
BluePIL: Fully Passive Identification
and Localization of Bluetooth

Devices in Near-Real-Time

Cyrill Halter
Zurich, Switzerland

Student ID: 13-928-171

Supervisor: Bruno Rodrigues, Christian Killer, Prof. Dr. Burkhard
Stiller, Prof. Dr. Thomas Bocek

Date of Submission: 24.08.2020

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Zusammenfassung

Die strategische Planung und Evaluation von Marketingaktivitäten stützt sich auf eine ge-
naue Bewertung des generierten Interesses an einem Produkt oder einer Dienstleistung. In
öffentlichen Räumen wie Messen oder Verkaufsstellen bieten drahtlose Technologien die
Möglichkeit, Leistungsindikatoren durch passiv abgefangene Funksignale abzuschätzen.
Die Anzahl bluetoothfähiger Geräte hat über die vergangenen Jahre ein stetes Wachstum
erfahren und soll bis 2024 auf 6.2 Mrd. steigen. Somit stellt Bluetooth für diese Aufga-
be eine Alternative zu 802.11 Technologien dar und bietet Vorteile wie das Fehlen von
MAC-Randomisierungsverfahren. In dieser Arbeit wird BluePIL, ein System zur Identi-
fizierung und Lokalisierung von Bluetooth Geräten, beschrieben. Es unterscheidet sich
durch ein vollständig passives Vorgehen von bestehenden Ansätzen, benötigt also keine
Kenntnis oder Beteiligung von den Zielgeräten. Für die Identifizierung von Geräten ver-
wendet das System Teile der Bluetooth-Adresse, für die Lokalisierung einen modifizierten
Multilaterations-Algorithmus und ein Pfadverlust-Modell. BluePIL baut auf einer verteil-
ten Streaming-Architektur auf und berechnet Ergebnisse in Fast-Echtzeit. Zur Evaluation
des Systems wurde ein Prototyp in Python erstellt. Drei Experimente dienen als Grund-
lage für die Bewertung. Aus den Resultaten lässt sich eine Lokalisierungspräzision von
ca. 1 m auf einer Fläche von 12 m

2
und ca. 1.4 m auf einer Fläche von 25 m

2
feststellen.

Das System ist in der Lage, die spärlichen und verrauschten Daten des Sensors zu ver-
arbeiten, und läuft ohne Probleme auf kostengünstiger Hardware. Insgesamt erfüllt das
System die Anforderungen, welche für diese Arbeit definiert wurden. Durch Messungen an
einer Konferenz wurde festgestellt, dass das Vorkommen von detektierbaren Bluetooth-
Verbindungen in diesem Umfeld zu gering war, um die Anzahl Personen in einem Raum
zuverlässig ableiten zu können. Dies zeigt auf, dass die Anwendbarkeit einer passiven
Bluetooth-Lösung von dem Nutzungsgrad der Technologie abhängig ist.

i

ii

Abstract

Measuring the interest in a product or service in a public space, such as a trade show or
a sales floor, is fundamentally important for the evaluation of the marketing strategies
of businesses. Wireless technologies provide a method of gauging performance indicators
through the passive capture of signals emitted by mobile devices. Bluetooth technology
has seen steady growth over the past years and continues to spread with the number of
Bluetooth enabled devices expected to grow to 6.2B by 2024. Therefore, it provides a
viable alternative to 802.11 wireless technologies in the accomplishment of this task and
even offers advantages, such as the lack of MAC-randomization strategies. This thesis
introduces BluePIL, a system for Bluetooth device identification and localization. It sets
itself apart from existing approaches through its fully passive nature, where no collabora-
tion with or prior knowledge of the devices to be tracked is necessary. The system relies
on parts of the Bluetooth address for device identification and a modified multilatera-
tion algorithm using a path loss model for device localization. BluePIL is designed as a
distributed streaming architecture that delivers results in near-real-time. A Python pro-
totype serves as a basis for the evaluation of the system, which is accomplished through
three experiments. The results show that the approach achieves good localization accu-
racies of 1 m to 1.4 m within a space of around 12 m

2
and 25 m

2
respectively. The system

architecture is found to perform well regarding the sparse and noisy data received from
the sensors and the available resources on the low-cost hardware used. Overall, the system
designed satisfies the requirements defined for this thesis. Measurements performed at a
conference reveal that the prevalence of detectable Bluetooth connections was not high
enough to determine the number of people located within a defined space reliably. This
shows that the applicability of a passive Bluetooth approach is dependent on the rate of
utilization of the technology.

iii

iv

Acknowledgments

I would first like to thank my supervisor, Bruno Rodrigues, for his guidance and encour-
agement during the course of this thesis, for always taking the time to help it along and for
providing direction where it was needed. I would also like to thank Prof. Dr. Burkhard
Stiller for his support, for providing the opportunity to work on an interesting topic and
for his assistance with organizational problems in the context of the SARS-CoV-2 pan-
demic, Simon Tuck for his insights into the Livealytics system and for his support during
the experiment at the Reloading Live conference, and Lenz Baumann for the pleasant
collaboration during joint experiments. Finally, I would like to thank Laura Schnoz for
proofreading this thesis, for her valuable comments and for having an open ear for the
issues encountered during the process of writing it.

v

vi

Contents

Zusammenfassung i

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

1.3 Methodology . 3

1.4 Thesis Outline . 3

2 Background and Related Work 5

2.1 Background . 5

2.1.1 Bluetooth . 5

2.1.2 Bluetooth Basic Rate / Enhanced Data Rate (BTBR/EDR) 6

2.1.3 Bluetooth Low Energy (BTLE) . 8

2.1.4 Project Ubertooth . 9

2.1.5 Kalman Filtering . 10

2.1.6 Multilateration . 12

2.1.7 The Log-Distance Path Loss Model 13

2.2 Related Work . 14

2.2.1 Device Identification . 14

2.2.2 Device Localization . 15

2.2.3 Applications . 17

vii

viii CONTENTS

3 System Design 19

3.1 Design Considerations . 19

3.2 Requirements . 20

3.3 Assumptions . 20

3.4 High-Level System Architecture . 21

3.5 Device Identification . 22

3.6 Device Localization . 23

3.6.1 Signal Strength Filter . 23

3.6.2 Signal Strength Merger . 25

3.6.3 Localization Algorithm . 26

3.6.4 Location Filter . 29

4 Implementation 31

4.1 Hardware . 31

4.2 Software . 32

4.2.1 Data Streams . 32

4.2.2 Interface with the Sensor . 33

4.2.3 Node-Sink Communication . 35

4.2.4 Device Identification and Localization 37

5 Evaluation 39

5.1 Experiment 1: Evaluation of the Device Localization Method 39

5.1.1 Experimental Setup . 39

5.1.2 Results . 41

5.2 Experiment 2: More Challenging Conditions & Evaluation of the System
Design . 44

5.2.1 Experimental Setup . 44

5.2.2 Results . 45

5.3 Experiment 3: Evaluation of Bluetooth Utilization in a Real-World Scenario 48

CONTENTS ix

5.3.1 Experimental Setup . 48

5.3.2 Results . 48

5.4 Discussion . 51

6 Summary and Conclusion 53

6.1 Future Work . 53

Bibliography 58

Abbreviations 59

List of Figures 59

List of Tables 62

A Contents of the Repository 65

B Installation Guidelines 67

B.1 Installation of Dependencies . 67

B.2 Running the Application . 67

x CONTENTS

Chapter 1

Introduction

1.1 Motivation

Measuring the public interest in a particular product or service is of fundamental impor-
tance for the strategic planning of businesses. In an increasingly digitized society, there
are secure and non-invasive methods of visualizing an audience’s mobility by passively
tracking wireless signals emitted by portable devices. The analysis of passively emitted
signals enables the extraction of key performance indicators (KPI) for the efficient plan-
ning of marketing strategies of business events or campaigns. This improves the offering
of a product or service to a particular type of audience. In this regard, it is possible to
obtain insights on how long visitors are engaged in an exhibition or how many visitors
and observers are on site.

The major technical challenges within passive wireless tracking are the unique device
identification and the correlation of devices to their users considering that users might
carry more than one device emitting wireless signals, and these devices can emit passive
wireless signals through different sources. Thus, it is possible to correlate the spatial and
temporal dimensions through the received signal strength indication (RSSI) captured from
different sources (Wi-Fi and Bluetooth) measured in a given point in time. This allows to
determine the uniqueness of tracked devices with a higher likelihood. The major benefit of
solving these challenges is to increase the precision of the calculated performance metrics
based on accurate measurements.

The capture of signals can be based on wireless protocols, such as 802.11b or 802.11g (2.4
GHz) or 802.11a (5 GHz), but there is also the possibility of broadening the scope of signal
frames, based on Bluetooth protocols. Ever since the introduction of the first Bluetooth
protocol version in 1999, the technology has seen steady growth with the number of
Bluetooth capable devices shipped expected to grow to 6.2B by 2024 [1]. The emergence
of wearable devices, the growth of the internet of things (IoT) sector and the growing
popularity of wireless audio devices have all contributed to the proliferation of Bluetooth
in the wireless technology market.

1

2 CHAPTER 1. INTRODUCTION

The topic for this thesis emerged out of the InnoSuisse-funded cooperation between the
Communication Systems Group at the University of Zurich and Livealytics, a Swiss com-
pany that offers an ”analytics solution for measuring and benchmarking the performance
of sales and live experience promotion activities, trade shows and retail spaces” [2] [3]. The
Livealytics solution uses passively measured Wi-Fi signals to collect marketing statistics
and KPIs at trade fairs, sales floors, etc. In practice, this consists of defining proximity
zones around a Wi-Fi sensor and dwell times within these proximity zones that allow to
classify visitors as having seen, visited or passed by a certain exhibit [2].

Technology-wise, this relies on Wi-Fi signal strengths and Wi-Fi media access control
(MAC) addresses to calculate distances and identify individual devices respectively. The
emergence of MAC-randomization strategies within Wi-Fi technology, however, has com-
plicated the step of device identification. The fact that MAC-randomization does not exist
in classic Bluetooth has spawned the hypothesis that Bluetooth may provide a viable al-
ternative to the Wi-Fi approach. Having said this, the applicability of Bluetooth device
tracking systems is not limited to the Livealytics use case. Most recently, for example,
contact tracing applications for disease control have gained public interest in the context
of the SARS-CoV-2 outbreak. Most of them rely on Bluetooth technology for proximity
detection.

While a fair amount of research exists for both the area of unique identification and
localization of Bluetooth devices, most approaches up to now do not allow a system to be
fully passive, i.e. not requiring any knowledge of and collaboration with the target devices.
This thesis will explore the possibilites of accomplishing this task. In addition to this, the
Livealytics context brings with it a range of additional interesting design considerations,
such as ease of use, low complexity in setup and configuration, and a distributed and
cloud-friendly implementation.

1.2 Goals

This thesis aims to explore the possibilities and potential of Bluetooth technologies to
implement a fully passive identification and localization approach for individuals using
mobile devices. The main goals are twofold:

• Research: explore the scope of Bluetooth passive wireless capture strategies to
provide the localization and an increased accuracy in the unique identification of
devices by combining available parameters.

• Engineering: develop a Bluetooth sensing approach for identification and locali-
zation based on passively emitted signals as a proof-of-concept. The thesis should
produce a working prototype, which can be interfaced with other modules and pro-
duces results to be contrasted with the thesis goals.

1.3. METHODOLOGY 3

1.3 Methodology

This thesis involves two main stages, organized as research and engineering. The first stage
involves the identification of strategies in existing research for the unique identification
and the localization of Bluetooth devices, in order for them to be tracked uniquely. This
stage has an exploratory character. The second stage requires to put into practice said
researched elements, in order to fulfill the second goal and build the proof-of-concept able
to sense Bluetooth devices. Further, this stage involves the evaluation the solution to
verify whether it is capable of satisfying the goal.

1.4 Thesis Outline

The rest of this thesis is structured as follows: Chapter 2 explains the basic knowledge
required for the understanding of the concepts in this thesis and describes existing work
related to the topic. Chapter 3 introduces the BluePIL system including the requirements
to be fulfilled, the overall system architecture and the individual components developed
for this thesis. Chapter 4 describes the concrete implementation of BluePIL as a Python
application. The system is then evaluated in Chapter 5 in three separate experiments.
Finally, Chapter 6 concludes this thesis and list possible directions for future research.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background and Related Work

2.1 Background

2.1.1 Bluetooth

Bluetooth is a ”short-range communications system intended to replace the cable(s) con-
necting portable and/or fixed electronic devices” [4]. Operating in the unlicensed 2.4
GHz industrial, scientific and medical (ISM) frequency band, Bluetooth devices typically
transmit up to a distance of 10 m to serve this purpose. Typical uses for Bluetooth tech-
nology include audio streaming, e.g. for wireless headphones, data transfer, e.g. for the
communication with wearable devices, location services, e.g. for asset tracking in supply
chain management solutions, and the construction of device networks, e.g. for smart home
products [1].

The Bluetooth Core Specification is composed by the Bluetooth Special Interest Group
(SIG) and is currently at Version 5.2 [4]. The Bluetooth SIG is a not-for-profit standards
organization that ”expands Bluetooth technology by fostering member collaboration to
create new and improved specifications, drives global Bluetooth interoperability through
a world class product qualification program, and grows the Bluetooth brand by increasing
the awareness, understanding, and adoption of Bluetooth technology” [5].

Since Core Specification Version 4.0, Bluetooth has been split into two separate proto-
col stacks [4]: Bluetooth Basic Rate / Enhanced Data Rate (BTBR/EDR), sometimes
called Classic Bluetooth, was developed out of the original Bluetooth version published
in Core Specification Version 1.0. It maintains backwards compatibility to legacy proto-
col versions. Bluetooth Low Energy (BTLE) was newly introduced with Version 4.0. It
implements a completely separate protocol stack and is not compatible to BTBR/EDR
devices. BTLE was created to cater to the energy efficiency requirements, the complexity
limitations and the cost constraints of modern IoT devices. These two protocol stacks
will be described in more detail in Subsection 2.1.2 and 2.1.3 respectively.

Generally speaking, both the BTBR/EDR and the BTLE stacks are separated into a
controller, i.e. the part of the stack running on a controller module, and a host component,

5

6 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: Possible combinations of BTBR/EDR and BTLE controllers [4]

Device Class Max. Transmission Power Max. Transmission Distance

Class 3 0 dBm ca. 10 cm
Class 2 4 dBm ca. 10 m
Class 1 20 dBm ca. 100 m

Table 2.1: Classes of BTBR/EDR devices [4]

i.e. the part of the stack running on the host system. The two are connected through
the Host Controller Interface (HCI). A Bluetooth module may include a BTBR/EDR
controller, a BTLE controller, or both, as is shown in Figure 2.1. For the purposes of this
thesis, we will only be focusing on the controller component and ignore the upper parts
of the respective protocol stacks.

2.1.2 Bluetooth Basic Rate / Enhanced Data Rate (BTBR/EDR)

This subsection will introduce the parts of the BTBR/EDR protocol that are relevant to
this thesis, as they are described in the Bluetooth Core Specification v5.2 [4].

BTBR/EDR is a protocol stack described in the Bluetooth Core Specification [4]. The
BTBR/EDR controller component of the protocol stack consists of the Radio Layer, the
Baseband Layer and the Link Manager Layer. For this thesis, we will focus on the
Radio and the Baseband Layer, since they are generic to all communication running over
BTBR/EDR.

The Radio Layer describes the characteristics required of the radio device running the
transmission [4]. BTBR/EDR operates in the 2.4 GHz unlicensed ISM band. It uses a
Frequency Hopping Spread Spectrum (FHSS) scheme over 79 distinct channels spread
across the spectrum to avoid interference and fading, hopping at a rate of 1

′
600 hops/s. It

uses Gaussian Frequency-Shift Keying (GFSK) modulation to encode the binary message
to be transmitted. BTBR/EDR devices are split into three device classes according to
their maximum transmit power level (cf. Table 2.1), class 2 being the most wide-spread.

The Baseband Layer describes the physical links used to enable point-to-point and point-
to-multipoint connections between devices [4]. A BTBR/EDR physical channel may be

2.1. BACKGROUND 7

Figure 2.2: Possible piconet topologies in BTBR/EDR: a point-to-point connection (a),
a point-to-multipoint connection (b) and a scatternet (c) [4].

Figure 2.3: The composition of the Bluetooth address [4]

shared by two to eight devices connected in a so-called piconet. A piconet is characterized
by a shared hopping pattern and clock, a master node and one to seven slave nodes. De-
vices may participate in multiple piconets simultaneously through Time Division Duplex
(TDD), forming a so-called scatternet. These possible piconet topologies are summarized
in Figure 2.2. The master node defines the piconet’s clock and hopping pattern, a pseu-
dorandom ordering of the 79 available channels. An additional physical channel exists for
inquiry scans. This channel is used to discover devices that are in a connectable state. It
follows a slower hopping pattern that is common to all BTBR/EDR devices.

To account for interference and environmental factors, connected Bluetooth devices may
dynamically adjust the hopping pattern used to exclude certain frequencies where there is
a lot of interference [4]. It is also possible to dynamically increase or decrease the transmit
power level depending on the measured signal strength at the receiving device.

Every Bluetooth device has a unique Bluetooth address [4]. This address is constructed as
a 48-bit Extended Unique Identifier (EUI-48) according to the IEEE Standard for Local
and Metropolitan Area Networks [6]. It is composed of a 24-bit company ID (CID) and
a 24-bit organizationally unique ID (OUI). The CID is vendor-assigned, whereas the OUI
has to be obtained from the IEEE Registrational Authority and is assigned to individual
organizations, manufacturers or vendors of Bluetooth technology. Within the domain of
Bluetooth networking, the parts of the Bluetooth address are differentiated further by the
lower address part (LAP), corresponding to the CID, and the 16-bit non-significant address
part and 8-bit upper address part, forming the OUI. This is illustrated in Figure 2.3.

8 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.4: The generic structure of a BTBR packet [4]

Figure 2.5: The composition of the BTBR access code [4]

Similar to other networking protocols, Bluetooth encapsulates data in packets [4]. Fig-
ure 2.4 shows the generic composition of a BTBR packet. The composition of the access
code (AC) is shown in further detail in Figure 2.5. The syncword is always derived from
the LAP of a specific device involved in the transmission. Which device is chosen depends
on the type of packet being transmitted. For the case of an ongoing data transmission
in a piconet, the channel access code (CAC) is used, which is derived from the master
device’s LAP. Furthermore, it includes information for clock synchronization as well as
error correction data.

2.1.3 Bluetooth Low Energy (BTLE)

This subsection will introduce the parts of the BTLE protocol that are relevant to this
thesis. BTLE is a protocol stack described in the Bluetooth Core Specification [4]. The
BTLE controller component of the protocol stack consists of the LE PHY Layer, and the
Link Layer.

The LE PHY Layer describes the characteristics required of the radio device running
the transmission [4]. BTLE operates in the 2.4 GHz unlicensed ISM band. Similar to
BTBR/EDR, BTLE uses a FHSS scheme to avoid interference and fading, the difference
being that only 37 channels are used. Three additional channels exist for advertising.
BTLE uses GFSK to encode the message to be sent. Similar to BTBR/EDR, different
device classes exist, corresponding to the maximum transmit power level (cf. Table 2.2).

The Link Layer describes the physical links used to enable point-to-point and point-
to-multipoint connections between devices [4]. It is where BTLE manages to generate
the power savings that set it apart from BTBR/EDR. Different to a piconet in classic

Device Class Max. Transmission Power Max. Transmission Distance

Class 3 0 dBm ca. 10 cm
Class 2 4 dBm ca. 10 m
Class 1.5 10 dBm ca. 30 m
Class 1 20 dBm ca. 100 m

Table 2.2: Classes of BTLE devices [4]

2.1. BACKGROUND 9

Figure 2.6: The generic structure of a BTLE Uncoded PHY packet [7]

Bluetooth, devices don’t all share a common physical channel in a BTLE piconet. Instead,
each slave negotiates a separate hopping pattern with the master device. This avoids the
slaves having to constantly listen for incoming connections and allows them to actively
request data themselves, relocating the decision when to expend power to the slave nodes.
This also means that the possible number of devices in a BTLE piconet is only limited by
the resources of the master device. The hopping pattern used in a BTLE physical channel
is determined through the advertising packet sent by a connection initiating device.

Figure 2.6 shows the generic structure of a BTLE Uncoded PHY packet. The Access-
Address (AA) corresponds to the AC in a BTBR packet in function. Other than the BTBR
version, however, it is not derived from the LAP of the Bluetooth address. Instead, in
BTLE, the AA is randomly generated.

2.1.4 Project Ubertooth

Project Ubertooth is a fully open-source hardware and software package for wireless de-
velopment [7]. It is suitable for experimentation with both BTLE and BTBR/EDR. The
Ubertooth allows access to the lower layers of the Bluetooth protocols, which are normally
hidden in off-the-shelf Bluetooth modules. It does this at a low cost, being available for
purchase at around 100$. This is especially remarkable since the price quickly skyrockets
for alternatives that can be found on the market. The Ellisys Bluetooth Explorer 400, for
example, sells at around 20’000$ for a complete system [8].

Project Ubertooth manages to keep the overall costs low thanks to one main simplification
over other devices on the market. Bluetooth is a spread spectrum technology, meaning
that it moves over a wide range of frequencies during the transmission of data. Most
Bluetooth monitoring hardware, therefore, implements an array of transceivers to observe
all channels used by the Bluetooth protocol simultaneously. The Ubertooth One, however,
only uses a single transceiver, opting instead to try and hop along with the hopping pattern
of ongoing Bluetooth connections in order to eavesdrop on the data being transmitted [7].
This leads to a fairly capable device at a price that makes it an ideal option for non-
commercial applications, such as academia.

The Ubertooth One is built around three main hardware components [7]: The Texas
Instruments (TI) CC2591 RF Front End, the TI CC2400 Wireless Transceiver and an
NXP LPC175x Series ARM Cortex-M3 Microcontroller with full-speed USB 2.0 (cf. Fig-
ure 2.7). The analog signal is prepared by the CC2591 for the CC2400, capable of working
in the 2.4 GHz spectrum and detuning at the rate of 1

′
600 hops/s necessary for working

with Bluetooth. It is then processed on the LPC175x microprocessor, which finally trans-
mits it to the host system. The Ubertooth One hardware setup, however, leads to some

10 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.7: The composition of the Ubertooth One device [9]

trade-offs. The CC2400 can receive at a maximum of 1 Mbit/s. This makes it unable
to process BTEDR fully, which can reach maxima of 2.1 Mbit/s [8]. Consequently, only
BTBR is fully supported by the Ubertooth One.

The Ubertooth software package is written in C [7]. It is split up into two parts. The
Ubertooth Firmware code runs on the LPX175x microprocessor and is responsible for
controlling the CC2400 transceiver, processing the data received from the CC2400 and
sending said processed data to the host via USB. This is especially relevant for time-
sensitive operations, such as the synchronization to a piconet clock, which does not have
to make the detour to the host system and back via USB thanks to the LPC175x. The
Ubertooth Host code runs on on the host system, i.e. any computer with a USB 2.0 port
and capable of running the compiled Ubertooth host code. It sends high-level control
signals to the Ubertooth device, receives data from it and converts it into a format that
is useful to the end user, e.g. as a PCAP file. The Ubertooth Host code is paired with
libbtbb, a Bluetooth Baseband decoding library developed in conjunction with Project
Ubertooth. As an open-source project, the Ubertooth software package is under constant
development and remains incomplete in some aspects.

2.1.5 Kalman Filtering

The Kalman Filter describes a type of Bayesian filter. Bayesian filters ”probabilistically
estimate a dynamic system’s state from noisy observations” [10]. With the state at time t
represented as random variable st, it can be expressed mathematically as finding the prob-
ability distribution over st, which we then call belief Bel(st). With sensor observations
over time z1, zt, ..., zt, the belief is defined as follows:

Bel(st) = p(st∣z1, z2, ..., zt) (2.1)

Bayes’ theorem tells us that this belief can also be expressed in the following way [11]:

2.1. BACKGROUND 11

p(st∣z1, z2, ..., zt) = p(st∣z) =
p(z∣st) ∗ p(st)

p(z) (2.2)

p(z∣st) is the probability of making the observations z, given that we are in state st. p(st)
is the probability of being in the state st prior to our knowledge of the observations z.
p(z), finally, is the probability of observing z without any restrictions by the state st.
This theorem is often expressed in the more high-level way

posterior =
likelihood ∗ prior

evidence
(2.3)

The Kalman Filter is then nothing more than a Bayesian filter that assumes the probability
distributions to be Gaussian. It will be explained in the following [11] [12].

With

sk The state at time k

zk The observation at time k

Fk The state transition model at time k

Hk The observation model at time k

Qk The process noise covariance at time k

Rk The observation noise covariance at time k

we can define the state at time k as

sk = Fksk−1 + wk, wk ∼ N (0, Qk) (2.4)

and the observation at time k

zk = Hksk + vk, vk ∼ N (0, Rk) (2.5)

The Kalman Filter Algorithm

We can now define the Kalman Filter algorithm as an iterative algorithm in two steps:
the predict step and the update step [12] [11]. In the following, the hat operator ”∧” will
denote an estimate of a variable, the superscript ”−” will denote a predicted (prior) and
the superscript ”+” an updated (posterior) estimate.

During the Predict Step, we calculate the predicted state estimate ŝ
−
k and the predicted

error covariance P
−
k

12 CHAPTER 2. BACKGROUND AND RELATED WORK

ŝ
−
k = Fks

+
k−1 (2.6)

P
−
K = FkP

+
k−1F

T
k +Qk (2.7)

During the Update Step, we correct the predictions using our measurements. We first
calculate the measurement residual ỹk and its covariance Sk.

ỹk = zk −Hkŝ
−
k (2.8)

S
−
k = HkP

−
k H

T
k +Rk (2.9)

We can then calculate the Kalman gain Kk.

Kk = P
−
k H

T
k S

−1
k (2.10)

Finally, we can compute the updated state estimate ŝ
+
k and the updated error covariance

P
+
k

ŝ
+
k = ŝ

−
k +Kkỹk (2.11)

P
+
k = (I −KkHk)P−

k (2.12)

2.1.6 Multilateration

Multilateration is the process of geometrically estimating an object’s position in space
through distance measures to at least three points. For the case where exactly three
points are used, we call it trilateration. Mathematically, this corresponds to solving the
following non-linear system, with (xi, yi, zi) the position of the i-th point, (x, y, z) the
position of the object, and di the distance of the object to the i-th point.

(x − x1)2 + (y − y1)2 + (z − z1)2 = d21
(x − x2)2 + (y − y2)2 + (z − z2)2 = d22
(x − x3)2 + (y − y3)2 + (z − z3)2 = d23

(2.13)

For planar problems, this can be simplified further, as is illustrated in Figure 2.8. This
leads to the following system in two variables.

2.1. BACKGROUND 13

Figure 2.8: A planar trilateration problem

(x − x1)2 + (y − y1)2 = d21
(x − x2)2 + (y − y2)2 = d22
(x − x3)2 + (y − y3)2 = d23

(2.14)

This system is then often linearized by subtracting the last equation from the other two,
leading to the following determined linear system of equations [13].

2(x3 − x1)x + 2(y3 − y1)y = d21 − d23 + x23 − x21 + y23 − y21
2(x3 − x2)x + 2(y3 − y2)y = d22 − d23 + x23 − x22 + y23 − y22

(2.15)

The solution is reached analogously for any higher order multilateration problems. In
practice, distance measures are often imperfect and the calculation of a solution for Equa-
tion 2.14 using a non-linear optimization lead to better results.

2.1.7 The Log-Distance Path Loss Model

The Log-Distance Path Loss Model is a popular model for radio signal decay over distance
[14]. It models the finding that the decay of a signal over distance can be approximated
by a logarithmic function. With RSS(d) the received signal strength at distance d, d0

14 CHAPTER 2. BACKGROUND AND RELATED WORK

Source Technology Used Nature Method of Device Identification Notes

[15] BTLE Passive Identifies the AA from passively captured
empty data packets

AA does not identify a device and may
change over time

[16] BTLE Passive Tracks devices through AA and carry-over
algorithm using identifying tokens in ad-
vertising packets

Results heavily dependent on smartphone
OS

[17] BTLE Passive Fingerprints devices through mobile app
UUIDs revealed in advertising packages

Heavily tailored to Android devices

[18] BTBR/EDR Passive Tracks devices through fingerprinting algo-
rithm using the clock skew

Robust to manual modification of Blue-
tooth packet contents, s.a. MAC random-
ization but requires modification to off-the-
shelf hardware

[19] BTBR/EDR Active Circumvention of non-discoverability
through targeted inquiry requests

Vulnerability may no longer be current and
the exploit is computationally very expen-
sive

[20] BTBR/EDR Semi-
Passive

Fingerprinting through various device
characteristics from advertising packets

Requires target device to be in discoverable
mode

[21] BTBR/EDR Passive Discovery of the LAP from the Bluetooth
packet AC, UAP through the reversal of
the the computation of the Header Error
Code (HEC)

Special hardware required, implemented in
Project Ubertooth [7]

Table 2.3: Related work on Bluetooth device identification

a reference distance, n the path-loss coefficient and Xσ a zero-mean Gaussian random
variable, it can be defined as follows:

RSS(d) = RSS(d0) − 10n log (d
d0

) + Xσ (2.16)

In practice, the reference distance d0 is often set to 1 m and noise is ignored for the
calculation, simplifying the model even further. With RSSC , the received signal strength
at 1 m, it can then be expressed as follows:

RSS(d) = RSSC − 10n log(d) (2.17)

RSSC is dependent on each individual device and has to be calibrated for. The path-loss
coefficient n is a factor that depends on the environment. For free-space, it is often chosen
at n = 2.

2.2 Related Work

2.2.1 Device Identification

The following subsection will summarize existing work on Bluetooth device identification.
A brief comparison is presented in Table 2.3. Generally speaking, the approaches can be
categorized into research that uses BTLE and that which uses BTBR/EDR technology.

In [15], the BTLE AA is extracted from empty data packets that are captured passively.
While the AA does carry some identifying information regarding the link between two
devices, it does not identify a device as such and may change over time. [16] builds
upon this by tracking AA changes over time, using other fields in BTLE packages to
implement a carry-over algorithm. This improves the result but is heavily dependent on
the OS running on devices that participate in the communication. [17] takes a completely

2.2. RELATED WORK 15

different approach, relying on universally unique identifiers (UUIDs) written into BTLE
advertising packets by mobile apps in order to create a fingerprint for a specific device.
This approach is tailored mostly to Android devices and fairly computationally complex,
requiring the Android application packages (APKs) to be scanned for vulnerabilities before
being able to extract fingerprints from running connections.

In the BTBR/EDR domain, [18] approaches the device identification from the physical
angle, fingerprinting devices based on the rate of drift of packet inter-arrival times caused
by the master device’s clock skew. The fact that this approach is implemented on the
physical level means that it is robust to any security measures implemented in upper
layers of the BTBR/EDR protocol, such as non-discoverability or MAC randomization.
However, it also requires modifications to standard off-the-shelf BTBR/EDR hardware
in order to work. [19] tries to circumvent the non-discoverability of devices by actively
sending targeted inquiry requests to all devices in a certain address range in a brute-
force manner. It exploits a vulnerability where these devices will then respond to the
requests, even though they should not be discoverable. This vulnerability is no longer
current in all devices and the exploit is computationally very expensive since it requires
an exhaustive traversal of the address space in question. [20] fingerprints a device through
information that is retrieved from passively captured advertising packets. This approach
only works if a device is discoverable, which is not the case per default in most current
Bluetooth implementations. Finally, [21] uses specialized hardware to extract parts of the
Bluetooth address from an ongoing BTBR/EDR connection. The LAP is obtained from
the syncword of the Bluetooth packet AC, the UAP by reversing the computation of the
Header Error Code (HEC). The only part of the Bluetooth address that this method fails
to obtain is the NAP, since it is not integrated in any way into the meta information of a
Bluetooth packet.

2.2.2 Device Localization

The following subsection will summarize existing work on Bluetooth device localization.
A brief comparison is presented in Table 2.4. The approaches explored are all active in
nature, i.e. they require knowledge of or collaboration with the device to be localized.
On a high level, they can be divided into fingerprinting-based and path-loss-model-based
methods.

The fingerprinting-based approaches ([22] [23]) require the construction of a radio map
of the area of interest, i.e. a set of sensor measurements for signal strength throughout
the space, as a preliminary step. During localization, the signal strength measured for
a mobile device within this space is then correlated with the individual points in the
radio map. The best match is then assumed to correspond to the actual location of the
device. [22] uses a large number of BTLE beacons set up throughout a building. A
mobile device then measures the signal strengths from these beacons in order to position
itself within the space. The approach includes methods for the continuous tracking of
devices where a localization result can be used to improve the estimation in subsequent
measurements. The paper also includes a detailed evaluation of the key parameters in
the positioning algorithm. [23] implements a BTBR/EDR-beacon-based fingerprinting

16 CHAPTER 2. BACKGROUND AND RELATED WORK

Source Technology Used Nature Method of Device Localization Localization
Accuracy

Notes

[22] BTLE Active Location fingerprinting using RSS
values from BTLE Beacon advertis-
ing packets

< 2.6m Includes methods for one-shot loca-
lization and tracking

[23] BTBR/EDR Active Location fingerprinting for BT-
BR/EDR Beacon advertising pack-
ets

∼ 1.6m Evaluates k-Nearest-Neighbors and
Näıve Bayes classifiers for finger-
print correlation

[24] BTLE Active Location fingerprinting and a poly-
nomial regression path loss model,
fused using a Kalman Filter

∼ 1.65m Multiple layers of statistical outlier
filtering included

[25] BTLE Active Trilateration using the log-distance
path loss model with Kalman Filter
for signal pre-processing for BTLE
Beacon advertising packets

∼ 0.3m

[26] BTLE Active Trilateration using the log-distance
path loss model for BTLE Beacon
advertising packets

∼ 1m Fuses trilateration results for more
than three sensors, includes strate-
gies for space partitioning

[13] BTLE Active Trilateration using a neural net-
work (NN) based path loss model
and a Kalman Filter for signal pre-
processing for BTLE Beacon adver-
tising packets

∼ 0.7m Variations in the advertising packet
signal strengths are dynamically ac-
counted for using an in-range refer-
ence node

[27] BTLE Active Log-distance path loss model or
particle filter using BTLE Beacon
advertising packets

∼ 0.6m Reduce positioning problem to one
dimension heuristically by enforcing
a shopping mall topology

[28] BTBR/EDR Active Trilateration using the log-distance
path loss model for BTBR/EDR ad-
vertising packets

Not listed Includes investigation of the influ-
ence of the human body on RSS val-
ues

[29] BTBR/EDR Active Trilateration using the log-distance
path loss model

n/a Known positions and the localiza-
tion results are used to estimate the
channel parameters RSS(d0) and n

Table 2.4: Related work on Bluetooth device localization

approach. In addition, it compares the performance of k-Nearest-Neighbors and Näıve
Bayes classifiers for fingerprint correlation.

The path-loss-based approaches ([25] [26] [13] [27] [28] [29]) rely on a model that enables
them to convert signal strengths to distances. [25] implements a log-distance path loss
model to calculate distances for BTLE beacon advertising packets, which are then used
to perform trilateration in order to compute a location for the target device. In addi-
tion to this, they use a Kalman Filter to pre-process the signal strength measurements
to get a smoother and more viable result. [26] takes a similar approach with a combi-
nation of the log-distance path loss model and trilateration. They extend this by fusing
the trilateration results multiple combinations of three sensors in order to improve the
localization accuracy. [13] also uses trilateration but implement a neural-network-based
path loss model that uses empirical data to infer a mathematical representation of the
path loss characteristics. The signal strengths are pre-processed using a Kalman filter. A
method is also presented to deal with the problem of varying signal strengths in BTLE
beacon advertising packets. To this end, a reference node is included in the localization
space which allows the system to dynamically adjust. [27] compares the performance of
the log-distance path loss model and a particle filter for the localization problem. The
trilateration step is avoided by heuristically reducing the localization problem to a one-
dimensional one through assumptions on the topology of the environment they are working
in, i.e. a shopping mall. [28] uses BTBR/EDR advertising packets to perform localization
using the log-distance path loss model and trilateration. This work includes the investi-
gation of the influences of the human body on signal strength measurements. [27] also
work with the log-distance path loss model and trilateration. The goal here, however, is
not the calculation of a location. Instead, the location is assumed to be known and this
information is used to estimate the channel parameters RSSC and n.

Finally, [24] presents an approach that fuses fingerprinting and a polynomial regression
path loss model. Distance estimates from the fingerprinting algorithm and the path loss

2.2. RELATED WORK 17

model are averaged and fed to an extended Kalman filter, which performs the localization
and smooths the result. Additionally, multiple layers of outlier detection are implemented
in order to improve the overall localization accuracy.

2.2.3 Applications

This subsection will introduce some applications in existing research that implement Blue-
tooth device identification and localization technology. [30] describes an application that
is used to mine visitations patterns at tourist attraction in the Belgian city of Ghent.
They use Bluetooth to identify individual devices given that they are discoverable. [31]
proposes a system for presence detection of individuals in smart homes in order to enable
energy savings, assistance for elderly or impaired people and the personalization of the
smart home experience. A set of Bluetooth beacons is used to enable the identification of
individuals and the localization on room-level. [32] uses a combination of Bluetooth and
Wi-Fi to estimate crowd densities and pedestrian flows at an airport. Repeated inquiry
scans deliver information on the number of discoverable Bluetooth devices in the vicinity
of the sensors. The recent SARS-CoV-2 outbreak has seen widespread interest in mobile
applications for contact tracing. DP-3T is an example for such an application and has
been deployed in Switzerland as the official SARS-CoV-2 contact tracing application by
the health authorities [33]. It uses the Exposure Notification API, a joint specification by
Apple and Google, to detect and notify close devices via BTLE [34].

18 CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

System Design

The following chapter introduces the BluePIL system, a fully passive approach to Blue-
tooth device identification and localization. The design considerations, required charac-
teristics and system design are described on an abstract level. Implementation details
are introduced at a later point providing a detailed description of an instantiation of
BluePIL’s architecture.

3.1 Design Considerations

The system described in this chapter is designed within the context of the Livealytics so-
lution, a service that uses passively measured Wi-Fi signals to collect marketing statistics
and KPIs in public spaces [2]. While the applicability of the design is not limited to the
Livealytics case, this provides interesting considerations to be taken into account for a
system deployed in real-world situations, some of which will be described in the following:

Low-Performance Hardware: The hardware available may be limited in performance
due to a number of reasons. Economic factors may put a cap on the amount of money
that can be spent on a single hardware unit. In any case, using cheaper and, thus,
lower-performance devices improves profit margins that can be gained from a product.
Hardware may also be limited in certain physical characteristics, such as size or power
consumption, introducing further constraints for performance.

Cloud-Based Environment: Many existing systems run in a cloud-based environment.
This allows businesses to decrease the time-to-market and to scale the resources used to
the current demand on the system. Cloud-based environments bring along with them a
number of economic considerations. In general, it is beneficial to reduce the amount of
data that needs to be stored in, processed by and passing through the cloud [35].

Real-Time Evaluation: Real-time data evaluation allows users to react to the events
processed by a system as they are happening. This may provide an economic benefit and
enables applications to be built that are reactive to the current situation. On a techno-
logical level, real-time data evaluation eliminates the need for the storage of intermediate
results and may, therefore, save resources in the overall system.

19

20 CHAPTER 3. SYSTEM DESIGN

Ease of Use: An easy to use system may bring along economic benefits. It can be
marketed towards non-expert users and can, therefore, gain a larger user-base. A simple
product may also be preferred by potential buyers over a complicated one. Furthermore,
lower complexity in the utilization of a product will decrease the amount of errors that
occur on the user side and will thereby increase the quality of the data produced by the
system.

3.2 Requirements

From the goals of this thesis (cf. Section 1.2), we can derive the following main require-
ments on the system to be built:

R1 The system should be completely passive.

R2 The system should be able to identify individuals based on a Bluetooth signal.

R3 The system should be able to localize individuals based on a Bluetooth signal.

Furthermore, the following additional requirements are derived from the design consider-
ations described in Section 3.1. These requirements are not imperative for the fulfillment
of the project goals, but bring along benefits for the real-world applicability of the system
to be built.

AR1 The system should be able to work with low-performance hardware.

AR2 The system should be suited for a cloud-based environment.

AR3 The system should produce results in real time.

AR4 The system should be easy to use and require a minimal amount of configuration.

3.3 Assumptions

Considering the development of the system within the scope of this thesis, whose time
frame is limited, assumptions are required to simplify its development, deployment and
operation towards a posterior evaluation. Thus, to define the scope of the requirements
described in Section 3.2, the following assumptions are made regarding the environment
the system will be working in:

• An existing BTBR/EDR is actively being used on the target device, e.g. an audio
stream to a pair of Bluetooth headphones.

• The localization problem can be reduced to a planar space, i.e. a location only has
to be calculated in two dimensions.

3.4. HIGH-LEVEL SYSTEM ARCHITECTURE 21

Figure 3.1: The BluePIL system topology on a high level

• The number of sensors available to the system is four.

• The sensors used have access to the lower layers of the BTBR/EDR protocol.

• The localization is performed in the area between the four sensors.

• The target device is a mobile device, such as a smartphone or a tablet.

3.4 High-Level System Architecture

The following describes the BluePIL system architecture, that uses passively captured
BTBR/EDR signals based on four sensors to fulfill the requirements described in Sec-
tion 3.2. The system topology was designed to make the approach flexible in deployment
and in the concrete implementation of the individual components. In general, BluePIL is
set up as a streaming data processing pipeline. Figure 3.1 shows this topology on a high
level. Packets are delivered as a stream from a Bluetooth sensor. These packets first get
processed by the device identification component, which are described in detail in Sec-
tion 3.5. The packets along with their extracted identifiers then get passed along to the
device localization component, which is explained in Section 3.6. It is itself a component
composed of several sub-components, the topology of which is shown in Figure 3.3.

The design of the BluePIL system as a streaming multi-component architecture allows
it to be flexible regarding the implementation of the individual components, i.e. the
architecture itself is not invalidated by the choice of the implementation of a concrete
component. It allows for the logical processing entities, be they physical or virtual, in a
deployed system to be configured in different ways. Here, we chose a distributed node-
sink setup, i.e. a system where many physical nodes send data to a single physical sink,
which is then responsible for forwarding the data to an entity where it can be stored
or processed (e.g the cloud). Computations are performed as early as possible to avoid
bottlenecks downstream and to reduce the amount of data that has to be forwarded by
the sink. The resulting topology is shown in Figure 3.2. Device identification and signal
strength filtering are performed on individual nodes, moving computational effort away

22 CHAPTER 3. SYSTEM DESIGN

Figure 3.2: The chosen deployment for the BluePIL system

from a single sink. The merging of the individual signal streams necessitates a centralized
entity and is performed on the sink, including any step that follows it. It is important to
note that this is only one possible deployment of the BluePIL system. For example, the
streaming architecture would permit any part of the processing pipeline to be performed
on the cloud. This allows for economic considerations to be taken into account in the
choice of a concrete deployment setup.

3.5 Device Identification

The approach described in [21] is implemented in this thesis. It allows the system to
profit from the fact that BTBR/EDR lacks any sort of MAC randomization and avoids
having to build a complex, low-level system for fingerprinting by using a unique identifier
that is already available: the Bluetooth address. As is described in Subsection 2.1.2, the
Bluetooth address consists of the LAP, the NAP, and the UAP. These three address parts
and their usefulness for the device identification problem are discussed separately in the
following.

The NAP is, as the name says, not significant, and can, therefore, not be derived from
passively captured Bluetooth traffic. [21] describes an approach, where possible NAP
values are selected heuristically from the list of all manufacturer OUIs. These values,
however, have to be validated through a targeted inquiry request, which breaks with the
passive nature of BluePIL.

The LAP is the most easily obtainable from passively captured Bluetooth traffic. It is
contained in the CAC in any piconet packet, specifically in the syncword, and can simply
be read without the need for any further processing [21] [4]. In addition, it can be validated
using the 34-bit checksum included in the syncword, based on a (64, 30) expurgated block
code [4].

The computation of the UAP is complex since it is only contained in a packet implicitly.
This is complicated further by the fact that everything past the AC in the Bluetooth
packet is whitened, i.e. scrambled by XORing it with a whitening word derived from six
bits in the master Bluetooth clock [4]. [21] describes a method where candidate packets
are produced by de-scrambling packets with all 64 possible whitening words. They then
exploit the fact that the UAP is used to initialize the Linear-Feedback Shift Register
(LFSR) for the calculation of the HEC. This operation is completely reversible and is used
to generate 64 candidate UAPs, which are then validated by checking the consistency of

3.6. DEVICE LOCALIZATION 23

certain packet header fields over multiple packets, and by checking the payload Cyclic
Redundancy Check (CRC).

While the method for the derivation of the UAP may produce satisfactory results, it is
computationally fairly expensive and may take time due to the fact that multiple packets
are necessary for the validation of the candidate packets. This may cause a problem
in the environment at hand, which is constrained in both computational resources (low-
cost sensors) and time (real-time analysis). The following heuristic is, therefore, used
for this thesis: The LAP, while not globally unique, is unique enough to identify devices
under certain circumstances. As is stated in Section 3.3, this thesis deals with mobile
devices, such as smartphones, tablets, etc. The five biggest smartphone manufacturers,
for example, shared 72% of the smartphone market among them in the first quarter of
2020 [36]. This high level of concentration in the market allows us to make a statement
about the probability of LAP collisions.

With the probability of encountering a LAP collision P (col), the probability of encoun-
tering a different OUI P (dO) and the probability of encountering the same CID P (sC),
we first state that, since addresses are globally unique, encountering the same LAP twice
means that the OUI is different. Therefore, for the probability of a LAP collision, we
determine P (col) = P (sC) ∗ P (dO). Even without any further optimizations, this gives
us a fairly small probability of around P (col) ≈ 5.96e−8. Using our knowledge about
the smartphone market, however, we can improve the odds even further. Let’s assume
that the 20 largest smartphone manufacturers share (almost) the entire market. In this
case, P (dO) ≈ 19

20
and P (col) ≈ 5.66e−8. Thus, if, in a certain environment, the system

would register 10’000 different Bluetooth addresses, for example, the probability for a

LAP collision would still only be 1 − (1 − P (col))10
′
000

≈ 0.06%. This is sufficient for the
potential use cases of BluePIL and, therefore, the LAP as computed in [21] is used as a
quasi-unique identifier for this work. This identifier is also suitable to identify individuals
carrying a Bluetooth device since all devices in a piconet use the master device’s LAP for
the construction of the access code, i.e. two connected devices, such as a smartphone and
a pair of Bluetooth headphones, do not produce two separate identifiers.

3.6 Device Localization

The following explains the device localization method used in the BluePIL system. A
summary of the localization pipeline is presented in Figure 3.3. The methods used are
described for four sensors, since this is the number that is assumed to be available (cf.
Section 3.3), however, they are generally applicable to a larger amount of sensors as well.

3.6.1 Signal Strength Filter

As a first step in the device localization pipeline, the signal strength values obtained from
the sensor are pre-processed. For this, it is important to understand the characteristics of
RSS measurements. Figure 3.4 shows an example for RSS measurements obtained for a

24 CHAPTER 3. SYSTEM DESIGN

Figure 3.3: The topology of the device localization component

Figure 3.4: An example for RSS measurements obtained for a static device over a period
of five minutes using an Ubertooth sensor

static device over a period of five minutes. This example illustrates the large amounts of
high-frequency, high-variance noise that must be taken into account when working with
this type of data. While part of the noise can be attributed to inaccuracies of the sensor,
a significant amount of of disturbance originates from the effects of multipath fading, i.e.
a signal may travel along multiple paths towards a sensor that diverge from the most
direct path, the line of sight. This effect is caused, for example, by reflections of the
signal on surfaces in the surroundings of the target device and the sensor. It makes the
RSS a difficult value to work with since the distribution of this noise is not Gaussian, an
assumption that many filtering and smoothing approaches work under. The main goal of
this step in the processing pipeline is, therefore, the elimination of the noise caused by
multipath fading and the conversion of the noise distribution to a Gaussian one.

Existing research suggests that the noisy parts of the RSS values correspond to the lower
set of values in the RSS distribution (cf. Figure 3.5). In [25], a unidirectional outlier
filter is found to be effective. It eliminates values that deviate from the maximum value
by a certain degree. [22] determines the maximum to be the most effective filter for the
pre-processing of RSS values for localization purposes. This makes sense on an intuitive
level. The signal that travels along the line of sight, i.e. that is not influenced by

3.6. DEVICE LOCALIZATION 25

Figure 3.5: RSS values that are potentially useful (green) and those that are probably
caused by multipath fading (red)

multipath fading, covers the smallest distance and thus arrives at the sensor with the
highest strength. A combination of a maximum filter followed by a mean filter is, thus,
used in BluePIL.

To account for the streaming paradigm described in Section 3.4, these filters work in a
purely retrospective way, i.e. work with a local subset of the data that only uses values
from the past. To this end, a rolling time window is implemented that only contains
values from the interval [tc − ∆t, tc], with tc the current time and ∆t the window size,
which is determined by the update frequency of the sensor, and the expected variance in
the data.

3.6.2 Signal Strength Merger

To compute a location from the pre-processed signal strength values, a strategy has to be
determined to merge the data streams for the four sensors used in this thesis. This part
of the processing pipeline deals with two problems: First, the update cycles may differ
between sensors, i.e. it cannot be assumed that all sensors will have the same amount
of data available at a specific point in time. Second, the data delivered by the sensors
may be fairly sparse. This may be due to the quality and capabilities of the sensors
themselves, due to environmental factors or due to characteristics of the target device.
The goal of this step is to deal with these problems, taking into account the streaming
paradigm implemented for BluePIL.

Interpolation is able to help with both the problem of differing update cycles and sparsity
of data. In general, we build upon the assumption that the update cycles of the individual
sensors are short enough to legitimize the linear interpolation between two data points
as a valid estimation of the true state of the system. To enable the inference of RSS

26 CHAPTER 3. SYSTEM DESIGN

values at a certain point in time through interpolation, measured values must be available
preceding and succeeding said point. The signal strength merger will, therefore, delay the
emission of a value from a sensor until data is available from all other sensors before and
after the point in time where the value was received. Algorithm 3.1 shows the method
used to achieve this and is explained briefly in the following.

The main while block (Lines 3-21) gets executed as long as data is available from the
streams for the four sensors. We first check whether there has been a value registered
for the sensor previously (Lines 5-6). If so, we check for all value sets that are waiting
to be emitted whether they are missing a value for the sensor (Line 10). If they do, we
interpolate a value linearly using the last and the current value-timestamp combination
(Line 11). If there are no values missing from the value set, we emit it (Lines 12-14).
We then store the current value for the next iteration (Line 16). Once at least one value
has been registered for each sensor, we create a new value set to be stored as a waiting
emission (Lines 17-20).

This algorithm ensures that the data, which is required to make inferences about the
state of other sensors, is available at the point of emission of each individual sensor.
This increases the accuracy and plausibility of our computed data points. It is superior
to trivial strategies, for example using the last available value, in this regard. It does,
however, disagree with the real-time requirements to some degree, changing BluePIL into
what can be described as a near-real-time system. Considering that the delay introduced
by the merger component will be small, as long as the sensors update frequently, this is a
worthwhile trade-off.

3.6.3 Localization Algorithm

The evaluation of the related work in the topic of device localization (cf. Subsection 2.2.2)
shows that all existing approaches rely on some sort of calibration or collaboration with
the target device, e.g. to receive signals emitted by beacons or to be used in advance
to calibrate the channel parameters. Since BluePIL needs to be completely passive to
satisfy the goals defined for this thesis, this is impossible in our case. Our information
is limited to the signal strengths that we can detect on an external sensor from any
ongoing Bluetooth connection that we can passively eavesdrop on. This rules out any
fingerprinting-based approaches, since they require the creation of a radio map with the
devices involved beforehand, leaving the path-loss-model-based approaches. They too,
however, suffer from a problem: The log-distance path loss model (cf. Subsection 2.1.7)
requires parameters n and RSSC to be defined beforehand in order to calculate a distance
from a signal strength value. Based on existing research [27] [25], it is viable to set n to
a fixed value based on the environment BluePIL is working in, as long as this does not
change drastically. n is dependent on environmental factors and does not vary between
devices. The issue with RSSC , however, is not so easy to solve. Transaction strengths may
vary between Bluetooth devices. Due to adaptive power control, they may even change
over time for the same device [4]. The choice of a fixed value for RSSC is, therefore, not
an option.

3.6. DEVICE LOCALIZATION 27

Algorithm 3.1: The signal strength merger algorithm for four sensors

// A set containing the values last received for each sensor

1 lastValues ← {null, null, null, null};
// A list of incomplete value sets waiting for emission

2 waitingEmissions ← ∅ ;
// Repeat the following until the sensors are stopped

3 while A sensor has data to deliver do
4 value, timestamp, sensorIndex ← ReceiveData() ;
5 last ← lastValues[sensorIndex] ;

// We cannot interpolate values unless there is a previous value

6 if last is not null then
7 lastValue, lastTimestamp ← last ;

// Check all value sets that are still missing values

8 for waiting in waitingEmissions do
9 waitingValues,waitingTimestamp ← waiting ;

// Interpolate a value if it is missing from the value set

10 if waitingValues[sensorIndex] is not null then
11 waitingValues[sensorIndex] ←

Interpolate(lastValue, lastTimestamp, value, timestamp,waitingTimestamp)
;

// Emit the waiting emission if there are no values missing

12 if waitingValues does not contain null then
13 Emit(waiting) ;
14 waitingEmissions ← waitingEmissions − waiting ;

15 end

16 lastValues[sensorIndex] ← {value, timestamp} ;
// Add new waiting emissions once we have data for all sensors

17 if lastValues does not contain null then
18 newValues ← {null, null, null, null} ;
19 newValues[sensorIndex] ← value ;
20 waitingEmissions ← waitingEmissions + {timestamp, newValues} ;

21 end

28 CHAPTER 3. SYSTEM DESIGN

To approach this, a method was designed that dynamically estimates the location of a
Bluetooth device, and the necessary channel parameters of the path loss model. With k
the number of sensors, (xi, yi) the location of the i-th sensor, (x, y) the location of the
target device and di the distance between the i-th sensor and the target device, we can
define the following multilateration problem (cf. Subsection 2.1.6):

(x − xi)2 + (y − yi)2 = d2i , i ∈ 1..k (3.1)

Since we cannot compute di from the path loss model directly due to the issues mentioned
before, we solve the path loss model equation for distance and then combine it with the
multilateration problem above.

RSS(d) = RSSC − 10n log(d)

d = 10
RSSC−RSS(d)

10n

(3.2)

(x − xi)2 + (y − yi)2 = 10
RSSC−RSS(di)

5n , i ∈ 1..k (3.3)

We can now define a non-linear set of k minimizable equations in terms of x, y and RSSC ,
with RSSC the calibration signal strength 1 m away from the target device and RSSi the
RSS measurement for the i-th sensor.

fi(x, y, RSSC) = (x − xi)2 + (y − yi)2 − 10
RSSC−RSSi

5n
!
= 0, i ∈ 1..k (3.4)

This corresponds to a problem that can be solved using a non-linear optimization algo-
rithm. BluePIL uses Levenberg-Marquardt (LM), an iterative minimizer that can be de-
scribed as a combination of the Steepest Descent and the Gauss-Newton methods [37] [38].
With p = (x, y, RSSC), our parameter vector, we try to determine the vector p

+
where

fi(p+) is minimal for all i. LM works through a local linearization of the non-linear set of
equations at a certain area of interest according to the statement f(p+ δp) ≈ f(p)+Jδp,
where J is the Jacobian matrix. For our set of equations, the Jacobian matrix is defined
as:

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1

∂x

∂f1

∂y

∂f1

∂RSSC

⋮ ⋮ ⋮
∂fi
∂x

∂fi
∂y

∂fi
∂RSSC

⋮ ⋮ ⋮
∂fk
∂x

∂fk
∂y

∂fk
∂RSSC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(x − x1) 2(y − y1) − log10

5n
∗ 10

RSSC−RSS1
5n

⋮ ⋮ ⋮

2(x − xi) 2(y − yi) − log10

5n
∗ 10

RSSC−RSSi
5n

⋮ ⋮ ⋮

2(x − xk) 2(y − yk) − log10

5n
∗ 10

RSSC−RSSk
5n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.5)

With the Jacobian defined, LM then iteratively adjusts p by δp in a descending direction
until convergence is reached. To ensure that this convergence is to a global minimum, an
appropriate starting point p0 has to be defined. For the problem posed, it is important

3.6. DEVICE LOCALIZATION 29

that the minimum is found in the area of overlap of all sensors. To guaratee this, p0 is
chosen at the center of the area spanned by the sensors and with a value for RSSC that
approximates the range of values that we expect from the relevant device class.

p0 = (∑i xi
k

,
∑i yi
k

,−30) (3.6)

Due to the limited resources available for this thesis, the problem is generally limited to
four sensors, i.e. k = 4. The localization algorithm may therefore also be referred to as a
quadlateration algorithm in the following.

3.6.4 Location Filter

After having calculated a location in the previous step, we can now use our knowledge
of the motion of a person carrying a Bluetooth device to improve these results further.
Kalman filters are a popular method for the improvement of positioning calculations
and have been used in many path-loss-based localization approaches [25] [24] [13]. They
combine models for the state of the system, the knowledge of previous observations and
models for the observation of states to estimate the most plausible state of a system that
we can only capture through noisy observations (cf. Subsection 2.1.5).

To use a Kalman filter, we need to define the following: the state transition model Fk,
the observation model Hk, the process noise covariance Qk and the observation noise
covariance Rk. We define our system’s state using a simple kinematic model with (xk, yk)
the current location’s coordinates, and (ẋk, ẏk) the current velocity in x and y direction.
The state vector, designed in a similar manner to [24], is then defined as follows:

sk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk
ẋk
yk
ẏk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.7)

In accordance with Equation 2.4 and with ∆tk the time difference to the last state estimate
sk−1, we can then define the following state transition matrix:

Fk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ∆tk 0 0
0 1 0 0
0 0 1 ∆tk
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.8)

This expresses a belief that the subject carrying a Bluetooth device will have moved in
the direction gathered from the last measurement and that the velocity of said movement
will not have changed abruptly. For our process noise covariance, we will use discrete
white noise as is suggested in [11] and [39] under the assumption that the noise is a

30 CHAPTER 3. SYSTEM DESIGN

Wiener process, i.e. is independent from previous time intervals and constant over a time
interval. With the variance σ

2
v = 0.001 [11], it is defined as follows:

Qk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

4
∆t

4
k

1

2
∆t

3
k 0 0

1

2
∆t

3
k t

2
k 0 0

0 0 1

4
∆t

4
k

1

2
∆t

3
k

0 0 1

2
∆t

3
k t

2
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗ σ
2
v (3.9)

We will use the values obtained from the previous step in the pipeline as our observations,
i.e. the location estimates calculated through our modified multilateration method. We,
therefore, use the following observation vector:

zk = [xk
yk

] (3.10)

In accordance with Equation 2.5, we then define the following observation matrix to
express that the observation corresponds to the x and y coordinates of our state vector:

Hk = [1 0 0 0
0 0 1 0

] (3.11)

Finally, we design the observation noise covariance matrix. The values used were deter-
mined experimentally and work well with sensors used for this thesis. Using a different
set of sensors, they might have to be adjusted.

Rk = [0.3 0
0 0.3

] (3.12)

Using the Kalman filter described allows us to improve the values calculated in the pre-
vious step using the information contained in previous values and our knowledge of the
system dynamics. It eliminates outliers and smooths the results simultaneously, using
plausibility as a determining factor.

Chapter 4

Implementation

4.1 Hardware

Four Ubertooth One devices (cf. Subsection 2.1.4) are used as sensors for the BluePIL
system. As per the assumptions made for BluePIL (cf. Section 3.3), it allows access to
the lower layers of the BTBR/EDR protocol at a comparatively low cost. This enables
the device identification via the LAP (cf. Section 3.5) through the AC, which is normally
hidden behind a layer of abstraction when using a conventional Bluetooth module. It is
not limited to the passive monitoring of the advertisement channels, and allows the manual
selection of any of the the 79 BTBR/EDR channels. Packets can then be captured from
said channel, are decoded on the sensor and then transferred to the host system via USB
along with some meta-information, such as RSS values. Project Ubertooth includes both
firmware for the sensor as well as C applications and libraries to run on the host system
as a counterpart.

Four Asus Tinkerboards [40] were used to take up the role of the nodes (cf. Section 3.4).
The Tinkerboard includes a Rockchip RK3288 System on Chip (SoC) with a Quad-Core
1.8 GHz processor, 2 GB of dual-channel DDR3 memory in a standard single board
computer (SBC) form factor which provides plenty of processing power for the BluePIL
use case. USB 2.0 ports allow it to interface with the Ubertooth sensors and an integrated
802.11 b/g/n Wi-Fi chip enables the interconnection with the sink requiring minimal
cabling work. The Tinkerboards were configured with armbian [41], a low-profile Debian
Linux version optimized for ARM development boards.

For reasons of convenience and availability, a 2017 MacBook Pro [42] was used as the
sink (cf. Section 3.4). With a 3.3 GHz dual-core Intel i5 processor and 16 GB of DDR3
memory, its processing resources are more than sufficient for its role in the BluePIL system.
Other lower-performance and smaller-form-factor options, such as the Asus Tinkerboard,
could be valid replacements.

The final component in the BluePIL hardware setup was a GL-iNet MiFi Smart Router,
a low-profile, portable WiFi access point and router. It was used to create a wireless

31

32 CHAPTER 4. IMPLEMENTATION

network for the nodes and the sink to communicate over. USB tethering with an An-
droid smartphone provided internet access for time-synchronization and deployment of
the application.

4.2 Software

The BluePIL system described in Chapter 3 was implemented as an asynchronous, dis-
tributed Python 3 application. Python brings along with it built-in facilities for concur-
rency and asynchronous processing using the asyncio library as well as a rich ecosystem of
libraries for numerical mathematics and data analysis. The fact that it is an interpreted
language also simplifies the deployment over multiple different architectures since the code
does not have to be re-compiled with every change. The application consists of two main
modules, the node component and the sink component, running on separate devices, that
are interconnected through an internet protocol (IP) network. The system is designed,
however, in a way that allows the application to be run on a single device as well, should
there be need. The sink and the nodes are set up in a master-slave architecture, where all
configuration is performed via the master, who in turn configures the nodes autonomously.
This ensures that the configuration and initialization of the application are as easy as pos-
sible. As described in Section 3.4, the streaming paradigm was implemented throughout
the application to enable the real-time evaluation of incoming data from the sensors.

4.2.1 Data Streams

The streaming architecture described in Section 3.4 was implemented using Streamz, a
Python framework for the management of continuous streams of data that includes op-
erators for transformations, branching, joining, flow control, etc. and can be used in an
asynchronous manner[43]. Streamz is extensible through the definition of custom opera-
tors, where each operator receives items from one or more upstream operators, performs
some operation on them and emits zero or more items downstream. Operators are im-
plemented as Python classes and may, therefore, include state. The BluePIL processing
pipeline was then implemented as a combination of built-in and custom Streamz operators.

Figure 4.1 shows a slightly simplified version of the data streams implemented in the
BluePIL application and will be explained here. The output of the sensor is emitted from
the stream source (1). A set of operators is then set up that extracts the LAP values
from the packets in the stream, such that each unique value is only emitted once (2). For
each of the unique LAP values emitted by the stream, a new set of operators is connected
to the stream source (3). This set of operators will perform the location computation
according to Section 3.6, first filtering the signal strength values, then merging them with
the values from other sensors, computing a location and finally filtering said location. As
a last step, the results of the computation can be stored.

In practice, the setup is sightly more complicated since the streams pass through multiple
devices, i.e. the nodes and the sink. The streaming architecture, however, is still valid

4.2. SOFTWARE 33

Figure 4.1: A slightly simplified representation of the data streams used in the BluePIL
implementation

overall. Theoretically, the data could pass through the network at any connection between
two stream operators without impeding the functionality of the architecture. The concrete
implementation of the connection between nodes and sink is explained in Subsection 4.2.3.

4.2.2 Interface with the Sensor

The Ubertooth sensor is connected to the host system via USB. Project Ubertooth in-
cludes a host application and libraries written in C, that interface with the Ubertooth,
send control signals to it and receive captured packets. While this was useful in the initial
experimentation with the sensor, a Python implementation was needed to profit from the
advantages offered by this language (cf. Section 4.2). Some work porting the Ubertooth
host code to Python has already been done and is available publicly [44]. The imple-
mentation is, however, incomplete, outdated, and in some cases faulty. It was, therefore,
used as a starting point, corrected and added to for BluePIL by reverse-engineering the
Ubertooth host C libraries. The main areas that needed improvement were the following:

De-Serialization: The publicly-available implementation only offered incomplete de-
serialization of the packets from the sensor, i.e. some values in the binary data received
via USB were not made available. This was amended by matching the interpretation
of the binary data to the format known from the Ubertooth firmware code, where the
corresponding USB packet is defined as a C struct (cf. Listing 4.1). This was accomplished
using the Python struct library which only requires the definition of the data types used
in the C struct and the byte order.

RSS Values: The RSS values received from the Ubertooth in a USB packet (cf. List-
ing 4.1: rssi_max, rssi_min, rssi_avg) tend to be unusable without further processing.

34 CHAPTER 4. IMPLEMENTATION

Listing 4.1: USB packet format defined in the Ubertooth firmware [7]

typedef struct {
u i n t 8 t pkt type ;
u i n t 8 t s t a t u s ;
u i n t 8 t channel ;
u i n t 8 t c lkn h igh ;
u in t32 t c lk100ns ;
i n t 8 t rs s i max ; // Max RSSI seen w h i l e c o l l e c t i n g

// symbols in t h i s packe t
i n t 8 t r s s i m i n ; // Min . . .
i n t 8 t r s s i a v g ; // Average . . .
u i n t 8 t r s s i c o u n t ; // Number o f . . .
u i n t 8 t r e s e rved [2] ;
u i n t 8 t data [DMA SIZE] ;

} usb pkt rx ;

While the Ubertooth can sense an RSS value, it has no way of directly linking it to a
packet. Therefore, it merely aggregates the RSS values measured over the time it was
collecting symbols for a packet. This, however, leaves a certain amount of inaccuracy
behind, creating RSS values that do not correspond to the actual environment. The
Ubertooth host code, therefore, includes an additional aggregation step, choosing the
maximum rssi_max over 10 detected packets as the true value. The RSS values are also
unitless when they are received from the sensor and have to be converted to a value in
decibel-milliwatts (dBm) using a piecewise linearization of a curve defined for the CC2400
wireless transceiver.

Asynchronous Version: For the Python implementation of the Ubertooth host code to
be able to deal with multiple sensors simultaneously, an asynchronous version of the data
stream from the sensor had to be created. So far, it had been implemented as a Python
generator expression. The conversion involved upgrading the source from Python 2 to
Python 3. An asynchronous generator expression could then be used to accomplish the
task at hand.

Clock Drift: During experimentation with the Ubertooth sensor, a few problems with
the transmitted clock values were discovered. Apart from frequent overflows of the cor-
responding field in the USB packet (cf. Listing 4.1: clk100ns), a noticeable drift of the
values compared to the device clock on the host system was apparent. The decision was,
therefore, made to include the host system clock at the time when the USB packet was
received as a timestamp in the sensor data stream.

In addition to the changes made to the existing implementation, a strategy for channel
selection had to be defined. To account for the possibility that certain channels may be
avoided during an active connection due to Bluetooth’s adaptive frequency hopping, the
Ubertooth sensors are configured to switch between channels randomly during operation.

4.2. SOFTWARE 35

Figure 4.2: The available channels between the node and the sink

4.2.3 Node-Sink Communication

The communication between the nodes and the sync was implemented using Python asyn-
cio tcp streams [45]. This allowed it to be quick to implement, asynchronous and perfor-
mant. Three unidirectional channels were created for each node-sink combination, as is
illustrated in Figure 4.2: The configuration bus going from sink to node and the registra-
tion and the data bus going from node to sink. This was accomplished by opening a TCP
port on every node to receive configuration messages and two TCP ports for every node
on the sink to receive registration and data messages. The configuration bus is used for
the implementation of the master-slave architecture (cf. Section 4.2). Any information
needed by the node to connect the registration and data buses to the sink, and signals to
start or stop sending data are dispatched via this channel. The registration bus is used to
send any notice of newly detected LAPs to the sink. This information is needed to set up
the corresponding endpoints for the data stream. The data bus is used to send the data
stream, i.e. the filtered signal strength values for any LAPs detected.

A sequence diagram of the interactions between sink, node and sensor is shown in Fig-
ure 4.3. The system is initialized by the sink sending a configuration message containing
the start signal and information on the connection parameters to the node. The node
in turn messages the sensor, which then starts emitting captured packets. As long as
the system is not stopped, the following is then repeated: The node receives captured
packets from the sensor. It performs some first pre-processing on the packet. If the LAP
encountered is not known, the node sends a registration message to the node containing
the newly discovered LAP. This enables the sink to prepare the incoming data stream for
dealing with said LAP value. The packet is then encapsulated into a data message and
sent to the sink, who processes it further. Once the system is stopped, the sink sends
another configuration message to the node, which contains the stop signal. The node then
stops the sensor and the system is terminated.

Finally, Figure 4.4 shows the connections between node and sink in the context of the
streams introduced in Section 4.2.1. Both the stream of unique LAPs and the positioning
streams have to be transmitted intermittently over the registration bus and the data bus
respectively. The stream of unique LAPs is branched, such that it can be used to spawn
new positioning streams on the node and the sink. The positioning streams for individual
LAPs are merged for the transmission over the data bus and split again after. This avoids
having to create an excessive amount of channels between the node and the sink in order
to maintain scalability when compared to spawning a new channel for each LAP detected.
The merging and splitting are, however, transparent to the system overall, and the general
streaming architecture described in Section 3.4 remains valid.

36 CHAPTER 4. IMPLEMENTATION

Figure 4.3: Sequence diagram summarizing the communication between the sink, a node
and a sensor

Figure 4.4: Excerpt of Figure 4.1 showing where streams are interrupted and transmitted
between node and sink

4.2. SOFTWARE 37

4.2.4 Device Identification and Localization

The approach described in [21] and selected for this thesis for device identification has been
implemented in libbtbb [46], a Bluetooth baseband decoding Library, as part of Project
Ubertooth. Similar to the interface with the Ubertooth (cf. Subsection 4.2.2), a partial
port of said C library to Python has been implemented [44] and was consequently deployed
in BluePIL. Only few modifications to this initial work were necessary. Specifically, the
code contained an error where the entire USB packet was searched for the AC, whereas it
was only necessary to search the Bluetooth packet content contained in the USB packet
(cf. Listing 4.1: data). This caused no faults in the data but produced inefficiencies that
are significant, given that a large number of potential packets has to be processed on the
host system.

It was important to ensure that the device localization pipeline was as efficient as possible,
given that this is computationally the most complex part of the BluePIL system. The
implementation, therefore, relies heavily on scipy and numpy [47], two associated libraries
that include optimized and tested versions of a wide range of numerical routines used in
scientific computing. They manage to be fast thanks to the usage of non-interpreted lan-
guages, such as C, C++ or Fortran, for time-critical parts of the algorithms included and
are, thus, used for the computation of the Levenberg-Marquardt algorithm (cf. Subsec-
tion 3.6.3). The filterpy Library [48] is used for the iterative evaluation of the Kalman
filter. It also relies on numpy and scipy in the background and, therefore, brings along
the same advantages. The interval used for the sliding window operations (cf. Subsec-
tion 3.6.1) was set to 20s, a value appropriate to the update frequency of the Ubertooth
in the given environment.

38 CHAPTER 4. IMPLEMENTATION

Chapter 5

Evaluation

5.1 Experiment 1: Evaluation of the Device Locali-

zation Method

5.1.1 Experimental Setup

A first experiment was conducted to evaluate the effectiveness of the device localization
method designed for this thesis (cf. Section 3.6). The experiment was performed both
in an indoor and an outdoor space to compare the influence of these two environments.
The scenes are shown in Figure 5.1. The indoor experiment was performed in a room in
the author’s apartment, that was at the time empty. This was ideal since it allowed to
keep the amount of signal interference as low as possible and other indoor spaces were
unavailable due to the outbreak of a global pandemic. The outdoor experiment was done
on a private terrace in a residential area of Zürich. This allowed to decrease the amount of
signal interference from multipath fading since more space was available. A 4.2 m× 2.9 m
area was designated to perform the experiments in. An Uberooth One sensor was placed
at each of the four corners of this space and connected to a MacBook Pro via a 2.5 m USB
cable. Nine points were then defined where static measurements would be carried out.
This setup is summarized in Figure 5.2. The measurement points were chosen mostly on
one side of the space. This was deemed sufficient due to the symmetry of the setup. A
distance of at least one meter was maintained to the sensors for all measurements.

The experiment was then conducted as follows: A Nokia 7 Plus smartphone was connected
to a pair of JBL Reflect Flow Bluetooth headphones. Music was streamed over said
connection throughout the experiment to generate traffic that could be captured passively.
In order to keep the conditions as realistic as possible, the headphones were placed in a
test subject’s ears and the smartphone in their front right pant pocket. The test subject
then stood for 5 min at each of the nine points shown in Figure 5.2. The four Ubertooth
One sensors were configured to record any packets that could be intercepted during that
time interval.

39

40 CHAPTER 5. EVALUATION

(a) Outdoor Environment (b) Indoor Environment

Figure 5.1: The spaces chosen for the first experiment

Figure 5.2: The setup for Experiment 1

5.1. EXPERIMENT 1 41

True Point (m) Mean Estimated Mean Error Mean No.
Point (m, rounded) (m, rounded) Measurements/Sensor

(2.10, 0.00) (2.121, 0.254) 0.398 439.5
(1.05, 0.00) (1.705, 1.538) 1.703 354.75
(3.15, 0.00) (2.204, 0.591) 1.150 397.5
(2.10, 1.45) (1.635, 0.480) 1.153 334.0
(1.05, 1.45) (1.059, 0.716) 0.855 306.5
(3.15, 1.45) (2.479, 0.423) 1.302 284.0
(0.00, 1.45) (1.090, 0.983) 1.195 132.75
(1.05, 0.73) (1.118, 1.294) 0.835 285.75
(2.10, 0.73) (1.645, 0.840) 0.769 244.75

Overall Mean Error: 1.040 Overall Mean No. Meas./Sensor: 308.83

Table 5.1: Results from the outdoor environment in Experiment 1

This experiment used an initial static version of the localization method described in
Section 3.6, i.e. the analysis of the data was done after the fact, not using the streaming
system described in Section 3.4. This allowed for simplifications regarding the merging
of the data sets from individual sensors. The streaming interpolation method used in the
final processing pipeline could be omitted and the data could be merged using a static
interpolation and re-sampling process. While this initial approach differs slightly from
the final system, it does not invalidate the results of this experiment as an evaluation of
the device localization method.

This experiment also included an evaluation of the filtering methods used in the BluePIL
processing pipeline, namely the method used for signal strength filtering (cf. Subsec-
tion 3.6.1) and location filtering (cf. Subsection 3.6.4). The following variants were
included for signal strength filtering: a simple rolling mean filter, a rolling maximum
followed by a rolling mean filter, and a rolling maximum followed by a rolling median
filter. With regards to location filtering, the improvement gained by the Kalman filter
was analyzed.

5.1.2 Results

Tables 5.1 and 5.2 show the results of the outdoor and indoor experiments. The average
location estimation, the average localization errors, and the average number of measure-
ments per sensor for the Nokia smartphone’s LAP are shown. Data for the point (2.1, 1.45)
is missing in the results from the indoor experiments. This is due to the failure of one of
the sensors that was only noticed after the completion of the experiment.

Overall, the positioning accuracy in both experiments was fairly similar, with an average
error of 1.04 m and 1.061 m for the outdoor and the indoor experiments respectively. The
error values ranged from 0.398 m to 1.703 m for the outdoor and 0.612 m to 1.856 m for the
indoor experiment. While the overall sensor performance was quite similar in the indoor
and the outdoor experiment, collecting around one measurement per second, it was more
stable in the indoor environment where the mean number of measurements per sensor for

42 CHAPTER 5. EVALUATION

True Point (m) Mean Estimated Mean Error Mean No.
Point (m, rounded) (m, rounded) Measurements/Sensor

(2.10, 0.00) (1.798, 0.826) 0.888 258.5
(1.05, 0.00) (1.695, 1.692) 1.856 253.25
(3.15, 0.00) (3.193, 1.629) 1.718 206.25
(2.10, 1.45) – – –
(1.05, 1.45) (0.942, 1.522) 0.612 231.0
(3.15, 1.45) (2.761, 1.965) 0.671 299.5
(0.00, 1.45) (0.556, 1.238) 0.682 249.75
(1.05, 0.73) (1.118, 1.412) 0.822 190.75
(2.10, 0.73) (1.931, 1.809) 1.239 228.0

Overall Mean Error: 1.061 Overall Mean No. Meas./Sensor: 293.63

Table 5.2: Results from the indoor environment in Experiment 1

Signal Strength Filtering Location Filtering Mean Error (m, rounded)

Mean Kalman 1.043
Max + Mean Kalman 1.040
Max + Median Kalman 1.094
Max + Mean – 1.050

Table 5.3: Comparison of filtering methods in the outdoor environment in Experiment 1

the Nokia smartphone’s LAP ranged from 190.75 to 299.5 compared to 132.75 to 439.5 in
the outdoor case. Both sets of results show some outliers in the upper range of the error
values, most notably point (1.05, 0.00) for the outdoor experiment and points (1.05, 0.00)
and (3.15, 0.00) for the indoor experiment.

Tables 5.3 and 5.4 show the comparison of filtering methods for the outdoor and indoor
experiments respectively. The analysis of the signal strength filtering methods confirms
the findings mentioned in [22], establishing the maximum as the most effective filtering
method, albeit by a small margin. Results show that the combination of a rolling max-
imum followed by a rolling mean outperforms other signal strength filtering approaches
tested, i.e. a rolling mean filter and a maximum-median combination. This supports
the hypothesis described in Subsection 3.6.1 regarding the effects of multipath fading on
RSS values. Results also support the effectiveness of the Kalman filter in the location
filtering step. It is shown to improve the overall positioning accuracy in both the indoor
and the outdoor experiments. While this improvement is relatively small concerning the
overall mean localization error, a visual inspection of the location estimates shows the
Kalman filter’s true value. Figure 5.3 contains an example from the outdoor experiment,
which will be used to illustrate this. The localization results without Kalman filtering (cf.
Subfigure 5.3a) exhibit a number of implausible outliers and an artifact where a series of
points diverges from the prediction mean. The version with Kalman filtering (cf. Sub-
figure 5.3b) removed the outliers and converted the predictions in the artifact to a path
that is more probable to correspond to the movement of a person carrying a Bluetooth
device, i.e. a coherent motion in a certain direction.

5.1. EXPERIMENT 1 43

Signal Strength Filtering Location Filtering Mean Error (m, rounded)

Mean Kalman 1.075
Max + Mean Kalman 1.061
Max + Median Kalman 1.082
Max + Mean – 1.067

Table 5.4: Comparison of filtering methods in the indoor environment in Experiment 1

(a) Localization without Kalman filtering

(b) Localization with Kalman filtering

Figure 5.3: An illustrative example for the differences between localization with and
without Kalman filtering from Experiment 1

44 CHAPTER 5. EVALUATION

Figure 5.4: The setup for static measurements in Experiment 2, Part 1

5.2 Experiment 2: More Challenging Conditions &

Evaluation of the System Design

5.2.1 Experimental Setup

A second experiment was designed to evaluate the BluePIL device localization method
under more challenging conditions than the first experiment and to evaluate the system’s
performance in its final streaming architecture. A 5 m × 5 m space was designated to
perform the experiment in, located in the same outdoor environment as the corresponding
part of Experiment 1 (cf. Figure 5.1a). An Ubertooth One sensor was placed at each
corner of the space, connected to an Asus Tinkerboard. A MacBook Pro was used to
control these nodes, as is described in Chapter 4. The experiment was then performed in
two parts:

A first step aimed to repeat Experiment 1 under more challenging conditions. 32 equally
spaced points were chosen in the 5 m × 5 m space. They are shown in Figure 5.4. As in
Experiment 1, a test subject holding a Nokia smartphone, which was streaming audio to
a pair of JBL Bluetooth headphones, traversed these points, resting at each one for one
minute. During this minute, data was captured by the Ubertooth sensors. This data was
then analyzed ex-post with the same static version of the pipeline used in Experiment 1.

The goal of the second step was to test the system in its full streaming implementation,
as described in Section 3.4. To this end, five points were chosen in the 5 m×5 m space, as

5.2. EXPERIMENT 2 45

Figure 5.5: The setup for static measurements in Experiment 2, Part 2 and the movement
between points

is shown in Figure 5.5. Again, the Nokia smartphone and the JBL headphones were used
to stream audio over Bluetooth. The near-real-time positioning pipeline was then run for
15 minutes. During this time, the test subject covered each of the five points, resting at
each point for two minutes and taking a maximum of one minute for the change between
points. One minute of buffering time was included at the beginning. The Points were
traversed according to the following order: (1, 1) → (1, 4) → (4, 1) → (4, 4) → (2.5, 2.5).

5.2.2 Results

Experiment 2 revealed concerns with the Ubertooth sensors used. Most importantly,
the performance regarding number of packets captured deteriorated significantly from
Experiment 1. During the first part of the experiment, the number of packets captured
per second and per sensor was reduced to about 0.38 compared to 1.0 from before. This
created issues in the location computation, especially in the first part of the experiment:
Due to the decreased number and the fact that the captured packets were not evenly
spread throughout the time interval, it occurred that, for some of the points, there was
no overlap between the points in time of the RSS measurements. Consequently, it was
impossible to merge the RSS value streams between sensors. Only points that produced a
sufficient overlap of a minimum of ten seconds were, therefore, analyzed for the first part
of the experiment.

Table 5.5 shows the results for the first part of the experiment. It displays an obvious

46 CHAPTER 5. EVALUATION

True Point (m) Mean Estimated Mean Error Mean No.
Point (m, rounded) (m, rounded) Measurements/Sensor

(0, 2) (2.203, 2.426) 2.244 20.25
(1, 0) (1.438, 1.681) 1.737 35.0
(1, 2) (1.720, 1.888) 0.729 36.0
(2, 4) (3.232, 4.619) 1.379 30.0
(3, 1) (1.243, 1.738) 1.905 17.25
(4, 1) (4.429, 2.255) 1.326 22.0
(4, 2) (3.193, 1.876) 0.816 19.25
(4, 3) (4.378, 3.073) 0.385 21.5
(4, 4) (4.806, 2.629) 1.590 26.75
(5, 4) (2.292, 2.787) 2.967 25.0

Overall Mean Error: 1.508 Overall Mean No. Meas./Sensor: 25.3

Table 5.5: Results for Experiment 2, Part 1

worsening of the results compared to the first experiment with an overall mean error of
1.508 m, around 0.5 m more than before. While this may be attributed in part to the
increase in area spanned by the sensors, the sparsity of the data delivered by the sensors
is suspected to be at the root of these issues, given that only ten out of the 32 points
evaluated delivered sufficient data to compute a localization in the first place. With
an overall average of 25.3 measurements per sensor, the amount of data received was
significantly lower than in the first experiment, even when considering only the points
that delivered sufficient data for localization. Going from 0.385 m to 2.967 m, the range
spanned by the mean errors of the individual results is also significantly higher than in
the first experiment.

Table 5.6 and Figure 5.6 show the results for the second part of the experiment. It is
noticeable that the streaming processing pipeline handles the sparsity of sensor measure-
ments better than the individual evaluations performed in part one of the experiment.
This is mostly due to the fact that the processing stream is able to use values for inter-
polation that lie outside the time intervals defined as resting periods at each point. The
results are more accurate than those for the first part of the experiment but worse than
those for Experiment 1 with an overall mean error of 1.406 m. It should be noted, how-
ever, that the mean error value for point (4, 1) forms an outlier, differing from the next
lower value by 1.057 m, more than five times the difference between any other two points
(0.198 m). This corresponds to a pattern that was already observed in Experiment 1.

5.2. EXPERIMENT 2 47

(a) Results for point (1, 1) (b) Results for point (1, 4)

(c) Results for point (4, 1) (d) Results for point (4, 4)

(e) Results for point (2.5, 2.5)

Figure 5.6: The results for Experiment 2, Part 2

48 CHAPTER 5. EVALUATION

True Point (m) Mean Estimated Mean Error No. Localizations
Point (m, rounded) (m, rounded)

(1, 1) (0.989, 1.942) 1.263 36
(1, 4) (1.160, 3.108 1.255 33
(4, 1) (3.465, 3.188) 2.320 26
(4, 4) (3.227, 3.766) 1.065 26
(2.5, 2.5) (3.257, 1.703) 1.129 22

Overall Mean Error: 1.406 Mean No. Localizations: 28.6

Table 5.6: Results for Experiment 2, Part 2

5.3 Experiment 3: Evaluation of Bluetooth Utiliza-

tion in a Real-World Scenario

5.3.1 Experimental Setup

A Third and final experiment was designed to evaluate the frequency of detectable Blue-
tooth usage within a random group of people. The experiment was performed at the
Reloading Live conference, a showcase of how live events can take place in a safe fashion
in the context of the SARS-CoV-2 pandemic [49]. Sensors were installed at one of the
exponents’ stands. This setup is illustrated in Figure 5.7. No further stands were located
within a distance of around 3 m around the stand where the experiment was performed.
The same Ubertooth One, Asus Tinkerboard combination as in Experiment 2 was used.
Due to logistical problems at the site, only three sensors could be used to collect data.
Running the full positioning pipeline was, therefore, not possible. Instead, the sensors
would simply record all captured packets and compute their LAPs. They could then be
analyzed ex-post, using the sensors range as the limit for the detection of a device. The
sensors were configured to record over an interval of three hours. To account for non-
mobile devices, such as parts of the location’s infrastructure, LAPs that appeared over a
timespan of more than one hour were filtered out, as were LAPs that were detected for
no more than one second.

To validate the number of LAPs detected by the Bluetooth sensors, it was then compared
to data collected by a Xovis in-store analytics system installed on the premises. It uses
Xovis PC2S stereo cameras as 3D sensors to detect people and produce statistics, such as
dwell or customer frequencies [50]. Among the metrics collected is a count of the people
within the range of the camera within discrete time intervals of several lengths, making it
ideal for the comparison with the Bluetooth data. The Xovis sensor was attached to the
ceiling approximately at the center of the stand.

5.3.2 Results

The number of detected LAPs were aggregated over 15 minute intervals. Figure 5.8 shows
a comparison of the number of people counted using the Xovis system to the number of

5.3. EXPERIMENT 3 49

Figure 5.7: The setup for Experiment 3 at a stand at the Reloading Live conference

Sensor Correlation Coeff. Total No. LAPs Counted

1 −0.001136 60
2 0.148932 30
3 0.215421 39
merged 0.139848 24

Total No. People Counted: 38

Table 5.7: Results for Experiment 3

LAPs detected during said intervals. Table 5.7 contains the total number of LAPs counted
per sensor and the correlation coefficient between the number of LAPs and number of
people counted. For the merged results, a LAP was only counted if it appeared in all
three sensors. In summary, little to no correlation exists between the two data sets. This
indicates that people at the Reloading Live conference generally did not carry mobile
devices with them that were actively using a Bluetooth connection. The total number
of LAPs counted diverged from the total number of people counted especially for sensor
1. This may have been because this sensor was closest to the edge of the space used
for the conference and therefore the ”backstage” area (located on the left of the stand in
Figure 5.7), where people belonging to the conference staff may have caused additional
false detections. For the other two sensors, the numbers were closer, especially for sensor
3, which also shows the highest correlation coefficient. One hypothesis which explains this
is that sensor 3 was both far away enough from the ”backstage” area to avoid interference
caused by the conference personnel, and from the entrance to avoid detecting people who
did not actually enter the stand.

50 CHAPTER 5. EVALUATION

(a) Results for sensor 1 (b) Results for sensor 2

(c) Results for sensor 3 (d) Results for all sensors merged

Figure 5.8: Scatterplot comparing the number of people to the number of LAPs counted
over 15 minute intervals in Experiment 3 for each sensor

5.4. DISCUSSION 51

5.4 Discussion

The three experiments provide a good overview over the performance, the potential and
the limitations of the BluePIL system. Experiment 1 showed that the device localization
method is able to produce results at around 1 m accuracy on average both in indoor
and outdoor spaces without the prior calibration of the system to estimate RSSC and
in a completely passive manner, setting it apart from existing approaches. Results for
the indoor space were slightly worse, which may be explained by the higher amounts of
noise from multipath fading due to the more constrained dimensions. The first part of
Experiment 2 did not show the same level of success. The decreased timespan allocated
for each measurement combined with the deteriorated performance of the sensors led to
large parts of the data being unusable. The performance for the remaining data points
was significantly worse than in the first experiment. The second part of the second
experiment, however, showed the effectiveness of the streaming architecture, most notably
the signal strength merger component, which dealt well with the additional sparsity of
signal strength measurements encountered. The localization performance was good, apart
from a single outlier, a pattern which was also observed during the first experiment. The
results are comparable to existing research, which is pleasing given that the BluePIL
system estimates locations and channel parameters simultaneously.

The existence of negative outliers in the localization results in both experiments warrants
discussion. An inspection of the raw data revealed that these outliers were not caused by
a failure at some point in the processing pipeline, but were already present in the data
received from the sensors. A plausible explanation for this is that environmental factors,
or possibly a combination thereof, may have lead to the RSS values not representing the
location of the test subject accurately. The experiments took place in a residential area
of Zürich, some of them outdoors. Consequently, influencing factors, such as background
noise, the topology of the space, temperature, humidity, etc., could not be controlled and
may have led to disturbance in the signal. The test subject carrying the test devices may
itself have had an effect on the signal strengths measured, as is suggested by the investi-
gation of the influence of the human body on RSS measurements in [28]. The Ubertooth
sensors used present another possible explanation since the accuracy and consistency of
the RSS values they deliver is unknown.

The deterioration of sensor performance in Experiment 2 presented a further challenge.
Since the environment was identical to the outdoor space used in the first experiment and
the frequency of measurements was lower regardless of the distance from the sensor, these
two factors do not explain the degradation. One potential explanation could be the change
in weather conditions. While the first experiment took place in spring, the second one
was performed in mid-summer, with temperatures exceeding 30

◦
C on an asphalt surface.

The sensors may have overheated, leading to the decreased frequency and lower accuracy
of measurements in the radio components. Existing research suggests a strong influence
of operating temperature on RSS measurements for chips very similar to the one used in
the Ubertooth One [51]. The unpredictability of the results may have been exacerbated
by shade reaching some of the sensors over the duration of the experiment, breaking the
assumption that all four sensors exhibit the same radio characteristics. This hypothesis
could also explain the better performance in the second part of the experiment, which was

52 CHAPTER 5. EVALUATION

executed at a later time on the same day, when temperatures were lower and the entire
environment was covered by shade.

Experiment 3 showed that the prevalence of active Bluetooth connections was low in
the scenario inspected. This can be explained by the fact that visitors of the conference
were seldom actively using their Bluetooth devices (e.g. headphones or wearables), since
they were engaged in conversation or otherwise occupied. Passively captured Bluetooth
packets are, therefore, not a suitable identifier for people in this scenario. Further research
is needed to assess the applicability in other scenarios, such as shops, train stations,
museums, etc., where a higher rate of usage of Bluetooth devices can be expected.

Comparing the BluePIL system to the requirements described in Section 3.2, the following
statements can be made:

R1 The system should be completely passive: The requirement is satisfied. The
system requires no calibration or collaboration with the devices tracked.

R2 The system should be able to identify individuals based on a Bluetooth
signal: The requirement is satisfied. The system identifies individuals using the
LAP from passively captured packets.

R3 The system should be able to localize individuals based on a Bluetooth
signal: The requirement is satisfied. The system localizes individuals based on
passively captured Bluetooth packets and provides localization accuracies between
ca. 1 m and 1.4 m on average.

AR1 The system should be able to work with low-performance hardware: The
requirement is satisfied. The system performs well on the low-cost, low-performance
Asus Tinkerboard devices used and did not run into any bottle-necks. More perfor-
mant sensors may, however, improve the overall accuracy and consistency.

AR2 The system should be suited for a cloud-based environment: The require-
ment is satisfied. The flexible streaming architecture enables the system to move
any part of the pipeline to the cloud. As is, it produces data with minimal overhead
and, therefore, minimal cost for processing, transmitting and storing in a cloud-
based environment.

AR3 The system should produce results in real time: The requirement is partially
satisfied. The system produces results in near-real-time, optimizing for the trade-off
between improvement of the data accuracy and real-time evaluation.

AR4 The system should be easy to use and require a minimal amount of con-
figuration: The requirement is satisfied. The only configuration required is the
installation of the sensors and the recording of their locations. Everything else is
set up automatically.

Chapter 6

Summary and Conclusion

This thesis approaches the problem of passively tracking the identities and locations of
Bluetooth devices. An examination of existing research showed that, while a variety of
systems exist for both the topic of Bluetooth device identification and device localization,
a fully passive method is, so far, lacking. This is the case especially for the area of de-
vice localization where approaches based on fingerprinting, as well as those based on a
path loss model require prior calibration using a target device. BluePIL is a distributed,
near-real-time, streaming system that uses a node-sink topology. It defines a data pro-
cessing pipeline that accomplishes the tasks of identification and localization through
passively captured BTBR/EDR packets in several steps, i.e. device identification, signal
strength filtering, signal strength merging, the localization algorithm and location filter-
ing. BluePIL is based on a Python implementation able to run on low-cost hardware and
requiring minimal setup, since most configuration is handled automatically. The BluePIL
system was then evaluated in three experiments. The first of which showed that the de-
vice localization method is sound and accurate, producing results with an accuracy of
around 1 m in a 12 m

2
area. The second experiment evaluated the system design overall

and tested the localization method under more challenging conditions. It showed that the
streaming architecture selected for the system is valid and that it is able to localize devices
with an accuracy of 1.4 m in a 25 m

2
area. Both experiments showed negative outliers in

the localization results that worsened the overall outcome. The cause of these outliers is
unknown but may be found in the sensors used or the environment. A third experiment
investigated the prevalence of detectable Bluetooth utilization at a trade show and showed
that it is not sufficient in order to be used for people counting based on passively captured
signals. Overall, the BluePIL system fulfills the requirements determined for this thesis
and the additional requirements gathered from a concrete, real-world use case.

6.1 Future Work

This thesis produces a variety of possibilities for future research. The system described
uses four sensors to accomplish the task of device identification and localization over a
limited range. The addition of further sensors could allow for either the extension of said

53

54 CHAPTER 6. SUMMARY AND CONCLUSION

range or for the improvement of the localization accuracy. While the algorithms used for
filtering and localization are theoretically capable of working with more than four mea-
surements, approaches to extend the possible range would have to include strategies for
the selection of the most useful measurements during the signal strength merger stage.
The individual components of the data processing pipeline could be exchanged for alter-
native methods and compared to the existing system in their effectiveness. This could
include sensor fingerprinting approaches based on physical characteristics of the signal for
the identification step or location fingerprinting approaches as a localization algorithm.

During the evaluation, a variety of problems with the Ubertooth One sensors used were
discovered. Running the system with an alternative sensor could yield information on the
source of the outliers discovered in the localization results. In addition, a more precise
sensor may enable an improvement of the accuracy of the system overall. The repetition
of Experiments 1 and 2 in a more controllable environment could deliver further insights
into the performance of BluePIL. The indoor and outdoor spaces used in the evaluation
where somewhat limited in this regard, being constrained in topology and exhibiting a
large amount of background noise and environmental factors, that may have influenced
the results. A large indoor space, such as an underground parking garage or a gymnasium,
may provide more isolation.

Finally, a repetition of Experiment 3 in different scenarios would provide insight into the
prevalence of detectable Bluetooth utilization in other environments than the trade show
examined. Places where a higher amount of Bluetooth usage is expected, such as a train
station or a study room, would be especially interesting.

Bibliography

[1] Bluetooth SIG, “Market update 2020,” Bluetooth SIG, 2020. [Online]. Available:
https://www.bluetooth.com/bluetooth-resources/2020-bmu/ (Accessed 20.3.2020).

[2] Livealytics, “Livealytics - we make live experience measurable,” https://www.
livealytics.com, 2020, accessed: 2020-07-26.

[3] B. B. Rodrigues, “Inosuisse funds cooperation between the university of zurich
and livealytics,”https://www.csg.uzh.ch/csg/en/news/PasWITS-Research-Project0.
html, Mar. 2020, accessed: 2020-07-24.

[4] Bluetooth core specification v5.2, Bluetooth SIG, Dec. 2019.

[5] Bluetooth SIG, “Vision and mission,” https://www.bluetooth.com/about-us/vision/,
2020, accessed: 2020-07-17.

[6] IEEE, “Ieee standard for local and metropolitan area networks: Overview and archi-
tecture,” IEEE Std 802-2014 (Revision to IEEE Std 802-2001), pp. 1–74, 2014.

[7] Great Scott Gadgets,“Ubertooth,”https://github.com/greatscottgadgets/ubertooth,
2020, revision: c2cc373, accessed: 2020-07-19.

[8] G. Carle and C. Schmitt, Eds., Proceedings of the Seminars Future Internet (FI)
and Innovative Internet Technologies and Mobile Communications (IITM), Winter
Semester 12/13, ser. Network Architectures and Services (NET). Munich, Germany:
Chair for Network Architectures and Services, Department of Computer Science,
Technische Universität München, Feb. 2013, vol. NET-2013-02-1.

[9] Hacker Warehouse, “Ubertooth one,” https://hackerwarehouse.com/product/
ubertooth-one/, 2020, accessed: 2020-08-18.

[10] V. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello, “Bayesian filtering for
location estimation,” IEEE pervasive computing, vol. 2, no. 3, pp. 24–33, 2003.

[11] R. Labbe, “Kalman and bayesian filters in python,” https://
github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python, commit
91f8010bee8cd7e07bdca338ecd90c3dd7735e92, 2014.

[12] Y. Kim and H. Bang, “Introduction to kalman filter and its applications,” in Intro-
duction and Implementations of the Kalman Filter. IntechOpen, 2018.

55

https://www.bluetooth.com/bluetooth-resources/2020-bmu/
https://www.livealytics.com
https://www.livealytics.com
https://www.csg.uzh.ch/csg/en/news/PasWITS-Research-Project0.html
https://www.csg.uzh.ch/csg/en/news/PasWITS-Research-Project0.html
https://www.bluetooth.com/about-us/vision/
https://github.com/greatscottgadgets/ubertooth
https://hackerwarehouse.com/product/ubertooth-one/
https://hackerwarehouse.com/product/ubertooth-one/
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

56 BIBLIOGRAPHY

[13] G. Li, E. Geng, Z. Ye, Y. Xu, J. Lin, and Y. Pang, “Indoor positioning algorithm
based on the improved rssi distance model,” Sensors, vol. 18, no. 9, p. 2820, 2018.

[14] J. B. Andersen, T. S. Rappaport, and S. Yoshida, “Propagation measurements and
models for wireless communications channels,” IEEE Communications Magazine,
vol. 33, no. 1, pp. 42–49, 1995.

[15] M. Ryan, “Bluetooth: With low energy comes low security,” in Presented as part of
the 7th {USENIX} Workshop on Offensive Technologies, 2013.

[16] J. K. Becker, D. Li, and D. Starobinski, “Tracking anonymized bluetooth devices,”
Proceedings on Privacy Enhancing Technologies, vol. 2019, no. 3, pp. 50–65, 2019.

[17] C. Zuo, H. Wen, Z. Lin, and Y. Zhang, “Automatic fingerprinting of vulnerable ble iot
devices with static uuids from mobile apps,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp. 1469–1483.

[18] J. Huang, W. Albazrqaoe, and G. Xing, “Blueid: A practical system for bluetooth de-
vice identification,” in IEEE INFOCOM 2014-IEEE Conference on Computer Com-
munications. IEEE, 2014, pp. 2849–2857.

[19] O. Whitehouse, “War nibbling: Bluetooth insecurity,” white paper, stake Inc., Oct,
2003.

[20] M. Herfurt and C. Mulliner, “Blueprinting: Remote device identification based on
bluetooth fingerprinting techniques,” in 21st Chaos Communication Congress (21C3),
2004.

[21] D. Spill and A. Bittau, “Bluesniff: Eve meets alice and bluetooth.” WOOT, vol. 7,
pp. 1–10, 2007.

[22] R. Faragher and R. Harle, “Location fingerprinting with bluetooth low energy bea-
cons,” IEEE journal on Selected Areas in Communications, vol. 33, no. 11, pp. 2418–
2428, 2015.

[23] A. Bekkelien, M. Deriaz, and S. Marchand-Maillet, “Bluetooth indoor positioning,”
Master’s thesis, University of Geneva, 2012.

[24] Y. Zhuang, J. Yang, Y. Li, L. Qi, and N. El-Sheimy, “Smartphone-based indoor
localization with bluetooth low energy beacons,” Sensors, vol. 16, no. 5, p. 596, 2016.

[25] S. Chai, R. An, and Z. Du, “An indoor positioning algorithm using bluetooth low
energy rssi,” in 2016 International Conference on Advanced Materials Science and
Environmental Engineering. Atlantis Press, 2016.

[26] J.-H. Huh and K. Seo, “An indoor location-based control system using bluetooth
beacons for iot systems,” Sensors, vol. 17, no. 12, p. 2917, 2017.

[27] P. Dickinson, G. Cielniak, O. Szymanezyk, and M. Mannion, “Indoor positioning of
shoppers using a network of bluetooth low energy beacons,” in 2016 International
Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 2016, pp.
1–8.

BIBLIOGRAPHY 57

[28] Y. Wang, X. Yang, Y. Zhao, Y. Liu, and L. Cuthbert, “Bluetooth positioning using
rssi and triangulation methods,” in 2013 IEEE 10th Consumer Communications and
Networking Conference (CCNC). IEEE, 2013, pp. 837–842.

[29] J. Du, J.-F. Diouris, and Y. Wang, “A rssi-based parameter tracking strategy for con-
strained position localization,” EURASIP Journal on Advances in Signal Processing,
vol. 2017, no. 1, pp. 1–10, 2017.

[30] M. Versichele, L. De Groote, M. C. Bouuaert, T. Neutens, I. Moerman, and N. Van de
Weghe, “Pattern mining in tourist attraction visits through association rule learning
on bluetooth tracking data: A case study of ghent, belgium,” Tourism Management,
vol. 44, pp. 67–81, 2014.

[31] A. Alhamoud, A. A. Nair, C. Gottron, D. Böhnstedt, and R. Steinmetz, “Presence
detection, identification and tracking in smart homes utilizing bluetooth enabled
smartphones,” in 39th Annual IEEE Conference on Local Computer Networks Work-
shops. IEEE, 2014, pp. 784–789.

[32] L. Schauer, M. Werner, and P. Marcus, “Estimating crowd densities and pedestrian
flows using wi-fi and bluetooth,” in Proceedings of the 11th International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and Services, 2014, pp.
171–177.

[33] DP-3T, “Dp3t - decentralized privacy-preserving proximity tracing,” https://github.
com/DP-3T/documents, 2020, accessed: 2020-07-27.

[34] Google, “Covid-19-benachrichtigungen: Wie wir die gesundheitsbehörden durch tech-
nologie bei der eindämmung von covid-19 unterstützen,” https://www.google.com/
covid19/exposurenotifications/, 2020, accessed: 2020-07-27.

[35] J. Brunner, “Optimizing the collection and processing of wi-fi probe requests,” Com-
munication Systems Group – University of Zurich, Independent Study, Jun. 2020.

[36] International Data Corporation (IDC), “Smartphone market share,” https://www.
idc.com/promo/smartphone-market-share/vendor, 2020, accessed: 2020-07-30.

[37] M. I. Lourakis et al., “A brief description of the levenberg-marquardt algorithm im-
plemented by levmar,” Foundation of Research and Technology, vol. 4, no. 1, pp. 1–6,
2005.

[38] K. Madsen, H. Nielsen, and O. Tingleff, “Methods for non-linear least squares prob-
lems (2nd ed.),” p. 60, Jan. 2004.

[39] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with applications to track-
ing and navigation: theory algorithms and software. John Wiley & Sons, 2004.

[40] Asus, “tinker board – tinker your way to the future,” https://www.asus.com/us/
Single-Board-Computer/Tinker-Board/, 2020, accessed: 2020-08-04.

[41] armbian, “armbian – linux for arm development boards,” https://www.armbian.com,
2020.

https://github.com/DP-3T/documents
https://github.com/DP-3T/documents
https://www.google.com/covid19/exposurenotifications/
https://www.google.com/covid19/exposurenotifications/
https://www.idc.com/promo/smartphone-market-share/vendor
https://www.idc.com/promo/smartphone-market-share/vendor
https://www.asus.com/us/Single-Board-Computer/Tinker-Board/
https://www.asus.com/us/Single-Board-Computer/Tinker-Board/
https://www.armbian.com

58 BIBLIOGRAPHY

[42] Apple, “Macbook pro (13-inch, 2017, four thunderbolt 3 ports) – technical specifica-
tions,” https://support.apple.com/kb/sp755?locale=en US, 2020, accessed: 2020-08-
04.

[43] M. Rocklin, “Streamz,” https://streamz.readthedocs.io/en/latest/, 2020, revision
de166a40, accessed: 2020-08-04.

[44] R. Holeman, “Pyubertooth,” https://github.com/hackgnar/pyubertooth, 2020, revi-
sion 080bc6f, accessed: 2020-08-04.

[45] Python Software Foundation, “asyncio – asynchronous i/o,”https://docs.python.org/
dev/library/asyncio.html, 2020, version 3.10.0a0, accessed: 2020-08-04.

[46] Great Scott Gadgets,“libbtbb,”https://github.com/greatscottgadgets/libbtbb, 2020,
revision: 6c7b9ff, accessed: 2020-07-19.

[47] The SciPy community, “Scipy.org – documentation,” https://www.scipy.org/docs.
html, 2020, accessed: 2020-08-04.

[48] R. R. Labbe, “Filterpy,” https://asyncio.readthedocs.io/en/latest/index.html, 2020,
version 1.4.4, accessed: 2020-08-04.

[49] MCH Group, “Reloading live: Experiencing the live event of the future,” https://
www.scipy.org/docs.html, 2020, accessed: 2020-08-11.

[50] Xovis, “Pc2s,” https://www.xovis.com/en/products/detail/pc2s/, 2020, accessed:
2020-08-11.

[51] C. A. Boano, N. Tsiftes, T. Voigt, J. Brown, and U. Roedig, “The impact of temper-
ature on outdoor industrial sensornet applications,” IEEE Transactions on Industrial
Informatics, vol. 6, no. 3, pp. 451–459, 2009.

https://support.apple.com/kb/sp755?locale=en_US
https://streamz.readthedocs.io/en/latest/
https://github.com/hackgnar/pyubertooth
https://docs.python.org/dev/library/asyncio.html
https://docs.python.org/dev/library/asyncio.html
https://github.com/greatscottgadgets/libbtbb
https://www.scipy.org/docs.html
https://www.scipy.org/docs.html
https://asyncio.readthedocs.io/en/latest/index.html
https://www.scipy.org/docs.html
https://www.scipy.org/docs.html
https://www.xovis.com/en/products/detail/pc2s/

Abbreviations

AA Access Address
AC Access Code
BTBR Bluetooth Basic Rate
BTEDR Bluetooth Enhanced Data Rate
BTLE Bluetooth Low Energy
CAC Channel Access Code
CID Company Identifier
CRC Cyclic Redundancy Check
EUI-48 48-bit Extended Unique Identifier
FHSS Frequency Hopping Spread Spectrum
GFSK Gaussian Frequency-Shift Keying
HCI Host Controller Interface
HEC Header Error Code
IoT Internet of Things
IP Internet Protocol
ISM Industrial, Scientific and Medical
KPI Key Performance Indicator
LAP Lower Address Part
LFSR Linear-Feedback Shift Register
LM Levenberg-Marquardt
LSB Least Significant Bit
MAC Media Access Control
MSB Most Significant Bit
NN Neural Network
OUI Organizationally Unique Identifier
RSSI Received Signal Strength Indicator
SBC Single Board Computer
SIG Special Interest Group
SoC System on Chip
TCP Transmission Control Protocol
TDD Time Division Duplex
USB Universal Serial Bus
UUID Universally Unique Identifier

59

60 ABBREVIATONS

List of Figures

2.1 Possible combinations of BTBR/EDR and BTLE controllers [4] 6

2.2 Possible piconet topologies in BTBR/EDR: a point-to-point connection
(a), a point-to-multipoint connection (b) and a scatternet (c) [4]. 7

2.3 The composition of the Bluetooth address [4] 7

2.4 The generic structure of a BTBR packet [4] 8

2.5 The composition of the BTBR access code [4] 8

2.6 The generic structure of a BTLE Uncoded PHY packet [7] 9

2.7 The composition of the Ubertooth One device [9] 10

2.8 A planar trilateration problem . 13

3.1 The BluePIL system topology on a high level 21

3.2 The chosen deployment for the BluePIL system 22

3.3 The topology of the device localization component 24

3.4 An example for RSS measurements obtained for a static device over a period
of five minutes using an Ubertooth sensor 24

3.5 RSS values that are potentially useful (green) and those that are probably
caused by multipath fading (red) . 25

4.1 A slightly simplified representation of the data streams used in the BluePIL
implementation . 33

4.2 The available channels between the node and the sink 35

4.3 Sequence diagram summarizing the communication between the sink, a
node and a sensor . 36

4.4 Excerpt of Figure 4.1 showing where streams are interrupted and transmit-
ted between node and sink . 36

61

62 LIST OF FIGURES

5.1 The spaces chosen for the first experiment 40

5.2 The setup for Experiment 1 . 40

5.3 An illustrative example for the differences between localization with and
without Kalman filtering from Experiment 1 43

5.4 The setup for static measurements in Experiment 2, Part 1 44

5.5 The setup for static measurements in Experiment 2, Part 2 and the move-
ment between points . 45

5.6 The results for Experiment 2, Part 2 . 47

5.7 The setup for Experiment 3 at a stand at the Reloading Live conference . . 49

5.8 Scatterplot comparing the number of people to the number of LAPs counted
over 15 minute intervals in Experiment 3 for each sensor 50

List of Tables

2.1 Classes of BTBR/EDR devices [4] . 6

2.2 Classes of BTLE devices [4] . 8

2.3 Related work on Bluetooth device identification 14

2.4 Related work on Bluetooth device localization 16

5.1 Results from the outdoor environment in Experiment 1 41

5.2 Results from the indoor environment in Experiment 1 42

5.3 Comparison of filtering methods in the outdoor environment in Experiment 1 42

5.4 Comparison of filtering methods in the indoor environment in Experiment 1 43

5.5 Results for Experiment 2, Part 1 . 46

5.6 Results for Experiment 2, Part 2 . 48

5.7 Results for Experiment 3 . 49

63

64 LIST OF TABLES

Appendix A

Contents of the Repository

The code repository is structured as follows:

• Root Directory: Contains Python scripts for running the node and the sink applica-
tions, the BluePIL configuration file, and the requirements file for the applications’
dependencies

• data Directory: Contains the raw data collected during the experiments

• data_analysis Directory: Contains the code used to analyze the experimental data

• node Directory: Contains the code for the BluePIL node application

• sink Directory: Contains the code for the BluePIL sink application

• node_setup: Contains scripts and files for the setup of the node application on an
Asus Tinkerboard running Armbian

65

66 APPENDIX A. CONTENTS OF THE REPOSITORY

Appendix B

Installation Guidelines

B.1 Installation of Dependencies

BluePIL requires Python v3.8 to be installed. A virtual environment capable of executing
both the host and the sink code can then be installed by running the following set of
commands

python3 -m venv env

source env/bin/activate

pip install -r requirements.txt

Dependencies for the BluePIL node code to run on an Asus Tinkerboard running Armbian
can be installed by running the script node_setup/install.sh on the device. Note that
an Ubertooth One sensor must be connected to each one of the Tinkerboards via USB.

B.2 Running the Application

The BluePIL node application can be started by running python run_node.py. The sink
application can be started by running python run_sink.py. In order for the communi-
cation between node and sink to work properly, the node application has to be started on
each node before starting the sink application.

The application can be configured using the file bp.json. The following options are
available for the parameter mode:

• RAW: Configures the nodes to collect raw data without running the positioning
pipeline and stores it on the sink

67

68 APPENDIX B. INSTALLATION GUIDELINES

• RAW_LOCAL: Configures the nodes to collect raw data without running the positioning
pipeline and stores it on the nodes. In this mode, the nodes may run detached from
the sink and the sink application exits after sending a start command to the nodes.
It may then be run again to stop the execution.

• POSITIONING: runs the full positioning pipeline and stores the results on the sink

In addition, for each node (node1-4), the following parameters must be configured:

• ip: The IP address of the node

• loc: The location of the node in x and y coordinates

	Zusammenfassung
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Goals
	Methodology
	Thesis Outline

	Background and Related Work
	Background
	Bluetooth
	Bluetooth Basic Rate / Enhanced Data Rate (BTBR/EDR)
	Bluetooth Low Energy (BTLE)
	Project Ubertooth
	Kalman Filtering
	Multilateration
	The Log-Distance Path Loss Model

	Related Work
	Device Identification
	Device Localization
	Applications

	System Design
	Design Considerations
	Requirements
	Assumptions
	High-Level System Architecture
	Device Identification
	Device Localization
	Signal Strength Filter
	Signal Strength Merger
	Localization Algorithm
	Location Filter

	Implementation
	Hardware
	Software
	Data Streams
	Interface with the Sensor
	Node-Sink Communication
	Device Identification and Localization

	Evaluation
	Experiment 1: Evaluation of the Device Localization Method
	Experimental Setup
	Results

	Experiment 2: More Challenging Conditions & Evaluation of the System Design
	Experimental Setup
	Results

	Experiment 3: Evaluation of Bluetooth Utilization in a Real-World Scenario
	Experimental Setup
	Results

	Discussion

	Summary and Conclusion
	Future Work

	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	Contents of the Repository
	Installation Guidelines
	Installation of Dependencies
	Running the Application

