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Abstract

The recent COVID pandemic posed a challenge to healthcare systems worldwide, exposing
limited resources and inefficiency in managing PMDs (Portable Medical Devices). This
thesis reports the prototypical implementation of an new and cost-efficient type of asset
tracking architecture, enabling hospitals to efficiently locate their resources and maximize
the usage of PMDs in emergency situations, such as pandemics or natural disasters, when
a sudden increase in demand may be anticipated. PMD-Trackâs key novelty lies in the
use of staffâs smartphones to replace expensive stationary gateways, typically required
in traditional inventory tracking systems. As employees approach tagged PMDs in their
dayto- day, their smartphone updates the location of spotted PMDs in a real-time inven-
tory system, providing room-level localization data with up to 95% accuracy. Experiments
were evaluated by contrasting two techniques (fingerprinting and multilateration) based
on two different test locations in Zurich.
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Chapter 1

Introduction

This chapter provides an introduction to the reasons for the choice of this topic as a
Master Thesis. It goes over the motivation of the Master Thesis (1.1), specifies its goals
(1.2), and covers a brief outline what will be covered (1.3).

Critical care unit facilities were severely strained in the event of a pandemic like the
COVID-19, which hindered the effectiveness of healthcare systems. It revealed various
flaws in healthcare systems throughout the world as a result of the unexpected rise in
patient load, with authors assessing inefficiencies to respond effectively during times of
crisis [3, 44]. Among these flaws, it was found that mechanical ventilators and supervision
equipment (such as EKG, capnography monitors, infusion pumps, or pulse oximeters) were
not adequately managed on hospital property and that, in the majority of cases, hospitals
were understaffed.

Under increasing demands, traditional inventory management systems do not offer a work-
able solution to control the location and usage of these portable resources, known as
Portable Medical Devices (PMD), in real-time [13, 39, 52]. This includes real-time track-
ing systems, which are oftentimes too expensive for monitoring PMDs, once the installa-
tion of gateways is required throughout the hospital’s infrastructure to receive localization
data [1, 10, 29, 35, 37]

To simplify communication and to access internal hospital services, healthcare institutions,
most notably hospitals, typically provide their personnel with cellphones. PMD-Track’s
primary innovation is to leverage the staff’s cellphones to replace costly, fixed gateways
or base stations. In comparison to conventional systems, a gateway-less tracking solu-
tion offers significant cost benefits in terms of hardware needs. As staff typically move
throughout the hospital and cover large parts of its premises in their day to day, once they
pass by or come in range, the location of tagged PMDs can be automatically updated in
the inventory.

PMD-Track’s solution entails a mobile application that acts as a mobile gateway and
updates a backend service with the location of recently spotted tags (i.e. PMD tracked
devices) and displays information (quick visualization in the smartphone’s front-end) con-
cerning their position in real-time. From a research point of view, this work designs, im-
plements, and compares two competing localization algorithms commonly used in indoor
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2 CHAPTER 1. INTRODUCTION

localization in two different test locations with the goal of finding an optimal trade-off
between localization accuracy and associated deployment costs.

In this regard, PMD-Track enables hospitals to make efficient use of their PMDs in emer-
gencies, such as a pandemic or possible natural disasters, where a sudden increase in
demand can be experienced. Thus, the PMD-Track design will result in a higher chance
of saving lives in such situations by allowing the efficient usage of critical PMDs. Hence-
forth, a significant opportunity for a cost-effective operation of the proposed solution is
that hospitals’ smartphones in use by their employees will function as mobile gateways.

The remainder of this thesis is organized as follows. Chapter 2 overviews fundamentals.
While Chapter 3 describes the design of the solution, Chapter 4 touches implementation
details. Chapter 5 covers the evaluation and Chapter 6 closes with considerations.

1.1 Motivation

The pandemic exacerbated the underlying and long existing challenge of equipment man-
agement in hospitals. To cope with inefficiencies and to ensure sufficient availability of
medical equipment, hospitals acquire excess capacities resulting in cost-overheads and as-
set utilization rates below 50% - while experts consider a utilization rate of 80% feasible
[21]. The goal of this thesis is to provide a prototypical implementation of a lightweight
and cost-efficient real-time locating system to manage and increase the usage of critical
and expensive hospital inventory.

1.2 Goals

PMD-Track’s solution foresees the following goals to be met:

• Research: Explore the scope of indoor tracking and positioning technologies to
provide a low-cost, room-level asset tracking system based on BLE that allows the
near real-time tracking of PMDs.

• Engineering: Develop an asset tracking approach based on BLE that requires min-
imal infrastructure and can be used in a large-scale deployment. The thesis should
produce a working prototype, which can be contrasted with the thesis’ goals.

In this regard, PMD-Track enables hospitals to make efficient use of their PMDs in emer-
gencies, such as a pandemic or eventual natural disasters, where a sudden increase in
demand can be experienced. Thus, the PMD-Track design will result in a higher chance
of saving lives in such situations by allowing the efficient usage of critical PMDs.
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1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 overviews fundamentals.
While chapter 3 describes the design and chapter 4 covers the implementation. Chapter
5 contains the evaluation and chapter 6 finishes withe considerations.
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Chapter 2

Fundamentals

Positioning and tracking of assets or people in indoor environments have great potential
in various settings such as healthcare, retail, logistic, etc. and have been a popular
research area for nearly a decade. Due to the absence of a Global Positioning System
(GPS) signal in indoor environments, an array of alternative technologies emerged, such
as BLE (Bluetooth Low Energy), WiFi, RFID (Radio Frequency Identification), UWB
(Ultra-WideBand), VLS (Visible Light Communication), to name a few.

PMD-Track combines (i) indoor positioning with (ii) real-time asset tracking based on
BLE. Thus, the differential of the approach lies in the indoor use of smartphones as mobile
data sinks (i.e. replacing gateways) to update the real-time location of tagged assets in
the inventory.

2.1 Background

2.1.1 Bluetooth Low Energy

BLE is a widely adopted wireless technology for personal area networking with a range up
to 100m in Line-of-Sight (LOS) situations and operates on 40 channels in the unlicensed
2.4 GHz ISM frequency band. Maintained and developed by the Bluetooth Special Interest
Group (Bluetooth SIG), BLE is designed for very low power data transmission of up to
2Mbit/s, thus, making it one of the most popular technologies in Internet of Things (IoT)
applications [53] [14] [46] [35]. This trend seems to continue as recent estimations predict
7 billion BLE enabled devices to be shipped annually by 2026 [42].

BLE co-exists independently from Bluetooth Classic and supports point-to-point, broad-
cast, and mesh communication topologies. Of the 40 2 MHz-wide channels, 37 are used for
data transmission and 3 are used for advertising and discovery of BLE enabled devices.
Data transmission is based on the Generic Attribute Profile (GATT) - a specification
that defines standardized profiles for sending and receiving small amounts of data. For
example, a wearable device (e.g. Smartwatch) might transmit the measured heart rate
and the device’s battery level using the Heart Rate Profile and Battery Service Profile.

5



6 CHAPTER 2. FUNDAMENTALS

Apart from it is point-to-point communication capabilities, BLE is also a popular tech-
nology choice for localization and proximity scenarios - as witnessed by the emergence of
contact tracing apps during the pandemic [16] [2]. At the core of such localization and
proximity scenarios is the ability to measure the spatial distance between BLE devices.
To this end, tiny, low-cost, and always-on devices, called ’beacons’, that continuously
broadcast advertising packets can be deployed. The receiver of the advertising packet is
able to estimate the distance to the emitting device based on the Received Signal Strength
(RSS) (c.f. section 2.1.2). In 2019, Bluetooth SIG published version 5.1 of the standard
and introduced improved localization and proximity capabilities such as Angle of Ar-
rival (AoA) and Angle of Departure (AoD) detection which are intended to significantly
improve RSS-based localization [42].

While the 5.1 standard was released 3 years ago and most Smartphones currently on the
market are equipped with a 5.1 compatible chip [20], Apple and Google do not yet support
AoA / AoD detection in their BLE APIs [9] [12]. This restricts mobile applications from
adopting the new technology and thus limits its expansion - restricting solution providers
to traditional RSS-based approaches.

2.1.2 Received Signal Strength

Received Signal Strength - RSS is a power measurement of a radio signal, performed at the
receiver’s antenna. It is usually expressed in decibel milliwatt (dBm) unit and expresses
the signal strength - the closer the sender to the receiver, the higher the RSS and vice
versa. The non-linear relationship between RSS and spatial distance is exploited by the
(log-distance) Path-Loss Model:

d = 10
Lp−Lo−v

10∗α (2.1)

With distance approximation d in meters, the measured RSS Lp at the antenna, the
calibrated RSS L0 at 1m distance, a Gaussian random variable v representing signal
noise, and the parameter α representing the distance-power gradient [26].

Figure 2.1 depicts the relationship expressed in equation 2.1 by plotting the true measure-
ments (blue dots) and the fitted Path-Loss model (black line). From this we can observe
that (i) the variance within the measurements is high, meaning that they don’t align well
with the fitted line and (ii) the variance seems to increase with distance, meaning the
larger the distance - the larger the variance [45].
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Figure 2.1: RSSI vs. Distance
[45]

Responsible for the noisy RSS signal - expressed by the high variance - is the RF signal
interference present in indoor environments. Walls, people, and obstacles typically present
inside buildings cause multipath and shadowing effects on the signal. This results in the
RSS alone being an unprecise predictor for distance with a large margin of error - which
can have a high impact in indoor settings. Thus, the signal is typically de-noised by the
means of filtering (e.g. Kalman Filtering, Median Filtering) [29] as can be seen in figure
2.2.

Figure 2.2: Filtered vs. Unfiltered RSSI
[32]
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2.1.3 Fine Time Measurements

Ranging based on RSS is error prone due to signal interference (c.f. section 2.1.2) and
Ultra-Wide Band (UWB) was long one of few technologies that achieved sub-meter accu-
racy in indoor environments [49].

With the IEEE 802.11-2016 specification, WiFi time of flight measurements or Fine Time
Measurements (FTM) are introduced for distance calculations between an 802.11-2016
compatible AP and station [23]. The calculation is based on the Round-Trip-Time and
the speed of the radio signal. The station initiates the process by submitting an FTM
request to the AP. Subsequently, the AP sends a Ping to the station at t1. Upon receipt,
the station records the time of arrival t2 and sends back a Pong at t3 to the AP which
receives it at t4. With these four timestamps, the RTT can be calculated as can be seen
in figure 2.3

Figure 2.3: Calculation of RTT
[22]

It has been shown that FTM achieves a ranging accuracy of 1-2 meters in favorable settings
rendering high potential in indoor localization scenarios [6]. At the time of writing, certain
Smartphone models come with a compatible 802.11mc chip [50] and Google started to
support WiFi FTM ranging as of Android 9 while Apple has not introduced support yet
[22].

2.1.4 Inertial Measurement Units in Smartphones

Inertial Measurement Units (IMU) are small sensors commonly embedded in Smartphones.
Among those sensors are typically accelerometer, gyroscope, and magnetometer used for
various purposes such as step counting or finding the magnetic north in navigation Apps.
The accelerometer senses motion by measuring linear acceleration in m/s2 in each of
the x, y, z axis. Gyroscopes measure rotational orientation in x, y, z, and magnetometers
measure the magnetic field of the earth [24].
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Based on the information from the IMUs and an initial, known position, the user’s trajec-
tory and position can be calculated. However, small measurement errors or sensor biases
propagate into the location prediction over time which requires the application of filtering
techniques to reduce measurement noise.

Figure 2.4: Acceleration pattern for 10 steps
[51]

Figure 2.4 illustrates the accelerometer pattern recorded while making 10 steps. Taking
the person’s stride length into consideration, the traveled distance can be approximated
[30].

2.1.5 Trilateration and Mulitlateration

The position of an object can be determined by trilaterating the distance measurements of
two know points. In two-dimensional space, the distance between a know point Pi(xi, yi)
and P (x, y) is defined as follows:

ri =
√

(x− xi)2 + (y − yi)2, i = 1, 2 (2.2)

Solving equation 2.2 will determine possible x and y coordinates of point P. Figure 2.5
shows an example of trilateration in twodimensional space. As shown, the solution to this
trilateration problem is not deterministic for all points, which are not co-linear with P1
and P2.
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Figure 2.5: 2D Trilateratoin
[47]

To determine the deterministic position of P (x, y), a third know point is required. Simi-
larly, in cases of higher dimensions, k + 1 points are required [47].

2.1.6 Fingerprinting

Fingerprinting is based on pattern recognition and consists of an (i) offline or training
phase and an (ii) online or operational phase. In (i), a site survey is conducted where, in
areas of interest, measurements are collected. These measurements are called fingerprints
and are ideal as uniquely as possible to each area. A typical example of fingerprinting
is WiFi fingerprinting where the RSS of different Access Points (AP) are measured at
specific points. The collected fingerprints are labeled with the location they belong to
and stored in a fingerprint database.
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Figure 2.6: Fingerprinting
[19]

In (ii), a user can record the fingerprint at its current location and query it against the
fingerprint database. The database will return the user’s location by pattern matching
the received fingerprint with the closest matching one from the database.

While the approach is fairly popular and delivers good accuracy, it comes with several chal-
lenges. One, changes in the environment (e.g. AP is moved) impact the site’s fingerprints
with a decreasing effect on accuracy. Thus, research focused on integrating multiple data
sources (e.g. WiFi, cellular network, magnetic field, ambient audio) to improve fingerprint
stability [34, 48] [30, 36]. Second, to conquer the costly and labor-intensive site survey
process, new approaches were developed to reduce the required effort [4, 38, 51] [11]. And
lastly, Machine Learning (ML) and statistical methods were developed to improve the
pattern matching performance [43] [41].

2.2 Related Work

In this section, we explore related work which is key to the development of PMD-Track
and that serves as background information for the reader. We divide the related work
on indoor localization based on their approach. First, we look at RSS-based ranging
approaches which are fundamental for most of the related work. Second, we touch on
recent Time of Flight (ToF) based ranging approaches, enabled by 802.11-2016 and UWB,
and finally, we cover the more exotic acoustic-based approach for indoor localization.
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2.2.1 Asset Tracking

Bisio, Sciarrone, and Zappatore [7] developed a crowd-sourced asset tracking solution for
the construction industry based on the integration of RFID and BLE technology. Assets
(e.g. materials, tools) are stored in warehouses and are used outdoors on construction sites.
Warehouses are equipped with RFID readers, construction site workers are equipped with
smartphones, and assets are tagged with both RFID and BLE tags. If an asset leaves the
warehouse, its RFID tag is scanned, and if a construction site worker passes by the asset
in the field at close range, the BLE tag’s RSS values are scanned by a mobile application
installed on the worker’s smartphone. With the knowledge of the RFID scanner’s location
and the smartphone’s GPS coordinates, the approximate location of a scanned asset can
be determined.

In the context of asset tracking for industry 4.0 applications, [8] analyzed on a theo-
retical level the aging time and detection probability for BLE advertisement packets in
dependence on different density situations and scan periods. The aging time describes the
time between two consecutive detections of the same BLE tag. The detection probability
captures the probability of detecting all BLE tags at least once.

Lee et al [25] developed a prototypical asset tracking system based on Raspberry Pis as
receivers and BLE beacons as transmitters. The topology requires the installation of 4
Raspberry Pis in the corners of each area to act as a data sink and perform multilateration.

In [31] the authors present another BLE-based trilateration system based on stationary
gateways acting as receivers. Their key contribution is comprised of using radical centers
to resolve situations of non-intersecting trilateration circles.

2.2.2 Indoor Positioning

2.2.2.1 RSSI-based approaches

PMD-Track follows a similar approach with a crowdsourced tracking network of mobile
applications based on BLE where the challenge is the localization of an asset relative to
a moving and dynamic reader device. However, the author’s system is not designed for
indoor localization and requires two tags per asset as well as the installation of RFID
readers inside buildings which increases both costs of ownership and complexity for such
a system. [7]

[29] employs a trilateration algorithm using Bluetooth RSS values and the smartphone’s
sensors data (e.g. accelerator and gyroscope) to improve the accuracy of the position of
devices using the iBeacon protocol. [29] applies a Kalman Filter (KF) to estimate the
real-time trajectory of the device. Although the accuracy of the iBeacon positioning was
improved, the approach cannot be directly employed in PMD-Track as it relies on several
(i.e. 10) iBeacons for a 44 m x 17 m area, fixed stations to sample RSS values, and
smartphone sensors. In contrast, PMD-Track reduces the number of required hardware
and relies solely on RSS values measured from devices’ encounters.
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[10] proposes an accurate Indoor Positioning System based on BLE using frequency di-
versity, trilateration, and KF. In the approach, the tag position is calculated based on the
trilateration of 3 RSSI sniffer devices and the tag sending RSSI values. One shortcoming
is that it relies on four beacons per room, and each receiver gateway costs around 120
Euros (i.e. 500 Euros per room).

[33] provides an algorithm that finds optimal beacon configuration for a given floorplan.
The algorithm selects the configuration with the minimum number of required beacons
that still ensure unique localizability in a predefined area. With this approach, the authors
are able to localize with two instead of three or more beacons which results in 22-60%
less beacons installed. This approach can be an interesting option to reduce the cost of
ownership in a system such as PMD-Track.

[1] proposed a real-time tracking solution based on Arduino to track Bluetooth devices at
a maximum range of 10 m. The Arduino board also contains a GSM (Global System for
Mobile Communications) antenna that periodically transmits data collected to a user’s
smartphone. [1] raises two concerns that PMD-Track solve: the use of several static
sinks to collect data from BLE tags and the limited mobility, which, combined with the
short-range, makes the solution ineffective to track PMD objects.

In [48], the authors propose a low-cost, BLE based room-localization system focusing on
the monitoring of patients in their home (e.g. apartment, house). The system is based on
BLE beacons, installed in each room and a smartphone, carried by the monitored subject.
RSS fingerprints were collected within the surveillance area where they collect samples for
about 30 seconds in each room. Evaluated in two scenarios, the system achieves 93.75%
accuracy in room estimation.

The requirement of one beacon per room and a training phase of 30 seconds per room
represents a major challenge considering PMD-Track’s focus on large-scale deployments
in facilities with hundreds of rooms, thus, making it a bad fit for the envisioned solution.

Various works have contributed to reduce the site survey effort involved in fingerprinting.
Liu, et al. [30] contributions are two-fold. (i) Focusing on lowering the burdensome survey
effort of creating a dense fingerprint database, while maintaining a constant level of ac-
curacy and (ii) keeping the fingerprint database always up to date using a crowd-sourced
update mechanism. (i) is achieved by creating an upfront, minimal WiFi RSS-based fin-
gerprint of each room. Subsequently, in the online phase, the user’s initial location (room)
is estimated by WiFi RSS ranging and a lookup in the fingerprint database. Once the
initial location is determined, IMU measurements from a smartphone are fed into a par-
ticle filter together with the building’s floor plan. The particle filter removes ”impossible”
particles (e.g. movement through walls) and predicts the user’s trajectory. (ii) is achieved
by re-taking WiFI RSS fingerprints and label them with the user’s calculated position.
Based on IMU measurements and floor plan constraints, the authors are able to perform
room-level localization at the cost of WiFi fingerprinting each room of the buiding.

Carrera et al. [11] reduce the effort of the site survey process by fusing WiFi radio
signals, magnetic field readings, and floor plan information into an advanced particle filter.
Fingerprinting integrates WiFI RSS measurements as well as geomagnetic field readings
and requires only the current room label which considerably reduces site survey effort.
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A discriminative learning-based landmark detection algorithm uses room-level landmark
fingerprints in combination with RSS ranging and an advanced particle filter to predict
the user’s location.

Following a similar line of argumentation, reducing site survey efforts are truly beneficial.
However, at large scale facilities it still remains a core challenge in the context of PMD-
Track.

In [51], Wu, Yang, and Liu remove the requirement for an active site survey process and
propose LiFS, a novel approach, leveraging humans moving inside the building during
their day-to-day activities to passively construct a WiFi fingerprint.

During the setup phase, the building floor plan is divided into a grid of areas and a dis-
tance matrix is derived, representing the walking distance (i.e. number of steps) between
each pair of areas. Further, in a fully passive way, participants perform their day-to-day
activities and move through the building while a mobile application on their smartphone
collects WiFi RSS fingerprints and records the walking distance (i.e. number of steps)
between two consecutive fingerprints. Fingerprints from all participants are merged and a
distance matrix expressing their pairwise distance (i.e. number of steps between them) is
constructed. Finally, by means of multi-dimensional scaling, the floor plan distance ma-
trix, as well as the fingerprint distance matrix, are correlated, resulting in location-labeled
fingerprints.

The authors present a novel and efficient way to conduct site surveys - potentially for
large areas. Thus, representing an attractive opportunity for PMD-Track. However, the
scalability aspects of this approach remain to be determined.

Subsequent works concentrate on online phase of fingerprinting and propose various ML
approaches to improve fingerprint detection. Sabanci et al. [43] provide an accurate eval-
uation of different ML algorithms applied to a room classification task based on WiFi RSS
fingerprints collected in a location with 4 rooms and 7 APs. Six different ML algorithms,
such as a Neural Network, Extreme Learning Machine, K-Nearest Neighbours, Support
Vector Machines, and Naive Bayes were evaluated of which K-NN achieved the highest
accuracy with 97.98%.

In [41] Roy et al. address the challenges of device heterogeneity and their impact on WiFi
RSS measurements, naturally occurring in crowdsourced deployments. Their contribu-
tions show that state-of-the-art ML algorithms achieve 71.78% classification accuracy on
a dataset recorded by a heterogeneous set of smartphones. Further, they developed an
ensemble classifier embracing the device heterogeneity which manages to improve classi-
fication accuracy up to 91.46%.

2.2.2.2 Time-of-Flight based approaches

Biehl, Girgensohn, and Patel [6] investigate the potential of the recently introduced IEEE
08.11-2016 FTM on room-level localization which has been sparsely covered in the re-
search community so far. In a series of experiments, the authors installed BLE beacons
and WiFi RTT routers at the same locations in an office building and collected ranging
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scans for both BLE and WiFI RTT with the corresponding ground-truth coordinate lo-
cations. Contributing to several findings, the authors conclude that WiFi RTT achieves a
27.35% improvement in root mean square error in coordinate location estimation. When
comparing room-level localization, RTT-location outperforms BLE by an 11.59% differ-
ence in F1 score. As their results show, accuracy goes down as the density of installed
beacons (BLE, WiFi RTT) drops. While in the case of BLE, the drop is contributed by
the well-studied RSS issues, in the case of WiFi RTT, the results indicate that multi-path
effects remain a significant design issue for FTM-based approaches.

Their results clearly indicate the opportunities presented by WiFi RTT and with more
and more devices adopting the standard, its application in real-world deployments such
as PMD-Track becomes more attractive.

In the domain of high-precision, LoS tracking, UWB shows great potential thanks to its
centimeter-level accuracy. Djosic et al. [15] investigate how UWB performs in complex
indoor environments with partial or even non-LoS connections available. Based on ToF
ranging measurements, trilateration is used to position the node while a fingerprinting-
based algorithm is used to provide additional context in cases of an insufficient number
of LoS measurements. The key aspect of their work is that fingerprints are not labelled
with locations but rather with distances to a set of pre-defined reference points which
are then used in trilateration. Their findings include that UWB represents an effective
alternative in room identification with an accuracy of more than 95%. Further, the system
achieved comparable accuracy in cases of 2 instead of 3 LoS connections, making UWB
deployments more attractive as the number of anchor points might be reduced.

UWB is still not broadly available on mobile devices with only a few flagship phones
supporting it at the time of writing [28]. Thus, its application in PMD-Track is not (yet)
feasible due to the costs involved in a large-scale deployment.

2.2.2.3 Acoustic based approaches

Finally, among the more exotic approaches are acoustic-based works. Guo et al. [18] and
Rossi et al. [40] propose EchoLoc and RoomSense, approaches using acoustic responses to
a chirp emitted by a smartphone. The system is based on the location-specific features,
captured in the acoustic response or echo of a chirp and utilizes fingerprinting to learn
these response patterns. While achieving high accuracy and low localization errors, these
approaches are not feasible in the context of PMD-Track due to the rather small coverage
area of the fingerprint (less than 1m) which would translate into a high site survey effort.

2.2.3 Discussion

Based on the initial goals defined in section 1.2, we discuss the related work presented in
this chapter and assess their suitability for our system.

WiFi RTT and UWB-based technology are still in an early stage and are not as ubiqui-
tous and low-cost as Bluetooth. While these technologies are designed for high-accuracy
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localization, our goal of room-level accuracy is much simpler and thus, high accuracy can
be traded off with complexity and price. Hence, we don’t consider it a fitting technology
for the use case at hand.

As for the acoustic-based approaches, they have the advantage of requiring no additional
infrastructure. However, they see little adoption in practice, and their relatively small
coverage area makes them an impractical option for large-scale deployments. Further, it
is not clear how changes and noise in the environment affect their localization performance.

Within the RSSI-based approaches, fingerprinting has become a popular choice in in-
door environments where LoS connections are not guaranteed and triangulation-based
approaches suffer. Despite the advantages, a labor-intensive site survey is always required
a priori and, thus, represents a challenge for large-scale deployment. Various efforts have
been made to reduce the site survey process - some are even completely passive. Fi-
nally, other works have focused on algorithms for improved fingerprint recognition and
accuracy.



Chapter 3

Design

This chapter introduces PMD-Track and describes its design considerations and require-
ments on an abstract level. Implementation details are presented in more detail at a later
point in chapter 4.

3.1 Design Considerations

Accuracy: PMD-Track’s target application is the tracking of PMDs within hospitals or
healthcare facilities. A key characteristic of these buildings is their segmentation into a
high number of rooms. Thus, to be considered useful, room-level tracking is required.

Heterogeneous Smartphones: Deployed as a crowd-sourced application, smartphone brands
and models may be heterogeneous and certain limitations may be experienced in the re-
ception of BLE signals or in the usage of system resources.

Real-Time Location Data: Near real-time or fresh data is crucial for applications such as
PMD-Track. Outdated information can lead to inefficient processes and wasted resources
which can ultimately lead to mistrust of users against the system. Thus, it is crucial to
manage the user’s expectations by communicating the staleness of information.

Ease of use: An easy-to-use system allows a quicker user onboarding and benefits the
product’s reputation. Furthermore, costs can be reduced in user training and support.

Privacy: From a user perspective it is important that the person’s privacy carrying the
smartphone is not violated. Thus, it is crucial that the user’s location is not tracked or
can’t be inferred from other data.

Security: Hospitals often implement strict IT-security policies. Thus, minimal friction
and touch points with existing IT operations are needed such as the connectivity services
through an existing WiFi infrastructure.

17
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3.2 Requirements

From the goals of the thesis (c.f. section 1.2), we can derive the following requirements:

• R1 The system shall have room-level tracking accuracy.

• R2 The system shall be able to track assets in near real-time.

• R3 The system shall not rely on static gateway devices.

• R4 The system shall expose the location information through a REST API.

3.3 Architecture

The following sections cover PMD-Track’s architecture and design considerations. Fig-
ure 3.1 illustrates the high-level architecture overview and serves as a reference to guide
through the following sections

Figure 3.1: PMD-Track Architecture
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Figure 3.2: PMD-Track Beacon scanning

3.3.1 BLE Beacons

BLE beacons are small, inexpensive, and battery-powered devices emitting a periodic
BLE signal to advertise their presence to nearby devices. Through its MAC address and
RSSI value, a beacon is uniquely identifiable and the distance between it and the receiving
device can be approximated by means of the Path-Loss-Model. A common application
scenario is proximity detection where an application or device is scanning for beacons in
its perimeter to establish a geospatial context associated with the scanned beacons. In the
case of PMD-Track, two types of BLE beacons are distinguished. (i) mobile beacons are
attached to the assets one wants to track and are moving along with them. Their MAC
address is associated with a specific piece of inventory. (ii) fixed beacons are installed in
predefined areas of the building and thus do not change their location. Their purpose is
to serve as reference points for determining the current location of the scanning device
within the building. Being able to locate the scanning device allows inferring the location
of assets it has detected in its vicinity.
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3.3.2 Gateway Application

Traditional asset tracking solutions rely on the installation of static gateways that are
scattered throughout the building to track tagged assets. A key requirement and novelty
of PMD-Track is the absence of such a requirement by leveraging the mobility of the
employee workforce. Typically equipped with a smartphone, hospital staff moves through
the building and thereby covers a wide area of the hospital’s premises in their day-to-
day. The gateway application is a BLE tracking software installed on the employee’s
smartphones that detects BLE beacons that are in proximity. The app runs passively
and in the background of the smartphone without requiring any user interaction, thus,
employees are not disturbed in their activities. It scans both mobile and fixed BLE
beacons in range and relays the timestamped information to a cloud service as illustrated
in figure 3.2. Reliable and uninterrupted operation of the gateway application is therefore
of utmost importance in order to provide up-to-date information.

3.3.3 Frontend views

Information about inventory location is displayed through two user interfaces (UI). Field
workers are provided a mobile application to quickly query and locate tracked assets. It is
important to note that the mobile UI application is a separate app and is not integrated
into the existing gateway application that also runs on the smartphone. The reason for
this separation is two-fold. (i) Apps with the simple purpose of displaying information to
users can efficiently be built by leveraging cross-platform frameworks to reduce develop-
ment effort. On the other hand, the gateway application requires a native implementation
as accessing the smartphone’s hardware resources (i.e. BLE scanning in the background)
requires access to OS-level libraries to acquire necessary permissions and to ensure contin-
uous background operation. (ii) A separate UI app allows users to consume asset location
information without opting in on the BLE tracking due to privacy concerns.

Apart from the mobile application, a web-based dashboard provides asset location infor-
mation in a single view, suitable for larger displays such as desktops.

3.3.4 Communication between gateway and cloud

MQTT is a lightweight, publish-subscribe, machine-to-machine communication protocol.
Its low resource consumption makes it a popular choice for IoT applications in resource-
constrained environments. In PMD-Track, MQTT is used to facilitate the communication
between the gateway application and the cloud service. The gateway application connects
to the MQTT broker and publishes aggregated BLE scan results on a predefined topic
in regular intervals (i.e. every minute). Downstream, a consumer application can also
connect to the broker and subscribe to the topic and process the received messages.

The messages on the MQTT topic form a continuous stream of events, each representing
a device encounters between the gateway (i.e. smartphone) and a BLE beacon it has
recently scanned - termed BleScanEvent. Its properties include a client id identifying
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the gateway application, a mac address associated with the BLE beacon, its rssi value,
and a timestamp when it was detected. These messages are fed into a stream processing
framework by a connector application that subscribes to the MQTT topic and connects to
the stream processing framework to forward the messages on a dedicated stream. Client
applications can then consume, aggregate, and act on those events to either derive state
or emit new events.

3.3.5 Streaming and static data processing

The previous section highlighted how BLE readouts from the gateway application are
pushed to the cloud. In this section, the process of handling the continuous stream of BLE
readout data and enriching or filtering it with static data is explained. The BleScanEvents
received in the cloud are small bits of information from various data sources, depending
on how many gateway applications are currently running. There is no guarantee that
eventually all BLE beacons will be scanned after a certain time as the gateway only
detects what currently is in range. If a beacon is lost or never comes into range of a
gateway, this beacon will never be detected, thus, no BleScanEvent will ever be emitted
in the system. In the context of asset tracking, the detection of the absence of an asset is
equally important as the detection of its presence. Hence, the need for storing a predefined,
stable list of inventory as a base data set, occurs.

Storing a list of inventory can be achieved with a variety of proven technologies. In PMD-
Track, a relational databases stores a table of BLE beacons along with their type (i.e.
mobile, fixed) and their mac address. Similarly, a table stores a list of active gateway
applications along with their client id and human-readable name. Finally, a table stores
room information about the building.

To make the static information available in the stream processing framework, a connector
application periodically fetches the information from the relational database and feeds
it into a dedicated stream. Serving as the base data set, a new, enriched stream joins
BleScanEvents with the static beacon data from the relational database, filtering out
non-inventoried beacons.

3.3.6 Location Engine

The location engine receives a stream of enriched BleScanEvents and produces a stream
of positioned mobile beacons associated with a location (i.e. room). Thus, the asset
associated with the mobile beacon has been located in the given room.

Room level positioning can be achieved using different localization algorithms - each with
its advantages and disadvantages (c.f. section 2.2). The remainder of this work focuses
on the implementation and comparison of a fingerprinting-based versus multilateration-
based localization algorithm with the goal to choose the best-suiting algorithm for the use
case of PMD-Track. For the sake of simplicity, the implementation and evaluation of the
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two approaches will be done outside PMD-Track’s architecture. Eventually, however, the
location engine is the component where the chosen algorithm will be implemented.

The following sections describe the process of implementing and evaluating the two local-
ization algorithms in an office environment as well as an apartment.

3.3.6.1 Data Preparation

Preparing a single data set per test location is a fundamental step for the subsequent model
training and comparison of the two algorithms. The following steps for data gathering
and preparation have been done in both test locations.

Figure 3.3: Floor plan office

Figure 3.3 depicts the floor plan of the office test location and figure 3.4 the one of the
apartment.
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Figure 3.4: Floor plan apartment



24 CHAPTER 3. DESIGN

Table 3.1: Data Set

BEACON A BEACON B ... BEACON L Room
-65 -70 -99 A
...

...
...

...
-99 -75 -65 L

Each room, labeled with a capital letter (A-Z), is equipped with a fixed BLE beacon,
denoted by the MAC address below the letter of the room. The beacons are installed in
the center of the ceiling of each room and the mapping between the room label and MAC
address is being stored.

After preparing the test location with beacons, the data set can be gathered. In this
process, a person visits each room and takes a certain amount of RSSI samples of beacons
that are in range within that room. Recording the RSSI samples is done using a Smart-
phone app. The user enters the room label where the sampling takes place and the app
starts to perform repeated BLE scans. Within each scan - which only lasts a few seconds
- the app records the MAC address and RSSI value of the fixed beacons it detected. At
the end of each scan, the detected beacons and RSSI values are stored in a new data
point along with the room label. To make sure RSSI samples are not only taken at a
single position within the room, the person moves throughout the room while collecting
the samples as can be seen in figure 3.5

Figure 3.5: Collecting fingerprints at different positions within a room

Once 1’000 data points are collected within the same room, the person stops the app
and moves to the next room where the procedure is repeated. Repeating this for k rooms
yields the final data set of k∗1′000 rows and k+1 columns as one column accounts for the
room label. As the data collection is terminated after a fixed number of measurements,
the final data set is balanced by containing an equal number of samples per class/room.
Table 3.3 shows an example of the final data set.

The RSSI value captures the distance relationship between the beacon and the smart-
phone. Due to environmental noise, not every beacon might be captured in a data point.
This results in the sparsity of the final data set (i.e. cells being null). As fingerprinting
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and multilateration-based approaches can’t operate on sparse input data, two imputation
strategies are applied to fill missing observations. In the first case, a certain beacon might
never be detected at all for a given class. Considering the floor plan in figure 3.3, the
data points for room A might not have any records of the beacon in room L as it is too
far away and thus out of range. In this case, the column of beacon L for room A is set to
the constant value of -200 to indicate an out-of-range beacon.

Table 3.2: Fixed value imputation

BEACON J BEACON J (imputed) Room
null -200 A
null -200 A
null -200 A
null -200 A

In the second case, RSSI values are only partially absent due to shadowing or other signal
interference effects. Considering again the floor plan in figure 3.3, rows might exist for
room A where the RSSI value of the beacon of the adjacent room D is missing. In this
case, the conditioned mean of beacon D given room A is used to impute the missing
observations. value = mean(D|Room = A).

Table 3.3: Column mean imputation

BEACON D BEACON D (imputed) Room
-65 -65 A
null -64.67 A
-62 -62 A
-67 -67 A

Applying the described imputation strategy for each room eventually yields a non-sparse
data set.

3.3.6.2 Model Training

Once the data set is complete and all missing values have been imputed, the two mod-
els can be defined, fitted, and evaluated. Predicting the room label given a set of RSSI
measurements is a typical classification task. In the case of the fingerprinting model, a
k-nearest neighbors (kNN) classifier is employed. On the other hand, an adapted imple-
mentation of a multilateration algorithm is presented to approximate the room based on
geometric computations.

kNN is a non-parametric, supervised learning method and a popular choice for RSSI-
based fingerprinting [5, 17, 27]. When used for classification, an unseen data point is
classified by a majority vote of its neighboring data points, with the data point being
assigned to the class most common among its k nearest neighbors. K is typically chosen
to be a small, odd number to avoid a deadlock situation.
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Figure 3.6: kNN example

In the example shown in figure 3.6, the unseen green data point is classified as a red
triangle for k = 3 or blue square for k = 5. kNN uses distance-based metrics to determine
neighboring data points. In case of the collected RSSI values, the data set is split into a
disjoint training and test data set with the dimensions cn×k + 1 and (1− c)n×k + 1 for
a train-test-split coefficient c (i.e. c=0.2). The training phase consists of storing the k-
dimensional training samples and their associated class labels. In the classification phase
of an unlabeled vector q, its k nearest neighbors are calculated from the training data set,
based on the chosen distance metric. Eventually, the class label of q is determined based
on the majority of its nearest neighbor’s class labels.

class(q) = majority(k min(∥ q − vi ∥))∀vi ∈ train

In the case of PMD-Track, the train-test-split was set to 0.2, k was set to 7, and l2 norm
(euclidean) was used as the distance metric.

Multilateration based localization determines the position of an object by calculating
the intersecting point based on the distance to at least 3 known reference points. This
geometric-based localization yields a geospatial position with x and y coordinates. In non-
line-of-sight conditions, determining the distance based on the RSSI value is error-prone
due to environmental signal interference. Further, in the case of PMD-Track, instead of an
exact position, room-level granularity suffices. The following sections cover the design of
an adapted multilateration algorithm that predicts the room label instead of coordinates
in combination with floor plan information.

Distance measurements might not be accurate due to noise in the RSSI signal. Thus,
rather than a deterministic intersection point between the ranges of three known points,
an overlapping intersection area might exist. Overlaying this intersection area with floor
plan information yields coverage areas on a room-level basis. The room with the largest
coverage area is considered to be the most probable current location of the asset. The
following sections describe different localization scenarios on a case-by-case basis and how
they are resolved to a room label prediction.

The first case handles the situation when the smartphone and the fixed beacon are in
close proximity such that they can be considered in the same room. This is the case for
strong RSSI values above -70 dBm which translates to a range of up to approximately 2
meters.
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Figure 3.7: Multilateration: close proximity

Figure 3.7 illustrates a situation where fixed beacons from rooms A, D, G, and E are
detected by the smartphone. The radii of the dotted circles are calculated based on the
path-loss model and indicate the distance measured from the smartphone to each one of
them. As can be seen from the plot, the beacon in room E (hallway) is in close proximity
and in this case within the range of 2 meters. Thus, the predicted room label in this
situation is E.

Figure 3.8: Multilateration: Single intersection

If no beacon is within the range of a 2-meter radius, the intersection area of the detected
fixed beacons is calculated. In figure 3.8, the intersection area of beacon D and G is filled
in blue. Overlaying the intersection area on the building floor plan shows that rooms D,
G, and H are covered. The room with the largest coverage area is room G and is therefore
the predicted room label.

Figure 3.9: Multilateration: Multiple intersections, max intersection cardinality
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In case multiple beacons are detected, multiple intersection areas might exist. Figure 3.9
shows such a situation where beacons A, D, E1, and E3 are detected with their respective
intersection areas. To characterize different intersection areas, the concepts of intersection
set and intersection cardinality are introduced. Given an intersection i, a set of origin
shapes can be defined as the intersection set sinter(i) whose elements yield the intersection
i. For example, given two circles c1 and c2 that produce intersection i, the intersection set
is defined as sinter(i) = {c1, c2}. Given an intersection set s, the intersection cardinality
is simply defined as ∥ s ∥. In case of the previous example, ∥ sinter(i) ∥=∥ {c1, c2} ∥= 2.

Coming back to the situation shown in figure 3.9, one can observe that the intersection
of beacons A, D, and E1 has the highest cardinality. i.e.

∃sinter(i) | ∥ sinter(i) ∥>∥ sinter(j) ∥ ∀j ∈ intersections ∧ i ̸= j

Analogously to the previous case, once the intersection with the highest cardinality is
determined, the intersection area is overlayed on the floor plan and the room with the
largest coverage area is predicted as the room label. In this case, it’s room A.

Figure 3.10: Multilateration: Multiple intersections, min sum of radii

As shown in the previous example, multiple intersections with different intersection car-
dinalities may occur. In case there exist multiple intersections with the same maximum
cardinality, another selection criteria is applied to determine the intersection to be overlaid
on the floor plan. To this end, the notion of radii sum is introduced. Given an intersection
set sinter(i) = {c1, c2, ..., cn}, the radii sum is defined as the sum of the individual radii rck

Ri =
n∑

k=1

rck

Such a situation is depicted in figure 3.10 where there exist three intersections with car-
dinality 3 ({A,D,E1}, {D,E1, H}, {H,E1, E3}). Based on the fact that RSSI noise
increases with distance, a strong RSSI signal is more stable and accurate than a weak
signal. The radius of the dotted circles inversely correlates to the signal strength (i.e.
the stronger the RSSI signal, the smaller the radius). Thus, the smaller circles provide
a more accurate indication on the actual distance than larger circles. On this premise,
the intersection set {A,D,E1} is considered the most reliable intersection to be used for



3.3. ARCHITECTURE 29

room label prediction. Overlaying it on the floor plan reveals that room A has the largest
coverage area.

Figure 3.11: Multilateration: No intersection

Finally, a situation might occur where no two beacon signals overlap. This case is illus-
trated in figure 3.11 where the ranges of beacon A and D don’t overlap or touch at any
point. In this case, the beacon closest to the smartphone is considered to predict the room
label. In the situation at hand, the room predicted is A as beacon A has a stronger RSSI
signal and is thus closer to the smartphone.
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Chapter 4

Implementation

This chapter covers the implementation details of PMD-Track.

4.1 Gateway Application

The gateway application is designed and implemented to be run on Android Smartphones.
As the app does not offer any user interaction but runs in the background, its reliable and
continuous operation is crucial for the system’s data intake.

The Android operating system (as well as iOS) enforces multiple privacy and resource
policies, that apps are required to adhere to, in order to maintain the user’s privacy and
enhance device performance. This represents an important challenge in the case of PMD-
Track as its gateway application relies on a persistent internet connection as well as a
continuous scan of BLE devices. Additionally, apps that are not in the foreground are
assumed to be less important to users and thus are facing drastic limitations such as the
deprivation of resources.

To mitigate the risk of the gateway application being killed by the operating system, a set
of Android-specific precautions have to be taken. Firstly, a foreground service has to be
launched to indicate the app’s background operation. Secondly, location permissions have
to be set up correctly in order to get access to background BLE scans. Further, the BLE
scan has to be configured with a set of scan filters (c.f. code block below) as unfiltered BLE
scans are considered potentially harmful to user privacy, and thus, some manufacturers
such as Samsung have decided to prohibit unfiltered scans in the background.

List<ScanFilter> filters = List.of(

new ScanFilter.Builder()

.setManufacturerData(65535, new byte[]{}) // Custom manufacturer

.build());

ScanSettings settings = new ScanSettings.Builder()

.setScanMode(ScanSettings.SCAN_MODE_LOW_LATENCY)

31
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.build()

bluetoothLeScanner.startScan(filters, settings, leScanCallback);

On the other hand, a wake lock has to be acquired in order to prevent the phone from
entering doze mode, in which the network adapter is turned off temporarily. Finally, the
app needs to be whitelisted from the battery optimization to avoid being killed after a
specific period. Despite these precautions, vendor-specific customizations of the Android
operating system might still render a threat to the app’s stable operation.

4.2 Kafka Stream Processing

Apache Kafka has been chosen as a stream processing framework to facilitate the com-
munication of services and to enable the processing of BLE scan results. For the sake
of simplicity, the Kafka infrastructure scaling has been kept at a minimum with single
cluster and single partition deployment.

To integrate the MySQL database as well as the MQTT broker with the Kafka stream
processing framework, Kafka-Connect, a free and open-source component of Confluent’s
Kafka suite has been chosen.

4.3 Location Engine

The analysis and comparison of the localization algorithms has been done in a python-
based Jupyter Notebook. For the implementation of the kNN classifier, Scikit-learn, a
popular library for machine learning tasks has been used.

For the implementation of the multilateration-based localization algorithm, the shapely
library was used to perform geometric computations such as the calculation of intersections
or the discretization of floor plans into a set of shapes.

The computationally expensive calculation of possible feature combinations has been par-
allelized on multiple CPU cores to decrease the processing time.



Chapter 5

Evaluation

This chapter describes the experiments conducted to validate the chosen approach and to
contrast the results with the thesis goals and requirements.

The same evaluation was performed in two test locations independently - an office and
an apartment building. For both test locations, an initial data set was gathered on which
both the fingerprinting and multilateration-based approaches were trained and evaluated.

The goal of the evaluation is the analysis and comparison of the model accuracy under
different input feature configurations with the goal of minimizing the feature input space
(i.e. number of beacons) while maximizing model accuracy. A column in the data set
corresponds to a certain beacon or feature. As the initial data set was gathered with one
beacon per room, training and evaluating the model with different beacon configurations
can be achieved by simply considering a subset of the columns (i.e. beacons or features)
at a time.

The findings of the accuracy analysis are combined with a set of economic considerations to
support the decision-making process when implementing an indoor localization solution.
Further, a prototypical implementation of the system has been deployed and evaluated
within the scope of a pilot project at the emergency department of the city of Zurich.
Finally, a discussion wraps up the evaluation by contrasting the outcomes with the thesis
goals.

5.1 Model accuracy vs number of beacons

An input feature combination is a subset of beacons the model is trained on. The following
section compares the accuracy of the competing models under possible input feature
combinations. The evaluation is conducted against all classes/rooms of the data set. As
an evaluation metric, accuracy was used as it is a common choice with non-skewed data.
Both data sets are well balanced with respect to the class members as can be seen in
figures 5.1 and 5.2 which show the number of samples per class.
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Figure 5.1: Office test location

Figure 5.2: Apartment test location

To evaluate the accuracy of a specific input feature combination, the data set is first
partitioned into a training and testing set with an 80% and 20% split respectively. Subse-
quently and in the case of kNN, the model fits on the training set. Finally, the accuracy
is calculated on the testing set by computing the number of correctly classified samples
divided by the total number of samples in the testing set. Cross-validation is performed
to achieve a more reliable accuracy score by repeatedly training and testing the model on
different train-test-splits.
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The remainder of this section describes the results obtained by evaluating the models
on all possible feature input combinations. As mentioned above, a feature combination
is a subset of the total number of features. Thus, there are feature combinations of
length 1, 2, ..., d where d is the number of available features. Performing this evaluation
is computationally expensive due to the high number of combinations.

combinations =
d∑

i=1

d!

i!(d− i)!

For the office and apartment test location this yields a total of 65’535 and 31 combinations
respectively. In the following analysis, accuracy scores are grouped by the number of
features involved and averaged.

Figure 5.3: Accuracy threshold

Figure 5.3 shows accuracy on the y-axis and the number of beacons per room ratio on
the x-axis. For example, the green vertical line indicates the accuracy score for a beacon
per room ratio of 0.5. For the office test location, this means that equipping half of
all available rooms with beacons yields an accuracy of 35% and 83% on average for the
multilateration-based and kNN-based approaches respectively. It is worth noting that the
office test locations are equipped with 16 beacons and have 11 rooms, which explains the
beacon-per-room ratio of up to 1.4. Based on this interpretation, one can easily observe
that kNN performs considerably better than multilateration for all beacon per room ratios
and across test locations. Further, it appears that accuracy for the fingerprinting-based
approach grows logarithmically whereas the multilateration-based approach has a more
linearly-shaped growth.
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The box plots in figures 5.4, 5.6, 5.5, and 5.7 show the distribution of accuracy within a
group of a certain number of features. A wide distribution indicates that the choice of
beacons has a high impact on the accuracy whereas a narrow distribution suggests that
the choice is less relevant concerning achieved accuracy.

Figure 5.4: Accuracy box plot kNN (office)

For example, in Figure 5.4 for the office test location and the kNN model, one can observe
that installing 3 beacons in arbitrary rooms, yields a median accuracy of approximately
77% with Q1 and Q2 quartiles around 75% and 78% respectively. It is straightforward to
observe that as the number of beacons increases, the accuracy distributions get narrower.
Alternatively, for a low number of beacons (1-3), the choice of beacons seems to have a
high impact as can be seen by the wider distributions.

This observation is consistent with the evaluation of the kNN model in the apartment
location with the exception of beacon configurations of size 1 (c.f. figure 5.5. For the
multilateration model in the office test location, accuracy distributions seem more similar
in terms of variance across different numbers of beacons (c.f. figure 5.6).

For the apartment, the distributions follow a similar pattern as with the kNN-based model
(c.f. figure 5.7).

5.2 Model accuracy vs placement of beacons

As a next step, an interesting question is to analyze the significance of individual beacons
with respect to accuracy to better understand what beacons contribute more to accuracy
than others. Combining this with floor plan information might reveal geospatial patterns
as to where to place beacons on a floor plan to achieve maximum accuracy. To this end, the



5.2. MODEL ACCURACY VS PLACEMENT OF BEACONS 37

Figure 5.5: Accuracy box plot kNN (apartment)

Figure 5.6: Accuracy box plot multilateration (office)
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Figure 5.7: Accuracy box plot multilateration (apartment)

frequency is analyzed with which beacons occur in the top-ranking beacon configuration
of each feature space length. In this sense, for each group of specific feature-length (e.g.
all combinations of length 3), the combination is selected which achieves the best accuracy
score. Repeating this for all feature lengths and counting the occurrence of each beacon
yields the bar plots in figures 5.8 and 5.9.
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Figure 5.8: Beacon frequency office
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Figure 5.9: Beacon frequency apartment

While the beacon frequency of kNN and multilateration-based approaches are almost
identical in the apartment, the office test location shows another picture. For certain
beacons, the frequency count for both models is in a similar range and may be off by a
count of 1 to 2. However, there are beacons for which the discrepancy in the frequency
count is higher. For example, most beacons in the hallway (E6, E2, E4, and E5) are more
important for the fingerprinting-based approach than for the multilateration-based one.

Figure 5.10 shows the position of the fixed beacons overlaid on the floor plan where the
size of the beacon corresponds to its frequency count.
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Figure 5.10: Beacon frequency office (kNN)

It can be seen that beacons D, E6, and F are all aligned horizontally and vertically
centered. Further, if beacon A is also considered, it seems that two pairs of beacons
emerge, one on the left side (D, A) and one on the right side (E6, F).

Figure 5.11: Beacon frequency office (multilateration)

On the other hand, figure 5.11 shows the same map but for the multilateration-based
approach where another pattern emerges. In this case, the beacons in the center of the
floor plan (along the hallway) are the least important ones. Instead, beacons in the outer
rooms seem to have higher importance.

The described observations indicate general-pattern candidate locations for each localiza-
tion approach. In the case of fingerprinting-based localization, beacons might be installed
in pairs across a horizontally or vertically centered line with respect to the floor plan. Con-
versely, beacons might be best placed on the outermost, border rooms of the floor plan.
Despite those observations, it is important to highlight the qualitative nature of these
results. In the case of the apartment, the beacon frequency analysis was not conducted
due to the low number of beacons (only 5 beacons).
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5.3 Model accuracy vs training size

Despite the number and position of fixed beacons, the model training size has an influence
on the accuracy of the fingerprinting-based model. The following sections analyze the
model accuracy of the kNN localization model subject to the training size. Similar to
the previous evaluation, the model was repeatedly trained and tested on different training
data sizes ranging from 20 to 200 samples per room/class. The motivation for this analysis
is to reduce the overhead induced by collecting samples for the training database.

Figure 5.12 depicts a heatmap showing the number of beacons on the y-axis and training
size on the x-axis.

Figure 5.12: Accuracy scores for office

Training size has a positive effect on model accuracy as can be seen by the increasing
accuracy score. Further to notice is that the positive effect decreases with an increasing
number of beacons. For example, the accuracy of a 3-beacon model can be increased by
5% when using a training set size of 200 instead of 20. In contrast, with a 16-beacon
model, the accuracy can only be improved by 2%. Figure 5.13 illustrates this behaviour
in a 3D contour plot. Looking at the first derivative of the accuracy vs training size
relationship confirms that trend and additionally shows the diminishing marginal effect
of additional training samples (c.f. Figure 5.14).
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Figure 5.13: Accuracy curve for office
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Figure 5.14: Accuracy vs training size (office)

A similar, though less consistent behaviour can be observed for the apartment test location
in figures 5.15, 5.16, and 5.17.

Figure 5.15: Accuracy scores for apartment



5.3. MODEL ACCURACY VS TRAINING SIZE 45

Figure 5.16: Accuracy curve for apartment
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Figure 5.17: Accuracy vs training size (apartment)

5.4 Economical Evaluation

With the given analysis on model accuracy, the stage is set for a set of economical consider-
ations regarding the cost of ownership associated with the deployment of each localization
algorithm. Table 5.1 specifies a set of assumptions the following economical evaluation is
based. First of all, the scenario envisions the deployment in a location with 500 rooms
which corresponds to typical hospital size. The installation and labeling of a fixed beacon
on the ceiling of a room is assumed to be carried out by a trained field worker with an
hourly rate of $30 and an average installation time of 15 minutes. The training time of
15 minutes to collect 200 training samples per room is based on our experience and is
also accounted for with an hourly rate of $30. Hardware components such as beacons and
required batteries can be purchased at $5 and $2 respectively at the time of writing. Fi-
nally, a beacon-to-room ratio of 0.4 (fingerprinting) and 0.8 (multilateration) was chosen
to achieve an estimated accuracy of 80% and 50-75% respectively. These numbers are
obtained by extrapolating the observations in figure 5.3.

Table 5.2 and 5.3 compare the associated costs with each of the localization models. Setup
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Table 5.1: Economical evaluation: parameters

Parameter Value
Rooms 500
Installation time per room 15 min
Fingerprinting per room 15 min
Installation hourly rate $30
Fingerprinting hourly rate $30
Beacon unit price $5
Battery unit price $2
Battery lifetime 1 year
beacon-room-factor-knn 0.4
beacon-room-factor-multi 0.8

costs include the installation of beacons and the collection of the fingerprint database. It
is worth noting that training overhead is roughly at par with the costs for the addi-
tional beacons needed in the multilateration case. Thus, at first sight, the two approaches
seem comparable with a cost advantage for the multilateration model. However, when
looking at yearly costs, the picture changes when facing maintenance overhead. Recur-
ring expenses for batteries and labor costs for battery replacement work drive the yearly
maintenance costs. In this case, fingerprinting-based localization has an edge due to the
smaller hardware footprint as compared to multilateration which yields only half of the
maintenance costs.

Figure 5.18: Accumulated costs of ownership

Figure 5.18 outlines the accumulated costs of ownership over a period of 5 years. It is
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Table 5.2: Economical evaluation: fingerprinting

Description Units Price/Unit Total
BLE Beacons 200 $5.00 $1,000.00
Installation of BLE Beacons 200 $7.50 $1,500.00
kNN Fingerprinting 500 $7.50 $3,750.00
Setup Costs $6,250.00
Coin cell battery 200 $2.00 $400.00
Battery replacement work 200 $7.50 $1,500.00
Recurring Costs (Yearly) $1,900.00

Table 5.3: Economical evaluation: multilateration

Description Units Price/Unit Total
BLE Beacons 400 $5.00 $2,000.00
Installation of BLE Beacons 400 $7.50 $3,000.00
kNN Fingerprinting 0 $7.50 $0.00
Setup Costs $5,000.00
Coin cell battery 400 $2.00 $800.00
Battery replacement work 400 $7.50 $3,000.00
Recurring Costs (Yearly) $3,800.00

noteworthy that the fingerprinting-based approach recovers the higher setup costs in less
than 2 years and has a cost advantage of roughly 45% over a 5-year period. Thus, it can
be concluded that under the current assumptions, the fingerprinting-based approach is
more effective both in terms of hardware footprint as well costs. This fact can change
once the battery life of beacons drastically improves such that the need for replacement
can be reduced considerably.

5.5 Privacy & Security

In terms of privacy and security concerns, the separation of the gateway and frontend
application allows users to read information from the system without being part of the
BLE tracking network. The fact that users can voluntarily opt into the tracking network
can be seen as a measure to retain user privacy. However, the system might expose the
current location of users running the gateway application and who are in the range of a
tracked asset. This issue deserves to be addressed and needs further investigation.

Overall, the system is designed with minimal possible intervention and interference with
the existing hospital’s infrastructure, except for the employee smartphones that are typi-
cally handed to the staff. Attaching beacons to medical devices does not render a problem
from a regulatory perspective as the beacons operate in the well-secured ISM band. In this
regard, the system can be run in isolation and has no effect on security-relevant aspects
of the hospital’s operation.
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5.6 Pilot: Emergency Department Zurich

In parallel to the theoretical evaluation, an adaption of the described system has been
deployed at the emergency department of the city of Zurich where it is used to track assets
of the logistics division. The system was adapted to track assets outdoors through the use
of the smartphone’s GPS location as a reference point. Within the context of this pilot,
the feasibility of the architecture and performance have been successfully validated.

5.7 Discussion

This work provides the design and prototypical implementation of a new type of architec-
ture for an indoor asset tracking system. By leveraging smartphones, it has been demon-
strated that the system does not rely on stationary gateways as opposed to traditional
RTLS while maintaining room-level accuracy.

PMD-Track’s key strength lies in its lightweight hardware requirements, which yield mul-
tiple benefits such as a simpler setup process, less maintenance overhead, and most im-
portantly, lower costs of ownership, as compared to existing tracking solutions.

Conversely, the distributed nature of PMD-Track introduces additional challenges. Re-
gardless of the localization method used, the system relies on a critical mass of users
participating in the distributed tracking of PMDs. If the number of users doesn’t suffice
to cover the entire premises on a regular basis, ”blind zones” without coverage may occur
where no up-to-date information is available due to staff not passing through. In this
case, the isolated deployment of stationary gateways might still be necessary in specific
areas.
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Chapter 6

Final Considerations

This chapter concludes the thesis by summarizing the scope, its goals, and achievements
in Section 6.1. Section 6.2 presents the findings and Section 6.3 provides an outlook on
future work.

6.1 Summary

In this work, a prototypical, gateway-free, and distributed RTLS has been implemented
and validated by a pilot study. In the scope of this thesis, two popular localization algo-
rithms have been implemented and evaluated in two test locations. The evaluation has
been performed by collecting a base data set in either of the test locations where the
accuracy of both localization algorithms has been evaluated under various input config-
urations. Finally, the accuracy evaluation has been contrasted with a set of economical
considerations regarding the deployment and operating costs of the envisioned solution.

For both test locations, it could be shown that the accuracy of the fingerprinting-based
approach surpassed the one of the multilateration-based localization algorithms by 15-
45% in non-line-of-sight conditions. Further, it has been shown that fingerprinting-based
localization achieves roughly the same level of accuracy with half the number of fixed
reference beacons. In light of these findings, deployment and running costs of the two
alternatives have been analyzed and while the multilateration-based approach has a slight
edge in terms of deployment costs, running costs for the fingerprinting-based approach are
considerably lower such that after a 5-year period, total costs are roughly 45% lower for
the fingerprinting localization. Further, the distributed RTLS architecture and real-time
processing has been successfully validated in a pilot study.

6.2 Conclusions

Data pre-processing is a main driver for model accuracy. In PMD-Track, a straightforward
data collection and imputation strategy has been pursued and acceptable accuracy results
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have been obtained. Further analysis and improvements of the (i) data collection and (ii)
data imputation process could potentially help to de-noise the data set and thus contribute
to higher accuracy scores for both localization algorithms.

The data collection for both test locations has been performed by sequentially fingerprint-
ing each room. While this approach worked well in the case of only a few rooms, it will
eventually render a bottleneck for large scale roll-outs. In the latter case, the fingerprint
collection could be parallelized and distributed to reduce the overall data collection time.

While the kNN model worked considerably well with a standard configuration of k = 7
and euclidean distance metric, different hyper parameters could evaluated which might
further improve model accuracy.

Finally, the beacon placement has a significant impact on model accuracy. Repeating the
analysis in different test locations could help to uncover beacon placement patterns best
suited for the respective localization algorithm and floor plan.

6.3 Future Work

This work has focused on the experimental evaluation of two localization algorithms. As
a next step, the fingerprinting-based kNN classifier needs to be implemented and inte-
grated into PMD-Track’s Location Engine. Further, a tool for the distributed collection
of location fingerprints has to be developed to collect the fingerprint database. Finally,
an indoor pilot needs to be conducted to evaluate the feasibility.
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2D Two dimensions
3D Three dimensions
AoA Angle of Arrival
AoD Angle of Departure
AP Access Point
API Application programming interface
BLE Bluetooth low energy
CCS4DT Cloud Correlation Service for Data Tracking
CLEAR Classification of events, activities and relationships
cm Centimetre
COVID Coronavirus disease
CPU Central Processing Unit
CRUD Create, read, update, and delete
DB Database
ETL Extract, transform, load
EPC Electronic Product Code
FTM Fine Time Measurements
GATT Generic Attribute Profile
GB Gigabyte
GPS Global Positioning System
ID Identifier
IEEE Institute of Electrical and Electronics Engineers
IMU Inertial Measurement Unit
IoT Internet of Things
IP address Internet Protocol address
JSON JavaScript Object Notation
KF Kalman Filter
KNN K-Nearest Neighbor
LoS Line of Sight
MAC Media access control
ML Machine Learning
MOT Multi object tracking
PMD Portable medical device
RAM Random access memory
RDBS Relational database system
REST Representational state transfer
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RFID Radio Frequency Identifiers
RSS Received signal strength
RTT Round Trip Time
s Seconds
SIG Special Interest Group
TSDB Time series database
ToF Time of Flight
UUID Universally unique identifier
UWB Ultra-WideBand
VLS Visible Light Communication
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