
CH2TF – Collaborative Heavy Hitter
Traffic Filtering

Fabian Küffer
Zürich, Switzerland

Student ID: 15-931-421

Supervisor: Dr. Bruno Rodrigues, Katharina Müller, Prof. Dr.
Burkhard Stiller

Date of Submission: December 14, 2022

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: https://www.csg.uzh.ch/

Abstract

The emergence of DDoS attacks posed a paramount problem in the advent of the internet’s
growth. Indeed, DDoS attacks occur regularly and lead to major service outages that incur
high costs in various dimensions. Thus, this thesis explores the topic of collaboration
between parties to enable a distributed defense approach. Hence, CH2TF proposes a
collaborative signaling protocol to enable heavy hitter (HH) traffic filtering. However,
while HH are large traffic flows in the network, their global visibility is often unclear.
Consequently, this collaborative approach clears up the otherwise opaque visibility of
global HH. While related work has continuously been addressing DDoS defense techniques,
there currently exists a research gap regarding a collaboration effort to identify HH.

A prototype has been designed and implemented to showcase the workings of the signaling
protocol. Moreover, the evaluation results of the prototype showed that HH of specific
ongoing attack cases (i.e., volumetric attacks) are successfully detected in a collaborative
manner with sufficiently high accuracy (0.85), though the prototype does not fare that
well in other specific attack detection scenarios (i.e., botnets, 0.42). Additionally, the
evaluation results showed that the analyses to detect attacks and HH are performant and
are expected to scale well.

i

ii

Zusammenfassung

Seit dem Aufkommen des Internets haben sich DDoS Angriffe als ein schwerwiegendes
Problem dargestellt. In der Tat, DDoS Angriffe treten regelmässig auf und führen zu
Kosten in verschiedenen Dimensionen, durch Serviceunterbrüche und Mitigationskosten.
Deshalb untersucht diese Thesis das Thema der Kollaboration um eine verteilte Verteidi-
gung zu erzielen. CH2TF schlägt also ein kollaboratives Signalisierungsprotokoll vor um
Heavy Hitter Netzwerk-Traffic Filtering zu ermöglichen. Folglich wird durch diesen kolla-
borativen Ansatz Klarheit geschaffen bezüglich der globalen Visibilität von Heavy Hitters,
die ansonsten intransparent ist. Während die Verteidigungsmittel gegen DDoS Angriffen
kontinuierlich erforscht wurden, existiert derzeit eine Forschungslücke im Bereich von kol-
laborativen Vorgehen um Heavy Hitters zu identifizieren.

Zusätzlich wurde ein Prototyp entworfen und implementiert um das Vorgehen des Signa-
lisierungsprotokolls zu zeigen. Auch haben die Evaluationsergebnisse gezeigt, dass Heavy
Hitters während einem laufenden Angriff in gewissen Szenarien (i.e., volumetrischer An-
griff) erfolgreich, sprich mit mit genügend hoher Präzision (0.85), kollaborativ aufgedeckt
werden können. Jedoch hatte der Prototyp Mühe in anderen Szenarien (i.e., Botnets,
0.42). Ergänzend zeigten die Evaluationsresultate auch, dass die Analysen um Angriffe
und Heavy Hitters zu entdecken performant sind und voraussichtlich gut skalierbar sind.

iii

iv

Acknowledgments

I would like to take this opportunity to express my gratitude to everyone that made
this thesis possible. Especially, my supervisors Dr. Bruno Rodrigues, Katharina Müller,
and Prof. Dr. Burkhard Stiller who gave me the opportunity to work on this thesis. In
particular, I especially express my gratitude towards Dr. Bruno Rodrigues for the support
and invaluable inputs, insights, and discussions that enabled this thesis. Of course, a big
‘Thank You!’ to the Communication Systems Group at the UZH as well, which has always
provided me with opportunities to work on my theses and projects and was invaluable to
my studies. Also, I would like to thank Pascal Kiechl for his proofreading inputs.

v

vi

Contents

Abstract i

Zusammenfassung iii

Acknowledgments v

1 Introduction 1

1.1 Thesis Goals . 2

1.2 Methodology . 2

1.3 Thesis Outline . 3

2 Background 5

2.1 Distributed Denial of Service Attacks . 5

2.1.1 DDoS Attacks & Attack Classification 6

2.1.2 DDoS Defense & Attack Mitigation 8

2.2 Heavy Hitters . 10

2.3 Publisher-Subscriber Pattern . 10

2.3.1 Pub/Sub Frameworks . 11

2.4 Bloom Filter . 13

vii

viii CONTENTS

3 Related Work 17

3.1 MULTOPS . 17

3.2 D-WARD . 18

3.3 AITF . 19

3.4 DefCOM . 20

3.5 Defense and Offense Wall (DOW) . 20

3.6 Zhang et al. (2008) . 21

3.7 Velauthapillai et al. (2010) . 22

3.8 MISP . 22

3.9 BloSS . 23

3.10 Doshi et al. (2018) . 25

3.11 Wagner et al. (2021) . 26

3.12 DDoS Clearing House . 27

3.13 DDoS Open Threat Signaling (DOTS) . 27

3.14 Comparison and Discussion . 28

4 Design 33

4.1 Requirements . 33

4.2 Capabilities and Features . 33

4.3 Architecture . 34

4.4 Communication Protocol . 36

4.5 Pub/Sub Framework and Topics . 38

4.6 Policies: Attack Detection . 40

4.7 Policies: Heavy Hitter Detection . 40

4.8 Privacy . 41

4.9 Reputation . 42

CONTENTS ix

5 Prototype Implementation 45

5.1 Components . 45

5.2 Pub/Sub: Apache Kafka . 46

5.3 Package Collecting . 47

5.4 Listener . 49

5.5 Sending Requests . 50

5.6 Receiving Requests . 52

5.7 Receiving Responses . 54

5.8 Attack and Heavy Hitters Analyses . 55

5.8.1 Attack Analysis . 56

5.8.2 Heavy Hitters Analysis . 57

5.9 Bloom Filters . 60

5.9.1 Managed IP Addresses . 60

5.9.2 Heavy Hitter Tables . 61

6 Evaluation 63

6.1 Attack Cases . 63

6.1.1 Volumetric Attack . 64

6.1.2 Burst / Pulse Wave Attack . 65

6.1.3 Botnets . 66

6.2 Performance . 67

6.3 Discussion . 68

7 Final Considerations 75

7.1 Summary . 75

7.2 Considerations . 76

7.3 Future Work . 77

Bibliography 79

x CONTENTS

Abbreviations 87

List of Figures 89

List of Tables 93

Listings 95

A Traffic Generation and Sniffing 97

B Additional Implementation Classes 101

C Docker Compose YAML 103

D Installation Guidelines 107

D.1 Docker Installation . 107

D.2 Local Development . 108

D.3 Configurations . 108

E Contents of the Submission 111

Chapter 1

Introduction

Since the advent of the internet, Denial-of-Service (DoS) attacks have posed a problem
and have been considered by the research community and security professionals [96].
However, the emergence of Distributed Denial-of-Service (DDoS) attacks in 1999 led to
this attack vector growing substantially in prominence and remains, despite high efforts
by academia and industry, currently unsolved [96, 69]. These attacks lead to a disruption
in access to services and unavailability of internet platforms, incurring high costs not
only from the disruption of the services but also from its mitigation processes [69, 96].
Hence, various aspects in the realm of DDoS attacks have been researched, inter alia,
also to approach the mitigation by analyzing and dissecting the incentives and motives
behind an attack to prevent them from the start, though research has shown that the
objectives and motives of attackers are not homogeneous, and thus, not solvable from this
perspective [96]. Furthermore, complicacies in solving this topic arise from a large number
of inherently insecure devices connected to the internet and are commonly exploited to
conduct DDoS attacks on a large scale [20]. As such, it is clear that DDoS attacks remain
a complex topic that has yet to be solved.

Thus, given these paramount challenges, this thesis builds upon the current research
and identifies that the distributed nature of DDoS attacks calls for a distributed defense
strategy that involves various mitigation points, which are possibly closer to the attack’s
origin. Nevertheless, distributed and collaboration strategies bring forth additional, multi-
dimensional challenges, such as the interplay of technical, legal, economic, and social, that
must be carefully considered and evaluated [69].

Besides, heavy hitters (HH) can be seen as large flows of traffic that consume a high
amount of network resources [74], thus, their identification and traffic differentiation at
a local level would lead to a Quality-of-Service (QoS) improvement. For instance, by
handling HH in a special manner, the overall network utilization can be optimized and
congestions can be prevented [31]. However, in an ongoing DDoS attack, the global visi-
bility of HH is opaque, which this thesis clears up by collaboratively identifying HH.

Thus, this thesis explores the concept of building heavy hitter tables based on different
dimensions collaboratively to enable the filtering of HH based attack traffic. In this sense,

1

2 CHAPTER 1. INTRODUCTION

this thesis proposes and implements a communication protocol to enable collaboration
between multiple parties on an ongoing attack.

Furthermore, related work has covered adjacent DDoS defense topics such as detec-
tion [23], mitigation [53, 54], though the major, cooperation-related literature is covered
in [96, 54]. Nevertheless, no existing work has approached the concept of building HH
tables collaboratively.

The major contributions of CH2TF are threefold: (i) a Collaboration Protocol to facilitate
DDoS defense, (ii), the policies to enable the Detection of attacks and HH, and (iii), the
Open Source publication of the developed prototype.

1.1 Thesis Goals

Motivated by the work description that has been outlined, the thesis goals are as follows:

• Design of a signaling protocol to exchange information on HH traffic. Such traffic
has to be based on different topics (e.g., regional, national, and international).

• Design of a data-oriented and time-efficient algorithm to calculate global HH in
different dimensions and return the information, upon request, to each participating
instance.

• A proof-of-concept has to be developed and evaluated to satisfy the proposed pro-
tocol and algorithms to validate the proposed concept or collaborative HH.

• In detail, full-fledged documentation of related work evaluations, design decisions,
background, design, prototyping, evaluations, and discussions of findings has to be
completed.

1.2 Methodology

The methodology of this thesis includes literature research on the state-of-the-art DDoS
detection systems, as well as research into how collaboration and cooperation are employed
in the realm of DDoS defenses and the discussion thereof. Furthermore, a theoretical
foundation in the topics relevant to this thesis (i.e., Pub/Sub, Bloom Filters, DDoS
Attacks) is built and researched upon using literature research. Given these foundations,
CH2TF is designed and implemented by employing applied research. To evaluate the
proposed work, CH2TF is evaluated from multiple dimensions by various experiments.

1.3. THESIS OUTLINE 3

1.3 Thesis Outline

The structure of the thesis has been divided in the following manner: In this chapter, the
topic of the thesis is introduced. Subsequently, in Chapter 2, the relevant background
information regarding DDoS attacks and Pub/Sub systems is explored. Following the dis-
cussion and comparison of the related work in Chapter 3, the design and implementation
of the system are documented in Chapter 4 and 5, which make up the main section of this
thesis. In Chapter 6 the results of the system evaluation are presented, and in Chapter 7
a conclusion is drawn, and future work is presented.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter explores the theoretical background and fundamentals of DDoS attacks, the
Pub/Sub pattern and gives an introduction to Bloom filters and heavy hitters (HH). Thus,
Section 2.1 talks about DDoS attacks and gives a short classification of DDoS attacks and
their mitigation techniques. Next, HH are introduced in Section 2.2. Further, various
Pub/Sub frameworks are presented and discussed in Section 2.3. Lastly, Bloom filters are
explored in Section 2.4.

2.1 Distributed Denial of Service Attacks

Essentially, Denial of Service (DoS) attacks attempt to prevent legitimate users to access
and use specific web services, resources, or systems [96, 75]. Although attacks of this kind
do not lead to a compromise of user data, the resulting outages can lead to loss of user
trust [37]. While DoS attacks already appeared in the early 1980s, it was not until 1999
that the first Distributed Denial of Service (DDoS) attack occurred [96, 75]. Since this
incident, most DoS attack occurrences can be classified as distributed [96].

Furthermore, DDoS attacks have also grown substantially in attack volume. Figure 2.1
shows the largest known DDoS attacks and trends in attack volumes [37]. However,
this figure’s data only includes data collected from Google Cloud and other (undisclosed)
sources [37]. While the exponential trend appears alarming, [37] notes that the inter-
net itself is also growing exponentially, making the result look more problematic than it
actually is.

Generally, DDoS attacks can be classified based on various criteria, inter alia, the at-
tacker’s motivation, leading to the following enumeration [96]:

• Financial/ Economical Gain: Attacks that are motivated by financial or economical
gain are a significant predicament for corporations. They are very technically affine
and therefore also hard to defend against.

5

6 CHAPTER 2. BACKGROUND

Figure 2.1: Largest known DDoS attacks and trends in attack volumes [37]

• Revenge: Attacks from this category are motivated by the feeling of injustice, lead-
ing to revenge attacks.

• Ideological Belief: This is one of the most prevalent incentive, with politically
motivated attacks in Estonia (2007), Iran (2009), andWikiLeaks (2010) falling under
this category.

• Intellectual Challenge: This category includes attacks that are motivated by the
attacker’s inclination of wanting to learn and extend their understanding of attacks,
or knowledgeable attackers that want to show their capabilities.

• Cyberwarfare: These attacks stem from organizations belonging to a country and
target other countries, for political reasons. Targets of these attacks can include
critical infrastructures and services and may have an enormous impact.

A more technical classification of attacks is introduced in Section 2.1.1.

2.1.1 DDoS Attacks & Attack Classification

Fundamentally, based on the targeted protocol level, DDoS attacks can be distinguished
betweenNetwork/transport-level DDoS attacks andApplication-level DDoS attacks [96].
In the case of network/transport-level DDoS attacks, usually, TCP, UDP, ICMP, and
DNS protocol packets are exploited to conduct the attack, while application-level attacks
target exploits HTTP, DNS, or Session Initiation Protocol (SIP) [96]. This results in
application-level attacks being very similar to legitimate traffic, while also consuming less
bandwidth [96].

2.1. DISTRIBUTED DENIAL OF SERVICE ATTACKS 7

Reflection-Based Attacks

In reflection-based attacks the attacker spoofs the target’s IP address and contacts legit-
imate servers with a request, e.g., DNS requests [40, 49]. The response to the request is
in turn sent to the target, since the server in the middle believes the origin of the spoofed
IP address is the target [49]. In the case of network/transport-level DDoS attacks, the
attackers often send requests such as ICMP echo requests to the reflectors, resulting in a
denial of service [96].

Amplification-Based Attacks

This type of attack employs services for traffic amplification, such that each message sent,
results in either a generation of large or multiple messages, which in turn are targeted
towards the victim [96]. Hence, this results in an amplification of traffic [96]. Further-
more, amplification attacks are usually combined with Reflection Attacks [96] to hide
the origin of the attack while amplifying the attack [49]. An instance of this attack in
the category of network/transport-level attacks was the Smurf attack, which used ICMP
echo requests, and spoofing. It exploited IP broadcasting to generate high traffic from
all devices inside the network [14, 96]. However, the Smurf exploit can be considered as
“solved” nowadays [14].

Botnet-Based Attacks

This attack type differs from the other types that were presented, since it can be used as a
mechanism to enable and conduct DDoS attacks [96]. Furthermore, [96] notes that using
botnets to facilitate DDoS attacks is very prominently used, also for the precarious DDoS
cases. By employing a botnet, not only can the DDoS attack scale in size extremely well,
but also appear opaque, by using spoofing techniques [96].

Figure 2.2 shows the structure of such a botnet-based attack. The attackers use so called
handlers to communicate indirectly with the bots to conduct an attack on a DDoS vic-
tim [96]. The handlers themselves can be programs that run on compromised devices, for
instance, network servers [96]. The bots, also known as ‘zombies’, are devices that were
compromised, using viruses such as worms or Trojan horses or by exploiting backdoors,
by the handlers [96]. The bots themselves are then the DDoS attackers [96]. Additionally,
the bots can be controlled by their masters using IRC-based, Web-based, and P2P-based
techniques [96].

Furthermore, the rise in popularity of Internet of Things (IoT) devices, which are promi-
nently insecure, lead to botnet-based attack to be highly viable [20]. For instance, the
Mirai botnet, which conducted a highly effective DDoS attack against Dyn DNS infras-
tructure, controlled 100′000 devices in 2016, where many of those devices were in fact
CCTV cameras [20]. Additionally, botnets can include techniques to detect and evade
their capture by erasing their data to offer resiliency [96].

8 CHAPTER 2. BACKGROUND

Figure 2.2: Botnet-Based DDoS Attack [96]

2.1.2 DDoS Defense & Attack Mitigation

Regarding the DDoS attack detection, [8] note that separating legitimate and illegitimate
traffic is not trivial, since attacks can mimic the behavior of legitimate traffic to avoid
detection. In general, a successful and effective mechanism for DDoS prevention and
mitigation should fulfill the following properties and requirements as outlined by [8]:

• Legitimate users of a service should not be impeded by the use of a protection
mechanism.

• Attacks from within, but also from the outside of the network should be preventable
by the use of a protection mechanism.

• Mechanisms must be performant and scalable, according to modern data centers,
and also offer robustness, adaptiveness, and flexibility.

• DDoS mitigation should be offered by the mechanism.

• The mechanism should avoid false-positives and have high detection rates.

2.1. DISTRIBUTED DENIAL OF SERVICE ATTACKS 9

In this context, a mechanism can be seen as a DDoS attack protection solution [8].

Attack Detection

Common techniques to detect DDoS attacks (using SDNs) had been reviewed by [8]. A
selection of such mechanisms is presented here:

• Entropy: This technique uses probability distributions to calculate the entropy. The
entropy is then compared against predefined threshold values to detect an attack.
Features such as source IP address, destination IP address, or port numbers are
used to compute the entropy.

• Machine Learning: This technique is about detecting anomalies using ML. This
has also been employed to detect IoT-based DDoS attacks (cf. Section 3.10). ML
techniques for anomaly detection include Bayesian networks, self-organizing maps
(SOM), and fuzzy logic. Using such techniques, the traffic flow can be classified into
legitimate and illegitimate. However, the performance of such techniques depends
on the training sets that were used.

• Traffic Pattern Analysis: This technique is about analyzing the behavioural traffic
patterns to differentiate between legitimate and illegitimate traffic. For instance,
bots in a botnet behave differently to benign hosts, and this fact can be used to
detect an attack.

• Connection Rate: This term includes multiple techniques. For instance, the ‘con-
nection success ratio’ can be used to detect an attack. The rationale is, that a
benign host would have a much higher number of successful connection attempts
than a malicious host. Using a threshold value for this ratio can be used to detect
malicious hosts.

However, [8] notes that the aforementioned techniques employ thresholds in some sort to
detect an attack. Such thresholds act as a baseline for what constitutes as illegitimate
traffic [8]. Further attack detection literature is presented in Chapter 3.

Attack Signaling

Attack signaling is about the real-time signaling of DDoS attack information and teleme-
try [28]. This has been proposed by [28] in a standardization attempt (cf. Section 3.13).
Using a signaling protocol enables the communication between an attack target and the
mitigators [28]. Thus, this allows the mitigation of an ongoing DDoS attack [28, 69]. Ex-
isting work also employs Blockchains (BC) to enable collaborative signaling (cf. Section
3.9). The topic of signaling is further discussed in Sections 3.13 and 3.9.

10 CHAPTER 2. BACKGROUND

Attack Mitigation

Attack or threat mitigation plays a role once an ongoing attack has been detected, and
allows to protect services such that they can continue their operation [8]. Common attack
mitigation techniques that can be employed in a centralized SDN controller have been
reviewed by [8], and a selection is presented here:

• Drop packets: Using rules, attacks are mitigated by dropping the packets.

• Block port: Traffic is blocked according to the attacking port.

• Deep Packet Inspection: Deep packet inspection looks at the header and data of
packets. This allows for the detection of an attack, and its mitigation.

• Redirection: To achieve mitigation, traffic is differentiated and the benign traffic is
redirected to a new IP address.

• Traffic isolation: The illegitimate traffic is isolated (i.e., quarantined).

• Control bandwith: This technique limits transmission flow rates.

However, these mitigation techniques also have issues. For instance, the fast and simple
solutions (i) dropping packets, or (ii) blocking ports could, in practice not only stop an
attack, but also legitimate traffic [8].

2.2 Heavy Hitters

Heavy hitters (HH) can be defined as traffic flows with high volumes, i.e., a small propor-
tion of the overall network flows is responsible for most network traffic [31]. As such, HH
can also be seen as elephant flows or mega flows [31, 51]. This concept is not particular
to DDoS attacks, but can be seen as a more general topic from network sciences and is
relevant to applications such as DoS detection, traffic engineering, network anomaly or
load balancing [74, 31].

The identification of such HH is paramount to enable a high QoS and load-balancing
in the network [31]. Depending on the application, the identification of HH enables a
special treatment, for instance, they allow for priority queuing or packet dropping [51].
Traditionally, the detection of HH is done using sampling metrics of network traffic using
set intervals [31].

2.3 Publisher-Subscriber Pattern

The Publish-Subscribe (Pub/Sub) paradigm is a messaging pattern that allows publish-
ers to send messages, and subscribers to receive messages according to topics that they

2.3. PUBLISHER-SUBSCRIBER PATTERN 11

subscribe to [88]. This pattern is closely related to the “Observer Design Pattern” (cf.
[85]), and it is designed to solve the problem of tight coupling between subjects and ob-
servers that can create various issues, such as scalability or flexibility [85, 38]. This is
accomplished by introducing Message Brokers, allowing the asynchronous communica-
tion between services that do not need to be aware of each other, thus, publishers and
subscribers are not coupled together, and the services can be operated independently
from each other [27, 38]. Therefore, a dynamic and flexible network topology can be re-
alized [88], and integrations and interactions between systems, applications, or platforms
become simpler, whilst achieving a separation of concerns [38]. Additionally, this pattern
offers the great advantage of high scalability via parallel operations, message caching, or
tree-based/network-based routing [88].

However, this pattern comes with the disadvantage that the structure of the published
data must be known, thus, there is less flexibility in modifications to the structure of the
published data [88]. Furthermore, this pattern is unidirectional from the publishers to the
subscribers, i.e., implying that subscribers cannot communicate back to the publishers or
give acknowledgements via the channels of this pattern [38].

The architecture of the Pub/Sub pattern includes three main components (cf. Figure 2.3):

• Producers/Publishers: Are senders of messages [38]. They are not aware of specific
subscribers, or the potential lack thereof [88], though the format of the messages is
known [38]. The messages are sent via the input channel to the message broker [38].

• Message Broker: Is an intermediary that is responsible for transferring the messages
that arrive through the input channel to the subscribers, via the output channel, that
have interest in this message [38]. Thus, the broker filters messages and forwards
them to the right subscribers, and is also able to queue them based on priorities
before routing [88].

• Consumers/Subscribers: The subscribers subscribe to a topic of interest [88], and
for each consumer of messages there exists an output channel from the broker [38].
Similarly, subscribers are not aware of specific publishers, or the lack thereof [88].

The Pub/Sub pattern can be achieved with a single message broker (cf. Figure 2.3) or
with multiple brokers, in a distributed fashion (cf. Figure 2.4).

2.3.1 Pub/Sub Frameworks

In this section a selection of Pub/Sub frameworks are presented and discussed. They have
been selected due to their popularity.

Apache Kafka

Apache Kafka is a highly popular open-source distributed event streaming platform, with
over 22′000 stars in Github [3, 4]. The platform supports the publishing and subscription

12 CHAPTER 2. BACKGROUND

Figure 2.3: Components of the Pub/Sub Pattern [38]

Figure 2.4: Distributed Pub/Sub Architecture [77]

of events, and also their storage [4]. An example of Apache Kafka deployed in a cluster
is displayed in Figure 2.5, where its architecture relies on a Apache ZooKeeper (cf. [5])
cluster, a centralized service to provide synchronization for distributed applications, to
store metadata and configuration of topics and locations of partitions [5, 36]. However,
since the ZooKeeper dependency limits the scalability of Kafka, future releases will remove
this dependency [4, 36].

Kafka can be deployed in a Kubernetes cluster (cf. [34]) [30] or Docker (cf. [18]) [7], and
clients supporting many programming languages such as Java, Scala, C/C++ or Python
are available [4].

Conceptually, in Kafka the smallest unit of data is a message, and each message belongs
to a specific topic [72]. Additionally, Kafka uses the concept of partitioning the topics,

2.4. BLOOM FILTER 13

meaning that each topic has multiple partitions that can be distributed over servers to
achieve high scalability, and the partitions themselves can be replicated as well, to handle
potential failures [72].

So that consumers can keep track of the messages, each message includes a continuously
increasing number, which is unique to a partition, called the offset, which results in
consumers being able to begin and stop reading from a specific message onwards [72].

Figure 2.5: Apache Kafka using a Kubernetes Cluster [30]

Emitter

Emitter is an open source distributed Pub/Sub framework that supports more than
3′000′000 messages per second for a single broker [21]. Possible configurations that are
supported by Emitter are shown in Figure 2.6. This framework supports various clients
in a multitude of languages, such as JavaScript, TypeScript, Python, C# or Java [22].
For convenience, Emitter supports Docker (cf. [18]) and Kubernetes (cf. [34]) deploy-
ments [21]. At the time of writing, this project’s latest release was in December 2021, and
the project has 3300 stars in Github [21].

2.4 Bloom Filter

Bloom Filters were introduced in 1970 by Burton Howard Bloom, and are a probabilistic
data structure [24, 91]. Their main use is the test of set membership, i.e., whether a
member is part of a set or not [91, 24, 70]. However, due to their probabilistic nature,
the result of a query indicates that a member is possibly in a set or not part of the
set [91, 24, 70]. These query results imply that no false negatives are possible, though
false positive matches can occur, i.e., the query result possibly in a set can be wrong [91].

14 CHAPTER 2. BACKGROUND

One-to-One One-to-Many

Many-to-One Many-to-Many

Figure 2.6: Possible Emitter Communication Configurations [22]

However, the false positives occur with low probability [70, 24], though a high number
of items in a set leads to a higher probability of false positives [91]. In particular, it has
been shown that the probability of false positives fp is:

fp = (1− (1− 1

m
)kn)k ≈ (1− e−kn/m)k

where k stands for the number of independent hash functions that are used, n the amount
of added elements, and m the bits in the array that is used as a bloom filter [24, 91].

While at first glance this data structure might appear contrived, it is highly space-efficient
due to not requiring storing the elements themselves and features a constant lookup
time of O(k), with k denoting the number of distinct hash functions used, to check
whether an element is in the set, which are both highly valuable properties for many
applications [24, 91].

In Figure 2.7 an example of a bloom filter and its operations is given. The bloom filter
vector is initially empty, i.e., all bits are set to 0. The elements x1, x2, x3 are each hashed
by k = 3 hash functions h, and inserted into the vector A. Subsequently, the elements
y1, y2 are queried.

2.4. BLOOM FILTER 15

0

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

10

0

11

0

12

0

13

(a) Empty bloom filter example with a vector A using m = 14 bits.

0

0

1

1

0

2

0

3

0

4

1

5

0

6

0

7

0

8

0

9

0

10

1

11

0

12

0

13

h1(x1) h2(x1) h3(x1)

(b) Inserting the element x1 using 3 hash functions hi

0

0

1

1

0

2

1

3

0

4

1

5

0

6

0

7

0

8

0

9

0

10

1

11

0

12

1

13

h2(x2) h3(x2) h1(x2)

(c) Inserting the element x2 using 3 hash functions hi. In this example, A[1] has a collision since
h2(x2) and h1(x1) both map to A[1].

0

0

1

1

1

2

1

3

0

4

1

5

1

6

0

7

0

8

0

9

0

10

1

11

1

12

1

13

h3(x3) h1(x3) h2(x3)

(d) Inserting the element x3 using 3 hash functions hi

0

0

1

1

1

2

1

3

0

4

1

5

1

6

0

7

0

8

0

9

0

10

1

11

1

12

1

13

h1(y1) h2(y1) h3(y1)

(e) Querying the element y1 using 3 hash functions hi. Since the query ∀i ∈ {1, . . . , k} :
A[hi(y1)] = 1 does not hold, y1 is definitely not in the set.

0

0

1

1

1

2

1

3

0

4

1

5

1

6

0

7

0

8

0

9

0

10

1

11

1

12

1

13

h3(y2) h2(y2) h1(y2)

(f) Querying the element y2 using 3 hash functions hi. Since ∀i ∈ {1, . . . , k} : A[hi(y2)] = 1
holds, y2 is probably in the set. However, this is a false positive here since no inserted element
x had the configuration (A[1], A[6], A[12]).

Figure 2.7: Example of a bloom filter and its operations. Source: The Author, based on
an example by [24].

16 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

Given the timeliness and importance of DDoS attacks (cf. Section 2.1), it is no surprise
that many existing solutions and proposals exist. However, the solutions to how detection
or mitigation are approached are very diverse, though in some cases also include overlaps.
Thus, in this chapter, related projects and systems in the realm of DDoS defenses are
presented and subsequently discussed and compared.

3.1 MULTOPS

MUlti-Level Tree for Online Packet Statistics (MULTOPS) is a data structure that was
proposed by [25]. The core idea of the work is to detect ongoing attacks using heuristics,
i.e., by comparing the proportionality of the packet flow direction [25]. Thus, this operates
under the assumption that the normal traffic flow behavior is symmetric, i.e., there exists
a proportionality in the flow from one direction to the other direction, implying that a
disproportional flow is seen as malicious [25]. However, the authors note that under this
assumption, MULTOPS fails to detect attacks, e.g., attacks based on HTTP or FTP
connections, that make use of proportional flows [25].

To cover the IPv4 address space, its data structure has been designed as a 4-level 256-ary
tree, where each node consists of 256 records [25]. Further, each record includes the from-
rate, to-rate and a pointer to the next tree level [25]. Under this scheme, the longer IP
prefixes are contained in the deeper levels of the tree (cf. Figure 3.1), thus, the aggregate
rates for a given IP address or prefix are easily read [25]. Consequentially, attacks are
detected at the high levels of the tree [25]. Furthermore, the scheme includes expansion
and contraction of the tree, to (a) create new nodes and (b) to avoid running out of
memory [25].

17

18 CHAPTER 3. RELATED WORK

Figure 3.1: MULTOPS [25]

3.2 D-WARD

The work by [39] tries to tackle DDoS attacks at the source, i.e., to prevent an attack from
being put into practice. Hence, outgoing traffic from a router is monitored and compared
to normal traffic models, and traffic that is discerned as non-complying gets dynamically
rate-limited [39].

Figure 3.2: D-WARD [39]

In Figure 3.2 the architecture of D-WARD is displayed. Here, the D-WARD component
is not part of the router but instead communicates with the router [39]. The D-WARD
component itself consists of two components [39]:

• Observation Component: This module is responsible for monitoring the traffic that
passes through the router and using models, traffic statistics are computed to com-
pare against a baseline of traffic that is deemed as normal. Subsequently, a classifier
is run to check whether the flow is an attack flow.

3.3. AITF 19

• Throttling Component: This component receives the statistics of the observation
component and is in charge for upholding the traffic limits of the router and adjusting
them accordingly.

Due to its deployment at the router, the authors note that this work lacks an incentive
program, since the perceived benefits are targeted at a potential attack victim, and a
deployer does not personally see any benefit per se [39]. However, by being at the source,
this work has the advantage that the traceback of the attack is easier accomplished, and
the traffic is stopped before it is mixed with other traffic flows, which could possibly
obfuscate the source [39].

3.3 AITF

Active Internet Traffic Filtering (AITF) is a filtering protocol designed to mitigate DDoS
attacks by filtering traffic [6]. This work uses a route record scheme, meaning that a
collaborating router adds to each packet that it forwards its own IP address to the header
(cf. Figure 3.3) [6]. Additionally, using hashes of the packet destination of each router as
random values that are added to the route leads to spoofing protection, if no malicious
nodes are present in the path [6].

Figure 3.3: Recorded route {Agw X Y Vgw} between the hosts A and V . In this example
Agw is the attacker’s gateway, i.e., it is the router closest to the attacker A, and V is the

victim [6]

In the case that illegitimate traffic is detected, the victim temporarily blocks the traffic
and sends a request to the router that is the closest to the attacker [6]. Subsequently,
in the good case, an agreement between the routers is reached to not forward specific
packets, and the filter is removed [6]. On the other hand, if no agreement is reached, the
work also includes escalation to the next closest router [6].

Their evaluation showed that one million illegitimate traffic flows could effectively be
filtered, by using only 10′000 filters for each participating router using AITF, which the
authors deem as a small amount [6].

20 CHAPTER 3. RELATED WORK

3.4 DefCOM

[52] propose DefCOM, a collaborative and distributed Peer-to-Peer (P2P) DDoS defense
system. Although a P2P overlay network is used, only DefCOM control messages are
exchanged over this network, hence, data packets use the underlying IP network [52].
Due to each node storing a limited amount of state, this solution is designed to scale
with the number of peers [52]. This work adds to existing router or defense nodes one, or
multiple of the functionalities offered by DefCOM [52]:

• Classifier: This functionality allows nodes to differentiate between legitimate and
attack traffic and marks legitimate traffic as such.

• Rate Limiter: This functionality algorithmically limits the traffic that is sent to
a victim. This functionality must be offered by all router nodes in the DefCOM
network, to ensure that the rate limit is maintained.

• Alert Generator: Using the overlay network, nodes with the alert generator func-
tionality are responsible for detecting an attack and propagating the attack alert to
other nodes. In comparison to the other nodes, these nodes are always active, since
they require monitoring the traffic to detect attacks. However, this functionality it-
self is not able to detect an attack, the node must provide this functionality through
another service.

In the case when an attack is detected, the alert generator floods the overlay network
with alarm messages notifying all nodes [52]. Subsequently, the rate limiter and classifier
nodes become active and start limiting the traffic and classifying between legitimate and
attack traffic [52].

This work uses certificates, either issued manually or by a global certification authority,
to prevent malicious nodes from joining DefCOM, however, the authors note that various
attacks from existing nodes that are maliciously acting are possible [52].

3.5 Defense and Offense Wall (DOW)

[95] propose DOW to defend against Application layer DDoS attacks, that they catego-
rize into (i) session flooding attacks, (ii) request flooding attacks and (iii) asymmetric
attacks. The authors note that application layer attacks behave differently than network
layer attacks, i.e., they are more subtle and appear and behave as normal traffic, al-
though employing the asymmetric computation differences between the client and server
to conduct an attack [95]. Further, sites such as e-government or e-commerce are primary
targets for application layer attacks, and [95] give as an example the scenario where a
request requires computationally expensive queries on the server side, which can then in
turn be exploited for an attack.

Their work contribution is two-fold, it uses (i) an anomaly detection model and (ii), an
encouragement model [95]. The anomaly-detection is achieved using K-means clustering,

3.6. ZHANG ET AL. (2008) 21

and suspicious sessions are dropped [95]. On the other hand, the encouragement model
encourages legitimate sessions using a currency model, i.e., the client’s session rate [96,
95]. Consequentially, the authors note that the combination of both models leads to
legitimate sessions achieving a higher service rate and lower delays [95, 96].

3.6 Zhang et al. (2008)

In [97] the authors propose a predictive blocklisting system to block attackers individually
to each contributor by making use of a link analysis strategy that is similar to PageRank
(cf. [92]). This architecture is built upon DShield (cf. [2]), a system that allows users
to share their firewall logs automatically with DShield, which compiles and publishes a
daily blocklist based on the reportings [97]. The architecture is depicted in Figure 3.4 and
includes the following steps [97]:

• Prefiltering: The DShield logs are pre-processed to achieve a higher quality of data
by removing and reducing noise and erroneous data [97].

• Relevance Ranking and Severity Assessment: These systems work in parallel: The
severity assessment computes the maliciousness of the sources to generate a score.
Additionally, the relevance ranking calculates the closeness between an attacker and
a log contributor since contributors might share attackers and these correlations can
be observed [97].

• Blocklist Production: This step combines the relevance ranking and the severity
assessment to compile a blocklist that is individual to each contributor of logs [97].

Figure 3.4: Architecture of the blocklisting system [97]

Their evaluation results show that with their approach they can compile blocklists with
higher attacker hit counts and better predictions of attackers can be computed [97]. How-
ever, the authors also note that due to the nature of the volunteer-contributed data,
i.e., the logs, it is also possible for malicious contributors to poison the data to gain the
system [97].

22 CHAPTER 3. RELATED WORK

3.7 Velauthapillai et al. (2010)

[81] propose a distributed DDoS detection solution using cooperative overlay networks
and a gossip-based information exchange protocol to detect DDoS attacks globally. To
achieve this goal, this work adds to the participating routers a defense node that is part
of the overlay network [81]. The authors note that traditional centralized client-server
model approaches suffer from potential performance bottlenecks and are a single point
of failure, thus, they reason for designing a distributed solution to mitigate against these
shortcomings [81].

In this work, each participating node of the overlay network measures the traffic that is
being sent to a victim locally and computes a distributed average using time-dependent
averaging and router topology properties [81]. Subsequently, each node verifies whether
the estimated average exceeds the capacity of the victim (i.e., a fixed threshold), and if
this is the case a DDoS attack is flagged [81]. However, the authors note that this work
does not contain a solution to differentiate benign traffic from malign traffic, and also
does not include a mitigation solution [81].

3.8 MISP

The work by [82] introduces MISP, a Malware Information Sharing Platform. This plat-
form exploits collaboration between users to share information about threats and inci-
dents, with the goal that the community of the platform can take preventive actions and
set up counter measures [82]. The platform also supports the sharing of DDoS attack
information using its own data model [42]. To restrict access to sensitive information, the
platform supports various degrees of sharing levels, allowing its users to share an event
within their own organization only, within a community, in connected communities, or to
all MISP communities [82]. An example is displayed in Figure 3.5, where an event e is
shared to the Community A and e’ as Connected Communities [41].

Newly added threat events can be synchronized and shared between the MISP instances
in various ways [82]:

• Pull: Using distribution rules and filters, events are pulled from the connected MISP
instances.

• Push: This method pushes threat events to other MISP instances directly. Sharing
in this manner can be triggered automatically by publishing a new event, or by
pushing events manually.

• Cherry Picking: This feature allows users who can see events from the connected
MISP instances to pick specific, deemed relevant events to pull to their own instance.

• Feed System: This synchronization scenario is relevant for MISP instances that are
not directly connected to each other, or for providers that want to share data to
all communities. With this feature, users are able to pull specific events only or all
events from remote servers.

3.9. BLOSS 23

Figure 3.5: Example of event distribution levels and various community
configurations [41]

Additionally, the platform supports Pub/Sub using ZeroMQ (cf. [76]), enabling the in-
tegration and automation of events from a MISP instance in custom software [41, 10].
Hence, real-time integrations are possible and supported [41]. However, the real-time in-
formation available for Pub/Sub has limited to the realm of visibility that the particular
MISP instance is subject to [10].

3.9 BloSS

The Blockchain Signaling System (BloSS) makes use of consortium-based Blockchain
(BC) technology and Smart Contracts (SC) to collaboratively protect against large-scale
DDoS attacks since existing centralized defense systems often do not feature the required
hardware resources or software capabilities to detect and mitigate large-scale DDoS at-
tacks [68, 69].

The use of a consortium-based BC leads to an increase in security and a high trust en-
vironment since participants are known and the information access is limited [68]. The
architecture in a Software-Defined Networking (SDN) environment is depicted in Fig-
ure 3.6, though the authors note, that the decentralized Application (dAPP) is not limited
to SDN-based environments only [68].

The architecture’s three layers are the following [68]:

24 CHAPTER 3. RELATED WORK

Figure 3.6: Architecture of BloSS [68]

• SCs, which are deployed in the Ethereum BC.

• The dApp that serves as an interface to the BC is used to report and retrieve BC
addresses.

• A SDN controller, which is responsible to monitor and enforce rules in the switches.

The architecture makes use of a multitude of Autonomous Systems (AS), whereas each AS
operates an IP network and stores its network addresses in its own SC [68]. Furthermore, a
central SC stores for each AS its responsible IP network addresses, and can also update and
configure these, and individual AS query the central SC to maintain a lookup table [68].

In the case of attack detection, the affected AS looks up the SC’s address of the AS that
operates the attacker’s IP address and requests cooperative defense via a transaction on
the SC, which for instance can be the request to block the IP addresses of the attackers [68].
After the BC block mining process, the requested ASs receive and individually handle this
request, based on their own configuration and policies, and can for instance honor the IP
address blocking request or reject it [68].

3.10. DOSHI ET AL. (2018) 25

3.10 Doshi et al. (2018)

[20] propose a DDoS detection system using Machine Learning (ML) for Internet of Things
(IoT) devices. Their work focuses on IoT devices since these devices are often insecure,
thus, frequently seen as participants in botnets, and they note that these devices have
their own idiosyncrasies, e.g., repetitive network traffic and a small set of network end-
points, which makes their traffic distinguishable from other network traffic [20]. Hence,
the traffic classification and identification of devices that participate in botnets are run
in network middleboxes [20]. However, since the middleboxes can in this instance also
include home gateway routers, there are several performance limitations that must be fac-
tored in, e.g., memory and processing performance, thus, constraining the ML algorithms
that are suitable for the classification task [20].

Figure 3.7: DDoS Classification Pipeline [20]

In Figure 3.7 the proposed DDoS detection for IoT devices, which includes four steps, is
shown [20]:

1. Traffic Capture: In this step the source and destination IP addresses and ports are
captured, along with sizes and timestamps of packets.

2. Grouping of Packets by Device and Time: The packets are grouped by source
devices and into non-overlapping time windows.

3. Feature Extraction: Using domain knowledge of IoT devices, stateless and stateful
features are generated for each packet. For instance, due to memory limitations,
stateful features include aggregations of flow information over time windows, and
stateless features include mostly packet header fields.

4. Binary Classification: Using a ML classifier, the DDoS attack traffic is distinguished
from normal traffic.

Their evaluation showed that various ML classification algorithms were able to differen-
tiate the traffic with very high accuracy, e.g., Decision Trees and Neural Networks, and
they expect that the neural network classifier’s performance would scale well with more
training data [20].

26 CHAPTER 3. RELATED WORK

3.11 Wagner et al. (2021)

[83] propose the work “United We Stand: Collaborative Detection and Mitigation of Am-
plification DDoS Attacks at Scale”, a central hub that allows the information exchange of
amplification DDoS attacks. Amplification attacks make use of services such as Domain
Name System (DNS) or Network Time Protocol (NTP) as reflectors to generate traffic
that is up to 50′000 higher than normal [83]. Amplification attacks are further explored
in Section 2.1.1. The idea is that attack mitigation platforms, operated in Internet Ex-
change Points (IXP), collaborate together by detecting attacks locally and sharing this
information such that each IXP can drop the traffic, thereby effectively weakening the
attack significantly [83].

Figure 3.8: Concept of the DDoS Information Exchange Point [83]

Their concept is displayed in Figure 3.8, and their work uses a publish-subscribe system
to share information between the participants [83]. Moreover, they differentiate between
two different models that are used for PubSub topics [83]:

• Low trust environment: This topic includes less privacy-sensitive information, i.e.,
the reflector’s IP addresses and peak traffic values only since the reflector’s IP ad-
dresses can be seen as public information, as the server’s IP addresses can be found
in research papers. Subscribers can based on this topic limit the rate or block
reflectors systems entirely.

• High trust environment: This topic adds to the low trust environment topic infor-
mation, the victim’s IP addresses, and the respective attack volume per source port.
This information exchange is performed in the high trust environment only, since
the exchanged information is sensitive according to regulations such as GDPR, and
their system assumes a membership with Non-Disclosure Agreements.

3.12. DDOS CLEARING HOUSE 27

Their results show that collaboration via the DDoS Information Exchange Points (DXP)
in the case of low trust environments, and also high trust environments, offer significant
benefits in terms of DDoS attack detection and mitigation [83].

3.12 DDoS Clearing House

The DDoS Clearing House is part of the CONCORDIA project [80], which stands for
“Cyber security cOmpeteNCe fOr Research anD InnovAtion” [16]. This system essen-
tially captures DDoS attack information based on the traffic and creates a fingerprint
based on those characteristics [9]. These fingerprints are automatically shared within
coalitions formed from various organizations, allowing its members to take proactive mea-
sures against this specific DDoS attack [80].

Figure 3.9: Architecture of the DDoS Clearing House [17]

In Figure 3.9 the overall flow and the system’s architecture is displayed, highlighting the
system’s three core components [80, 17]:

• The Dissector is responsible for analyzing the DDoS traffic and creating its finger-
print. It captures information such as protocol types, packet lengths, and source IP
addresses in the fingerprint, and due to its metadata nature, it can be shared with
other members without inadvertently sharing sensitive information.

• DDoS-DB, is a centralized database operated by the coalition members and is in
charge of storing and sharing the fingerprints.

• The Converter is run by each member and creates attack mitigation rules based on
the fingerprints it receives. For instance, a possible mitigation strategy is to block
IP addresses.

3.13 DDoS Open Threat Signaling (DOTS)

Internet Engineering Task Force (IETF) proposes DDoS Open Threat Signaling (DOTS),
a standardization attempt for the real-time signaling of DDoS attack information, miti-
gation requests, and attack classification [28]. DOTS makes use of a client-server archi-
tecture (cf. Figure 3.10) and assumes the presence of other, unspecified attack mitigation
or attack detection services that are outside the scope of DOTS [45].

28 CHAPTER 3. RELATED WORK

Mitigator DOTS Server

Attack Target DOTS Client

Figure 3.10: DOTS Architecture, based on [45]

• DOTS Client: A DOTS agent, which requests mitigation from the DOTS server [45].

• DOTS Server: Responds to DOTS clients, and delegates mitigation requests to
mitigation services [45, 46].

In the case an attack is detected, the DOTS client requests mitigation from the DOTS
server [45]. The DOTS server in turn invokes mitigator services which are responsible for
the actual mitigation of the attack [45]. A DOTS client is connected to one or multiple
DOTS servers via a (i) a signal channel, and (ii) an optional data channel [45]. The
signal channel is used for the client to request mitigation help from the DOTS server, also
potentially including telemetry information about the attack, whereas, in turn, the server
uses this channel to respond to the client whether the mitigation request is accepted or
denied [45]. To ensure the health of the channel, i.e., to distinguish between a disconnected
session and an idle signal, a bi-directional periodic heartbeat message is sent over the signal
channel as well [46, 45]. The authors also note that this channel is required to be operable
even while the connecting links are under attacks [45]. On the other hand, the data channel
is used for configuration management and policy exchange between the DOTS client and
DOTS servers [45]. However, this data exchange supposes normal conditions and as such,
while possible, the channel should not be used while an attack is undergoing [45].

Furthermore, due to its standardization approach, this work does not impose restrictions
regarding the collaboration of parties, as such, communication can be realized in a inter-
domain or in a intra-domain fashion [28].

3.14 Comparison and Discussion

In Table 3.1 the related work in the realm of DDoS defenses is compared. The column
Cooperation denotes whether the work includes a degree of cooperation or collaboration
between various parties, e.g., for collaborative detection or attack signaling. Further, the
column Type of Data Exchange indicates the main architectural component responsible
for the exchange of information relating to the signaling or detection in the case that
collaboration between various parties has been designed as part of the work. In DDoS
Scope the solution’s DDoS defense scope is stated, including the categories:

3.14. COMPARISON AND DISCUSSION 29

• Detection: Mechanisms to detect DDoS attacks are the core idea of the work.

• Signaling: Denotes whether the project’s scope includes the signaling of a DDoS
attack or the signaling of attack information in a cooperative manner [69].

• Mitigation: Regards mechanisms to take mitigating measures, for instance, rate
limiting the traffic [69].

Moreover, based on [69], the column Behavior denotes whether the work behaves as
reactive or proactive. These categories have been defined in this work as follows:

• Proactive: Implies that the work intends to tackle DDoS attacks through preventive
measures that are in play before an attack occurs. For example, based on previously
determined attack signatures and thresholds.

• Reactive: Denotes the behavior of the mechanism of a system that reacts to an
occurring attack and responds to it by starting signaling or mitigation steps.

[25] detect DDoS attacks locally by comparing the proportionality of traffic flow from
one direction to the other direction. However, it does not employ collaboration between
nodes. While this work also considers both directions in the detection, the perspectives are
split between the participants. Furthermore, the idea of considering the proportionality
of traffic flow has also been added to CH2TF.

Compared to the other works, the work by [39] does not include a collaboration aspect,
i.e., D-WARD modules act autonomously and in autarky to reach defense against DDoS
attacks. However, compared to the works discussed here, this work attempts to mitigate
DDoS attacks at the source directly, which relates to this work’s scheme that includes a
hybrid approach and also considers the source.

[6] includes a unique scheme to combat spoofing in DDoS attacks and introduces col-
laboration between routers to do so, i.e., signaling. Furthermore, it also encompasses a
strategy to combat malicious behavior. Due to its a priori route recording mechanism
that occurs before attacks arise, this work has been considered as proactive.

DefCOM [52], uniquely uses a P2P network for the message exchange to achieve high
scalability. However, [69] notes that this can also be seen as a detriment due to the
highly involved message exchange. Although the cooperative aspect idea of DefCOM is
comparable to this work, not only is Pub/Sub used rather than a P2P network, the main
idea of their work can be seen as collaborative mitigation, not detection itself.

[95] uses an anomaly detection model and an encouragement model to achieve higher
service rates for legitimate users. Regarding DDoS detection, they focus on application
layer attacks, while this work targets heavy hitters. Furthermore, anomaly detection is
based on K-means clustering, while this work uses threshold-based detection methods.
However, [96] note that the scheme proposed by their work is too resource-heavy and not
implementable.

30 CHAPTER 3. RELATED WORK

Table 3.1: Comparison of Related Work in the realm of DDoS defense

Solution Year Cooperation
Type of

Data Exchange
DDoS Scope Behavior

MULTOPS [25] 2001 ✗ -
Detection
Mitigation

Reactive

D-WARD [39] 2002 ✗ -
Detection
Mitigation

Reactive

AITF [6] 2005 ✓
Router-Router
Communication

Signaling
Mitigation

Proactive

DefCOM [52] 2006 ✓ P2P Network
Signaling
Mitigation

Reactive

DOW [95] 2007 ✓ Client-Server
Detection
Mitigation

Reactive

[97] 2008 ✓

Centralized Database
&

Blocklists
Detection Proactive

[81] 2010 ✓ Overlay Network Detection Reactive

MISP [82] 2016 ✓
Information Sharing

Platform
Signaling

Proactive
Reactive

BloSS [68] 2017 ✓

Blockchain
&

Smart Contracts
Signaling Reactive

[20] 2018 ✗ - Detection -

[83] 2021 ✓ PubSub
Detection
Signaling

Reactive

[17] 2022 ✓
Centralized
Database

Signaling
Mitigation

Reactive

DOTS [28] 2022 ✓
Client-Server

Communication
Signaling Reactive

This work 2022 ✓ PubSub Detection Reactive

[97] uses a centralized, predictive blocklist that is updated daily to defend against DDoS
attacks. This differs greatly from this work since users must pull their updated list daily.
No immediate information exchange between parties is possible, implying that information
from an ongoing attack can not be shared with others to defend against it, i.e., implying
a proactive DDoS defense for parties that have not been hit for these specific attacks.

[81] uses a cooperative overlay network to detect DDoS attacks. This cooperation ap-
proach is similar to this work’s core idea, though instead of an overlay network, Pub/Sub
is used to communicate between the participating ASes. Additionally, the idea of detect-
ing an attack locally and then asking the participants for cooperation is also present in
this thesis. However compared with this thesis, CH2TF not only detects an ongoing DDoS
attack but can also detect the attackers.

[82] propose a generic threat and incident sharing platform that can also be used for shar-

3.14. COMPARISON AND DISCUSSION 31

ing DDoS incidents. While their work also uses Pub/Sub, their topics are not comparable
since they are more generic and not specific to DDoS. Their use of Pub/Sub is restricted to
the information available to the local instance only. Thus, information exchange between
different parties using Pub/Sub is not supported, which differs from this work, which
employs it as the main information exchange channel. This work has not been considered
here as a real-time system due to potentially manually entered events being added and
a signaling flow specific to DDoS attacks requiring custom out-of-the-box scripting. Un-
der the assumption that such options are considered, this work could be used reactively
against an attack and proactively against unaffected DDoS attacks.

Further, the work by [68, 69], uses Blockchains & Smart Contracts to achieve a decen-
tralized and cooperative approach to DDoS mitigation. In comparison, their work also
includes a simple mitigation solution by allowing the direct requesting IP addresses to
block to defend against DDoS attacks. Nonetheless, the main focus of the work lies in
the signaling aspect. Most importantly, this work shares the core idea of deployments at
ASes directly and the interaction and cooperation between the ASes.

[20] concerns itself with the detection of consumer IoT attack traffic using ML techniques.
This work is more general and not specific to IoT devices, though future work could include
ML-based detection techniques. Furthermore, this work is based on collaborative aspects.

Similarly to this work, United We Stand [83] employs the Pub/Sub framework to ex-
change DDoS-related information. However, Pub/Sub was used in their work differently,
in particular, their chosen Pub/Sub topics differed. While they differentiated their Pub/-
Sub topics between High trust environments and Low trust environments, this work chose
Pub/Sub topics relating to the confidence of an attack. Additionally, their work focuses
on the detection and mitigation of amplification attacks, contrasting the more general
heavy hitter detection that is the focus of this work. Moreover, their module is deployed
at IXPs, while this work assumes a deployment at ASes directly.

The work by [17] is about sharing information regarding DDoS attacks and does not
include the detection itself. Furthermore, attack information is shared and stored via a
centralized database, not Pub/Sub.

IETF proposes [28], a DDoS signaling standard, and makes use of a client-server model.
Its standardization approach does not impose specific technologies and delegates DDoS
detection and mitigation to specific services. This is different from this work, which uses
Pub/Sub and has detection as its main focus.

In summary, the novel idea of using Pub/Sub for data exchange can be traced back to [83],
which also motivates this work’s usage of Pub/Sub. Nonetheless, the chosen Pub/Sub
topics are different, i.e., Trust Environments vs Attack Confidence. Furthermore, the idea
of a local threshold-based detection has been applied multiple times, i.e., [39, 83, 25, 81],
though in a cooperative/collaborative manner only in [81, 83]. This work differentiates
itself from these solutions by considering ASes at the core of the solution, similarly to [68],
and not IXPs ([83]) or routers ([81]). This is motivated by allowing the mitigation to be
done as close as possible to the source, i.e., the attacker’s AS, results in not only the
victim’s AS but also transit ASes being substantially less affected regarding their traffic
load [73].

32 CHAPTER 3. RELATED WORK

Chapter 4

Design

This chapter documents and explores the design of CH2TF in an abstract level and de-
scribes the design considerations. First, the requirements that CH2TF’s design is subject
to are recorded in Section 4.1. Subsequently, capabilities and features of CH2TF are
described in Section 4.2. Further, CH2TF’s architecture is explained in Section 4.3 and
provides an overview of the modules that CH2TF incorporates. Thereafter, the commu-
nication protocol and the Pub/Sub topics employed are discussed in Sections 4.4 and 4.5.
Next, the policies to detect attacks and their attackers are documented in Sections 4.6 and
4.7. Finally, Section 4.8 explores the topic of privacy and in Section 4.9 a reputation-based
scheme is presented.

4.1 Requirements

Based on the goals of the thesis that were outlined in Section 1.1, the following require-
ments have been derived:

• R1: The system shall detect HH in a time-efficient and data-oriented manner.

• R2: The system shall share the detected HH with the other participating instances.

• R3: The signaling system employed by the system shall support multiple Pub/Sub
topics.

4.2 Capabilities and Features

In this section, CH2TF’s capabilities are listed. While these were derived from the re-
quirements in Section 4.1, CH2TF also includes additional features and capabilities.

33

34 CHAPTER 4. DESIGN

• DDoS detection: CH2TF includes targeted policies to detect DDoS attacks and
signal this information to the collaborating ASes. The policies are explored further
in Section 4.6.

• Heavy Hitter detection: Additionally to the attack detection, CH2TF is also capable
of detecting the HH that form the attack. This is also achieved using policies (cf.
Section 4.7).

• Privacy protection: Since IP addresses can be considered as sensitive information,
CH2TF operates on hashes to conceal this information (cf. Section 4.8).

• Cornerstone for DDoS mitigation: Since CH2TF focuses on DDoS detection, and
DDoS mitigation is not part of this scope, this work does not include a complete
DDoS mitigation scheme. However, a few foundations for a DDoS mitigation exten-
sion have been provided where applicable. This is primarily motivated by the use
of Pub/Sub already providing a performant choice for the communication protocol
between the ASes in CH2TF, and integration of a mitigation solution would be the
next logical step. This idea is further explored in Section 7.3.

4.3 Architecture

The architecture of CH2TF is depicted in Figure 4.1. This architecture is technology-
agnostic, i.e., it does not impose any restrictions on the components regarding the use
of specific technologies or programming languages. Furthermore, the scope of CH2TF’s
design has been intended to exchange DDoS information between ASes (cf. [26]), i.e., the
module shall be installed on the AS level to communicate with other participating ASes.
Thus, on a high-level, it includes the following modules:

• Pub/Sub Framework: A generic Pub/Sub framework responsible for the commu-
nication between the collaborating ASes. This is further explored in Section 4.5.

• CH2TF Module: This module includes the analysis components for the detection
of attacks and HH. Also, it is responsible for the flow of information in the system
and is connected to the Pub/Sub framework.

• Traffic Module: To analyze the traffic, CH2TF must obtain the packets from some-
where. This is this module’s responsibility. I.e., to sniff the traffic that passes
through an AS and forward it to CH2TF. However, this is outside of CH2TF’s
scope.

• Mitigation Module: As described in Section 4.2 this work also includes a foundation
where mitigation can be added. However, this is not part of CH2TF’s scope.

Furthermore, as displayed in Figure 4.1, the CH2TF module can be decomposed into the
following components:

4.3. ARCHITECTURE 35

Traffic Collector
&

Traffic Aggregator

Database
Accessor

Mitigation
Module

Collaboration
Request
Receiver

Database

Publisher
Connector

Traffic Sniffer

Collaboration Requests

Traffic Sources

Traffic Destinations

Pub/Sub
Clusters

Subscriber
Connector

Collaboration
Request Sender

Pub/Sub Framework

 CH2TF Module

Mitigation
Module

Attack Analysis

Heavy Hitter Analysis

Analysis Module

Traffic Module

Figure 4.1: Architecture of CH2TF. While the Traffic Module and Mitigation Module are
displayed here, they are not part of the project’s scope.

• Publisher Connector: This component is responsible for connecting to the Pub/Sub
framework as a publisher, i.e., to publish messages in a certain topic.

• Subscriber Connector: Similarly to the Publisher Connector, this component con-
nects to the Pub/Sub framework as a consumer to be able to receive messages.

• Collaboration Request Sender: This component allows the sending of collaborating

36 CHAPTER 4. DESIGN

requests to the participating ASes.

• Collaboration Request Receiver: Similarly to the Collaboration Request Sender,
this component is responsible for receiving messages from participating ASes.

• Analysis Module: The responsibility of this module is two-fold, (i) it performs the
analysis to detect an attack, and (ii) it performs the analysis to detect the HH of
an attack.

• Traffic Collector & Aggregator: This component performs the sampling of the
packets and is connected to the Database Accessor to store them in the Database.

• Database Accessor: This component is responsible to connect to the Database.

• Database: Responsible for storing relevant information regarding the traffic senders
and destinations, as well as keeping track of collaborating requests that have been
previously sent and storing this information for later use (e.g., analytics or logging).

4.4 Communication Protocol

In this section, the proposed communication protocol is discussed. The protocol is split
into two parts, namely Request Sending and Request Receiving:

• Request Sending: This flow is depicted in Figure 4.2. Every AS monitors the traffic
continuously, and upon detecting a DDoS attack, it acts as a request sender. This
means that it sends a collaboration request to the participating ASes. This request
includes a list of the potential attackers and the victim’s IP address. At this point,
the attackers are not certain yet; thus, the attackers can only be considered potential
attackers. The request is sent by publishing a message to the Pub/Sub framework.

• Request Receiving: This flow is displayed in Figure 4.3. An AS acts as a request
receiver upon receiving a collaboration request. Thus, it can be considered that an
attack has happened or an attack is ongoing. Based on the list of potential attackers
that was included in the request, the request receiver will perform an analysis to
determine the HH from IP addresses that it manages as an AS. Based on the analysis
findings, the AS publishes a message with the list of attackers it has found to the
other ASes. Nota bene, this flow implies that HH are only searched for a specific
attack that has been triggered. This is ultimately a design choice, though in CH2TF
this restriction has been imposed since policies regarding the attacker detection are
more elaborate (cf. Section 4.7), and this restriction removes some of the module’s
processing load.

The aforementioned request sending and receiving flows are depicted in Figures 4.2 and
4.3 respectively, while the composition of both flows is displayed in Figure 4.4. Further-
more, the AS that detects an attack can either receive its request through the Pub/Sub
framework or perform this sequentially in the program flow more efficiently. Since this

4.4. COMMUNICATION PROTOCOL 37

chapter discusses the design considerations on an abstract and generic level, no restric-
tions are imposed here. However, for the diagram in Figure 4.4 the sequential option was
used.

Start

Collect Network
Traffic

High
Confidence

Attack?

Attack Detection
Analysis

Lower
Confidence

Attack?

N
o

Local Mitigation

Yes

Yes

Send Request with
High Confidence

Topic

Send Request with
Lower Confidence

Topic
No

End

Figure 4.2: Activity diagram: Request Sender perspective.

Nota bene, in Figure 4.4 a specific order is displayed between the flow of processing, send-
ing requests, and receiving responses. However, since the ASes can be seen as distributed
systems, these events are ultimately asynchronous. The order of receiving the responses
does not influence the other flows, i.e., whether AS100 or AS200 receives the respective
response first is arbitrary and only causally ordered by the fact that the sending of the
respective response had to have occurred first before the receiving of the response occurs.
Furthermore, if a AS300 were to be included in this scheme, the order between AS200
and AS300 would not be related. Moreover, if a performant Pub/Sub framework is used,
it is to be assumed that the receiving of messages would be almost instantly, and as such,
in Figure 4.4 the ‘GET Response (AS100)’ would occur almost immediately after ‘PUT
Response (AS100)’ comes up.

38 CHAPTER 4. DESIGN

Start

Receive
Collaboration

Request

Heavy Hitter
Analysis

Request
Receiver

agrees on
attacker

Send Decision to AllYes

Send Decision to All

N
o

End

Local Mitigation

Figure 4.3: Activity diagram: Request Receiver perspective.

4.5 Pub/Sub Framework and Topics

As hinted in the previous sections, this work employs a Pub/Sub framework to enable
the communication between the participating ASes. Pub/Sub has been chosen due to
its various advantages over other messaging patterns and that it can be considered a
popular and tested messaging pattern (cf. Section 2.3). Importantly, Pub/Sub allows
the distinction between topics; as such, topic-specific communities can be formed. For
instance, regional or international trust-based communities can be added, similarly to [83].

CH2TF proposes the following Pub/Sub topics for the core functionality, however, the
design is intended to be flexible, such that it lets each AS choose to which additional
topics it wants to subscribe to via configuration:

• Lower Confidence Topic Request

• Lower Confidence Topic Response

4.5. PUB/SUB FRAMEWORK AND TOPICS 39

:PubSubBroker

alt

		 [decision = false]	

:AS200:AS100

:AS100 :PubSubBroker :AS200

GET Request

PUT Response
(AS200)

Heavy Hitter
Detection

GET Response
(AS200)

Mitigation

Mitigation

GET Response
(AS100)

PUT Response
(AS100)

Heavy Hitter
Detection

Light Mitigation

Attack
Detection

GET Response
(AS200)

PUT Response
(AS200)

Heavy Hitter
Detection

PUT Request

GET Request

Figure 4.4: Sequence Diagram of CH2TF’s communication protocol. In this example,
two ASes are used. No HH were found in the alternative path, and AS200 responds

accordingly.

• Higher Confidence Topic Request

• Higher Confidence Topic Response

The distinction between higher and lower confidence is regarding the confidence of an
attack, and plays a role in the reputation-based scheme (cf. Section 4.9). The topic (i.e.,
lower or higher confidence request) is chosen based on the policies’ thresholds.

Furthermore, as has been described in Section 2.3, the messaging pattern is unilateral, i.e.,
a subscriber is not able to reply to a publisher. Since the employed communication proto-
col of CH2TF requires the communication to be bilateral (cf. Section 4.4), two response
related topics were added (i.e., Lower Confidence Topic Response and Higher Confi-
dence Topic Response). However, while they have been denominated with ‘response’,
they are not only related as a response to the request sender but to all participating ASes.

40 CHAPTER 4. DESIGN

4.6 Policies: Attack Detection

To detect an attack, CH2TF uses policies based on thresholds. The proposed policies were
selected based on the related work review. However, the goal of these policies is to detect
an attack, as such, while this work proposes a selection of policies, they are ultimately
not related to the proposed communication protocol.

The perspective of the attack detection is from the victim’s perspective. I.e., the analysis
is not run for the source (attacker) IP addresses but looks for a potential victim to trigger
an attack. The raison d’être of this design choice is that with a destination-perspective
(cf. [69]), the amount of traffic volume that reaches a destination is clear. Also, [69]
notes that destination-based are usually weak in differentiating between legitimate and
illegitimate traffic. Hence, the idea of taking the perspective of the destination to only
trigger an attack, but not yet detecting the attackers, is used in CH2TF.

• Case 1 - Amount of packets arriving at the destination is above threshold: This
policy is the simplest one, it only checks if, during the analysis interval, the desti-
nation is subject to a high volume of traffic. Although it can be seen as a simple
criterion to detect an attack, it can be considered as highly effective in detecting an
attack that is based on HH.

• Case 2 - Increase in traffic above threshold: This policy checks whether there has
been a significant (i.e., above a certain threshold) increase in traffic targeted to a
destination. I.e., if the previous analysis run had a relatively low amount of traffic,
and in the subsequent run a high increase of traffic (that is over the threshold) is
observed, this policy flags an attack.

The selected policies have been purposefully kept simple. They are designed to be perfor-
mant since the analysis is run for millions of IP addresses each analysis cycle. Nevertheless,
the second policy has memory requirements, since it needs to store the aggregated results
of the previous analysis run. Since only the previous analysis run (and the ongoing) need
to be stored, this means that the memory depends on number of destination IP addresses,
and as such, scales linearly.

Furthermore, while [8] notes that using thresholds for attack detection is inflexible in
regards to customizability, CH2TF lets each participant choose their own thresholds, thus,
solving this problem.

4.7 Policies: Heavy Hitter Detection

Similarly to Section 4.6, the HH detection is also based on policies that use thresholds.
Nevertheless, since the goal of this analysis is to detect the attackers of a given attack,
the chosen policies are evidently different.

4.8. PRIVACY 41

• Case 1 - Source sends too many packets to specific victim: The idea of this policy is
simple, it checks if the attacker is specifically targeting a specific victim by sending
a high number of packets to the victim.

• Case 2 - Source sends too many packets to many destinations: This policy is similar
to Case 1, however, it is more general, and not specific to a victim. It checks if the
overall traffic that is being sent from the source IP is too high (i.e., over a certain
threshold).

• Case 3 - Source sends packets only to the victim: While this policy sounds similar
to Case 1, it is more subtle. It is intended to catch attacks where a low, but constant
amount of traffic is used to target the victim, but otherwise does not send a high
number of traffic.

• Case 4 - Traffic direction proportionality: This policy checks the direction of traffic,
i.e., is the destination also replying back to the (potential) attacker?

This approach to detect HH can essentially be seen as a source-based approach. Ad-
vantages of a such an approach include that the effort to analyze traffic is low, and the
attack can easily be traced [69]. However, the typical problem of source-based defense
mechanisms (cf. [96, 69]) that the highly distributed nature of a DDoS attack makes
source-based mechanisms less effective since the attack is distributed and not visible at
the source is countered in CH2TF. The idea to detect the attackers at the source is to
make use of the a priori knowledge that an attack is ongoing. As such, the participant
does not have to analyze every possible source, but only the reported, potential few at-
tackers. Also, using the a priori knowledge of an attack and its victim, the analysis is
better able to differentiate between legitimate and illegitimate traffic, which is otherwise
hard (cf. [69, 96]).

While CH2TF proposes and also uses these policies for the prototype implementation (cf.
Chapter 5), future work can include more intricate solutions. The design of CH2TF is, in
this regard, generic so that other analyses can easily be added.

4.8 Privacy

CH2TF assumes that the participating AS are trusted since the policies and their thresh-
olds should be worked out together between the ASes to agree on their definitions and
settings to maximize the system’s potential in detecting HH. However, the idea behind the
design philosophy of CH2TF is to not overshare information between participating ASes.
Ultimately, a trust-based relationship does not imply that trusted parties are willing to
share everything with each other. Multiple scenarios can be imagined where competing
ASes are willing to collaborate together to achieve the common goal of DDoS defense,
though are less willing to share details and information regarding their systems. To ap-
pease these scenarios and make CH2TF viable, these circumstances have been considered.

Nevertheless, and despite the aforementioned argument, privacy regulating frameworks
such as GDPR consider IP addresses as sensitive [83]. As such, to comply with privacy

42 CHAPTER 4. DESIGN

regulations, CH2TF proposes to hash the IP addresses and only operate on those hashes,
similarly to [83].

Nonetheless, it can be noted that this adds additional complexity for future work related
mitigation approaches since, for traffic-forwarding ASes, it would not be immediately clear
which IP addresses should be mitigated, e.g., rate limited or blocked. However, the goal
of CH2TF is not to propose a mitigation solution, as such, this disadvantage and the
discussion thereof is related to future work. Nonetheless, this trade-off must be accepted
if regulations require such shortcomings.

4.9 Reputation

It is fathomable that participating ASes take advantage of CH2TF scheme to mitigate
detected HH, though are themselves unwilling to mitigate attackers from their own set of
managed IP addresses. Such a scenario could be envisaged where an AS that is partaking
in a cyberwarfare (cf. [67]) actively would use the DDoS defense offered by CH2TF,
though never honor any requests to detect attackers from its own set of managed IP
addresses. Essentially, this is the famous “Free-rider problem” (cf. [32]) that results in a
system (or market) failure.

To counter such cases, CH2TF also proposes a simple reputation-based scheme to keep
track of ASes who never acknowledge an attack. This is so far important since the
detection of HH is coupled with the detection of an attack. Thus, if an AS sets their
thresholds too high, it will never acknowledge an attack, implying that it is acting adverse
to the system, even if the intention is not per se malicious. I.e., such an AS would always
return ‘Not Acknowledging’ in the response to a request.

This problem stems from the fact that CH2TF does not impose global thresholds for the
policies in use. Since various ASes have different sizes and capabilities to handle traffic,
they can not directly be compared. Consequentially, normal traffic for a very large AS
would ring the alarm-bells for a local, small-sized AS.

To amend the aforementioned problems, CH2TF proposes a variable that is part of the
configuration that is related to the size of a given AS. This variable is used when sending
requests to the other ASes, though is not disclosed to the other ASes. This is shown in
Section 5.5. The goal is to make attack detections and thresholds comparable between the
various ASes, no matter their size. As such, if a request receiver does not acknowledge an
attack, it means that its own thresholds are set too high, resulting in a penalty. Conversely,
it could also mean that the request sender’s thresholds were set too low. However, given
the goal to detect HH and the requirement of CH2TF’s design that an attack has to have
been triggered before the HH are searched for, it implies that setting the thresholds too
low, is not necessarily a bad thing, and should not be penalized. CH2TF proposes that
requests from participating parties with high reputation should immediately be tried to
be mitigated to incentivize setting appropriate thresholds.

Nevertheless, the author notes that while this scheme solves an aspect of the problem, it
is also not perfect and could be exploited to spam the system with unnecessary requests

4.9. REPUTATION 43

that would stem from setting the thresholds too low and redirecting a full-fledged solution
to future work. Ultimately, without imposing restrictions on the trust assumptions or a
global, governing body that is responsible for the system, it is fathomable that no perfect
solution exists to solve all potential shortcomings.

44 CHAPTER 4. DESIGN

Chapter 5

Prototype Implementation

In this chapter, a technical overview of CH2TF based on the design guidelines examined
in Chapter 4 is documented. In Section 5.1, an architectural overview of the prototype
implementation of CH2TF is presented. Further, Section 5.2 explores the Pub/Sub im-
plementation details. Moreover, Sections 5.3, 5.4 and 5.8 are about the respective threads
of CH2TF. Next, Sections 5.5 and 5.7 go into the details about the details of sending and
receiving of requests. Further, Section 5.8 documents the attack and HH analyses. Lastly,
Section 5.9 presents the use of Bloom filters in CH2TF.

5.1 Components

The prototype implementation of CH2TF has been written in Python (cf. [58]) and is
containerized as a Docker container (cf. [18]). The components are depicted in Figure 5.1.
Python and Docker are popular tools allowing for fast prototyping and deployment of
applications and, thus, are suitable for CH2TF’s goals.

Furthermore, as a Pub/Sub framework Apache Kafka (cf. [4]) with its dependency Apache
ZooKeeper (cf. [5]) has been selected. Thus, the components of this architecture are the
following:

• ZooKeeper: Has been added due to being a necessary dependency to run Kafka.

• Kafka: The chosen Pub/Sub framework. Responsible for the message exchange
between the ASes.

• CH2TF: Includes the components relating to the Kafka connection, reading the
forwarded traffic and processing the attack and HH analysis.

Regarding the database that was mentioned in Section 4.3, the prototype implementa-
tion of CH2TF uses built-in Python dictionaries, which can be seen as key-value stores
(cf. [59]). Although more intricate solutions such as Redis (cf. [66]), MongoDB (cf.

45

46 CHAPTER 5. PROTOTYPE IMPLEMENTATION

:ZooKeeper:Kafka

:CH2TF
(Python)

Figure 5.1: The component diagram of CH2TF

[44]), UltraDict (cf. [79]) or SQLite (cf. [63]) were explored and considered, the built-in
dictionary solution has been selected due to the performance advantage that it has (cf.
[79]). However, the author notes that while this choice considers the performance based
on read and write speed, it does not consider memory constraints. I.e., a large attack
could potentially lead to CH2TF running out of RAM. Nevertheless, this potential issue
has not been further considered for prototyping purposes. Furthermore, CH2TF does not
require the traffic-monitoring data to be stored indefinitely, i.e., to save memory, only
two traffic-monitoring data sets are stored, which are required for the analyses. As such,
built-in dictionaries are sufficient for the prototype implementation. Consequently, the
database component outlined in Section 4.3 has not been included in Figure 5.1.

CH2TF itself runs in multiple threads to make use of the shared memory (cf. [11]):

• Collection of packages: This thread is discussed in Section 5.3. It is responsible is
to collect the packages that it receives and store them.

• Listening to requests and responses: This thread listens to the messages that it
receives through Kafka. Details are found in Section 5.4.

• Analysis: This thread is responsible to run the attack detection analysis and send
a collaboration request in the case an attack is detected. This is further discussed
in Section 5.5.

5.2 Pub/Sub: Apache Kafka

As hinted in Section 5.1, Apache Kafka has been chosen as a Pub/Sub framework. This
choice has been made consciously by the fact that Kafka is a tried and tested platform
supporting high throughput (cf. Section 2.3.1), which is of importance to CH2TF.

5.3. PACKAGE COLLECTING 47

Regarding the Kafka deployment, for the prototype implementation, only a single broker
has been chosen and the replication factor has been set to 1 (cf. Listing C). Of course, for
a real-world deployment scenario, these values would need to be adjusted, however, for a
prototype these settings have been considered as sufficient.

To connect CH2TF to Kafka, the Python library“kafka-python”(cf. [29]) has been chosen.
In Listing 5.1 the Kafka Consumer is shown while Listing 5.2 shows the Kafka Producer.
In line 2 of each Listing the ‘bootstrap servers’ keyword argument is used, this is part of
the configuration from CH2TF and is used to connect to Kafka.

1 consumer = KafkaConsumer(

2 bootstrap_servers=[KAFKA],

3 api_version=(0, 10, 0),

4 value_deserializer=json_deserializer ,

5 auto_offset_reset="latest",

6 enable_auto_commit=False

7)

Code Listing 5.1: Kafka Consumer

1 self.producer = KafkaProducer(

2 bootstrap_servers=[KAFKA],

3 api_version=(0, 10, 0),

4 value_serializer=json_serializer

5)

Code Listing 5.2: Kafka Producer

5.3 Package Collecting

The package collecting thread is responsible for the storing of data that it receives through
a ‘(multiprocessing) queue’ (cf. [61, 60]). A queue is chosen due to the multiprocessing
nature of CH2TF, corresponding to the idea that an (external) process forwards the traffic
data to CH2TF. The multiprocessing aspect has been chosen to use multi-core architec-
tures to run processes fully in parallel, which does not hold for threads in the selected
Python implementation (cf. [64, 60, 47]).

Listing 5.4 shows the collect_packages method, where in line 8 an element of the queue
is removed and returned, and in line 9 forwarded to the _store_data method (cf. Listing
5.6). Further, the collect_packages method assumes that a CH2TF external method
adds the PacketData (cf. Listing 5.3) elements to the queue. Nevertheless, for illustrative
purposes and as a reference, a traffic Sniffer class has also been added, though it is not
in use in CH2TF. The idea is that the traffic sniffer captures the live traffic that is passing
through a network interface using the Python library “pyshark” (cf. [55]), which makes
use of Wireshark’s network analyzer “tshark” (cf. [93]). This Sniffer reference class is
shown in Listing A.1, in Appendix A.

48 CHAPTER 5. PROTOTYPE IMPLEMENTATION

1 @dataclass

2 class PacketData:

3 src: str

4 dst: str

5 srcport: str

6 dstport: str

7 timestamp: datetime

8 transport_layer: str

Code Listing 5.3: The PacketData class

1 def collect_packages(self) -> None:

2 """

3 Collect traffic packages that the method receives through the queue.

4
5 :return: None

6 """

7 while True:

8 received: PacketData = self.queue.get()

9 self._store_data(received , self.dest_dict , self.src_dict)

Code Listing 5.4: The collect_packages method

Listing 5.6 depicts the _store_data method. In lines 12 − 13, the sampling is shown.
The idea here is that to improve performance, not all packets are considered. As such, if
the method is_sampling_skip returns true, this particular packet is not stored and will
lead to it not being considered in the analyses. The is_sampling_skip method is listed
in Listing 5.5. If a random number is larger than the sampling rate, then this method
returns true, i.e., an entry is skipped (line 14). Thus, if the sampling rate is ≥ 1, no
elements are skipped, since the interval of random.random() is [0, 1) [62].

1 def is_sampling_skip(sampling_rate: float , rand: float = None) -> bool:

2 """

3 Returns whether the element should be skipped.

4
5 :param sampling_rate: pos number >= 0

6 :type sampling_rate: float

7 :param rand: random number in the interval [0,1)

8 :type rand: float

9 :return: True if entry should be skipped

10 :rtype: bool

11 """

12 if rand is None:

13 rand = random.random ()

14 return rand > sampling_rate

Code Listing 5.5: The is_sampling_skip method

Further, in lines 15 − 17 of Listing 5.6, it is checked whether the source address of the
packet is managed by this particular AS (cf. Listing 5.21), leading to only storing the

5.4. LISTENER 49

source perspective of the packet in the case that the AS manages this IP address. This is
done since, in the prototype implementation of CH2TF, only the AS managing the source
IP address takes the source perspective for the HH analysis.

1 def _store_data(self , received: PacketData , dest_dict: defaultdict ,

src_dict: defaultdict) -> None:

2 """

3 Aggregates packages.

4 :param received: A received packet

5 :type received: PacketData

6 :param dest_dict: Destination perspective dict

7 :type dest_dict: defaultdict(Counter)

8 :param src_dict: Source perspective dict

9 :type src_dict: defaultdict(Counter)

10 :return: None

11 """

12 if is_sampling_skip(SAMPLING_RATE):

13 return

14 dest_dict[received.dst][received.src] += 1

15 if not self.check_if_is_managed(received.src):

16 return

17 src_dict[received.src][received.dst] += 1

Code Listing 5.6: The _store_data method

5.4 Listener

The listener thread connects to Kafka and listens to requests and responses as a Pub/Sub
consumer. As such, it takes the role of the Subscriber Connector and Collaboration
Request Receiver in Figure 4.1.

The listener method (cf. Listing 5.7) is executed in this thread. Based on the message’s
topic it receives, it delegates the message to the appropriate method (cf. Lines 23− 30).
The handling of collaboration requests (cf. Lines 25 − 28) is documented in Section
5.6. In Lines 16 − 17, the subscription topics are selected, which are made up of the
additional (cf. Section 4.5), and low and high priority topics. Thus, the implementation
is flexible concerning the topics an AS wants to subscribe to. The implementation does
not force an AS to use the default topics, i.e., low and high confidence. Nevertheless,
while the prototype implementation supports this feature, whether the use and creation
of sub-communities are useful or detrimental is discussed in Section 7.2.

50 CHAPTER 5. PROTOTYPE IMPLEMENTATION

1 def listen(self) -> None:

2 """

3 listens as a consumer to the topics and delegates the function call

according to topic

4 :return:

5 """

6
7 log.info("listening")

8 consumer = KafkaConsumer(

9 bootstrap_servers=[KAFKA],

10 api_version=(0, 10, 0),

11 value_deserializer=json_deserializer ,

12 auto_offset_reset="latest",

13 enable_auto_commit=False ,

14)

15
16 topics = self._init_consumer_topics(TOPICS , [TOPIC_HIGH , TOPIC_LOW])

17 consumer.subscribe(topics)

18 log.info(consumer.topics ())

19
20 message: ConsumerRecord

21 for message in consumer:

22 topic = message.topic

23 if "REQ" in topic:

24 if TOPIC_HIGH in topic:

25 self.handle_collab_req(message , high_prio=True , topic=

topic)

26 else:

27 # low prio or non -standard topics

28 self.handle_collab_req(message , topic=topic)

29 elif "RES" in topic:

30 self.handle_collab_res(message , topic=topic)

Code Listing 5.7: The listener method

5.5 Sending Requests

In this section, the sending of collaboration requests is documented. Listing 5.8 shows
part of the run_analysis method. This method runs in a separate thread and detects
an attack and sends the collaboration request(s). Moreover, it also handles the analysis
periods and clears the data of previous analyses. Thus, for every analysis cycle, it tries
to find an attack by checking whether a destination IP address is a potential victim of
an attack (cf. Section 4.6). Line 4 depicts the return value of the attack analysis (cf.
Listing 5.15), and in the case that the analysis returns false, the loop breaks, and the
next IP address is checked (cf. Lines 2, 5 − 6). Next, the topic of the Pub/Sub message
is determined (cf. Lines 8 − 14). In the case that the higher threshold is violated, the
high confidence topic is chosen, unless the AS wants to use additional topics (cf. Lines
13 − 14), e.g., if it is part of a sub-community. Since multiple additional topics can be
used, the message is sent for each topic (cf. Lines 29− 35). Additionally, CH2TF uses an
environment variable for the message length since the list of potential attackers is included

5.5. SENDING REQUESTS 51

in the request. It is fathomable that this list could get lengthy, as such, this list is split if
it is larger than the threshold, and multiple requests are sent with the limited “sublists”
(cf. Lines 18− 21).

Moreover, Lines 26−27 show part of the reputation based-scheme (cf. Section 4.9). Thus,
the collaboration request includes which detection case was triggered and by how much.
To achieve this, the request adds the requests relative to size variable, which includes size
information of the AS. This is further explored in Section 5.6.

1 ...

2 for dest_ip , src_ips in dest_dict.items():

3 ...

4 detected , detection_case , ratio = self.attack_analysis.run_analysis

(...)

5 if not detected:

6 continue

7 ...

8 topic = TOPIC_LOW

9 if num_packets_for_this_destination > THRESHOLD_VICTIM_HI:

10 topic = TOPIC_HIGH

11 publish_topics = [topic]

12 # if true , will skip ’default ’ topics and send to each additional

13 if TOPICS_USE_ADDITIONAL:

14 publish_topics = TOPICS

15 potential_attacker_ips = list(dest_dict[dest_ip])

16
17 # split list into more manageable list of MSG_LENGTH

18 splitted_potential_attacker_ips = [

19 potential_attacker_ips[x : x + MSG_LENGTH]

20 for x in range(0, len(potential_attacker_ips), MSG_LENGTH)

21]

22 for subli in splitted_potential_attacker_ips:

23 request = DefenseCollaborationRequestData(

24 potential_attacker_ips=subli ,

25 potential_victim=dest_ip ,

26 request_detection=detection_case ,

27 requests_relative_to_size=ratio / AS_SIZE ,

28)

29 for top in publish_topics:

30 topic = top + ".REQ"

31 self.producer.send(

32 topic=topic ,

33 value=request.to_json (), # type: ignore

34 key=str.encode(request.request_id),

35)

36
37 req_dict[str(request.request_id)] = request

38 # go directly to analysis , do not need to go through kafka

39 self.handle_collab_req(

40 def_collab_req=request , topics=publish_topics

41)

42 ...

Code Listing 5.8: Part of the run_analysis method

52 CHAPTER 5. PROTOTYPE IMPLEMENTATION

Furthermore, it is also noteworthy that no pre-processing is done on the potential at-
tacker’s list, they are sent as-is in the collaboration request. Future work could try to
limit this set to (i), remove the amounts of requests that need to be sent, and (ii), to
reduce the amount of analyses that the collaboration request receivers must process.

5.6 Receiving Requests

The handle_collab_reqmethod (cf. Listings 5.9 and 5.10) is called by the listener thread
(cf. Lines 24 − 28 in Listing 5.7), or by the run_analysis method (cf. Lines 39 − 41
in Listing 5.8) in case the request comes from the same AS. This is also shown in Lines
8− 9 in Listing 5.9 where the own request is ignored that an AS receives through Kafka.
Further, the relative threshold is computed (cf. Lines 14− 16 in Listing 5.9). The raison
d’ être of this is procedure is documented in the discussion of Listing 5.11.

1 def handle_collab_req (...):

2 def_collab_req = (

3 DefenseCollaborationRequestData.from_json(message.value)

4 if message

5 else def_collab_req

6)

7 # ignore own request that receives through kafka consumer

8 if def_collab_req.request_originator == AS_NAME and message is not

None:

9 return

10 # reputation

11 if high_prio and self.reputation_dict[def_collab_req.

request_originator] > 0.5:

12 self.mitigation.filter_ips(def_collab_req.potential_attacker_ips

)

13 # check relative threshold

14 is_larger_than_threshold: bool = self._is_larger_than_own_threshold(

15 def_collab_req

16)

17 if not is_larger_than_own_threshold:

18 decision = DecisionEnum.NOT_ACK

19 else:

20 for potential_attacker in def_collab_req.potential_attacker_ips:

21 # check if ip of a potential attacker is managed by this AS.

22 if self.check_if_is_managed(potential_attacker):

23 if self.attacker_analysis.run_analysis (...):

24 list_ack_attacker.append(potential_attacker)

25 else:

26 list_not_attacker.append(potential_attacker)

27 decision = (

28 DecisionEnum.UNDER_THRS

29 if len(list_ack_attacker) == 0

30 else DecisionEnum.FOUND

31)

32 ...

Code Listing 5.9: The handle_collab_req method (part i)

5.6. RECEIVING REQUESTS 53

If the request receiver does not agree on an attack, no HH analysis is done, and this
decision is published as a message (cf. Lines 17−18 in Listing 5.9). However, if an attack
is acknowledged, the collaboration request is processed further (cf. Line 19 in Listing 5.9).
As such, for each potential attacker IP that was provided in the Pub/Sub message, it is
checked if this IP address is managed by the corresponding AS (cf. Line 22 in Listing
5.9). I.e., this implies that only the AS that manages an IP address can check if this IP
is an attacker. This is further discussed in Sections 5.3 and 5.9. Furthermore, for each IP
address that is managed, the HH analysis is run (cf. Line 23 in Listing 5.9 and Section
5.8.2).

Finally, the decision (cf. Listing B.3), i.e., whether the attack is not acknowledged,
attackers were not found, or attackers were found is added to the response message,
which is in turn published (cf. Lines 47− 51 in Listing 5.10). Further, the topic is chosen
based on the topic that it received. Additionally, suppose this method is handling the
request from itself. In that case, it is possible that the request has been published to
multiple subscribers, as such a list of topics is passed, and the response is published for
each topic (cf. Lines 45 − 51 in Listing 5.10). Conversely, if the request message stems
from Kafka, it only belongs to one topic, and for simplicity, it is handled in the same way
(cf. Line 43− 44 in Listing 5.10).

33 ...

34 def_collab_res: DefenseCollaborationResponseData = (

35 DefenseCollaborationResponseData(

36 request_id=def_collab_req.request_id ,

37 ack_potential_attacker_ips=list_ack_attacker ,

38 decision=decision ,

39 request_originator=def_collab_req.request_originator ,

40 as_name=os.getenv("AS_NAME", default=""),

41)

42)

43 if topics is None: # if received through kafka topics is None

44 topics = [topic]

45 for topic in topics:

46 topic = topic + ".RES"

47 self.producer.send(

48 topic=topic ,

49 value=def_collab_res.to_json (),

50 key=str.encode(def_collab_res.request_id),

51)

Code Listing 5.10: The handle_collab_req method (part ii)

Listing 5.11 shows the _is_larger_than_own_threshold method, which computes if a
request that an AS receives would also violate its thresholds. I.e., the collaboration
request from another AS is adjusted to the relative sizes. Since every AS is likely to
support a different amount of traffic, this mechanism plays a role in leveling the field to
make the thresholds more comparable. As such, for each received request, the own AS
size is multiplied by the number that was passed in a request (cf. Line 15 in Listing 5.11
and Line 27 in Listing 5.8). This is then compared to the own thresholds, based on which
threshold was violated by the request originator (cf. Lines 16− 26).

54 CHAPTER 5. PROTOTYPE IMPLEMENTATION

1 def _is_larger_than_own_threshold(

2 self , def_collab_req: DefenseCollaborationRequestData

3) -> bool:

4 """

5 adjust the collaboration request to the relative sizes

6 => is a request originating from an AS

7 also above my threshold when adjusted to the relative sizes and

8 thresholds? Essentially , would these flows also trigger my threshold

?

9 :param def_collab_req:

10 :type def_collab_req: DefenseCollaborationRequestData

11 :return: whether this AS agrees that an attack has been detected

12 :rtype: bool

13 """

14
15 requests_relative_to_size = AS_SIZE * def_collab_req.

requests_relative_to_size

16 match def_collab_req.request_detection:

17 case DetectionEnum.THRESHOLD:

18 is_larger_than_own_threshold = (

19 requests_relative_to_size > THRESHOLD_VIC_LO

20)

21 case DetectionEnum.TRAFFIC_INCREASE:

22 is_larger_than_own_threshold = (

23 requests_relative_to_size > THRESHOLD_VIC_T_PERC

24)

25 case _:

26 is_larger_than_own_threshold = False

27 return is_larger_than_own_threshold

Code Listing 5.11: The _is_larger_than_own_threshold method

5.7 Receiving Responses

Listing 5.12 shows the handling of collaboration responses. This method is called by the
listener method (cf. Line 30 in Listing 5.7). Since a collaboration response includes the
decision (cf. Listings B.2 and B.3), the flow depends on the decision that was included in
the message (cf. Lines 9 − 31 in Listing 5.12). If an attack is found (cf. Lines 10 − 20),
this method adds the acknowledged attackers to the HH table (cf. Lines 18− 20 and also
Section 5.9). Additionally, this would essentially start the mitigation process, which is not
part of this work. Further, it is possible that the request receiver does not manage any
potential IP addresses, in this case, nothing can be done (cf. Lines 29 − 31). However,
future work could examine whether building a knowledge base of which IP addresses are
managed by which AS is a suitable choice.

Additionally, reporting that attackers were found is seen as positive in the reputation
scheme, as such, the reputation of the responding AS increases (cf. Line 16− 17). Simi-
larly, if an AS does not acknowledge an attack (cf. Lines 21− 24, it implies a mismatch
between the thresholds. Nota bene, not acknowledging an attack implies that the re-
quest receiving AS skips the HH analysis process, which could be exploited akin to the

5.8. ATTACK AND HEAVY HITTERS ANALYSES 55

“Free-rider problem” (cf. Section 4.9). The reputation-based scheme tries to counter this
behavior by decreasing the reputation of the AS that responded to the attack. In the case
that an attack is acknowledged, but no particular IP address is flagged as an attacker,
the third case is triggered (cf. Lines 25 − 28). In this case, the reputation scheme does
not play a role since it is perfectly possible that no IP address from this AS is partaking
in the attack. Thus, without a statistical approach to estimate the likelihood of such an
occurrence, it would not be correct to decrease the reputation of this AS as-is.

1 def handle_collab_res(self , message , topic):

2 ...

3 collab_res: DefenseCollaborationResponseData = (

4 DefenseCollaborationResponseData.from_json(message.value)

5)

6 # store response

7 responses[collab_res.request_id][collab_res.as_name] = collab_res

8 given_decision: DecisionEnum = collab_res.decision

9 match given_decision:

10 case DecisionEnum.FOUND:

11 log.info("Found Attackers")

12 # mitigation starts here , but not part of this work

13 self.mitigation.filter_ips(

14 collab_res.ack_potential_attacker_ips

15)

16 if collab_res.request_originator == AS_NAME:

17 self.reputation_dict[collab_res.as_name] += 0.1

18 self.h_h_table = add_to_bloom_filter(

19 self.h_h_table , collab_res.ack_potential_attacker_ips

20) # add to heavy hitter table

21 case DecisionEnum.NOT_ACK:

22 # originates from this AS, build reputation scheme

23 if collab_res.request_originator == AS_NAME:

24 self.reputation_dict[collab_res.as_name] -= 0.1

25 case DecisionEnum.UNDER_THRS:

26 # ack attack and has manages some ips

27 # claims no attackers from this AS

28 pass

29 case DecisionEnum.NOT_MANAGED:

30 # no managed ip addresses

31 pass

32 ...

Code Listing 5.12: The handle_collab_res method

5.8 Attack and Heavy Hitters Analyses

For the attack and HH analyses (cf. Sections 5.8.1 and 5.8.2), the prototype implemen-
tation of CH2TF makes use of an abstract base class Analysis (cf. Listing 5.13). This
class serves as an interface for the run_analysis method, which needs to be overridden
by the subclasses. Furthermore, CH2TF employs the strategy design pattern (cf. [90]) to

56 CHAPTER 5. PROTOTYPE IMPLEMENTATION

make the behavior generic and the extension and selection of further analyses as simple
as possible.

1 class Analysis(ABC):

2 @abstractmethod

3 def run_analysis(

4 self ,

5 attacker_ip: str ,

6 victim_ip: str ,

7 src_dict: defaultdict ,

8 dst_dict: defaultdict ,

9 *args ,

10 ** kwargs ,

11) -> Any:

12 raise NotImplementedError

Code Listing 5.13: The abstract Analysis class

5.8.1 Attack Analysis

As discussed in Section 4.6, CH2TF employs policies based on thresholds to detect an
attack. In particular, the two policies, i.e., (i) Amount of packets arriving at the desti-
nation is above threshold and (ii) Increase in traffic above threshold that were designed
were implemented here. Listing 5.14 shows the subclass AttackAnalysis, which inher-
its from the Analysis class. The main difference between the two is that the return
type of AttackAnalysis is more specific (i.e., covariant), and as such follows the Liskov
Substitution Principle (cf. [84]).

1 class AttackAnalysis(Analysis):

2 @abstractmethod

3 def run_analysis(

4 self ,

5 attacker_ip: str ,

6 victim_ip: str ,

7 src_dict: defaultdict ,

8 dst_dict: defaultdict ,

9 *args ,

10 ** kwargs ,

11) -> Tuple[bool , DetectionEnum , float]:

12 raise NotImplementedError

Code Listing 5.14: The AttackAnalysis class

Listing 5.15 depicts the DDoSAttackAnalysis class, which is responsible for detecting
DDoS attacks. Lines 21−22 represent the detection of case (i), i.e., whether a potential IP
address can be considered a victim, i.e., is under attack or suffering from heavy load. Lines
25−27 are about case (ii), the detection of DDoS attacks by seeing a sudden high increase
in traffic. As such, method check_timed_difference (cf. Lines 3 − 15 in Listing 5.15)
returns whether a significant difference in traffic between the previous and the current

5.8. ATTACK AND HEAVY HITTERS ANALYSES 57

analysis interval has been experienced. Additionally, to be more robust, this method
verifies whether the percentual traffic increase is above a given threshold and whether
minimum traffic has been experienced (Lines 12 and 15). Finally, the run_analysis

method not only returns whether an attack was detected but also the detection case and
by how much the thresholds were deviated from (cf. Lines 22 and 28). If no attack is
detected for this IP address, the method returns False (cf. Line 28).

1 class DDoSAttackAnalysis(AttackAnalysis):

2 @staticmethod

3 def check_timed_difference(

4 victim_ip: str , dest_dict: defaultdict , dest_dict_aggregated:

defaultdict

5) -> tuple[bool , float]:

6 new = dest_dict

7 old = dest_dict_aggregated

8
9 num_old = old.get(victim_ip , 0)

10 num_new = sum(new[victim_ip].values ())

11
12 if num_old == 0 or num_new < THRESHOLD_VICTIM_TIME_MIN:

13 return False , 0.0

14 difference = float(num_new / num_old)

15 return difference > THRESHOLD_VICTIM_TIME_PERCENTAGE , difference

16
17 @stopwatch(name="AttackAnalysis")

18 def run_analysis (...) -> Tuple[bool , DetectionEnum , float]:

19 # case 1: amount of packets arriving is above threshold

20 ...

21 if num_packets_destination > THRESHOLD_VICTIM_LO:

22 return True , DetectionEnum.THRESHOLD ,

num_packets_destination

23 # case 2: increase in traffic above threshold

24 ...

25 rel_new_requests , ratio = self.check_timed_difference (...)

26 if rel_new_requests:

27 return True , DetectionEnum.TRAFFIC_INCREASE , ratio

28 return False , DetectionEnum.NONE , 0

Code Listing 5.15: The DDoSAttackAnalysis class

5.8.2 Heavy Hitters Analysis

The HH analysis is constructed similarly to the Attack Analysis (cf. Section 5.8.1). Listing
5.16 shows the base AttackerAnalysis class that extends the Analysis class (cf. Listing
5.13). Similarly, this class serves as an interface for (potential) analyses.

58 CHAPTER 5. PROTOTYPE IMPLEMENTATION

1 class AttackerAnalysis(Analysis):

2 @abstractmethod

3 def run_analysis(

4 self ,

5 attacker_ip: str ,

6 victim_ip: str ,

7 src_dict: defaultdict ,

8 dst_dict: defaultdict ,

9 *args ,

10 ** kwargs ,

11) -> bool:

12 raise NotImplementedError

Code Listing 5.16: The AttackerAnalysis class

Listings 5.17 and 5.18 show the HeavyHitterAnalysis class that extends the Attacker-
Analysis class (cf. Listing 5.16).

The method _is_traffic_direction_proportional of the class AttackerAnalysis is
shown in Listing 5.17. This method was inspired by related work and considers whether
both sides are sending traffic in similar proportions. This means that if an attacker
overwhelms a victim with traffic and the victim never sends a request back, this will be
flagged as suspicious. In the case that one side never sends traffic to the other, this is
treated as more likelier to be suspicious (cf. Lines 16− 17 in Listing 5.17).

1 class HeavyHitterAnalysis(AttackerAnalysis):

2 @staticmethod

3 def is_traffic_direction_proportional(

4 atk_ip: str ,

5 vic_ip: str ,

6 num_packets_from_src_to_victim_only: int ,

7 dst_dict: dict ,

8):

9 """

10 Proportionality in flow between src and destination.

11 """

12 num_to_vic = num_packets_from_src_to_victim_only

13 num_from_vic = dst_dict[atk_ip].get(vic_ip , 0)

14 # case where attacker has not received any traffic from victim

15 # these are considered as likelier attackers here => weighted

10x more

16 if num_from_vic == 0:

17 num_from_vic = 1e-1

18
19 # only consider the case atk_to_vic > atk_from_vic.

20 # not concerned here with the victim being an attacker

21 if THRESHOLD_TRAFFIC_PROPORTIONALITY <= num_to_vic /

num_from_vic:

22 return False

23 return True

Code Listing 5.17: The HeavyHitterAnalysis class (part i)

5.8. ATTACK AND HEAVY HITTERS ANALYSES 59

The four attack detection cases discussed in Section 4.7 are shown in Listing 5.18. Nota
bene, the attack cases use different threshold variables and values since they are not
directly comparable, and one value would not be able to distinguish between the cases.
Case (i) Source sends too many packets to specific victim is shown in Lines 30−31. I.e.,
if one source sends too many packets to the reported victim it gets flagged as an attacker.
Lines 34−35 depict case (ii): Source sends too many packets to many destinations. This
means that the source is not sending traffic to a specific victim only, but to many, and can
thus be considered a HH. In lines 37−41, case (iii) Source sends packets only to the victim
is shown. As discussed in Section 4.7 this is about detecting sources that send constant but
small traffic to the victim, but not to others. Case (iv) Traffic direction proportionality is
depicted in Lines 43−46, which calls the method _is_traffic_direction_proportional

that is depicted in Listing 5.17. Lastly, if none of the cases detected an attack, the method
returns false (cf. Line 47).

26 ...

27 def run_analysis (...) -> bool:

28 ...

29 # case 1: source sends too many packets to victim

30 if num_src_to_victim_only > THRESHOLD_SRC_1:

31 return True

32 # case 2: source sends many packets to many victims

33 ...

34 if num_from_this_src > THRESHOLD_SRC_2:

35 return True

36 # case 3: source is sends packets ONLY to the victim

37 if num_packets_from_this_src > THRESHOLD_SRC_3_MIN and (

38 (ratio := (num_src_to_victim_only / num_from_this_src))

39 >= THRESHOLD_SRC_3

40):

41 return True

42 # case 4: traffic direction proportionality

43 if not self.is_traffic_direction_proportional(

44 attacker_ip , victim_ip , num_src_to_victim_only , dst_dict

45):

46 return True

47 return False

Code Listing 5.18: The HeavyHitterAnalysis class (part ii)

However, in comparison to the attack detection analysis (cf. Section 5.8.1), the HH
detection only returns true or false, i.e., whether a source address can be considered an
attacker, and does not compute any confidence value that it has for this result. Such an
aspect would be interesting to add to mitigation schemes, and as such, has been directed
to future work. The author also notes that attack detection case (iv) can be treated as a
generic attack detection scheme but is not necessarily a HH detection scheme.

60 CHAPTER 5. PROTOTYPE IMPLEMENTATION

5.9 Bloom Filters

The prototype implementation of CH2TF uses Bloom filters for storing and handling IP
addresses and the storage of HH. To achieve this, the Python library “python-bloomfilter”
has been selected (cf. [57]). A Bloom filter has been chosen to reduce memory usage and
the constant lookup time (cf. Section 2.4).

Listing 5.19 depicts the initialization of a new Bloom filter instance via the method
init_bloom_filter. As a default value a capacity of 10′000 is given (cf. Line 1). This
method is used to initialize the Bloom filters for the managed IP addresses and also the
HH table.

1 def init_bloom_filter(capacity: int = 10_000):

2 return pybloom_live.BloomFilter(capacity=capacity)

Code Listing 5.19: The init_bloom_filter and methods

5.9.1 Managed IP Addresses

The prototype of CH2TF assumes that each AS keeps track of the managed IP addresses
in a text file. As such, the Bloom filter is initialized by reading the entries of this very
file (cf. Lines 16− 18 in Listing 5.20). Additionally, if hashes are to be used to preserve
privacy, each entry is hashed first (cf. Lines 19 − 20) before being added to the Bloom
filter (cf. Line 21).

1 def init_managed_ips(

2 managed_ip_path: str , is_use_hash: bool , capacity: int = 100_000

3) -> pybloom_live.BloomFilter:

4 """

5 Initializes the bloom filter by adding the managed ip addresses

6 :param is_use_hash: whether the managed ips should be hashed

7 :type is_use_hash: bool

8 :param managed_ip_path: path of textfile containing ips

9 :type managed_ip_path: str

10 :param capacity: capacity of the bloom filter

11 :type capacity: int

12 :return: populated bloom filter

13 :rtype: pybloom_live.BloomFilter

14 """

15 bloom_filter = init_bloom_filter(capacity)

16 with open(managed_ip_path , mode="r", encoding="utf -8") as f:

17 for line in f:

18 entry = line.rstrip("\n")

19 if is_use_hash:

20 entry = sha3_hash(entry)

21 bloom_filter.add(entry)

22 return bloom_filter

Code Listing 5.20: The init_managed_ips method

5.9. BLOOM FILTERS 61

The method _check_if_is_managed (cf. Listing 5.21) checks whether a given element
(i.e., IP address) is contained in the bloom filter. However, as outlined in Section 2.4,
false positives are possible. However, false positives are not an issue, since the analysis
return would treat a non-managed IP address as a non-attacker.

1 def _check_if_is_managed(self , ip_address: str) -> bool:

2 """

3 Checks whether a given ip_address is probably managed by the AS.

4 This is done by verifying if it is contained in the bloom filter.

5
6 Due to the bloom filter ’s working , false positives are possible.

7
8 :param ip_address: ip address to check if is in bloom filter

9 :type ip_address: str

10 :return: whether ip_address is in the bloom filter

11 """

12 return ip_address in self.managed_ips

Code Listing 5.21: The _check_if_is_managed method

5.9.2 Heavy Hitter Tables

Furthermore, each AS keeps track of the reported HH from the collaborating network.
Similarly to the managed IP addresses, a Bloom filter data structure was chosen as an
implementation detail to store the HH. The addition to the table is depicted in Lines
18 − 20 in Listing 5.12. While the HH tables enable the DDoS mitigation process, this
has been directed to future work.

62 CHAPTER 5. PROTOTYPE IMPLEMENTATION

Chapter 6

Evaluation

In this chapter, the prototype is evaluated based on various aspects. First, in Section 6.1,
multiple attack cases are explored. Subsequently, in Section 6.2 a performance evaluation
is performed. Finally, the evaluation findings are discussed in Section 6.3. The evaluations
described in Sections 6.1 and 6.2 have been conducted on a MacBook Pro (Apple M1
Max, 64GB system memory), and three ASes have been modeled using separate Docker
Containers.

6.1 Attack Cases

This section describes and simulates the DDoS attack scenarios to evaluate CH2TF’s
effectiveness in detecting an attack and the HH. The chosen attack types were inspired
by the articles [12, 13].

To conduct the evaluation experiments, for every modeled AS, the managed IP addresses
were selected and written into a text file passed to each ASes’ Docker Container. The
number of managed IP addresses was arbitrarily chosen at 10′000 for each AS, and it was
ensured that no duplicates between the IP addresses exist. Furthermore, this process was
only done once, since there was no need to vary the IP addresses between the experiments.

Subsequently, for every attack scenario and each modeled AS PCAP (cf. [86]), files are
generated using the Python library Scapy (cf. [71]), one for legitimate traffic and one for
illegitimate traffic. Moreover, if a packet goes from an AS to another AS, it requires that
the PCAP files for both ASes include this traffic. PCAP files, which include the packet
capture data [86], are sequentially read from a traffic generator module and passed to the
CH2TF module for analysis. Thus, specific attack scenarios can be replayed for evaluation
purposes using packet captures. An example of such a PCAP file used for the scenario
in Section 6.1.2 is displayed in Figure 6.1. These traffic flows were computed using the
aforementioned managed IP addresses files.

The evaluation architecture that is used in the attack case scenarios is depicted in Fig-
ure 6.2. Three different ASes have been modeled using Docker Containers. Furthermore,

63

64 CHAPTER 6. EVALUATION

Figure 6.1: Excerpt from the evaluation attack PCAP file inside Wireshark (cf. [94])
that was used for the attack case in Section 6.1.2.

Kafka and ZooKeeper were also deployed using Docker Containers and connected in a
Docker Compose Network (cf. [19]). In addition to the CH2TF architecture, an evalua-
tion module was added. Its purpose as an additional consumer is to capture the requests
and responses sent back and forth, aggregate the evaluation results, and generate the
traffic PCAP files and the resulting figures. Due to the use of Pub/Sub and Kafka,
the evaluation module has readily been added as an additional Kafka Consumer without
requiring any changes to the modeled ASes.

No packet sampling has been used in these scenarios to remove randomness from the
evaluation. Furthermore, the attack rate and thresholds have been kept constant between
the attack scenarios to make the attack case results comparable. Also, for all attack cases
5 traffic files were each generated, and the results were aggregated over 5 different exper-
iment runs. The Docker Compose YAML file is depicted in Listing C.1 in Appendix C.

6.1.1 Volumetric Attack

This attack scenario aims to overwhelm a specific victim by the sheer amount of traffic [48].
As such, for this attack case, 1000 attackers from each AS were selected to target a single
victim during the entirety of the attack duration and written into the traffic files. The
results of this evaluation case are displayed in Figure 6.3 and in Table 6.2. For this
experiment, n = 30 requests and their responses from the collaborating ASes were listened
to and aggregated.

6.1. ATTACK CASES 65

EVAL
Module

Kafka

ZooKeeper

Traffic Generator

AS 0

Traffic Generator

AS 1

Traffic Generator

AS 2

Figure 6.2: Schema of the evaluation architecture used for the attack scenarios. The
evaluation module has been added here as an additional Kafka consumer. Also, every
AS includes a Traffic Generator that reads the prepared PCAP files to simulate traffic.

Attacker Legitimate

Predicted Values

At
tac

ke
r

Le
gi

tim
ate

Ac
tu

al
Va

lu
es

TP
56.06%

FN
14.87%

FP
0.00%

TN
29.07%

0

20000

40000

60000

80000

100000

120000

140000

160000

IP
 A

dd
re

ss
es

Figure 6.3: Confusion matrix for the volumetric attack case.

6.1.2 Burst / Pulse Wave Attack

This type of attack can be seen as a high-volume volumetric attack, though differs by
being for only a short duration of time [1, 50]. Furthermore, they exploit the existing
problem of state of the art DDoS defenses, namely their reaction time to these kind of
attacks [1]. Thus, the simulated attack traffic has been specifically created to model this

66 CHAPTER 6. EVALUATION

scenario, and four victims were selected for this evaluation, and 1000 attackers switched
to the next victim cyclically after a specific time. The selected cycle was 5000 packets,
meaning that after an AS sent this amount of traffic to the victim, it switched to the next
victim.

For this experiment, n = 30 requests and their responses from the collaborating ASes were
listened to and aggregated. The results of this attack case are displayed in Figure 6.4 and
in Table 6.2, where it is compared against the other attack case results.

Attacker Legitimate

Predicted Values

At
tac

ke
r

Le
gi

tim
ate

Ac
tu

al
Va

lu
es

TP
36.31%

FN
36.82%

FP
0.00%

TN
26.87%

0

10000

20000

30000

40000

50000

IP
 A

dd
re

ss
es

Figure 6.4: Confusion matrix for the burst attack case.

6.1.3 Botnets

This attack case models a botnet attack, e.g., using insecure IoT devices that form part of
a larger botnet as an attack vector [15]. The idea behind this attack scenario evaluation
experiment is that each attacker sends traffic only in a sporadic amount of time to hide
against detection by not appearing suspicious. This is in tune with IoT devices being low-
bandwith [78]. Thus, 5000 attackers were selected from each AS to target a specific victim,
and for this experiment, n = 30 requests and their responses from the collaborating ASes
were listened to and aggregated. The results of the botnet attack case are depicted in
Figure 6.5 and Table 6.2, comparing it against the other attack cases.

6.2. PERFORMANCE 67

Attacker Legitimate

Predicted Values

At
tac

ke
r

Le
gi

tim
ate

Ac
tu

al
Va

lu
es

TP
30.92%

FN
57.64%

FP
0.00%

TN
11.43%

100000

200000

300000

400000

500000

IP
 A

dd
re

ss
es

Figure 6.5: Confusion matrix for the botnet attack case.

6.2 Performance

In this section, the performance of CH2TF is conducted. Since Kafka’s performance has
repeatedly been evaluated (cf. [33, 35]), this section focuses on two main aspects that
are critical for CH2TF’s performance and not on the distributed Pub/Sub aspects. In
particular, the main aspects to examine are the DDoS Detection Analysis and the Heavy
Hitter Detection Analysis due to their importance in the system. Each analysis focuses
on a specific IP address: a victim of an attack or an attacker. Thus, this evaluation aims
to measure how long each analysis takes and whether the results indicate that CH2TF
would scale to millions or more packets per second.

Hence, an attack was simulated for this evaluation experiment, similar to those conducted
in Section 6.1. The analysis functions were timed to conduct the measurements, and the
result of n = 200 analyses for each detection was read from an ASes log file. The results of
the evaluation experiments are displayed in Figures 6.6 and 6.7, respectively. In Table 6.1
the mean and standard deviation of the results is depicted.

Table 6.1: Mean (µ) and standard deviation (σ) of the analysis measurement times. Units
in µs.

Analysis µ σ

Attack Detection 2.34 1.11
Heavy Hitter Detection 28.13 6.18

68 CHAPTER 6. EVALUATION

1

2

3

4

5

6

7

8

9

Ti
m

e [
µ
s]

Figure 6.6: Boxplot for the Attack Detection analysis. Time in µs.

6.3 Discussion

The performance evaluation results (cf. Figures 6.6 and 6.7) showed a noticeable discrep-
ancy between the Attack Detection analysis and the Heavy Hitter Detection analysis. This
is not unsurprising since the latter has specifically been designed to be more “in-depth”
than the former and, thus, is more complex in the computation steps that are performed
during the analysis. It can be seen that the Attack Detection Analysis has a low median,
though in rare cases, higher outliers are possible. Nevertheless, the low measurement
times indicate that this analysis can be performant. This is important and has also been
specifically designed to achieve this goal since, in real-world usage, many IP addresses
would need to be sequentially analyzed to detect an attack. Conversely, the Heavy Hitter
Detection Analysis is comparatively slower. Since this analysis only gets triggered once a
potential attack has been flagged, it is not running continuously, unlike the Attack Detec-
tion Analysis. This implies that the effect of this analysis being slow would only relate to
how fast the attack can be mitigated. The results indicate a potential bottleneck in the
prototype regarding this analysis in case a high number of potential attackers would need
to be analyzed. This can be seen as an inherent trade-off aspect between performance
(and, as such, latency) and effectiveness. I.e., a highly complex analysis can be seen as
more likely to catch every attacker but would require more computation power. This
discussion is further explored in Chapter 7.3 regarding botnet (IoT) attacks.

6.3. DISCUSSION 69

20

30

40

50

60

Ti
m

e [
µ
s]

Figure 6.7: Boxplot for the Heavy Hitter Detection analysis. Time in µs.

Nevertheless, the performance evaluation results are only indicative of the performance of
the prototype that has been written in Python, a high-level language [89], and CH2TF’s
prototype has not been optimized to be as performant as possible, but rather serves as a
demonstration of the underlying scheme and protocol. As such, a real-world deployment
should require a highly optimized implementation. Furthermore, these evaluation results
are also highly affected by the traffic-generating module that reads the PCAP files to
simulate the traffic and send the traffic to CH2TF. This traffic generation requires com-
paratively higher CPU usage (cf. Figures A.1 and A.2 in Appendix A). Since the analysis
can not be performed without traffic, it is impossible to evaluate the analyses’ executions
in a vacuum.

The attack case evaluation results showed that while HH can successfully be detected,
i.e., the largest flows, this work struggles in detecting attackers that employ low attack
rates each, similar to botnets.

This observation is shown in Figure 6.8, where it is noticed that if each attacker keeps their
attack rates low, the attack is noticed, and collaborators respond to the request, though
no specific attackers are to be found since each of them only contributes for a small part
in the overall flows. This conclusion is also depicted in Table 6.2, where the volumetric
attack case obtained the highest results, while the attackers in the botnets attack scenario
went mostly undetected, with a high number of False Negatives (FN) and a low number of

70 CHAPTER 6. EVALUATION

Table 6.2: MCC and Accuracy (ACC) comparison for the attack cases. Computed using
Equations 6.1 and 6.2. For each attack case 30 requests and responses were listened to,
and averaged over 5 different experiment runs. MCC uses the range [−1, 1] (cf. [87]), and
ACC uses the range [0, 1] (cf. Equation 6.2).

Case MCC ACC

Volumetric 0.72 0.85
Bursts 0.46 0.63
Botnets 0.24 0.42

101 102 103

of attackers / AS

0

20

40

60

80

100

Pe
rc

en
tag

e

0

20

40

60

80

100

At
tac

k
ra

te
/ s

True Positive
False Positive
False Negative
True Negative
Attack rate / attacker

Figure 6.8: Effect of increasing the number of attackers while keeping the overall attack
rate constant in the system. Further, policies’ thresholds were kept constant between the

experiments. For each number of attackers, n = 100 different requests and their
responses were listened to for the evaluation.

True Positives (TP) (cf. Figure 6.5). This implies that the chosen policies are not precise
enough to successfully differentiate between legitimate and illegitimate traffic since both
take on the same form, i.e., have the same behavior from the policies’ point of view.

Furthermore, Figure 6.8 also shows that when the percentage of TP drops off, and inversely
the percentage of FN rises, the percentage of False Positives (FP) is constantly kept
at 0, i.e., the legitimate traffic has never been classified as illegitimate attack traffic.

6.3. DISCUSSION 71

Consequently, this also highlights a potential issue in the choice of the thresholds’ values
for the detection of attackers, and opens the discussion on whether having legitimate
traffic being classified as illegitimate (i.e., a FP), is inherently a problem in such a system.
Nevertheless, this topic of discussion can be seen as more appropriate in the context of the
discussion of the mitigation of DDoS attacks, and depending on the mitigation scheme
used, completely blocking off legitimate traffic might be the wrong choice. Accordingly, it
can be argued that it is not the task of the detection framework to decide on such matters,
and having high confidence in the choice of attackers is the more apt choice.

1 2 3 4
Evaluation

0

20

40

60

80

100

Pe
rc

en
tag

e

True Positive
False Positive
False Negative
True Negative

Figure 6.9: The effect of scaling the policies’ thresholds, ceteris paribus, over four
experiments, with each n = 100 requests and responses. I.e., experiment 1 had the

lowest settings, while experiment 4 used the most stringent thresholds.

Additionally, to highlight the inherent challenge of setting appropriate policies’ thresholds,
Figure 6.9 depicts the effect of using different thresholds (shared by all ASes) over four
different experiments. The thresholds have been scaled, while all other experiment settings
have been kept constant over experiments. This figure shows that a range of effective
thresholds and a range of ineffective threshold settings exists. It can be observed, that
when FN rises, inversely TP drops. This is clear, since both are related to each other
by the threshold baseline that acts as the binary classifier. Besides, though a bit more
subtle in difference, the same observation can be made about TN and FP. Therefore, if
the thresholds are too low, legitimate traffic is classified as illegitimate, and vice-versa, if
the thresholds are too high, illegitimate traffic is classified as legitimate.

72 CHAPTER 6. EVALUATION

1 2 3 4
Evaluation

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Accuracy
MCC

Figure 6.10: Accuracy and MCC comparison by varying the threshold levels over four
experiments (cf. Figure 6.9). I.e., experiment 1 had the lowest settings, while

experiment 4 used the most stringent thresholds.

Furthermore, in Figure 6.10, Accuracy and Matthews Correlation Coefficient (MCC) are
plotted for the very experiments shown in Figure 6.9. These were computed using the
Equations 6.1 and 6.2, [87]:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6.1)

Accuracy =
TP + TN

TP + TN + FP + FN
(6.2)

While the accuracy is the highest for the lowest threshold settings, it results in 0.0 for
the MCC, implying that it is no better than a random prediction (cf. [87]). This can be
explained by the fact that in this experiment, no True Negatives (TN) were obtained (cf.
Figure 6.9) since every legitimate traffic was (incorrectly) predicted as illegitimate traffic,
i.e., a FP.

6.3. DISCUSSION 73

Also, a class imbalance is obtained due to the much larger number of attack traffic vs.
normal traffic in the experiments, making the high accuracy result misleading [87]. Thus,
in this case MCC is more informative since it considers both the positive and negative
cases [87], explicitly showing that having the lowest possible threshold settings is not a
good solution for the system and leads to a negative impact. Unsurprisingly, the highest
threshold values also do not lead to good results due to the high number of FN that impact
the scores negatively (cf. Equations 6.1 and 6.2). Nonetheless, the scores displayed
in Figures 6.9 and 6.10 are not to be seen as the CH2TF’s maximum capability, but
rather serve as display purposes for the underlying challenges at hand of choosing the
right thresholds. Thus, the baseline of the thresholds that were then scaled between the
experiments was arbitrarily chosen and not fine-tuned to their potential.

The Burst attack scenario’s result lies between the other cases (cf. Table 6.2). Nonethe-
less, this result must be considered carefully. Since CH2TF allows each AS to control the
analysis period, cases could artificially be constructed where attacks would go unnoticed.
This implies that if attackers knew which analysis periods the individual ASes use, attacks
could be formulated and designed to avoid detection if a priori knowledge that CH2TF
is in use is present. Taking this argument further, the same point could be made for the
policies’ thresholds.

Consequently, the evaluation has shown that for an effective system, the thresholds must
be set appropriately and consider the rates each individual AS can handle. Thus, collab-
orating parties must agree on the definitions of the thresholds. Unsurprisingly, this can
be seen as a detrimental shortcoming since deploying such a collaborative system would
require meticulous fine-tuning of the parameters and various evaluation rounds to ensure
it reaches its highest potential.

In summary, the evaluation showed that the requirements outlined in Section 4.1 were
fulfilled. I.e., R1 required a time-efficient and data-oriented algorithm to find the HH,
which was fulfilled by the results from experiment 1 (cf. Section 6.2). Further, R2, which
required the HH to be shared with the other collaborating instances, is implicitly fulfilled
by the evaluation experiment setup used for the experiments in Section 6.1, where the HH
were shared. R3 requires support for multiple Pub/Sub topics. This has not explicitly
been evaluated, but is also supported by CH2TF (cf. Section 5.5).

74 CHAPTER 6. EVALUATION

Chapter 7

Final Considerations

In this final chapter, the thesis is drawn to a close by introspecting the objectives, contri-
butions, and considerations that have been regarded. As such, a summary of the thesis
and its contributions are presented in Section 7.1. Further, the considerations are dis-
cussed in Section 7.2. Finally, possible future work and extensions of the proposed work
are described in Section 7.3.

7.1 Summary

In summary, CH2TF explores the topic of collaboration between parties in the realm of
DDoS defenses in multiple dimensions to enable the filtering of traffic. Thus, in this
thesis a collaborative HH detection protocol has been proposed, implemented, and finally,
evaluated. To achieve this goal, a related work review has been conducted in the scope of
DDoS detections, collaboration, and cooperation schemes in the realm of DDoS defenses
and signaling of DDoS information to understand and build upon the state of the art of
these topics.

Thus, the major contributions of CH2TF are threefold:

(i) Collaboration Protocol to facilitate DDoS defense

(ii) Detection of attacks and heavy hitters

(iii) Open Source prototype

Contribution (i) includes the Collaboration Protocol that employs Pub/Sub to enable
and facilitate the collaboration between the participating parties (cf. Section 4.4), (ii)
proposes analysis policies for the Detection of attacks and HH that are based on threshold
values (cf. Sections 4.6 and 4.7), and (iii) is the Open Source publication of the prototype.
Additionally, the design and prototype implementation took privacy aspects in mind and
also allows the collaborating parties to form collaborating sub-communities.

75

76 CHAPTER 7. FINAL CONSIDERATIONS

Furthermore, the evaluation experiments included three parties that shared attack infor-
mation collaboratively, and the results of the prototype have shown that the HH of specific
attack cases (i.e., volumetric attacks) can successfully be detected with sufficiently high
accuracy (0.85), though the prototype does not fare that well in other specific attack
detection scenarios (i.e., botnets, 0.42). Moreover, the evaluation results showed that the
analyses are performant and expected to scale well.

7.2 Considerations

It is to be considered, that in CH2TF ASes have been selected as collaborating parties,
similarly to related work. By taking the source perspective of the traffic flow in the
network, it facilitates the detection of HH of an attack that are managed by each AS.
However, it is to be expected that if a system such as CH2TF is not deployed at the edge
of a network and multiple traffic paths exist, the detection of HH is more complex and not
as straightforward. In this case, aggregation would be required and the communication
protocol would need to be extended to handle such cases.

Furthermore, the evaluation showed that the analysis policies based on thresholds are not
without issues. In fact, it is not trivial to come up with threshold values that (a) capture
all kinds of attack scenarios, and (b) are shareable between the collaborating parties.
Thus, global threshold values are not to be expected to produce satisfactory results if
the parties themselves are not homogeneous and are able to handle various amounts of
traffic. As such, these policies are up to discussion to the parties, and an agreement needs
to be reached on their definitions. Nota bene, CH2TF lets every party define their own
threshold values, as such global thresholds are not in use. Nevertheless, each collaborating
party that would want to join would need to know or find out which values are optimal
for its own capabilities. This would require discussion with the other parties or a global
body that is responsible for this task and manages such discussions. Nevertheless, these
problems related to thresholds are not a problem of the prototype and CH2TF per se,
but an inherent problem of using threshold values. However, it was also noticeable that
threshold-based analyses are performant and thus expected to scale well.

Additionally, privacy, trust, and regulations play a role in collaborating environments.
While CH2TF and (some) related work have a solution for these issues, they can not be
perfectly solved per se. For instance, it is fathomable that new regulation changes (e.g.,
politically motivated) would be able to restrict information sharing between collaborating
parties, leading to a weakening of the effectiveness of systems such as CH2TF. Also,
the trust factor between the collaborating parties must be considered. CH2TF assumes a
certain level of trust between the ASes, and includes a reputation-based scheme to prevent
the “Free-riding Problem” in certain dimensions, but is unfortunately not unexploitable
against the sharing of false information and malicious behavior.

Moreover, while this work supports the flexibility of additional, non CH2TF-standard
Pub/Sub topics that would lead to the forming of sub-communities, it is not immediately
clear whether this feature is detrimental to the system. Due to CH2TF proposed heavy
hitter detection scheme, a large body of collaborating parties would be more effective

7.3. FUTURE WORK 77

than various disjoint sub-groups that do not communicate and collaborate with the other
groups. Indeed, without communication efforts, they would not be aware of the global view
of the network but only see part of it. Nevertheless, this feature implies that if parties
trust each other, but do not want to partake in the (standard) collaborating network,
they would still be able to benefit from CH2TF’s DDoS defense.

7.3 Future Work

Regarding future work, a few selected points are to be considered, which are discussed
below:

(i) Real-world deployment

(ii) ML-based detections and alternative analyses

(iii) Dynamic threshold values

(iv) Mitigation extension

CH2TF has been evaluated using simulated DDoS attacks and has been deployed in Docker
containers. Future work could look into the deployment in a real-world system. Also, the
prototype has been implemented in a high-level programming language, it is fathomable
that for a real-world deployment it would need to be highly optimized.

Furthermore, the analysis for the attack and attackers is based on thresholds. Related
work has shown that for instance for IoT -based botnet attacks the detection of attackers
can be performed accurately via ML. However, it is not clear whether ML-based solutions
are able to perform the analyses in real-time which would be required for an effective mit-
igation. Nevertheless, future work could investigate on additional policies or approaches
for attack or attacker analyses that conform with CH2TF.

Besides, since thresholds mismatches are possible and detrimental to the system, future
work could extend CH2TF’s proposed protocol to keep track of individual ASes thresholds
and essentially introduce dynamic thresholds that are adjusted based on the responses of
each individual collaborating party.

As has been hinted in CH2TF, the mitigation aspect of DDoS attacks has been directed to
future work. The collaboration protocol proposed in CH2TF could be extended to perform
and start such a scheme once the HH are known (or acknowledged) by the collaborating
parties.

78 CHAPTER 7. FINAL CONSIDERATIONS

Bibliography

[1] Albert Gran Alcoz, Martin Strohmeier, Vincent Lenders, and Laurent Vanbever.
Aggregate-based congestion control for pulse-wave DDoS defense. In Proceedings of
the ACM SIGCOMM 2022 Conference, pages 693–706, 2022.

[2] ANS Internet Storm Center. DShield, 2022. https://www.dshield.org, Last visit
July 12, 2022.

[3] Apache Kafka Github Contributors. Apache Kafka Github, 2022. https://github.
com/apache/kafka, Last visit July 31, 2022.

[4] Apache Software Foundation. Apache Kafka, 2022. https://kafka.apache.org/,
Last visit July 31, 2022.

[5] Apache Software Foundation. Apache ZooKeeper, 2022. https://zookeeper.

apache.org/, Last visit July 31, 2022.

[6] Katerina J. Argyraki and David R. Cheriton. Active internet traffic filtering: Real-
time response to denial-of-service attacks. In USENIX annual technical conference,
general track, volume 38, 2005.

[7] Tapan Avasthi. Guide to Setting Up Apache Kafka Using Docker, 2021. https:

//www.baeldung.com/ops/kafka-docker-setup, Last visit July 31, 2022.

[8] Narmeen Zakaria Bawany, Jawwad A. Shamsi, and Khaled Salah. DDoS attack
detection and mitigation using SDN: methods, practices, and solutions. Arabian
Journal for Science and Engineering, 42(2):425–441, 2017.

[9] João Ceron, Pim van Stam, Gerald Schaapman, and Cristian Hesselman. New DDoS
classifiers for the DDoS Clearing House, 2022. https://www.concordia-h2020.eu/
blog-post/new-ddos-classifiers-for-the-ddos-clearing-house/, Last visit
July 2, 2022.

[10] Niklas Christensen. MISP Engine to Assess and Evaluate Threat Events Based on
Data Quality. Master’s thesis, Aalborg University Copenhagen, Copenhagen, June
2021.

[11] Molly Clancy. What’s the Diff: Programs, Processes,
and Threads, 2022. https://www.backblaze.com/blog/

whats-the-diff-programs-processes-and-threads/, Last visit November
26, 2022.

79

https://www.dshield.org
https://github.com/apache/kafka
https://github.com/apache/kafka
https://kafka.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://www.baeldung.com/ops/kafka-docker-setup
https://www.baeldung.com/ops/kafka-docker-setup
https://www.concordia-h2020.eu/blog-post/new-ddos-classifiers-for-the-ddos-clearing-house/
https://www.concordia-h2020.eu/blog-post/new-ddos-classifiers-for-the-ddos-clearing-house/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/

80 BIBLIOGRAPHY

[12] Cloudflare. DDoS attack trends for 2022 Q1, 2022. https://blog.cloudflare.

com/ddos-attack-trends-for-2022-q1/, Last visit November 1, 2022.

[13] Cloudflare. DDoS attack trends for 2022 Q2, 2022. https://blog.cloudflare.

com/ddos-attack-trends-for-2022-q2/, Last visit November 1, 2022.

[14] Cloudflare. Smurf DDoS attack, 2022. https://www.cloudflare.com/learning/

ddos/smurf-ddos-attack/, Last visit July 22, 2022.

[15] Cloudflare. What is a DDoS botnet?, 2022. https://www.cloudflare.com/

learning/ddos/what-is-a-ddos-botnet/, Last visit November 16, 2022.

[16] Concordia Consortium. Concordia, 2022. https://www.concordia-h2020.eu/, Last
visit July 2, 2022.

[17] DDoS Clearing House Github Contributors. DDoS Clearing House, 2022. https:

//github.com/ddos-clearing-house, Last visit July 2, 2022.

[18] Docker Inc. Docker, 2022. https://www.docker.com/, Last visit July 25, 2022.

[19] Docker Inc. Networking in Compose, 2022. https://docs.docker.com/compose/

networking/, Last visit November 21, 2022.

[20] Rohan Doshi, Noah Apthorpe, and Nick Feamster. Machine Learning DDoS Detec-
tion for Consumer Internet of Things Devices. In 2018 IEEE Security and Privacy
Workshops (SPW), pages 29–35. IEEE, 2018.

[21] Emitter Github Contributors. Emitter Github, 2021. https://github.com/

emitter-io/emitter, Last visit July 25, 2022.

[22] Emitter Studios B.V. Emitter, 2018. https://emitter.io, Last visit July 25, 2022.

[23] Laura Feinstein, Dan Schnackenberg, Ravindra Balupari, and Darrell Kindred. Sta-
tistical approaches to DDoS attack detection and response. In Proceedings DARPA
information survivability conference and exposition, volume 1, pages 303–314. IEEE,
2003.

[24] Shahabeddin Geravand and Mahmood Ahmadi. Bloom filter applications in network
security: A state-of-the-art survey. Computer Networks, 57(18):4047–4064, 2013.

[25] Thomer M. Gil and Massimiliano Poletto. MULTOPS: A Data-Structure for band-
width attack detection. In 10th USENIX Security Symposium (USENIX Security
01), Washington, D.C., August 2001. USENIX Association.

[26] John Hawkinson and Tony Bates. Guidelines for creation, selection, and registration
of an Autonomous System (AS). RFC 1930, 1996.

[27] IBM Cloud Education. Message Brokers, 2020. https://www.ibm.com/cloud/

learn/message-brokers, Last visit July 24, 2022.

[28] IETF. DDoS Open Threat Signaling (dots), 2022. https://datatracker.ietf.

org/wg/dots/about/, Last visit August 8, 2022.

https://blog.cloudflare.com/ddos-attack-trends-for-2022-q1/
https://blog.cloudflare.com/ddos-attack-trends-for-2022-q1/
https://blog.cloudflare.com/ddos-attack-trends-for-2022-q2/
https://blog.cloudflare.com/ddos-attack-trends-for-2022-q2/
https://www.cloudflare.com/learning/ddos/smurf-ddos-attack/
https://www.cloudflare.com/learning/ddos/smurf-ddos-attack/
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-botnet/
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-botnet/
https://www.concordia-h2020.eu/
https://github.com/ddos-clearing-house
https://github.com/ddos-clearing-house
https://www.docker.com/
https://docs.docker.com/compose/networking/
https://docs.docker.com/compose/networking/
https://github.com/emitter-io/emitter
https://github.com/emitter-io/emitter
https://emitter.io
https://www.ibm.com/cloud/learn/message-brokers
https://www.ibm.com/cloud/learn/message-brokers
https://datatracker.ietf.org/wg/dots/about/
https://datatracker.ietf.org/wg/dots/about/

BIBLIOGRAPHY 81

[29] Kafka-Python Github Contributors. Kafka-Python, 2022. https://github.com/

dpkp/kafka-python, Last visit November 26, 2022.

[30] Vladimir Kaplarevic. How to Set Up and Run Kafka on Kubernetes, 2020. https:

//phoenixnap.com/kb/kafka-on-kubernetes, Last visit July 31, 2022.

[31] Xin Zhe Khooi, Levente Csikor, Jialin Li, Min Suk Kang, and Dinil Mon Divakara.
Revisiting Heavy-Hitter Detection on Commodity Programmable Switches. In 2021
IEEE 7th International Conference on Network Softwarization (NetSoft), pages 79–
87. IEEE, 2021.

[32] Oliver Kim and Mark Walker. The free rider problem: Experimental evidence. Public
choice, 43(1):3–24, 1984.

[33] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: A Distributed Messaging System
for Log Processing. In Proceedings of the NetDB, volume 11, pages 1–7, 2011.

[34] Kubernetes Authors. Kubernetes, 2022. https://kubernetes.io/, Last visit July
25, 2022.

[35] Paul Le Noac’H, Alexandru Costan, and Luc Bougé. A performance evaluation of
Apache Kafka in support of big data streaming applications. In 2017 IEEE Interna-
tional Conference on Big Data (Big Data), pages 4803–4806. IEEE, 2017.

[36] Colin McCabe. Apache Kafka Needs No Keeper: Removing the
Apache ZooKeeper Dependency, 2020. https://www.confluent.io/blog/

removing-zookeeper-dependency-in-kafka/, Last visit July 31, 2022.

[37] Damian Menscher. Exponential growth in DDoS attack volumes,
2020. https://cloud.google.com/blog/products/identity-security/

identifying-and-protecting-against-the-largest-ddos-attacks, Last
visit July 18, 2022.

[38] Microsoft. Publisher-Subscriber pattern, 2022. https://docs.microsoft.com/

en-us/azure/architecture/patterns/publisher-subscriber, Last visit July 24,
2022.

[39] Jelena Mirkovic, Gregory Prier, and Peter Reiher. Attacking DDoS at the Source. In
10th IEEE International Conference on Network Protocols, 2002. Proceedings., pages
312–321. IEEE, 2002.

[40] Jelena Mirkovic and Peter Reiher. A Taxonomy of DDoS Attack and DDoS De-
fense Mechanisms. ACM SIGCOMM Computer Communication Review, 34(2):39–53,
2004.

[41] MISP Contributors. MISP - User Guide, 2022. https://www.circl.lu/doc/misp/
book.pdf, Last visit August 4, 2022.

[42] MISP project. MISP Threat Sharing project, 2022. https://www.misp-project.

org/datamodels/, Last visit August 4, 2022.

https://github.com/dpkp/kafka-python
https://github.com/dpkp/kafka-python
https://phoenixnap.com/kb/kafka-on-kubernetes
https://phoenixnap.com/kb/kafka-on-kubernetes
https://kubernetes.io/
https://www.confluent.io/blog/removing-zookeeper-dependency-in-kafka/
https://www.confluent.io/blog/removing-zookeeper-dependency-in-kafka/
https://cloud.google.com/blog/products/identity-security/identifying-and-protecting-against-the-largest-ddos-attacks
https://cloud.google.com/blog/products/identity-security/identifying-and-protecting-against-the-largest-ddos-attacks
https://docs.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber
https://docs.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber
https://www.circl.lu/doc/misp/book.pdf
https://www.circl.lu/doc/misp/book.pdf
https://www.misp-project.org/datamodels/
https://www.misp-project.org/datamodels/

82 BIBLIOGRAPHY

[43] Robin Moffatt. Kafka Listeners - Explained, 2018. https://rmoff.net/2018/08/

02/kafka-listeners-explained/, Last visit November 21, 2022.

[44] MongoDB Inc. MongoDB, 2022. https://www.mongodb.com/languages/python,
Last visit November 25, 2022.

[45] Andrew Mortensen, Tirumaleswar Reddy.K, Flemming Andreasen, Nik Teague, and
Rich Compton. DDoS Open Threat Signaling (DOTS) Architecture. RFC 8811,
August 2020.

[46] Andrew Mortensen, Tirumaleswar Reddy.K, and Robert Moskowitz. DDoS Open
Threat Signaling (DOTS) Requirements. RFC 8612, May 2019.

[47] Giorgos Myrianthous. Multi-threading and Multi-processing
in Python, 2022. https://towardsdatascience.com/

multithreading-multiprocessing-python-180d0975ab29, Last visit Novem-
ber 26, 2022.

[48] Netscout. Volumetric DDoS Attacks, 2022. https://www.netscout.com/

what-is-ddos/volumetric-attacks, Last visit November 16, 2022.

[49] Netscout. What is a Reflection Amplification DDoS Attack?, 2022. https://www.

netscout.com/what-is-ddos/what-is-reflection-amplification-attack,
Last visit July 22, 2022.

[50] Sean Newman. Bursts, Waves and DDoS: What You Need to Know, 2018. https://
www.corero.com/blog/bursts-waves-and-ddos-what-you-need-to-know/, Last
visit November 1, 2022.

[51] Georgios Nikolaidis, Jeongkeun Lee, and Changhoon Kim. Data plane with heavy
hitter detector, February 23 2021. U.S. Patent 10,931,547.

[52] George Oikonomou, Jelena Mirkovic, Peter Reiher, and Max Robinson. A Frame-
work for A Collaborative DDoS Defense. In 2006 22nd Annual Computer Security
Applications Conference (ACSAC’06), pages 33–42. IEEE, 2006.

[53] Opeyemi Osanaiye, Kim-Kwang Raymond Choo, and Mqhele Dlodlo. Distributed
denial of service (DDoS) resilience in cloud: Review and conceptual cloud DDoS
mitigation framework. Journal of Network and Computer Applications, 67:147–165,
2016.

[54] Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. Survey of Network-
Based Defense Mechanisms Countering the DoS and DDoS Problems. ACM Com-
puting Surveys (CSUR), 39(1):3–es, 2007.

[55] Pyshark Github Contributors. pyshark, 2022. https://github.com/KimiNewt/

pyshark, Last visit November 28, 2022.

[56] Pyshark Github Contributors. PyShark Documentation, 2022. http://kiminewt.

github.io/pyshark/, Last visit December 09, 2022.

https://rmoff.net/2018/08/02/kafka-listeners-explained/
https://rmoff.net/2018/08/02/kafka-listeners-explained/
https://www.mongodb.com/languages/python
https://towardsdatascience.com/multithreading-multiprocessing-python-180d0975ab29
https://towardsdatascience.com/multithreading-multiprocessing-python-180d0975ab29
https://www.netscout.com/what-is-ddos/volumetric-attacks
https://www.netscout.com/what-is-ddos/volumetric-attacks
https://www.netscout.com/what-is-ddos/what-is-reflection-amplification-attack
https://www.netscout.com/what-is-ddos/what-is-reflection-amplification-attack
https://www.corero.com/blog/bursts-waves-and-ddos-what-you-need-to-know/
https://www.corero.com/blog/bursts-waves-and-ddos-what-you-need-to-know/
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
http://kiminewt.github.io/pyshark/
http://kiminewt.github.io/pyshark/

BIBLIOGRAPHY 83

[57] Python Bloom Filter Github Contributors. Python Bloom Filter, 2022. https:

//github.com/joseph-fox/python-bloomfilter, Last visit November 26, 2022.

[58] Python Software Foundation. Python, 2022. https://www.python.org/, Last visit
November 25, 2022.

[59] Python Software Foundation. Python Dictionaries, 2022. https://docs.python.

org/3/tutorial/datastructures.html#dictionaries, Last visit November 25,
2022.

[60] Python Software Foundation. Python Multiprocessing, 2022. https://docs.

python.org/3/library/multiprocessing.html, Last visit November 26, 2022.

[61] Python Software Foundation. Python Queue, 2022. https://docs.python.org/3/
library/queue.html, Last visit November 26, 2022.

[62] Python Software Foundation. Python Random, 2022. https://docs.python.org/

3/library/random.html, Last visit November 26, 2022.

[63] Python Software Foundation. Python sqlite3, 2022. https://docs.python.org/3/
library/sqlite3.html, Last visit November 25, 2022.

[64] Python Software Foundation. Python Threading, 2022. https://docs.python.org/
3/library/threading.html, Last visit November 26, 2022.

[65] Python Software Foundation. What’s New In Python 3.10, 2022. https://docs.

python.org/3/whatsnew/3.10.html, Last visit December 09, 2022.

[66] Redis-py Github Contributors. Redis-py, 2022. https://github.com/redis/

redis-py, Last visit November 25, 2022.

[67] Michael Robinson, Kevin Jones, and Helge Janicke. Cyber warfare: Issues and chal-
lenges. Computers & security, 49:70–94, 2015.

[68] Bruno Rodrigues, Thomas Bocek, and Burkhard Stiller. Enabling a Cooperative,
Multi-Domain DDoS Defense by a Blockchain Signaling System (BloSS). Semantic
Scholar, 2017.

[69] Bruno Bastos Rodrigues. Blockchain signaling system (BloSS). PhD thesis, Univer-
sity of Zurich, 2021.

[70] Ori Rottenstreich and Isaac Keslassy. The Bloom Paradox: When not to Use a Bloom
Filter. IEEE/ACM Transactions on Networking, 23(3):703–716, 2014.

[71] Scapy Github Contributors. Scapy, 2022. https://github.com/secdev/scapy, Last
visit November 12, 2022.

[72] Gwen Shapira, Todd Palino, Rajini Sivaram, and Krit Petty. Kafka: The Definitive
Guide. O’Reilly Media, Inc., Sebastopol, CA, USA, 2021.

[73] Lumin Shi. PathFinder: Collecting Traffic Footprint at Autonomous System Level.
Directed research project, College of Arts and Sciences, University of Oregon, 5 2017.
Available at https://www.cs.uoregon.edu/Reports/DRP-201705-Shi.pdf.

https://github.com/joseph-fox/python-bloomfilter
https://github.com/joseph-fox/python-bloomfilter
https://www.python.org/
https://docs.python.org/3/tutorial/datastructures.html#dictionaries
https://docs.python.org/3/tutorial/datastructures.html#dictionaries
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/queue.html
https://docs.python.org/3/library/queue.html
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/sqlite3.html
https://docs.python.org/3/library/sqlite3.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/whatsnew/3.10.html
https://docs.python.org/3/whatsnew/3.10.html
https://github.com/redis/redis-py
https://github.com/redis/redis-py
https://github.com/secdev/scapy
https://www.cs.uoregon.edu/Reports/DRP-201705-Shi.pdf

84 BIBLIOGRAPHY

[74] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, Shan Muthukrish-
nan, and Jennifer Rexford. Heavy-Hitter Detection Entirely in the Data Plane. In
Proceedings of the Symposium on SDN Research, pages 164–176, 2017.

[75] Stephen Specht and Ruby Lee. Taxonomies of Distributed Denial of Service Networks,
Attacks, Tools and Countermeasures. CEL2003-03, Princeton University, Princeton,
NJ, USA, 2003.

[76] The ZeroMQ authors. ZeroMQ, 2022. https://zeromq.org/, Last visit August 4,
2022.

[77] Peter Triantafillou and Andreas Economides. Subscription Summarization: A New
Paradigm for Efficient Publish/Subscribe Systems. In 24th International Conference
on Distributed Computing Systems, 2004. Proceedings., pages 562–571. IEEE, 2004.

[78] Liam Tung. A tiny botnet launched the largest DDoS at-
tack on record, 2022. https://www.zdnet.com/article/

a-tiny-botnet-launched-the-largest-ddos-attack-on-record/, Last visit
November 16, 2022.

[79] UltraDict Github Contributors. UltraDict, 2022. https://github.com/

ronny-rentner/UltraDict, Last visit November 25, 2022.

[80] Thijs van den Hout, Remco Poortinga-van Wijnen, Cristian Hesselman, Chris-
tos Papachristos, and Karin Vink. Developing and running a testbed for the
DDoS Clearing House, 2021. https://www.sidnlabs.nl/en/news-and-blogs/

developing-and-running-a-testbed-for-the-ddos-clearing-house, Last visit
July 2, 2022.

[81] Thaneswaran Velauthapillai, Aaron Harwood, and Shanika Karunasekera. Global
Detection of Flooding-Based DDoS Attacks Using a Cooperative Overlay Network.
In 2010 Fourth International Conference on Network and System Security, pages
357–364, 2010.

[82] Cynthia Wagner, Alexandre Dulaunoy, Gérard Wagener, and Andras Iklody. MISP:
The Design and Implementation of a Collaborative Threat Intelligence Sharing Plat-
form. In Proceedings of the 2016 ACM on Workshop on Information Sharing and
Collaborative Security, pages 49–56, 2016.

[83] Daniel Wagner, Daniel Kopp, Matthias Wichtlhuber, Christoph Dietzel, Oliver
Hohlfeld, Georgios Smaragdakis, and Anja Feldmann. United We Stand: Collabora-
tive Detection and Mitigation of Amplification DDoS Attacks at Scale. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security,
pages 970–987, 2021.

[84] Wikipedia Contributors. Covariant Return Type, 2022. https://en.wikipedia.

org/wiki/Covariant_return_type, Last visit November 30, 2022.

[85] Wikipedia Contributors. Observer pattern, 2022. https://en.wikipedia.org/

wiki/Observer_pattern, Last visit July 24, 2022.

https://zeromq.org/
https://www.zdnet.com/article/a-tiny-botnet-launched-the-largest-ddos-attack-on-record/
https://www.zdnet.com/article/a-tiny-botnet-launched-the-largest-ddos-attack-on-record/
https://github.com/ronny-rentner/UltraDict
https://github.com/ronny-rentner/UltraDict
https://www.sidnlabs.nl/en/news-and-blogs/developing-and-running-a-testbed-for-the-ddos-clearing-house
https://www.sidnlabs.nl/en/news-and-blogs/developing-and-running-a-testbed-for-the-ddos-clearing-house
https://en.wikipedia.org/wiki/Covariant_return_type
https://en.wikipedia.org/wiki/Covariant_return_type
https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Observer_pattern

BIBLIOGRAPHY 85

[86] Wikipedia Contributors. pcap, 2022. https://en.wikipedia.org/wiki/Pcap, Last
visit November 12, 2022.

[87] Wikipedia Contributors. Phi Coefficient, 2022. https://en.wikipedia.org/wiki/
Phi_coefficient, Last visit November 06, 2022.

[88] Wikipedia Contributors. Publish-subscribe pattern, 2022. https://en.wikipedia.
org/wiki/Publish-subscribe_pattern, Last visit July 24, 2022.

[89] Wikipedia Contributors. Python, 2022. https://en.wikipedia.org/wiki/Python_
(programming_language), Last visit November 16, 2022.

[90] Wikipedia Contributors. Strategy Pattern, 2022. https://en.wikipedia.org/

wiki/Strategy_pattern, Last visit November 30, 2022.

[91] Wikipedia Contributors. Wikipedia: Bloom Filter, 2022. https://en.wikipedia.

org/wiki/Bloom_filter, Last visit August 17, 2022.

[92] Wikipedia Contributors. Wikipedia: PageRank, 2022. https://en.wikipedia.org/
wiki/PageRank, Last visit July 12, 2022.

[93] Wireshark. tshark Manual Page, 2022. https://www.wireshark.org/docs/

man-pages/tshark.html, Last visit November 28, 2022.

[94] Wireshark. Wireshark, 2022. https://www.wireshark.org/, Last visit November
12, 2022.

[95] Jie Yu, Zhoujun Li, Huowang Chen, and Xiaoming Chen. A Detection and Offense
Mechanism to Defend Against Application Layer DDoS Attacks. In International
Conference on Networking and Services (ICNS ’07), pages 54–54, 2007.

[96] Saman Taghavi Zargar, James Joshi, and David Tipper. A survey of defense mech-
anisms against distributed denial of service (DDoS) flooding attacks. IEEE commu-
nications surveys & tutorials, 15(4):2046–2069, 2013.

[97] Jian Zhang, Phillip A Porras, and Johannes Ullrich. Highly predictive blacklisting.
In USENIX security symposium, pages 107–122, 2008.

https://en.wikipedia.org/wiki/Pcap
https://en.wikipedia.org/wiki/Phi_coefficient
https://en.wikipedia.org/wiki/Phi_coefficient
https://en.wikipedia.org/wiki/Publish-subscribe_pattern
https://en.wikipedia.org/wiki/Publish-subscribe_pattern
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/PageRank
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/

86 BIBLIOGRAPHY

Abbreviations

ACC Accuracy
AS Autonomous System
BC Blockchain
CPU Central Processing Unit
dAPP Decentralized Application
DDoS Distributed Denial of Service
DoS Denial of Service
DNS Domain Name System
DXP DDoS Information Exchange Point
FN False Negative
FP False Positive
HH Heavy Hitters
IoT Internet of Things
IXP Internet Exchange Point
MCC Matthews Correlation Coefficient
ML Machine Learning
NTP Network Time Protocol
P2P Peer-to-Peer
QoS Quality-of-Service
SC Smart Contract
SDN Software Defined Networking
SIP Session Initiation Protocol
SOM Self-organizing Maps
TN True Negative
TP True Positive

87

88 ABBREVIATONS

List of Figures

2.1 Largest known DDoS attacks and trends in attack volumes [37] 6

2.2 Botnet-Based DDoS Attack [96] . 8

2.3 Components of the Pub/Sub Pattern [38] 12

2.4 Distributed Pub/Sub Architecture [77] . 12

2.5 Apache Kafka using a Kubernetes Cluster [30] 13

2.6 Possible Emitter Communication Configurations [22] 14

2.7 Example of a bloom filter and its operations. Source: The Author, based
on an example by [24]. 15

3.1 MULTOPS [25] . 18

3.2 D-WARD [39] . 18

3.3 Recorded route {Agw X Y Vgw} between the hosts A and V . In this example
Agw is the attacker’s gateway, i.e., it is the router closest to the attacker
A, and V is the victim [6] . 19

3.4 Architecture of the blocklisting system [97] 21

3.5 Example of event distribution levels and various community configura-
tions [41] . 23

3.6 Architecture of BloSS [68] . 24

3.7 DDoS Classification Pipeline [20] . 25

3.8 Concept of the DDoS Information Exchange Point [83] 26

3.9 Architecture of the DDoS Clearing House [17] 27

3.10 DOTS Architecture, based on [45] . 28

4.1 Architecture of CH2TF. While the Traffic Module and Mitigation Module
are displayed here, they are not part of the project’s scope. 35

89

90 LIST OF FIGURES

4.2 Activity diagram: Request Sender perspective. 37

4.3 Activity diagram: Request Receiver perspective. 38

4.4 Sequence Diagram of CH2TF’s communication protocol. In this example,
two ASes are used. No HH were found in the alternative path, and AS200
responds accordingly. 39

5.1 The component diagram of CH2TF . 46

6.1 Excerpt from the evaluation attack PCAP file inside Wireshark (cf. [94])
that was used for the attack case in Section 6.1.2. 64

6.2 Schema of the evaluation architecture used for the attack scenarios. The
evaluation module has been added here as an additional Kafka consumer.
Also, every AS includes a Traffic Generator that reads the prepared PCAP
files to simulate traffic. 65

6.3 Confusion matrix for the volumetric attack case. 65

6.4 Confusion matrix for the burst attack case. 66

6.5 Confusion matrix for the botnet attack case. 67

6.6 Boxplot for the Attack Detection analysis. Time in µs. 68

6.7 Boxplot for the Heavy Hitter Detection analysis. Time in µs. 69

6.8 Effect of increasing the number of attackers while keeping the overall attack
rate constant in the system. Further, policies’ thresholds were kept constant
between the experiments. For each number of attackers, n = 100 different
requests and their responses were listened to for the evaluation. 70

6.9 The effect of scaling the policies’ thresholds, ceteris paribus, over four ex-
periments, with each n = 100 requests and responses. I.e., experiment 1
had the lowest settings, while experiment 4 used the most stringent thresh-
olds. 71

6.10 Accuracy and MCC comparison by varying the threshold levels over four
experiments (cf. Figure 6.9). I.e., experiment 1 had the lowest settings,
while experiment 4 used the most stringent thresholds. 72

A.1 Boxplot for the Traffic Generation simulation. Time in µs, and n = 2305
data points were collected. The indicated time is the result of reading a
PCAP traffic file and sending it to CH2TF for analysis (cf. Section 6.1),
without considering any target attack rate. µ = 15.11, σ = 12.92. 97

LIST OF FIGURES 91

A.2 Screenshot of macOS’s ‘Activity Monitor’ displaying the CPU usage history
using three ASes in Docker Containers, with analyses turned off. I.e., only
traffic generation is active. The peak in the middle indicates when the
Docker Containers started (cf. cores 3-10), and the load at the right side
of each core indicates when the traffic generation started. Timeline 1 min.
This figure also displays that the first two (efficiency) cores were not used
by the Docker Containers. 98

92 LIST OF FIGURES

List of Tables

3.1 Comparison of Related Work in the realm of DDoS defense 30

6.1 Mean (µ) and standard deviation (σ) of the analysis measurement times.
Units in µs. 67

6.2 MCC and Accuracy (ACC) comparison for the attack cases. Computed
using Equations 6.1 and 6.2. For each attack case 30 requests and responses
were listened to, and averaged over 5 different experiment runs. MCC uses
the range [−1, 1] (cf. [87]), and ACC uses the range [0, 1] (cf. Equation 6.2). 70

93

94 LIST OF TABLES

Code Listings

5.1 Kafka Consumer . 47
5.2 Kafka Producer . 47
5.3 The PacketData class . 48
5.4 The collect_packages method . 48
5.5 The is_sampling_skip method . 48
5.6 The _store_data method . 49
5.7 The listener method . 50
5.8 Part of the run_analysis method . 51
5.9 The handle_collab_req method (part i) 52
5.10 The handle_collab_req method (part ii) 53
5.11 The _is_larger_than_own_threshold method 54
5.12 The handle_collab_res method . 55
5.13 The abstract Analysis class . 56
5.14 The AttackAnalysis class . 56
5.15 The DDoSAttackAnalysis class . 57
5.16 The AttackerAnalysis class . 58
5.17 The HeavyHitterAnalysis class (part i) 58
5.18 The HeavyHitterAnalysis class (part ii) 59
5.19 The init_bloom_filter and methods . 60
5.20 The init_managed_ips method . 60
5.21 The _check_if_is_managed method . 61
A.1 Traffic Sniffer class. This is for reference purposes only, and is considered

outside of the scope of CH2TF. Inspired by [56]. 99
B.1 The DefenseCollaborationRequestData class. An instance of this class

is published via Kafka to the subscribers. 101
B.2 The DefenseCollaborationResponseData class. An instance of this class

is published via Kafka to the subscribers. 101
B.3 The DecisionEnum class. 102
C.1 Docker Compose File for the evaluation in Section 6.1.2. Inspired by [43, 7].

It includes Kafka, ZooKeeper and 3 ASes that use separate Docker containers.103

95

96 CODE LISTINGS

Appendix A

Traffic Generation and Sniffing

20

40

60

80

100

120

Ti
m

e [
µ
s]

Figure A.1: Boxplot for the Traffic Generation simulation. Time in µs, and n = 2305
data points were collected. The indicated time is the result of reading a PCAP traffic
file and sending it to CH2TF for analysis (cf. Section 6.1), without considering any

target attack rate. µ = 15.11, σ = 12.92.

97

98 APPENDIX A. TRAFFIC GENERATION AND SNIFFING

Figure A.2: Screenshot of macOS’s ‘Activity Monitor’ displaying the CPU usage history
using three ASes in Docker Containers, with analyses turned off. I.e., only traffic
generation is active. The peak in the middle indicates when the Docker Containers

started (cf. cores 3-10), and the load at the right side of each core indicates when the
traffic generation started. Timeline 1 min. This figure also displays that the first two

(efficiency) cores were not used by the Docker Containers.

99

1 class Sniffer:

2 """

3 Reference for a traffic sniffer class.

4 """

5
6 transport_layers = ["UDP", "TCP"]

7
8 def __init__(self , queue: Queue , iface_name: str = "en0"):

9 self.queue: Queue = queue

10 self.iface_name: str = iface_name

11
12 def get_packet_information(self , packet: Packet):

13 transport_layer = packet.transport_layer

14 if transport_layer not in self.transport_layers:

15 return

16 ip = packet.ipv6 if hasattr(packet , "ipv6") else packet.ip

17 timestamp = packet.sniff_time.isoformat ()

18
19 packet_data: PacketData = PacketData(

20 src=ip.src ,

21 dst=ip.dst ,

22 srcport=packet[transport_layer].srcport ,

23 dstport=packet[transport_layer].dstport ,

24 timestamp=timestamp ,

25 transport_layer=transport_layer ,

26)

27 self.queue.put(packet_data)

28
29 def start_sniffing(self):

30 capture = pyshark.LiveCapture(interface=self.iface_name)

31 print(capture.interfaces)

32 capture.apply_on_packets(self.get_packet_information)

Code Listing A.1: Traffic Sniffer class. This is for reference purposes only, and is
considered outside of the scope of CH2TF. Inspired by [56].

100 APPENDIX A. TRAFFIC GENERATION AND SNIFFING

Appendix B

Additional Implementation Classes

1 @dataclass_json

2 @dataclass

3 class DefenseCollaborationRequestData:

4 """

5 Request for a defense collaboration

6 """

7 potential_attacker_ips: List[

8 str

9] # the ips to be checked by the receivers

10 potential_victim: str

11 requests_relative_to_size: float

12 request_detection: DetectionEnum

13 request_id: str = field(default_factory=lambda: str(uuid.uuid4()))

14 request_originator: str = os.getenv("AS_NAME", default="")

Code Listing B.1: The DefenseCollaborationRequestData class. An instance of this
class is published via Kafka to the subscribers.

1 @dataclass_json

2 @dataclass

3 class DefenseCollaborationResponseData:

4 """

5 Response for a defense collaboration

6 """

7 # potential attackers that the AS acknowledges.

8 # subset of the potential attackers that is sent in the request

9 ack_potential_attacker_ips: List[str]

10 decision: DecisionEnum

11 as_name: str

12 request_id: str # use same id as original request

13 request_originator: str # from which AS the request came from

Code Listing B.2: The DefenseCollaborationResponseData class. An instance of this
class is published via Kafka to the subscribers.

101

102 APPENDIX B. ADDITIONAL IMPLEMENTATION CLASSES

1 class DecisionEnum(Enum):

2 NOT_MANAGED = "AS does not manage any of the ip"

3 NOT_ACK = "AS does not acknowledge this as an attack"

4 UNDER_THRS = "No potential attacker pass the thresholds"

5 FOUND = "Attacker(s) found"

Code Listing B.3: The DecisionEnum class.

Appendix C

Docker Compose YAML

1 version: ’3.5’

2 services:

3 zookeeper:

4 image: confluentinc/cp-zookeeper:latest

5 container_name: zookeeper

6 environment:

7 ZOOKEEPER_CLIENT_PORT: 2181

8 ZOOKEEPER_TICK_TIME: 2000

9 networks:

10 - kafka_network

11 volumes:

12 - ./zoo/data:/var/lib/zookeeper/data

13 - ./zoo/log:/var/lib/zookeeper/log

14
15 kafka:

16 image: confluentinc/cp-kafka:latest

17 container_name: kafka

18 depends_on:

19 - zookeeper

20 ports:

21 - 9092:9092

22 environment:

23 KAFKA_BROKER_ID: 1

24 KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181

25 KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://kafka:29092, PLAINTEXT_HOST

:// localhost:9092

26 KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: PLAINTEXT:PLAINTEXT ,

PLAINTEXT_HOST:PLAINTEXT

27 KAFKA_INTER_BROKER_LISTENER_NAME: PLAINTEXT

28 KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1

29 KAFKA_AUTO_CREATE_TOPICS_ENABLE: "true"

30 networks:

31 - kafka_network

32
33 as0:

34 build: .

35 depends_on:

36 - kafka

103

104 APPENDIX C. DOCKER COMPOSE YAML

37 networks:

38 - kafka_network

39 restart: on -failure

40 container_name: as0

41 environment:

42 AS_SIZE: 100

43 KAFKA_HOST: kafka

44 KAFKA_PORT: 29092

45 AS_NAME: as0

46 EVAL_SIMULATED_TRAFFIC_PATH: ./ eval_data/traffic_files/burst/

AS_0_traffic -5. pcap

47 EVAL_SIMULATED_ATK_TRAFFIC_PATH: ./ eval_data/traffic_files/burst/

AS_0_attack_traffic -5. pcap

48 MANAGED_IPS_PATH: ./ eval_data/managed_ips/AS_0_managed_ip_10000.

txt

49
50 as1:

51 build: .

52 depends_on:

53 - kafka

54 networks:

55 - kafka_network

56 restart: on -failure

57 container_name: as1

58 environment:

59 AS_SIZE: 100

60 AS_NAME: as1

61 KAFKA_HOST: kafka

62 KAFKA_PORT: 29092

63 EVAL_SIMULATED_TRAFFIC_PATH: ./ eval_data/traffic_files/burst/

AS_1_traffic -5. pcap

64 EVAL_SIMULATED_ATK_TRAFFIC_PATH: ./ eval_data/traffic_files/burst/

AS_1_attack_traffic -5. pcap

65 MANAGED_IPS_PATH: ./ eval_data/managed_ips/AS_1_managed_ip_10000.

txt

66
67 as2:

68 build: .

69 depends_on:

70 - kafka

71 networks:

72 - kafka_network

73 restart: on -failure

74 container_name: as2

75 environment:

76 AS_SIZE: 100

77 AS_NAME: as2

78 KAFKA_HOST: kafka

79 KAFKA_PORT: 29092

80 EVAL_SIMULATED_TRAFFIC_PATH: ./ eval_data/traffic_files/burst/

AS_2_traffic -5. pcap

81 EVAL_SIMULATED_ATK_TRAFFIC_PATH: ./ eval_data/traffic_files/burst/

AS_2_attack_traffic -5. pcap

82 MANAGED_IPS_PATH: ./ eval_data/managed_ips/AS_2_managed_ip_10000.

txt

83

105

84
85 networks:

86 kafka_network:

87 name: kafka_network

Code Listing C.1: Docker Compose File for the evaluation in Section 6.1.2. Inspired
by [43, 7]. It includes Kafka, ZooKeeper and 3 ASes that use separate Docker containers.

106 APPENDIX C. DOCKER COMPOSE YAML

Appendix D

Installation Guidelines

CH2TF has been made public under https://github.com/ch2tf/ch2tf. The full instal-
lation instructions, guidelines, and alternatives are included in the readme.md file.

This project assumes either a Docker installation, e.g., for evaluation purposes or to test
the interaction between multiple ASes, or a “local” installation. In any case, ZooKeeper
and Kafka need to be running. This documentation assumes that they are running in
Docker containers, though other installations would also be possible.

However, in any case, the ports need to match (cf. C.1). This means, that within Docker
containers Kafka runs on kafka:29092 (i.e., Section D.1). And to connect to from outside
of Docker containers to Kafka (i.e., Section D.2), it requires localhost:9092.

Assuming that ZooKeeper and Kafka should be run in a Docker container, the following
commands need to be entered in the main directory of CH2TF:

1. docker compose build

2. docker compose up zookeeper kafka

This will start these two services, and let the developer the freedom whether CH2TF
should be run in a Docker container (cf. Section D.1) or locally (cf. Section D.2).

Furthermore, depending on whether this is a ‘fresh’ installation, and the Pub/Sub topics
do not exist yet, they must be created first (cf. readme.md).

D.1 Docker Installation

• Requirements: Docker

To run CH2TF the following commands need to be entered in the main directory of
CH2TF:

107

108 APPENDIX D. INSTALLATION GUIDELINES

1. docker compose build

2. docker compose up

Nota bene, using these commands the required dependencies ZooKeeper and Kafka will
also automatically start.

D.2 Local Development

This project has been tested with Python versions 3.10 and 3.11. Furthermore, due to the
use of ‘structural pattern matching’ statements, Python versions < 3.10 are not supported
(cf. [65]).

• Requirements: ZooKeeper, Kafka, Python

To run CH2TF the following commands need to be entered in the main directory of
CH2TF:

1. python --version ⇒ should return >= 3.10

2. pip3 install -r requirements.txt

3. export PYTHONPATH="${PYTHONPATH}:/src"

4. python3 src/main.py

I.e., the “working directory” (e.g., for IDEs) should be .../src. This can be seen in the
file docker_entrypoint.sh that can also be used to start the application.

D.3 Configurations

The configuration is done directly in the ch2tf/.env. This allows to set global configu-
rations (if needed), which can then be individually overwritten for any AS in the docker
compose file (ch2tf/docker_compose.yml) directly (cf. C.1).

The important parts of the configuration are the following points:

• KAFKA_HOST: The host where Kafka is running (e.g., kafka or localhost).

• KAFKA_PORT: The port where Kafka is running, (e.g., 29092 or 9092).

• AS_NAME: Name of this AS. Should not be set globally. This will be included in the
requests and responses to identify the AS.

D.3. CONFIGURATIONS 109

• AS_SIZE: Size variable for how much traffic this AS can handle. Should also not be
set globally.

• TOPIC_LOW: Topic for lower confidence. Should be set globally.

• TOPIC_HIGH: Topic for higher confidence. Should be set globally.

• TOPICS_USE_ADDITIONAL: Whether this AS wants to use additional topics. I.e.,
False. Should not be set globally.

• AS_TOPICS: The additional (comma separated) topics that an AS wants to use.
TOPICS_USE_ADDITIONAL must be True if those want to be used. Overwrites the
default topics.

• ANALYSIS_PERIOD: Analysis period. Could be set globally, but not required.

• MSG_LENGTH: The length for potential attackers that should be used while publishing
a Pub/Sub message.

• SAMPLING_RATE: Rate of sampling that should be used for a specific AS. A value of
1.0 implies that every packet is considered.

• USE_HASH: Whether hashed IP addresses are used. Should be set globally.

• MANAGED_IPS_PATH: Path to a text file that contains the managed IP addresses of
a specific AS. Trivially, this should not be set globally.

Furthermore, there are the analysis related configuration values which were discussed in
Section 5.8. Naturally, these should be set for each AS individually.

• THRESHOLD_VICTIM_LO

• THRESHOLD_VICTIM_HI

• THRESHOLD_VICTIM_TIME_PERCENTAGE

• THRESHOLD_VICTIM_TIME_MIN

• THRESHOLD_SRC_1

• THRESHOLD_SRC_2

• THRESHOLD_SRC_3

• THRESHOLD_SRC_3_MIN

• THRESHOLD_TRAFFIC_PROPORTIONALITY

110 APPENDIX D. INSTALLATION GUIDELINES

Appendix E

Contents of the Submission

This thesis has been submitted digitally and contains the following files and directories:

• MA Thesis Fabian Kueffer.pdf: This thesis in PDF format.

• MA Thesis Fabian Kueffer.zip: Source code of this thesis.

• CH2TF.zip: Source code of the prototype and evaluation scripts & data.

• Figures: Directory containing all figures that were used in the report.

• Additional: Additional material.

• abstract de.txt: German abstract.

• abstract en.txt: English abstract.

111

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Thesis Goals
	Methodology
	Thesis Outline

	Background
	Distributed Denial of Service Attacks
	DDoS Attacks & Attack Classification
	DDoS Defense & Attack Mitigation

	Heavy Hitters
	Publisher-Subscriber Pattern
	Pub/Sub Frameworks

	Bloom Filter

	Related Work
	MULTOPS
	D-WARD
	AITF
	DefCOM
	Defense and Offense Wall (DOW)
	Zhang et al. (2008)
	Velauthapillai et al. (2010)
	MISP
	BloSS
	Doshi et al. (2018)
	Wagner et al. (2021)
	DDoS Clearing House
	DDoS Open Threat Signaling (DOTS)
	Comparison and Discussion

	Design
	Requirements
	Capabilities and Features
	Architecture
	Communication Protocol
	Pub/Sub Framework and Topics
	Policies: Attack Detection
	Policies: Heavy Hitter Detection
	Privacy
	Reputation

	Prototype Implementation
	Components
	Pub/Sub: Apache Kafka
	Package Collecting
	Listener
	Sending Requests
	Receiving Requests
	Receiving Responses
	Attack and Heavy Hitters Analyses
	Attack Analysis
	Heavy Hitters Analysis

	Bloom Filters
	Managed IP Addresses
	Heavy Hitter Tables

	Evaluation
	Attack Cases
	Volumetric Attack
	Burst / Pulse Wave Attack
	Botnets

	Performance
	Discussion

	Final Considerations
	Summary
	Considerations
	Future Work

	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	Listings
	Traffic Generation and Sniffing
	Additional Implementation Classes
	Docker Compose YAML
	Installation Guidelines
	Docker Installation
	Local Development
	Configurations

	Contents of the Submission

