Bifrost: a Modular Blockchain Interoperability API

Eder J. Scheid, Timo Hegnauer, Bruno Rodrigues, Burkhard Stiller
Communication Systems Group CSG, Department of Informatics Ifl, University of Ziirich UZH
Binzmiihlestrasse 14, CH-8050 Ziirich, Switzerland
[scheid,rodrigues,stiller] @ifi.uzh.ch, t.hegnauer@ gmail.com

Abstract—The blockchain (BC) world is rapidly becoming a
universe of several ledgers designed for a specific purpose, hold-
ing data previously stored (i.e., siloed) in centralized databases.
The use of different BCs for the same purpose could hamper
the frictionless exchange of data or value. On one hand, it is
natural that there are competing implementations exploring the
benefits of BC. On the other hand, the problem of siloed data
re-emerges, with respect to isolated chains. In this regard, BC
interoperability is necessary to connect different BCs, exchanging
information and assets. Moreover, to foster BC employment,
developers must be able to interact with such different BCs
without knowing the details of each implementation. This paper
presents a novel solution, called Bifrdst, to store and retrieve
data on different BCs. Bifrdst employs a notary scheme,
which allows for connectivity to different BCs. The presented
prototype is highly modular and currently implements seven
adapters to popular BC implementations, including Bitcoin,
Ethereum, and Stellar. The developed prototype was evaluated
concerning performance, security, and data size to verify the
feasibility of such an implementation and assess design decisions
taken during its development.

Index Terms—Interoperability; Transparency; Blockchain.

I. INTRODUCTION

The blockchain (BC) concept was introduced in 2009 with
the release of the Bitcoin white paper [26]. Bitcoin was the first
cryptocurrency achieving a market capitalization of more than
69 billion US dollars [8] in 2019. After its release, several
cryptocurrencies were created taking advantage of the BC
technology and the success of Bitcoin. As of 2019, there
exist more than 2000 different cryptocurrencies [9]. These
cryptocurrencies either follow the Bitcoin BC protocol, or
design their own BC protocol and implementation focusing
on special features, such as smart contract support [6], pri-
vacy [23], digital identities [28], or tools to create private BCs
for enterprises [13].

Due to their different protocols and technologies, native
cryptocurrencies cannot be exchanged between two BCs. Fur-
thermore, it is not possible to exchange information about
their state or events directly. Thus, the research on BC in-
teroperability is a promising field to address such a problem
and is also referred to as the “holy grail” of BCs [12]. In a
BC context, interoperability means connecting multiple BCs
to access information and act on it by changing its state or
the state of another BC. Optimally, this would be achieved
without compromising the premise of trustlessness. In this
sense, the main goal of BC interoperability is to link BCs,
which are specialized for a specific use case. For example,
when a car is bought using a specialized payment chain (e.g.,

PaymentChain) and should be automatically registered in a
private chain issued by an insurance (e.g., InsuranceChain).
Additionally, BC interoperability can be used to increase the
performance of BCs by linking multiple smaller instances or
decrease the risk of unavailability or attacks by distributing
and duplicating data on multiple BCs [22].

From a developer-focused standpoint, interoperability also
implies that a BC application is able to interact with multiple
BCs without restrictions. However, as each new BC presents
different library implementations and Application Program-
ming Interfaces (API), developers currently need to acquire
detailed knowledge about the technical implementation of each
BC to be able to interact with it programmatically. This is
a significant restriction for interoperability with BCs.Thus,
simpler and intuitive interfaces need to be provided to users in
order to enhance interoperability not only with other BCs but
with legacy applications, as proposed earlier in the overlay
networks context [21]. Ultimately, fostering the creation of
innovative BC-based applications.

This paper introduces an interoperability API implementa-
tion, called Bifrdst, that abstracts development complexi-
ties of each BC, allowing users to easily interact with multiple
BCs without requiring specific knowledge about their imple-
mentations and languages. The design of Bifrost focused
on providing a (i) flexible, (ii) modular, and (iii) easy to use
API. Moreover, the prototype implementation of Bifrost
is presented, including a modular interface to seven different
BCs in the form of a Python API, allowing users to store
and retrieve arbitrary data on available BCs. In summary, the
contributions of this work are:

o The design of a BC Interoperability API;

o Removal of technical BC knowledge from applications;

e Automated BC transaction creation; and

e Transparent BC interaction.

The remainder of this paper is organized as follows. Sec-
tion II classifies interoperability techniques and related work.
Section III, presents the architecture design and the imple-
mentation of Bifrdst. Section IV evaluates and discusses
the prototype. Section V concludes the paper and present an
outlook on future work.

II. BACKGROUND AND RELATED WORK

This section classifies existing interoperability techniques
presenting an overview of the state-of-the-art. Finally, a dis-
cussion summarizes the current state and main challenges of
BC interoperability.

A. Interoperability Techniques Classification

According to [7], there are currently three techniques
to achieve interoperability between BCs: Notary schemes,
Sidechains, and Hash-Locking.

Notary schemes use a trusted entity as an intermediary
between two BCs. The role of the notary is to verify that
an event took place in one BC and feed this information
to another BC. The main advantage of the notary scheme
is its simplicity, as no change is required in the underlying
implementation of BCs. The downside is that it is necessary
to trust in the notary [7].

Sidechains provide the ability to validate and process
information about the state of other BCs. Technically, this is
achieved by using Simplified Payment Verification (SPV). SPV
uses block headers and Merkle trees to verify if a transaction
occurred on another BC without having to download the whole
ledger. Although the data needs to be externally fed from
one BC to the other, this process does not require trust. Due
to the cryptographic properties of BCs it is simple to prove
if the data has been tampered with [26], [27]. Furthermore,
exchanges between two BCs can be enabled by so-called
“Pegged sidechains”. This scheme generates a proof that
the assets are locked in one BC, so that a transaction of
the same amount can be made on a second BC. However,
smart contract capabilities are required to create a sidechain.
Furthermore, to achieve full interoperability, every BC would
need a sidechain, which in turn needs to support every other
BC. The maintenance of this growing system becomes a major
challenge.

Hash-locking is a technique that allows trades between two
or more parties without an intermediary. Hash-locking triggers
an action on two BC simultaneously in an atomic manner, i.e.,
with both actions or none of them occurring. For example, two
parties A and B want to make a trade but have their assets on
different BCs. In order to perform the trade, they can use the
following scheme:

1) A generates a secret s and computes the hash h(s),
which is sent to B.

2) Both A and B lock their assets into a smart contract,
which can verify if an inputted s belongs to h(s).

3) A has to provide s to the contract holding B’s funds
within 2% X seconds to trigger a transfer to A; otherwise,
the asset goes back to B.

4) B has to provide s to the contract holding A’s funds
within X seconds to trigger a transfer to B; otherwise,
the asset goes back to A.

5) A reveals the secret within X seconds. Thus B learns
the secret and can claim the asset from A.

As hash-locking schemes can be chained after each other, it
is possible to enable trades even if there is no direct connection
between the trading parties. This technique is used by most
decentralized exchanges today. This scheme works and is
atomic as long as both parties act according to their financial
interest. One drawback of such a scheme is that the BC needs
to support this particular type of smart contract, called Hash-

TimeLock Contract (HTLC). Also, the waiting period X could
be exploited by speculating on falling or increasing prices
between the trades.

B. Notary Scheme Projects

Herdius [16] is a decentralized exchange platform which
focuses on the common linking point among all BCs, the
private keys. Thus, Herdius enables exchanges between differ-
ent BCs through sharing them. To decentralize this process,
Herdius encrypts the users’ private keys (e.g., Ethereum private
key) with a private key generated within Herdius. This key is
then sliced and distributed, using a threshold multisignature
mechanism, to notaries called “assembler nodes”. Multiple
assembler nodes are able to sign a transaction on behalf of the
user by combining their parts of the private key. To include
another layer of security, no assembler node can completely
decrypt the native private key. Instead, the transaction is signed
by making use of homomorphic cryptography computations.
By using this structure, Herdius is able to decentralize the
notary scheme [10].

C. Sidechain Projects

BTC-Relay [5] enables one-way interoperability between
Bitcoin and Ethereum. It is a sidechain for Bitcoin in
Ethereum, which uses SPV to verify and process transactions
from Bitcoin. This work relies on so-called “Relayers” that
submit Bitcoin headers to an Ethereum smart contract to earn
a micro-fee every time an application processes a Bitcoin
payment in the BTC-Relay smart contract.

Aion [25] tackles the problem of the Sidechain scheme
that every BC would need a sidechain for each other BC
by creating a central hub. Every BC would be able to route
transactions through the Aion hub to every other BC. This
hub itself is a BC and connects to the different BCs using
their protocol powered by sidechains. Thus, every BC which
supports this protocol can become a part of the Aion network,
but has to fulfill the following requirements:

o Be decentralized in some fashion and support procedures
commonly found in BCs such as atomic broadcast and
transactions.

« Be able to recognize transactions between BCs as distinct
from regular transactions.

« Be aware of the consensus protocol used by the bridge
and store a transaction deemed valid.

o Implement lock-time or a similar feature that allows
tokens to be held by the network for a period of time.

Although these are standard requirements for the sidechain
approach, most of today’s major BCs do not natively fulfil
them. To still be able to integrate them into Aion’s system, they
are working on “token bridges”, which are tailored solutions
for individual BCs. One of Aion’s concrete accomplishments
is a pegged sidechain in Ethereum [4].

Cosmos [24] provides a hub for interoperability and their
Proof-of-Stake (PoS) consensus mechanism called “Tender-
mint”, which is built with interoperability as main principle.
Hence, apart from connecting today’s BCs to the hub using

sidechains, Cosmos is providing tools for users to create their
BC with Tendermint as the consensus mechanism. Interoper-
ability between the Terndermint-based BCs is enabled more
straightforwardly and directly than SPV.

Polkadot [36] presents a similar approach to Cosmos and
uses a slightly adapted version of their consensus mechanism
“Tendermint”. The main difference between Polkadot and
Cosmos lies in their governance approach. Cosmos allows
any BC to join its hub as long as they support their protocol.
In contrast, to attach a BC to the Polkadot network, a large
number of their cryptocurrency (“Dots”) must be staked.
Therefore, Polkadot takes more control over their partner
chains by being able to punish malicious behaviour.

Ark [32] describes itself as an open-source framework to
create BCs with one click. The ARK Platform provides a so-
called “Smart Bridge”. The Smart Bridge is a sidechain in the
Ark BC. Instead of supporting different BCs by implementing
sidechains in other BCs, Ark provides a generic protocol; thus,
leaving it up to the BC to support it. However, this means that
either a BC needs to be created by using the tools from Ark or
it has to change its implementation to be able to send data to
the Ark BC. A second interoperability feature is their planned
integration of cryptocurrency exchanges (e.g., Shapeshift) to
exchange between different cryptocurrencies automatically.
Thus, additionally, implementing a notary scheme.

MIT’s Tradecoin interoperability model [15] proposes a de-
sign to achieve BC interoperability following the principles of
the Internet architecture, with BCs being Autonomous Systems
(AS) and a set of gateways interconnecting them. In the design,
the gateways act as inter-domain (i.e., inter-BCs) entities and
are responsible for implementations of Tradecoin, validating
transactions in supported BCs, and mediating transactions
between private BCs.

D. Hash Locking Projects

Wanchain [34] has developed a hash lock-based solution
to enable token transfers between their BC and Ethereum.
Furthermore, they are working on supporting other BCs.
Instead of the more common Hashed Time Lock contract,
they rely on so-called “Locked Account” scheme. This scheme
is used to create an account which will be locked while the
two transfers are occurring. It manages that by splitting up
the private key of the account and distributing it to multiple
nodes in the Wanchain. The nodes can only jointly perform the
transfer from the locked accounts and will make sure that the
transactions are atomic. Another interoperability feature is the
ability to run Ethereums Solidity contracts on the Wanchain.

Interledger claims to be “the protocol for connecting
ledgers”, and their InterLedger Protocol (ILP) is a reference to
their inspiration, which is the IP protocol [18]. Different from
the projects above, Interledger is not a BC, token, or central
service. Instead, Interledger is a network of connectors, con-
necting hashed-timelock contracts in different BCs to enable
decentralized exchanges [19].

E. Discussion

Although differing in the architectures and schemes, most
of the projects presented follow the sidechain approach. This
approach is the most promising one regarding the spectrum
of use cases it can cover. However, it requires changes in the
implementation of target BCs, as most of them do not support
locking or destroying tokens. To overcome this restriction,
some projects combine different techniques. For example,
Interledger combines sidechains with notary scheme [33]
to achieve interoperability. Moreover, most of the projects
focus on the interoperability by connecting BCs via a hub
in a separated ecosystem instead of enabling interoperability
between existing BCs. Thus, leading to spread islands of
interoperability projects.

Moreover, the projects described in this section do not
provide the same characteristics as Bifr&st. For example,
[16] requires multiple assembler nodes to sign a transaction,
which hinders easy of use, as these nodes must be configured
and always available. Sidechains projects, such as [5], [15],
[24], [25], [32], [36] are not flexible, because they require
changes in the underlying implementation of the supported
BCs. Even though [33] provides a modular design, it depends
on the BC support of hashed-timelock contracts. Further,
[34] enables the exchange of its currency to other BCs.
However, it maintains another BC and the underlying BC
must support hash locking mechanisms. Thus, both projects
require mechanisms that hamper the system’s flexibility. In this
sense, Bifrost differs from these interoperability projects
as it aims to provide all these characteristics simultaneously.

III. MODULAR BLOCKCHAIN INTEROPERABILITY API

This section describes Bifrdst, being organized into
three subsections. Firstly, it is defined the API goal and the
requirements taken into consideration during the development
of the API. Secondly, it is described the details of the
components and workflow of the APIL. Lastly, it is presented
the implementation of the API, and listed technical details
of libraries and technologies. It should be mentioned that
Bifrdst is part of the Policy-based Blockchain Agnostic
Framework [29], and is called OpenAPI in such a framework.

A. Objective and Requirements

The main objective of Bifrdst is to provide a simple
interface to interact with different BCs, i.e., allows users to
store, retrieve, and migrate data from BCs. In this paper, a
“user” is defined as a developer of a BC application. Thus,
this interface allows the developer to create programs that
support a variety of BCs without knowing the underlying BC
and library implementation. Additionally, this allows further
abstractions by potentially letting algorithms decide on which
BC to use depending on certain parameters, e.g., transaction
costs or BC performance. Figure 1 depicts the interaction with
a BC application and Bifrdst.

Three requirements were taken into consideration for the
development of Bifrdst: (i) flexibility, (ii) modularity, and
(iii) ease of use.

[Obitcoin
_,—» ‘efhereum

c
2 |«—Retrieve
g . —— & Stellar
2
£ [l
< —
<
S M x/\\
r x e {
e % Stor A EOS
eveloper
_\—> HYPERLEDGER
_|—> €® MultiChain
Fig. 1. User Interaction with Blockchain Application and Bifrdst

The first, flexibility, is given by allowing the user to store a
string in the BC, which could represent any arbitrary data, e.g.,
an SHA-256 hash. The second, modularity, is provided by
implementing the adapter of each BC with a standard interface,
simplifying adding adapters to new BC.

Finally, the third, ease of use, is achieved by abstracting
technical details from the underlying BC implementation, pro-
viding simple API functions (cf. Section III-C), which require
only two inputs from the user, being the data to be included
and the BC identification. Moreover, using docker to run BC
Remote Procedure Call (RPC) servers improves ease of use
as its employment minimizes compatibility problems because
the nodes execute in an isolated and replicable environment.

B. Bifr&st Components

Bifrdst relies on a notary scheme to interact with multi-
ple BCs. This scheme was selected because it is a straightfor-
ward manner to manage data stored on different BCs without
changing the underlying BCs implementation or maintaining
parallel chains. Bifrdst consists of three main components:
(1) the API, (2) the BC adapters, and (3) a database. Figure 2
presents an overview of these three parts and the data flow
between them using the store function as an example.

1) The API is the entry point for interacting with
Bifrdst. It consists of the exposed functions store,
retrieve, and migrate. The API is responsible for
receiving the user input and communicating with the
correct BC adapter.

2) The Adapters convert the user input into a transaction
which is subsequently transmitted to the BCs nodes. The
nodes forward the transactions to the BC network, where
miners will process them. In the case of the retrieve

function, the adapter requests the data from the BC
instead of creating a transaction. A new adapter must
be implemented to allow support for each new BC.

3) The Databases store the necessary credentials for the
transactions, and stores the transaction hash after a
successful transaction has been included in the BC. This
hash can be later used to retrieve the stored data.

mn

store (BC_ID,"data")
API
‘ Credentials
A

"(}; store ("data" : insert (BC_ID, TXHash
S TXHashi
g pTTTTTTrTomTee <address, privateKey>
bl !
) -

Blockchain A Blockchain B Blockchain n

Adapter Adapter Adapter Database
A

Signed T TXHash
1]
Q
3
z RPC Server A RPC Server B RPC Server n
z
£
©
=
o
x
3
o Blockchain A Blockchaln B Blockchain n

Fig. 2. General Bifrdst Architecture and store Function Flow

C. Bifrdst Implementation

As described in Section III-B, Bifrost is composed of
three main components: (1) the API, (2) the BC adapters, and
(3) a database. Thus, they were implemented, in a Python pro-
totype, to evaluate the whole architecture design and workflow.

1) API: 1t has three exposed functions (cf. Listing 1). Their
implementation is described in the following paragraphs.

The store (text, blockchain) function receives the
data in the form of a string and the identification of the BC
as input. It then stores the string on the defined BC, waits
for the defined transaction confirmation time, and returns the
transaction hash.

The retrieve (transaction_hash) function re-
ceives a transaction hash as a parameter and returns the string
previously stored in the BC. The corresponding BC used to
retrieve the data is automatically recognized by the API using
a query in the database.

The migrate (transaction_hash, blockchain)
function retrieves a stored string from one BC and copies it
to another BC. The parameters are the transaction hash of the
origin and the name of the target BC. It should be noted that
it is not possible to delete data from the BC and management
of which transaction hash is valid depends on the user.

1 def store(text, blockchain):
2 adapter = Adapter[blockchain]
3 tx_hash = adapter.store(text)

4 return tx_hash
retrieve (transaction_hash):

6 blockchain = database.find_blockchain (tx_hash)
7 adapter = Adapter[blockchain]

8 text = adapter.retrieve (tx_hash)

9 return text

10 def migrate (transaction_hash , blockchain):

1 value = retrieve (tx_hash)

12 new_hash = store (value, blockchain)

13 return new_hash

Listing 1. Exposed API Functions

TABLE I
BLOCKCHAIN ADAPTER IMPLEMENTATION DETAILS

TABLE II
OVERVIEW OF SELECTED BLOCKCHAINS

Blockchain Library Name Node type Protocol ~ Network Blockchain Type Consensus Finality Blocktime [s] Confirmation After
Bitcoin python-bitcoinrpc Full Node RPC Public Testnet Bitcoin Public PoW No 600 6 blocks
Ethereum web3.py Full Node RPC Local Testnet Ethereum Public PoW No 15 7 blocks
Stellar py-stellar-base Remote Node ~ HTTP Public SDF Testnet Stellar Public SCP Yes 5 1 block
I0TA PyOTA Remote Node RPC Public Testnet I0TA Public 10TA Yes 60 1 block
EOS eosjs_python Remote Node RPC Public Jungle Testnet ~ EOS Public dPoS Yes 0.5 1 block
Hyperledger sawtooth_sdk Full Node HTTP Local Testnet Hyperledger ~ Private PoET Yes 20 1 block
Multichain python-bitcoinrpc Full Node RPC Local Testnet Multichain Private PoA Yes 15 1 block
PostgreSQL psycopg2 PostgreSQL Postgres Local Postgres Proof-of-Work (PoW), Stellar Consensus Protocol (SCP), delegated PoS

2) Blockchain Adapters and Nodes: Table 1 provides an
overview of the different adapters. Seven adapters to different
BCs were implemented. Additionally, a PostgreSQL adapter
was implemented to allow the data to be stored in a traditional
database instead of a BC. Apart from the BC and library
name, Table I also presents information about the node type,
connection, and network type (e.g., local or public testnet). For
example, the Bitcoin implementation connects to a full node
with access to the public Bitcoin testnet and uses the RPC
protocol to communicate with the adapter.

3) Adapter Implementation: Internally, the store function
constructs a raw transaction using the provided string. This
transaction is then signed using the stored private key and sent
using the RPC or HTTP protocol. After receiving the trans-
action hash, the function confirmation_check validates
the existence of the transaction after waiting for a specified
period. Thus, it is confirmed that the block was included and
finality is given. If the confirmation was successful, the hash
is saved to an SQLite database, referencing a BC identifier
and including a timestamp.

The retrieve function requires the transaction hash as
a parameter. The transaction is retrieved from the BC using
RPC or HTTP. Afterwards, it extracts the string from the
obtained transaction. Listing 2 presents an excerpt from the
implementation. The parameter c1s reflects the chosen BC in
the form of an adapter class.

1def store(cls, text):

2 tx = cls.create_tx (text)

3 signed_tx = cls.sign_tx(tx)

4 tx_hash = cls.send_raw_tx(signed_tx)

5 if (cls.confirmation_check (tx_hash)):
6 cls.add_tx_to_database (tx_hash)
7 return tx_hash

8 else:

9 raise LookupError(’Tx not confirmed!’)
10

11

12 def retrieve (cls, tx_hash):

13 transaction = cls.get_tx (tx_hash)

14 data = cls.extract_data(tx)

15 return cls.to_text(data)

Listing 2. Adapter Implementation

4) Confirmation Times: Submitting a transaction to a BC
does not guarantee that it will be persisted in the BC. For
example, the transaction might be refused by the network
because of a low transaction fee or due to the underlying BC
design [35].

(dPoS), Proof-of-Elapsed-Time (PoET), Proof-of-Authority (PoA)

Moreover, even if it is included, block finality needs to be
ensured. Skipping this finality check can lead to transactions
located on a fork of the BC, which is abandoned in the future.
This issue is tackled by waiting x amount of time before
writing the transaction to the database. If the transaction is not
found after this time, it is considered invalid and discarded.
The value of z depends on the BC. For example, considering
Table II, Bitcoin requires a waiting time x of 3600 s (6 blocks
x 600 s), whereas Ethereum requires an = of 105 s (7 blocks
x 15 s) to have a high probability of finality. Such an approach
of waiting x amount of time is simplistic because, at the
moment, Bifrdst is a Proof-of-Concept (PoC). Thus, there
are still open transaction-related aspects (e.g., robustness and
resilience) to be addressed.

Even if block finality is given, transactions do not happen
instantly. Especially with a PoS consensus, there can be
multiple rounds of communication between the nodes until
two-thirds of them agree on one solution. As there can be
delays in the communication, a minimum waiting time of
20 seconds was implemented [14]. The prototype was tested
using public testnets or local private networks. Even though
the consensus mechanism of those networks often differs from
the mainnet, the waiting times were set to match with the
confirmation times on the mainnets.

5) Database: The database is responsible for storing a list
of supported BCs, credentials for the BCs, and transaction
hashes. In the prototype, an SQLite database and the Python
library sqlite3 were selected. SQLite was chosen because of
the simplicity of storing the whole database without maintain-
ing a dedicated server [30]. The next items describe the tables
which compose the database.

o Blockchains: The BC table has two columns, being a
unique id and the name of the BC. This table is used to
link the BCs to the transactions and credentials.

o Credentials: The credentials table has six columns. The
unique ¢d used to map the identity of users to their
credentials. The blockchain_id connects the credentials
to the corresponding BC. Furthermore, address stores the
public key and key the private key of the BC account.
The user and password provide the credentials for the
RPC or HTTP client. The necessary credentials depend
on the BC. For example, Stellar does not need user and
password, and IOTA does not need key, as zero-value
transactions do not require a sender; thus, no signature.

~==-4996 ms

10° — 908 ms
==580 ms

102

—+
TGO ms

Average time per transaction (in ms)

—T 28 ms []
27 ms
4

£
=18 ms i 17 Ins

4
ETHEREUM MULTICHAIN STELLAR EOS 10TA
Blockchain

10t

BITCOIN HYPERLEDGER POSTGRES

Fig. 3. Performance Measurements on Supported Blockchains

o Transactions: After a transaction is completed, its hash is
stored in the column hash. The BC that the transaction
is included is identified by the blockchain_id column.
Furthermore, the timestamp of issuing is included in the
column issued_at.

IV. EVALUATIONS AND DISCUSSION

The evaluation of the Bifrdst prototype was performed
concerning performance, security, and data storage size. While
an analysis of the prototype performance using a sample
of 1000 transactions per BC is presented first, a security
analysis is conducted second. Finally, data size limitations of
the current implementation are discussed.

A. Performance Analysis

A performance analysis was performed to measure both
the overhead and the stability of the application. The mea-
surements were performed on a MacBook Pro 2017, Dual-
Core i5 @ 2.3 GHz, 8 GB RAM, macOS Mojave 10.14.1
with Python 3.6.6. At total, 1000 measurements were gathered
for each BC, except for Bitcoin. In case the of Bitcoin, 100
samples were taken because of the limit of 25 unconfirmed
transactions on the Bitcoin RPC server. As some remote nodes
impose restrictions on how many transactions can be sent
over a specific time, the measurements were completed in
batches of 25 transactions each. PostgreSQL was included
in the analysis to compare BC performance with a regular
database. Even though all the 1000 transactions per BC were
completed without issues, a stability and scalability evaluation
must be conducted to consider the prototype stable.

Figure 3 depicts the outcome of the performance measure-
ments. The x-axis represents the different BC adapters, and the
y-axis represents the average time per transaction (in millisec-
onds). It can be seen that there is a performance difference
between using local nodes and remote nodes. Remote nodes
were used by Stellar, IOTA and EOS as presented in Table I.
Noticeably, the Bitcoin client using a full local node with a
public testnet was faster than other BCs (e.g., Ethereum) which
were using a local node with a private testnet. Multichain

presented a similar performance as the PostgreSQL database
due to the fact that Multichain is a private BC focused on
data streams. However, Multichain requires more operations
(e.g., raw transaction creation and cryptographic signature)
that PostgreSQL does not. It has to be noted that with some
adapters (e.g., Hyperledger), multiple transactions could be
put into one batch. Thus, only one batch would need to be
transmitted for multiple transactions, which would result in
higher throughput.

B. Security Analysis

In the following sections, relevant security aspects are
discussed. First, it is discussed the security of storing the
private keys in a central server. Then, the security of local and
remote nodes is described. Finally, the centralization issue is
addressed.

1) Private Key Management: A major concern is to secure
the private keys from attackers. A successful attack in this
vector could have two implications. First, an attacker could
spend the funds linked to the account. As this solution is made
for storing data on the BC, the funds would only need to cover
the transaction costs. Keeping only the necessary funds for
the transactions would; therefore, mitigate this risk. Second,
an attacker could change the data by storing some arbitrary
data which would be hard to distinguish from the genuine
transactions.

The presented prototype is a PoC, implemented to assess
Bifrost’s feasibility. Thus, the private key is stored in plain
text on an SQLite database. In this sense, if an attacker would
get access to the server, it would be trivial to access the private
keys. One solution to circumvent this problem is to encrypt the
private key with a symmetric key which is based on a password
set by the user. Thus, only allowing a transaction to occur if
the user temporarily decrypts the private key. Another possible
solution consists of a multisignature transaction scheme, where
more than one key is necessary to sign transactions, and they
are stored in another, more secure location.

2) Local and Remote Nodes: Another risk is the exposure
of the RPC or HTTP port by the BC node. If the node addi-
tionally holds the private keys in a local wallet, transactions
could be initiated remotely. However, all of the BC adapters
in this prototype sign the transactions locally, meaning there
is no need for the node to hold the private keys. Nevertheless,
the ports could be used to transmit unrelated, malicious
transactions and Distributed Denial-of-Service (DDoS) attacks
targeting the node could be executed. In cases where public
remote nodes are used, the owner of those nodes could poten-
tially block a transaction from being processed. Furthermore,
the availability of the whole system could become an issue.

Nonetheless, these security issues could be circumvented
by using full local nodes and allowing RPC connections only
from the local machine (i.e., localhost) or restricting connec-
tions to trusted IP addresses. DDoS attacks on Bi frést can
be mitigated by implementing a request limiter, throttling the
processing of requests by IP or request type.

TABLE III
MAXIMUM DATA SIZE IN DIFFERENT BLOCKCHAINS

Blockchain Maximum String Size
Bitcoin 80 Byte [3]
Ethereum 46 kByte [1]
Stellar 28 Byte [31]
EOS 256 Byte [11]
I0TA 1300 Byte [20]
Hyperledger 20 Byte [17]
Multichain 80 Byte [3]

3) Centralization: One of the main benefits of the BC tech-
nology is the removal of trust by relying on decentralization
and cryptographic properties. Thus, it would be advantageous
if this property holds for this solution as well. However, using
a notary scheme implies that a user needs to trust in the notary,
i.e., the host of the application. First, the notary has access
to the private keys, which makes it vulnerable to the issues
discussed in Section IV-B1. Further, the notary controls the
application and the node. Therefore, it is able to arbitrarily
alter the original transactions, e.g., alter the sender or the data
or censor certain transactions.

Nevertheless, BC applications are rarely trust-free, and
there are always layers which require a certain amount of
trust, such as monitoring applications in Internet-of-Things
(IoT) applications. Taking Bifrdst as an example, the first
layer of trust is the BC underlying code and cryptographic
properties. The second layer is the RPC server and the RPC
client. The notary is the third layer of trust. After that, other
layers must be trusted, e.g., the user’s hardware and software.
From this perspective, the notary scheme adds a layer which
requires trust, but is still only one out of many. However,
the amount of trust needed can be minimized by running the
approach in a trusted computing environment, such as the
Intel’s Software Guard Extensions (SGX) [2].

C. Data Size Analysis

Transaction-focused BCs, e.g., Bitcoin and Stellar, are not
designed to store arbitrary data. Thus, there is a limit on
the amount of data included in a transaction. Table III sum-
marizes how much data is possible to store in the different
BCs supported by Bifrdst. Note that on some BCs, e.g.,
Ethereum, this restriction could be circumvented by using
Smart Contracts (SC). In an SC deployed in Ethereum, the
storage of data can be divided over more than one block,
bypassing the maximum data size limitation.

Due to the presented data limitation and the fact that the BC
technology was not conceived as a database, but rather only a
distributed ledger, holding only transaction-related data, it can
be seen that it is not cost-efficient to store large amounts of
data on BCs. In this sense, a (decentralized) database can be
used to store the “raw” data, and a hash of this data is stored
in the BC. Thus, the validity of the data can be verified at any
time while the data is stored efficiently.

V. SUMMARY AND FUTURE WORK

Due to trade-offs in terms of features, privacy and efficiency,
there will be multiple, coexisting blockchains (BC) in the
future, each covering a subset of the possible use cases. Thus,
interoperability is needed to link different BCs by exchanging
information and assets. This paper addressed BC interoperabil-
ity by providing a novel solution, called Bifrdst, to store,
retrieve, and migrate data on different BCs using a notary
scheme. The notary scheme was chosen because it does not
require any modification of the underlying implementation of
BCs. Bifrost abstracts technical BC functions, e.g., the
creation, signing, and transmission of raw transactions, by
providing a simple Application Program Interface (API) to
developers. Thus, such an API allows developers to create
innovative BC-based applications that transparently interact
with several BCs, e.g., Bitcoin, Ethereum, and Hyperledger.

Moreover, a Python prototype of Bifrdst was described,
and seven different BC adapters were implemented. These
adapters contain BC-specialized code, including the trans-
action template, data translation, and RPC communication.
Code listings of the prototype were presented to demonstrate
these abstractions and interactions. Further, a performance and
security analysis was conducted on the prototype implemented.
This analysis showed that the necessary time to create and
send transactions in private BCs (e.g., Multichain) is lower
than in public BCs (e.g., Ethereum). The security analysis
presented attack vectors that must be addressed, such as the
private key storage and single point of failure. Nevertheless,
the implementation showed that it is possible to abstract BC
technical details and provide a simple interface to developers
to interact with multiple BCs, enabling BC interoperability.

In conclusion, Bifr&st provides a flexible, modular, and
easy to use API, which allows BC-based applications to be
developed without adding the overhead of understanding com-
plex technical detail of each BC or requiring changes in the
BC code. Moreover, Bifrost allows the developer to select
and deploy BC nodes with the use of docker, which decreases
configuration and deployment times by relying on containers.
Thus, as Bi frést, different than existing BC interoperability
projects, combines all these aspects in a single project, it is a
promising solution to addresses BC interoperability.

Future work plans for the Bifrdst API to include (i)
security improvements, (ii) transaction-related error handling,
(iii) communication to smart contracts, and (iv) research
towards developing a decentralized version of Bifrdst.

ACKNOWLEDGMENTS

This work has been supported by Komission fiir Tech-
nologie und Innovation (KTI), Switzerland (CTI-No. 26996.L
PFES-ED). Also, the authors would like to acknowledge
manifold discussions with modum.io, especially Stefan M.
Weber, Sacha Uhlmann (modum.io), and Thomas Bocek from
the Hochschule fiir Technik Rapperswil (HSR).

[1]

[3]

[4]

[6]

[7]

[8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

Afri, “Is There a Limit for Transaction Size?” 2018, Last access
March 20, 2019. [Online]. Available: https://ethereum.stackexchange.
com/questions/1106/is-there-a-limit-for-transaction-size

I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata, “Innovative Tech-
nology for CPU Based Attestation and Sealing,” August 2013, Last ac-
cess July 11, 2019. [Online]. Available: https://software.intel.com/en-us/
articles/innovative-technology-for-cpu-based- attestation-and-sealing
M. Bartoletti and L. Pompianu, “An Analysis of Bitcoin OP_RETURN
Metadata,” 2017, Last access May 5, 2019. [Online]. Available:
http://arxiv.org/abs/1702.01024

Blockgeeks, “Most Comprehensive AION Blockchain Guide,” 2018,
Last access March 20, 2019. [Online]. Available: https://blockgeeks.
com/guides/aion-blockchain/

btcrelay.org, “BTC Relay,” 2017, Last access March 20, 2019. [Online].
Available: http://btcrelay.org/

V. Buterin, “A next generation smart contract & decentralized application
platform,” 2014, Last access March 20, 2019. [Online]. Available: https:
/lcryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf
——, “Chain Interoperability,” 2016, Last access March
20, 2019. [Online]. Available: https:/staticl.squarespace.com/
static/55f73743e4b051cfccO0b02cf/t/5886800ecd0f68de303349b1/
1485209617040/Chain+Interoperability.pdf

CoinMarketCap, “Bitcoin price, charts, marketcap, and other metrics,”
2019, Last access March 26, 2019. [Online]. Available: https:
//coinmarketcap.com/currencies/bitcoin/

——, “Cryptocurrency Market Capitalizations,” 2019, Last access
March 26, 2019. [Online]. Available: https://coinmarketcap.com/

B. Deme, “What is Herdius?” 2018, Last access March
20, 2019. [Online]. Available: https://medium.com/herdius/
what-is-herdius-3831a47cfb6

EOS.IO, “What is the Character Limit of MEMO?” 2018, Last access
March 20, 2019. [Online]. Available: https://github.com/EOSIO/eos/
issues/4296

Grayblock, “Interoperability The Holy Grail of Blockchain,” 2018,
Last access March 20, 2019. [Online]. Available: https://medium.com/
coinmonks/interoperability- the-holy- grail-of-blockchain-eb078e1a29cc
G. Greenspan, “MultiChain-White-Paper.pdf,” 2015, Last access March
20, 2019. [Online]. Available: https://www.multichain.com/download/
MultiChain- White- Paper.pdf

A. Grigorean, “Latency and Finality in Dif-
ferent Cryptocurrencies,” 2018, Last access March
20, 2019. [Online]. Available: https://hackernoon.com/

latency-and-finality-in-different-cryptocurrencies-a7182a06d07a

T. Hardjono, A. Lipton, and A. Pentland, “Towards a Design Philosophy
for Interoperable Blockchain Systems,” 2018, Last access July 10,
2019. [Online]. Available: http://arxiv.org/abs/1805.05934

Herdius, “Herdius Whitepaper,” 2017, Last access March 20,
2019. [Online]. Available: https://herdius.com/whitepaper/Herdius
Whitepaper_1.1.pdf

Intel Corporation, “IntegerKey Transaction Family,” 2018,
Last access March 20, 2019. [Online]. Available:
https://sawtooth.hyperledger.org/docs/core/releases/1.0/transaction_
family_specifications/integerkey_transaction_family.html#state
Interledger W3C Community Group, “Interledger,” 2018, Last access
March 20, 2019. [Online]. Available: https://interledger.org/

——, “Interledger Architecture,” 2018, Last access March
20, 2019. [Online]. Available: https://interledger.org/rfcs/
0001-interledger-architecture/

iota.org, “The Anatomy of a Transaction,” 2018, Last access
March 20, 2019. [Online]. Available: https://iota.readme.io/v1.2.0/docs/
the-anatomy-of-a-transaction

D. Joseph, J. Kanna, A. Kubota, K. Lakshminarayanan, I. Stoica,
and K. Wehrle, “OCALA: An Architecture for Supporting Legacy
Applications over Overlays,” in 3rd Symposium on Networked Systems
Design and Implementation (NSDI 2006), San Jose, CA, USA, May
2006, pp. 267-280.

D. Kajpust, “Blockchain Interoperability: Cosmos
VS. Polkadot,” 2018, Last access March 20,
2019. [Online]. Available: https://medium.com/@davekaj/

blockchain-interoperability-cosmos-vs-polkadot-48097d54d2e2

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

A. M. Kurt, “Zero to Monero - First Edition,” 2018, Last access
March 20, 2019. [Online]. Available: https://pdfs.semanticscholar.org/
16a8/c0aad5bd09830b8c5115¢c2c1e441£177fc82.pdf

J. Kwon and E. Buchman, “Cosmos | Cosmos Documentation,”
2018, Last access March 20, 2019. [Online]. Available: https:
/lcosmos.network/docs/resources/whitepaper.html

S. Matthew, “AION White Paper,” 2018, Last access
March 20, 2019. [Online]. Available: https://aion.network/media/
en-aion-network-technical-introduction.pdf

S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,”
2008, Last access March 20, 2019. [Online]. Available: https:
//bitcoin.org/bitcoin.pdf

K. Nelaturu, “Blockchain Interoperability —Sidechains,” 2018, Last
access March 20, 2019. [Online]. Available: https://medium.com/
coinmonks/blockchain-interoperability-sidechains-e8204b8c2al10
NEO, “NEO Documentation,” 2014, Last access March 20, 2019.
[Online]. Available: http://docs.neo.org/en-us/index.html

E. J. Scheid, B. B. Rodrigues, and B. Stiller, “Toward a Policy-
based Blockchain Agnostic Framework,” in IFIP/IEEE Symposium on
Integrated Network and Service Management (IM 2019), Washington,
USA, April 2019, pp. 609-613.

SQLite, “SQLite Is Serverless,” 2018, Last access March 20, 2019.
[Online]. Available: https://www.sqlite.org/serverless.html

Stellar.org, “Transactions,” 2018, Last access March 20, 2019.
[Online]. Available: https://www.stellar.org/developers/guides/concepts/
transactions.html

The ARK Crew, “ARK Whitepaper,” 2018, Last access March 20,
2019. [Online]. Available: https://ark.io/Whitepaper.pdf

S. Thomas and E. Schwartz, “A Protocol for Interledger Payments,”

2016, Last access March 20, 2019. [Online]. Available: https:
//interledger.org/interledger.pdf

Wanchain, “Wanchain Whitepaper,” 2018, Last access
March 20, 2019. [Online]. Available: https://wanchain.org/files/

‘Wanchain- Whitepaper- EN-version.pdf

I. Weber, V. Gramoli, A. Ponomarev, M. Staples, R. Holz, A. B. Tran,
and P. Rimba, “On Availability for Blockchain-Based Systems,” in IEEE
36th Symposium on Reliable Distributed Systems (SRDS 2017), Hong
Kong, China, September 2017, pp. 64-73.

G. Wood, “Polkadot: Vision for a Heterogeneous Multi-Chain
Framework,” 2017, Last access March 20, 2019. [Online]. Available:
https://polkadot.network/PolkaDotPaper.pdf

