
PleBeuS: a Policy-based Blockchain
Selection Framework

Eder J. Scheid, Daniel Lakic, Bruno B. Rodrigues, Burkhard Stiller
Communication Systems Group CSG, Department of Informatics IfI, University of Zürich UZH

Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
[scheid,rodrigues,stiller]@ifi.uzh.ch, daniel lakic@access.uzh.ch

Abstract—Due to the growing interest in the blockchain (BC),
several applications are being developed, taking advantage of
the benefits that such technology promises to deliver, such as
removal of Trust Third Parties (TTP) to verify transactions and
data immutability. However, these applications require certain
aspects, such as high transaction throughput or data privacy,
that early BC implementations (e.g., Bitcoin) did not provide.
Thus, a myriad of novel BC implementations was developed,
which introduced the issue of choosing the right implementation
for a specific use-case. This paper presents a framework, called
PleBeuS, to address this selection issue by allowing users to
specify policies that rule the automatic selection of the BC that
data will be stored. The selection process relies on a cost-aware
approach and considers both public and private implementations
and their technical characteristics. Moreover, PleBeuS com-
municates with a BC-agnostic interoperability API to enforce
transactions. The evaluation of the PleBeuS prototype showed
that it is possible to automatically select a BC-based on user
policies, considering cost thresholds and technical details (e.g.,
BC throughput, deployment), and reduce manual interaction.

Index Terms—Policy-based Management; Blockchain; Interop-
erability.

I. INTRODUCTION

The blockchain (BC), introduced in 2009 with the release
of Bitcoin [21], has attracted attention due to the paradigm
shift in the financial market that it proposes. This shift is
represented by the removal of Trusted Third Parties (TTP),
such as banks, to verify monetary transactions between in-
dividuals, which led to the high speculation on the value of
their underlying coins, called cryptocurrencies. This attention
is visible due to the creation of more than two thousand
cryptocurrencies [10], such as Ethereum [4] and Ripple [7].
However, the employment of the technical infrastructure that
supports these cryptocurrencies (i.e., the BC) is not limited
to the financial market. Thus, being employed in several
applications [15], increasing purpose-specific BCs implemen-
tations, tackling a myriad of fields, e.g., agriculture [28],
automotive [11], and pharmaceutical goods [3].

Each new BC implementation focuses on improving dif-
ferent characteristics, such as transaction throughput [27] or
privacy [32]. For example, in the context of the pharmaceutical
industry, where Internet-of-Things (IoT) devices monitor the
temperature of drugs during transport (i.e., cold-chain), high
transaction throughput is required due to the constant moni-
toring to ensure compliance with standards. However, when
sensitive data about users (e.g., health-related data [12]) is

involved, it must remain confidential; thus, the BC implemen-
tation should support encryption mechanisms. It can be seen
that different types of data (e.g., temperature readings and
health-related information) require different storage solutions
and, consequently, different BC implementations. Thus, the
question that drives this paper is how to select the most fitting
BC based on user requirements considering a variety of BCs.

One answer to address this question is to employ already
established management concepts, such as Policy-based Man-
agement (PBM). PBM was first proposed in the context of dis-
tributed systems [25] and later successfully employed in net-
work management [26] to reduce the complexity of managing
several network devices with vendor-specific configurations.
Applying PBM in the BC context, policies can be employed
to express the requirements that a BC must satisfice to store the
incoming data. Moreover, the complexity of managing the data
in multiple BCs is reduced because policies can be adjusted
to reflect new requirements without altering the underlying
implementation of BC-enabled applications. Directions toward
the combination of PBM and BC selection were presented
in [23] in a high-level architecture along with a BC-agnostic
interoperability Application Programming Interface (API).

Thus, this paper presents a Policy-Based BC Selection
framework, called PleBeuS, that relies on a cost-aware
approach to automatically select the BC that fits the require-
ments specified by end-users in the form of policies. These
policies consider technical BC characteristics, such as block
time, transaction throughput, and deployment type, to guide
the selection. This paper details major technical details of
policies and the decision-making process, whereas past efforts
focus on research directions [23] and technical details of
BC-specific adapters [22], which only enforce transactions,
i.e., propagate a BC-dependent transaction to miners, to the
selected BC. The scientific contributions of this paper are
(i) automated BC selection based on policies, (ii) abstraction
and characterization of BC implementations, (iii) cost-aware
selection algorithm and policy switching mechanism, and (iv)
user-tailored BC-agnostic interaction.

The remainder of this work is structured as follows. Sec-
tion II presents a background on blockchain and on PBM.
Section III provides a description PleBeuS and technical
details. Section IV presents an evaluation and discussion
on the prototype. Section V describes related work. Finally,
Section VI summarizes the paper and presents future work.



II. BACKGROUND

This section details the background on the two core concepts
related to the solution proposed in this paper, (i) BC, and (ii)
Policy-based Management (PBM). In Section II-A, the BC
concept, and its technical characteristics are presented. These
characteristics are crucial for this paper, as they are used as
selection criteria. PBM is briefly described, due to its wide
employment, in Section II-B within the networking context.

A. Blockchain (BC) Characteristics
In essence, a BC is a distributed append-only immutable

ledger that relies on cryptographically appended transactions
organized in blocks to remove the need for a TTP to verify new
transactions within a distributed environment of potentially
unknown stakeholders. The aspects that vary from a BC
implementation to the other are described below.

1) Consensus Mechanism: Consensus mechanisms are a
crucial component of BC implementations, as they secure the
network against double-spending attacks by verifying transac-
tions, and maintain the correct state in each peer. For a more
in-depth discussion on the various BC consensus mechanisms
and their differences, one can refer to [30]. The most popular
consensus mechanisms are described in the next items.

• Proof-of-Work (PoW) requires competition between nodes
to calculate the hash value of the next block that will be
appended in the BC. When a node finds a hash that is
below a defined threshold, it broadcasts the hash to all
the nodes for verification and inclusion in the BC [21].

• Proof-of-Stake (PoS) selects block validators pseudo-
randomly depending on their stake in cryptocur-
rency [24]. The concept behind PoS is that nodes with
higher stakes contribute toward securing the BC.

• delegated Proof-of-Stake (dPoS) employs a selection pro-
cess based on a defined set of validators, which take
turns to verify and create new blocks. Even though this
approach allows for a scalable solution, it introduces a
higher degree of centralization due to the limited number
of validators [24].

2) Deployment Type: The deployment type of a BC imple-
mentation can be classified into different categories depending
on its write and read permissions. Public and private categories
relate to data visibility (i.e., which information users are
able to access/read), and permissioned and permissionless
categories data writability (i.e., who is allowed to append
information) [31]. The combination of these categories (i.e.,
private, public, permissioned, and permissionless) affect who
can control and manage the integrity of the BC and form the
following categorization:

• Public permissionless BCs grant write/read access to any
peer within the network.

• Public permissioned BCs grant read access to any peer,
but write access is restricted to selected peers.

• Private permissionless BCs grant write/read access to
selected peers within a closed network.

• Private permissioned BCs manage write/read access by a
centralized organization.

3) BC Performance: Measuring the performance of a BC
(i.e., BC throughput) is not a straightforward task as it depends
on different factors, such as block time, block size, and
transaction size. BC throughput can be measured in different
metrics, such as byte per milliseconds (byte/ms) [8] or trans-
actions per second (tps) [16]. In this paper, the performance
of a BC is measured in tps as it is more precise to grasp than
byte/ms.

• Block Time defines the period that new blocks are ap-
pended in the BC by miners or validators.

• Block Size defines the size of each block in the BC; this
size is directly related to the number of transactions that
can be included in a block.

• Transaction Size determines the size of a standard trans-
action (i.e., exchange of funds) in the BC.

• BC Throughput is calculated by dividing the Block Size
by the Transaction Size, which results in the maximum
number of transactions that can be appended in a block.
This value is divided by the Block Time to achieve the
maximum theoretical tps of a BC.

4) Data size: Refers to the amount of arbitrary data (i.e.,
not transaction-related) a single transaction is able to store.
Transaction-focused BCs (e.g., Bitcoin) are not designed for
storing arbitrary data because they were not conceived as a
database, but rather as a secure means of funds exchange.
However, with the popularization of the BC, other BCs began
to allow data to be embedded in a dedicated field in the
transaction (e.g., Ethereum). Thus, employing the BC as an
immutable database.

5) Transaction Costs: Public BCs often rely on providing
incentives for miners to secure the BC, i.e., verify transactions
to avoid double-spending. These incentives are in the form
of block reward and transaction fees. The block reward does
not affect the cost of a transaction because it is employed
to mint new coins. However, the calculation of transaction
fees depends on the implementation of the BC and its consen-
sus mechanisms. For example, Stellar assumes a fixed base
fee [13] for each operation performed by the transaction, and
in Bitcoin miners select the transactions with higher fees to
maximize earning; thus, transactions with higher fees tend to
be included in the Bitcoin BC faster.

6) Turing-complete Smart Contracts (SC): SCs contain a
set of rules under which the parties to that SC agree to interact
with each other [1]. When these rules are met, the agreement
is automatically enforced. SCs are triggered by addressing a
transaction to the contract. In that case, execution of the SC
is enforced independently and automatically in a prescribed
manner on every node (miner) in the BC, using the data that
was included in the transaction as input [9]. While transaction-
focused BCs (e.g., Bitcoin), have SC capabilities, they are
constrained. The reason for that is that Bitcoin’s script is
not Turing complete since it is not able to solve the halting
problem [17]. This restricts the functionality SCs of these BCs
are able to provide.



B. Policy-based Network Management (PBNM)

Policy-based Network Management (PNBM) is an already
established concept being studied for several years [29].
PBNM is defined as “..the usage of rules to accomplish
decisions” [26]. In the network management context, rules
(i.e., policies) are often specified in an Event-Condition-Action
(ECA) model. For example, an ECA rule can be: when
incoming packets on router R (event), if destination port
equals to (80 or 443) and source IP address is in range
130.60.156.1/24 (condition), then forward the packet to
device DPI on 130.60.156.160 (action). The employ-
ment of rules to guide the management of resources was
initially proposed in the context of distributed systems [25]
and then applied to network management with success. Thus,
it can be seen that PBNM principles can be abstracted to be
applied in other contexts, such as deciding which BC to store
data based on rules.

The PNBM architecture, defined in RCF 3060 [20], can be
represented by four main components, (i) Policy Management
Tool (PMT), (ii) Policy Decision Point (PDP), (iii) Policy
Enforcement Point (PEP), and (iv) Policy Repository. In such
an architecture, the PMT is responsible for allowing users
to author policies, policy refinement/translation following the
Policy Continuum [26], and detecting conflicts. The PDP is
responsible for managing which policy is active or inactive,
and deciding which policy is going to be enforced in the PEP.
In the network management context, the PEP is defined as
any network device (e.g., routers, switches, and middleboxes),
which rules can installed or actions performed. The last
component, the Policy Repository, stores and maintains policy
conditions, actions, and related management data (e.g., users,
domains, and configurations).

Due to policies being managed by users, conflicting policies
can arise. Policy conflicts emerge, when there are contradictory
policy configurations (e.g., two policies within the same activ-
ity time frame). As a result, two or more policies are activated,
which results in contradictory statements [19]. Policy conflicts
can arise during (i) policy specification (i.e., static) or (ii)
runtime (i.e., dynamic). The former arise during the creation of
the policies and can be eliminated by using static analysis [5].
While the latter is detected during the enforcement of policies
and must to be solved automatically to ensure the correct
operation of the system without interruptions [6].

III. POLICY-BASED BC SELECTION FRAMEWORK

This paper proposes a PBM-based framework, called
PleBeuS, to aid in the selection of the most appropriate BC
to store data based on user requirements. PleBeuS allows
users to represent their requirements in the form of policies
that are used as inputs for filtering and selection algorithms.
Subsequent sections present the PleBeuS framework, de-
tailing architectural components, policy parameters, and the
employed cost-aware selection algorithms.

A. Architecture

The architecture of PleBeuS follows the PBM concept;
thus, it is divided in the PMT, the PDP, and the Bifröst
API [22] acting as the PEP. Figure 1 depicts PleBeuS
architecture and its components. The components depicted
using a dashed line, such as the transaction costs service, are
external solutions and were not implemented.

Database

User Data

Blockchain
Data

Policy Data

Transaction
Data

API

GUI

Policy Management Tool

Policy Decision Point

Exchange Rates Transaction Costs
External Services

Policy Selector

Blockchain Selector

Transaction
Generator

B
i
f
r
ö
s
t

Policy-based Blockchain Selection Framework

API
Request Handler

PEP

BC
BC

BC

Blockchains

Fig. 1: PleBeuS Architecture

• API Request Handler: Allows to configure and manage
policies, which are then stored in the database. It is
a Web service that interacts with a Graphical User
Interface (GUI), which executes REST API calls in the
background. The GUI allows users to create new policies,
delete, or edit existing policies and presents cost and
transaction statistics.

• Database: The database stores users, policies, BC in-
formation (see Table I), and the transactions that were
enforced by the PEP.

• Policy Selector: Upon receiving a request to store data
in a BC, this component retrieves the active policy that
matches the time frame and the user that sent the request.
The retrieved policy is then forwarded to the Blockchain
Selector to execute the selection algorithms.

• Blockchain Selector: This component implements the
selection algorithms (cf. Section III-C), being responsible
for retrieving the transaction costs for each BC and
their exchange rate to calculate the cost thresholds in
the currency defined by the user. Moreover, once a BC
or more were selected, it sends the selected BC to the
Transaction Generator.

• Transaction Generator: This component receives the
selected BC and constructs a transaction in the format
required by the Bifröst API, i.e., an HTTP request
containing the data to be stored and the selected BC.



TABLE I: Summary of BCs and Characteristics

BC Name Type TPS Block Time [s] Max. Arbitrary Data Turing-complete SCs Fees

Bitcoin Public 4 - 7 600 80 bytes No variable
Ethereum Public 15 - 25 15 46 kBytes Yes variable
Stellar Public 1000 - 4000 5 28 bytes No base fee
EOS Public 250 - 3996 0.5 256 bytes Yes variable
IOTA Public 500 - 800 60 1300 bytes No none
Hyperledger Private variable 20 (default) 20 bytes Yes none
Multichain Private variable 15 (default) 80 bytes No none

B. Policy Parameters

The policy parameters allowed in PleBeuS are divided
into two different categories, (i) BC-specific and (ii) exter-
nally driven. These two categories and related parameters are
detailed in the next sections.

1) BC-specific Parameters: These parameters are bound to
different BC implementations characteristics and only change
if a hard-fork occurs in the BC. Hence, the characteristics of
the BC implementations are mapped one-to-one as parameters
for a policy. They are used to filter BC implementations based
on their characteristics and not result in a policy switch. Table I
presents the summary of the BCs supported by the PEP (i.e.,
Bifröst API) including their key characteristics.

• Public vs. Private: Users may choose whether the data
to be stored should be open to the public or not. If the
transactions contain sensitive data, private BCs should be
selected to ensure privacy, while taking advantage of the
BC immutability for posterior audits.

• BC Throughput: Represents the minimum amount of tps
that a BC implementation must supports.

• Data Size: Determines the minimum amount (in bytes)
of arbitrary data, i.e., non-transaction related, that a BC-
specific transaction must allow to include.

• Turing-completeness: Determines whether the selected
BC must support complex SCs or not.

2) Externally Driven Parameters: These parameters are not
static and are susceptible to external factors, e.g., the time of
the day. They do not map any BC characteristics, but rather
map user preferences and are responsible for policy switching,
i.e., determining which policy is active.

• Cost Thresholds: Users can set a maximum cost amount
they are willing to spend in a specific interval. When the
accumulated transaction costs reach the defined threshold,
the currently active policy switches to the next defined
policy with a higher threshold. PleBeuS validates the
policies to prevent that previous intervals does not exceed
the threshold of the upcoming intervals.

• Cost Interval: When defining cost thresholds, users need
to define for which interval the thresholds are valid.
PleBeuS supports five intervals, (i) daily, (ii) weekly,
(iii) monthly, (iv) yearly, and (v) default. When a call to
store data is performed, the calculated costs are added to
each of the intervals for the current user. Default specifies
the fallback policy when all thresholds are reached.

• Fiat Currency: Currently, PleBeuS supports CHF,
EUR, and USD. This currency is used for converting cost
calculations in a specific cryptocurrency to a fiat currency.

• Cost Profile: This parameter is used in case multiple
BC implementations fulfill the criteria defined by the
policy. Users can choose between performance and
economic cost profiles. In case performance is selected,
PleBeuS selects the most performant BCs from the BC
set. Consequently, for economic, the BC with the lowest
transaction costs is selected from the BC set. In terms of
policy priority, PleBeuS prioritizes performance over
economic policies within the same interval.

• Transaction Split: In case the transaction split is set to
false, PleBeuS selects a single BC for all transactions.
However, if set to true, the transactions are sent, in
a round-robin scheme, to the set of BCs to increase
performance, executing the selection algorithm based on
the Cost Profile.

• Time Frame: The time frame specifies when the policy
should be active, given that all the other constraints (e.g.,
cost thresholds) are fulfilled. This parameter can either
be set as valid for the whole day or at a specific time
frame of the day (e.g., 08:00 - 17:00). An overlap of
time frames will result in a policy conflict.

• Preferred BCs: Provides the user the possibility to select
the most relevant (for the user) BCs. This parameter can
range from 1 to n BCs. However, if a single BC is
selected, the selection algorithms are not executed.

C. Cost-aware BC Selection Algorithm

The BC selection process first applies straightforward fil-
tering, following a divide and conquer approach, with a
complexity of O(log n), removing BCs whose characteristics
do not match with the selected ones. These filters are defined in
the policy and applied to reduce the size of the BC set that will
be used as input for the BC selection algorithm. The following
procedure defines the priority of the filters. Let F (f(x), P )
be the collection of filters, where f(x) is the filtering function
(e.g., minimum tps, BC type, Turing-complete, block time,
and minimum data size) and P the priority ranging from 1
(i.e., highest priority) to the number of filters (i.e., lowest
priority). Moreover, let BCpool be the available BCs, and let
BCset be the resultant set after applying the filters. Thus,
BCset ← BCpool then ∀f(x) ∈ ordered(F (f(x), P )) do
BCset ← f(BCset).



After the filters are applied, based on the Cost Profile
defined by the user in the policy, PleBeuS executes two
algorithms to select the most appropriate BC from BCset. If
the user specified a Cost Profile that prioritizes performance,
PleBeuS executes Algorithm 1. This algorithm selects the
BC that presents the highest tps, meaning that the data will be
immutably recorded in a BC as fast as possible, disregarding
the costs. However, if two BCs present the same tps value, the
algorithm prioritizes the one with lower costs.

Algorithm 1 Fastest BC Selection

1: procedure SELECTFASTESTBC(bcSet, costs)
2: fastest← bcSet[0]
3: for all bc ∈ bcSet do
4: if (bc.tps > fastest.tps) then
5: fastest← bc
6: else
7: if (bc.tps == fastest.tps) and (costs[bc] <

costs[fastest]) then
8: fastest← bc
9: end if

10: end if
11: end for
12: return fastest
13: end procedure

Algorithm 2 is executed by PleBeuS for policies contain-
ing the economic Cost Profile. This algorithm selects the BC
that presents the lowest transaction costs from the BC set. If
two BCs present the same transaction costs, then the algorithm
prioritizes the BC with the highest tps, as there is no impact
on the cost, and the transaction is included faster.

It is important to notice that the bcSet is a pre-processed
set based on the data to be stored. For example, if the size of
the data to be stored is above the maximum data supported by
a BC transaction, then, this BC is not appended in the bcSet.

Algorithm 2 Most Economic BC Selection

1: procedure SELECTECONOMICBC(bcSet, costs)
2: economic← bcSet[0]
3: for all bc ∈ bcSet do
4: if (costs[bc] < costs[economic]) then
5: economic← bc
6: else
7: if (costs[bc] == costs[economic]) and

(bc.tps > economic.tps) then
8: economic← bc
9: end if

10: end if
11: end for
12: return economic
13: end procedure

IV. EVALUATION AND DISCUSSION

In order to verify PleBeuS’s functionality regarding the
policy switching mechanism, and the BC selection algorithm,
a prototype was implemented and evaluated in three scenarios
with different sets of defined policies. These scenarios are
defined in Section IV-A, and the results from each scenario
are presented and discussed in Section IV-B. PleBeuS’s code
and datasets are available online [18].

A. Evaluation Scenarios

Each scenario combined both public and private BCs, and
varied in parameters, such as the BC Set (i.e., BCs available
for selection), costs thresholds intervals (e.g., daily, weekly,
monthly, and yearly), which trigger a policy switch, and
the profile (e.g., performance or economic). The time frame
parameter was not considered because the cost interval triggers
the switch of policies. The evaluation scenarios and the defined
policies are described in the next sections.

1) Scenario #1 - Private BCs: For the first scenario, six
policies were defined (see Table II) with the BC Set containing
only private BC implementations (e.g., HyperLedger (HYP),
Multichain (MLC) and Postgres (PSG)). PSG was defined
as the BC for the default policy. Even though private BCs
do not require transaction fees as public BCs do, they incur
other costs, such as hardware and server maintenance, and
support. Thus, an arbitrary cost of CHF 0.01 per transaction
was considered, triggering the switch of policies.

TABLE II: Policies Defined in Evaluation Scenario #1

No. BC Set Interval BC Type Cost [CHF] Profile

1 All private BC daily private 5 performance
2 HYP, MLC daily private 8 economic
3 MLC, PSG weekly private 20 performance
4 HYP, MLC monthly private 50 performance
5 All private BC yearly private 100 economic
6 PSG default - - -

2) Scenario #2 - Public BCs: In the second evaluation
scenario, only public BC (e.g., Bitcoin (BC), Ethereum (ETH),
Stellar (XLM), EOS (EOS), and IOTA (MIOTA)) were se-
lected to compose the BC Set. Nine policies were defined in
this scenario (see Table III), in which the profile alternated
between Performance and Economic to evaluate both param-
eters in a balanced manner. Ethereum was arbitrary selected
as the BC for the default policy.

TABLE III: Policies Defined in Evaluation Scenario #2

No. BC Set Interval BC Type Cost [CHF] Profile

1 All public BC daily public 2 performance
2 BTC, ETH, EOS daily public 10 economic
3 EOS, IOTA, XLM weekly public 15 performance
4 BTC, EOS weekly public 30 economic
5 ETH, EOS, IOTA monthly public 40 performance
6 BTC, EOS, XLM monthly public 60 economic
7 ETH, EOS yearly public 80 performance
8 All public BC yearly public 100 economic
9 ETH default - - -



3) Scenario #3 - Private and Public BCs: The last scenario
combined both public and private BCs to evaluate the behavior
of PleBeuS in heterogeneous environments. Seven policies
were defined (presented in Table IV), with Postgres being
the selected BC for the default policy. Moreover, to increase
performance, the split parameter was set to true, meaning that
the data will be stored in the BC Set in a round-robin scheme.

TABLE IV: Policies Defined in Evaluation Scenario #3

No. BC Set Interval BC Type Cost [CHF] Profile Split

1 All private BC daily private 15 performance X
2 All private BC daily private 30 economic X
3 All BC weekly indifferent 1500 performance X
4 All public BC monthly public 4000 performance X
5 All public BC monthly public 8000 economic X
6 All BC yearly indifferent 15000 economic X
7 PSG default - - - -

B. Results and Discussion

For each scenario, 10000 storeData requests were sent
to PleBeuS API, which generated a total of 10000 BC trans-
actions. Each request represented one collected random data
point from a generic sensor, e.g., temperature, or humidity.
The performance (i.e., tps) of the public BCs followed the
lower spectrum of the values from Table I. For the private
BCs, the values from the performance evaluation conducted
in [22] were selected. The results of the conducted evaluation
in each scenario are depicted in Figure 2.

The policy switching mechanism is influenced by two
parameters, (i) cost threshold, and (ii) time frame. As the
time frame was not considered in the evaluation, the switch
in the active policy was determined by the cost threshold.
Figure 2a, Figure 2d, and Figure 2g represent the number
of transactions executed per policy in the scenarios. It can
be seen in Figure 2a that the default policy (No. 6) is never
activated in scenario #1 because the 10000 transactions were
executed within the yearly cost interval (i.e., 100 CHF) with
policy No. 5 active for half of the total transactions, i.e., 5000
transactions. Figure 2b confirms this behavior, depicting the
cost thresholds for each policy, where the cost for policy No.
6 is exactly 50 CHF. Even though the same yearly cost was
defined in scenario #2, the switching occurred in a different
pattern (see Figure 2d) due to the higher costs of interacting
with public BCs. As soon as the accumulated cost reaches the
yearly threshold in the last policy (No. 8), the default one is
activated, and the accumulated cost reaches 400 CHF.

The results of the evaluation of the BC selection algorithms
(cf. Section III-C), are illustrated in Figure 2c, Figure 2f, and
Figure 2i. The first two figures (2c and 2f) show a clear distinc-
tion among the BCs selected due to the selected deployment
type private BCs and public BCs. Moreover, the Bitcoin BC is
not selected due to its high transaction costs because of its high
prices (10000 USD as of September 22, 2019 [10]). However,
in the third scenario (Figure 2i), with the split parameter
selected, the transactions were sent to all available BCs, with
Postgres being selected 3500 times because it presents the
fastest tps and cheapest costs because it is a regular database.

Despite the inclusion of Postgres in the BC set, the split
parameter guaranteed that others BC were selected with a
tendency to private BCs being selected for the Economic
profile. This tendency is confirmed because more than half
of the 10000 transactions, approximately 6700 transactions,
were included in HyperLedger, Multichain, and Postgres.

The results of the evaluation showed that if the BC set
contains the same deployment type, the selection process is
able to correctly minimize costs (e.g., not selecting Bitcoin)
or maximize performance (e.g., selecting a generic database).
However, if the BC set contains both private and public BCs,
the priority is always given to private BCs because they present
a higher tps in comparison to public BCs. Moreover, the prices
of interacting with public BCs must be taken into consideration
when selecting this deployment type. Sending a transaction to
a public BC for each sensor measurement is unfeasible, as the
cryptocurrencies prices are higher compared to private BCs.
Thus, measurements should be combined and only an average
from the last n measurements included in a transaction to
minimize costs.

Even though private BCs are prioritized in the selection
mechanism, one must take into consideration the degree of
centralization that this type of deployment introduces. As
described in Section II-A, private BCs are controlled by a
single entity or a group of trusted entities. Thus, are not
decentralized, and the property of immutability might be
broken if these entities collude or the central entity behaves
maliciously.

V. RELATED WORK

The BC area is a novel research topic; thus, few work in the
literature tackle the specific problem of selecting a BC among
the myriad of implementations.

A complete survey of the different factors that impact the
BC choice is presented in [2]. The authors detail different BC
aspects (e.g., basic definitions, consensus mechanisms, account
models, and interaction roles) by surveying the scientific pub-
lications to provide a vademecum, i.e., complete manual and
reference guide regarding the BC technology. However, instead
of providing a solution where a BC is automatically selected
based on specific requirements, the authors present a flowchart
that users must manually follow to decide when to use and
which type of BC (e.g., permissionless, full-permissioned, or
open-permissioned) is the most appropriate.

Furthermore, [14] proposes a framework to determine the
most appropriate BC based on defined requirements by users.
The proposed framework monitors the BCs and calculates
scores, using weights, for each of the defined metrics, e.g.,
transaction throughput, reputation, and costs, in order to select
the most suitable one. Moreover, they introduce a Switchover
mechanism to copy data from one BC to the other. Even
though its approach is close to the solution provided in this
paper, it is still necessary to manually adjust the weights of
each metric to correspond to the user’s requirements, whereas
PleBeuS reduces manual interaction.



Scenario #1

1 2 3 4 5 6

5000

4000

3000

2000

1000

0

Policy Number

Tr
a
n
sa

ct
io

n
s

Transactions per Policy

(a)

1 2 3 4 5 6

100

80

60

40

20

0

Cost Threshold

Cost per Policy

C
o
st

s 
[C

H
F]

Policy Number

(b)

BTC ETH XLM EOS MIOTA HYP MLC PSG

7000

6000

5000

4000

3000

2000

1000

0

Performance

Economic

Blockchain

Tr
a
n
sa
ct
io
n
s

(c)

Scenario #2

1 2 3 4 5 6 7 8 9

2000

1500

1000

500

0

Policy Number

Tr
a
n
sa

ct
io

n
s

Transactions per Policy

(d)

1 2 3 4 5 6 7 8 9

500

400

300

200

100

0

Cost Threshold

Cost per Policy

C
o
st

s 
[C

H
F]

Policy Number

(e)

BTC ETH XLM EOS MIOTA HYP MLC PSG

3000

2500

2000

1500

1000

500

0

Blockchain

Tr
a
n
sa
ct
io
n
s

Performance

Economic

(f)

Scenario #3

1 2 3 4 5 6 7

3500
3000
2500
2000
1500
1000

500
0

Transactions per Policy

Policy Number

Tr
a
n
sa

ct
io

n
s

(g)

1 2 3 4 5 6 7

16000
14000
12000
10000

8000
6000
4000
2000

0

Cost Threshold

Cost per Policy

C
o
st

s 
[C

H
F]

Policy Number

(h)

BTC ETH XLM EOS MIOTA HYP MLC PSG

4000

3500

3000

2500

2000

1500

1000

500

0

Performance

Economic

Blockchain

Tr
a
n
sa
ct
io
n
s

(i)

Fig. 2: Comparison of the Results in the Evaluation Scenarios, Where (a), (d) and (g) Represent Transactions Executed per
Policy, (b), (e) and (h) Represent Costs per Policy, and (c), (f) and (i) Represent the Transactions Stored per BC

VI. SUMMARY AND FUTURE WORK

This paper presented PleBeuS, a Policy-based Blockchain
Selection framework. PleBeuS automatically selects the
most suitable Blockchain (BC) implementation that meets
the requirements of users specified in the form of policies.
Moreover, PleBeuS is able to communicate with a BC
Interoperability API [22] to include the data to the selected
BC. PleBeuS implements: (i) a policy switching mechanism
aware of cost thresholds and time frames, and (ii) two BC
selection algorithms that either prioritize the BC that presents
the best performance in terms of transaction per seconds (tps)
or the BC that presents the lowest estimated transaction price
retrieved from external solutions.
PleBeuS was evaluated in three scenarios that contained

policies that differed in cost thresholds, selection profiles (e.g.,
performance or economic), and BC sets (e.g., private BCs,
public BCs, and both public and private BCs). This evaluation
demonstrated that the policy switching mechanism and the BC
selection algorithms behaved as expected, switching policies
upon a cost threshold is reached and selecting the fastest BC
implementation from a set of defined BC. PleBeuS can be
applied in use cases where the data immutability provided
by the BC is necessary, while costs should be minimized
or performance constraints met, such as in the cold-chain of
medicines use case [23].

Furthermore, the evaluation showed that private BCs have
priority in the selection algorithm over public BCs. This
behavior is because the algorithm solely relies on objective
parameters, such as the number of tps. Private BCs implemen-
tations are able to achieve higher tps compared to public BCs
due to their consensus mechanisms being designed to reach a
consensus about the BC state as fast as possible because the
set of validators are known and trusted. Thus, this behavior
might change if the selection algorithm considers other non-
objective parameters, such as the degree of centralization or
the possibility of collusion between validators.

Future work considers multi-user interaction, improvements
in the selection algorithm to take into consideration more BC
parameters (e.g., popularity, code maturity, BC stability, and
security), detecting policy conflicts, and conducting perfor-
mance and scalability evaluation of the whole selection process
and overall framework.

ACKNOWLEDGMENTS

This work has been supported by Komission für Tech-
nologie und Innovation (KTI), Switzerland (CTI-No. 26996.L
PFES-ED). Also, the authors would like to acknowledge
manifold discussions with modum.io, especially Stefan M.
Weber, Sacha Uhlmann (modum.io), and Thomas Bocek from
the Hochschule für Technik Rapperswil (HSR).



REFERENCES

[1] M. Alharby, A. Aldweesh, and A. v. Moorsel, “Blockchain-based
Smart Contracts: A Systematic Mapping Study of Academic Research
(2018),” in International Conference on Cloud Computing, Big Data and
Blockchain (ICCBB 2018), Fuzhou, China, November 2018, pp. 1–6.

[2] M. Belotti, N. Boi, G. Pujolle, and S. Secci, “A Vademecum on
Blockchain Technologies: When, Which and How,” in IEEE Communi-
cations Surveys Tutorials, 2019, pp. 1–47.

[3] T. Bocek, B. B. Rodrigues, T. Strasser, and B. Stiller, “Blockchains Ev-
erywhere - a Use-Case of Blockchains in the Pharma Supply-Chain,” in
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM 2017), Lisbon, Portugal, May 2017, pp. 772–777.

[4] V. Buterin, “A Next-Generation Smart Contract and Decentralized
Application Platform,” 2014, https://github.com/ethereum/wiki/wiki/
White-Paper, Last visit March 20, 2019.

[5] M. Charalambides, P. Flegkas, G. Pavlou, A. K. Bandara, E. C. Lupu,
A. Russo, N. Dulav, M. Sloman, and J. Rubio-Loyola, “Policy Conflict
Analysis for Quality of Service Management,” in IEEE International
Workshop on Policies for Distributed Systems and Networks (POLICY
2005), Stockholm, Sweden, Sweden, June 2005, pp. 99–108.

[6] M. Charalambides, P. Flegkas, G. Pavlou, J. Rubio-Loyola, A. Bandara,
E. Lupu, A. Russo, M. Sloman, and N. Dulay, “Dynamic Policy Analysis
and Conflict Resolution for DiffServ Quality of Service Management,”
in IEEE/IFIP Network Operations and Management Symposium (NOMS
2006), Vancouver, BC, Canada, January 2006, pp. 294–304.

[7] B. Chase and E. MacBrough, “Analysis of the XRP Ledger Consensus
Protocol,” 2018, http://arxiv.org/abs/1802.07242, Last visit June 19,
2019.

[8] S. Chen, J. Zhang, R. Shi, J. Yan, and Q. Ke, “A Comparative Testing
on Performance of Blockchain and Relational Database: Foundation
for Applying Smart Technology into Current Business Systems,” in
Distributed, Ambient and Pervasive Interactions (DAPI 2018), Las
Vegas, NV, USA, July 2018, pp. 21–34.

[9] K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts
for the Internet of Things,” in IEEE Access, vol. 4, May 2016, pp. 2292–
2303.

[10] CoinMarketCap, “Coinmarketcap market capitalizations,” 2019, https:
//coinmarketcap.com/, Last visit September 22, 2019.

[11] A. Dorri, M. Steger, S. S. Kanhere, and R. Jurdak, “BlockChain: A
Distributed Solution to Automotive Security and Privacy,” in IEEE
Communications Magazine, vol. 55, no. 12, December 2017, pp. 119–
125.

[12] European Commission, “General Data Protection Regulation (GDPR) -
What personal data is considered sensitive?” 2016, , https://tinyurl.com/
yyrdetod , Last visit August 13, 2019.

[13] S. D. Foundation, “Fees — Stellar Developers,” 2019, , https://www.
stellar.org/developers/guides/concepts/fees.html , Last visit August 30,
2019.

[14] P. Frauenthaler, M. Borkowski, and S. Schulte, “A Framework for
Blockchain Interoperability and Runtime Selection,” 2019, , http://arxiv.
org/abs/1905.07014 , Last visit August 13, 2019.

[15] W. Gao, W. G. Hatcher, and W. Yu, “A Survey of Blockchain: Tech-
niques, Applications, and Challenges,” in 27th International Conference
on Computer Communication and Networks (ICCCN 2018), Hangzhou,
China, July 2018, pp. 1–11.

[16] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and
S. Capkun, “On the Security and Performance of Proof of Work
Blockchains,” in ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS 2016), Vienna, Austria, October 2016, pp. 3–16.

[17] B. Inc., “Script - Bitcoin Wiki,” 2019, https://en.bitcoin.it/wiki/Script,
Last visit August 19, 2019.

[18] D. Lakic, E. J. Scheid, and B. Rodrigues, “PleBeuS: a Policy-based
Blockchain Selection Framework,” 2019, https://gitlab.ifi.uzh.ch/scheid/
plebeus, Last visit December 14, 2019.

[19] E. C. Lupu and M. Sloman, “Conflicts in policy-based distributed
systems management,” in IEEE Transactions on Software Engineering,
vol. 25, no. 6, November 1999, pp. 852–869.

[20] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen, “RFC 3060
- Policy Core Information Model,” https://tools.ietf.org/html/rfc3060,
Last visit July 12, 2019.

[21] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2009,
https://bitcoin.org/bitcoin.pdf, Last visit June 19, 2019.

[22] E. J. Scheid, T. Hegnauer, B. Rodrigues, and B. Stiller, “Bifröst: a
Modular Blockchain Interoperability API,” in IEEE Conference on Local
Computer Networks (LCN 2019), Osnabrück, Germany, October 2019,
pp. 1–9, Accepted. To be published.

[23] E. J. Scheid, B. Rodrigues, and B. Stiller, “Toward a Policy-based
Blockchain Agnostic Framework,” in IFIP/IEEE Symposium on Inte-
grated Network and Service Management (IM 2019), Washington - DC,
USA, April 2019, pp. 609–613.

[24] R. Shaan, “Difference Between Traditional and Delegated Proof of
Stake,” April 2018, , https://bit.ly/2JWIn3f , Last visit May 5, 2019.

[25] M. Sloman, “Policy driven Management for Distributed Systems,” vol. 2,
no. 4. Springer, 1994, pp. 333–360.

[26] J. Strassner, Policy-Based Network Management: Solutions for the Next
Generation (The Morgan Kaufmann Series in Networking). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[27] P. Thakkar, S. Nathan, and B. Viswanathan, “Performance Benchmark-
ing and Optimizing Hyperledger Fabric Blockchain Platform,” in IEEE
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS 2018), Milwau-
kee, WI, USA, September 2018, pp. 264–276.

[28] F. Tian, “An Agri-Food Supply Chain Traceability System for China
based on RFID Blockchain Technology,” in 13th International Con-
ference on Service Systems and Service Management (ICSSSM 2016),
Kunming, China, June 2016, pp. 1–6.

[29] D. C. Verma, “Simplifying Network Administration Using Policy-Based
Management,” in IEEE Network, vol. 16, no. 2, March 2002, pp. 20–26.

[30] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen, and
D. I. Kim, “A Survey on Consensus Mechanisms and Mining Strategy
Management in Blockchain Networks,” in IEEE Access, vol. 7, January
2019, pp. 22 328–22 370.

[31] K. Wst and A. Gervais, “Do you Need a Blockchain?” in Crypto Valley
Conference on Blockchain Technology (CVCBT 2018), Zug, Switzerland,
June 2018, pp. 45–54.

[32] P. Zhong, Q. Zhong, H. Mi, S. Zhang, and Y. Xiang, “Privacy-Protected
Blockchain System,” in IEEE International Conference on Mobile Data
Management (MDM 2019), Hong Kong, Hong Kong, June 2019, pp.
457–461.


