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Abstract

LiDAR has been widely used in many fields since it was invented 50 years ago. Nowadays.
It is especially popular in the area of autonomous cars to detect objects. However, LiDAR
could also provide a new means to improve the way of monitoring objects and analyzing
their behaviors. Considering one scenario of an in-store shopping environment, where
a camera detects customers and tracks the time that people stayed at some positions.
Based on the detected data, the business companies could analyze peoples behaviors and
improve business strategies by providing personalized shopping experiences. With the
collaboration of Livealytics, this project will bring the two parts together by using two
3D Intel RealSense L515 LiDAR devices and developing a method of tracking in-store
customers. The method LiCounter will be developed by combining Yolo and Deep Sort
algorithms for detection and tracking, which is evaluated in real locations to collect the
data. Further, data is used for classification results by Gaussian mixture clustering method
based on business metrics. At the end, it gives a visualization of clustering results for
each user.
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Chapter 1

Introduction

While web user behavior analytics is prevalent, in-store customer behavior analytics is
less common due to difficulties in tracking users without disturbing them. With WiFi
and LiDAR combined, we can take a passive approach to monitor user movements within
stores. Several analogies between online and in-store behaviors can be established, and
similar approaches to online customer analytics can be used for in-store performance met-
rics extractions, as well as machine learning approaches for customer segmentation. We
can therefore use the analytics results to optimize marketing campaigns and personalize
shopping experiences, which help companies to gain competitive advantages. This will be
approached by detecting the positions and duration of customers.

Even though customers shopping experiences have involved many social perspectives,
understanding the process could benefit companies to gain competitive advantages by
optimizing market campaigns and personalizing the shopping experiences. It will provide
insights for researchers about which area has higher shopping density, which path that
customers passing by are the most efficient, etc [25]. In-store tracking is one of the
major means to capture the activities that customers interact with the environment, as
well as observing the flow of customers. However, privacy and prevalence of customers
become the biggest concern with the usage of cameras [15]. Not only customers private
information will be recorded, but also cameras could disturb customers and affect their
shopping experiences.

With a passive approach, LiDAR (Light Detection and Ranging) scanner could be an
ideal device for in-door tracking, avoiding privacy concerns raised by use of cameras.
Considering the accuracy and area coverage, two 3D-LiDAR (Intel Realsense L515) devices
will be used simultaneously in this study.

1.1 Motivation

Understanding customers and their behaviors is a key point of any company. The analysis
of wireless signals emitted by portable devices such as smartphones, laptops, and tablets
enables the extraction of the positional data from those devices. In public locations,
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2 CHAPTER 1. INTRODUCTION

security measures such as emergency routes can be enhanced by analyzing crowd behavior.
Considering the scenario where it is necessary to observe the flow of people in a public
environment of passing by, requiring people to associate their mobile devices with an
access point is not a feasible strategy. Thus, the passive approach to monitor mobile
devices for this use case is ideal. Within the range of passive tracking approaches, it is
possible to make the tracking more accurate by combining passively monitored data, with
data gathered by a LiDAR (Light Detection and Ranging) scanner.

This project is in collaboration with livealytics 1, a company using tracking measure-
ment solutions to provide insights in order to improve live customer experiences, optimize
operational costs and increase sales [2].

A bachelor thesis LaFlector: Passive Tracking based on LiDAR by Lukas Mueller explored
using a single 2D LiDAR for tracking [16]. This thesis explore the design proposed on
the bachelor thesis, further extending the approach to a three dimensional approach using
two 3D LiDARs for more reliable tracking results.

1.2 Project Goals

There are four major steps in this project.

Method of detection and tracking Collecting raw distance data by LiDAR, an algorithm
of detecting the class of people and tracking the detected object is trained and
performed.

Data Storing At each timestamp, the person ID, the center location of the detected per-
son, and the distance from the person to the camera collected from two LiDAR
cameras are sent to InfluxDB on a virtual machine.

Method testing A designed scenario based on test results are described for realizing and
evaluating the method performance.

Data Analysis Data collected from testing scenarios is used for building a clustering model
to predict the interest level of each customer.

1.3 Thesis Outline

Section 2 presents related theoretical work for object detection and tracking, as well as an
introduction on hardware preparation, database support and algorithm choices. Section
3 presents the solution of this from architecture design to implementation. Section 4
is the detailed implementations on data collection, localization, tracking, data storage,
synchronization, light conditions testing, and data analysis. Section 5 is the evaluation
in a designed scenario. Section 6 shows the final considerations, including a summary of
this project, conclusions and future work suggestions.

1https://www.livealytics.com/



Chapter 2

Background and Related work

This section gives an overview of related theoretical work which represents the background
research to realize the goal of this project. The research covers related work about object
detection, tracking method, other developed localization methods, classification method,
LiDAR background information, InfluxDB, virtual machine and Network Time Protocal.

2.1 Related Work

2.1.1 Object Detection

There are many object detection algorithms available. Deformable parts model (DPM) is
one of the most popular algorithms which is capable of handling large variations but speed
is a big concern [24]. The classifier of DPM adopts a sliding windows approach which runs
through each evenly spaced space over the image [12]. The other algorithm R-CNN stands
for regional proposal network, which is accurate but slow only with 5 frames per second
[3]. The method of R-CNN is hard to optimise because It runs a classifier on potentially
generated bounding boxes in the image, and then refines bounding boxes, eliminating the
duplicates [12].

YOLO (You only look once) is a new emerging method based on 53 convolutional neural
network layers that can be deployed in consumer products which is fast [12]. For a real-
time detection task, YOLO could achieve more than twice the average precision than
other detection systems. Also, YOLO processes the entire image instead of regional or
sliding window methods to avoid mistakes of background patches. Further, YOLO learns
a highly generalizable representation of objects [12].

Reasoning globally is an advantage of YOLO since it uses features from the entire image
to predict bounding boxes across all classes simultaneously. For each input image, it will
be divided into S × S grids. Within each grid, bounding boxes and confidence score will
be predicted which reflects how accurate the box contains the objects. Bounding boxes
contain 5 values, centre position of bounding box x, y; width, height of boxes in the image,

3



4 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: Bound box predictions [11]

and confidence. Confidence is the measurement of IOU(Intersection over union), Formula
2.1, between the predicted box and any ground truth box. Conditional class probabilities
are also predicted for each bounding box. It represents which classes the detected object
belongs to and how accurate the prediction is. Calculation formula is shown in Formula
2.3 [12].

IOU = Area of Overlay÷ Area of Union (2.1)

Confidence Score = Pr(Object)× IOU truth
pred (2.2)

Pr(classi|Object)× PrObject× IOU truth
pred = Pr(classi)× IOU truth

pred (2.3)

In YOLOv3, updated four predictions for bounding boxes x, y, w and h will be calculated
with sigmoid function based on previous version, as shown in Figure 2.1. Binary cross-
entropy loss is used for class prediction. The neural network Darknet-53 is performed for
feature extractions. The structure of the neural network is shown in Figure 2.2 [11].

2.1.2 Customized object detector

Instead of reinventing the wheel, we referred to the YOLOv3-Cloud-Tutorial by the AI guy.
1 This tutorial includes enabling GPU on google colab, cloning and building the darknet,

1https://github.com/theAIGuysCode/YOLOv3-Cloud-Tutorial
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Figure 2.2: Architecture of Darknet-53 Network [11]

labeling customized dataset, configuring files for training, downloading pretrained weights,
training and visualizing the result [19].

We choose to follow this tutorial because first Google Colab offers GPU which makes the
training of our model much faster. Secondly, darknet is an open source neural network
framework which is fast and easy to install, i.e. darknet13 in this project, and we use a
famous implementation from AlexeyAB 2. In addition, this tutorial suggests some good
choices for hyperparameters which work well with our training and testing data.

2.1.3 Object Tracking

Tractor is a framework that was proposed by Bergmann et al. based on the detection
module, but it is limited by the appearance of a target which could be uncertain or
occluded; as well as the time of tracking which is unable to re-identify of the second
appearance of the object [18]. Siamese Track-RCNN contains three branches: track,
detect and re-identify of the object, which is accurate but might be slow. Another model,
Jointly learns the Detector and Embedding model (JDE), it outputs detected objects and
the corresponding embedding of the detected boxes at the same time. This presents nearly
real-time detection but is limited by low resolution [23]. However, Deep Sort is an ideal
algorithm that could be applied in this case, it is fast with 16 frames per second, accurate
and handles occlusion very well.

2https://github.com/AlexeyAB/darknet
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Deep Sort could handle the occlusion for a longer time, and reduce the number of ID
transformations [7]. Deep Sort stands for Extension of SORT (Simple Online Real time
Tracker) Algorithm, which combines detector and tracker for multiple object tracking.
Detector will use the one trained from YOLOv3. Kalman filter is used in the tracker for
prediction. It processes frame-by-frame data to find the object position and velocity of
motion by predicting the position of the target in the current frame and updating the
tracker parameters [5].

For matching, Deep Sort uses the linear combination of motion information and feature
information. Equation 2.4 is the measurement of Mahalanobis distance for motion infor-
mation, which indicates the distance between the detected result from Kalman filter and
predicted result. d j is the position in j-th frame, y i is the position by Kalman filter
by i-th tracker. A threshold is pre-set for Mahalanobis distance, which means successful
matching if the distance is below a threshold [7].

d1i,j = (dj − yi)TS−1
i (dj − yi) (2.4)

d2i,j = min{1− rTj r
(i)
k |r

(i)
k ∈ Ri} (2.5)

ci,j = λd1i,j + (1− λ)d1i,j (2.6)

Cosine distance is the second measurement for matching to solve occlusion and frequent
ID conversion in rapid displacement. As Equation 2.5 shown, it calculates the minimum
cosine distance between the feature set and descriptor. The final Deep Sort measurement
is the linear combination of two distance measurements, refer to Equation 2.6 [7].

2.1.4 Other Localization Methods

For tracking methods of the indoor environment, several related methods have been devel-
oped. BluePIL is a passive system for Bluetooth device localization, which delivers results
in near-real-time. It uses a path loss model for localization [14]. Similarly, LaFlector is a
LiDAR-based indoor tracking system. It is capable of detecting, classifying and tracking
several objects simultaneously which can also be used to count and track visitors interest
[16]. ASIMOV is another passive tracking method that uses WiFi to identify device infor-
mation by the correlation of randomized information about the displacement of devices
[13].

2.1.5 Clustering

Clustering analysis is an unsupervised machine learning technique commonly used for
customer segmentation tasks. To train a clustering model, we do not need to label data.
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Sen et al. used mobile sensing data to detect in-store customer behaviors in order to
tell customers shopping intentions by performing a 2-stage clustering-cum-classification
technique.[17] Kansal et al. explored three different clustering methods, namely k-Means,
Agglomerative, and Meanshift to study customer segmentation, and found 5 segments
including Careless, Careful, Standard,Target and Sensible customers.[22]

The number for K in K-means is calculated by elbow method. SSE is the cum of square
distance between centroids and samples in that cluster. Elbow is the point where as K
increases, the most decline in SSE is found. K centroids are initialized, and each sample
point is assigned to the closest centroid. Centroids then get updated as the mean of each
cluster. Samples are assigned to each new centroid, and centroids get updated. This
iterative process continues until the location of centroids no longer changes.

Agglomerative Clustering forms hierarchy using dendrograms. By merging closest data
points, clusters form.

2.2 LiDar

2.2.1 Background

LiDAR is an acronym of Light Detection and Ranging. This instrument is used to de-
termine the distance by targeting an object with light pulses and measure the time for
the reflected light to return to the receiver. The first application dates back to 1970s to
determine the flight height of an airplane. Later, it also applied in the advent of global
positioning systems [1]. In this project, Intel Realsense L515 LiDAR devices is used, which
is a depth application especially designed for an in-door environment.

2.2.2 Intel Realsense L515 LiDAR Strength and Weakness

The Intel Realsense L515 LiDAR is a small size device, which is convenient and easy for
mobility. It is the worlds smallest high-resolution LiDAR camera, with only 100 grams.
Without ambient light, It can capture accurate depth data in the range of 0.25m to 9m
[6], which is ideal for indoor environment detection use cases. This type of camera has a
wide depth field of view, 70◦×55◦ (±3◦). For an indoor environment, it is wide enough to
cover the detected areas in this project. The detected image by LiDAR has a clear edge
based on depth which is beneficial for object detection.

However, drawbacks still exist. The most influential concern is the ambient light which
greatly interferes with the detection range. Infrared light from sunshine could degrade
the resolution of detected images and affect the measurement results. Thus, the extent of
light affection is considered and measured in this project as well.
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2.3 InfluxDB

InfluxDB is an open source purpose-built database system to store time-stamped data,
it could keep the high resolution of raw data and handle millions of data per second.
Currently, it is the most popular time series database system. It supports several pro-
gramming languages, SQL-like query language; also, it could be easily installed [9]. With
the advantage of high throughput ingest and real-time querying, InfluxDB will support
high volume of depth data and two LiDAR devices synchronization in this project.

2.4 Virtual Machine

Virtualization is a major technology for cloud computing, which was introduced in the
1960s by IBM. It is a transparent way of sharing both time and resources for multiple
users to use hardware concurrently. With the rapid growth of processing and storage
power, it becomes more abundant, powerful and cheaper [10]. In this project, a VM is
used for a convenient synchronization of both LiDARs.

2.5 Network Time Protocal

Time latency of two LiDAR devices would affect the process of detecting people during
the test step, for instance, if one LiDAR responses later than the other one, there will
be two records of the same Person in the data. After connecting to the virtual machine,
Network Time Protocol, is applied to synchronize two devices to make the individual
device’s clock accurate. The Switzerland time pool is selected to connect two devices.



Chapter 3

Architecture and Workflow

This chapter describes the detailed scope of this project from a general perspective. Sec-
tion 3.1 and 3.2 give the requirements and assumptions of this project which lead to the
design of the architecture in Section 3.3. Section 3.4 describes all the components in each
phase, which is also the list of implementations introduced in Chapter 4.

3.1 Requirements

Based on the objectiveness of this project, feature requirements need to be satisfied. These
requirements also relate to the design of the architecture and workflow of each component.

Color images for training model: The data read from LiDAR are depth data which are
visualized as grayscale images. Images are applied with colormap in order to train the
detection model to recognize customized people. A pool of images needs to be collected.

Valid Localization method: The method developed for detecting and tracking should be
valid when LiDAR starts to detect people. It should be able to detect, track and count
people when they are in the frame, including different postures of people and multiple
people in the same frame.

Synchronization and data storage: Two LiDARs need to be synchronized. They send
data to the same data storage space with synchronized timestamps in order to add up
the correct number of people at each timestamp. When a person is near the border of
two cameras, the person is detected twice, once by each camera, but should be counted
as one.

Metrics for classification: Each detected person should have a class label of interest level.
The classification results should be visualized as a graph.

9
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3.2 Assumptions

The designed method are performed based on an ideal conditions, which is assumed as
follows:

Usability of LiDAR: There is no functional problem of LiDAR performance, which returns
very clear images with sharp edges of all objects.

Position of LiDAR: Two LiDARs are always placed horizontally at the same height or
have the same setup in the scenario. They both see the same objects and not disturbed
by other devices.

3.3 Architecture

To meet the requirements mentioned on Section 3.1, the architecture of this solution
contains mainly two parts, local machine and virtual machine. cf Figure 3.1. Local ma-
chines are used for first steps, including collecting training images, training a detector and
tracker. Images are collected with only one camera. Also, the classification is performed
on a local machine with a visualized result returned. To analyze the data locally, it is
easier to define metrics and change the measurements.

The other part is a virtual machine, which is aiming for synchronization of two LiDAR
devices. Data collected locally is sent to the virtual influxDB for storing and querying,
and then the queried data is sent back to the local machine. In this way, more LiDAR
devices could be added if it is needed, since they all connect to the Virtual Machine and
data can be stored in the cloud instead of the usage of a local socket.

3.4 Components of Workflow

The workflow of this project contains three phases: The first phase is to design a method
for localization; the second phase is synchronizing two LiDARs and preparing data for
segmentation; and the last phase is data analysis.

A detailed illustration of the workflow is defined in the Figure 3.2. Three phases in total.
In phase 1, only one LiDAR will be used to collect images in different scenarios, these
images will be labeled manually in order to train the detector of YOLOV3 and the tracker
of Deep Sort. Virtual machine will be set up with InfluxDB installed, which is able to
receive data from both LiDARs. Based on the result from phase 1, the detected distance
of LiDAR with light is tested for a scenario setup. Two LiDARs are used in a designed
mock scenario of shopping, where location, light and setup would be measured to test
the method. Data are collected from the scenario, which is used for segmentation in the
next phase. Phase 3 is implemented locally, containing data cleaning, defining metrics
for classification and user segmentation. Finally, a clustered result is returned containing
whether the user is interested in an object or not.
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Figure 3.1: Architecture of the solution

Figure 3.2: Workflow of the solution
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Chapter 4

Implementation

This chapter describes the details of components to realize the method of this project, as
illustrated in the previous chapter. Section 4.1 is about how the data is collected, which is
a basic step of further implementation. Section 4.2 and 4.3 describe the training process
of the YOLOv3 detector and the Deep Sort tracker, these two sections. Section 4.4 is
aiming to describe the process of storing and querying data for further steps. Section 4.5
mentions the implementation of the virtual machine for synchronization of both LiDAR
devices. Section 4.6 is the step of light and distance testing, which helps to define the
testing scenario setup. Section 4.7 is the step of data analysis, in specific classification.

4.1 Data Preparation

4.1.1 Data collection theory

The SDK is an open-source and cross-platform library supported by multiple common
programming languages [6]. Package pyrealsense2 is used to access the official Intel Re-
alSense SDK 2.0 in python.

Pyrealsense2 package supports streaming data from the LiDAR sensor and converting
the 640*480 objects to a NumPy array of depth data stored as a variable depth image.
Further, openCV library (stands for Open Source Computer Vision Library) converted
the depth data into a color map to use existing computer vision algorithms. To prepare a
training dataset, data are saved as images with people passing by and different positions
at several locations, Bin entrance, train station, and lab. Example images are shown in
Figure 4.1.

4.1.2 Data collection setup

Data are collected from four locations and divide into two categories regarding the light
conditions. Different settings are applied to different locations. Figure 4.2, Figure 4.3 and
Figure 4.4 show the real setup environment of data collection.

13
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Figure 4.1: Example images of LiDAR collected

Daytime Condition with natural light.

• Lab: It is the most convenient location considering the light, but the number
of people are limited. Different angles are considered and tested. cf Figure 4.2

• Train station: An ideal location to have more people and more light influences.
LiDAR is settled underground. The farthest distance detected is around 3.5
meters. cf Figure 4.3

• Bin entrance: The LiDAR is set on a chair on the side of the entrance, facing
people when they pass by. The distance is set as 2 meters. cf Figure 4.4

Night Without natural light.

• Mock condition at home: There is no ambient light, and a minimal number
of people passing by. This scenario allows long-time data collections and more
postures.

Figure 4.2: Data collecting at the lab
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(a) Train station setup (b) Train station setup distance

Figure 4.3: Data collecting at Train station

(a) Bin Entrance (b) Bin entrance distance

Figure 4.4: Data collecting at Bin entrance

4.2 Object Detection

4.2.1 Image Labelling

Labeling 1is an image annotation tool for generating text files with object location in-
formation that the YOLO algorithm can use [21]. To label images for customized object
detection, in our case, a Person, we manually draw rectangles around the Person as closely
as possible and set the class name as person, shown in Figure 4.5. We use the system
timestamps as image names to avoid repeated names. The resulting data is a text file
with the coordinate, x, and y of each object in the image and index of the class name.

1https://github.com/tzutalin/labelImg
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Figure 4.5: Labeling images with the tool LabelImg for customized object

4.2.2 YOLO for custom object detection

The color images used in detection are converted from depth data and applied with col-
ormap, which is different from the normal RGB images. In other words, the images do
not show details of the person and the pretrained detector can not recognize the person
in this type of image. Thus, a customized object detector needs to be trained. The image
together with the text file generated by LabelImg is our dataset for training. Data is split
into Train and Test as well. With YOLOv3, a pre trained Darknet-53 model weights is
used for the customized object detector in order to achieve a faster and more accurate
training [19].

4.2.2.1 Colab setup and preparation

The training is processed with Google Colab GPU. We clone darknet from AlexeyAB’s
repository2, adjust the Makefile to enable OPENCV and GPU for darknet, and then build
darknet.

4.2.2.2 Train test data split

As mentioned in Section 4.1.2, 120 images are collected for each condition. Training and
testing data were split with a ratio of 8:2.

To know how the model generalizes to different environments, we use different training
and testing data combinations and compare the model loss. 9 models are compared by
mixing the data from two conditions, as Table 4.1 shows.

2https://github.com/AlexeyAB/darknet



4.3. DEEP SORT TRACKING 17

Train/Test Daytime Night Mix
Daytime Model1 Model2 Model3
Night Model4 Model5 Model6
Mix Model7 Model8 Model9

Table 4.1: Different combinations of training models based on data collection conditions.

4.2.2.3 Training

With labeled training and testing data prepared, several parameters are specified in config-
uration. Parameters 3 are suggested as follows: batch = 64, subdivisions = 16, max batches
= 6000, steps = 4800, 5400, width = 416, height = 416. classes = 1 in the three YOLO
layers and filters = 18 in the three convolutional layers before the YOLO layers [19].

In the file obj. Names, only one class person contained. File obj. Data is created that
includes information of a number of classes, the path for train.txt, test.txt, obj. Names,
and a backup path for saving training weights throughout training. Finally, the Weights
file is created that contains the weights of our trained custom object detection model.

4.2.2.4 Comparison of model Loss

Table 4.2 below shows the average loss of all 9 models and their comparisons. Training
figures are attached below to show the trend of training loss through iterations.

Train/Test Daytime Night Mix
Daytime 0.1899 0.1697 0.1856
Night 0.1025 0.1069 0.0861
Mix 0.1534 0.1610 0.1423

Table 4.2: Average loss comparisons over 9 models

4.3 Deep Sort Tracking

This section gives the detail of how to implement a Deep Sort tracker 4 based on the
YOLOv3 detector trained before. Specifically, detector helps to detect people from a real
time video and tracker works to track them until people are out of frame. It gives an ID
and object center position of each detected person, which are used in the classification.

3https://github.com/theAIGuysCode/YOLOv3-Cloud-Tutorial
4https://github.com/theAIGuysCode/yolov3 deepsort
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Figure 4.6: Model 1 Daytime training loss

Figure 4.7: Model 2 Daytime and night combined model training loss
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Figure 4.8: Model 3 Daytime and night combined model training loss

Figure 4.9: Model 4 Night and daytime combined model training loss
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Figure 4.10: Model 5 Night and daytime combined model training loss

Figure 4.11: Model 6 Night model training loss
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Figure 4.12: Model 7 Mixed and daytime combined model training loss

Figure 4.13: Model 8 Mixed and night combined model training loss
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Figure 4.14: Model 9 Mixed combined model training loss

4.3.1 Setting

There are some functions that need to be defined to run the Deep Sort tracker. Recording
the ID of each tracking box, the coordinate of each tracking box center, the distance from
camera to the center point, and current number of people in the frame.

Function yolo.predict(img in) yields boxes, scores, classes, nums. Using track.to tlbr to
get the predicted bounding box in format of (min x, min y, max x, max y). The center
of detected object is the diagonal center of the bounding box, which can be calculated
using: cx = int((bbox[0] + bbox[2])/2) and cy = int((bbox[1] + bbox[3])/2).

In the file of realsense camera.py, we returned the depth frame matrix minus depth, using
method rs.get frame stream(); depth of the object center can then be obtained directly
from the matrix using function depth mm = depth[cy, cx].

To run the Deep Sort tracker, converting the YOLOv3 weights into TensorFlow model
files.5 [20].

4.3.2 Running

To run the Deep Sort tracking algorithm in real time, command line as below: ”python
object tracker.py –output ./data/video/results.avi weights ./weights/YOLOV3-custom.tf
num classes 2 classes ./data/labels/obj.names”.

5https://github.com/theAIGuysCode/YOLOV3 deepsort
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4.4 Data Storage

The Figure 4.15 shows the setup step of InfuxDB, the file config cloud.ini stores informa-
tion that could connect to the InfluxDB cloud.

Function write api.write is used to write data from package influxdbclient, and func-
tion query api.query data frame stream is used to query data from InfluxDB. Figure 4.16
shows the process to clean queried data directly from InfluxDB. When streaming data is
collected from two LiDAR devices, it writes to the InfluxDB cloud. The information about
detected person ID, position X and position Y, distance to camera, and a timestamp are
queried later, and saved to local devices for further analysis.

Figure 4.15: InfluxDB Setup

Figure 4.16: InfluxDB Query Data

4.5 Synchronization

4.5.1 Virtual Machine

As introduced in the related work in Section 2.4, a virtual machine is used to collect data
from two LiDARs by running the developed method from phase 1. With the advantage of
VM, no physical router is needed for connecting two LiDARs devices in the same network.
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Also, by installing the InfluxDB on the VM directly, the query step is finished on the VM
as well.

4.6 LiDAR Light Testing

In order to find the best setup of LiDAR, the app ”LightMeter” is applied to test the
factor of lighting in an indoor environment. In the lab, there are 4 types of light condition
modes: all lights on; first half light on; second half lights on and all lights off.

With a phone camera facing the laptop, and starting the LiDAR streaming and visualizing,
moving away the phone camera until LiDAR is unable to detect the object; and then
recording the light measurement metrics with a picture. As shown in the Figure 4.17, the
darker the condition is, the further LiDAR could detect; however, the distance does not
change too much for all four conditions, approximately 30 centimeters difference. The
furthest distance detected is around 0.5 meters when all lights turn off.

With this step of measurement, the detected distance are not be affected too much in an
indoor environment. This measurement also explains the best training model loss is with
the condition of night.

4.7 Testing Scenario Design

Due to the limitations of measurements in a real case, a scenario is made for testing the
developed method with a mock shopping scenario. A product is chosen as the point of
interest, in this case, it is the scooter. Testers need to pass through this scenario by
performing as they are shopping, some of them are interested in the scooter by standing
close to the scooter and staying longer; and some of them are not interested, thus passing
by the scooter quicker. The data are trying to collect as many different user cases as
possible.

A home basement location is chosen with complete darkness. Model 5 weights are used.
Scenarios are designed as the Figure 4.18 shows. Two LiDARs are facing each other from
4.6 meters away, the object is located in the middle(scooter), 2.3 meters from 2 cameras.

4.8 Classification

4.8.1 Data Preprocessing

This sub-section includes how to clean the queried data from the designed scenario. Also,
measurement metrics are defined in this section.
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(a) Full lights off (b) full lights on

(c) right half-lights off (d) left half-lights off

Figure 4.17: Four lights condition testing in lab
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Figure 4.18: Testing scenario setup

4.8.1.1 Data Cleaning

From the queried data of the VM, only one feature needs to be cleaned.Timestamps appear
as strings in format 2022-01-19 14:51:28.156420 is convert into datetime object in the
format of %Y-%m-%d %H:%M:%S.%f.

Outliers exist in depth measurements. Since the range of detection is only 9 meters in
an ideal environment, any depth data above 9 meters(9000 mm) is an outlier. Some
measurements only appear in one timestamp, having a duration of zero. Since a person
cannot pass through the scenario setting within one frame, the zero duration data are also
considered as outliers.

4.8.1.2 From Camera Frame to World Frame

This LiDAR has Depth field of view 70◦×55◦ (±3◦. Camera front glass with -4.5mm and
focal length is 1.88mm [6]. L515 camera outputs depth, which is the distance from the
object to the image plane, as Figure 4.19.

The center of the detected object is recorded as (u, v) coordinates in the Image plane.
There is ambiguity in projecting the points from image frame into world frame, but
knowing the focal length and the depth help to disambiguate the points in the world
frame, as Figure 4.20.

Two different coordinate systems are used for two cameras.In Figure 4.21, LiDAR2 is
an example of mapping the 2D image coordinates to 3D world coordinates. The point
of interest is defined as (0, 2) from top view. Only considering the horizontal distance
between the detected object center and the point of interest because this tells how near
the object is to the point of interest.

Here are two steps of how to convert from camera frame to the world frame:
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Figure 4.19: Converting Camera frame to world frame[6]

1. Conversion factor: Given the field of view of 70 degree, focal length of 1.88 mm, and
image plane width of 640 pixels, we can calculate the focal length in pixels. The
conversion factor alpha is defined as mm per pixel.

2. Distance from object center to point of interest: We already know the depth d from
LiDAR, the x from image plane coordinates, and the focal length f in pixels. We
convert d to pixels using the conversion factor from step 1. Using similar triangles,
we can derive the X which is the horizontal distance from object center to the point
of interest in the top view using:

X/u = (d+ f)/f (4.1)

The X is presented in pixels. We convert it to mm using the conversion factor. Since
we place the cameras 2 meters away from each other, we can easily calculate the
euclidean distance between the object center and the point of interest (marked in
blue in Figure 4.22) as

√
X2 + (2− d)2.

4.8.2 Features

This section gives the list of features in the cleaned data that are used for classification.

4.8.2.1 Total number of people

This feature is defined as the number of distinct IDs in the frame within a defined time
range. To count this value, data are grouped by ID.There are two cased to count.
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Figure 4.20: Define coordinates

1. Number of people at each timestamp: Since we cap the depth of each camera at 2
meters, there is no overlapping area. The number of people at each timestamp is
the sum of counts in both cameras. There are no repetitive counts in this case.

2. Total number of people: Repetitive counts can occur in this case. People are assigned
a different ID when going out of the frame and coming back. This also applies to
people going from one camera field to the other one. One person would be assigned
two IDs when crossing from one camera to the other camera field, and be counted
as two people.

To solve this problem, we merge the IDs by replacing the two IDs of the same
person who is detected by both cameras with a one new ID. This can be done
because whenever a person is crossing the border, it is within the detection range
of both cameras, and is assigned two different IDs.

A person can be assigned a third ID when going outside the range of one camera
and coming back, and a fourth ID when the same happens for the other camera, so
on and so forth. Therefore, we need to keep track of all the IDs that represent the
same person and merge them as one ID to avoid repetitive count.

We do this by analyzing neighboring points according to timestamp. We identify
the samples as should be merged when they satisfy all three criterias 1) happen at
the same time: the time difference between the neighboring points below 1 second.
2) at the border: the sum of depth from both cameras between 16000 to 18000mm.
3)taken by two cameras: one ID with the ’ 1’ flag and one without. We build
a dataframe called ’merge ID’ that collects all the IDs and their next IDs which
should be merged. Then we build a graph cf Figure 5.1that has all the IDs as
nodes and the neighboring relation as edges. All the IDs that belong to a connected
graph are the same person that has been detected multiple times. In our original
dataframe, we replace all the IDs that belong to the same graph with a new ID
starting with ’m ’ followed by an index number of that graph.
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Figure 4.21: Designed figure of testing scenario

4.8.2.2 Distance to point of interest

Given horizontal field of view h fov = 70, focal length f = 1.88, focal length in pixels
f p = 320/(tan((h fov/2) ∗ pi/180)), we can get conversion factor alpha α = f/f p.

Using similar triangle, we have (x mm/α)/(x− 320) = (d+ f)/f . Therefore, distance in
mm is

√
x mm2 + (2000− d)2.

For each timestamp and corresponding coordinate we can calculate the distance to point
of interest. To analyze the distance from each person to the point of interest, we can
group by IDs, and use aggregation measurements like min, max, mean, and median to
describe the distance from person to point of interest.

In code: distance = df.groupby(’ID’)[’dist mm’].agg([’min’, ’max’,’mean’,’median’])

4.8.2.3 Duration

Duration is the time length of each ID appearing in the frame. In the data cleaning step,
we get the timestamp in the right datetime format, so that the time difference can be
calculated by the maximum of timestamp minus the minimum of timestamp.

To get the duration of each ID, we group data by ID, and convert the time difference into
seconds for easier comparisons. In code:

duration = df.groupby(’ID’)[’timestamp’].agg([’min’, ’max’])
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Figure 4.22: Calculating Distance

duration[’duration’] = duration[’max’] - duration[’min’]

duration[’duration s’] = duration[’duration’].apply(lambda x: x.seconds)

4.8.3 User Segmentation

The Gaussian mixture clustering model is performed to segment users into different in-
terest levels. Different groups of features can be taken into consideration when applying
clustering algorithms.

Duration and distance are the most intuitive two features for measuring user interests,
and can be plotted on a 2D image with high explain-ability. Several variations of duration
and distance can be applied.

• Duration and mean distance: Mean is usually the default choice, but the distri-
bution of distance might be skewed, making the mean distance biased.The mean
distance can also be considered as duration weighted distance. This measurement is
useful because time spent far away from the point of interest can not represent users’
interest. Some users might be standing and chatting or looking at other points.

• Duration and median of distance: Using median, we are less sensitive to extreme
values, but we may lose the track of small distances which we are interested in.
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• Duration and min distance: We can track the closest distance between people and
the point of interest, but if one person spends most of the time away from the point
and pass by closely, it is likely to be clustered as someone with high interest.

4.8.4 Metrics

Metrics give an overview of the performance, and can lead to generation of actionable
insights. There are some general properties of a good metric (STEDI) [4].

• Sensitivity: can move, detect a statistically-significant change. A/A experiment.
Robustness.

• Trustworthiness: correct, avoid selection bias.

• Efficiency: easy to compute at scale, low cost of measurement.

• Debuggability and Action-ability: debug why.

• Interpretability and Directionality: understand, movement is good or bad.

We can encourage users’ behavioral change by intervening in the system, in order to
optimize the metrics. Optimizations can be done manually, automatically, or by combining
both. The manual optimization refers to the Hypothesis-Experiment-Evaluation Cycle,
which is widely known in internet companies as A/B test, and in academia as controlled
experiments[8].

Below are metrics that we developed for the LiDAR counting application, focusing on
measuring user number and user interest by measuring duration and distance.

• Total user number. Total number of distinct users appeared in the scene.

• Accumulated interested user number. Total number of distinct users that have
spent more than 10 seconds within 0.5 meter range of the point of interest.

• Percentage of interested users. It is calculated by the Interested users / total
users. Measuring how attractive the object is to the group of visited users. This is
especially useful when we have multiple points of interest placing in different places
that might have different user flow.

This metric is not affected by the total user number. For example, a product is
visited by 10 users, 10 interested is considered to be more attractive than an object
visited by 100 users but only 15 users are interested.

• Total time spent on an interesting object. When the distance between the user and
the point of interest is below 0.5 meter and the time spent is more than 3 seconds,
the time spent is counted as time spent on the interested object.
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• Variation of interest. Variation of user flow calculated on interested users. It is a
product-centered metrics, which gives insights about which product is more likely
to be interested, even more likely to be bought and which does not.

• Variation of user flow. Divide the entire time into windows of 10 seconds. The
number of people that have appeared in each 10-second window is one record. The
variation of user flow is the variance of the record. A high total user number and
high variation of user flow might be caused by visitor groups. A high total user
number and a low variation indicates a stable user flow. This metric gives insights
about the venue instead of products. For instance, it can be used to compare two
retail stores at different locations, etc.



Chapter 5

Evaluation

This chapter presents the result of clustering from data that the LiCounter method de-
veloped. Section 5.1 gives the logic behind clustering, as well as visualization. Section 5.2
discusses the chosen model for tracking, designed scenario setups, and evaluates projects
requirements are satisfied. Section 5.3 lists the limitations.

5.1 Results

5.1.1 Raw Data

First, there are different possible interpretations from the raw data. It has column names
ID, position x position y, Timenow, depth mm. Three levels of interest are listed below:

1. Level of ’Not interested’: Table 5.1 is an example of people who stay 1 meter away
from the point of interest for 10 seconds. The last column is the distance to the
camera in mm. Since the depth measurement is inaccurate, and is around 4 times
larger than the actual depth, 4000 mm means about 1 meter away from the camera.

Table 5.2 is an example of people passing by near the point of interest.The person
is around 1.75 meters from the camera, 0.25 meter to the point of interest, and
simultaneously detected by two cameras.

2. Level of ’Interested’: This is an example of people staying near the point of interest
for more than 10 seconds. Notice that when the two cameras are both detecting
people, they can be the same person or different persons. It is possible to infer the
simultaneous detection case by adding up the depth in two cameras. If they add
up to around 16000mm, we consider it as detecting the same person. Below is an
example of simultaneously detecting two people because the depths add up to only
around 14000 mm, cf 5.3.

3. Unclear level: People staying within 1 meter for long time period: cf Table 5.4.
User 16 stays for 25 seconds, at 0.75 meter from the point of interest. Within 0.5
meter but short time: User 18 stayed within 0.5 meter, for 8 seconds. cf Table 5.5.

33
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ID Position x Position y Timenow depth mm

33 207 265
20220126
18:11:17.695467

4377

33 201 265
20220126
18:11:19.558252

4454

33 205 264
20220126
18:11:21.314639

4400

33 193 265
20220126
18:11:23.314639

4400

33 149 268
20220126
18:11:25.181597

3328

33 133 269
20220126
18:11:27.028346

2925

Table 5.1: Raw data of people stay less than 10 seconds

5.1.2 Merged ID

To avoid repetitive counts, IDs of people that are simultaneously detected by both cameras
are merged according to section 4.8.2.1. Below Figure 5.1 shows the graph of merging 43
IDs into 7 new IDs.

5.1.3 Aggregated data

Duration and distance to point of interest can be aggregated according to ID. By seeing
the duration and distance data together, we can tell whether a person is interested or not.
User 10 1, 26196 1, and 26340 1 have a duration of 0 second. Since we assume a person
cannot pass through the frame within 1 second, we consider them as outliers. Examples
are given in the following tables. cf Table 5.6

Interest • User 12 stays for 17 seconds, is as close as 0.1 meter to the point of interest,
and always within 1 meter.

• User 1 1 stays for 10 seconds, with a mean distance below 1 meter, and the
minimum distance of 0.5 meter.

• User m 4 stays for the longest duration, almost 5 minutes, with minimum
distance below 0.2 meter, and on average below 1 meter.

Not Interest • User 26318 stays for 124 seconds, which is a relatively long time. The
distance is however mostly above 1 meter.

• User 17 1 is also always more than 1 meter away, staying for 13 seconds.

Unclear • User 26349 1 stayed for 36 seconds, but mostly more than 1 meter to the
point of interest.
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ID Position x Position y Timenow depth mm

84 1 673 192
2022-01-26
17:43:47.716286

10381

58 330 254
2022-01-26
17:43:48.912462

7266

84 1 678 193
2022-01-26
17:43:50.284571

10537

84 1 679 192
2022-01-26
17:43:50.782269

10565

58 324 262
2022-01-26 17:
43:52.304258

7103

84 1 679 187
2022-01-26
17:43:52.304258

10500

58 319 265
2022-01-26
17:43:53.819235

7041

84 1 679 191
2022-01-26
17:43:53.838248

10519

58 318 269
2022-01-26
17:43:54.743203

7025

84 1 679 196
2022-01-26
17:43:55.619163

10493

58 319 267
2022-01-26
17:43:56.703451

7096

Table 5.2: Raw data of people passing by

5.1.4 Clustering

We compare the duration to the different aggregated measures of distance. 16 distinct
persons are detected in this testing scenario.

1. Duration and mean distance

Mean distance is distance weighted by duration since the longer duration the more
appearance, thus more weight. Only two clusters are identified. This clustering
result ignores the distance to the point of interest as a horizontal line at around 125
seconds can well separate the two clusters. cf Figure 5.2

2. Duration and median distance

Three clusters are identified in Figure 5.3. Cluster 1 (yellow) with duration below
60 seconds, regardless of the distance, Cluster 2 (purple) with duration above 150
seconds and distance above 1.2 meter, and cluster 3 (blue) with duration above 200
seconds, distance below 1 meter.

Cluster 1 is a mix of interested and uninterested people. Those who stay below 10
seconds, no matter how long the distance, are not likely to be interested. Those
who stay longer time with distance below 1 meter are likely to be interested. This
also fits our description of an unclear group.
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Figure 5.1: Graph of Merged ID

Cluster 2 represents people who stay long but far away from the point of interest.
We consider them as not interested since 1.2 meters is too far to see the point of
interest clearly. People might be just staying somewhere and chatting.

Cluster 3 is more likely to be an interested group, since they stay very long, and
relatively near (below 1 meter).

3. Duration and min distance

Min distance shows more clearly the group of people who are not interested. Cluster
2, the yellow cluster in Figure 5.4, shows people who have never been within 0.9
meter to the point of interest.

5.2 Discussion

5.2.1 Model Training and Selection

Nine models are trained for YOLOv3 detector. Training using daytime dataset always
performs worse than training using night time dataset, and the mixed one is in between.
This can be explained by the influence of ambient light at daytime that greatly reduces
image quality, which makes it harder for training the model. The result of comparison
suggests using less ambient light scenarios for training.



5.2. DISCUSSION 37

Figure 5.2: Duration and mean distance

Figure 5.3: Duration and median distance
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Figure 5.4: Duration and min distance

Night training scenario has the lowest loss, thus we use the corresponding weights for
our mocking shopping scenario at the home basement, where it does not have any light
influences. Testing image of model 5 is illustrated in Figure 5.5, it has a very accurate
detection.

5.2.2 Scenario Design

In the designed scenario, the goal is to collect data from different people who behave
differently. Specifically, people who are Staying within 0.5 meter to the scooter for more
than 10 seconds means they are interested. People who are staying more than 1 meter
away from the scooter for an arbitrary amount of time means they are not interested.
People who are staying within 0.5 meter to the scooter, but for less than 10 seconds are
defined as random actions. Doing any random stay to enrich the variety in the dataset.

The ground is flat enough to ensure that two LiDAR cameras are at the same height, and
facing each other to both detect the people. Since the space is limited at the evaluation
scenario, only one point of interest the scooter is placed in the test, which cannot represent
a shopping case. There is also a limitation with the number of testers. Only two testers
are in the testing scenario, and try to simulate a scenario of 40+ people by walking out
of the frame and coming back again. However, the Deep Sort algorithm can sometimes
identify the tester as the same person that has been tracked and assign the same ID. If
there are more than 40 different people testing, is it not likely for Deep Sort to assign the
same ID to different people. If more objects could be placed and more testers could join,
the testing scenario will better represent a real shopping scenario
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Figure 5.5: Testing Image from Model5

5.2.3 Data Analysis

In the step of analyzing data, a clustering algorithm is demonstrated to segment users into
three groups based on duration and distance. During the analysis, the challenge is the
repetition of counting when people are crossing the boundary of two cameras. The solution
used for counting people at each timestamp is adding the number of people detected in
each camera; and counting the total number of people is done by subtracting repetitive
counts from total number of users.

Due to data collection limitations, the data set is not large enough, which may not be
ideal. Only one scenario is presented, so some metrics that we designed for multi scenarios
cannot be used.

5.2.4 Evaluation of Requirements

This subsection evaluates whether the results satisfied the requirements for this project
from Section 3.1.

• Color images for training model. The images collected from LiDAR in the Phase 1
are valid, and objects have clear edges in each picture, which is easy for the detector.

• Valid Localization method. The methods developed for localization are realized with
YoLoV3 and Deep Sort combined. The method is implemented whenever LiDAR
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starts to capture images, it detects and tracks people, and writes the timestamped
data to the InfluxDB cloud.

• Synchronization and data storage. The two parts of synchronization include syn-
chronizing the time of two LiDARs to ensure there are no time latency between each
other; the other part is the synchronization of detected users in classification, this
is achieved by analyzing the data based on different scenarios.

5.3 Limitations

The results can reflect the limitation of the solution for this project, which can be used
for further development.

• Inaccurate LiDAR. The detection of depth from LiDAR is inaccurate, and this type
of camera does not offer any tool for calibration so far. The inaccuracy in depth
measurement is the limitation of the device that cannot be overcome by data analysis
methods currently.

• Light Measurement. The detected distance based on light is measured from an
app on mobile phone, which only measures the lighting condition indoors. It is
not professional to measure the influence from daylight. If it can be solved, the
measurements and set up of scenarios can be more accurate.

• Limited Testing Space. Due to the coronavirus, it is not easy for lots of people
gathered together to test. Thus, we lack data to represent the real case. Also,
the lack of an adequate physical space to implement the camera and evaluate the
method.

• Limited Data. Due to the lack of data, we are unable to calculate the metrics as
mentioned. For example, we do not have the data from different venues and points of
interest, which is unable to get results about percentage of interested users, variation
of user flow and variation of interest.

• Computation limitation. Data gathered is collected by running CPU on the laptop.
It is slow and FPS does not achieve a high level, some people passing by may not
be entirely captured.
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ID Position x Position y Timenow depth mm

86 1 462 237
2022-01-26
17:46:04.267133

7957

86 1 476 234
2022-01-26
17:46:05.924858

7879

60 606 269
2022-01-26
17:46:06.175569

6474

86 1 475 239
2022-01-26
17:46:07.487082

7844

60 586 265
2022-01-26
17:46:08.151662

6293

86 1 472 242
2022-01-26
17:46:01.062778

7854

60 628 263
2022-01-26
17:46:10.059983

6024

86 1 464 244
2022-01-26
17:46:10.603107

7888

60 643 261
2022-01-26 17:46:
12.12.049374

6207

86 1 473 242
2022-01-26
17:46:12.177930

7898

86 1 472 239
2022-01-26 17:
46:13.757630

7850

60 646 262
2022-01-26
17:46:14.011700

9012

86 1 471 240
2022-01-26
17:46:15.373585

7865

60 671 264
2022-01-26
17:46:16.007585

6188

86 1 472 246
2022-01-26
17:46:16.917737

7857

60 708 268
2022-01-26
17:46:17.914525

5430

Table 5.3: Raw data of people interested
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ID Position x Position y Timenow depth mm

16 274 269
2022-01-26
17:53:50.628949

5265

1 1 167 269
2022-01-26
17:53:50.798043

9659

1 1 164 269
2022-01-26
17:53:52.294529

9537

16 302 273
2022-01-26
17:53:52.567748

5343

16 137 273
2022-01-26
17:54:11.725321

5286

1 1 128 269
2022-01-26
17:54:12.522806

8666

16 130 277
2022-01-26
17:54:13.618995

5329

1 1 128 269
2022-01-26
17:54:14.046111

8686

16 165 272
2022-01-26
17:54:15.535175

3114

Table 5.4: Raw data of people with unclear behaviors 1

ID Position x Position y Timenow depth mm

18 451 322
2022-01-26
17:53:14.572150

7762

1 1 159 267
2022-01-26
17:53:15.982252

9403

18 454 325
2022-01-26
17:5316.467847

7766

1 1 134 267
2022-01-26
17:53:17.479598

8877

18 458 327
2022-01-26
17:53:18.378997

7787

1 1 151 268
2022-01-26
17:53:18.999464

9245

18 464 332
2022-01-26
17:53:20.282187

7772

1 1 157 268
2022-01-26
17:53:20.518660

9386

1 1 136 268
2022-01-26
17:53:22.005160

8915

18 456 332
2022-01-26
17:53:22.184480

5535

Table 5.5: Raw data of people with unclear behaviors 2
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ID duration s min distance max distance mean distance median distance
10 1 0 333.548 333.548 333.548 333.548
12 17 135.754 986.894 746.168 862.349
17 1 12 1043.73 1696.26 1242.42 1221.86
1 1 10 503.734 1195.82 878.085 939.682
21 1 55 535.317 2000 944.518 642.119
26148 5 935.945 1137.72 1009.91 982.993
26196 1 0 2000 2000 2000 2000
26318 124 969.066 2000 1426.55 1420.23
26333 9 932.863 1303.73 1046.97 948.048
26340 1 0 2000 2000 2000 2000
26349 1 36 919.834 2000 1158.82 1076.66
27 1 17 1045.88 1406.73 1155.09 1086.91
29 1 1 1318.52 1323.64 1321.08 1321.08
62 1 197 1202.48 2149.75 1361.29 1224.29
71 1 6 986.309 1127.39 1065.69 1072.92
m 0 192 186.17 2000 1198.11 1274.3
m 1 290 282.726 2040.44 1269.23 1267.13
m 2 295 424.273 2000 886.104 799.889
m 3 124 145.922 1029.47 608.459 714.834
m 4 298 187.018 2000 907.82 869.639
m 5 94 595.206 1011.2 886.911 939.012
m 6 94 452.63 2000 1011.86 990.608

Table 5.6: Table of aggregated data
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Chapter 6

Final Considerations

6.1 Summary

In this project, A method LiCounter is presented, which is to detect, track, and count
people within an area. Yolo version 3 is the algorithm used for detection, and Deep
Sort is used for tracking. Further, a dataset is collected based on the method developed,
and classification is used to categorize people who are near the region of interest or not.
Gaussian mixture clustering method is used for user segmentation based on defined metrics
measurement, including distance to the object, duration time of staying. The returned
results are a visualization of classification for each user.

6.2 Conclusions

The results of this project provides details for commercial companies about a general view
of user flow and the number of users for a period of time. Especially in a retail store,
companies can know which products are more likely to be bought and which are not,
where should the product be placed to attract consumers, and other insights.

The LiCounter approach is used typically for customized objects and indoor environments.
The advantage of using LiDAR is straightforward, which can preserve passengers’ privacy
and not disturb them. However, LiDAR is very sensitive to daylight conditions; the darker
the condition is, the farther it can detect. Based on light testing, all data were chosen
to collect in a complete dark condition without daylight influences, including data for
training Yolo tracker and testing scenarios. However, the limitations of the LiDAR and
method developed both existed, and should be reconsidered to apply them in a real case.

6.3 Future Work

This project still can be further developed, and there are some future works suggested.

45
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• Computation power. the tracker could work better with GPU for each LiDAR
camera. The FPS could be improved to 14 and more data could be collected.

• LiDAR Measurement. Due to the inaccurate measurement of Intel RealSense L515
LiDAR, other devices can be considered, which may have more accurate measure-
ment.

• Light Testing Tool: Professional light measurement tool can be used for more ac-
curate measurement. The data of LiDAR sensitivity are helpful to identify the
placement of devices in a real case.

• Physical Space: It is better if the developed method can be measured in an adequate
physical place where more people can be gathered, and different scenarios can be
mocked.
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