basic methods while the files Pay-

outEthEval.sol, and PayoutEthOpt.sol inherit those methods and hold further func-
tionalities. PayoutEthEval.sol has different implementation approaches that have been
compared to find a fee optimized implementation. The most optimal implementation for
each functionality is included in the SC written in PayoutEthOpt.sol.

To compile SCs and interact with a local Ethereum network for testing, the Hardhat [45]
is used. The file package.json contains scripts that simplify the execution of Hardhat-
specific commands using yarn.
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All Ethereum SCs in the repository can be compiled with the following command:

$ yarn compile

The compiled SC information can then be found in the folder /artifacts/contracts.

The following command runs all tests implemented in the file /tests/index.ts:

$ yarn test

The repository further holds script files in the folder /scripts that are used as helper
functions (i.e., /utils), for manual testing (i.e., /manual-testing), or for the evaluation
(i.e., /evaluation). The results of the evaluations can be found in the folder /evalua-

tion_results.

A.3 Neo N3 Smart Contracts

The payout-neo-contracts repository [43] contains the PoC implementation of the Neo
N3 SC, tests, helper methods, necessary code for the evaluation, and a Jupyter notebook
for creating the evaluation plots. The file PayoutNeoForEvaluation.java has multiple
different implementation approaches that have been used to find a fee optimized imple-
mentation for each required functionality. The most fee optimized implementation of each
method can be found in the final SC that is represented in the file PayoutNeo.java.

In order to compile a SC, the className in the file build.gradle has to be changed
according to the SC’s class name:

neow3jCompiler {

className = "io.flatfeestack.PayoutNeo"

debug = true

}

The compiled artifacts can then be found in the generated folder /build/neow3j.



Appendix B

Contents of the CD

The attachment consists of a compressed zip file with the following content:

• thesis.pdf

• abstract-en.txt

• abstract-ger.txt

• \thesis (LATEX source files)

• \implementations

– \signature-provider

– \payout-eth-contracts

– \payout-neo-contracts

• intermediary-presentation.pptx
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