
BUNKER: a Blockchain-based trUsted
VNF pacKagE Repository

Eder J. Scheid, Manuel Keller, Muriel F. Franco, and Burkhard Stiller

Communication Systems Group CSG, Department of Informatics IfI,
University of Zurich UZH, Binzmühlestrasse 14, CH-8050 Zürich, Switzerland

{scheid, franco, stiller}@ifi.uzh.ch, manuel.keller@bf.uzh.ch

Abstract. Current projects applying blockchain technology to enhance
the trust of NFV environments do not consider the VNF repository.
However, the blockchain’s properties can enhance trust by allowing to
verify a VNF package’s integrity without relying (a) on a Trusted Third
Party (TTP) for remote attestation or (b) a secure database. This paper
presents BUNKER, a Blockchain-based trUsted VNF packagE Repository,
intended to be integrated with traditional database-based package ver-
ification environments, acting as a trusted repository containing VNF
package information. Moreover, BUNKER allows users to acquire VNFs
without the need of a TTP using an Ethereum Smart Contract (SC).
The SC automatically transfers license fees to the vendor once a VNF is
acquired, and sends the VNF package’s link to the buyer before verifying
its integrity.

Keywords: Network Functions Virtualization · Blockchain · Repository.

1 Introduction

The deployment of Network Functions Virtualization (NFV) [11] solutions faces
a major challenge regarding the incorporation of trust to end-users. For example,
with the myriad of novel Virtual Network Functions (VNF) being developed, it
remains an open problem on how to ensure that the VNF package being ac-
quired by end-users is not malicious and it was not tampered with. Research
has been conducted in the NFV computing environment with the introduction
of Trusted Platform Modules (TPM) and remote attestation services [12]. Al-
though these systems are able to verify the state of the NFV environment, they
rely on a central database to verify the VNF’s package integrity. Thus, this cen-
tralization enforces end-users to trust in the repository holding VNF packages
and presenting a single point of failure and a bottleneck.

Recent Blockchain (BC) developments focused on the provisioning of trust,
including Smart Contracts (SC). The BC concept was first described in 2009 in
the context of the cryptocurrency Bitcoin [10]. In general, a BC is a distributed
ledger where each new appended block contains transactions and information
(i.e., the block hash) about the previous block. The most important properties
of BCs are their data immutability and data decentralization [16]. The former



2 Scheid et al.

ensures that once data is included in the blockchain, it cannot be altered or
removed; while the latter provides high data availability. These properties form
the perfect environment for the execution of SCs. In Ethereum [4], SCs are
written in a Turing-complete programming language, called Solidity [6]. This
Turing-completeness allows for the creation of complex functions and helps to
enforce a variety of contracts through cryptographic principles [1]. Solidity-based
SCs can be used to facilitate trusted exchanges between untrusted entities and
the correct execution of programmed SC code. These properties can be used in
the context of NFV to address trust deficits regarding the VNF package integrity
verification.

This paper presents the design of a blockchain-based trusted VNF package
repository, called BUNKER, which provides trusted and immutable information
concerning VNF packages acquired by end-users. Thus, end-users are not bound
to trust on a central trusted authority, but rather on a distributed and highly
available data source, i.e., the BC. Moreover, BUNKER allows end-users to acquire
VNF packages without the need of a Trusted Third Party (TTP) and automat-
ically BUNKER transfers the license fee to the developer or vendor. To guarantee
the integrity of the VNF package, BUNKER stores the hash of the VNF package
so that end-users, after receiving the VNF package, can verify whether it had
been tampered with. An implementation prototype of BUNKER is available at [9].

The remainder of this paper is organized as follows. Section 2 provides
an overview of related work on existing VNF marketplaces and uses of the
blockchain technology for management and orchestration in the NFV context.
Section 3, presents the design of BUNKER, while Section 4 discusses open chal-
lenges. Section 5 summarizes the paper and outlooks on future work.

2 Related Work

Currently, marketplaces providing VNF-as-a-Service (VNFaaS) have been re-
ceiving attention. FENDE [2] is a Marketplace and a Federated Ecosystem for
the Distribution and Execution of VNFs. It presents to the user the compatible
VNFs currently listed in a traditional central database-based repository. In ad-
dition, FENDE includes NFV management and orchestration tools, which allow
users to deploy and manage licensed services in the same ecosystem. T-Nova [16]
enables network operators to virtualize their network functions as well as offer
them to their clients in an on-demand, per-customer model. This model allows
them to provide network services to their customers without having to deploy
specialized hardware on the customer’s premises. A traditional database-based
marketplace is available for customers to acquire and instantiate their required
network services on-demand.

BC is independent of any authorization entity and establishes trust between
untrusted peers. Moreover, the immutability of public BCs determines a highly
suitable feature in areas where audibility is crucial. Thus, these combined prop-
erties lead to research regarding the employment of BC in the NFV context.
Virtual Machine Orchestration Authenticator (VMOA) [3] is an authentication



BUNKER: a Blockchain-based trUsted VNF pacKagE Repository 3

model that establishes a trustful Virtual Machine (VM) environment. Instead of
having an internal or external trusted authenticator, [3] propose to establish a
VMOA BC to offload the authentication responsibility to a distributed ledger. In
this system, each orchestration request is sent to a BC, authenticated and only
then sent to the virtualization server. If successful, the VM manager reports the
success to the BC. Each step is stored in the BC and is auditable. The implemen-
tation applies a private BC based on the Hyperledger framework. [13] proposes a
BC-based NFV Management and Orchestration (MANO) solution. SINFONIA
(Secure vIrtual Network Function Orchestrator for Non-repudiation, Integrity,
and Auditability) is designed for data centers in which multiple network services
from different clients are deployed. The BC-based NFV architecture addresses all
requirements. The prototype implementation shows that the proposed architec-
ture ensures high availability and eliminates the single point of failure. However,
it is not clear where the BC nodes are located and which are the incentives for
peers to maintain these BC nodes.

There have been efforts in developing marketplaces for VNF packages [2,16].
These lead to the creation of systems where users can access a VNF repos-
itory containing various packages that can be deployed easily. However, they
are centralized and require that the user trusts in the database solution of the
provider. [3, 13] address the trust challenge by incorporating BCs into the NFV
MANO, while securing the computing environment and the configurations. How-
ever, they do not extend to the VNF repository or exploit benefits of relying on
a public BC. This leads to a security flaw, where malicious actors can gain ac-
cess to the central VNF repository to inject malicious code. Even though VNFs
are executed in a secure environment, this compromises the security of the en-
tire system. So far, research has shown that a trusted NFV environment should
extend to the VNF package repository and that the properties of public BCs
are promising to address such a gap. Further, none of the approaches as listed
in Table 1 (where 3 means addressed and 7 means not addressed) address the
combination of (a) BC and NFV, (b) full decentralization, (c) public access, and
(d) the incorporation of the payment of fees automatically.

Table 1. Comparison of Related Work

Work Data Storage Decentralized Public Automatic Payments

FENDE [2] Traditional Database 7 7 7

T-NOVA [16] Traditional Database 7 7 7

VMOA [3] Blockchain 3 7 7

SINFONIA [13] Blockchain 3 7 7

BUNKER Blockchain 3 3 3



4 Scheid et al.

3 BC-based Trusted VNF Package Repository

The proposed architecture of BUNKER is depicted in Figure 1. It is composed
of two main components: (i) the Graphical User Interface (GUI), which
is responsible for user interaction, and (ii) the Smart Contract (SC), which
implements the main systems of BUNKER. It is worth mentioning that the NFV
MANO and NFV Infrastructure were not implemented as a third-party solutions
are able to provide them. The description of the associated components and
their internal systems is presented in details in the following sections. It should
be mentioned that BUNKER can be integrated into existing NFV solutions, such
as reverse auction mechanisms to find an infrastructure to host VNFs [7] or
orchestrators able to manage deployed VNFs [2, 15].

NFV MANO

NFV Orchestrator
(NFVO)

VNF Manager
(VNFM)

Virtualized
Infrastructure

Manager (VIM)

NFV Infrastructure (NFVI)

Users

BUNKER

Graphical
User

Interface
(GUI)

Developer

Ethereum Blockchain
Smart Contract (SC)

Package Repository
Manager

VNF
Packages Licenses

Events Systems

Fig. 1. Proposed BUNKER Architecture

The first component, the GUI, is responsible for user interaction and pre-
senting information, such as available and acquired VNF packages, package rat-
ing, and prices. Two interaction roles with the GUI were identified, users and
developers. Users are able to acquire VNF packages to execute in their NFV
environment and submit rates for these packages. Developers are able to offer
their VNF packages by registering them in the repository. Moreover, they can
delete a VNF from the repository or update its information. To provide these
functionalities, the GUI implements four systems: (i) Registration and Upgrade
System, (ii) Licensing System, (iii) Verification System, and (iv) Rating System.



BUNKER: a Blockchain-based trUsted VNF pacKagE Repository 5

The Registration and Update System is used by developers to submit new
VNF packages to the repository. Further, developers can maintain their regis-
tered VNF packages, e.g., update the package to a new version or to update
information that is stored in the repository. Table 2 presents relevant metadata
and attributes of VNF packages that can be stored in the repository. In addi-
tion, the table contains examples of such attributes. This system allows vendors
(i.e., developers) to change attributes and to remove a VNF offering from the
repository, and users to retrieve attributes from available VNF packages.

Table 2. VNF Package Information

Metadata Attributes Example

Catalog

Package Name NexGenFirewall
Description IPTables-based Firewall with high performance

Price 1.5 Ether
Package Link https://github.com/murielfranco/firewall repository

Vendor/Developer University of Zurich (UZH)
Category Protection

Type Firewall
Licensing Type Monthly

Version 1.0

VNF

VNF Descriptor TOSCA standard
VNF Image Ubuntu-based

Requirements 1 vCPU, 4 GB RAM, 6 GB Disk
Suggested Platform CloudStack

Other
Vendor Ethereum Address 0x756F45E3FA69347A9A973A725E3C98bC4db0b6a0

Repository Hash da6e681320812a87fa7da1416119992da0a1e48e485d2f095ad19872fd6d8e1b
Business Model Fixed Price

The Licensing System is responsible for handling customers requests to ac-
quire VNF packages. Figure 2 depicts the process of acquiring a package (Func-
tion buy VNF() [9]). First, the user requests, by creating a BC transaction, a
license of a VNF package through the front end. In the transaction, the cus-
tomer includes the licensing fee (i.e., package price) and transaction fees. The
SC checks whether sufficient funds were included in the request and transfers
the licensing fee to the developer. Then, it reads the package’s data from the
repository, emitting a licensing event containing the necessary information (e.g.,
package link) to retrieve the VNF and to execute it in the NFV environment.
Finally, the front end captures this event and retrieves the package data from
the external data storage to be deployed and used in the NFV environment.

Verifying the integrity of the VNF package before deployment and execution
is crucial to ensure that its code was not tampered with or its files were not
corrupted. Thus, BUNKER implements a Verification System. This system allows
verifying the VNF image’s integrity by comparing the hash of the downloaded
package with the hash previously generated when the package was added to the
repository. Such verification can occur when a new VNF package is acquired,
where the system retrieves the package and verifies it against the information
stored in the trusted repository, or during runtime, because BUNKER offers ca-
pabilities to re-retrieve the hash and to re-verify the package integrity. This is



6 Scheid et al.

Frontend

Purchase VNF

VNF
Packages

Package Repository Manager

buy_VNF(id,payment)

Licenses

<Repository link,
Repository hash>

R
eg

is
te

r U
se

r L
ic

en
se

G
et

 V
N

F 
D

at
a

Emit License Event

External VNF Images
Storage

Developer User

VNF Information

Tr
an

sf
er

 P
ay

m
en

t

R
ep

os
ito

ry
 L

in
k

VN
F 

So
ur

ce
 C

od
e

Smart Contract (SC)

Fig. 2. Data Flow of Acquiring a VNF Package

useful before performing life-cycle operations, such as upscaling or downscaling,
to more instances. Also, it allows retrieving the VNF Descriptor (VNFD) to
verify the correctness of configuration and life-cycle operations.

BUNKER allows any interested party to register new VNF packages to foster
competition. However, there is no curation of the repository’s offerings. This
leads to a trust issue, as malicious parties may register packages that do not
adhere to their specifications. Thus, customers need another way to assess the
quality of an offering. For this reason, a Rating System was included. It allows
licensees to rate a VNF package, providing feedback to future customers. The
rating attributes include rating score (e.g., 8.5 out of 10), summary (e.g., VNF
executed the promised function), advantages (e.g., quick deployment), and dis-
advantages (e.g., costly). Unfortunately, language limitations of BC-based SCs
pose a challenge to verify the quality of offerings inside SCs. Nevertheless, se-
curity verification mechanisms [5] and reputation schemes [8] are planned to be
studied to address such a limitation.

The second component, the SC, is deployed in the Ethereum BC, and im-
plements the functions and data structures necessary to provide a decentralized
trusted VNF package repository. This component is composed of the (i) Package
Repository Manager, (ii) Events System, (iii) VNF Packages database, and (iv)
Licenses database [9].



BUNKER: a Blockchain-based trUsted VNF pacKagE Repository 7

The Package Repository Manager is responsible for creating, managing, and
maintaining VNF packages entries in the repository. It acts as an intermediate
party between the user and repository, receiving all requests (i.e., transactions)
to the BC-based repository back end and accessing the repository as necessary.
Therefore, this component offers an Application Binary Interface (ABI) for all
functions needed in the front end. When a function is called, the repository
manager authenticates (relying on the sender’s Ethereum address) the user and
if authorized, executes the function call and returns the result. This component is
implemented as a Soldity SC [9]. Thus, if the front end calls one of the functions,
it is executed on nodes in the Ethereum VM (EVM). The output of the functions
performed by the nodes is the same across nodes in the BC. This means that
the SC code is running in a trusted environment, and it enforces the correct
execution of the implemented code before appending the result in the BC.

The VNF Packages Repository stores VNF package details (Table 2), ac-
quired licenses, ratings, and verification information (e.g., package hashes). This
repository is only accessible through the repository manager, and as it is imple-
mented on a BC-based SC, the information included in the repository is stored
in the underlying BC network, incurring costs, which increase with the amount
of data stored. In practice, this means that the repository data size should be
limited to essential information. Thus, only a link to the VNF package location
is stored in the BC, and not the VNF package itself. The package code or ap-
plication must be hosted on an external data storage. Even though storing data
externally of the BC introduces trust issues, the verification system included
in BUNKER allows verifying the integrity of the packages, tackling this issue by
storing an immutable hash of the VNF package.

Ethereum-based SCs allow the developers to emit events inside implemented
functions. In BUNKER, the Events System is responsible to manage and emit
events. These events are stored in the transaction’s log, which is a special data
structure in the Ethereum BC [6]. External applications can listen to specific SC
events and perform actions upon receiving such events. BUNKER takes advantage
of events by implementing an event named License. This event is emitted once
a VNF is acquired and contains information, such as buyer address, VNF image
link, and VNF image hash. Thus, the GUI constantly listens for this event to
present the user with the information about the VNF that he/she acquired.
Moreover, other components of the NFV MANO, such as the VNF Manager
(VNFM), are able to listen to this License event [9] and automatically clone
the VNF image to the user’s VNF infrastructure and deploy it. In [14], it is
presented the interaction of an NFV infrastructure with an SC.

4 Discussion

As described in [12], determining the VNF package integrity is a critical challenge
in the setup of a trusted NFV environment. BUNKER addresses this challenge
successfully without having to rely on an external Trusted Security Orchestrator
(TSecO). This mitigates the single point of failure. BUNKER is based on an SC



8 Scheid et al.

without any access control and management. As such, any interested party can
use all the functions provided, given that they pay the fee needed to update the
SC’s state. This means that the SC is fully distributed and without the need for
any dedicated management. On one hand, there is no maintenance cost because
no fees have to be collected to keep the SC running. On the other hand, there
is a potential for spam and fake entries that do not deliver functions promised
or infringe on trademarks and intellectual property.

To provide access control and verification of vendors, BUNKER would need to
be managed either by a central authority or a consortium. This increases trust
in the repository’s content, since the manager can verify the authenticity of
vendors before any package is registered. Further, such an approach curates the
repository’s offerings by checking VNF packages for malicious code and verifying
that the functionality complies to the specifications. However, the centralized
management of the SC and the authorization of participants may be biased and
against the intent of BUNKER’s distributed nature. The alternative, offloading
the management to a consortium, might not mitigate the problem of malicious
participants and could still create conflicts of interest. Thus, the current design
without an access control and an uncurated repository may face these challenges,
but it reflects in full BUNKER’s primary goal of removing the need for a central
TTP to ensure VNF package’s integrity.

5 Summary and Future Work

This paper presented the design of a novel approach for a trusted BC-based VNF
package repository, called BUNKER. This repository is designed on top of the pub-
lic Ethereum BC and is implemented as an SC that stores the VNFs information
(e.g., VNF package hash) in the BC and allows developers to register, update,
or delete VNFs, and to receive the payment of acquired packages automatically.
Moreover, users are able to retrieve the content of the repository, acquire, and
rate VNF packages. BUNKER provides a tamper-proof storage and since it is dis-
tributed and executed across many BC nodes, there exists no single point of
failure. All these aspects contribute toward BUNKER’s primary goal of providing
a trusted and available VNF package repository to users and developers without
the need for a centralized TTP.

Based on the details presented herein, it can be concluded that the integra-
tion of employing BCs and SCs provides for a feasible and trusted VNF package
repository. However, there are challenges remaining as discussed in Section 4 to
be addressed. Thus, future work includes (i) cost evaluations of BUNKER interac-
tions, (ii) a security analysis (e.g., VNF verification methods and cryptography
to secure the repository data), (iii) extending the data storage to support a
distributed file system, and (iv) an integration with an NFV solution. Overall,
BUNKERas it stands today in its prototype contributes to a better understanding
of a BC employment within NFV to secure NFV MANO operations.



BUNKER: a Blockchain-based trUsted VNF pacKagE Repository 9

References

1. T. Bocek, B. Stiller: Smart Contracts Blockchains in the Wings. In: Digital Mar-
ketplaces Unleashed. Springer, 2018, pp. 169–184.

2. L. Bondan, M. F. Franco, L. Marcuzzo, G. Venancio, R. L. Santos, R. J. Pfitscher,
E. J. Scheid, B. Stiller, F. De Turck, E. P. Duarte, A. E. Schaeffer-Filho, C. R. P.
d. Santos, L. Z. Granville: FENDE: Marketplace-Based Distribution, Execution,
and Life Cycle Management of VNFs. In: IEEE Communications Magazine. Vol. 57.
IEEE, January 2019, pp. 13–19.

3. N. Bozic, G. Pujolle, S. Secci: Securing Virtual Mchine Orchestration with
Blockchains. In: 1st Cyber Security in Networking Conference (CSNet 2017). Rio
de Janeiro, Brazil, October 2017, pp. 1–8.

4. V. Buterin: Ethereum White Paper, https://github.com/ethereum/wiki/wiki/

White-Paper Last access April 23, 2019
5. O. Demir, W. Xiong, F. Zaghloul, J. Szefer: Survey of Approaches for Security

Verification of Hardware/Software Systems. Cryptology ePrint Archive, Report
2016/846, 2016, https://eprint.iacr.org/2016/846 Last access July 4, 2019

6. Ethereum Foundation: Solidity - Solidity 0.58.0 Documentation, https://

solidity.readthedocs.io/ Last access April 28, 2019
7. M. F. Franco, E. J. Scheid, L. Z. Granville, B. Stiller: BRAIN: Blockchain-based Re-

verse Auction for Infrastructure Supply in Virtual Network Functions-as-a-Service.
In: IFIP Networking 2019 (Networking 2019). Warsaw, Poland, May 2019, pp. 1–9.

8. A. Gruhler, B. Rodrigues, B. Stiller: A Reputation Scheme for a Blockchain-based
Network Cooperative Defense. In: IFIP/IEEE Symposium on Integrated Network
and Service Management (IM 2019). Washington, USA, April 2019, pp. 71–79.

9. M. Keller: Blockchain-based Trusted VNF Package Repository, 2019, https://

github.com/mkllr888/trusted-VNF-repository Last access July 4, 2019
10. S. Nakamoto: Bitcoin: A Peer-to-Peer Electronic Cash System, 2009, https://

bitcoin.org/bitcoin.pdf Last access March 22, 2019
11. Network Functions Virtualisation (NFV) ETSI Industry Specification Group

(ISG): ETSI GS NFV-MAN 001 - V1.1.1 - Network Functions Virtualisation
(NFV); Management and Orchestration, 2014, http://tiny.cc/NFVMANO Last ac-
cess April 1, 2019

12. S. Ravidas, S. Lal, I. Oliver, L. Hippelainen: Incorporating Trust in NFV: Ad-
dressing the Challenges. In: 20th Conference on Innovations in Clouds, Internet
and Networks (ICIN 2017), March 2017, pp. 87–91.

13. G. A. F. Rebello, I. D. Alvarenga, G. de Teleinformatica e Automacão: SINFONIA:
Gerenciamento Seguro de Funcoes Virtualizadas de Rede atraves de Corrente de
Blocos. In: Anais do I Workshop em Blockchain: Teoria, Tecnologias e Aplicacoes
(WBlockchain - SBRC 2018). Vol. 1. SBC, Brasil, May 2018, pp. 0–14.

14. E. J. Scheid, B. Stiller: Leveraging Smart Contracts for Automatic SLA Compen-
sation - The Case of NFV Environment. In: IFIP 12th International Conference
on Autonomous Infrastructure, Management and Security (AIMS 2018). IEEE,
Munich, Germany, June 2018, pp. 70–74.

15. The Linux Foundation: OPNFV: An Open Platform to Accelerate NFV, http:

//tiny.cc/OPNFV Last access May 17, 2019
16. G. Xilouris, E. Trouva, F. Lobillo, J. M. Soares, J. Carapinha, M. J. McGrath,

G. Gardikis, P. Paglierani, E. Pallis, L. Zuccaro, Y. Rebahi, A. Kourtis: T-NOVA:
A Marketplace for Virtualized Network Functions. In: 2014 European Conference
on Networks and Communications (EuCNC 2014). Bologna, Italy, June 2014, pp.
1–5.


