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1 Executive Summary 

This final report of the BC4CC project presents all developments as well as detailed 
and overall results of the prototypical design and evaluation of a Blockchain (BC)-based 
approach toward providing the interoperability between BCs and allowing users to specify 
their requirements in form of policies, regarding the usage of the BC that will be used to 
store their data. With such an approach in place, the need for detailed technical knowledge 
to select a dedicated BC is reduced and the interoperability achieved reduces the vendor 
lock-in into a single BC. Thus, the BC4CC approach allows for a flexible and dynamic BC 
interaction.  

2 Introduction 

Blockchains (BC) and Distributed Ledger Technology (DLT) have been experiencing a 
fast development in recent years due the extensive media attention revolving crypto-
currencies and the deployment of the technology in different areas besides the financial 
domain, such as for supply-chains [1], Internet-of-Things (IoT) [2], cybersecurity [3], and 
many others [4]. This fast development led to a spawn of startup companies implementing 
different BC solutions to address issues of particular industry niches. For instance, 
considering only the supply-chain sector, there are several startups (e.g., modum.io [5] – 
the BC4CC implementation partner, Everledger [6], Provenance [7]) as well as companies 
(e.g., IBM [8], Microsoft [9], and Oracle [10]) providing BC-based solutions for increasing 
transparency and traceability. 

The availability of many different solutions for the same application area creates, as a 
natural consequence, a dispersion of solutions used in the market, thus, a new problem is 
introduced to decide not only which BC-based solution is appropriate [11], but also 
whether this solution is interoperable with other solutions in the market [12]. This issue 
becomes evident considering that different BCs have different characteristics and different 
usage scenarios. For example, one BC design may favor data privacy over higher 
transaction rates, whereas another design guarantees faster transactions rates, but no 
data privacy. In this context, there is a non-trivial trade-off that has to be considered when 
deciding which BC to use. 

Making BCs interoperable is becoming a key to connect independent BC networks 
[13]. For example, interoperability would mean that one could send Bitcoins and another 
person would be able to receive an equivalent amount in Ethers without the need for a 
third party, such as an exchange. Alternatively, it is possible to imagine a hospital, which 
has its medical records on its BC interacting with the social security BC to validate the 
identity of a patient. Furthermore, users would be able to access a wide range of features 
natively of each chain, without the need to download large files for each BC that they might 
want to use. Further, in the supply-chain context, interoperability means that different 
stakeholders (e.g., producer, logistic, and retailer) are able to interact with different BCs 
without the need to change their business logic. However, enabling such a cross-chain 
communication is not a straightforward task. For instance, although Bitcoin [14] and 
Ethereum [15] are cryptocurrencies, they have different characteristics and are 
implemented in different programming languages, which turns the simple task of sending 
Bitcoins and receiving Ethers into a complex task. 



Final Report  BC4CC 
  

 

 

 

Page 6 of 88  Version 1.0 
 © Copyright 2020, the Members of the BC4CC Consortium 

 

 

2.1 Project Goals 

The two main goals were proposed to be achieved at the conclusion of the BC4CC 
project: (a) an BC-agnostic approach for applications and (b) open interfaces for 
interoperable BCs. They involve technical challenges and present measurable innovations 
in these areas, such as BC interoperability and data management in the BC. The first goal 
(described in Section 2.1.1) relates to the creation of an BC interoperability Application 
Programming Interface (API), and the second goal (described in Section 2.1.2) concerns 
the development of a BC-agnostic approach where users are able to transparently interact 
and select the most suitable BC based on policies. 

2.1.1 Open API for IoT Data in the BC 

The goal is to create an API that can be used by newly onboard customers without 
specific BC knowledge or understanding. The API requirements from potential partners 
need to be collected and based on these, a selection of the most promising requirements 
needs to be chosen. These requirements need to align with the modum.io infrastructure. 
For example, if the API for the temperature storage requires an InterPlanetary File System 
(IPFS) storage location, then it should be supported by the Smart Contract as well. 
Quantifiable goals include:  
 

 Open API developed with successfully tested with 2 Swiss customers, 

 1 security related white-paper, 

 1 scientific peer-reviewed paper (e.g., BCC 2017, IEEE BC Summit), 

 API documentation, and, 

 Measurable business impact with 2000 transactions per day with one customer by 
end of 2018. 

2.1.2 A BC-agnostic Approach 

Modum.io selected Ethereum (the second largest BC in terms of market capitalization 
as of December 2019 [16]) for their current system because of its large developer base, 
cutting-edge technology, strong growth, high security and availability. However, 
unforeseen developments in the BC space could, nevertheless, have negative effects on 
modum.io's business and their customers, who could be potentially locked into a rapidly 
evolving system with worldwide, divergent stakeholders. modum.io's future customers are 
expected to be diverse with respect to their requirements, e.g., performance, regulatory 
compliance, and volumes. BC agnosticism could permit modum.io and their customers 
various commercial options to select their optimal BC, and provide the potential technical 
capabilities for migration. In particular, transaction speed, readiness to store proof-of-
existence type data (for immutability and auditability) and low mining fees are particularly 
sensitive to a commercial success of modum.io. Novel extensions of public BCs such as 
RSK and Lightning might offer smaller block times, more data processing/storage, or 
significantly lower mining fees, which could be a decisive factor customer onboarding and, 
therefore, crucial towards modum.io's success.  

In this sense, a BC-agnostic approach would allow modum.io's customers to select, 
through high-level abstractions of these low-level BC characteristics, the ideal BC for their 
business. Quantifiable goals of such system include: 
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 Implementation of the modum.io system including data migration to at least 1 other 
BC, 

 Evaluation of its technical impact and customer feedback, 

 Acquisition (Pilot Study) of at least 1 customer on an alternative implementation, 
and 

 Peer reviewed scientific papers (e.g., BCC 2017, IEEE BC Summit). 

2.2 Document Outline  

This document defines seven major sections, in which all key aspects, technologies, 
design choices, evaluations, and achievements are discussed.  

Section 3 details the fundamental background to the technologies and concepts 
employed to achieve the goals of the project, e.g., BC and Policy-based Management 
(PBM), and presents market and economic basis to support the industry view.  

Then, the main section of the this report, Section 4, presents the design and the 
Proof-of-Concept (PoC) implementation of the two solutions (i.e., Policy-based Blockchain 
Agnostic Framework and the Modular Blockchain Interoperability API) that address the 
report’s goals.  

Consolidating industry and academy, together, Section 5 details a case study of the 
integration of the BC4CC project with modum.io’s system. 

Section 6 and discusses  the role of BC in the industry and offers details regarding 
the conducted security, technical, and feasibility evaluations on the prototype.  

Finally, Section 7 summarizes the project with two views, one from view from the 
industry standpoint and another from an academic standpoint. Further, Section 7 lists in an 
overview the project outcomes and presents future work directions. 

Besides references, abbreviations, the lists of tables and figures, a set of two Annexes 
refer to relevant details of selected areas of work performed, which are available as 
separate PDF documents.  
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3 Fundamental Set-up and Background 

This chapter discusses the theoretical and practical background on which this 
project is built on and its relevance for the industry. It mainly focuses on three aspects that 
are highly important for the development of BC4CC, namely the technical basis, the 
market basis and the economic basis.  

3.1 The Industry Relevance of BC4CC 

Generally, there is a lack of BC adoption in industries. While the topic of supply- 
chains has been identified as an important use case for BC technology, especially due to 
the possibility of document and persist relevant supply-chain details with time stamps in an 
immutable manner, actual productive BC-based systems remain a rarity. This is also true 
for temperature-controlled supply chains, despite its well-known advantage of improving 
transparency and trust. Although there is a certain resistance against changes and the 
adoption of new, early technology in general, two factors are especially problematic for the 
industry to adopt BCs: (i) transaction fees and (ii) solution lock-in. 

Firstly, transaction fees accompanying every BC transaction can amount to quite a 
large sum, which depends on the BC used and the current value of this BC’s coins. In 
addition to the implementation and maintenance costs of the BC, this can become quite 
expensive for a company. This is discussed in more detail in Section 6.5 of this report. 

Secondly, companies fear a lock-in effect on one specific technology, if they choose 
to adopt a particular technology, in this case the BC, to build their entire solution upon. As 
a result, their system might not be interoperable with other systems, which do not use this 
technology. This can cause integration concerns when working with other companies, 
even if both companies are using BC technology since those can have quite different 
characteristics. Therefore, many companies do not want to commit to a dedicated BC in 
apprehension of choosing a technology that will not become the standard.  

BC4CC did set the goal to provide means and mechanisms to overcome those 

disadvantages by providing the user control over how and dependent on which factors a 

user wants to use which BC; therefore, allowing users to easily adopt the new approach 

without risking to be locked-in or to spend more than required to benefit from the 

technology. Thus, the project offers a newly developed Open API to customers, suited for 

the upload of sensor data, and provides a BC-agnostic framework for the storage of data 

that can be configured based on customer-defined policies, which guide the selection of 

the most suitable BC on a case-to-case basis taking into consideration BC-related data, 

such as transactions costs, performance, and regulations. The BC-Agnostic Framework 

enables the automatic selection of the right BC based on predetermined preferences, 

while the flexible Open API allows for an easy integration of the system. BC4CC paves the 

way for the industry to move toward a network-based approach, where data integrity is a 

given, network-based applications are supported, and data can be shared not only 

between two individual actors of the supply chain, but also within logistics networks. 

The supply-chain industry is highly competitive. Therefore, it is not only critical to 

show the potential business value of such a system, but also making sure that integration 

costs are limited. As with all new technologies, expertise in organizations is still limited. 
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Thus, providing an abstraction layer to interact with the new technology is further critical to 

promote BC adaptation. At the same time, certain organizations might require using a 

specific BC, might it be due to contractual or technical reasons. 

BC4CC tackles all of these factors in one approach by enabling users to define their 

own cost thresholds and manage their spending individually as well as choosing their 

preferred BC. Thus, they are able to reduce costs of an BC application significantly. By 

building an API, the system becomes considerably more compatible and interoperable as 

well as user-friendly. By introducing BC-agnosticism, the BC-Agnostic Framework 

improves the scalability of the business case itself, because it facilitates the acquisition of 

new customers and the entry into new market segments. BC4CC being BC-agnostic does 

not only enable customers to choose their custom-made BC solutions, including life-cycle 

options such as onboarding, mapping of current processes and data migration, but also 

gives them control over the transaction costs specific to the different BCs. Therefore, with 

the help of the newly developed BC4CC mechanisms, logistics providers can build any 

chain solutions, such as cold chains or supply-chains that cater exactly to their needs and 

tackle their individual challenges. The industry is hence able to adopt the BC technology 

even with very little knowledge and more importantly, at very little cost.  

3.2 Fields of Application 

Until temperature-sensitive products (e.g., drugs) reach their final destination, they 

must be handled by different stakeholders involved in the cold-chain supply-chain. These 

stakeholders are considered during the development of the proposed framework, because 

they have different points of views and requirements.  

Each one of these stakeholders has different requirements that impact on the 

choice of the BC, resulting in different policies. For example, companies follow specific 

standards and regulations in their manufacturing line. Therefore, recording in the BCs that 

the goods left the company under such standards is crucial to avoid any disagreement or 

SLA violations. What impact on the BC choice for such a stakeholder is not the cost 

involved, but rather how fast can the records (e.g., temperature sensor readings) be 

included in the BC and how secure is the BC implementation (e.g., a private BC). Thus, a 

maximum cost parameter in the policy should be set to the highest possible so that the 

framework will store these records as fast as possible.  

However, in the context of logistic services, the requirement that impacts the most 

is how much it will cost to append a new record to the BC, independent of the time that it 

will take. This is because the conditions (e.g., temperature and humidity) within the storage 

compartment of vehicles must continuously be monitored to ensure that temperature-

sensitive drugs produced were not affected. This active monitoring produces a 

considerable amount of BCs transaction. Thus, reducing the cost of data storage becomes 

crucial to this stakeholder. In this sense, it must define a policy with the maximum cost 

parameter set to the lowest possible value. 

In the next items, it is described a list (non-exhaustive) of such stakeholders and their 
relation with the proposed framework. 
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 Companies: Producers (e.g., pharmaceutical companies) follow specific standards 
and regulations in their manufacturing line. Therefore, recording in the BC that the 
goods left the company under such standards is crucial to avoid any disagreement 
or Service Level Agreement (SLA) violations.  

 Logistic Services: The goods and their conditions (e.g., temperature and humidity) 
within the storage compartment of vehicles must continuously be monitored to 
ensure that temperature-sensitive drugs were not affected during transport. Once 
the logistics service (e.g., the Swiss Post in Switzerland) has received the good, the 
service can start to monitor its temperature using the required sensor.  

 Final Destination:  Wholesalers and pre-wholesalers distribute and maintain a 
massive volume of goods to smaller companies, such as pharmacies. Each good 
must be verified to check if it was transported following under regulations. If there 
was a single deviation during the transport, then the drug cannot be sold to end-
customers.  

 Government: Audits the monitored data to verify if the logistic services are being 
compliant with the current regulations. The BC technology is compelling to the 
government because it simplifies the auditing process by assuring that the stored 
data cannot be tampered.   

 BCs: Although BCs are not stakeholders per se, they support all the interaction 
among stakeholders, providing data immutability and trust without the need of a 
Trusted Third Party (TTP). Thus, they were included in the stakeholders list. 
Examples of BC implementations are Bitcoin, Ethereum, and MultiChain. 

3.3 Technical Basis  

This section describes the two fundamental concepts that support the novelty and 
the development of the framework herein described, (i) Blockchain (BC) and Distributed 
Ledgers, and (ii) Policy-based Management (PBM). The novel BC and Distributed Ledger 
concepts are described in Section 3.3.1 and the consolidated PBM concept is described in 
Section 3.3.2. 

3.3.1 Blockchains and Distributed Ledgers 

In its purest form, a Blockchain (BC) acts as a decentralized and public ledger that 
transparently and immutably records blocks of transactions across a network of computers 
based using a consensus algorithm. Therefore, a BC is, as originally proposed, open to all 
its participants with respect to the rights of reading, writing and participation in the 
consensus mechanism. A Linked-List (LL), however, is a data structure that is traditionally 
managed by one or more trusted entities holding the write permissions. Thus, based on 
the process to compose new blocks of information (i.e., the consensus mechanism), as 
well as the guarantees of immutability and transparency, it can be said that although the 
final outcome of a BC and LL is similar, the way in which these structures are composed is 
completely different. 

From an abstract point-of-view, a BC resembles a LL (cf. Figure 1), which is an 
abstract data structure whose instances are logically interconnected by pointers. Thus, on 
a BC, transactions are stored in the form of a LL, sequentially ordering the blocks (of 
transactions). In a LL representation, blocks represent the nodes of a LL. However, the 
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resemblances of LLs and BCs end there, since the process of composing a chain is 
entirely different. For instance, the major differences lie on the processes of gathering 
information from the peer-to-peer network, the assembling of information (i.e., 
transactions) into such abstract data structure (i.e., blocks), as well as appending new 
blocks to the list of blocks (i.e., consensus). 

 

 

 

Figure 1 – Blockchain Example 

Since every node has a copy of the list of blocks, a single main chain must be 
guaranteed, which is the responsibility of the consensus mechanism. Every node needs to 
verify the sequence of the blocks or transactions. Depending on the kind of consensus 
mechanism, the correct sequence of the main chain is chosen by the majority of nodes 
with the same result, or the node who solved a complex mathematical problem. Either 
way, once a correct sequence has been found, the changed state of the blockchain is 
broadcast to every participant in the network. Due to this, BC is suitable as a system for 
parties, who do not trust each other to have a trustworthy exchange. 

Basically, a BC works similar to a traditional database. With the exception, that 
anything that is put into a BC cannot be deleted or changed, and, therefore, allows for 
permanent storage of information. Every node in the BC network has a full replication of 
the BC, traditional databases have a master/slave relationship, resulting in the slave 
database to synchronize to the master database. The consensus of a BC is being 
determined by the majority of the nodes agreeing on an outcome, whereas in the 
traditional way the transactions are simply distributed amongst participants. In a BC every 
peer can validate a transaction. 

The capacity of BC to provide a trustworthy, decentralized, and publicly available 
data storage makes it an interesting opportunity for organizations to increase business 
agility and reduce costs by removing intermediaries in distributed applications. However, it 
is important to note that a BC can be implemented in different ways, being typically named 
Distributed Ledger (DL), by modifying permissions to read and write, as well as the 
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participation in the block-validation process. In this regard, a BCs are essentially public 
with respect to (i) read, (ii) write, and (iii) consensus participation, whereas DLs are named 
based on any modification of these parameters. Moreover, the different types (cf. Figure 2) 
can be classified according to varying read and write permissions:  

 

Figure 2: Deployment Types 

• Public Permissionless BCs are the most prevalent type of BCs. Bitcoin [14] and 
Ethereum [15], and most forks are considered public permissionless BCs, because 
of its read and write permissions, as well as the participation in the consensus, are 
open to anyone with Internet access. Thus, public permissionless BCs are the 
standard type of BC deployment and most cryptocurrencies are implemented as 
such.  

• Public Permissioned write permissions are restricted to selected entities, but 
anyone is able to read from the BC. For example, this deployment type can be used 
for use-cases where multiple trusted authorities want to publish public data, 
accessible to anyone (e.g., publishing hashes of academic certificates).  

• Private Permissioned BCs offer a trust model resembling traditional databases, 
where the read and write permissions are restricted and consequently data can only 
be read by authorized parties. Restricting the permissions creates a hierarchy 
between its participants (e.g., role-based actions) where the main features of BC 
(e.g., transparency, immutability, decentralization) may not make sense for a 
potential application. 

• Private Permissionless BCs are comparable to public permissionless, but the 
notion of the reading access control is restricted to a certain group or community. 
Therefore, the writing and reading permissions are open to all participating members 
of this private group. A dedicated supply chain BC would be a possible example, 
where the exchanged information is only readable by its authorized members, but all 
members can issue transactions without boundaries. 
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Therefore, depending on the needs of the application domain, the inherent power of 
disintermediation can increase of trust through transparency among the stakeholders 
involved. Nonetheless, while BC’s have started its widespread adoption within the FinTech 
domain, many other application areas, use cases, and specific BC types are emerging. 
However, it is important to observe that the BC applicability relies on a multitude of 
different facets, which are usually determined by dedicated application needs in terms of 
performance, security, and scalability, which have to be carefully considered in a long term 
analysis.  

3.3.2 Policy-based Management (PBM) 

As the complexity for managing networks and distributed systems increase, the use 
of policies to enforce several aspects such as Quality-of-Service (QoS) or control access 
became more necessary. Policies can be used to regulate the operation of different 
aspects of a BC-based system, including the coordination of which BC to use based on 
well-defined conditions determined in advance. In this regard, Policy-Based Network 
Management (PBNM) is a well-known approach that can comprise either QoS, access 
control, or sustainability-oriented policies, helping to address such management issues. 
PBNM presents several benefits, such as less manual countermeasures and errors, 
automated analysis and verification based on a formal foundation, dynamic inspection and 
adaption at runtime, without demanding changes in the underlying implementation. 
Nonetheless, PBNM is not yet widely commercially used. Its widespread use depends on 
an automated policies refinement process in order to translate high-level policies into 
machine-readable policies able to put the business strategies in practice. 

A policy is a set of rules used to manage and control access to a set of ICT 
resources and services. According to [17] [18], a policy has three parts: an event, which 
triggers a specific rule; a condition, which contains the logic that defines if the action part is 
going to be run or not; an action, which defines what needs to be performed. This structure 
is called Event-Condition-Action (ECA), the general syntax which is “on event if condition 
then action”. 

Dedicated Policy
Repository

Policy Management 
System

Policy Decision 
Point

Policy Enforcement 
Point

Events

 

Figure 3: Policy-Based Network Management Basic Architecture 

The general architecture for a PBNM system was described by IETF (Internet 
Engineering Task Force) [19] and is depicted in Figure 3. Policies are created, modified 
and stored by the Policy Management System (PMS); searched and retrieved by the 
Policy Decision Point (PDP); and enforced in by the Policy Enforcement Point (PEP). 
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3.4 Market Basis 

As discussed in Section 3.2. of this report, various different stakeholders are 
involved in the cold chain distribution of medical products. In order to assess the scope of 
potential users and the actual need for a solution such as BC4CC, it is crucial to have an 
overview over the existing service providers in the industry. In Switzerland, there are 
around 100 pharmaceutical producers with a total annual transport volume of around 
150'000 shipments. modum.io AG has conducted pilot studies with Schaer Pharma AG, 
Acino International AG, and Amino AG (total transport volume of 10'000 palettes a year) in 
2016 and has a productive solution with Swiss Post since May 2019. The total of 
shipments per year and per customer is presented in Table 1. 

Table 1: Total Transport Volume per Pharmeceutical Producer in 2016 

Customer  Total Shipments / Year  

Amino AG 5’220 

Schaer Pharma 2’000 

Acino Pharma 2’000 

Total 9’220 

 
The Swiss wholesaler segment is less fragmented, as it can be seen in Table 2. 

Five players split the volume of 5 million yearly shipments: Galexis, Voigt, Pharmafocus, 
Amedis, and Zur Rose. modum.io AG worked intensively with the pre-wholesalers Voigt 
and Voigt Industry Service which handle more than 1 million shipments per year, which is 
about 25% market share. modum.io AG has conducted successful pilots with Voigt, 
Provet, Amino, Schaer Pharma, Acino Pharma, Toppharm, Cavapro, Blutspende Zürich, 
which have a combined shipping volume of of 2.5 million shipments per year. 

 
Table 2: Total Transport Volume per Swiss Wholesaler in 2016 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Customer  Total Shipments / Year  

Provet AG 104'400 

Voigt Industrie Services 292'320  

Voigt AG 1'252'800  

Zur Rose Grossist (CH) 480'240 

Zur Rose Versand (CH) 39'150  

Amedis 208'800 

Pharmafocus 208'800 

Galexis 1'252'800  

Total 4’152’510 
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The logistics service market can be split into international providers such as 

Panalpina, Kühne und Nagel, DPD, DHL, UPS and national providers like the Swiss Post 
and Galliker, and many of smaller companies providing more specialized services. 
modum.io AG has run pilots with Post, and DPD. The Swiss Post is considering an active 
collaboration with an expected shipping volume of 3 million medical goods per year.  

3.5 Economic Basis 

BCs are an element of distributed systems, in this sense, BC-supported business 
should be aware of potential cyber-attacks, such as the ones described in [20], which 
directly impact in the economics of the business, e.g., reputational harm, financial losses, 
and service disruption. Thus, these companies should perform risk analysis, cybersecurity 
planning, definition of counter measures, and general best practices in security, which 
include personnel training and the acquisition of protection services [21]. However, the 
main goal of the project is to store data in the BC; thus, the economy basis focuses on 
transactions costs and fees.  

In the BC4CC project, the goal is to develop methods for supporting the cold chain 
distribution process (supply chain) of medical drugs using BC technology. The commercial 
goal is to reduce the cost of delivery, while assuring a regulation-compliant temperature 
tracking using IoT-sensors. In this regard, Modum.io AG developed a BC-based solution to 
offer a passive monitoring solution, to improve efficiency, security and transparency in the 
pharmaceutical supply chain. Since the goods in the supply-chain follow a vast variety of 
complex processes, different needs for the BC technology arise [4]. Since each BC 
technology incorporates different protocols and technologies, their native cryptocurrency, 
the information about their state or events cannot be exchanged directly between two BCs. 
The BC interoperability is necessary to connect different BCs, exchanging information and 
assets.  

As part of the BC4CC project requirement, a solution is developed to store and 
retrieve data on different BCs. The solution employs notary scheme, to allow connectivity 
to different BCs. The solution incorporates eight adapters to popular BC implementations, 
including Bitcoin, Ethereum, EOS, Hyperledger, Multichain, Stellar, Peercoin and IOTA. 
The solution introduces interoperability API implementation in the form of Python API, 
allowing users to store, retrieve, and migrate data on multiple BCs without the knowledge 
of their language and implementations. 

3.5.1 Factors Affecting Transaction Fee 

The BC transaction fee depend on several factors including network congestion, 
transaction size, transaction confirmation time, cryptocurrency value, the type of BC 
(public or private), and the number of operations performed in a transaction as shown in 
Figure 4. In all the public BCs the transaction fee is paid by the sender initiating the 
transaction. 

3.5.1.1 Network Congestion 

If the arrival rate of potential transactions is low, then the transactions without fees 
or low fees attached are written to the BC. However, if the arrival rate of potential 
transactions increases, the equilibrium shifts and only transactions with higher fees 
attached are written to the BC [22],  [23]. 
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3.5.1.2 Transaction Size 

The BC allows a few kilobytes of data to be stored. However, if the user wants to 
store the larger files, than they need to split the files into small chunks of data and send it 
in each transaction, in such cases, the user has to pay the base price for each transaction 
that can be expensive. Moreover, the bigger the transaction size in terms of bytes, the 
more the transaction fee the sender needs to pay. 
 

 

 
Figure 4: Factors Affecting Transaction Fee 

3.5.1.3 Transaction Confirmation Time 

The transaction fee paid by the sender affect the confirmation time. The transaction 
without fees or small fees are given low priority and likely to wait longer for confirmation. In 
the BC which employs PoW (Proof-of-Work) consensus mechanism, the sender creates 
the transaction and include a fee which are received by the miner who creates a block that 
stores the transaction. If the transaction contains no fees, then there is no incentive for 
miners to include the transaction in the block they are creating. Since the BC has the 
restricted block size limit, which further restricts the number of transactions that the block 
can hold, miners give higher priority to the transactions with a high fee. Therefore, the 
transaction confirmation time of transaction with small fee is much longer than those 
transactions with larger fee [24]. 

3.5.1.4 Cryptocurrency Value 

The value of cryptocurrency effects the transaction fee. Higher the value of 
cryptocurrency will lead to increase in the conversion rate from cryptocurrency to fiat 
currency, which will subsequently increase the transaction fee. For example, if the price of 
1 Bitcoin equals 10 USD and later it changes to 50 USD, the value of cryptocurrency and 
its conversion rate will impact the transaction fee. If the value of cryptocurrency increases, 
subsequently the transaction fee also increases. 

3.5.1.5 Type of BC 

In public BC, the transaction fees processed by public ledgers are higher than as 
compared to the private BC where the reduced number of high-processing nodes enables 
fee effective transactions [25]. In a private BC, the transaction validation is carried by the 
network creator, as a result there are no transaction fees for transaction validation. 
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3.5.1.6 Number of Operations in a Transaction 

A number of operations can be performed in a given transaction and the transaction 
fee varies depending on the complexity of the transaction, the higher the complexity the 
higher is the transaction fee. For example, the Smart Contracts are the most important 
feature of certain BCs, for example Ethereum. To create the Smart Contract and to 
execute it, certain amount of gas in the Ethereum BC has to be invested [15]. 

3.5.2 BC4CC Public BC Transaction Fee Evaluation 

Thus, an evaluation of costs is essential to indicate its relevance for a commercial 
setting. Therefore, for each of the available BC4CC public BCs, the function used to 
estimate the transaction fee is described in detail. 

3.5.2.1 Bitcoin 

Bitcoin is the first decentralized electronic cash system introduced by Satoshi 
Nakamoto to perform the monetary transfers or transactions without relying on central 
authority or intermediary. It employs PoW consensus mechanism. In the Bitcoin BC, the 
transactions are estimated to be around 3.3-7 TPS, the block time is approximately 10 
minutes and it allows for a data storage of 80 Byte per transaction [26]. 

 
In the Bitcoin BC, miners bear the fee of solving the PoW puzzle and all its 

transaction partners benefit from the security and consistency of the BC. Bitcoin BC 
supports optional direct payments from transaction partners to the miners in terms of 
transaction fees [27]. The transaction fees are appended by the transaction partners into 
their Bitcoin transaction to ensure that their transactions are included in the block that the 
miner attaches to the BC. By custom, the spender is responsible for paying the defined 
Bitcoin transaction fees. During the heavy traffic situations, the transactions with higher fee 
get priority. Therefore, the transaction partners tend to bid up the transaction fees to gain 
priority over other transaction partners that pay a lower fee. The miner, in addition to the 
mining rewards, receives the transaction fees corresponding to all transaction in the block. 

 
When the transaction partners initiate the Bitcoin transaction, they send details of 

the transaction, e.g., the amount of payment, the source account(s) of the payer, the 
destination account(s) of the payee along with a fee, to a node in the Bitcoin network. This 
corresponding node will then spread the transaction to other nodes. When the transaction 
is known within the network, i.e., inside the memory pool, miners are free to select any 
transactions from the memory pool to put into the new block. However, there is a 
preference towards the transaction with the highest fee. This creates a market mechanism 
to find the price of Bitcoin transactions [28]. The most important factor affecting how fast 
the transaction gets confirmed is the fee rate.  

 

The estimatesmartfee function is released in the Bitcoin Core 0.15. The input to 

this function is the maximum number of blocks in which transaction is expected to be 

included and the output is the estimate fee value. The estimatesmartfee function is 

used for more intelligent estimates. It estimates the approximate fee per kiloByte in Bitcoin 
for a transaction to begin confirmation within n blocks. This function returns negative value 
if not enough transactions and blocks have been observed to make an estimate [29]. 
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In this project, the estimatesmartfee function is used to estimate the fee per 

transaction. To calculate the fee per transaction in Bitcoin, the size of the transaction is 

multiplied with estimatesmartfee return value and divided by 1024, since 

estimatesmartfee, approximate fee per kByte in Bitcoin. The size of the transaction is 

the default transaction size plus the size of the data to be included in the BC. It was 
considered the default Bitcoin transaction size, i.e., 106 Byte. The equations below 
describe how the transaction size and the fee to be paid for a transaction in Bitcoin are 
calculated. 

 

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 + 𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒 
 

𝐵𝑖𝑡𝑐𝑜𝑖𝑛𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝐹𝑒𝑒
= (𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 ×  𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠𝑚𝑎𝑟𝑡𝑓𝑒𝑒𝑂𝑢𝑡𝑝𝑢𝑡) ÷ 1024 

 

3.5.2.2 Ethereum 

Ethereum is a global, open-source platform for decentralized applications and 
unlike Bitcoin it is not just focused on providing the cryptocurrency. Ethereum offers Smart 
Contract capabilities too. The network has a throughput of 15-25 TPS and a block time of 
approximately 15 second [26]. Ether is the fuel for the Ethereum BC network. Miners 
validate and execute the transaction and every user has to pay for the computation 
regardless of transactions succeeds or fails. The transactions such as sending ether from 
one account to other, creating the Smart Contract or any other activities require 
computational power and are charged with fees [15]. 

The Ethereum protocol incorporates a pricing mechanism for the transaction. Each 
computational step in Ethereum is priced in units of gas and it is measured in Wei. The 
sender specifies the maximum amount of gas that the intended transaction is expected to 
consume (i.e., the gas limit) and the price the sender wishes to pay per unit of gas (i.e., the 
gas price). In Ethereum, the financial transfer will consume 21,000 unit of gas as a base 
fee for any transaction and plus a small unit of gas for attached data around 4 to 68 gas 
per byte [15].  

The gas limit is the maximum number of units of gas the user is willing to spend on 
a transaction. The user must include enough units of gas to cover the computational 
resources or else the transaction will fail due to an “Out of Gas Error”. If the user wants to 
spend less on a given transaction, he/she can do so lowering the amount for per unit of 
gas. Depending on the price the user pays for each unit of gas determines how quickly the 
transaction will be mined, equal to Bitcoin.  

To calculate the fee per transaction, the gasPrice function and estimategas 

function provided by web3 API is used [30]. The price of a gas unit in wei is determined by 

the market. The function web3.eth.gasPrice is used, this function is the read only 

function and return the current gas price in wei. The price is determined by the x latest 
blocks median gas price [25]. To identify the amount of gas used in a transaction, the 

estimateGas function is used, which executes the transaction and return the amount of 

gas used. 

To determine the fee per transaction in wei, the return value of gasPrice function 

and estimategas function is multiplied. The expression below returns the value in wei. In 

order to convert the value from wei to ether the function fromWei is used which converts 



BC4CC  Final Report 
  

 

 

 

Version 1.0  Page 19 of 88 
 © Copyright 2020, the Members of the BC4CC Consortium 

 

 

the above wei value into ether value. The value is returned as a decimal to ensure the 
precision down to the wei. 

 

𝐹𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝐺𝑎𝑠 × 𝑔𝑎𝑠𝑃𝑟𝑖𝑐𝑒 

3.5.2.3 EOS 

EOS BC label itself as a BC architecture designed to enable vertical and horizontal 
scaling of decentralized applications [31]. It uses a combination of dPoS and 
asynchronous Byzantine Fault Tolerance as its consensus mechanism. EOS runs on only 
21 nodes that validate and check the new transactions. It has a block time of 0.5 seconds 
and the maximum throughput of 3996 TPS. EOS enables the storage of 256 Byte of data 
per transaction [26]. 

In EOS, there is no gas or other transaction fees. However, when submitting an 
EOS transaction three EOS resources need to be considered, such as CPU, Network 
bandwidth, and RAM. CPU and Network bandwidth requires an EOS staking whereas the 
RAM needs to be purchased. RAM is needed only for the Smart Contract operations [32]. 

Network bandwidth is measured as the average consumption in bytes over the last 
3 days [32]. Network bandwidth is temporarily consumed every time when the transaction 
is sent and decreases over time returning to 0. When we stake more tokens for net 
bandwidth, the more we get to use. We can unstake at any time to reclaim the EOS 
tokens. Similarly, the CPU bandwidth is measured as the average consumption in 
microseconds over the last 3 days [32]. CPU bandwidth is temporarily consumed every 
time when the transaction is sent and decreases over time returning to 0. The longer the 
transaction runs, the more CPU bandwidth it will consume and we can unstake at any time 
to reclaim the EOS tokens. 

To initiate the transaction, the sender of the transaction needs to stake some EOS 
for CPU and for NET. If the sender stakes more EOS for CPU and NET, the more 
transactions and data he sends to the EOS BC in a day. The staked EOS value is not lost, 
but it is locked until we decide to unstake it. For example, if the sender stake 1 EOS for 
CPU then he/she can use 48.49 ms of CPU per day and if he stakes 1 EOS for NET, 
he/she can send 132.17 kByte of data per day in MEMOS in transactions. 

To calculate the fee per transaction, Net usage fee as well as CPU usage fee 
should be calculated. As shown in the equation below, the net usage fee per transaction 
equals the 128 Byte plus the size of the data multiplied by current network price in 

eosPerKiBPerDay. The value of eosPerKibPerDay was obtained from [32].  

 

𝑁𝑒𝑡 𝑢𝑠𝑎𝑔𝑒 𝑓𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛
= ((128 + 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎) × 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑝𝑟𝑖𝑐𝑒) ÷ 1024 

 

The estimation the CPU usage for a transaction is not a trivial task. Based on past 
transactions the CPU usage value ranges from 200 μs to 700 μs. In order to fix a value, it 
was estimated 350 μs for each transaction. As shown in the below expression, CPU usage 
fee per transaction equals 350 micro seconds multiplied by current CPU price in 
EOS/ms/Day. The value of EOS/ms/Day was obtained from [32].  

 

𝐶𝑃𝑈 𝑢𝑠𝑎𝑔𝑒 𝑓𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 = ((350𝜇𝑠) × 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑝𝑢 𝑝𝑟𝑖𝑐𝑒) ÷ 1000 
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The total fee per transaction in EOS equals net usage cost per transaction plus the 
CPU usage fee per transaction as shown in the below expression. 

 

       𝑇𝑜𝑡𝑎𝑙 𝑓𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐸𝑂𝑆
= 𝑁𝑒𝑡 𝑢𝑠𝑎𝑔𝑒 𝑓𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 + 𝐶𝑃𝑈 𝑢𝑠𝑔𝑎𝑒 𝑓𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 

3.5.2.4 Stellar 

The aim of the Stellar BC is to provide a cost-efficient platform to move money 
quickly and reliably. It has its own consensus protocol called Stellar consensus protocol 
and the name of the currency is Lumens (XLM). The throughput of the network is 1000 - 
4000 TPS with a block time of around 5 seconds [26]. The Stellar BC requires small fees 
on transactions and the minimum balances on accounts. The transaction fee is the number 
of operations the transaction contains multiplied by the base fee which is currently 100 
stroops (0.00001 XLM). The number of operations includes create account, payment, path 
payment, manage buy offer, manage sell offer, create passive sell offer, set options, 
change trust, allow trust, account merge, inflation, manage data, bump sequence.  

 

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 × 𝑏𝑎𝑠𝑒 𝑓𝑒𝑒 
 

Accounts in the Stellar must maintain the minimum balance of lumens. If any 
transaction reduces the accounts balance to less than the minimum, then the transaction 
will be rejected with an insufficient balance error. Base reserve is currently 0.5 XLM and 
the entries include Trustlines, Offers, Signers, and Data entries. The minimum balance for 
an account is 2 × base reserve and each additional entry fee the base reserve [33]. The 
two special values used to calculate fees are a base fee and base reserve.  

 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = (2 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑡𝑟𝑖𝑒𝑠) × 𝑏𝑎𝑠𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 

3.5.2.5 Peercoin 

Peercoin BC was launched in 2012. Peercoin consensus mechanism is Proof-of-
Stake (PoS), where the coin owners have the influence over the network, produce new 
blocks and secure the network. Unlike Bitcoin, in Peercoin the transaction fees are not 
voluntarily set by the user. Instead in Peercoin there is a fixed fee per transaction. The 
static fee in Peercoin is set at 0.01 PPC per kByte. The fixed transaction fee eases the 
sender to determine how much they need to pay to the network to confirm their 
transactions. In addition to this, transactions in Peercoin are confirmed in terms of first 
come first serve [34]. Any small transaction under 1024 Byte pay at least 0.01 PPC to be 
included in the block and the transaction of 1025 Byte pay at least 0.02 PPC. The fixed 
price allows every transaction to be included in the very next block [35].  The size of the 
transaction is the default transaction size plus the size of the data to be included in the BC. 
We considered the default Peercoin transaction size is about 196 Byte. To calculate the 
fee per transaction, the size of the transaction multiplied with 0.01 will reveal the 
transaction fee in PPC.  

 

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 + 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 

 

𝐹𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑃𝑃𝐶 = (𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 × 0.01) ÷ 1024 
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3.5.3 Relationship Between Transaction Fee Factors 

In Section 3.5.1, the various factors impacting the transaction fee in public BC were 
described. As an example, these factors impact the transaction fee in Bitcoin and 
Ethereum and they are examined. It should be noted that the values of cryptocurrencies 
fluctuate; thus, these values may differ. In Bitcoin, the transaction fee depends on 
transaction size and transaction confirmation time as shown in Table 3 and Figure 5. If the 
user wants to perform the transaction by including the data size of 111 Byte, depending on 
how fast the user needs the confirmation, the transaction fee varies. If the user needs the 
faster confirmation for example less than 20 min, then the transaction fee is higher as 
compared to late confirmation where the transaction fee would be lower.  
  

Table 3: Relationship between Transaction Size, Fee and Confirmation Time in Bitcoin 

 Transaction Confirmation Time in minutes 

 

 <=20 
min 

<=40 
min 

<=60 
min 

<=120 
min 

<=240 
min 

<=480 
min 

<=1440 
min 

<=5040  
min 

<=10080 
min 

111 
Byte 

$0.65 $0.535 $0.509 $0.48 $0.39 $0.02 $0.0127 $0.0127 $0.0127 

121 
Byte 

$0.709 $0.583 $0.55 $0.52 $0.43 $0.0277 $0.0138 $0.0138 $0.0138 

151 
Byte 

$0.885 $0.728 $0.69 $0.659 $0.53 $0.0346 $0.017 $0.017 $0.017 

166 
Byte 

$0.973 $0.8 $0.76 $40.72 $0.59 $0.038 $0.019 $0.019 $0.019 

186 
Byte 

$1.09 $0.896 $0.85 $0.811 $0.661 $0.0426 $0.021 $0.021 $0.021 

 
In Ethereum, the transaction fee depends on transaction size and transaction 

confirmation time as shown in Table 4 and Figure 6. If the user wants to perform the 
transaction by including the data size of 5 Byte, depending on how fast the user needs the 
confirmation, the transaction fee will vary. If the user needs the fastest confirmation, then 
the transaction fee is higher as compared to slowest confirmation where the transaction 
fee would be lower. 
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Figure 5: Graphical Representation of Relationship between Transaction Size, Fee, and 

Confirmation Time in Bitcoin 

 

Table 4: Relationship between Transaction Size, Fee, and Confirmation Time in Ethereum 

 
Transaction Confirmation Mode 
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$0.33184 

 

15 Byte 
 

$0.00684 
 

 
$0.01368 

 

 
0.06848 

 

 
$0.13696 

 

 
$0.20545 

 

 
$0.34241 

 

45 Byte 
 

$0.0075 
 

$0.01496 
 

 
$0.07483 

 

 
$0.14965 

 

 
$0.22448 

 

 
$0.37413 

 

60 Byte 
 

$0.00781 
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Figure 6: Graphical Representation of Relationship between Transaction Size, Fee and 

Confirmation Time in Ethereum 

4 BC-Agnostic Framework – Design, Methodology, and 
Prototype 

In order to achieve the goals of the BC4CC project, two main components were 
implemented and act together in the BC-Agnostic Framework, (i) the Policy-based BC 
Selection Framework (namely PleBeuS), and (ii) the Modular BC Interoperability API 
(namely Bifröst). These components allow for the performing of the cross-chain 
communication in an agnostic and transparent way. Thus, the BC Agnostic Framework is 
not only capable of dealing with BC interoperability, but ease the management of such 
framework through PBM enabling users and applications to operate over different BCs 
transparently.  

 

Figure 7: BC-Agnostic Framework Overview and Components 
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Figure 7 presents the design of the proposed BC-Agnostic Framework. The Policy-
based Blockchain Selection Framework (described in Section 4.2) is based on the 
paradigm of Policy-based Management (PBM) [17], and automatically selects the most 
suitable BC based on user requirements and sends this information to the Modular 
Blockchain Interoperability API. This API (described in Section 4.3) is designed as a 
server-side component based on the notary interoperability approach. In practice, this 
means that the information sent to it will be further sent as a BC transaction to the selected 
BC transparently.  The User Interaction component is responsible for the internal 
communication between the components and the external communication with the user. 

4.1 Supported Blockchains 

Table 5 presents the summary of the BC and their characteristics that are currently 
supported by the BC-agnostic Framework. These values are used for the Policy-based 
Blockchain Selection Framework to filter the BCs according to user requirements. 

 

Table 5: Summary of BCs and Characteristics 

Blockchain Type Tps 
Block 

Time [s] 
Data 

Turing-
Complete 

Fees 

Bitcoin Public 4 – 7 600 80 Byte No Variable 

Ethereum Public 15 – 25 15 46 Kbyte Yes Variable 

Stellar Public 1000 – 4000 5 28 Byte No Base Fee 

EOS Public 250 – 3996 0.5 256 Byte Yes Variable 

IOTA Public 500 – 800 60 1300 Byte No None 

Hyperledger Private Variable 
20 

(default) 
20 Byte Yes None 

Multichain Private Variable 
15 

(default) 
80 Byte No None 

 

4.2 Policy-based Blockchain Agnostic Framework 

This section presents the newly developed Policy-based Blockchain Selection 
framework, called PleBeuS, to aid the selection of the most appropriate BC to store data 
based on user requirements. PleBeuS allows users to represent their requirements in the 
form of policies which are used as inputs for filtering and selection algorithms. Next 
sections present the PleBeuS framework, detailing architectural components, goals, policy 
parameters, and the employed policy switching mechanism and selection algorithms. 

4.2.1 Design 

The architecture of PleBeuS follows the PBM concept; thus, it is divided in the 
Policy Management Tool (PMT), the Policy Decision Point (PDP), and the Bifröst API 
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acting as the Policy Enforcement Point (PEP). Figure 8 depicts  the PleBeuS architecture 
and its components. The components depicted using a dashed line, such as the 
transaction costs service, are external solutions and were not implemented. 

 API Request Handler: Allows to configure and manage policies, which are then 
stored in the database. It is a Web service that interacts with a Graphical User 
Interface (GUI), which executes REST API calls in the background. The GUI allows 
users to create new policies, delete, or edit existing policies and presents cost and 
transaction statistics. The aforementioned statistics are retrieved from the database 
and served via the REST API. The database contains user information, policies, 
information about the supported BCs and all the transactions that have been made.  

 Database: The database stores users, policies, BC information (see Section 4.1), 
and the transactions that were enforced by the PEP. 

 Policy Selector: Upon receiving a request to store data in a BC, this component 
retrieves the active policy that matches with the time frame and the user that sent 
the request. The retrieved policy is then forwarded to the Blockchain Selector to 
execute the selection algorithms. 

 

Figure 8: PleBeuS Architecture 

 Blockchain Selector: This component implements the selection algorithms (cf. 
Section 4.2.4), being responsible for retrieving the transactions costs for each BC 
and their exchange rate to calculate the costs thresholds in the currency defined by 
the user. Moreover, once a BC or more were selected, it sends the selected BC to 
the Transaction Generator. This component is responsible for selecting the BC 
based on the active policies for the user. When the user makes a call to the API 
including the data to be stored in the BC, PleBeuS executes its selection process to 
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find the appropriate BC to be used for the provided data. First, the currently active 
policy is determined, depending on the parameters which the user has configured 
beforehand (e.g., cost thresholds). When the active policy has been determined, all 
BCs that comply to that policy, are selected, before the result is returned to the 
user. The BC Selector fetches static BC data from the database and uses external 
services to determine transaction costs of public BC implementations. The 
response of the API call returns the extracted data from the user-provided input, the 
hashed value of the extracted data, the cost of the transaction, the BC 
implementation chosen for each transaction and additional information used for 
providing statistics about the transactions. 

 Transaction Generator: This component receives the selected BC and constructs a 
transaction in the format required by the Bifröst API, i.e., an HTTP request 
containing the data to be stored and the selected BC. 

4.2.2 Goals 

The goal of this prototype is to provide a framework for defining policies, which are 
used for selection of an appropriate BC implementation, depending on the use case that it 
is needed for. The core problem the framework solves, is that it abstracts the strengths 
and shortcomings of different BC implementations. In turn, it also automates the BC 
selection process. Using a defined set of configurable parameters, a fitting BC is selected 
on transaction execution. During the design and implementation of this prototype, there 
was an emphasis creating a robust, extendable, and flexible solution, while providing user-
friendly set up and usage.  

Robustness of the prototype was provided by always ensuring that only one policy 
at a time can be active, while also restricting the user from creating any policy conflicts. 
Additionally, the framework ensures, that each defined policy always returns at least a 
single blockchain implementation that fits the chosen parameters. Thus, a consistent 
output is always to be expected, when API calls are made towards the framework. Finally, 
during configuration of the policies, the framework informs the user in case some 
conflicting configurations are about to be made. This effectively eliminates invalid or 
conflicting policy configurations even before a policy has been created. 

At the moment, PleBeuS prototype supports seven BC implementations, which 
have been introduced in Section 4.1. Additionally, as a fallback, it also supports a 
traditional database (PostgreSQL) in case no BC fits the desired characteristics. Adding 
additional BC implementations is straightforward, one would need to add the 
implementation to the database, including the characteristics (as shown in Listing 1), and 
extend the code with the respective cost model. This makes the framework extendable 
with additional BCs and features. 
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1  { 

2 "_id" : ObjectId("5ca359bcd1297088c8adf971"), 

3 "nameShort" : "BTC", 

4 "name" : "Bitcoin", 

5 "type" : "public", 

6 "tps" : 4, 

7 "blockTime" : 600, 

8 "maxTrxSize" : 80, 

9 "turingComplete" : false 

10 } 

 

Listing 1: Example of a BC Implementation as Stored in the PleBeuS Database 

While the prototype is configured to work in conjunction with the Modular 
Blockchain Interoperability API, it is also usable as a standalone application. This makes 
the proposed solution flexible in its usage. In case the framework is used independent of 
the Modular Blockchain Interoperability API, the user is able to define policies and use the 
response payload returned by the framework, as a recommendation for which BC 
implementation to use. This is also why the call to the Interoperability API is not made 
directly after selection and the output is returned instead. Decoupling the two APIs enables 
a flexible solution that can still be used in conjunction with each other, if one wishes to do 
so.  

Additionally, the framework opens up the possibility to extract information about the 
transactions. The API used for passing data to the framework returns all necessities for a 
transaction (as shown in Listing 2). This could be used for analysis purposes if, for 
instance, one wants to compare costs created by using the framework with the regular 
cost by simply using a single BC. 

1 [ 

2 { 

3  "username": "TestUser", 

4  "blockchain": "Ethereum", 

5  "dataHash": "hashed data using SHA-256", 

6  "data": "the plain data", 

7  "cost": 0.01, 

8  "policyId": "5ce16ca8fb2adb4b443ae2b9", 

9  "costProfile": "performance", 

10  "interval": "daily" 

11 } 

12 ] 

 

Listing 2: Example of a Transaction Payload 
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Finally, as for the usage of the framework, a GUI has been created for the 
management of policies enabling to easily create, edit or delete policies. This GUI is based 
on a REST API the framework exposes. Rather than using application-specific interfaces, 
REST manipulates resources, using a uniform set of “stateless” operations [36].This 
means, that the operations performed on the API, which are used for managing the 
framework, are not dependent on each other’s state. In turn, it makes using the GUI for 
management completely optional. This opens up further opportunities for automation, 
making it possible to manage policies and in turn the whole framework, via external 
scripts. Interacting with the framework is possible with any programming language, which 
lets the user choose in what context the framework should be used.  

Due to the nature of the framework being a single web application, the setup is 
user-friendly, as it is easier to use than a Command Line Interface (CLI), for instance. 
Accompanying the framework is a docker setup. Docker enables hardware virtualization 
and isolates applications by using containers docker. By using the docker setup, it is only 
necessary to set the needed environment variables, before the application can be set up 

with a docker-compose up command, which installs the dependencies and populates 

the database with the necessary information.  

4.2.3 Policy Parameters 

Users can define policies, which provide the key component for this framework. 
These policies represent the set of rules the framework abides by, for selecting the 
appropriate BC, given the state of different factors (e.g., time of the day or cost 
thresholds). The framework's policy parameters and filters can be split into two different 
categories. One of them being BC-specific characteristics and the other being externally-
driven factors. Next sections present an in-depth explanation about parameters that a user 
can configure for a policy and which consequences these decisions entail. 

4.2.3.1 Blockchain-specific Parameters 

These parameters are bound to characteristics the different BC implementations 
exhibit. The characteristics are statically stored in the database as they do not change and 
are not dependent on any external factors. Hence, the characteristics of the BC 
implementations are mapped one-to-one as chosen parameters for a policy. They are 
used to filter BC implementations based on their characteristics and are not part of the 
reason why a policy changes. This means that they are responsible for selecting BC 
implementation within a policy. 

Public vs. Private: Users may choose whether the data to be stored should be 
open to the public or not. In case the transactions contain sensitive data, storing into a 
publicly accessible manner is not an option. When the user makes the choice of whether a 
public or a private BC should be chosen, the framework retrieves data from the database, 
where the information of whether a BC implementation is public or private is stored. In the 
Policy Management Tool, the user can select, whether the BC should be public, private or 
if there is an indifference about the type. During BC selection, this information is then used 
to filter the BC selection pool for the active policy. 

Blockchain Throughput: The minimum throughput that needs to be supported by 
the implementation is another chosen parameter. It is labeled as a number, which 
represents the amount of Transactions per Second (TPS) the BC implementation 
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supports. In case the user needs fast transmissions and has to send out a lot of 
transactions, the parameter's value can be set to a high number, which in turn eliminates 
all implementations from the selection pool that do not meet that TPS threshold. In the 
Policy Management Tool, the parameter's values can be chosen from a list, which contains 
the values from the respective BC implementations.  

Block Time: While the BC throughput states how many transactions can be made 
in a second, it does not take in to account how long it takes for the transaction to be 
confirmed. This is why the block time is selectable for users as well. Similarly, to the 
throughput, in the Policy Management Tool, the value for this parameter can be chosen 
from a list of available values.  

Data Size: Most BCs are not designed to store a large amount of data. Depending 
on how much data has to be stored in the transaction, this might be an important factor for 
the user. In the use case of cold-chain monitoring, the size of the transaction does not 
matter much, since the data does not get stored into the BC directly. Instead, only a hash 
of the data is stored and the data itself is stored somewhere off-chain. Nonetheless, this is 
a selectable parameter in case the use case demands more data to be stored in the chain. 
These size values conform to the limitations imposed by the Interoperability API. Just as 
with the previous parameters, the user can choose from the available values and if the 
value does not meet the threshold, it is removed from the BC selection pool. 

Turing Completeness: Depending on the use case of the user, Turing 
completeness of the BC implementation is a criterion that might be needed for the BC 
implementation. This is important if Smart Contracts want to be used in the transactions. 
Even BCs that are focused on providing transactions can have limited SC capabilities, 
though their lack of Turing completeness limits their complexity. To be able to SC-focused 
BCs, this parameter concerns the Turing completeness and not general Smart Contract 
capabilities.   

In the context of this project, SC capabilities are not necessary as the transactions 
are already verified and just need to be stored in the BC. Though, it provides an additional 
characteristic that differentiates the implementations. For other use cases this might be 
helpful information. In the Policy Management Tool, the user can choose if a Turing 
complete BC is needed or not. Should this be the case, BC implementations, which do not 
have these capabilities, are removed from the selection pool during the selection process. 

4.2.3.2 Externally-Driven Parameters 

These set of parameters are not static and are susceptible to external factors, for 
instance the time of the day. They do not map to any BC characteristics per se and map 
user preferences instead. These are the parameters that are responsible for policy 
changes.   

Cost Thresholds: Users can set a maximum amount of costs they are willing to 
spend in a certain interval, as one of the policy parameters. They can specify any amount 
as their maximum value in a specified currency (CHF, EUR or USD), they want to spend 
for their transactions on a daily, weekly, monthly or yearly basis. As soon as the cost within 
the interval has been reached, the currently active policy switches to the next highest 
interval. Costs are calculated by different means. For BCs that have variable transaction 
costs, the information is fetched via multiple external APIs that provide information about 
transaction costs respectively [37] [31] [27] [38]. Since those external sources deliver the 
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fees in the currency of the respective BC, an additional call is made to CoinMarketCap 
[16]. This converts the transaction costs to the previously chosen currency. Since the 
value of cryptocurrencies is so volatile, this is done with each request to the transaction 
endpoint of the framework. This makes sure that the costs are always as up to date as 
possible. 

As an example of how this parameter influences the policy selection: When the user 
provides a maximum cost threshold of CHF 10.- daily and the daily cost has already been 
reached, the framework switches to the next highest interval or to the economic cost 
profile of the same interval (this is further explained). If cost thresholds of all policies 
defined are reached, the default policy, which does not contain a cost threshold, is 
activated. 

When defining cost thresholds, the framework always makes sure that the cost 
threshold of the previous interval does not exceed the threshold of the following intervals. 
This is to make sure that no policies with a larger interval are rendered useless, as the 
framework would always skip the next intervals as soon as the threshold for the smaller 
one has been reached. Before this parameter is used for the BC selection within the 
framework, all the other parameters are used for filtering policy compliant BCs first. This is 
done for performance reasons, as this parameter is computationally the most expensive 
one. As a consequence, the amount of calculations can be limited on the BCs that fulfill 
the other parameters. Table 6 lists the different BCs with the respective transaction 
calculations and their source. 

 

Table 6: Costs of BC Transactions and Calculation Methods 

Blockchain Fee Calculation Source 

Bitcoin 
Estimation via APIs 

(average of 2 sources) 

Bitcoinfees [27] 

Bockcypher [38] 

Ethereum 
Estimation via APIs 

(average of 2 sources) 

Etherchain [37] 

Bockcypher [38] 

Stellar 

Fixed transaction rate: 

Each operation: 0.00001 
XLM 

- 

EOS 
RAM Price calculation via 

Bancor Formula 
EOS Canada API [31] 

IOTA No Transaction Fees - 

Hyperledger No Transaction Fees - 

Multichain No Transaction Fees - 

 

Cost Interval: As mentioned in the previous Section, for defining cost thresholds, 
the user needs to define for which interval this threshold is valid. The framework supports 
five different intervals. Namely: daily, weekly, monthly, yearly, and default. When an API 
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call to the Transaction Component of the framework is made, the calculated costs are 
added to each of the intervals for the current user. These accumulate for each interval until 
the specified amount of time is reached. As soon as the user interacts with the framework 
and the time for the interval has passed since the last reset, the costs for this interval are 
set to zero. This is valid for all intervals except for default. The default interval does not 
accumulate costs, since it is not bound to costs and represents the fallback, in case all the 
other policies are currently inactive. Every time the user makes an API call to the 
transaction component, the default policy ensures that there is always an active policy and 
a BC implementation can be returned. Compared to the other intervals, default does not 
contain a cost threshold. While policies for the other intervals are optional, every user must 
have a default policy, which is why the user gets prompted on creation to configure the 
default policy as a fallback. Only one default Policy per user is allowed, since they do not 
offer any other distinctive features, besides the BC selection pool, which would make it 
impossible to differentiate between default policies.  

Currency: The currency is used for translating cost calculations to a uniform and 
known entity. As previously mentioned, the APIs used for calculating costs, always return 
the cost in the respective BC currencies. To be able to calculate costs in an efficient and 
for the user understandable way, the user is able to choose a currency in which the 
calculations are done. Just as with the default policy, on user creation, it is necessary to 
select a currency. Currently, the framework supports CHF, EUR, and USD as the 
selectable currencies. 

Cost Profile: Cost profiles provide a way to put an emphasis on either performance 
or costs. This parameter is used in case multiple BC implementations fulfill the criteria 
defined by the policy. The users can choose between a performance and an economic 
cost profile. In case performance is chosen, the framework chooses the most performing 
implementations from the BC selection pool. Consequently, for economic, the 
implementation with the lowest transaction costs is chosen from the selection pool. In 
terms of policy priority, the framework prioritizes performance over economic policies 
within the same interval. The reasoning behind that is that an economic profile signals a 
prioritization in costs. Should the emphasis completely be on reducing costs, no 
performance policy would be configured for this interval. If there is some priority in 
performance, a policy with a performance cost profile can be defined, while there can also 
be an economic one within the same interval. As soon as the cost threshold of the policy 
with the performance cost profile is reached (i.e., the willingness of the user to spend 
money on performance), the policy would switch to the economic one. 

Transaction Split: Since more than one BC implementation can be in the pool of 
BCs for a certain policy, a parameter exists to define whether the data to be stored should 
be spread over all available BCs or not. In case the transaction split is not chosen, the cost 
profile chooses a single implementation for all transactions. If a split is chosen, the 
transactions are spread out over the pool of valid BCs. The priority is still handled over the 
cost profile, which means that in case an economic cost profile is chosen, the framework 
chooses the BC with the lowest transaction cost first and vice versa. Consequently, this 
also means that a not so performing BC can be chosen in the performance cost profile for 
a certain transaction, should the amount of transactions needed for storing all the data 
line-up with the number of BCs available in the selection pool, vice versa for the economic 
cost profile.  
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Time Frame: The time frame specifies during which time of the day the policy 
should be active, given that all the other constraints (e.g., cost thresholds) are fulfilled. 
This parameter can either be set as valid for the whole day or at a specific time frame of 
the day (e.g., 08:00 - 17:00). To avoid policy conflicts, for each cost profile within a certain 
interval, the time frames are not allowed to overlap. For instance, the user has already 
defined a policy with a daily cost interval and economic cost profile that is valid between 
08:00 - 17:00. Additional policies with the same interval and cost profile would only be 
permitted between 17:01 and 07:59. This parameter allows for putting an emphasis on a 
certain time frame during the day. For instance, if more performing BCs are needed during 
working hours, configurations can be made to emphasize performing implementations 
during that time frame, while on the other hand less performing implementations can be 
chosen off-peak.  

Preferred BC: Finally, a possibility to select preferred BCs is also provided. The 
user can select a single or multiple implementations. This allows users to let the system 
only choose between BCs they trust. If the user selects a single implementation, all the 
other provided parameters are ignored and the policy framework selects the BCs 
implementation the user wishes to use. If the user selects multiple implementations, the 
other parameters are applied on the selected pool of BC implementations returning the 
most suitable one. If no preferences are specified, the parameters of the policy are applied 
to the whole BC selection pool. 

4.2.4 Selection Algorithms 

After the filters are applied, based on the Cost Profile defined by the user in the 
policy, PleBeuS executes two algorithms to select the most appropriate BC from BC pool. 
If the user specified a Cost Profile that prioritizes performance, PleBeuS executes 
Algorithm 1. This algorithm selects the BC that presents the highest TPS, meaning that the 
data will be immutable recorded in a BC as fast as possible disregarding the costs. 
However, if two BCs present the same TPS value, the algorithm prioritizes the one with 
lower costs. 

 

Algorithm 2 is executed by PleBeuS for policies containing the economic Cost 
Profile. This algorithm selects the BC that presents the lowest transaction costs from the 
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BC pool. If two BCs present the same transaction costs, then the algorithm prioritizes the 
BC with the highest TPS, as there is no impact on the cost, and the transaction is included 

faster. It is important to note that the bcSet is a pre-processed set based on the data to 

be stored. For example, if the size of the data to be stored is above the maximum data 

supported by a BC transaction, then, this BC is not appended in the bcSet. 

 

4.2.5 Functionality and Data Workflow 

This Section focuses on the data workflow of the framework. It provides a detailed 
explanation on the functionality of the framework and the interaction between the different 
components introduced in Section 4.2.1. First, the Policy Management Component is 
examined followed by the Transaction Component. 

4.2.5.1 Policy Management Component 

Figure 9 summarizes the just explained data workflow. The starting point for the 
framework represents the Policy Management Component. This component has a GUI 
build on top of the API that it exposes. When the user enters the index page (1), a 
username can be entered into the provided form. A submission executes an HTTP GET 

request to the endpoint /api/user-not-exist-check/{username} (2), which is a 

GET request used to check if a user with the same username already exists. If such a user 
does exist, the user is prompted with an error message, informing that the username is 
already taken. If the username is not taken, the user is redirected to a page, which allows 
configuration of a default policy and the currency of choice (3). Submitting these 

configurations executes a POST request to the /api/policies endpoint containing the 

username, BC characteristics for the default policy and the currency in the request payload 
(4). The Request Handler of said endpoint processes the data, validates it and then stores 
the user and the default policy to the database. 
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Figure 9: Policy Management Component Workflow 

Each API request follows the same workflow in the back end. First, the request data 
is parsed in the Request Handler and validated by the Input Validator, which retrieves data 
from the database, if necessary (5). In case the input is invalid, the Error Builder builds the 
error message and error code, which it forwards to the Response Handler (6) before the 
response is returned (7). In case the input is valid, the data is passed to the Data Handler, 
which either stores data in the database or retrieves it, depending on the type of request 
that is executed (8). Following that, the response of the request is built in the Response 
Builder and passed to the Response Handler (9), which returns the API response (7). 

In case the storage of the default policy is successful, the user is then redirected to 
the main view (10), containing all defined policies, which can be edited or deleted (as 
depicted in Figure 10. Before the user is redirected, the back end fetches all policies for 
the specified user and puts them into the view directly. The main view also allows for the 
creation of additional policies, it shows statistics about the executed transactions so far, 
and it shows the currently active policy. The statistics and the policy activity status are 

fetched via a GET request on the /api/stats/{username} endpoint (11). This 

endpoint is not essential to the operation of the framework, as it simply enables to show 
statistics and the policy activity in real time, without having to reload the view. The view 
periodically makes requests to this endpoint to be constantly up to date with the data. 
When such a request reaches the back end, it assembles the necessary data from the 
database and formats it in a way which is readable for the front end elements. These are 
then updated, upon successfully executed request (12).  
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Figure 10: Main view of the Policy Management Component 

By clicking on a button to create new policies, the user is redirected to a 
configuration view which contains a form (13). This form allows for creation and 
configuration of policies. The same view is used for editing policies, in which case the 
same endpoint to the view is expanded with an additional query parameter, containing the 
id of the policy (14). In case a policy is edited, the existing data is already filled into the 
form. As soon as the parameters have been configured and the form has been submitted, 

a POST request to /api/policies is executed, with the request body containing all 

information about the policy parameters and the username (15). Before the data is stored 
though, the back end first checks for any policy conflicts (5). If there are no conflicts, the 
policy is stored in the database (8) and as soon as the front end is notified (7), the user 
gets redirected to the main view with the updated polices and statistics (10). In case there 
are conflicts, the user receives an error message informing about the conflict. Conflicts 
arise in the following cases: 

 No BC fits the chosen parameters (e.g., public BC with a too high TPS threshold). 

 A policy with a higher cost interval is not allowed to have a lower cost threshold and 
vice versa. 

 Within the same cost interval and cost profiles, no overlapping time frames are 
allowed. 

 Only one default policy is allowed per user, as it does not contain other 
distinguishable features, besides the BC selection pool.   

Finally, in the main view, the user can also delete policies. In case the user clicks the 
delete button on the corresponding policy, a DELETE request is sent to 

/api/policy/{id} (16). In the back end, it checks whether the policy to be deleted is 

the default policy (5). If that is the case, the policy does not get deleted and the user gets 
an error message. This is to make sure that a user always has an active policy. In case it 
is not a default policy, it gets deleted and the user gets a refresh on the main view (17).  
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4.2.5.2 Transaction Component 

Figure 11 illustrates the workflow of the transaction component, which is the 
component that creates the transaction and communicates with the BC interoperability 

API. Once policies have been defined, transactions are sent to the /api/transactions 

endpoint (1). To do that, a POST request containing the username, an Excel file containing 
sheets with temperature data and the minimum and maximum temperature thresholds 
need to be passed in the body of the request. Alternatively, instead of the Excel file and 
the temperature thresholds, a string can be used as input.  

As soon as this request reaches the back end, the body of the request is checked 
for valid parameters (2). First, a check that the user has passed all necessary parameters 
is conducted. This means the request body contains a username and either the 
temperature data and the thresholds or the string to be stored. The request cannot contain 
both a string and an Excel file. This is to not leave any ambiguity about which data should 
be stored and to make sure to not cause any conflicts. The passed parameters are then 
further validated. The username must be available in the database and have at least one 
policy defined and the temperature thresholds must be valid (i.e., minimum temperature 
lower than maximum temperature). If this is not the case, the API returns an error to the 
user (3). 

If the request conforms to the framework's requirements, the data is further 
processed. However, in a first step, the system checks whether the accumulated costs 
over a certain interval have reached said interval (4). This is done by comparing the last 
update for an interval to the amount of time of that interval (e.g., it checks whether a day 
has passed for the daily interval, since the last update) (5). If this is the case, the costs for 
that interval are set to zero. 

Following that, the request is processed. In case the Excel file has been sent, 
sheets are parsed and the violating data is extracted from the sheets (6). Each sheet 
represents a temperature measurement of a delivery and corresponds to a single 
transaction. Next, the costs generated by the transactions are fetched (7). For public BCs, 
exchange rate data is fetched from CoinMarketCap [16], which is then used to convert the 
costs, fetched from various external sources [37] [31] [27] [38] to the currency selected by 
the user. Different calculations take place to convert the costs in to costs per byte, 
depending on the format the external sources return the respective cost. This is done to 
limit the amount of requests to the external resources, as it would drastically reduce the 
performance of the framework, if a call for each sheet would be made. Now, the amount of 
bytes needed can simply be multiplied by the costs. As soon as those calculations are 
done, each sheet violation data is examined step by step.  
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Figure 11: Transaction Component Workflow 

First, the policy is selected depending on the cost thresholds (8). The policy with the 
lowest interval is selected, that is within the time frame and has not reached the max costs 
yet. From this policy the BC selection pool is determined, selecting the BCs that conform 
to said policy (9). From the selection pool the most performing or the cheapest one is 
selected for the transaction, depending on the cost profile the policy exhibits. The 
calculated costs for the transaction are added to all cost intervals before the next sheet is 
passed through the same process. In case a transaction split is requested, the framework 
will split the transactions to send in parallel to multiple BCs, prioritizing them according the 
respective cost profile. If the user only passes a string for the transaction, pretty much the 
same process is conducted, with the difference, that the data is not looped through, 
instead, only one transaction is executed. Finally, the selected BCs are collected for each 
transaction (10) and returned to the user (11). 

4.3 A Modular Blockchain Interoperability API 

This section describes the Modular Blockchain Interoperability component, which 
was named Bifröst, being organized into three subsections. Firstly, it is defined the API 
goal and the requirements taken into consideration during the development of the API. 
Secondly, it is described the details of the components and workflow of the API. Lastly, it is 
presented the implementation of the API, and listed technical details of libraries and 
technologies. 
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4.3.1 Design 

The main objective of Bifröst is to provide a simple interface to interact with different 
BCs, i.e., allows users to store, retrieve, and migrate data from BCs. In this paper, a “user” 
is defined as a developer of a BC application. Thus, this interface allows the developer to 
create programs that support a variety of BCs without knowing the underlying BC and 
library implementation. Additionally, this allows further abstractions by potentially letting 
algorithms decide on which BC to use depending on certain parameters, e.g., transaction 
costs or BC performance. Figure 13 depicts the interaction with a BC application and 
Bifröst. 

 

Three requirements were taken into consideration for the development of Bifröst: (i) 
flexibility, (ii) modularity, and (iii) ease of use.  

The first, flexibility, is given by allowing the user to store a string in the BC, which 
could represent any arbitrary data, e.g., a Secure Hash Algorithms (SHA)-256 hash. The 
second, modularity, is provided by implementing the adapter of each BC with a standard 
interface, simplifying adding adapters to new BC.  Finally, the third, ease of use, is 
achieved by abstracting technical details from the underlying BC implementation, providing 
simple API functions (cf. Section 4.3.4), which require only two inputs from the user, being 
the data to be included and the BC identification. Moreover, using docker to run BC 
Remote Procedure Call (RPC) servers improves ease of use as its employment minimizes 
compatibility problems because the nodes execute in an isolated and replicable 
environment. 

Figure 12: User Interaction with Blockchain Application and Bifröst 
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Figure 13: General Bifröst Architecture and store Function Flow 

Bifröst relies on a notary scheme to interact with multiple BCs. This scheme was 
selected because it is a straightforward manner to manage data stored on different BCs 
without changing the underlying BCs implementation or maintaining parallel chains. Bifröst 
consists of three main components: (1) the API, (2) the BC adapters, and (3) a database. 
Figure 13 presents an overview of these three parts and the data flow between them using 

the store function as an example. 

1. The API is the entry point for interacting with Bifröst. It consists of the exposed 

functions store, retrieve, and migrate. The API is responsible for receiving 

the user input and communicating with the correct BC adapter. 

2. The Adapters convert the user input into a transaction which is subsequently 
transmitted to the BCs nodes. The nodes forward the transactions to the BC 

network, where miners will process them. In the case of the retrieve function, the 

adapter requests the data from the BC instead of creating a transaction. A new 
adapter must be implemented to allow support for each new BC.  

3. The Database stores the necessary credentials for the transactions, and stores the 
transaction hash after a successful transaction has been included in the BC. This 
hash can be later used to retrieve the stored data. It is worth mentioning that the 
data is only stored in the BC and not in the database. 

4.3.2 Bifröst Application Programming Interface (API) 

Bifröst has three exposed functions in the API, which are used by developers or 
applications to interact with the available BC implementation.  Their implementation is 
presented in Listing 3 and described in the following paragraphs. 
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1 def store(text, blockchain): 

2  adapter = Adapter[blockchain] 

3 transaction_hash = adapter.store(text) 

4 return transaction_hash 

5 def retrieve(transaction_hash): 

6 blockchain = database.find_blockchain(transaction_hash) 

7 adapter = Adapter[blockchain] 

8 text = adapter.retrieve(transaction_hash) 

9 return text 

10 def migrate(transaction_hash, blockchain): 

11 value = retrieve(transaction_hash) 

12 new_hash = store(value, blockchain) 

13 return new_hash 
 

Listing 3: Exposed API Functions 

The store(text, blockchain) function receives the data in the form of a string 

and the identification of the BC as input. It then stores the string on the defined BC, waits 
for the defined transaction confirmation time, and returns the transaction hash. 

The retrieve(transaction_hash) function receives a transaction hash as a 

parameter and returns the string previously stored in the BC. The corresponding BC used 
to retrieve the data is automatically recognized by the API using a query in the database. 
Therefore, BC identification does not need to be provided. 

The migrate(transaction_hash, blockchain) function retrieves a stored 

string from one BC and copies it to another BC. The parameters are the transaction hash 
of the origin and the name of the target BC. It should be noted that it is not possible to 
delete data from the BC and management of which transaction hash is valid depends on 
the user. Thus, this function copies the data to another BC. 

4.3.3 BC Confirmation Time 

Sending a transaction to a BC is generally no guarantee that the value is stored on 
the ledger. On the one hand the transaction could be refused by the network e.g., because 
of a low transaction fee or if the validation failed. On the other hand, even if it was 
included, block finality needs to be ensured. Skipping this check could lead to transactions 
located on a fork which is abandoned later. However, finality depends on the consensus 
mechanism implemented in the BC. 

In the prototype, this issue is solved by using a waiting time before writing the 
transaction to the database. If the transaction is not found after this time, it is considered 
invalid  and will be discarded. Considering Table 7, Bitcoin and Ethereum need to have a 
longer  waiting time of 3600 seconds respectively 105 seconds to have a high probability 
of finality. Even if block finality is given, transactions do not happen instantly. Especially 
with PoS consensus, there can be multiple rounds of communication between the nodes 
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until two thirds of them agree on one solution. As this communication takes some time, a 
minimum waiting time of 20 seconds was implemented [39]. 

The prototype was tested using the BC’s public testnets or a local private network. 
Even though the consensus mechanism of those networks often differ from the mainnet, 
waiting times were set to conform with confirmation times on the mainnet. 

 
Table 7: BCs Conformation Time Overview 

Blockchain Type Consensus Finality Blocktime [s] 
Confirmation 

After 

Bitcoin Public PoW No 600 6 

 Ethereum Public PoW No 15 7 

Stellar Public SCP Yes 5 1 

EOS Public dPoS Yes 0.5 1 

IOTA Public IOTA Yes 60 1 

Hyperledger Private PoET Yes 20 1 

Multichain Private PoA Yes 15 1 

4.3.4 API Documentation 

The documentation of the API can be found at [40]. It contains information on the 
usage of the API, such as how to retrieve transactions, store data, migrate data, and so 
on. Further, the documentation presents code listings for its integration on several 
languages, including Python, cURL, jQuery, Node, PHP, and Go. Listing 4 presents the 

“store” function call to the API using cURL, where String represents the data to be stored 

in the transaction, and “1” informs the BC ID of the BC to which the transaction will be 
sent.  

1 curl --location --request POST "https://bc4cc.ddns.net/api/store" \ 

2  --form "data=String" \ 

3 --form "bc_id=1"  

Listing 4: Store Function Call in cURL 

4.4 Proof-of-Concept Prototype Implementation  

The prototype of the system was implemented in Node.JS (PleBeuS) and Python 
(Bifröst). The communication between the components is envisioned to be performed 
using the APIs provided by the components. This section is organized as follows, Section 
4.4.1  overviews the networking structure of the prototype, Section 4.4.2 describes 
implementation details of PleBeuS, and Section 4.4.3 presents the implementation of 
Bifröst. 

4.4.1 Entry-point and Networking Structure 

Figure 14 illustrates the low-level networking structure of the prototype. As the 
system is, at the moment, a prototype and not production-ready, the deployment of the 
components, such as the server, and BC nodes, was performed in the CSG management 
network, with one exposed entry-point to the Internet. Even though the system is a 
prototype, security measures were implemented, such as a firewall and server isolation, to 
prevent malicious actions from external users. 
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Figure 14: System Networking Structure 

The system is composed of the following components: 

 Reverse Proxy. The entry point to the system is an Apache HTTP server running 

inside a virtual machine, behind an iptables software firewall. The Apache server 

acts as a reverse proxy, forwarding requests coming from the internet to the Flask 
application, located on a separate machine. The reverse proxy exposes aside from 
HTTP and HTTPS also Secure Shell (SSH) for administrative access. It is the only 
machine exposed directly to the internet, and as such its availability is of critical 
importance. Transport Layer Security (TLS) traffic terminates here and traffic is 
further forwarded as HTTP. The Operational System (OS) is Ubuntu 18.04.3 LTS. 

 Virtual Switch. This virtual switch is a software program which forwards packets 
from the VM to the Flask application. 

 BC4CC Server. Physical server hosting the Flask application implementing the 
business logic of BC4CC and the database. It is a physical machine, a Dell XPS 
desktop, running Ubuntu 18.04.3 LTS. 

 Blockchain nodes. RPC servers needed to send and read transactions, necessary 
for the core functionality of BC4CC. These are full BC nodes connected to their 
respective testnets. 

4.4.2 PleBeuS 

The framework at its core is a web application. The reasoning for choosing to build 
the prototype based on a web application is, that it allows for a combination of the GUI-
based components and APIs really well. As mentioned in Section 4.2.2, one of the points 
of emphasis is to create an application which does provide a user-friendly interface, but on 
the other hand can also be flexible enough to be used in an automated context. HTTP-
based REST APIs allow for a combination of these two worlds really well, which is the 
main reason, why this architecture had been chosen. This section provides an overview 
over the technology stack used to provide the web application. PleBeuS source-code can 
be found at [41]. 
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4.4.2.1 Server and Client 

The core of the framework is based on a Node.js server application. Node.js is an 
open-source, cross-platform JavaScript (JS) run time environment that executes JS code 
outside of a browser. It is based on the V8 Engine, which is a C++ based high-
performance JS and WebAssembly engine. V8 has initially been developed by The 
Chromium Project for Google Chrome and Chromium web browsers [42].  It compiles the 
JS code to native machine code, instead of interpreting it as bytecode as is more common 
for this use case, which is where Node.js gets its speed from [43]. Other tasks it handles is 
the call stack of JS functions, management of the memory allocation for objects, garbage 
collection and it is responsible for providing all the necessary data types, operators, 
objects and functions. To run its asynchronous, I/O operations Node.js relies on a single-
threaded event loop, which is provided by the Libuv library. It is a multi-platform support 
library with a focus on asynchronous I/O written in C [44]. By providing the event loop, 
Libuv allows Node.js to perform non-blocking I/O operations, despite the fact that JS is 
single-threaded. 

By compiling JS to machine native code, Node.js allows usage of JS on the server 
side. This makes it possible to write full-stack JS web applications, which are performing, 
highly responsive as well as easily scalable thanks to the asynchronous nature of Node.js. 
By being able to write JS on the server side as well as on the client side, a developer has 
to only rely on one language to create a web application. All these reasons made the 
choice to use Node.js for this prototype an easy one.  

For this prototype, Node.js provides the server of the various components. To 
handle HTTP requests the prototype uses the often accompanied Express Framework. 
Express is a minimal and flexible Node.js web application framework that provides a 
robust set of features for web and mobile applications [45]. Main features of Express 
include the addition of simple to implement routing capabilities, query string, path string 
and response body parsing, grace full error handling and support for connect middleware, 
which allows for the extension of the application with additional plug-ins. These capabilities 
helped tremendously during the creation of the REST API, as they allowed for the handling 
of requests and the request data in a simple and extendable way. Express also allows to 
configure various templating engines for delivering HTML files. For this prototype, 
Nunjucks has been used to render the HTML used for the GUI. Nunjucks is a templating 
language specifically made for JS, which is developed by Mozilla [46]. It allows for a 
dynamic pass of data to HTML files based on the data passed from the rendering function. 
This helps eliminate duplication of HTML snippets and allows reusability of often used 
components. 

4.4.2.2 Database 

The REST API provided by the Node.js/Express server for managing users and 
policies, is designed to perform CRUD operations throughout the application. CRUD is an 
acronym the four basic functions of persistent storage, namely Create, Read, Update and 
Delete. CRUD-based applications apply the paradigm throughout the different layers of the 
application. At the user interface level, they allow interaction with the app to create, list, 
edit, and delete data, as it is the case for the policies in this prototype. At the HTTP layer, 
CRUD operations are mapped via the different HTTP methods, namely POST, GET, 
POST/PUT/PATCH, DELETE. Finally, at the database layer it used for storing, reading, 
updating and deleting entries. At the core of these operations stands the database. The 
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prototype uses MongoDB as its database storage, which is a document-based, NoSQL 
storage [47]. Compared to conventional relational databases, MongoDB does not use SQL 
to perform operations on data and data is not stored in relational tables. Additionally, while 
SQL databases conform to a predefined Schema, NoSQL databases allow dynamic 
structures of the data, which means that each document can have its own structure [48]. 
MongoDB stores data in JSON format (as presented in Listing 1 and Listing 2) in a 
document-based fashion. Each document is identified by a unique ObjectId, which can be 
used for retrieving a specific document.  

The decision to use MongoDB has been made, as the policy and BC data fit really 
well into a document-based store, since they can be treated as single entities and do not 
require any joins. As for the policies, retrieving a policy retrieves all information it contains, 
without the need for joining different tables. The NoSQL approach also allows for 
scalability and easy adaptability, should the framework evolve in the future. For example, if 
new characteristics are added to the BC implementations or additional parameters are 
added to the policy, backwards compatibility is ensured without the need for adapting 
previous documents. Finally, since MongoDB is storing data in JSON, it integrates well 
with a JS-based framework like Node.js. By using MongoDB in combination with Node.js 
applications, serialization and de-serialization are automatically taken care of, since the 
documents are already stored in JSON format. 

4.4.3 Bifröst 

The Bifröst prototype was developed using python. Python was chosen because its 
properties allow for rapid prototyping while keeping the code clean and comprehensible. 
Furthermore, there is extensive support for libraries used by this project, e.g., for 
cryptographic operation, HTTP and RPC. In terms of compatibility, the prototype was 
tested on both Linux Ubuntu 16 and MacOS Mojave using Python 3.6.6. Python's built-in 
virtual environment manager was used to prevent environment issues. Bifröst source-code 
can be found at [49]. 

4.4.3.1 BC Adapters 

Internally, the store function constructs a raw transaction using the provided 

string. This transaction is then signed using the stored private key and sent using the RPC 
or HTTP protocol. After receiving the transaction hash, the function 

confirmation_check validates the existence of the transaction after waiting for a 

specified period. Thus, it is confirmed that the block was included and finality is given. If 
the confirmation was successful, the hash is saved to an SQLite database, referencing a 
BC identifier and including a timestamp. 

The retrieve function requires the transaction hash as a parameter. The 

transaction is retrieved from the BC using RPC or HTTP. Afterwards, it extracts the string 
from the obtained transaction. Listing 5 presents an excerpt from the implementation. The 

parameter cls reflects the chosen BC in the form of an adapter class. 
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1 def store(cls, text): 

2 tx = cls.create_tx(text) 

3 signed_tx = cls.sign_tx(tx) 

4 tx_hash = cls.send_raw_tx(signed_tx) 

5  if(cls.confirmation_check(tx_hash)): 

6   cls.add_tx_to_database(tx_hash) 

7   return tx_hash 

8  else: 

9   raise LookupError('Tx not confirmed!') 

10 

11 def retrieve(cls, tx_hash): 

12 transaction = cls.get_tx(tx_hash) 

13 data = cls.extract_data(tx) 

15 return cls.to_text(data)  
 

Listing 5: Adapter Implementation 

Currently, seven adapters to popular BCs and one for generic database are 
implemented in the Bifröst prototype. As Bifröst is modular, if there is the need to support a 
new BC implementation, a new adapter can be implemented (following the standard). The 
supported BCs and the generic database information are presented in Table 8. The 
PostgreSQL adapter was implemented to allow the data to be stored in a traditional 
database instead of a BC. Apart from the BC and library name, Table 8 also presents 
information about the node type, connection, and network type (e.g., local or public 
testnet). For example, the Bitcoin implementation connects to a full node with access to 
the public Bitcoin testnet and uses the RPC protocol to communicate with the adapter. 
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Table 8: Blockchain Adapter Information 

Blockchain Library Name Node Type Connection Network 

Bitcoin 
Python-

bitcoinrpc 
Full Node RPC Public Testnet 

Ethereum Web3.py Full Node RPC Local Testnet 

Stellar 
Py-stellar-

base 

Remote Full 
Node 

HTTP 
Public SDF 

Testnet 

IOTA PyOTA 
Remote Full 

Node 
RPC Public Testnet 

EOS Eosjs_python 
Remote Full 

Node 
RPC 

Public Jungle 
Testnet 

Hyperledger Sawtooth_sdk Full Node HTTP Local Testnet 

Multichain 
Python-

bitcoinrpc 
Full Node RPC Local Tesnet 

PostgresSQL Psycopg2 
PostgresSQL 

9.6.8 
PostgreSQL 

Local 
PostgreSQL 

4.4.3.2 Database 

The database is responsible for storing a list of supported BCs, credentials for the 
BCs, and transaction hashes. In the prototype, an SQLite database and the Python library 

sqlite3 were selected. SQLite was chosen because of the simplicity of storing the 

whole database without maintaining a dedicated server [50]. Figure 15 depicts the Entity 
Relationship (ER) model of the Bifröst database. It is important to notice that the stored 
data is not saved on the database, but only on the selected BC. 

 

Figure 15: Database Entity-Relationship (ER) Model 

The next items describe the tables which compose the database. 

 Blockchains Table: The BC table has two columns, being a unique id and the 

name of the BC. This table is used to link the BCs to the transactions and 

credentials. An example of row in such a table is the tuple <id:1, 

name:'Ethereum'>. 

 Credentials Table: The credentials table has six columns. The unique id used to 

map the identity of users to their credentials. The blockchain_id connects the 
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credentials to the corresponding BC. Furthermore, address stores the public key 

and key the private key of the BC account. The user and password provide the 

credentials for the RPC or HTTP client. The necessary credentials depend on the 

BC. For example, Stellar does not need user and password, and IOTA does not 

need key, as zero-value transactions do not require a sender. Thus, no need for a 

signature. 

 Transactions Table: After a transaction is completed, its hash is stored in the 

column hash. The BC that the transaction is included is identified by the 

blockchain_id column. Furthermore, the timestamp of issuing is included in 

the column issued_at. 

5 Case Study – BC4CC Integration 

This chapter explains how Bifröst was integrated into the Demo Environment of 
modum.io – thus, the productive code base of modum.io to demonstrate functionality to 
customers – and discusses its perceived benefits and limitations. While the straight 
forward integration shows the important advantages of the system, it is mainly limited by 
its abstracted functionality.  

5.1 Integration of BiFröst and MODSense 

BC4CC facilitates data sharing between different actors in the supply chain. Those 
stakeholders can rely on the trusted data that is enabled due to the BC4CC framework 
being integrated into MODSense. MODSense is Modum.io’s solution for temperature 
monitoring, designed for sensitive shipments. Customers can hence predefine 
requirements per shipment and automatically evaluate conformity upon readout of data. 

 

 

Figure 16: The stakeholders Involved in the System 

As introduced in Section 3.2, Figure 16 presents a high-level system overview of 
the different stakeholders involved in the usage of the BC4CC system. Temperature data 
is recorded during the transport of medical drugs. Using the framework, the data can be 
stored in one or multiple BC and audited by the government. 
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5.1.1 The Modum System 

 

Figure 17: The General Setup of the Modum System 

Figure 17 shows the general setup of the Modum system. Besides the web 
application for shipment management and a mobile application for shipment initialization 
and readout of data, the MODSense T Temperature logger is an important component of 
the solution. It evaluates the collected temperature data against the alarm criteria that was 
defined for each shipment and can be configured over the air using Bluetooth Low Energy 
(BLE). The device features a tamper-evident casing, a maximum storage capacity of forty-
five thousand temperature measurements, Near Field Communication (NFC) support, and 
traceability via the QR code. Critical for this project is the built-in on-board hardware 
security module that holds a private key initialized in the factory at manufacturing time yet 
completely inaccessible to anyone. The private key enables the logger to digitally sign any 
kind of data. In the remainder of this document we also refer to the MODSense device as 
the modum.io logger. The modum.io logger firmware runs on the Microcontroller Unit 
(MCU) which contains a Central Processing Unit (CPU), volatile and non-volatile memory, 
hardware peripherals for bus communication and other tasks, as well as all necessary 
hardware for a BLE connection except the antenna. The HSM contains its own processor 
and can run code independent of the MCU.  
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As it can be seen, the Modum.io Backend-Services communicate with a BC. 
Modum.io has built a connector from their system to the Bifröst API to communicate with 
this additional service. Thus, the integration of Bifröst is easy and seamless. To evaluate 
the effectiveness of the system, Bifröst was integrated into the “Demonstration” 
Environment of the Modum.io Application. An integration into the productive system is not 
possible, as Modum.io operates in a regulated environment, and the components would 
have had to be developed according to regulated frameworks and standards. In addition, 
contracts with all different users would have been required. 

5.1.2 Bifröst Integration 

Figure 8 shows the architecture of the BC-agnostic framework and its components, 
which consists of an externally visible API (i.e., Bifröst). The framework also includes a 
Policy Decision Point (PDP) that implements the selection logic and external services that 
include cost monitoring and exchange rates.  

Having a closer look at the Open API, which is depicted in Figure 13, it shows that 
the API offers a storing method that accepts the Identification (ID) of the BC in which the 
data should be stored. The BC correspondent adapter then creates a new raw transaction 
and signs it using the credentials stored in the system. For later management the 
transactions hashes are stored in a database. The adapter forwards the transaction to the 
respective RPC interface of the local node running the BC to which the transaction is 
broadcasted. The RPC server returns the transaction hash once the transaction has been 
included into the mining pool. This hash is used for retrieval of the data stored in the 
transaction. A simple integration of BC4CC and the modum.io system could reuse the 
same Smart Contract that is currently used in the modum.io system, which facilitates the 
integration even more.  

5.2 Advantages and Limitations of the Approach  

The BC4CC approach has many tangible benefits due to the integration of the 
Bifröst framework. The open API enables a broader market penetration, as more supply 
chain service providers could benefit from decentralized systems for their products, money 
and data. They can reduce their spending and streamline their processes by means of the 
self-executing Smart Contracts, data immutability and auditability, which Modum.io’s 
system provides. These service providers also do not need to have any deeper knowledge 
about the technology itself if they want to implement it, which makes it much more 
accessible and again broadens the spectrum of potential users. In addition, since the 
Modum.io logger is not directly connected to the Internet, it cannot interface the BC 
platform directly and obtain a trusted copy of the external values. BC4CC as an 
intermediate system, however, can provide these values signed digitally and, thus, vouch 
for their correctness. This would prevent modification of this data along the chain via the 
mobile application. By building an open API, the integration into other systems is greatly 
facilitated, making it easier to collaborate with different partners and customers. The data 
that is stored on the BC is accessible to every stakeholder at all times and hence 
immutable, which improves trust and transparency massively.  

Moreover, the easy integration is crucial for the interoperability that sets BC4CC 
apart from single public BC integrations and prevents technology lock-ins. Even when 
choosing a BC that might not be widely used by other players, the company can still 
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integrate their system. Making this possible, BC4CC tackles one of the most significant 
issues of why BC has not yet been implemented in supply chain logistics. By developing 
Bifröst, the integration and hence accessibility of BC solutions have been increased 
massively, paving the way for new cold chain applications. 

Despite the many advantages of the integration, it also has its limitations. Bifröst 
operates on an abstraction layer which abstracts its functionality and thus its application is 
limited to simple use cases such as data integrity. As soon as it can be integrated into a 
productive environment, the architecture can be tested in more specific use cases. 
Moreover, while the BC-agnostic approach is allowing users to choose the BC that 
matches their individual requirements, it does not enable different networks to operate 
within the same BC. Lastly, the API is part of a centralized architecture and by 
implementing Bifröst, a single point of failure is introduced into the system, which defeats 
the purpose of BC technology itself to some degree. 

6 System’s Evaluation and Discussion 

Based on the prototyping as well as integration of these components as described 
above, the feasibility of the policy-based management is evaluated and discussed. In 
addition, a preliminary security analysis is presented. 

6.1 Discussion on the Role of BCs in the Industry 

During the course of the KTI/Innosuisse project, multiple discussions and talks with 
potential users in the pharmaceutical, perishables and logistics industry, with other logger 
companies and related BC startups have shown that the industry still struggles with the 
adoption of BC technology. Especially in the final months of the project, feedback and 
further insights into the state of adoption have been gathered. In the few cases where the 
technology is being adopted, the companies typically revert to either a private BC or one 
that was established by a consortium. The reason for this being that it is a much safer 
approach to the technology, which does not hold as much risk. Furthermore, solving the 
data integrity issue itself does not realize the full potential of a BC. Adding an abstraction 
layer to the BC may simplify the adoption, however, it also prevents users from unlocking 
the full potential of the technology.  

Further, there is a general resistance against using a public BC which is mainly 
based on security concerns. Users are afraid of unwanted customer data and internal 
information to be published when using a public BC. Although this issue could be solved 
by encrypting the data before sending it to the BC, it also generates more complexity and 
might introduce additional costs, which presents another disadvantage. Another solution 
against security concerns is choosing a private BC that is designed for a use case where 
nodes are run only by a small number of companies or individuals. Thus, access to the 
data stored on the BC is possible only for the participants of the private BC. This is 
enticing for companies who fear that putting data on a public BC could be associated with 
privacy concerns. Many companies are still in the process of evaluating or monitoring BC 
adoption but are waiting for a push from their own customer base to do so. For many, it is 
still too early to adopt at this point in time, but they are waiting for larger organizations to 
come up with networks and consortia (i.e., private permissionless and private 
permissioned) which then can be joined. Two examples of consortia that are developing 
their own BC frameworks are PharmaLedger [51] and MediLedger [52], which both strive 
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to enable BC-based healthcare solutions. In conclusion, the interest in the technology is 
still high, and once public BC adoptions become more necessary, the BC4CC deliverables 
have a greater impact.   

6.2 Technical and Operational Impact 

This section analyses the presented prototype with regard to performance, 
management and security. Firstly, an analysis of the performance of the prototype, 
including introduced overhead and data size limitations is described. Secondly, major 
management aspects are discussed. 

6.2.1 Performance Analysis 

A performance analysis was performed to measure both the overhead and the 
stability of the application. The measurements were performed on a MacBook Pro 2017, 
Dual-Core i5 @ 2.3 GHz, 8 GB RAM, MacOS Mojave 10.14.1 with Python 3.6.6. At total, 
1000 measurements were gathered for each BC, except for Bitcoin. In case the of Bitcoin, 
100 samples were taken because of the limit of 25 unconfirmed transactions on the Bitcoin 
RPC server. As some remote nodes impose restrictions on how many transactions can be 
sent over a specific time, the measurements were completed in batches of 25 transactions 
each. PostgreSQL was included in the analysis to compare BC performance with a regular 
database. Even though all the 1000 transactions per BC were completed without issues, a 
stability and scalability evaluation must be conducted to consider the prototype stable. 

 

Figure 18: Performance Measurements on Supported Blockchains 

Figure 18 depicts the outcome of the performance measurements. The x-axis 
represents the different BC adapters, and the y-axis represents the average time per 
transaction (in milliseconds). It can be seen that there is a performance difference between 
using local nodes and remote nodes. Remote nodes were used by Stellar, IOTA and EOS 
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as presented in Table 8. Noticeably, the Bitcoin client using a full local node with a public 
testnet was faster than other BCs (e.g., Ethereum) which were using a local node with a 
private testnet. Multichain presented a similar performance as the PostgreSQL database 
due to the fact that Multichain is a private BC focused on data streams. However, 
Multichain requires more operations (e.g., raw transaction creation and cryptographic 
signature) that PostgreSQL does not. It has to be noted that with some adapters (e.g., 
Hyperledger), multiple transactions could be put into one batch. Thus, only one batch 
would need to be transmitted for multiple transactions, which would result in higher 
throughput. 

Transaction-focused BCs, e.g., Bitcoin and Stellar, are not designed to store 
arbitrary data. Thus, there is a limit on the amount of data included in a transaction. Table 
9 summarizes how much data is possible to store in the different BCs supported by the 
system. Note that on some BCs, e.g., Ethereum, this restriction could be circumvented by 
using SC. In an SC deployed in Ethereum, the storage of data can be divided over more 
than one block, bypassing the maximum data size limitation by the block gas utilization.  

Table 9: Maximum Data Size in Different Blockchains 

Blockchain Maximum String Size 

Bitcoin 80 Byte 

Ethereum 46 kByte 

Stellar 28 Byte 

EOS 256 Byte 

IOTA 1300 Byte 

Hyperledger 20 Byte 

Multichain 80 Byte 

 

Due to the presented data limitation and the fact that the BC technology was not 
conceived as a database, but rather only a distributed ledger, holding only transaction-
related data, it can be seen that it is not cost-efficient to store large amounts of data on 
BCs. In this sense, a (decentralized) database can be used to store the “raw” data, and a 
hash of this data is stored in the BC. Thus, the validity of the data can be verified at any 
time while the data is stored efficiently. 

6.2.2 Management Discussion 

In the following sections, relevant management and security aspects are discussed. 
First, it is discussed the security of storing the private keys in a central server. Then, the 
security of local and remote nodes is described. Finally, the centralization issue is 
addressed. 

6.2.2.1 Private Keys – Single Address 

A major concern is to secure the private keys from attackers. A successful attack in 
this vector could have two implications. First, an attacker could spend the funds linked to 
the account. As this solution is made for storing data on the BC, the funds would only need 
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to cover the transaction costs. Keeping only the necessary funds for the transactions 
would; therefore, mitigate this risk. Second, an attacker could change the data by storing 
some arbitrary data which would be hard to distinguish from the genuine transactions. 
Depending on the use case, this could be an issue to consider. In most use cases, the 
motive for such actions is questionable.  

The presented prototype is a Proof-of-Concept (PoC), implemented to assess the 
system’s feasibility. Thus, the private key is stored in plain text on an SQLite database. In 
this sense, if an attacker would get access to the server, it would be trivial to access the 
private keys. One solution to circumvent this problem is to encrypt the private key with a 
symmetric key which is based on a password set by the user, thus, only allowing for a 
transaction to occur, if the user temporarily decrypts the private key. Another possible 
solution consists of a multisignature transaction scheme, where more than one key is 
necessary to sign transactions, and they are stored in another, more secure location. 

6.2.2.2 Local and Remote Nodes 

Another risk is the exposure of the RPC or HTTP port by the BC node. If the node 
additionally holds the private keys in a local wallet, transactions could be initiated remotely. 
However, all of the BC adapters in this prototype sign the transactions locally, meaning 
there is no need for the node to hold the private keys. Nevertheless, the ports could be 
used to transmit unrelated, malicious transactions and Distributed Denial-of-Service 
(DDoS) attacks targeting the node could be executed. In cases where public remote nodes 
are used, the owner of those nodes could potentially block a transaction from being 
processed. Furthermore, the availability of the whole system could become an issue.  

Nonetheless, these security issues could be circumvented by using full local nodes 
and allowing RPC connections only from the local machine (i.e., localhost) or restricting 
connections to trusted IP addresses. Distributed Denial of Service (DDoS) attacks on the 
system can be mitigated by implementing a request limiter, throttling the processing of 
requests by IP or request type. 

6.2.2.3 Centralized Prototype Deployment 

One of the main benefits of BCs is the removal of trust by making use of 
decentralization and cryptographic properties. Thus, it would be advantageous if this 
property holds for this solution as well. However, using a notary scheme implies that a 
user needs to trust the notary i.e., the host of the application. First of all, the notary has 
access to the private keys which makes him vulnerable to the issues discussed in Section 
6.2.2.1. Furthermore, the notary controls the application and the node and therefore is able 
to arbitrarily alter the original transactions e.g., change the sender or the data or censor 
certain transactions. 

Nevertheless, BC applications are rarely trust-free, and there are always layers 
which require a certain amount of trust, such as monitoring applications in Internet-of-
Things (IoT) applications. Taking this system as an example, the first layer of trust is the 
BC underlying code and cryptographic properties. The second layer is the RPC server and 
the RPC client. The notary is the third layer of trust. After that, other layers must be 
trusted, e.g., the user's hardware and software. From this perspective, the notary scheme 
adds a layer which requires trust, but is still only one out of many. However, the amount of 
trust needed can be minimized by running the approach in a trusted computing 
environment, such as the Intel's Software Guard Extensions (SGX) [53]. 
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6.3 Policy-based System Evaluation 

To verify the system’s functionality regarding the policy switching mechanism, and 
the BC selection algorithm, a prototype was implemented and evaluated in three scenarios 
with different sets of defined policies. These scenarios are defined in Section 6.3.1 and the 
results from each scenario are presented and discussed in Section 6.3.2. 

6.3.1 Evaluation Scenarios  

Each scenario combined both public and private BCs, and varied in parameters, 
such as the BC Set (i.e., BCs available for selection), costs thresholds intervals (e.g., daily, 
weekly, monthly, and yearly), which trigger a policy switch, and the profile (e.g., 
performance or economic). The time frame parameter was not considered because the 
switch of policies is triggered by the cost interval. The evaluation scenarios and the 
defined policies are described in the next sections. 

6.3.1.1 Scenario #1 

For the first scenario, seven policies were defined (see Table 10) with the BC Set 
containing only private BC implementations (e.g., Hyperledger (HYP), Multichain (MLC) 
and PostgreSQL (PSG)). PSG was defined as the BC for the default policy. Even though 
private BCs do not require transactions fees as public BCs do, they incur other costs, such 
as hardware and server maintenance, and support. Thus, an arbitrary cost of CHF 0.01 
per transaction was considered, triggering the switch of policies. 

Table 10: Policies Defined in Evaluation Scenario #1 

No BC Set Interval BC Type Cost [CHF] Profile 

1 
All Private 

BCs 
Daily Private 5 Performance 

2 
Hyperledger, 

Multichain 
Daily Private 8 Economic 

3 
Multichain, 

PostgreSQL 
Weekly Private 20 Performance 

4 
Hyperledger, 

Multichain 
Monthly Private 50 Performance 

5 
All Private 

BCs 
Yearly Private 100 Economic 

6 PostgreSQL Default - - - 

 

6.3.1.2 Scenario #2 

In the second evaluation scenario, only public BC (e.g., Bitcoin (BC), Ethereum 
(ETH), Stellar (XLM), EOS (EOS), and IOTA (MIOTA)) were selected to compose the BC 
Set. Nine policies were defined in this scenario (see Table 11), in which the profile 
alternated between Performance and Economic to evaluate both parameters in a balanced 
manner. Ethereum was arbitrary selected as the BC for the default policy. 
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Table 11: Policies Defined in Evaluation Scenario #2 

No BC Set Interval BC Type Cost [CHF] Profile 

1 
All Public 

BCs 
Daily Public 2 Performance 

2 
Bitcoin, 

Ethereum, 
EOS 

Daily Public 10 Economic 

3 
EOS, IOTA, 

Stellar 
Weekly Public 15 Performance 

4 Bitcoin, EOS Weekly Public 30 Economic 

5 
Ethereum, 
EOS, IOTA 

Monthly Public 40 Performance 

6 
Bitcoin, 

EOS, Stellar 
Monthly Public 60 Economic 

7 
Ethereum, 

EOS 
Yearly Public 80 Performance 

8 
All Public 

BCs 
Yearly Public 100 Economic 

9 Ethereum default - - - 

 

6.3.1.3 Scenario #3 

The last scenario combined both public and private BCs to evaluate the behavior of 
PleBeuS in heterogeneous environments. Seven policies were defined (presented in Table 
12), with PostgreSQL being the selected BC for the default policy. Moreover, to increase 
performance, the split parameter was set to true, meaning that the data will be stored in 
the BC Set in a round-robin scheme. Similarly, to Scenario #1, an arbitrary cost of CHF 
0.01 per transaction was considered for private BCs. 
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Table 12: Policies Defined in Evaluation Scenario #3 

No BC Set Interval BC Type 
Cost 
[CHF] 

Profile Split 

1 
All Private 

BCs 
Daily Private 15 Performance  

2 
All Private 

BCs 
Daily Private 30 Economic  

3 All BCs Weekly Indifferent 1500 Performance  

4 
All Public 

BCs 
Monthly Public 4000 Performance  

5 
All Public 

BCs 
Monthly Public 8000 Economic  

6 All BCs Yearly Indifferent 15000 Economic  

7 PostgreSQL Default - - -  

 

6.3.2 Results and Discussion 

For each scenario described above, 10000 storeData requests were sent to 

PleBeuS API, which generated a total of 10000 BC transactions. Each request 
represented one collected random data point from a generic sensor, e.g., temperature or 
humidity. The performance (i.e., TPS) of the public BCs followed the lower spectrum of the 
values from Table 7. For the private BCs, the values from the performance evaluation 
conducted in [26] were selected. The results of the conducted evaluation in each scenario 
are depicted in Figure 19. 

The policy switching mechanism is influenced by two parameters, (i) cost threshold, 
and (ii) time frame. As the time frame was not considered in the evaluation, the switch in 
the active policy was determined by the cost threshold. Figure 19a, Figure 19d, and Figure 
19g represent the number of transactions executed per policy in the scenarios. It can be 
seen in Figure 19a that the default policy (No. 6) is never activated in Scenario #1 because 
the 10000 transactions were executed within the yearly cost interval (i.e., 100 CHF) with 
policy No. 5 active for half of the total transactions, i.e.,  5000 transactions. Figure 19b 
confirms this behavior, depicting the costs thresholds for each policy, where the cost for 
policy No. 6 is exactly 50 CHF. Even though the same yearly cost was defined in Scenario 
#2, the switching occurred in a different pattern (see Figure 19d) due to the higher costs of 
interacting with public BCs. As soon as the accumulated cost reaches the yearly threshold 
in the last policy (No. 8), the default one is activated, and the accumulated cost reaches 
400 CHF. 

The results of the evaluation of the BC selection algorithms (cf. Section 4.2.4), are 
illustrated in Figure 19c, Figure 19f, and Figure 19i. The first two figures (Figure 19c and 
Figure 19f) show a clear distinction among the BCs selected due to the selected 
deployment type private BCs and public BCs. Moreover, the Bitcoin BC is not selected due 
to its high transaction costs because of its high prices (10000 USD as of September 22, 
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2019). However, in the third scenario (Figure 19i), with the split parameter selected, the 
transactions were sent to all available BCs, with PostgreSQL being selected 3500 times 
because it presents the fastest TPS and cheapest costs because it is a regular database. 
Despite the inclusion of PostgreSQL in the BC set, the split parameter guaranteed that 
others BC were selected with a tendency to private BCs being selected for the Economic 
profile. This tendency is confirmed because more than half of the 10000 transactions, 
approximately 6700 transactions, were included in Hyperledger, Multichain, and 
PostgreSQL. 

The results of the evaluation showed that if the BC set contains the same 
deployment type, the selection process is able to correctly minimize costs (e.g., not 
selecting Bitcoin) or maximize performance (e.g., selecting a generic database). However, 
if the BC set contains both private and public BCs, the priority is always given to private 
BCs because they present a higher TPS in comparison to public BCs. Moreover, the 
prices of interacting with public BCs must be taken into consideration when selecting this 
deployment type. Sending a transaction to a public BC for each sensor measurement is 
unfeasible, as the cryptocurrencies prices are higher compared to private BCs. Thus, 
measurements should be combined and only an average from the last n measurements 
included in a transaction to minimize costs. 

Even though private BCs are prioritized in the selection mechanism, one must take 
into consideration the degree of centralization that this type of deployment introduces. As 
described in Section 3.3.1, private BCs are controlled by a single entity or a group of 
trusted entities. Thus, are not decentralized, and the property of immutability might be 
broken if these entities collude or the central entity behaves maliciously. 
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Figure 19: Comparison of the Results in the Evaluation Scenarios, Where (a), (d) and (g) 
Represent Transactions Executed per Policy, (b), (e) and (h) Represent Costs per Policy, 

and (c), (f) and (i) Represent the Transactions Stored per BC 

6.4 Security Evaluation 

The overall framework deployment (described in Section 4.4.1) follows a centralized 
approach, i.e., a central server hosts the BC4CC application and the BC nodes. Further, it 
maintains the private keys of the BC addresses. Thus, being a point of interest to attacks, 
in this sense, a risk analysis and security of the deployment was conducted, which is 
described in Section 6.4.1. Further, the security of the device that monitors the 
temperature of the goods was evaluated in Section 6.4.2. 

6.4.1 Risk Analysis and Security Audit 

This section describes the most critical attack vectors for standard web application. 
In order to conduct the survey, the following sources were researched for possible attack 
vectors: Open Web Application Security Project (OWASP) Top 10 Web Application 
Security Risks [54], NIST Server Hardening guide [55], and Flask Security Guideline [56]. 
Further, it presents the conducted risk analysis and security audit. 

6.4.1.1 Attack Vectors 

The Open Web Application Security Project (OWASP) is an online community and 
non-profit organization founded in 2001 with the goal of producing freely-available content 
on the topic of web application security. Since its inception it has become the de-facto 
standard in the field, with other reputable entities, for example, the National Institute of 
Standards and Technology (NIST) or Payment Card Industry (PCI) Security Standards 
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Council [57] regularly referencing OWASP's work as an integral step to mitigating web 
application security risks. 

The OWASP Top 10 focuses on identifying the most serious web application risks 
in broad terms, but each organization is unique. As such, it is important to develop a risk 
analysis to accurately determine the level of risk of a system. In general, OWASP presents 
the most comprehensive survey on attack vectors, in particular when considering the 
previous versions as well. The latest version of the Top 10 was released in 2017 and 
contains the following items: 

1. Injection. An injection occurs when non-trusted data is sent to an interpreter as part 
of a command or query. This data can trick the interpreter into executing unintended 
commands or accessing data without proper authorization. 

2. Broken Authentication. Authentication mechanisms are often very complex. 
Mistakes in the implementation or configurations may expose the application to the 
risk of attackers compromising passwords, key, or session tokens, or impersonating 
other users.  

3. Sensitive Data Exposure. Insufficient controls may often result in attackers 
obtaining sensitive data, such as financial, healthcare, and Personally Identifiable 
Information (PII).  

4. XML External Entities (XXE).  XML documents may refer to external entities such 
as file system locations, external services, etc. A poorly configured XML processor 
may attempt to evaluate these entities which can then be used to disclose sensitive 
information, to cause a Denial-of-Service (DoS), or perform a Remote Code 
Execution (RCE) attack. 

5. Broken Access Control. Closely related to Broken Authentication, implementation 
and configuration errors might make it possible for attackers to access unauthorized 
functionality or data. Examples include viewing and/or changing another user's data 
and sensitive files, and change access rights. 

6. Security Misconfiguration. The most common risk, the result of insecure 
configurations might often end up exposing sensitive information, e.g., exposing an 
unencrypted database service with a weak password. Further, software at all levels 
should regularly be patched and upgraded. 

7. Cross-Site Scripting (XSS). An XSS flaw is a type of injection attack in which non-
trusted code is injected in a web page without validation or escaping. This allows 
attackers to execute scripts in the victim's browser which can result in session 
hijacking, defacement, or redirecting users to malicious sites. 

8. Insecure De-serialization. In many programming languages and frameworks, 
incoming request payloads (often JSON or XML) are transformed from byte streams 
or strings into an object. This process is called de-serialization. Through 
implementation errors or misconfiguration, it may be possible to abuse this de-
serialization to run the attackers code or cause a DoS.    

9. Using Components with Known Vulnerabilities.  Often exploits for commonly 
used libraries and frameworks become readily available. Using software with known 
vulnerabilities may facilitate compromise and reduce the effectiveness of other 
controls. 
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10. Insufficient Logging and Monitoring. Insufficient logging and monitoring make it 
easier for attackers to attack a system, maintain persistence, pivot to more system, 
and tamper, extract or destroy data. Most breaches studies show time to detect a 
breach is over 200 days, typically detected by external parties. 

Notable mentions from previous OWASP Top 10 releases are Cross-Site Request 
Forgery (CSRF) and Unvalidated Redirects and Forwards. A CSRF attack forces the 
victim's browser to send an authenticated request on behalf of the victim without the 
victim's knowledge to the target application. CSRF attacks leverage the fact that browsers 
automatically include cookies and authorization headers when sending a request to an 
application it has previously visited. Unvalidated Redirects and Forwards, in which 
applications often redirect users to other locations. Often this happens based on requests 

parameter (e.g., OAuth2's redirect_uri parameter). When these redirect parameters 

are not validated, an attacker can trick victims in browsing web pages controlled by the 
adversary. The fact that these redirect links come from the application itself helps in giving 
credibility to the malicious pages. 

Most recommendations on Flask's security Considerations page and NIST's Server 
Hardening guide, refer to secure configuration aspects. These would fall under OWASP's 
Top 10 Security Misconfiguration presented previously. 

6.4.1.2 Security Analysis 

Threat modeling is a process by which we attempt to draw a profile of probable 
attackers, the most likely attack vectors, and the assets most desired by an attacker [58]. 
Risk Analysis is then the process of identifying and estimating risks to the identified assets, 
given profiles of attackers [59]. 

Cybersecurity is by nature asymmetric. Considering as an example an email service 
in which only legitimate users can access only their own mailboxes: even such a system 
can be composed of various subsystems, such as a front-end, database, access control 
components, and email reading and sending components. An adversary has numerous 
possibilities for attacking the system. Any subcomponent could be compromised 
independently from each other. An attacker for example might attack the front-end, 
injecting code, which when executed in the context of a legitimate user's browser, leaks 
information, or the attacker might exploit a vulnerability in the operating system. 

In contrast, engineers developing and implementing security measures must 
consider the security of the entire system. Covering all possible attack scenarios is simply 
not feasible. Thus, to discuss attack surface and attack vectors, first it is necessary to 
define, which are the components to protect, and the motivation and skill level of possible 
attackers, in order to assess the probability and impact of an incident happening. 

Firstly, it is necessary to define the scope of the system that is going to be 
protected, which determines the scope of the following risk analysis. The scope of the 
system is defined in Section 4.4.1.  

Secondly, it is necessary to define the stakeholders. A stakeholder is any individual 
or group which is influenced by a platform's successes or failures. A stakeholder while 
being invested in the success of a system might also be a threat source. The following 
stakeholder were identified: 
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 Normal Users. A normal user can use the application through the front-end or the 
API and only see their own transactions or a transaction in case they have the 
transaction id. A normal user can be an employee of a logistics company or 
authorities auditing the cold chain. 

 Admin User. In addition to the permissions of a normal user, can create new users 
and view any transaction on the platform. 

 System administrator. System administrators of the platform do not have access 
to the application directly, but manages the infrastructure. 

 Communication Systems Group (CSG). The CSG developed the prototype and is 
interested in its smooth and secure operation. 

Thirdly, the assets present in the system and their relevance to security are discussed. 
The ISO 27000 standard defines an asset simply as “any item that has value to an 
organization” [60]. This does not simply include information, as one might be inclined to 
think at first thought, but can take many forms such as: information, software, physical 
assets (e.g., computers), services, people, and intangible assets (e.g., reputation). 

Usually, assets are subdivided in different categories such as physical, logical, 
persons, and intangible goods [61]. Inside the same categories we often find the same 
type of vulnerabilities; thus, these are grouped accordingly. Assets are then, associated to 
a certain state, depending on whether it complies with security requirements. 

Logical assets can be divided into two categories, (a) software, and (b) information 
[61]. Software includes operating systems and application software. All software can either 
be up-to-date; thus, patched with all available patches for known vulnerabilities or 
outdated. Information includes all data that is of value to stakeholders. The state of 
information can be determined by the security property associated with the information. 
For example, if a required property is availability, its state can be negatively affected if a 
legitimate user cannot access the information. Examples of information assets are the 
following: 

 Username & Passwords for the application or access tokens. While all 
transactions are not confidential (assuming they happen on public BCs), access to 
credentials allows to act on the behalf of the user, and as such should remain 
confidential. 

 Username & Passwords or access keys to the system components. Should 
only be known to the system administrator and should also remain confidential. 

 Transaction information. Integrity is guaranteed by the BCs. Regarding 
confidentiality, we should distinguish between transactions happening on public 
BCs and private ledgers:  

o Public BC. Information has to be available to anyone per as per BC 
definition. The availability is guaranteed by the decentralization of the BC 
itself, in case the BC4CC application went offline. 

o Private ledger. Information has to be available only to authorized users. 
Here the application has to apply access control to make sure, unauthorized 
users cannot access transaction information. The confidentiality guarantees 
of the private ledger itself are beyond the scope of this audit. Again 
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availability would be guaranteed, however, to legitimate users by checking 
the ledger itself, in case the application was offline. 

 BCs private keys. Private keys are even more critical than user credentials, as 
they allow to impersonate a user beyond the confines of the BC4CC application 
directly on the BC. As such, their confidentiality is of utmost importance. 
Additionally, compromised credentials can be changed, compromised private keys 
cannot. 

 Backups. In an incident, backups are necessary to avoid losing state and resuming 
operations as quickly as possible. Backups should be stored encrypted and only be 
accessible by the system administrator. Considering the system stores essentially 
private keys to various cryptocurrencies, a loss or leak of backups, would have 
catastrophic consequences to the platform and its image, with the effect of a loss of 
customers. 

Fourthly, the personnel involved in the development and operations of BC4CC must be 
identified, they are: 

 System administrators. Maintain the servers and VMs. Administrators have 
access to all critical data on the system. They keep the whole system up to date 
and running and are responsible for the secure configuration of the platform. 

 Developers. They have the task of continued development of the application and 
are inherently responsible for application security. 

Fifthly, the intangible goods must be defined. Intangible assets are typically of 
qualitative nature and reflect the intended public image of the service provider. 

 Customer confidence. Since the customer and auditors use BC4CC to ensure that 
no Service Level Agreement (SLA) violations took place, the integrity of the 
information provided is crucial to maintain customer confidence, which is a 
prerequisite for a successful business relationship. 

 Timeliness. Data needs to be available when the customers require it, as there are 
often time restrictions in place. 

Finally, the most relevant threat sources in the context of the prototype should be 
identified. They are the following: 

 Employees. System administrators, developers and anyone who has physical 
access to the machines running BC4CC have to be taken into account (this 
includes for example also the cleaning and the maintenance team). Employees 
might have malicious intents (for example stealing the funds managed by the 
system), but also well-meaning employees may cause unintentional damage. 

 Amateur Hackers. These adversaries usually only possess basic computer 
knowledge and use mainly known vulnerabilities for which exploits are publicly 
available. The reverse proxy is connected directly to the internet and is thus 
exposed to attacks by even amateur hackers. The web page and API are also 
indirectly connected. They may be motivated by the private keys to get to the 
cryptocurrencies stored or simply the challenge. 

 Skilled Hackers. A skilled hacker has expert knowledge in applications and 
networking. They will usually carry out more complex attacks and might even use 
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unpublished vulnerabilities (zero-days). They may be hired by a competitor or act 
on their own. They may also act out of their own desire for glory and challenge. 

 Competitors. Usually these adversaries do not carry out their own attacks but hire 
someone else to do them. They are usually interested in espionage, although 
damaging the image of the competition to sway potential customers might also be a 
goal. 

 Malware. Although malware such as viruses or worms may be used by the other 
categories, there is still the possibility of undirected attacks, which is why it is also 
listed as its own source. The goal for undirected malware attacks might be to 
control as many machines as possible to create a botnet, which can later be used to 
launch distributed denial of service attacks. Or ransomware for monetary gain. 

For the given system other possible threat sources might be (a) Organized crime or (b) 
Governmental Agencies. 

The former (a), is typically motivated by monetary gain. However, unless BC4CC will 
hold millions in cryptocurrencies (or rather the private keys to the funds), it seems unlikely 
that organized crime would be interested. Assuming organized crime is using BC4CC to 
transport medical drugs and give legitimacy to their business, another possibility is that, 
they might be interested in stealing private key to fake their cold-chain data to lower 
transportation costs in order to undercut competitors.  

While the latter (b) are usually motivated by espionage, surveillance, and criminal 
prosecution, BC4CC is a Business-to-Business (B2B) platform and as such it probably 
would not warrant much interest from the government, unless there is a suspicion of 
money laundering or tax fraud. Knowing this both actors would unlikely pose a threat to the 
system, not out of a lack of skills (it is rather the opposite, they would probably be the most 
skilled) but rather out of a lack of incentive. 

6.4.1.3 Risk Analysis 

The NIST defines risk as a function of the likelihood of a threat event happening, 
and the impact, the adverse effect, such an event has on the organization [59]. Thus, 
measures for both impact and likelihood, and the function by which to compute the 
resulting risk must be defined. Given the difficulty in assigning an absolute value to these 
measures, it was preferred to use a five-step qualitative scale as presented in Table 13 
and Table 14. 

In order to estimate the risk associated with an event, first, it must be defined, which 
the impact of this event is in case that it occurs. Table 13 presents the five steps of the 
impact severity. 
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Table 13: NIST Impact Definitions 

Severity Description 

Very High 
The event would have multiple severe or catastrophic adverse 
effects, in such a way that recovery might not be possible. 

High 

The event would have a severe or catastrophic adverse effect, in 
such a way (1) to cause a severe degradation or loss in mission 
capability; (2) cause major damage to assets and/or financial loss; 
or (3) result in human death or injury. 

Moderate 

The event would have a serious adverse effect, in such a way (1)  
to cause degradation in mission capability but its extent and 
duration would still allow an organization to perform its primary 
functions; (2)  result in significant damage to assets and/or financial 
loss; or (3) result in significant human injury 

Low 

The event would have a limited adverse effect, in such a way (1) to 
cause degradation in mission capability but its extent and duration 
would still allow an organization to perform its primary functions (2) 
result in minor damage to assets and/or financial loss; or (3) result 
in minor harm to individuals. 

Very low The event would have negligible adverse effect. 

 

Further, following [58], the likelihood of a threat event be initiated from an 
adversarial standpoint is defined in Table 14. 

 

Table 14: NIST Likelihood Definitions 

Severity Description 

Very High 
The threat source is highly motivated and sufficiently capable and 
is almost certain to initiate a threat event. The controls put in place 
are ineffective. 

High 
The threat source is highly motivated and sufficiently capable and 
is highly likely to initiate a threat event. The controls put in place 
are ineffective 

Moderate 
The threat source is motivated and capable. The controls put in 
place might impede the adversary. 

Low 
The threat source lacks the motivation or is not capable of initiating 
a threat event. The controls put in place might severely impede the 
adversary. 

Very low 
The threat source is neither motivated nor capable of initiating a 
threat event. The controls put in place are effective. 

 



BC4CC  Final Report 
  

 

 

 

Version 1.0  Page 65 of 88 
 © Copyright 2020, the Members of the BC4CC Consortium 

 

 

Having defined all necessary parameters, a risk evaluation, following the examples 
found in [61], is conducted on the assets defined in Section 6.4.1.2. In total, 35 Threats (T) 
were identified, the complete list can be found in Annex 1.  For each one of these threats, 
an impact, a likelihood, and a risk, was assigned, resulting in the risk matrix presented in 
Table 15. The matrix shows, that most risks are in the moderate-high region. These need 
to be addressed, either by accepting the risks or by introducing measures, before release. 
Considering the sensitivity of the data stored on the application, a high-level risk is to be 
expected. 

Table 15: Risk Matrix 

Likelihood/Impact Very Low Low Moderate High Very High 

Very High      

High T18 T19, T22 T2, T3 T8  

Moderate  T20 T1, T16, T35 T7 

T5, T6, T14, 
T15, T28, 
T29, T30, 

T31 

Low  
T25, T-26, 

T32 
T17, T23, T34 T21, T23 T4,  

Very Low    T24 T9, T10, T11 

 

Table 16: Risk Matrix Legend 

Color Legend 

 Very High - Not Acceptable. Risk reduction required. 

 High - Risk reduction necessary or risk acceptance after further 
analysis by stakeholders. 

 Moderate - Acceptable using ALARP. Consider further risk 
reduction. 

 Low – Acceptable. 

 Very Low – Acceptable. 

6.4.1.4 Security Audit 

This sections presents the security audit of the prototype deployed, which was 
carried out from September 2019 to December 2019.  

The general architecture of the system is well suited for the requirements. The 
design is simple and usable and only the firewall being connected to the internet is a good 
way to minimize exposure. Simplicity is an important security property, often overlooked 
[62]. Simple systems are easier to analyze and are less likely to contain flaws than 
complex ones. The choice of having only a reverse proxy exposed to the internet would 
also simplify DoS protection. All traffic goes through the reverse proxy; thus, the proxy 
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could be extended to rate limit requests which do not contain a valid, session cookie, and 
freely let through the rest of the requests. If a logged-in user is misbehaving, this can be 
handled on the application layer by rate limiting user requests as well. If the load is such 
that even with the countermeasures in place, the reverse proxy cannot handle the traffic, 
additional proxies can be added for load balancing. 

There are some improvement points possible. Communication inside the perimeter 
happens over HTTP, a channel which does not provide confidentiality: an adversary which 
sits behind the firewall, would be able to listen in on any traffic to the application, including 
user credentials and transaction information for private ledgers which should not be made 
public. Given that the university is a public institution, any number of people could enter 
the premise and depending on the internal UZH network configuration, access the CSG 
network from behind the firewall. Aside from passive traffic sniffing, also active MITM is 
possible, since HTTP is not an authenticated channel. A defense-in-depth approach would 
be to encrypt traffic even behind the perimeter to mitigate the risk. 

Eventually, when the application is deployed to production, special care should be 
taken to protect the connection between the BC4CC server and the RPC nodes. For 
instance, as an active interference of this connection the application being unusable would 
render due to not being able to fulfill its functional requirements anymore. In this sense, a 
single connection to a BC node is a single point of failure in the system. A possibility would 
be to introduce multiple connections to various remote nodes, to avoid a possible 
separation attack between BC4CC and the various BCs. At the moment the nodes are 
running in docker containers with a direct interface to the BC4CC application, thus the 
connection is secure, in the sense that it cannot be interrupted or interfered with. 

The storage of private keys could be further improved. At the moment all keys are 
stored as plain-text in the database. This is necessary in order to compute a transaction 
signature before sending the transaction to the BC. This does have the disadvantage that 
if an adversary were able to access the BC4CC server, all private keys would be 
compromised. A simple, yet effective, improvement is to delegate the signing operation to 
a further system which exposes an API to compute signatures and/or to use a tamper-
proof hardware module to store the private keys that handles transaction signing. This 
approach can be seen in Figure 20. This brings two advantages, (1) a compromise of the 
BC4CC server does not compromise the private keys, and (2) the business logic becomes 
simpler, which means that it is easier to reason about, which in turn increases the security 
of both the BC4CC and Private Keys Server. 
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Figure 20: Separation of the Signing Component from the BC4CC Server 

Additionally, BC4CC could employ a hot-wallet, cold-wallet approach. Two distinct 
sets of private keys are needed. The first set would be further stored as plain-text and 
directly accessible to BC4CC. The second set would be stored offline, in a hardware 
wallet. The majority of the cryptocurrencies would be stored in the cold-wallet. As the 
funds in the hot-wallet are used, more can be transferred from the cold-wallet in a 
controlled manner. Both approaches can be used in parallel in order to further reduce risk 
of compromise. 

The complete analysis of vulnerabilities found on the reverse proxy and the BC4CC 
server can be found in Annex 1. Each finding is assigned a score, which represents a 
subjective opinion on the severity of the finding as well as the cost-effectiveness of 
implementing the measure. However, two major ones are described in the next 
paragraphs. 

The first Cross-Site Request Forgery (CSRF) is an attack in which an adversary 
tries to carry out a legal operation in the name of another user [54]. An example is 
effecting a payment or changing a password. These are operations a user is authorized to 
do. If an adversary is able in changing the password of a user, he has effectively taken 
over the account.  For the attack to be successful the following conditions need to be 
fulfilled: 

 The user needs to have a valid session/be logged in at the time of the attack. 

 The attacked needs to lure the user to a specially crafted website. 

As soon as the user lands on the attacker's website, the “unintended” request is sent to 
the server. As the user already has a valid session, the browser sends the session token, 
stored in the cookie, to the server as well and the request is authorized. 
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1  fetch('https://bc4cc.ddns.net/api/createclient', { 

2 credentials: 'include', 

3 method: 'POST', 

4 body: 'username=csrf&password=test' + 

5 '&name=test&email=test%40test.com&phone=test', 

6 headers: { 

7  'Accept': 'text/html', 

8  'Content-Type': 'application/x-www-form-urlencoded' 

9 } 

10 }); 

 

Listing 6: CSRF Exploit Code 

In the case of BC4CC, if an authenticated admin user goes to a website containing 
the JavaScript code contained in Listing 6, a new user account will be created without the 
knowledge of the user. Thus, CSRF protection has to make sure that an operation is 
carried by the user on purpose. This may be achieved if for every request of the browser in 
the response of the server, an additional token is returned. This token must not be stored 
as cookie, otherwise it will always be included by default as the session cookie. This token 
needs to be reused with the next request. The server verifies whether the token in the new 
request matches with the token in the previous response. This procedure makes sure that 
the user triggers the operation on purpose. 

The second key concern is when using passwords for authentication, is how to 
verify passwords. The naive solution is to simply store passwords in clear text and check if 
they match on login requests. This has the disadvantage that if the user database is ever 
leaked, all credentials are immediately compromised. A better approach is to compute a 
cryptographic hash function of a password and store only the hash in the database. 
Knowledge of the hashing algorithm and clear text password, provided by the user on login 
(which is immediately discarded after verification), is enough to authenticate the user. 
Additionally, a salt, a per-password fixed-length random value, should be appended to the 
password when computing the hash. This has two goals: 

1. Two identical passwords, do not appear the same once hashed. 

2. Increase entropy with the aim of making pre-computed lookup attacks not feasible. 

The hashing function used should not be too fast to compute, thus enabling a brute-
force attack, while still being quick enough to be usable for legitimate purposes: if a 
hashing functions is too fast, an adversary can pre-compute lookup tables using word-lists 
and then use these to derive the user credentials; if it is too slow the application can 
become unusable and in extreme case enable DoS attacks. Special purpose-built adaptive 
algorithms like BCrypt and Argon2 are designed to be memory- and time-hard in order to 
make pre-computation attacks intractable [63]. 

In the BC4CC prototype, passwords are stored hashed using SHA-512 without a 
salt. SHA-512 while being a cryptographic hash, was designed to be fast for signature 
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verification, which makes it a poor candidate for password storage, indeed, SHA-512 is 6 
orders of magnitude faster than BCrypt [64]. 

6.4.1.5 Risk Analysis and Security Audit Summary 

The security audit has produced medium results within the scope of the project. The 
architecture is well-thought but there is margin for improvement. Handling of the private 
keys that give access to the cryptocurrencies needs to be hardened. A leak of the keys, 
has the potential for financial damage and DoS, which would have severe consequences 
on the customer's confidence in the platform, directly influencing the possibility of success 
of the project. This document presents possible improvements on the existing architecture 
which would greatly impede an adversary that attempts to access the keys or limit the 
damage an incident could cause. Hardening measures aside, there are no fundamental 
errors in the design of the BC4CC application. 

The implemented application however does present some issues. The most critical 
issue is the possibility of executing Cross-Site Request Forgery (CSRF). Through CSRF it 
is possible to create unverified user accounts, as well as performing transactions on behalf 
of the user. Creating unverified user accounts, removes any traceability of the operations 
occurred, and makes it impossible to recover any funds the user might have consumed. By 
generating enough CSRF requests the adversary has the possibility of locking a user out 
of the application by triggering the rate limiter. The CSRF vulnerability hurts the availability 
and non-repudiation security properties, makes any form of accounting impossible, as well 
as causing severe financial damage.  All complete findings as well as the architecture 
review can be found in Annex 1. 

6.4.2 Security Whitepaper Summary 

The security whitepaper for IoT-Enabled Hardware Temperature Loggers (cf. Annex 
2) has shown that the IoT device and Smart Contracts are the critical components of the 
system. Edge-to-Chain security can only be achieved by having digital signatures on the 
device itself. While certain risks remain, almost all attacks can be mitigated. Due to the link 
to the real-world, there are security concerns and risks that cannot be tackled at a 
technical level alone. 

One of the solutions to overcome those risks is auditing the Modum.io system and 
Smart Contracts. This allows for trust that the data on the chain cannot be mutated nor be 
originating from a faked device. There are however attack vectors on the user facing 
applications, such as the GUI based front-end application or reports generated for other 
systems. These limitations can only be overcome by verifying data against data stored in 
the chain.  

6.4.2.1 Logger Device 

Each logger is equipped with a Hardware Security Module (HSM). The HSM is 
designed to generate and store secret keys and to resist tampering, decapping and 
probing so that these keys cannot be retrieved. This tamper-resistance is assumed to be 
unbreakable in this work and, thus, the secret keys irretrievable.  

The advantages of using the HSM over implementing cryptography in software on 
the MCU are as follows:  
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 Prohibit cloning of loggers. I.e. if cryptography is implemented in software on the 
MCU, stealing a logger’s secret keys allows producing an arbitrary number of 
fake loggers that produce authentic signatures using the same secret keys. If a 
HSM is used, even if all other logger components can be subverted and the 
HSM can be made to sign arbitrary temperature measurements, only one logger 
device is affected. No clones can be manufactured since the secret keys cannot 
be retrieved from the HSM.  

 Cryptographic computations may be more power efficient since they are 
accelerated by dedicated hardware.  

 Cryptographic computations may be faster since they are accelerated by 
dedicated hardware.  

 The burden of correctly implementing cryptographic algorithms does not lie with 
modum.io.  

The MCU has to authenticate itself to the HSM for every use of the HSM before it 
can be used (this lasts until the MCU cuts power to the HSM or terminates the secure 
channel session). The HSM also authenticates itself toward the MCU (mutual 
authentication) to prevent man-in-the-middle attacks. A pre-shared symmetric key and 
challenge-response are used for authentication. The pre-shared-key is different for each 
logger and HSM. The key is only kept in RAM. Thus, a logger reset kills the key, yielding 
reverse-engineering efforts harder.  This risk analysis covers the risks of an operator or 
attacker attempting to remove unfavorable measurements from the temperature 
measurements log or attempting to modify the logger device to not record unfavorable 
measurements. Table 17shows a number of Logger Manipulation Risks that could occur, 
while  Table 18 shows the different mitigation steps that could be taken against them. 
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Table 17: Risks of Manipulation 

No.  Description  Mitigation Steps 

1 Change temperature data before upload to Smart Contract 1 

2 Upload temperature data from a different logger 2 

3 Replay old temperature data from the same logger 3,4 

4 Separate logger from shipment  

5 Switching loggers 2,3 

6 Restarting logger (with different parameters) 3,4,5 

7 Replaying previous BLE communication 4,6 

8 Critical bug in logger firmware 14 

9  Resoldering HSM onto different logger (or fake logger)  (7),(13),(16),(17),(18)  

10  Reverse-engineering firmware dump  (7),(16)  

11  Reflashing a logger with new firmware  (17),(18)  

12  Cloning a logger  10,17,18  

13  Modifying flash memory of a logger  (17),(18)  

14  Obtaining a firmware binary dump / full flash dump  (15),(17),(18)  

15  Manipulation of measurements in flash  12,(17),(18)  

16  Readout of data in RAM  (17),(18)  

17  Manipulation of data in RAM  (17),(18)  

18  Replacement of components  9,(17),(18)  

19  Manipulation of data on the bus  9,13,(17),(18)  

20  Tampering with the quartz  (17),(18)  

21  Replacing the modum.io master key certificate  11,(17),(18)  

22  Manipulate measurements of a single shipment  12,(17),(18)  

23  Craft a modified logger from the given hardware where all 
safeguards are disabled and measurements for each shipment 
can be modified easily (for internal use or with intent to sell it to 
interested logistics companies)  

(10),(16),(17),(18)  

24  Craft a large number of non-genuine loggers that look and 
function like the modum.io logger, but where all safeguards are 
disabled and measurements for each shipment can be modified 
easily  

10,(17),(18)  

25  Reuse the logger hardware for a completely different purpose 
(e.g. home automation)  

(17),(18)  
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Table 18: Mitigation Steps for Logger Risks 

No.  Description  Mitigates Risks No.  

1  Signing data on the logger  1  

2  Each logger has an individual key pair  2,5  

3  
The data signed on the logger for a shipment includes all 
shipment parameters  

3,5,6  

4  
The logger generates a random, unique shipment 
identifier every time a shipment parameter changes, as 
well as when a shipment is started  

3,5,6,7  

5  
Shipment parameters can only be changed when the 
logger is not recording  

6  

6  
Time syncing is performed through a protocol resistant 
to replay attacks  

7  

7  
A freshly rebooted logger cannot be used for shipment 
tracking  

(9),(10)  

8  
The recording enable characteristic write is optionally 
authenticated   

9  
Implausible measurements are cross-checked with other 
sensors  

18,19  

10  The ECC key pair private key is stored on a HSM  12,(23),24  

11  
The modum.io master key certificate is stored on the 
HSM  

21  

12  Measurements are hashed in real time on the HSM  15,22  

13  
Bus communication between the MCU and the HSM is 
authenticated and encrypted  

(9),19  

14  Independent code review for logger firmware  8  

15  All cryptographic operations are computed on the HSM  (14)  

16  
The key used to authenticate the MCU toward the HSM 
is different for each logger  

(9),(10),(23)  

17  Tamper-evident casing  
(9),(11),(12),(13),(14),(15), 
(16),(17),(18),(19),(20),(21), 
(22),(23),(24),(25)  

18  Trace loggers until recycling  
(9),(11),(12),(13),(14),(15), 
(16),(17),(18),(19),(20),(21), 
(22),(23),(24),(25)  

6.4.2.2 Smart Contract 

In the modum.io system one Smart Contract is created per shipment. The same 
contract code is always used; which auditors should regularly check by comparing against 
their own compiled binary. The public modum.io master key is hard-coded in the Smart 
Contract and the contract code can verify the authenticity of the uploaded data along the 
chain of trust back to the master key.  

During construction, the Smart Contract is supplied a hash of all shipment 
parameters that are known at the beginning of the shipment, which is stored immutably in 



BC4CC  Final Report 
  

 

 

 

Version 1.0  Page 73 of 88 
 © Copyright 2020, the Members of the BC4CC Consortium 

 

 

the contract state. This includes tracking number, interval, alarm criteria, nonce, start 
timestamp, fingerprint of the time stamping server certificate, and the starter operator ID. 
At the end of a shipment a compliance decision is computed via a call of a constant 
method.   

Then, via non-constant method call, the Smart Contract is supplied a hash of all 
shipment data, the previously computed compliance decision and a signature of the hash 
(and timestamp). All of these are stored immutably in the contract state, i.e., this function 
call is only allowed once per Smart Contract. A constant method call allows verification of 
the stored hashes against the confidential shipment data, the certificate of the logger that 
signed the data and the provisioning certificate completing the chain-of-trust back to the 
master key. If the hashes do not match the shipment parameters or shipment data, if the 
signature isn’t valid for the temperature report hash, if the certificate cannot be verified 
along the chain to the master key, or if the stored compliance decision does not match the 
shipment data, an exception is thrown and the auditor should investigate the issue.  

Table 19: Risks of Manipulation of the Smart Contract 

No.  Description  Mitigation Steps  

28  Loss of Ethereum availability  (19),21  

29  Loss of confidentiality through Smart Contract data  22  

30  Compromise of the owner key of the Smart Contract  19,20,23  

31  Hack / buggy contract code  21,23,24,26,30  

32  Temperature data can be overwritten  25  

33  Modification of the master key  23  

34  Duplicates of the modum.io contract are deployed  20,23  

35  Replay of old data  27,29  

36  Hard fork  19,28  

 

Table 20: Mitigation Steps for Smart Contract Risks 

No. Description Mitigates Risks No.  

19  Shipment data is stored immutably in the Smart Contract  (28),30,36  

20  
The Smart Contract checks the signature of uploaded data and 
validity of the logger certificate  

30,34  

21  Modum.io system is Blockchain agnostic  28,31  

22  No non-hashed data stored in the Smart Contract  29  

23  Regular checking of Smart Contract instances  30,31,33,34  

24  Monitoring Ethereum / Blockchain news channels  31  

25  Spot testing Smart Contract data  32  

26  Local evaluation of shipment data  31  

27  Checking for hash collisions  35  

28  Stakeholder mentoring  36  

29  Checking for orphaned Smart Contracts  35  

30  Smart Contract code is publically auditable  31  
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Table 19 shows the manipulation risks in connection to the Smart Contract and 
Table 20 shows the Mitigation Steps for those risks. A more detailed description of the 
risks and mitigation steps as shown in Section 6.4.2.1 and Section 6.4.2.2 can be found in 
Annex 2. 

6.5 Business Economic Impact Evaluation 

In order to evaluate the business economic impact, the total transactions per day is 
estimated to be around 2000 and the data size to be included in the BC is 68 Byte. With 
the help of the transaction fee function derived for each of the BC4CC public BC, the fee 
per transaction is calculated and the total fee for the 2000 transactions is estimated and 
shown in Figure 21 as an overall comparison among the BC4CC public BCs. Private BCs 
were not compared because they do not present any transaction costs, besides the 
maintenance of the BC node hardware, which is outside of the scope of this evaluation. 

 

 
Figure 21: Transaction Fee Economic Impact 

6.5.1 Bitcoin 

The value of Bitcoin per byte on July 5, 2019 was 0.00000058 BTC/Byte. This value 
is used to calculate the fee per transaction. Based on the equations below, the estimation 
of the fee for 2000 transactions was 2280 USD. 

 

𝐹𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐵𝑖𝑡𝑐𝑜𝑖𝑛 = (174 × 0.00000058) = 0.00010092 𝐵𝑇𝐶 

 
𝐹𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐷𝑜𝑙𝑙𝑎𝑟 = 1.14 𝑈𝑆𝐷 𝑎𝑠 𝑜𝑓 5𝑡ℎ 𝐽𝑢𝑙𝑦 2019 

 
𝐹𝑒𝑒 𝑓𝑜𝑟 2000 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 = 2000 × 1.14 = 2280 𝑈𝑆𝐷 

  

2280

31.4 8.8 0 0
0

500

1000

1500

2000

2500

Bitcoin Ethereum EOS Stellar Peercoin

FE
E 

O
F 

2
0

0
0

 T
R

A
N

SA
C

TI
O

N
 [

U
SD

]

PUBLIC BLOCKCHAINS

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 + 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 = 106 + 68 = 174 𝐵𝑦𝑡𝑒 
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6.5.2 Ethereum 

In Ethereum, 68 gas is paid for every byte of data for a transaction [15]. Since the 
data to be included in the BC is 68 Byte, the gas consumed equals 4624 gas. 21000 unit 
of gas is consumed as a base fee for any transaction. 

 
𝐺𝑎𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑖𝑛 𝑎 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑏𝑎𝑠𝑒 𝑔𝑎𝑠 + (68 × 68) 

 
𝐺𝑎𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑖𝑛 𝑎 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 = 21000 + 4624 = 25624 𝑔𝑎𝑠 

 

The average gas price of 2.1 Gwei (i.e., 2100000000 wei) is used to calculate the 
transaction cost.  As of July 5, 2019 the value of 53810.4 Gwei equals 0.0000538104 
Ether. Based on the equations below, the estimation of the fee for 2000 transactions was 
31.4 USD. 
 

 
𝐹𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝐺𝑤𝑒𝑖 = 25624 × 2.1 = 53810.4 𝐺𝑤𝑒𝑖 

 
𝐹𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐸𝑡ℎ𝑒𝑟 = 0.0000538104 

 
𝐹𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐷𝑜𝑙𝑙𝑎𝑟 = 0.0157 𝑈𝑆𝐷 

 
𝐹𝑒𝑒 𝑓𝑜𝑟 2000 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 = 31.4 𝑈𝑆𝐷 

6.5.3 EOS 

The value of current network price July 9, 2019 was 0.00036709 EOS/KiB/Day. This 
value was used to calculate the net usage fee. The value of the CPU price on July 9, 2019 
was 0.00199012 EOS/ms/Day. Based on the equations below, the estimation of the fee for 
2000 transactions was 8.8 USD. 
 

 
 

𝐶𝑃𝑈 𝑢𝑠𝑎𝑔𝑒 𝑓𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 = ((350 𝜇𝑠) × 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑝𝑢 𝑝𝑟𝑖𝑐𝑒) ÷ 1000 
 

𝐶𝑃𝑈 𝑢𝑠𝑎𝑔𝑒 𝑓𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 = (350 𝜇𝑠 × 0.00199012) ÷ 1000 = 0.0006965 

 

       𝑇𝑜𝑡𝑎𝑙 𝑓𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐸𝑂𝑆
= 𝑁𝑒𝑡 𝑢𝑠𝑎𝑔𝑒 𝑓𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 + 𝐶𝑃𝑈 𝑢𝑠𝑎𝑔𝑒 𝑓𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 

 

𝑇𝑜𝑡𝑎𝑙 𝑓𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐸𝑂𝑆 = 0.00007026 + 0.0006965 = 0.00076676 𝐸𝑂𝑆 

 

𝐹𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐷𝑜𝑙𝑙𝑎𝑟 = 0.0044 𝑈𝑆𝐷 
 

𝐹𝑒𝑒 𝑓𝑜𝑟 2000 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 = 8.8 𝑈𝑆𝐷 

 

𝑁𝑒𝑡 𝑢𝑠𝑎𝑔𝑒 𝑓𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 = ((128 + 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎) × 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑝𝑟𝑖𝑐𝑒) ÷ 1024 
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6.5.4 Stellar 

As in Stellar the calculation for the fees are based on operations, and the store of 
data in a transaction requires one operation, which is the “payment” operation, the base 
fee is neglected. However, there is the need to maintain a minimum balance. Thus, based 
on the equations below, the estimation of the fee for 2000 transactions was 0.1 USD. 
   

 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 1 

 
𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 = 1 × 0.00001 𝑋𝐿𝑀 = 0.00001 𝑋𝐿𝑀 

 
𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐷𝑜𝑙𝑙𝑎𝑟 = 0 𝑈𝑆𝐷 

 
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = (2 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑡𝑟𝑖𝑒𝑠) × 𝑏𝑎𝑠𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 

 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 = 0 

 
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 2 × 0.5 𝑋𝐿𝑀 = 1 𝑋𝐿𝑀 = 0.10 𝑈𝑆𝐷 

 

6.5.5 Peercoin 

Peercoin follows a calculation based on the transaction size and the size of data in 
the transaction, which is similar to Bitcoin. However, the values are lower than Bitcoin. 
Thus, based on the equations below, the estimation of the fee for 2000 transactions was 
0.0 USD. 

 
𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 + 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 

 
𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 = 196 + 68 

 

 
𝐹𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑃𝑃𝐶 = (𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 × 0.01) ÷ 1024 

 
𝐹𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑃𝑃𝐶 = (264 × 0.01) ÷ 1024 = 0.00257 

 
𝐹𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐷𝑜𝑙𝑙𝑎𝑟 = 0 𝑈𝑆𝐷 

 
𝐹𝑒𝑒 𝑓𝑜𝑟 2000 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 = 0 𝑈𝑆𝐷 

 

6.5.6 Summary of the Business Evaluation 

This business evaluation presents the solution to estimate the transaction fee of 
BC4CC public BCs. Various factors affecting the transaction fee are identified and also the 
methods and functions used to estimate the fee per transaction for the BC4CC public BCs 
are shown. There are various methods to calculate the fee per transaction. However, in 
this report the functions provided by the respective API of the BC adapter are used to 
estimate the transaction fee. By analyzing the various factors affecting the transaction fee, 
the private BC tends to be the most fee-effective way as there is no transaction fee for the 
transaction validation. Suggestions to minimize the transaction fee would be the initiator of 

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑒𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 × 𝑏𝑎𝑠𝑒 𝑓𝑒𝑒 
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the transaction should monitor the average BC transaction fee in the respective network, if 
the transaction is not time sensitive, then the initiator can wait until the average fee drops. 
The sender can check the average fee on block explorers or websites. 

Thus, the evaluation underlines the reason why many companies choose private 
BCs over public ones. While the transaction costs of public BCs can amount to quite a 
large sum, as seen with Bitcoin, private BCs do not have any transaction costs. This is 
certainly much more attractive to potential users, which do not want to or cannot wait for 
fees to drop. Moreover, despite the fact that the lesser known BCs are much less 
expensive, new users are more likely to consider the BCs they know, such as Bitcoin or 
Ethereum, and be discouraged by the costs. 
 

7 Summary and Conclusions 

The BC-agnostic BC4CC system as developed, prototyped, and evaluated proves 
to be much more effective than a single public BC integration, since this solution does not 
only offer interoperability, but the ideal BC can be chosen automatically depending on the 
needs specified by customers in advance. However, the current demand request for BC-
based data sharing is lower at the time of writing. Many organizations still struggle to adopt 
public BC technology; may it be due to technical concerns or the lack of perceived 
benefits. Instead of using public BC technology, there is a trend in the industry to build 
consortia or even enterprise approaches. Within the space of BC4CC, there are two 
consortia-based approaches relevant: PharmaLedger and MediLedger. Both strive to 
provide a BC-based framework in which widely trusted, BC-enabled healthcare solutions 
can be built. These networks are not open – in contrast to the BC4CC Open API – and can 
only be joined by known entities, therefore, providing a different approach to solve a 
comparable set of problems BC4CC was addressing successfully inits way. To summarize 
from an Industry perspective, the BC4CC approach allows for a simpler adoption of the BC 
and provides a measurable benefit compared to an individual public BC integration. This 
comes at the cost of a challenge with respect to (1) the status quo and (2) non-public, 
consortia-based approaches for specific applications.  

From an academic point of view, the BC4CC project presented several research 
challenges during the 26 months in which the project was executed. Thus, it supported the 
development of novel and applicable solutions, pushing the state-of-the-art in a myriad of 
areas, ranging from the BCs, via Internet-of-Things (IoT), to network management. Such 
results have been verified on its own and via respective metrics – as outlined in this report 
– and they are visible by the number and the excellent quality of the student thesis 
developed in the context of the project, which comprised two Master thesis (Timo 
Hegnauer and Daniel Lakic), one Master Basis Module developed by Patrick Wider, two 
Independent Studies from Alexander Hofmann and Andreas Knecht, and a Master Project 
developed by Andreas Knecht and Tim Strasser; all defined, supervised, and evaluated by 
UZH, the research partner. Thus, even an educational perspective of this BC4CC project 
became measurable. Moreover, the research dimension of the BC4CC project is also 
partially embedded in the PhD thesis of Eder John Scheid. 

The overall excellent quality of the project outcomes was proven on an independent 
basis, too, especially via the accepted, presented, and published papers in several 
conferences with a high reputation and visibility, i.e., the 16th IFIP/IEEE Symposium on 
Integrated Network and Service Management (IM 2019), the 44th IEEE Conference on 
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Local Computer Networks (LCN 2019), and the IFIP/IEEE Network Operations and 
Management Symposium (NOMS 2020).  

7.1 Project Outcomes 

The research of the BC4CC was disclosed in different well-known peer-reviewed 
conferences, carrying (either and both) the support of Institute of Electrical and Electronics 
Engineers (IEEE) and the International Federation for Information Processing (IFIP), in the 
form scientific publications (i.e., papers). All the papers produced with this project’s results 
targeted conferences in the networking area, focusing on network management and 
distributed systems, which are areas that this research can further contribute to the state-
of-the-art. 

7.1.1 IM 19 – Accepted and Published 

The 16th IFIP/IEEE Symposium on Integrated Network and Service Management 
(IM 2019) was held in April 8-12 2019 in Washington DC, USA. Held in odd-numbered 
years since 1989, IM 2019 carries forward the 30+ years’ tradition of NOMS and IM as the 
primary IEEE Communications Society’s forum for technical exchange on management of 
information and communication technology, focusing on research, development, 
integration, standards, operational experiences, and user communities. IM had an 
acceptance rate of 28.6% in 2017, in which 154 papers were submitted and 44 accepted. 

The paper entitled “Toward a Policy-Based Blockchain Agnostic Framework” was 
presented as a poster by Eder John Scheid. The paper described an overview of the 
whole BC4CC project and provided directions towards the policy-based BC selection and 
the interoperability API. 

7.1.2 LCN 19 – Accepted and Published 

The 44th IEEE Conference on Local Computer Networks (LCN 2019) was held in 
October 14-17, 2019 in Osnabrück, Germany. The IEEE LCN conference is the premier 
conference on the leading edge of theoretical and practical aspects of computer 
networking. LCN is a highly interactive conference that enables an effective interchange of 
results and ideas among researchers, users, and product developers. For the past 43 
years, major developments from high-speed networks to the global Internet to specialized 
sensor networks have been reported at this conference. LCN 2019 had an acceptance 
rate of 28.9%, in which 135 papers were submitted and 39 accepted. 

The paper entitled “Bifröst: a Modular Blockchain Interoperability API” was 
presented by Eder John Scheid. The paper disclosed the results of the research on the 
interoperability API, along with design and implementation aspects, and a discussion on 
the performance and security. 

7.1.3 NOMS 2020 – Accepted and to be Published 

The 2020 IEEE/IFIP Network Operations and Management Symposium (NOMS 
2020) will be held in 20-24 April 2020 in Budapest, Hungary. NOMS has been held in 
every even-numbered year since 1988. This is the 32th anniversary of NOMS; and it is 
marked by the finalization of Horizon 2020 efforts - celebrating European innovation. 
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NOMS had an acceptance rate of 29.6% in 2018, in which 189 papers were submitted and 
56 accepted. 

The paper entitled “PleBeuS: a Policy-based Blockchain Selection Framework” was 
accepted for publication and will be presented by one of the project participants. The paper 
disclosed the results of the research on Policy-based BC selection, along with design and 
implementation aspects of the framework, and a discussion its feasibility. 

7.1.4 Security-related White Paper 

Andreas Knecht’s Whitepaper “Security Whitepaper for IoT-Enabled Hardware 
Temperature Logger” provides a blueprint on how data integrity can be achieved Edge-to-
Chain. It shows the importance and limitations of considering the weakest link in the 
system, the device that captures the data, and how to overcome the limitations. This 
whitepaper was developed in the context of an Independent Study (IS) at the CSG. 

7.1.5 Measurable modum.io Improvement  

During the project, the Modum.io system migrated from a public BC based approach 
to a consortia-based approach, while only using the public BC technology for 
demonstration purposes. The benefits of the BC4CC have been shown on the 
demonstration system, but the impact on the productive system is limited at this point in 
time. BC4CC is, however, future-proof and enables Modum.io and other providers to 
quickly and easily migrate towards public networks if demanded by the industry.  

7.2 Future Work 

To build up on the existing work, the PleBeuS Framework can be extended by more 
criteria or more complex rules can be added. This would allow faster and more precise 
decision making when choosing the best suited BC technology. Further, in the Bifröst 
context, security improvements could be made, transaction-related error handling and 
communication to Smart Contracts can be implemented, and research toward developing 
a decentralized version of the solution, while standardizing the BC interaction is 
envisioned. 

With the BC area still being young and fast-paced, changes in underlying technologies 
are unavoidable, therefore, maintaining different integrations is key to ensure the future 
success of the BC4CC approach. Other BC technologies, or support of more specific 
events, can be added, to further improve the functionality scope of Bifröst.  
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9 Abbreviations 

Short Form Full Form 

API Application Programming Interface 

BC Blockchain 

BLU Bluetooth Low Energy 

CRUD Create-Read-Update-Delete 

CPU Central Processing Unit 

CSG Communication Systems Group 

CSRF Cross-Site Request Forgery 

dApp Distributed Application 

DB Database 

DoS Denial-of-Service 

DDoS Distributed Denial-of-Service 

DLT Distributed Ledger Technology 

ECA Event-Condition-Action 

ER Entity Relationship 

EU Europäische Union 

GUI Graphical User Interface 

HSMS Hardware Security Module 

HTML Hypertext Markup Language 

HTTP Hyper Text Transfer Protocol 

HTTPS Hyper Text Transfer Protocols 

ID Identification 

IP Internet Protocol 

IS Independent Study 

I/O Input/Output 

IEEE Institute of Electrical and Electronics Engineers 

IETF Internet Engineering Task Force 

IFIP International Federation for Information Processing 

IPFS InterPlanetary File System 

ISO International Organization for Standardization 

IoT Internet-of-Things 

JIT Just-in-time 

JS JavaScript 

JSON JavaScript Object Notation 

LL Linked List 

MCU Microcontroller Unit 

NIST National Institute of Standards and Technology 

NFC Near Field Communication 

OS Operational System 

OWASP Open Web Application Security Project 

P2P Peer-to-peer 

PCI Payment Card Industry 
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PDP Policy Decision Point 

PEP Policy Enforcement Point 

PMS Policy Management System 

PMT Policy Management Tool 

PBNM Policy-Based Network Management 

PBM Policy-based Management 

PoC Proof-of-Concept 

PoS Proof-of-Stake 

PoW Proof-of-Work 

QoS Quality-of-Service 

RAM Random Access Memory 

REST Representational State Transfer 

RPC Remote Procedure Call 

SHA Secure Hash Algorithms 

SLA Service Level Agreement 

SC Smart Contract 

SGX Software Guard Extensions 

SQL Structured Query Language 

SSL Secure Sockets Layer 

SSH Secure Shell 

TLS Transport Layer Security 

TPS Transactions per Second 

TTP Trusted Third Party 

UI User Interface 

URL Uniform Resource Locator 

USB Universal Serial Bus 

UZH Universität Zürich 
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