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Abstract

Ethereum Smart Contracts unterstützen eine Vielzahl an Funktionen und erlauben es,
Universalapplikationen zu erstellen. Da sie jedoch von Menschen erstellet werden, sind
sie fehleranfällig. Werden Schwachstellen ausgenutzt, kann dies riesige finanzielle Verluste
nach sich ziehen, wie etwa bei DAO und Parity Wallet. Darüber hinaus verunmöglicht
die Unveränderbarkeit der Blockchain, dass Fehler behoben werden können, nachdem der
Contract implementiert wurde. Daher haben wir eine Sicherheitsanalyse des Blockchain
Signaling Systems (BloSS), das für die kooperative Abwehr von Distributed Denial-of-
Service (DDoS) Attacken entwickelt wurde, durchgeführt.

Das Ziel der vorliegenden Studie ist es, für Ethereum Smart Contracts typische Schwach-
stellen zu identifizieren, unterschiedliche Tools für automatisierte Sicherheitsaudits anzu-
wenden, einen Sicherheitsaudit von BloSS Contracts durchzuführen und schliesslich die
Ergebnisse zu analysieren und zu vergleichen. Im Rahmen einer Literaturrecherche haben
wir sechs generelle Schwachstellen für die Blockchain und 41 Schwachstellen für Ethe-
reum und Solidity identifiziert. Des Weiteren wurden fünf Sicherheitstools benutzt und
deren Resultate hinsichtlich der Klassifizierung von Schwachstellen und richtig und falsch
positiven Ergebnissen untersucht. Ausserdem hat der Sicherheitsaudit zu 57 Funden ge-
führt, und jedem Fund wurde ein Risikolevel gemäss NIST Guide for Conducting Risk
Assessments zugeordnet. Schliesslich wurden die Resultate des Sicherheitsaudits mit den
Funden der Sicherheitstools verglichen.

Obwohl Sicherheitsaudits von Smart Contracts ein schnell wachsender Forschungsbereich
sind, mangelt es an Standartisierung. Zum Zeitpunkt der Niederschrift dieser Bachelorar-
beit gibt es weder eine universell anerkannte Klassifizierung von Schwachstellen, noch eine
Anleitung für die Durchführung manueller Sicherheitsanalysen von Smart Contracts. Eine
bessere Standartisierung würde jedoch die Kommunikation und den Vergleich unterschied-
licher Studien vereinfachen und junge Spezialisten bei ihren ersten Audits unterstützen.
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Ethereum smart contracts support a wide range of functionality and allow creating general-
purpose applications. However, created by humans, they are error prone. Exploited vul-
nerabilities can result in huge financial losses like in the case of the DAO and Parity wallet.
Besides, due to the immutability of blockchain it is impossible to fix bugs once a contract
is deployed. For this reason, we conducted a security analysis of the Blockchain Signaling
System (BloSS) designed for cooperative defence against Distributed Denial-of-Service
(DDoS).

The current study aims to identify vulnerabilities typical for Ethereum smart contracts,
apply various tools for automated security audit, perform a manual security audit of
BloSS contracts and, finally, analyse and compare the findings. Based on a literature
research, we identified six general blockchain vulnerabilities and 41 Ethereum and Solidity
vulnerabilities. Moreover, we used five security tools and analysed their results regarding
the vulnerabilities classification and true and false positives. The security audit delivered
a list of 57 findings. To each of them, a risk level based on NIST Guide for Conducting
Risk Assessments was assigned. Finally, the results of the security audit were compared
with the security tools findings.

Although security audit of smart contracts is a fast growing field of study, it lacks stan-
dardisation. At the time of writing, there is no universally acknowledged classification
of vulnerabilities or a guide for conducting manual security analysis of smart contracts.
However, an increase in standardisation would make the communication and comparison
of different studies easier and support young professionals in their first audits.
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Chapter 1

Introduction

Blockchain provides a trustworthy, decentralized, and publicly available data storage mak-
ing it an interesting opportunity for organizations to increase business agility and reduce
costs by removing intermediaries in distributed applications (e.g., by involving multiple
and initially non-trusted stakeholders) [1]. The disintermediation characteristic allows,
for example, two or more parties to conduct an exchange upon an agreement without
requiring the presence of a third party acting as an intermediary. Further, the ability
to run program code, which is managed and executed in a blockchain, has extended the
possibilities for the development of new application areas on the blockchain.

It is precisely the important characteristic to disintermediate trust which arouses interest
in the use of blockchain in applications areas beyond FinTech (Finance and Technology).
For example, in the context of a Distributed Denial-of-Service (DDoS) cooperative defense,
blockchain capabilities could be leveraged for signaling attacks as a mitigation requests
across a blockchain network, and serve as an immutable platform for the exchange of
mitigation services defined in smart contracts of different peers [2]. A cooperative network
defense has many benefits, by utilizing other organization’s resources the burden of the
protection can be shared, and defense capabilities can be extended through the different
protection systems participating in the distributed defense.

While many benefits are provided through a cooperative DDoS defense without a central
element coordinating the defense, it also poses many challenges. For example, the lack of
trust to defend other peers can be a hindrance to the design of such system. However, a
reputation and incentives schemes, such as proposed in [3] can be deployed to establish
trust in an environment composed of peers which may often compete against each other.
Incentives are necessary to cover CAPital EXpenditures (CAPEX) to set up communi-
cation infrastructures, including additional hardware and software acquisition costs; and
OPErating EXpenditures (OPEX) are incurred as soon as a mitigation service is in use.
Still, there is no automated way to build a consensus on the quality of a mitigation service
provided by peers in response to a mitigation request [4]. In other words, malicious peers
seeking incentives could accept a mitigation request and not deliver a mitigation service
to obtain the reward. Conversely, a peer that request a mitigation service could deny the
acknowledgment of a valid mitigation service denying the reward to the mitigator.
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2 CHAPTER 1. INTRODUCTION

The main goal of the current bachelor’s thesis is to conduct a security analysis of the
cooperative protocol Blockchain Signaling System (BloSS) defined in [5]. As blockchain
and smart contracts are still rather new technologies, many developers lack knowledge
and experience in these areas [6]. This could be the reason why at least one vulnerability
was found in 46% of all Ethereum smart contracts existing in 2016 [7]. The problem is
that if an attacker exploits a smart contract’s vulnerability, it may lead to huge financial
damage like in the case of the Decentralised Autonomous Organisation (DAO) attack in
2016 with an approximate loss of 60 million USD or Parity wallet which lost 31 million
USD in 2017 [8]. Besides, in contrast to traditional software, it is impossible to debug
smart contracts once they are deployed. As soon as smart contracts are on the blockchain,
they become locked for changes due to the immutability of blockchain. Thus, developers
cannot fix a bug or improve a contract. In order to do so, they would have to kill this
contract and deploy another one. For this reason, it is important to perform security an
audit of smart contracts before the deployment [6].

In addition to conducting a security analysis of BloSS, this bachelor’s thesis aims to pro-
vide an overview of the vulnerabilities typical for Ethereum smart contracts. Besides, our
goals include using and comparing different tools for automated security audit, analysing
and documenting the findings of the security analysis and the security tools results.

The current project consists of four major steps. First of all, we aim to gain a fundamental
knowledge of blockchain, Ethereum, smart contracts and security frameworks such as
Confidentiality-Integrity-Availability (CIA) triad and National Institute of Standards and
Technology (NIST) Guide for Conducting Risk Assessments. This step also includes an
extensive literature research on vulnerabilities in Ethereum smart contracts and tools for
automated security audit. In the second step, we apply previously found security tools to
smart contracts in BloSS in order to get the first impression of their security level. Then,
a manual security audit of the smart contracts will be performed. In this step, we use
CIA triad and a list of previously identified vulnerability types and apply NIST Guide for
Conducting Risk Assessments in order to estimate the risk level of the findings. Finally,
we analyse and compare the security tools findings and the results of the manual security
audit.

The bachelor’s thesis is organised as follows. The next chapter contains the background
information about blockchain and security frameworks. Then, the related work on smart
contracts vulnerabilities and security audit tools are presented. Chapter 4 provides a short
introduction to BloSS and the signaling process. In the following chapter, we describe
our methodology. The findings are presented in Chapter 6. In Discussion, we analyse
the security tools findings regarding true positives and true negatives and compare them
with the results of the security audit. Besides, we discuss advantages and disadvantages
of different tools. In Chapter 8, we describe the difficulties we faced during this project
and the limitations of the current study. The thesis contains also a list of abbreviations
and a short glossary. Finally, there are two appendices. The first one contains a table
matching the security tools findings to the security audit results. Appendix B consists of
five tables. The first four present our analysis of the security tools findings with regard to
vulnerabilities classification and identification of true positives. The last table contains
links to Securify’s reports. The screenshots of the security audit tools findings and their
error messages can be found in our GitHub repository (https://github.com/ytyuri/

https://github.com/ytyuri/Bachelor-s-Thesis---Screenshots/tree/master
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Chapter 2

Background

2.1 Blockchain

Blockchain offers a significant change for a variety of industries where the disintermedia-
tion of trust makes sense. Through a decentralized and immutable data storage, it also
enables the enforcement and verification of exchange assets — when supporting smart
contracts — while changing existing areas by promoting the disintermediation of pro-
cesses involving multiple stakeholders. By removing third parties, less operational costs
and higher business agility are expected.

In general, a blockchain is a list of sequential blocks, which are linked to each other using
block hashes. Blocks consist of two parts: a block header and a block body. The first
one contains different information about the block including a timestamp, a block hash
pointing to the previous block and a hash value for all transactions in the block. The
transactions themselves are stored in the block body [9]. They are hashed in a Merkle
tree, which is a binary tree where a non-leaf node’s hash results from the hashes of its
children. Due to this structure, any inconsistency in the Merkle tree would become visible
in the blockchain [10].

Blockchains use digital signatures based on asymmetric cryptography for transaction val-
idation. Every blockchain participant has a private and a public key. Private keys are
used for signing transactions, while public keys allow their verification [9].

2.1.1 Main Characteristics

The key characteristics of a blockchain include decentralisation, transparency, data avail-
ability, immutability and data integrity. Decentralisation results from the distributed
nature of the blockchain network. All participants (nodes) have the same copy of the
ledger. This helps to increase transparency and ensure data availability [11]. Due to the
hashes linking the blocks to each other, it is impossible to alter a transactional record once

5



6 CHAPTER 2. BACKGROUND

it was added to a block and the block was committed to the blockchain. Thus, the trans-
actions on the blockchain become immutable after a commit. Finally, the immutability of
transactions guarantees the data integrity [12].

Nevertheless, blockchains can have a different level of decentralisation, immutability etc.
depending on their type. Three blockchain types are usually distinguished: private, con-
sortium and public blockchains [12, 9]. Both private and consortium blockchains re-
strict participation in consensus process are, therefore, called permissioned. In a private
blockchain, only members of an organisation can take part in the consensus process.
Therefore, it is the most centralised blockchain type. Consortium blockchains are more
decentralised than private ones as their consensus process is controlled by a pre-selected
group of individuals. Finally, in a public blockchain, any user can join the consensus pro-
cess. Thus, they are permissionless and the most decentralised ones. Public blockchains
also have often a high level of transparency as all the records are visible to any user. In
contrast to them, private and consortium blockchains may implement read restrictions.
Due to the limited number of participants in these blockchains, the transactions in them
can be tampered. As a result, these blockchains are less immutable than public ones. The
number of participants can also affect the blockchain’s efficiency. For this reason, public
blockchains are in general less efficient than private and consortium blockchains [9].

2.1.2 Bitcoin & Ethereum

The idea of a blockchain was first introduced in a white paper about Bitcoin [1] published
on the Internet under the pseudonym of Satoshi Nakamoto in 2008. In contrast to pre-
viously proposed digital currencies (e.g., Mint [13] in 1997), Bitcoin uses a peer-to-peer
network and, therefore, does not require a trusted third party such as a bank [10].

Besides, Satoshi Nakamoto [1] addresses the problem of double-spending. He tries to
prevent malicious users from issuing more than one transaction of the same coin by im-
plementing Proof-of-Work consensus algorithm in Bitcoin. According to Proof-of-Work,
users have to perform heavy computations proving that they are valid members of the
blockchain’s network before verifying a transaction [10]. Another popular blockchain im-
plementing Proof-of-Work is Ethereum. It was introduced by Vitalik Buterin [14] in 2013.
In contrast to Bitcoin, Ethereum is Turing-complete. In other words, it supports any kinds
of calculations including loops [10]. Moreover, Ethereum’s abstract layer allows users to
create their own state transition functions, ownership rules and transaction formats, as
well as to write smart contracts and decentralised applications [14].

As a blockchain, Ethereum is similar to Bitcoin. However, unlike blocks in Bitcoin,
Ethereum blocks contain the most recent state, block number and its difficulty [14]. Be-
sides, Ethereum uses another Proof-of-Work consensus algorithm which is called Ethash.
This algorithm is memory-heavy and, for this reason, less suitable for mining with application-
specific integrated circuits, which has become a big problem for Bitcoin [10, 15]. In the
current bachelor’s thesis, we will focus on Ethereum and its smart contracts.
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2.1.3 Smart Contracts

The concept of a smart contract was known long before the blockchain was first intro-
duced. In 1994 Nick Szabo [16] described a smart contact as “a computerized transaction
protocol that executes the terms of a contract”. According to him, smart contacts should
satisfy common contract conditions, minimize exceptions and help to omit the trusted
intermediary. Moreover, by proposing smart contracts, Nick Szabo aimed to lower fraud
loss, arbitration and transactional and enforcement costs.

In blockchain context, a smart contract is a piece of code, which can be executed by miners
automatically [9]. Smart contracts are heavily used in Ethereum where they are usually
written in high-level Turing-complete programming languages such as Solidity. Smart con-
tracts are then compiled down to a low-level stack-based language called Ethereum Virtual
Machine Code or EVM Code [14]. This is the bytecode which is effectively executed by
the Ethereum Virtual Machine [15].

2.2 Security Frameworks

In this section, we introduce the related security frameworks used in the bachelor’s thesis.

2.2.1 The Confidentiality-Integrity-Availability Triad

The Confidentiality-Integrity-Availability triad (also known as the CIA triad) is one of
the fundamental concepts of information security. As Figure 2.1 shows, it aggregates three
major principles of information security: confidentiality, integrity and availability [17].

Figure 2.1: The CIA Triad. Adapted from [17]

In this framework, confidentiality stands for restricted access to particular information or
functionality. Integrity implies that data is managed and updated correctly and, therefore,
remains accurate over time. Finally, availability means that it is possible to access the
data or functionality any time needed [17].
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2.2.2 NIST Guide for Conducting Risk Assessments

The Guide for Conducting Risk Assessments [18] was developed by the National Institute
of Standards and Technology (NIST) of the U.S. Department of Commerce, and published
as a NIST Special Publication in 2012. Its target audience is risk management profes-
sionals. The framework provides guidelines for each stage of the risk assessment process
including the preparation to the assessment, the risk assessment itself, communication of
the results and maintenance of the risk assessment.

At the first stage, risk management professionals are suggested to identify the purpose
of the risk assessment, define its scope, determine the constraints and assumptions and
find necessary information sources. The second stage concerns the conduction of a risk
assessment consisting of several steps. First of all, the potential threat sources need to
be identified. Based on this information, potential threat events are determined. Then,
different vulnerabilities and conditions that can affect the likelihood that threat events
occur and have an adverse impact need to be inspected. In the next two steps, risk
management professionals estimate the likelihood of the threat events and their potential
negative impact. Both of these factors depend on the previously identified threat sources
and vulnerabilities as well as on the implemented countermeasures. Finally, the risk of
a threat event is determined as a combination of its likelihood and potential impact as
demonstrated in Table 2.1 [18].

Table 2.1: Risk Level Assessment Scale. Adapted from [18]

Level of Impact
Likelihood

Very Low Low Moderate High Very High
Very High Very Low Low Moderate High Very High
High Very Low Low Moderate High Very High
Moderate Very Low Low Moderate Moderate High
Low Very Low Low Low Low Moderate
Very Low Very Low Very Low Very Low Low Low

The resulted risk level indicates the degree to which the threat event is hazardous for
the organisation. The following table describes the expected effect of the threat on the
company’s operations, assets etc. depending on the risk level [18].

Table 2.2: Expected Effect of Different Risk Levels. Adapted from [18]

Risk Level Expected Effect
Very High Multiple severe or catastrophic effects

High Severe or catastrophic effect
Moderate Serious effect

Low Limited effect
Very Low Negligible effect

In general, the NIST Guide for Conducting Risk Assessments supports three risk as-
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sessment approaches: quantitative, qualitative and semi-quantitative. The first one uses
methods and principles relying on numerical values and is especially useful for cost-benefit
analysis. However, its results are often difficult to interpret which makes the communi-
cation with the decision-makers complicated. The second one is based on non-numerical
categories or levels (e.g., high, low) and is prone to subjectivity because the results often
rely heavily on the expert’s individual experiences. Finally, the last approach uses, for
example, bins (e.g., 0-10, 11-20), scales (e.g., 1-10) and other representative numbers. It
combines the benefits of both quantitative and qualitative approaches. The results are
more objective than in the qualitative approach and can be compared with each other.
Moreover, the decision-makers can easily interpret them [18].

Due to the lack of numerical values which could be used for the risk level determination
during the risk assessment, the qualitative risk assessment approach with five levels (very
low – low – moderate – high – very high) is employed in this and following sections.
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Chapter 3

Related Work

3.1 Security Audit & Vulnerabilities in Smart Con-

tracts

One of the first systematic reviews of Ethereum and Solidity vulnerabilities was published
in 2017 by Atzei, Bartoletti, and Cimoli [19]. Overall, they identified and described 12
vulnerabilities dividing them into three categories: Solidity vulnerabilities (call to the
unknown, gasless send, exception disorders, type casts, reentrancy and keeping secrets,),
vulnerabilities related to Ethereum Virtual Machine (immutable bugs, Ether lost in trans-
fer and stack size limit) and general blockchain vulnerabilities (unpredictable state, gen-
erating randomness and time constraints).

In the same year, another classification of vulnerabilities in Ethereum smart contracts was
proposed by Alharby and van Moorsel [20]. However, the scope of their study included
not only security vulnerabilities such as transaction-ordering dependency, timestamp de-
pendency, mishandled exceptions, reentrancy, criminal smart contracts and the lack of
trustworthy data feeds, but also codifying, privacy and performance issues.

Similar to Atzei et al. [19], Praitheeshan et al. [6] distinguish general blockchain vulner-
abilities from the ones typical only for Ethereum and Solidity smart contracts. However,
they put Ethereum and Solidity vulnerabilities together and added one more group of
vulnerabilities – general software security issues. Overall, Praitheeshan et al. distinguish
three groups of smart contract vulnerabilities. The first one consists of blockchain related
vulnerabilities and includes immutability, sequential execution, complexity, transaction
cost and human errors. The second one contains general software security issues (e.g.,
buffer overflow, command injection, poor usability). Finally, the last group is a list of
Ethereum and Solidity related vulnerabilities including reentrancy, transaction-ordering,
timestamp dependency, exception handling, call stack limitation, integer overflow and un-
derflow, unchecked and failed send, suicidal contracts, unsecured balance, use of tx.origin,
unrestricted write and transfer, non-validated arguments, greedy and prodigal contracts
and gas costly patterns.

11
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The most extensive list of vulnerabilities in Ethereum smart contracts was created by
Chen at al. [8] and contains overall 44 security issues (six of them are marked as al-
ready eliminated). The vulnerabilities are distinguished by their location in Ethereum’s
architecture (application layer, data layer, consensus layer, network layer or environment
layer). Besides, Chen at al. divided the vulnerabilities into different categories depend-
ing on their cause. The resulted four major categories include vulnerabilities related to
smart contract programming (e.g., reentrancy, interger overflow and underflow, use of
tx.origin), to Solidity language and toolchain (e.g., Type casts), to Ethereum design and
implementation (e.g., timestamp dependency and generating randomness) and, finally, to
human, usability and networking factors (e.g., weak password, broken access control). At
the time of writing, this is the most comprehensive overview of Ethereum smart contract
vulnerabilities.

Another approach to the classification of vulnerabilities in Ethereum smart contracts was
suggested by Dingman et al. [21]. They applied the NIST Bugs Framework [22] to a
list of known Ethereum smart contacts vulnerabilities. The NIST Bugs Frameworks is
based on the data from Common Weakness Enumeration [23], its clustering Software Fault
Pattens, Semantic Templates and other sources and allows unambiguous classification of
software weaknesses [22]. In order to map smart contract vulnerabilities to the NIST
Bugs Framework, Dingman et al. analysed their cause, attributes and consequences. As
a result, the study presents a master list of smart contract vulnerabilities with matching
categories and classes from the NIST Bug Framework [21].

Finally, some studies focus on describing the most severe vulnerabilities instead of pro-
viding a systematic classification. For example, Luu et al. [7] discuss four vulnerabilities
which can be used to manipulate smart contracts and gain profit by malicious actors.
These vulnerabilities include transaction-ordering dependence, timestamp dependence,
mishandled exceptions and reentrancy. In addition to these four security issues, Dika and
Nowostawski [24] describe other severe vulnerabilities such as the use tx.origin, call stack
depth limitation, external calls, unchecked send, DoS with unexpected revert, blockhash
usage and gasless send.

3.2 Tools for Automated Security Audit

In general, three major types of automated security analysis can be distinguished: static
analysis, dynamic analysis and formal verification. In accordance with the first approach,
the programming code is scanned for vulnerable patterns without its execution. In con-
trast to this method, dynamic analysis is performed in a run-time. This approach simu-
lates the behaviour of an attacker who is trying to find vulnerabilities by inserting ma-
licious code and providing input to the code. Due to this technique, dynamic tools for
automated security audit can identify vulnerabilities missed by static tools. Finally, for-
mal verification methods rely on mathematical formal methods and theorems for the
programming code validation and the prove of vulnerabilities [6].

All the previously described analysis types can deploy different strategies. For example,
the static analysis can be performed on the bytecode using symbolic execution, control
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flow graph construction, pattern recognition and decompilation or direct on the Solidity
code by rule-based analysis and compilation. The dynamic analysis always executes the
bytecode. The possible strategies include the run-time execution trace, transaction graph
construction, symbolic analysis and true positives and false positives validation. Besides,
the formal verification analyses the bytecode with the help of theorem provers and program
logics construction and the Solidity code by translating it to a formal language [6].

The first tool for automated security analysis of smart contracts was presented in the paper
by Luu et al. [7] in 2016 and is called Oyente. It performs static analysis and deploys
a symbolic execution strategy. Symbolic execution (also called abstract interpretation)
was introduced by Cousot and Cousot [25] in 1977. This strategy regards variables as
symbolic expressions and checks if path conditions are satisfiable. As a result, Oyente is
able to detect four types of vulnerabilities: transaction ordering, timestamp dependency,
mishandled exceptions and reentrancy. When the tool was run on the 19’366 existing
at that time Ethereum smart contracts, at least one vulnerability was found in 8’833
contracts which is about 46% of the total number [7].

Another tool using the symbolic execution is Mythril. It was developed by ConsenSys and
presented by Bernhard Mueller [26] at the HITB Security Conference in Amsterdam in
2018. Mythril supports a security analysis of smart contracts not only in Ethereum, but
also in Tron, Quorum, Vechain, Roostock, Hedera, etc. [27]. The tool scans the bytecode
and is able to detect a wide range of vulnerabilities including write to arbitrary storage
location, arbitrary jump with a variable of function type, delegate call, weak randomness,
deprecated opcodes, unprotected Ether withdrawal, exception handling, reentrancy, inte-
ger overflow or underflow, DoS with failed call, suicidal contracts and unchecked return
value. Unlike Oyente, Mythril does not have a Web Graphical User Interface (Web GUI)
and can be only run on the command line [28].

However, there is also a professional version of Mythril called MythX. In contrast to
Mythril, it is not free of charge. Besides, it covers a wider range of vulnerabilities than
Mythril [27]. The list of 37 supported security issues can be found in the Smart Contract
Weakness Classification Repository [29] created and maintained by MythX team. More-
over, MythX can be integrated directly into developer tools such as Remix and Truffle
which allows to perform security analysis continuously during the whole lifecycle of the
project [30].

Another tool for automated security audit of Ethereum smart contracts combines symbolic
execution with formal verification [31]. Securify was developed by ETH Zurich and its
start-up ChainSecurity [32]. Its first version has a Web GUI [32] and detects 18 different
vulnerabilities including reentrancy, transaction-ordering dependency, exception handling
and arguments validation [31]. However, in January 2020, a second version of Securify [33]
was announced [34]. At the time of writing, it supports 38 vulnerabilities and is available
only on the command line [33]. The new list of vulnerabilities is primarily based on the
Smart Contract Weakness Classification Register [29] maintained by MythX team and
ConsenSys. Besides, Security 2.0 analyses Solidity code and not bytecode as the previous
version. Moreover, according to the developers, it is more precise and scalable than the
original tool [34].
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Automated formal verification is also offered by a built-in Solidity static analysis tool in
Remix IDE [24]. At the time of writing, its latest version (0.10.1) was able to identify
seven security issues, five gas-related issues, one ERC20 issue and eight miscellaneous
vulnerabilities. Thus, the tool detects overall 21 different vulnerabilities [35].

In contrast to previously discussed tools, MAIAN [36] performs dynamic analysis. It
deploys symbolic analysis and concrete validation of true and false positives. Instead
of supporting a wide range of security issues, MAIAN focuses on three vulnerabilities:
prodigal, greedy and suicidal contracts [37].

Another dynamic tool for automated security audit of smart contracts was developed
by Trail of Bits and introduced by Mossberg at al. [38] in 2019. Manticore [39] relies
on symbolic analysis of bytecode. It does not have a Web GUI but can be run from the
command line and with Python Application Programming Interface (API) [39]. According
to the information on the command line during the execution (see Figure X), Manticore
detects 12 vulnerabilities including integer overflow, reentrancy, delegatecall and suicidal
contracts.

Finally, some frameworks such as F* Framework [40], formalisation with Isabelle/HOL
proof assistant [41] and FEther [42] implement formal verification analysis. These frame-
works do not search for vulnerabilities as previously described tools but define correctness
and safety properties for smart contracts and, then, prove them. Besides, the frameworks
are semi-automated which means that a lot of manual work is required for their set-up [6].
For this reason, we decided not to discuss them in detail in the current bachelor’s thesis
and to focus on static and dynamic tools for automated security audit of smart contracts.
The overview of these tools is presented in Table 3.1.

Table 3.1: Comparison of Tools for Automated Security Audit

Oyente Mythril MythX Securify
Securify

2.0
Remix MAIAN Manticore

Analysis
Type

Static Static Static Static Static Static Dynamic Dynamic

Strategy
Symbolic
execution

Symbolic
execution

Symbolic
execution

Formal
verification

+
Symbolic
execution

Formal
verification

+
Symbolic
execution

Formal
verification

Symbolic
analysis

+
Concrete
validation

of
true/false
positives

Symbolic
analysis

Number of
Vulnerabilities
in Scope

4 12 37 18 38 21 3 12

Command
Line
Interface

X X X X X X X

Web Graphical
User Interface

X X X X X

Free of Charge
Usage

X X X X X X X
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Blockchain Signaling System

The current bachelor’s thesis aims to perform a security analysis of the Blockchain Sig-
naling System (BloSS) created by Rodrigues et al. [2] in 2017 and then improved and
extended by Andreas Gruhler et al. [3], Dominik Bünzli [43] and Spasen Trendafilov [5].
The main goal of BloSS is to enable collaborative defence against DDoS attacks. Its
latest version contains overall four smart contracts: Protocol, Register, Migrations and
Enums. The first smart contract is the main one in BloSS. It distributes the incentives
between the participants, evaluates their reputation and manages the signaling process in
general. The Register contract was added by Trendafilov [5]. It stores the information
about Protocol contracts, targets and mitigators [5]. Finally, the Migrations contract up-
dates the data about migrations, and Enums contains all possible states of the signaling
process (Request, Approve etc.) and participants’ ratings (Dissatisfied, Positive etc.). In
the following, we provide a simplified description of the signaling process.

The process is initialised when a target which is a victim of a DDoS attack asks a mitigator
for defence. By raising this request, the target changes the process state from Request
to Approve. The initialisation request contains the information about the network and
terms of the deal (the minimal reward, the deadline interval for prove generation etc.) [5].

In the second process step, the chosen mitigator considers these conditions and decides if
the request should be accepted. In case of the negative answer from the mitigator, the
state is changed to Abort. The target can select another mitigator or change the terms
of the deal and ask the same mitigator again [5].

If the mitigator accepts the target’s conditions, the state is updated to Funding. As
soon as the target sends at least the minimal reward defined by the initialisation to the
Protocol, the state is changed to uploadProof, and the funds get locked by the Protocol.
The mitigator needs to upload the proof of work which was done in order to mitigate the
attack. If the deadline interval for uploading the proof is missed, the mitigator gets a
reputation of a lazy network participant and the state is switched to Abort. Otherwise,
the process of rating estimation of the target and the mitigator begins. Unless both
of them are dissatisfied, the signaling process’ new state is Complete. As a result, the
Protocol releases the blocked funds and transfers them as a reward to the mitigator or
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as compensation to the target depending on whether the deadline was met and on the
estimated rating of the participants [5].

However, if both target and mitigator are dissatisfied, the state is changed from upload-
Proof to Escalate. In this scenario, the funds remain locked by the Protocol, and the
target and mitigator have to find an agreement on the payment manually [5].

By using this reputation estimation approach together with the incentive mechanism,
BloSS aims to discourage targets from free-riding and mitigators from false-reporting. In
a long-term scenario, dishonest behaviour of a participant results in poor reputation [3].

Figure 4.1: Signaling Process. From [5]



Chapter 5

Methodology

5.1 General Approach

The current project consisted of four major steps. First of all, we wanted to learn about
the functionality and behaviour of BloSS. For this reason, we deployed the smart contracts
on the Rinkeby testnet in two different ways (with Ganache and with Geth and full node
on the command line) and interacted with them in Remix. Thus, we were able to gain a
deep understanding of the functionality of BloSS.

In the same step, we performed a literature research on the theoretical background of
blockchain, Ethereum and smart contracts, security frameworks such as NIST Guide for
Conducting Risk Assessments and the CIA triad as well as on vulnerability types in
Ethereum smart contracts and tools for automated security audit. As a result, we came
up with two lists of common vulnerabilities based on three most recent studies ([8, 24, 6]).
The first list comprises six vulnerabilities related to blockchain in general: immutabil-
ity, transparency, sequential execution, complexity, transaction cost and human errors.
The second one lists 41 vulnerabilities typical for Ethereum and Solidity smart contracts:
reentrancy, transaction ordering, block timestamp dependency, blockhash usage, excep-
tion handling, call stack depth limitation, integer overflow and underflow, unchecked and
failed send, destroyable and suicidal contracts, unsecured balance, use of origin, unre-
stricted write, unrestricted transfer, non-validated arguments, greedy contracts, prodigal
contracts, overspent gas, gasless send, external calls, DoS with unexpected revert, DoS
with unbounded operations, DoS with block stuffing, delegatecall injection, Ether lost to
orphan address, manipulated balance, outdated compiler version, upgradeable contracts,
erroneous visibility, secrecy failure, insufficient signature information, type casts, short ad-
dress, under-priced opcodes, generating randomness, outsourceable puzzle, 51% hashrate,
fixed consensus termination, rewards for uncle blocks, unlimited nodes creation, public
peer selection and sole block synchronization.

In the second step, we used five tools for security audit of Ethereum smart contracts
in order to get the first impression about the number of vulnerabilities in BloSS. More
information about this step can be found in Section 5.2.
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Then, we performed the security audit of BloSS. The smart contracts were reviewed
method by method, as we were looking for vulnerabilities identified in the first step.
Besides, we used the NIST Guide for Conducting Risk Assessments [18] to determine the
risk level of each finding based on its likelihood and impact. Finally, we described possible
measures which can help to eliminate or reduce the risk of the found vulnerabilities.

In the last step, we analysed and validated security tools findings and applied the list of
41 identified vulnerabilities for their classification. Besides, we compared these findings
with the results of the security audit.

In the next subsections, we discuss the second and the third steps in more detail.

5.2 Tools for Automated Security Audit

Initially, we planned to use all free of charge security audit tools described in Section
3.2: Oyente, Mythril, Securify, Securify 2.0, Remix, MAIAN and Manticore. However,
due to outdated dependencies in Oyente and MAIAN, we were not able to test them on
BloSS. According to error messages and reported issues in GitHub repository [44], the
latest Solidity version supported by Oyente is 0.4.19, while most of the contracts in BloSS
require 0.5.8. Oyente’s Web GUI [45] has even older dependencies. The last supported
Solidity version is 0.4.17.

Figure 5.1: Oyente’s Web GUI

There is a similar problem with MAIAN. It has a dependency on an outdated Web3
version. Changing the version does not solve the problem because of numerous dependency
issues resulting from it. This issue was reported in MAIAN’s GitHub repository [36] in
2018 but is still unsolved.

As a result, we excluded these tools from our selection. The findings of the remaining five
tools are presented in Section 6.1.
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It is also important to note that Securify and Securify 2.0 do not support the import of
contracts. Therefore, we had to adopt the code of Protocol and Register for them by
out-commenting the import statement for Enums and inserting the code of Enums at the
end of the contract.

5.3 Security Analysis of Smart Contracts

The security audit of BloSS smart contracts consisted of three steps. Firstly, BloSS was
reviewed regarding six general blockchain vulnerabilities. Then, we applied CIA triad
to it. Finally, the smart contracts were analysed method by method with regard to 41
Ethereum and Solidity vulnerabilities identified before. In the following, we describe these
vulnerabilities and define criteria used for their detection.

Reentrancy. Reentrancy occurs if one contract hands over the control to another con-
tract, the second contract can call back into the first one several times before the first
initiated interaction is completed [24]. There are two types of reentrancy:

• Single function reentrancy [46]:

1. A call, send or transfer function which can hand over a control to an external
contract is executed.

2. The external contract has a fallback function.

3. After the call, send or transfer function was executed, the state is updated.

• Cross-function reentrancy [46]: similar to single function reentrancy, happens when
two different functions or contracts share the same state.

Transaction ordering. The state of a contract in which a transaction is executed
depends on the transaction order determined by the miners of the block and cannot be
predicted reliably [6].

Block timestamp dependency. Users can generate block timestamps which differ
up to 900 seconds from other users’ block timestamps [6]. Often functions rely on the
starting time (StartTime), current time (now) and ending time (EndTime), which depend
on block.timestamp [6].

Blockhash usage. Similar to block timestamp dependency. Malicious users can manip-
ulate the outcome by changing the blockhash. Example: Using blockhash for generating
randomness [24].

Exception handling. No proper exception handling. It is impossible to check the return
value after a function call [6].

Call stack depth limitation. The call stack depth limit is hard-coded to 1024 frames.
Every time a call or send function calls another contract, the call stack depth is increased
by one [8].
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Integer overflow and underflow. The result of an arithmetic operation is outside of
the range of a Solidity data type [8].

Unchecked and failed send . The send function may fail if the gas limit is exceeded
or if there is not enough Ethers on the balance. However, the function does not have a
built-in error handling [6].

Destroyable and suicidal contracts. A smart contract that can be terminated by an
anonymous suicide or kill function. This function is usually executed by the owner in
case of an attack or an emergency situation [6].

Unsecured balance. The balance of a smart contract is unsecured. Possible reasons
include improper access control for balance and constructor and updating the balance
after sending the money [6].

Use of tx.origin . tx.origin returns the account address initiating the transaction [6].

Unrestricted write. A write-operation to the storage which does not have any restricting
conditions [6].

Unrestricted transfer. By default, the call function allows to transfer money between
any users and smart contracts [6].

Non-validated arguments. The arguments which are not checked before passing to a
method [6].

Greedy contracts. If an external library contract is terminated, the contracts calling this
library become greedy as they cannot access the library and transfer the funds anymore
[6]. Besides, some contracts can receive Ethers but lack the instructions for sending them
out (e.g., send, transfer, call), or the instructions are unreachable [37].

Prodigal contracts. The sending function can be called by any user and can be used
to send funds to any address chosen by the sender [6].

Overspent gas. Many patterns in Solidity smart contracts are very expensive in terms
of gas required to spend for their execution [6]. Gas-costly programming patterns include:
dead code, opaque predicate, expensive operations in a loop, constant outcome of a loop,
loop fusion, repeated computations in a loop and comparison with unilateral outcome in
a loop [47].

Gasless send. A transaction fails because not enough gas is provided. Example: an
expensive function which requires a lot of gas to execute [24].

External calls. A call of an external contract. Pushing data to an external contract is
in general more dangerous than pulling data [24].

DoS with unexpected revert. The vulnerability occurs when a conditional statement
if, for or while depends on an external call [24].

DoS with unbounded operations. Due to the improper programming of unbounded
operations (e.g., a loop over a large array), the amount of gas required for contract
execution may exceed the gas limit of the block [8].
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DoS with block stuffing. Because of the greedy mining incentive mechanism, an at-
tacker can offer a high gasPrice and, thus, motivate miners to prioritize his or her trans-
actions over others [8].

Delegatecall injection. Ethereum allows to embed a callee’s bytecode into the caller
contract using the delegatecall function. As a result, the state variables in the caller
contract can be modified by the bytecode of the callee contract [8].

Ether lost to orphan address. When money is transferred, Ethereum only checks if
the recipient’s address is no longer than 160 bit but does not check if the address exists.
If money is sent to a non-existing (orphan) address, Ethereum registers the address au-
tomatically. However, the address does not have any associated user or contract account.
Thus, it is impossible to withdraw the transferred money [8].

Manipulated balance. The vulnerability occurs if the contract’s control-flow relies on
this.balance or address(this).balance, as they can be manipulated by an attacker [8].

Outdated compiler version. An outdated compiler may contain unfixed bugs [8].

Upgradeable contracts. In order to solve the problem of immutability in blockchain,
developers can split smart contracts into two parts (a proxy contract which remains im-
mutable when added to blockchain and a logic contract which can be updated by the
developer) or use a registry contract for recording the updates [8].

Erroneous visibility. Functions which should not be called from external contracts
are sometimes erroneously marked as public or external. As a result, they can be called
directly by attackers [8].

Secrecy failure. Due to transparency of the blockchain, marking functions and variables
as private does not guarantee data secrecy [8].

Insufficient signature information. Instead of using multiple transactions, a user
sends money to multiple recipients with a proxy contract. The user can send digitally
signed messages off-chain to recipients letting them withdraw the money. The proxy
contract validates the digital signature to check if the transaction is approved. If the
digital signature does not contain due information (e.g., nonce and proxy contact address),
a recipient can use the signed message several times and withdraw additional funds [8].

Type casts. When a function in an external contract is called using an address argument,
the Solidity compiler checks if the function is declared in the contract but does not check
if the address argument conforms to the contract’s address. If there is another contract
with the same declaration and a function named as in the first contract, the function in
the wrong contract may be executed by mistake [8].

Short address. In contract-invocation transactions such as transfer, the selector and
arguments are automatically encoded. The first four bytes are reserved for the callee
function and the rest stands for arguments in chunks of 32 bytes. That means that if the
last byte of one argument is missed, two hexadecimal zeros are added to the end of the
last argument [8].
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Under-priced opcodes. Some contacts contain many opcodes which have a low gas
price but consume a lot of computing resources [8]. For example, balance, extcodecopy,
extcodesize, sload and suicide are considered under-priced [48].

Generating randomness. A seed such as block.number, block.timestamp, block.difficulty
and blockhash used for generating randomness can be manipulated by miners [8].

Outsourceable puzzle. Ethereum’s Proof-of-Work puzzle makes a solution only par-
tially sequential. Therefore, it is possible to divide a Proof-of-Work task into several parts
and outsource them [8].

51% hashrate. Due to the Proof-of-Work consensus mechanism, attackers can take over
the blockchain if they have at least 51% of the mining power [8].

Fixed consensus termination. Ethereums’s consensus protocol uses deterministic ter-
mination to achieve a probabilistic agreement. In other words, if a block is followed by a
fixed number of blocks n, it will most likely remain on the blockchain. When all the trans-
actions in the block are commited and the next n blocks are added to the blockchain, the
consensus for the block is terminated. However, in the reality, the probability of agreement
can be affected by external factors such as a communication delay as, in an asynchronous
network, a deterministic protocol cannot guarantee agreement, termination and validity
at the same time [8].

Rewards for uncle blocks. A stale block referenced by a regular block is called an uncle
block. In Ethereum not only regular blocks on the main chain, but also uncle blocks are
rewarded [8].

Unlimited nodes creation. The node generation is weakly restricted. Malicious users
can create an unlimited number if nodes (even with the same IP address) and use them
to monopolize the connections to the victim’s nodes [8].

Public peer selection. When a node is trying to locate a target, it queries 16 nodes in
the bucket which are close to the target and asks each of them for 16 closest to the target
neighbours. This process iterates until the target is identified. During this process the
IDs of different nodes are provided to the querying node. The mapping of a node ID to
the buckets in the routing table is public and can be exploited by attackers [8].

Sole block synchronization. A node may miss the synchronization with another one.
If the second node is malicious, it can delay the synchronization on purpose. As it is
only possible to synchronize with one node at a time in Ethereum, the first node becomes
stalled and has to reject any subsequent blocks [8].
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Findings

6.1 Tools for Automated Security Audit

As a part of the current bachelor’s thesis, we used five tools for automated security audit
of Ethereum smart contracts. Table 6.1 demonstrates the number of their findings for
different smart contracts in BloSS.

Table 6.1: Number of Findings per Security Audit Tool

Mythril Securify Securify 2.0 Remix Manticore
Enums 0 0 0 0 0
Migrations 1 2 8 1 0
Register 2 5 9 5 N/A
Protocol 3 18 N/A 64 N/A
Total 6 25 17 70 0

Protocol provides the main functionality of BloSS and is, therefore, the most complex
smart contract among those evaluated. This explains why the tools found the highest
number of vulnerabilities and bugs there. However, two tools were not able to perform
the analysis of Protocol. Manticore could not analyse Protocol and Register contracts and
broke with an error message about bus error 10 (see the error messages in the screenshot
for Register and the the screenshot for Protocol in our GitHub repository). Searching in
the Internet for similar behaviour produced no successful results. However, the reason for
this failure could be that we run the tools on MacOS, while Manticore was developed for
Linux and has only experimental support for MacOS [39].

Securify 2.0 successfully performed the analysis of Register contract after we added Enums
contract directly to the code, as described in Section 5.2. However, even after performing
the same operation on Protocol, we have got an error related to Souffle logic programming
language, which is required for the execution (see the error message in the screenshot
stored in our GitHub repository). At the time of writing, it is a known but not yet solved

23

https://github.com/ytyuri/Bachelor-s-Thesis---Screenshots/blob/master/manticore_register.png
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24 CHAPTER 6. FINDINGS

problem in Securify 2.0. There are several open issues in the GitHub repository describing
similar behaviour [33].

Thus, Manticore and Securify 2.0 identified less vulnerabilities than they probably would
if they were able to analyse all four contracts. As a result, Remix has the biggest number
of findings, and the original version of Securify is on the second place.

In the next step, we categorised all these findings by vulnerability types described in 5.3.
Table 6.2 presents an overview of the findings. It is important to note that our definition

Table 6.2: Classification of the Security Audit Tools Findings

Mythril Securify Securify 2.0 Remix Manticore
Reentrancy 2
Transaction ordering 2
Block timestamp
dependency

1 7

Exception handling 1 34
Unrestricted Write 2 14 3
Non-validated
arguments

1 4

Greedy contract 1
Overspent gas 25
External call 3 3
Erroneous visibility 6
Division 2
Uninitialised state
variable

1

Solidity naming
convention violation

1

Complex Solidity
version pragma
statement

1

Variables with similar
names

1

Bytes and string
length

1

Tool’s internal error
during the audit

2

Total 6 25 17 70 0

of a vulnerability type does not always completely match the one implemented in the
tools. For example, Mythril identifies two external call vulnerabilities in the line 42 of the
following snippet:

40 reg = Register(RegisterAddress);

41 // cast mitigator address from address to payable address

42 Mitigator = address(uint160(reg.getMitigator(address(this), _name)))

;
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As per Mythril’s findings report (see the screenshot for the first finding and the screenshot
for second one in our GitHub repository), the first vulnerability occurs because the output
of the external call is read. The second is caused by writing this output to a variable.
However, according to the definition of external call in Section 5.3, we consider them to
refer to the same external call and, therefore, identify only one external call vulnerability
in this piece of code.

Besides, the last seven vulnerabilities in the table do not match any of vulnerability
types defined in Section 5.3. Securify allows to check if a contract used division in any
calculations. Its second version examines state variables, the compliance with Solidity
naming convention and Solidity compiler’s version statements. Finally, Remix reviews
variable names and the usage of bytes and string length. Moreover, there are two messages
about an internal error included into the security report for Protocol contract.

Finally, Table 6.2 contains all the findings including false positives. An overview of the
number of false positives and true positives per tool is presented in Discussion. The
detailed analysis of the findings can be found in Appendix B, while the screenshots of the
actual reports are stored in our GitHub repository.

6.2 Security Analysis of Smart Contracts

First of all, we analysed BloSS in terms of general blockchain vulnerabilities. Due to ir-
reversible nature of blockchain’s transactions, deployed smart contracts and transactions
become immutable after deployment. This property brings both advantages and disad-
vantages. On one side, hackers cannot modify contracts. On the other side, developers
themselves are not able to change contracts if they are already deployed. Thus, in order
to fix a bug or improve a contract, they would have to terminate it and create a new
one. For this reason, testing and security audit play a crucial role in the development of
smart contracts [6]. As this is also relevant for BloSS, we consider it highly important
to perform a security analysis of its smart contracts before deploying them on the main
network.

Another important blockchain property is sequential execution. The order of smart con-
tracts execution is determined by a consensus mechanism and is the same for all users.
As a result, only a limited number of contracts can be executed per second. This leads
to a performance bottleneck and allows attackers to stall the network by using a contract
which would take a lot of time to execute. Besides, this property makes blockchain so-
lutions unscalable for a large number of transactions per second [6]. In case of BloSS,
sequential execution can cause a delay when a proof of work is uploaded which could
lead to a missed deadline. Thus, it can potentially influence the result of the signaling
process and affect the rating of the participants. However, as BloSS was created for use
in a consortium, with a limited number of participants and transactions, we estimate a
limited effect of this vulnerability.

Complexity and human errors are other typical problems for smart contracts. The tech-
nology is still relatively new, and many developers do not have sufficient knowledge and

https://github.com/ytyuri/Bachelor-s-Thesis---Screenshots/blob/master/mythril_protocol1.png
https://github.com/ytyuri/Bachelor-s-Thesis---Screenshots/blob/master/mythril_protocol2.png
https://github.com/ytyuri/Bachelor-s-Thesis---Screenshots/blob/master/mythril_protocol2.png
https://github.com/ytyuri/Bachelor-s-Thesis---Screenshots/tree/master
https://github.com/ytyuri/Bachelor-s-Thesis---Screenshots/tree/master
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experience in this area yet. As a result, developing smart contracts is error prone [6].
These issues are relevant also in case of BloSS, which encourages us to perform the secu-
rity audit of its contracts.

Another general blockchain issue is that a fee needs to be paid for every transaction execu-
tion on a blockchain [6]. This can potentially result in high transaction costs for users and
developers. In BloSS, the target has to bear relatively high costs for transaction execution
and contract deployment in comparison to mitigators [5]. However, if the contracts are
only implemented and used on a test network, participants do not have to pay real-world
money for the transaction execution.

Finally, in the context of the CIA triad, blockchain ensures two principles of information
security by design: integrity and availability [49]. However, the transparency resulted from
storing a copy of the whole ledger by every user [11] leads to lack of confidentiality [49].
Due to consortium network, BloSS is able to limit the access to the data [2]. Nevertheless,
storing the unencrypted data about participants in Register is highly unsafe [5].

Then, we analysed the smart contracts regarding the Solidity and Ethereum vulnerabil-
ities discussed in Section 5.3. The majority of the vulnerabilities were not found in the
audited smart contracts. For instance, there are no dependencies on blockhash, tx.origin
or attempts to generate randomness, which means that blockhash, use of tx.origin and
generating randomness do not affect the contracts. Due to multiple state checks (e.g.,
requirement that the current state is Enums.State.APPROVE in line 73 of the Protocol
contract), contracts are also resistant against transaction ordering.

Table 6.3 contains an overview of security issues related to Solidity and Ethereum vulner-
abilities, and provides a number of findings for each.

Table 6.3: Ethereum and Solidity Vulnerabilities

Vulnerability Resulted Security Issues Number of
Findings

Reentrancy The external contract can retrieve multiple re-
funds and empty the balance of the contract
[24].

1

Transaction
ordering

Front running: users try to execute their
transaction first by offering higher gas [8].

0

Block timestamp
dependency

Malicious users can manipulate the control
flow by changing block timestamps [6]. It can
be dangerous if critical components of a con-
tract depend on block timestamps [24].

7

Blockhash usage It can be dangerous if critical components of
a contract depend on the blockhash [24].

0

Exception
handling

Developers cannot handle errors properly
which may result in vulnerable contracts [6].

0
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Table 6.3: Ethereum and Solidity Vulnerabilities

Vulnerability Resulted Security Issues Number of
Findings

Call stack depth
limitation

Malicious users can make a contract call itself
1023 times. Then, they call a victim’s con-
tract and reach the depth limit of the EVM’s
stack. As a result, all further external calls by
the victim’s contracts fail [8].

0

Integer overflow
and underflow

If a value is outside the range of the data type,
its value is reset to 0 or to the highest possible
value in the range. This vulnerability can be
used by malicious actors to manipulate bal-
ances and steal Ethers [6].

1

Unchecked and
failed send

If no error handling is implemented by the
developer, the balance of the sender will be
updated, although the Ethers were not sent
to the receiver [6].

0

Destroyable and
suicidal contracts

If there are no restrictions regarding the users
who can execute the suicidal function, any
user or smart contract can destroy the sui-
cidal contract irreversibly [6].

0

Unsecured
balance

The balance is exposed to possible attacks [6]. 0

Use of tx.origin If tx.origin is used for authorization, it can be
easily compromised by phishing [8].

0

Unrestricted
write

Malicious users can use this vulnerability to
exploit the contract. For example, they can
assign the ownership to themselves [6].

4

Unrestricted
transfer

If no restrictions are implemented, any user
can invoke the call function which makes the
contract vulnerable [6].

0

Non-validated
arguments

Passing non-validated arguments can result in
malicious actions during the method execu-
tion [6].

10

Greedy contracts Greedy smart contracts freeze their balance
[6].

0
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Table 6.3: Ethereum and Solidity Vulnerabilities

Vulnerability Resulted Security Issues Number of
Findings

Prodigal
contracts

The smart contracts may send funds to un-
known users [6].

0

Overspent gas Overpriced patterns result in poor usability
and wasted Ethers [6].

0

Gasless send If there is no proper error message, it may be
difficult to identify the reason for the transac-
tion fail [24].

0

External calls Malicious code may be executed in the exter-
nal contract [24].

1

DoS with
unexpected revert

There may be a failure in the external call.
Moreover, a callee may revert an operation
intentionally. As a result, the transaction fails
[8].

5

DoS with
unbounded
operations

The gas required for contact execution ex-
ceeds the gas limit of the block, and the con-
tract execution fails [8].

0

DoS with block
stuffing

Only the attacker’s transactions are added to
new blocks [8].

N/A

Delegatecall
injection

A callee contract can modify the state vari-
ables of the caller contract [8].

0

Ether lost to
orphan address

The transferred money is lost [8]. 0

Manipulated
balance

A malicious user can manipulate the outcome
by changing the balance and, as a result, ob-
tain the money [8].

0

Outdated
compiler version

The compiled smart contact may be vulnera-
ble [8].

N/A

Upgradeable
contracts

A malicious developer can create a malicious
logic contract which can interact with the im-
mutable proxy contract [8].

0

Erroneous
visibility

An attacker can get unauthorized access to a
function [8].

29
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Table 6.3: Ethereum and Solidity Vulnerabilities

Vulnerability Resulted Security Issues Number of
Findings

Secrecy failure The value of state and private variables can be
extracted from transactional data and used by
attackers for malicious activities [8].

N/A

Insufficient
signature
information

A malicious recipient can use a signed message
multiple times and, thus, withdraw additional
funds [8].

N/A

Type casts Attackers can execute their contracts instead
of the right ones [8].

0

Short address A function can be called with wrong argu-
ments (e.g., wrong address and wrong amount
of funds) [8].

0

Under-priced
opcodes

A lot of computing resources are wasted by
contract execution. This vulnerability can be
exploited in DoS attacks [8].

0

Generating
randomness

The outcome can be manipulated by mali-
cious miners [8].

0

Outsourceable
puzzle

Malicious miners can outsource Proof-of-
Work subtasks and, therefore, benefit from
parallel computing [8].

N/A

51% hashrate The attackers with a majority of mining
power can reverse transactions and perform
double-spending [8].

N/A

Fixed consensus
termination

The probability of agreement can be affected
by different factors [8].

N/A

Rewards for uncle
blocks

Uncle-rewarding mechanism incentivises self-
ish mining [8].

N/A

Unlimited nodes
creation

The victim becomes isolated from the peers
[8].

N/A

Public peer
selection

An attacker can identify the victim’s buckets
by the corresponding node ID and insert ma-
licious node IDs to the victim’s routing table
[8].

N/A
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Table 6.3: Ethereum and Solidity Vulnerabilities

Vulnerability Resulted Security Issues Number of
Findings

Sole block
synchronization

This vulnerability facilitates double-spending
and DoS attacks [8].

N/A

Some vulnerabilities are general and cannot be identified by analysing smart contracts. In
such cases, we marked them with N/A in the Number of Findings column. An example
of this kind of vulnerabilities is DoS with block stuffing, which is relevant to any contract
in Ethereum due to the greedy incentive mechanism. Also, the usage of the outdated
compiler cannot be identified during the security audit. We suggest using the Solidity
compiler declared in the contracts as it was used for tests and can guarantee the stable
execution.

Our findings on Solidity and Ethereum vulnerabilities are listed in the Table 6.4. First of
all, there is a risk of reentrancy in the Protocol contract. The following snippet demon-
strates reentrancy on a single function transfer in endProcess():

148 if(owner!= address (0)){

149 owner.transfer(address(this).balance);

150 }

151 EndTime = now;

In this example, a fallback function transfer is used before the state change in line 151. The
transfer function used is considered to be resistant to reentrancy attacks. However, after
the EIP 1884 was included into the Istanbul hard fork, the function became vulnerable
and is not recommended to used anymore [50, 51]. There are several possible solutions to
this problem. For instance, we can use the checks-effects-interaction pattern [8, 24, 6, 46,
50, 51]. In other words, the change of the state and/or the update of the balance have to
be done before the transfer is executed:

148 EndTime = now;

149 if(owner!= address (0)){

150 owner.transfer(address(this).balance);

151 }

Another solution would be using OpenZeppelin’s ReentrancyGuard [52], which allows
checking calls for reentrancy and rejecting such calls [51]. In order to use it, we need to
inherit from ReentrancyGuard and then declare the endProcess() as nonReentrant.

The third opportunity is a Mutex lock on the state. This method assures that only the
owner can change the state [8, 6]. Finally, ConsenSys Diligence does not recommend to
use transfer at all after the Istanbul hard fork and suggests using call() instead [50, 51].

The second vulnerability is block timestamp dependency. Overall, seven cases were identi-
fied. In all of them, there is a dependency on now which is an alias of block.timestamp and,
therefore, should be avoided [53]. The easiest way to fix this issue is to use block.number
instead of now [6].
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It is important to note that in two cases now is assigned to a variable which is never used
for any control flow decisions. For this reason, we estimate the potential impact and the
risk level as very low. In five other cases, there is a conditional dependence on now or
a variable relying on it. For example, by manipulating now in the following snippet an
attacker can influence the rating of the mitigator.

133 if(now > Deadline){

134 MitigatorRating = Enums.Rating.NOT_AVAILABLE;

135 return endProcess ();

136 }

We consider that in these cases the likelihood of the threat event is moderate but the
impact is high. The resulting risk level is moderate.

The next found vulnerability is integer overflow in the line 202 of the Protocol contract:

201 function setNewDeadline () private{

202 Deadline = now + DeadlineInterval * 1 seconds;

203 }

The variable Deadline has uint256 type. This means that it can be only an integer
between 0 and 4’294’967’295 (2256 − 1) [6].

At the moment, there are no restrictions for the variable DeadlineInterval :

45 function init(uint _DeadlineInterval ,uint256 _OfferedFunds ,string

memory _ListOfAddresses) public {

46 require(msg.sender ==Target ,"[init] sender is not required actor");

47 require(Mitigator != address (0),"[init] mitigator is not set.");

48 require(CurrentState ==Enums.State.REQUEST ||

49 CurrentState ==Enums.State.COMPLETE ||

50 CurrentState ==Enums.State.ABORT , "[init] State is not appropriate"

);

51 Target = msg.sender;

52 DeadlineInterval = _DeadlineInterval;

53 OfferedFunds = _OfferedFunds;

As a uint (alias of uint256 according to Solidity Documentation [54]), DeadlineInterval
has the same range as uint256. Therefore, under the assumption that now is always
greater than 0, setting the variable DeadlineInterval to its maximum value 4’294’967’295
leads to an integer overflow for Deadline. As a result, the variable Deadline is erroneously
assigned value 0, which means that there is no time left for proof generation.

A Solidity math library SafeMath.sol [55] for arithmetic calculations provides a solution
to the problem of integer overflow and underflow [8, 6]. We consider this vulnerability
to have a moderate risk level because, although the likelihood of the threat occurrence is
high, the integer overflow affects only the deadline but not, for instance, the amount of
transferred funds. For this reason, the impact of this vulnerability is moderate. According
to the NIST Guide for Guide for Conducting Risk Assessments [18], a moderate level of
impact and a high likelihood of a threat event result in an overall moderate risk level.

Four low-risk unrestricted write cases were identified. In the following example from the
Register contract, any user can set a mitigator address:
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25 function setMitigator(string memory _name , address _Mitigator)

public {

26 if(mitigators[_name]. isAdded == false){

27 mitigators[_name]. Protocol = address (0);

28 mitigators[_name]. Mitigator = _Mitigator;

29 mitigators[_name]. isAdded = true;

30 }else{

31 emit LogNotValid(’Mitigator already registered.’);

32 }

33 }

In the same contract any user is able to set a protocol address to the mapping of a
mitigator:

36 function getMitigator(address _protocol , string memory _name)public

returns(address){

37 require(mitigators[_name]. Mitigator != msg.sender , "[

getMitigator] Protocol is not allowed to be a Mitigator.");

38 if(mitigators[_name]. isAdded){

39 mitigators[_name]. Protocol = _protocol;

40 return mitigators[_name]. Mitigator;

41 }else{

42 emit LogNotValid(’Mitigator not registered.’);

43 return address (0);

44 }

45 }

Proper write restrictions in these cases can help to improve the security of the smart
contracts.

Another common vulnerability in the smart contracts are non-validated arguments. We
identified 10 cases in BloSS contracts. For instance, in the following example from Proto-
col, the argument Proof is not validated. As a result, a user can pass any string argument
to the function. This can not only lead to unexpected effects during the contract execu-
tion, but also allow attackers to upload malicious code instead of the proof.

92 function uploadProof(string memory _Proof) public {

93 require(CurrentState == Enums.State.PROOF ,"[uploadProof] State is not

appropriate");

94 // when lazy

95 if(now > Deadline){

96 CurrentState = Enums.State.RATE_T;

97 setNewDeadline ();

98 return;

99 }

100 require(msg.sender ==Mitigator ,"[uploadProof] sender is not required

actor");

101 Proof = _Proof;

102 CurrentState = Enums.State.RATE_T;

103 setNewDeadline ();

104 }

In this example, we consider the vulnerability to have a moderate risk level. Both es-
timated likelihood and potential impact are moderate, as there are only few operations



6.2. SECURITY ANALYSIS OF SMART CONTRACTS 33

with the data from this argument. In some other cases, the evaluated risk level is low,
because the possible impact of exposure is considered low. All these vulnerabilities can
be eliminated by sanitising arguments before using them in further operations and calcu-
lations.

The sixth vulnerability type found during the security audit is external call. The following
snippet demonstrates how the Register contract is called from the Protocol contract:

40 reg = Register(RegisterAddress);

41 // cast mitigator address from address to payable address

42 Mitigator = address(uint160(reg.getMitigator(address(this), _name)))

;

In this case, the data is both pushed to the external contract and then pulled from it.
In general, it is recommended to avoid external calls but when not possible, proper error
handling and return value checks need to be implemented [24].

DoS with unexpected revert vulnerability is the next identified type with overall five
findings. The reason for this vulnerability is a conditional dependence of the Protocol
contract on the Enums contract. For example, in the following snippet the control flow
relies on the ratings in Enums:

157 if(TargetRating ==Enums.Rating.POSITIVE){

158 return satisfied ();

159 }else if(TargetRating ==Enums.Rating.DISSATISFIED){

160 return dissatisfied ();

161 }else{

162 return selfish ();

163 }

Although there can be a failure in the external call, no checks for return values are
implemented. However, we consider this a low-risk vulnerability as the Enums contract
does not have revert or throw functions in place and, therefore, cannot revert operations
intentionally.

Finally, 39 cases of erroneous visibility were found during the audit. In all of them, func-
tions are marked public although they are not used internally by the contract. Marking
them as external functions would help to improve efficiency [56]. However, as no enhance-
ment in terms of unauthorized access is required, we consider these vulnerabilities to have
low risk.

Table 6.4 presents the details of all 57 findings.
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Table 6.4: Ethereum and Solidity Vulnerabilities Findings

ID Vulnerability Finding Measures Risk
Level

ESV1 Reentrancy Reentrancy on a single
function transfer (line
149) in Protocol contract.
The flow control trans-
ferred, then the state is
changed (EndTime =
now;).

Possible solutions:

1. Checks-effects-
interaction: Up-
dating the state
and the balance
before executing
the transfer func-
tion [8, 24, 6, 46,
50, 51].

2. Use OpenZep-
pelin’s Reentran-
cyGuard [52] to
explicitly check
calls for reen-
trancy and reject
such calls [51].

3. Use a Mutex lock
on the state to as-
sure that only the
owner can change
it [8, 6].

4. Use call() instead
of transfer [50,
51].

High

ESV2 Block
timestamp
dependency

StartTime variable is de-
fined as now (line 17) in
Protocol. now is alias
of block.timestamp and,
therefore, can be manipu-
lated by miners [53].

Use block.number in-
stead of block.timestamp
and now [6].

Very Low

ESV3 Block
timestamp
dependency

Conditional dependency
on now (lines 95-99)
in Protocol. now is an
alias of block.timestamp
and, therefore, can be
manipulated by miners
[53].

Use block.number in-
stead of block.timestamp
and now [6].

Moderate
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Table 6.4: Ethereum and Solidity Vulnerabilities Findings

ID Vulnerability Finding Measures Risk
Level

ESV4 Block
timestamp
dependency

Conditional dependency
on now (lines 110-118)
in Protocol. now is an
alias of block.timestamp
and, therefore, can be
manipulated by miners
[53].

Use block.number in-
stead of block.timestamp
and now [6].

Moderate

ESV5 Block
timestamp
dependency

Conditional dependency
on now (lines 133-136)
in Protocol. now is an
alias of block.timestamp
and, therefore, can be
manipulated by miners
[53].

Use block.number in-
stead of block.timestamp
and now [6].

Moderate

ESV6 Block
timestamp
dependency

EndTime variable is de-
fined as now (line 151) in
Protocol. now is an alias
of block.timestamp and,
therefore, can be manipu-
lated by miners [53].

Use block.number in-
stead of block.timestamp
and now [6].

Very Low

ESV7 Block
timestamp
dependency

Deadline variable relies on
now (line 202) in Pro-
tocol. now is an alias
of block.timestamp and,
therefore, can be manip-
ulated by miners [53].
There are several condi-
tional statements in Proto-
col which rely on Deadline.

Use block.number in-
stead of block.timestamp
and now [6].

Moderate

ESV8 Block
timestamp
dependency

Conditional dependency
on now (lines 263-265)
in Protocol. now is an
alias of block.timestamp
and, therefore, can be
manipulated by miners
[53].

Use block.number in-
stead of block.timestamp
and now [6].

Moderate
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Table 6.4: Ethereum and Solidity Vulnerabilities Findings

ID Vulnerability Finding Measures Risk
Level

ESV9 Integer
overflow
und un-
derflow

An integer overflow is
possible. There is no
check whether the result
of the calculation stays
in the range of the data
type uint256 for Dead-
line = now + DeadlineIn-
terval * 1 seconds; (line
202) in Protocol contract.
The variable Deadline as
uint256 can be only an
integer between 0 and
4’294’967’295 (2256−1) [6].

Use a Solidity math li-
brary SafeMath.sol [55]
for arithmetic calcula-
tions [8, 6].

Moderate

ESV10 Unrestricted
write

No write restric-
tions for mitiga-
tors[ name].Protocol
= address(0); mitiga-
tors[ name].Mitigator
= Mitigator; mitiga-
tors[ name].isAdded =
true; (lines 27-29) in
Register contract. Any
user can set a mitigator
address.

Add write restrictions. Low

ESV11 Unrestricted
write

No write restric-
tions for mitiga-
tors[ name].Protocol
= protocol; (line 39) in
Register contract. Any
user can set a protocol
address to the mapping of
a mitigator.

Add write restrictions. Low

ESV12 Unrestricted
write

No write restrictions
for Target = ad-
dress(uint160( target));
(line 30) in Protocol con-
tract. Any user can set a
target.

Add write restrictions. Low
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Table 6.4: Ethereum and Solidity Vulnerabilities Findings

ID Vulnerability Finding Measures Risk
Level

ESV13 Unrestricted
write

No write restrictions for
line 42 in Protocol con-
tract. Any user can cast
a mitigator’s address to
payable address.

Add write restrictions. Low

ESV14 Non-
validated
argu-
ments

The argument com-
pleted is not validated
in the function setCom-
pleted(uint completed)
(lines 16-18) in Migrations
contract. A user can pass
any argument which can
have an unexpected effect
on the contract execution.

Sanitise the argument
before using it in calcu-
lations.

Low

ESV15 Non-
validated
argu-
ments

The argument
new address is not
validated in the func-
tion upgrade(address
new address) (lines 20-23)
in Migrations contract. A
user can pass any argu-
ment which can have an
unexpected effect on the
contract execution.

Sanitise the argument
before using it in calcu-
lations.

Low

ESV16 Non-
validated
argu-
ments

The argument Mitiga-
tor is not validated in
the function setMitiga-
tor(string memory name,
address Mitigator) (lines
25-33) in Register con-
tract. A user can pass any
argument which can have
an unexpected effect on
the contract execution.

Sanitise the argument
before using it in calcu-
lations.

Moderate
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Table 6.4: Ethereum and Solidity Vulnerabilities Findings

ID Vulnerability Finding Measures Risk
Level

ESV17 Non-
validated
argu-
ments

The argument protocol is
not validated in the func-
tion getMitigator(address
protocol, string memory
name) (lines 36-45) in

Register contract. A user
can pass any argument
which can have an unex-
pected effect on the con-
tract execution.

Sanitise the argument
before using it in calcu-
lations.

Moderate

ESV18 Non-
validated
argu-
ments

The argument target
is not validated in the
function setTarget(address
target) (lines 29-31) in

Protocol contract. A user
can pass any argument
which can have an un-
expected effect on the
contract execution.

Sanitise the argument
before using it in calcu-
lations.

Moderate

ESV19 Non-
validated
argu-
ments

The argument Register is
not validated in the func-
tion setRegister(address
Register) (lines 33-36)

in Protocol contract. A
user can pass any argu-
ment which can have an
unexpected effect on the
contract execution.

Sanitise the argument
before using it in calcu-
lations.

Moderate

ESV20 Non-
validated
argu-
ments

The argument name
is not validated in the
function getSpecificMitiga-
tor(string memory name)
(lines 38-43) in Protocol
contract. A user can pass
any argument which can
have an unexpected effect
on the contract execution.

Sanitise the argument
before using it in calcu-
lations.

Moderate
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Table 6.4: Ethereum and Solidity Vulnerabilities Findings

ID Vulnerability Finding Measures Risk
Level

ESV21 Non-
validated
argu-
ments

The arguments Dead-
lineInterval, Offered-
Funds and ListOfAd-
dresses are not validated
in the function init(uint
DeadlineInterval, uint256
OfferedFunds, string

memory ListOfAd-
dresses) (lines 45-57) in
Protocol contract. A user
can pass any argument
which can have an un-
expected effect on the
contract execution.

Sanitise the argument
before using it in calcu-
lations.

Moderate

ESV22 Non-
validated
argu-
ments

The arguments Dead-
lineInterval, Offered-
Funds, ListOfAddresses
and Mitigator are not
validated in the func-
tion function reInit(uint
DeadlineInterval, uint256
OfferedFunds, string

memory ListOfAddresses,
address Mitigator) (lines
59-69) in Protocol con-
tract. A user can pass any
argument which can have
an unexpected effect on
the contract execution.

Sanitise the argument
before using it in calcu-
lations.

Moderate

ESV23 Non-
validated
argu-
ments

The argument Proof is
not validated in the func-
tion uploadProof(string
memory Proof) (lines
92-104) in Protocol con-
tract. A user can pass any
argument which can have
an unexpected effect on
the contract execution.

Sanitise the argument
before using it in calcu-
lations.

Moderate
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Table 6.4: Ethereum and Solidity Vulnerabilities Findings

ID Vulnerability Finding Measures Risk
Level

ESV24 External
call

External call using getMit-
igator() function (line 42)
of the Register contract
by the Protocol contract.
The data is pushed to the
external contract.

If it is impossible to
avoid the external call,
it is necessary to imple-
ment error handling and
check the return value
[24].

Moderate

ESV25 DoS with
unex-
pected
revert

Conditional dependence
on the Enums contract
in the Protocol contract
(lines 157-163).

No specific measures re-
quired.

Low

ESV26 DoS with
unex-
pected
revert

Conditional dependence
on the Enums contract
in the Protocol contract
(lines 166-173).

No specific measures re-
quired.

Low

ESV27 DoS with
unex-
pected
revert

Conditional dependence
on the Enums contract
in the Protocol contract
(lines 178-180).

No specific measures re-
quired.

Low

ESV28 DoS with
unex-
pected
revert

Conditional dependence
on the Enums contract
in the Protocol contract
(lines 184-186).

No specific measures re-
quired.

Low

ESV29 DoS with
unex-
pected
revert

Conditional dependence
on the Enums contract
in the Protocol contract
(lines 190-194).

No specific measures re-
quired.

Low

ESV30 Erroneous
visibility

The public function set-
Completed() (lines 16-18)
in Migrations is never
called internally. For
this reason, it should be
marked as external in or-
der to improve efficiency of
the contract [56].

Mark the function as ex-
ternal.

Low
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Table 6.4: Ethereum and Solidity Vulnerabilities Findings

ID Vulnerability Finding Measures Risk
Level

ESV31 Erroneous
visibility

The public function up-
grade() (lines 20-23) in Mi-
grations is never called in-
ternally. For this reason,
it should be marked as ex-
ternal in order to improve
efficiency of the contract
[56].

Mark the function as ex-
ternal.

Low

ESV32 Erroneous
visibility

The public function set-
Mitigator() (lines 25-33) in
Register is never called in-
ternally. For this reason,
it should be marked as ex-
ternal in order to improve
efficiency of the contract
[56].

Mark the function as ex-
ternal.

Low

ESV33 Erroneous
visibility

The public function get-
Mitigator() (lines 36-45) in
Register is never called in-
ternally. For this reason,
it should be marked as ex-
ternal in order to improve
efficiency of the contract
[56].

Mark the function as ex-
ternal.

Low

ESV34 Erroneous
visibility

The public function get-
Protocol() (lines 48-55) in
Register is never called in-
ternally. For this reason,
it should be marked as ex-
ternal in order to improve
efficiency of the contract
[56].

Mark the function as ex-
ternal.

Low
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Table 6.4: Ethereum and Solidity Vulnerabilities Findings

ID Vulnerability Finding Measures Risk
Level

ESV35 Erroneous
visibility

The public function
getCreator() (lines 58-60)
in Register is never called
internally. For this reason,
it should be marked as ex-
ternal in order to improve
efficiency of the contract
[56].

Mark the function as ex-
ternal.

Low

ESV36 Erroneous
visibility

The public function set-
Target() (lines 29-31) in
Protocol is never called in-
ternally. For this reason,
it should be marked as ex-
ternal in order to improve
efficiency of the contract
[56].

Mark the function as ex-
ternal.

Low

ESV37 Erroneous
visibility

The public function se-
tRegister() (lines 33-36) in
Protocol is never called in-
ternally. For this reason,
it should be marked as ex-
ternal in order to improve
efficiency of the contract
[56].

Mark the function as ex-
ternal.

Low

ESV38 Erroneous
visibility

The public function get-
SpecificMitigator() (lines
38-43) in Protocol is never
called internally. For
this reason, it should be
marked as external in or-
der to improve efficiency of
the contract [56].

Mark the function as ex-
ternal.

Low

ESV39 Erroneous
visibility

The public function init()
(lines 45-57) in Protocol is
never called internally. For
this reason, it should be
marked as external in or-
der to improve efficiency of
the contract [56].

Mark the function as ex-
ternal.

Low
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Table 6.4: Ethereum and Solidity Vulnerabilities Findings

ID Vulnerability Finding Measures Risk
Level

ESV40 Erroneous
visibility

The public function
reInit() (lines 59-69) in
Protocol is never called
internally. For this reason,
it should be marked as ex-
ternal in order to improve
efficiency of the contract
[56].

Mark the function as ex-
ternal.

Low

ESV41 Erroneous
visibility

The public function ap-
prove() (lines 71-79) in
Protocol is never called in-
ternally. For this reason,
it should be marked as ex-
ternal in order to improve
efficiency of the contract
[56].

Mark the function as ex-
ternal.

Low

ESV42 Erroneous
visibility

The public function send-
Funds() (lines 81-90) in
Protocol is never called in-
ternally. For this reason,
it should be marked as ex-
ternal in order to improve
efficiency of the contract
[56].

Mark the function as ex-
ternal.

Low

ESV43 Erroneous
visibility

The public function up-
loadProof() (lines 92-104)
in Protocol is never called
internally. For this reason,
it should be marked as ex-
ternal in order to improve
efficiency of the contract
[56].

Mark the function as ex-
ternal.

Low
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Table 6.4: Ethereum and Solidity Vulnerabilities Findings

ID Vulnerability Finding Measures Risk
Level

ESV44 Erroneous
visibility

The public function rat-
ingByTarget() (lines 106-
128) in Protocol is never
called internally. For
this reason, it should be
marked as external in or-
der to improve efficiency of
the contract [56].

Mark the function as ex-
ternal.

Low

ESV45 Erroneous
visibility

The public function rat-
ingByMitigator() (lines
130-140) in Protocol is
never called internally.
For this reason, it should
be marked as external in
order to improve efficiency
of the contract [56].

Mark the function as ex-
ternal.

Low

ESV46 Erroneous
visibility

The public function get-
Mitigator() (lines 205-208)
in Protocol is never called
internally. For this reason,
it should be marked as ex-
ternal in order to improve
efficiency of the contract
[56].

Mark the function as ex-
ternal.

Low

ESV47 Erroneous
visibility

The public function get-
Target() (lines 210-213) in
Protocol is never called in-
ternally. For this reason,
it should be marked as ex-
ternal in order to improve
efficiency of the contract
[56].

Mark the function as ex-
ternal.

Low
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Table 6.4: Ethereum and Solidity Vulnerabilities Findings

ID Vulnerability Finding Measures Risk
Level

ESV48 Erroneous
visibility

The public function ge-
tRegister() (lines 215-218)
in Protocol is never called
internally. For this reason,
it should be marked as ex-
ternal in order to improve
efficiency of the contract
[56].

Mark the function as ex-
ternal.

Low

ESV49 Erroneous
visibility

The public function
getListOfAddresses()
(lines 220-223) in Protocol
is never called internally.
For this reason, it should
be marked as external in
order to improve efficiency
of the contract [56].

Mark the function as ex-
ternal.

Low

ESV50 Erroneous
visibility

The public function get-
Proof() (lines 225-228) in
Protocol is never called in-
ternally. For this reason,
it should be marked as ex-
ternal in order to improve
efficiency of the contract
[56].

Mark the function as ex-
ternal.

Low

ESV51 Erroneous
visibility

The public function
getCurrentState() (lines
230-233) in Protocol is
never called internally.
For this reason, it should
be marked as external in
order to improve efficiency
of the contract [56].

Mark the function as ex-
ternal.

Low
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Table 6.4: Ethereum and Solidity Vulnerabilities Findings

ID Vulnerability Finding Measures Risk
Level

ESV52 Erroneous
visibility

The public function get-
TargetRating() (lines 236-
239) in Protocol is never
called internally. For
this reason, it should be
marked as external in or-
der to improve efficiency of
the contract [56].

Mark the function as ex-
ternal.

Low

ESV53 Erroneous
visibility

The public function get-
MitigatorRating() (lines
241-244) in Protocol is
never called internally.
For this reason, it should
be marked as external in
order to improve efficiency
of the contract [56].

Mark the function as ex-
ternal.

Low

ESV54 Erroneous
visibility

The public function get-
StartTime() (lines 246-
249) in Protocol is never
called internally. For
this reason, it should be
marked as external in or-
der to improve efficiency of
the contract [56].

Mark the function as ex-
ternal.

Low

ESV55 Erroneous
visibility

The public function ge-
tEndTime() (lines 251-
254) in Protocol is never
called internally. For
this reason, it should be
marked as external in or-
der to improve efficiency of
the contract [56].

Mark the function as ex-
ternal.

Low
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Table 6.4: Ethereum and Solidity Vulnerabilities Findings

ID Vulnerability Finding Measures Risk
Level

ESV56 Erroneous
visibility

The public function get-
Deadline() (lines 256-259)
in Protocol is never called
internally. For this reason,
it should be marked as ex-
ternal in order to improve
efficiency of the contract
[56].

Mark the function as ex-
ternal.

Low

ESV57 Erroneous
visibility

The public function get-
ValidTime() (lines 261-
268) in Protocol is never
called internally. For
this reason, it should be
marked as external in or-
der to improve efficiency of
the contract [56].

Mark the function as ex-
ternal.

Low

In order to determine the risk level of our findings, we applied the risk level assessment
scale from the NIST Guide for Conducting Risk Assessments [18] described in Section 2.2.2
to them. Table 6.5 presents the allocation of the findings according to the framework.

Table 6.5: Allocation of Findings on the Risk Level Assessment Scale. Adapted from [18]

Level of Impact
Likelihood

Very Low Low Moderate High Very High
Very High
High ESV10-15 ESV9, 24 ESV1
Moderate ESV16-23 ESV3-5, 7-8
Low ESV2, 6 ESV25-29 ESV30-57
Very Low
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Chapter 7

Discussion

After the findings of the security audit tools were classified, we performed a manual anal-
ysis and validated findings against true and false positives. As a result, we identified
overall 85 false positives. Almost half of them belong to the exception handling vulner-
ability type. In particular, 34 findings by Remix contain a suggestion to consider using
assert(x) instead of require(x). However, the main purpose of using require(x) in BloSS
is to check that certain conditions are met during the execution and not to handle inter-
nal errors. For this reason, according to Solidity documentation [57], the choice of the
function is correct.

Solidity 2.0 has also identified one exception handling vulnerability which we consider to
be a false positive. According to the tool, the return value in the line 22 in Migrations
needs to be explicitly checked for an error. However, we believe that no special error
handling is required in this case because setCompleted() only assigns an argument to a
public variable and is not error prone.

20 function upgrade(address new_address) public restricted {

21 Migrations upgraded = Migrations(new_address);

22 upgraded.setCompleted(last_completed_migration);

23 }

In the same line, Mythril and Securify identified an external call. However, this is a
recursive call of Migration contract by itself. This contract does not contain any critical
functions or data. For this reason, we consider this finding not relevant from a security
point of view.

Another vulnerability with a large number of false positives is gas overspent. It was
identified only by Remix. In overall 25 cases, Remix suggests adding a gas requirement
limit to functions. As neither of the functions contain gas costly patterns discussed in
Section 5.3, we consider it unnecessary to add gas limits to them.

There are also eight cases of unrestricted write identified by Securify which we consider
to be false positives. For example, Securify claims that there are no write restrictions for
the line 55 in Protocol. However, as the following snippet demonstrates, only a target
can call this function and, therefore, perform these write operations. Besides, it is only
possible to do this in three states of the process and only if a mitigator is selected.
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45 function init(uint _DeadlineInterval ,uint256 _OfferedFunds ,string

memory _ListOfAddresses) public {

46 require(msg.sender ==Target ,"[init] sender is not required actor");

47 require(Mitigator != address (0),"[init] mitigator is not set.");

48 require(CurrentState == Enums.State.REQUEST ||

49 CurrentState ==Enums.State.COMPLETE ||

50 CurrentState ==Enums.State.ABORT , "[init] State is not appropriate"

);

51 Target = msg.sender;

52 DeadlineInterval = _DeadlineInterval;

53 OfferedFunds = _OfferedFunds;

54 ListOfAddresses = _ListOfAddresses;

55 CurrentState = Enums.State.APPROVE;

56 emit ProcessCreated(msg.sender ,address(this));

57 }

Besides, Securify identified two cases of division in Protocol and suggests being careful
about them because of the integer rounding by division which can influence the computa-
tion result. However, no division operations were found during the manual review. Thus,
we consider these findings false positives.

Securify also claims that the order of transactions can influence who is the receiver of
the funds and the amount of the transferred funds in the following piece of code from
Protocol:

149 owner.transfer(address(this).balance);

However, due to the implemented system of different states (Request, Approve, Funding
etc.), it is only possible to perform the transfer in states Rate T or Rate M: after the
rating evaluation by target and, if necessary, by mitigator is completed. For this reason,
the receiver and the amount of funds are not affected by the transaction order but by
the participant’s ratings and whether the proof of work was uploaded on time. Yet it is
important to note that Protocol does not check the content of the uploaded proof.

In the same line of the code, Securify identified an external call with a target which can
be potentially manipulated by attackers. However, we do not consider this finding as a
vulnerability because the target of the call (owner) is provided by the evaluate() function
and can be only the target or the mitigator.

Moreover, Securify marked Register contract as greedy. According to the tool, the funds
can be received by the contract but then get locked because there is no opportunity to
extract them. As Register does not support any kind of Ether transfer, we consider this
finding to be a false positive.

Finally, Remix has found a vulnerability which is not on our list. According to the tool
and to Solidity documentation [58], when a string is converted to bytes, its length is
calculated in bytes and not in characters as it might be expected, which can lead to
confusion. However, in the following snippet from Protocol, it is only checked if the proof
is empty, which would mean that both length in characters and in bytes would equal zero.

114 if(bytes(Proof).length ==0){

115 return endProcess ();

116 }
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Thus, although we acknowledge that developers should be careful when converting a string
to bytes, in the current example we do not consider it as a vulnerability.

There are also some other vulnerabilities which did not match any vulnerabilities on our
list but were considered to be true positives. For example, Remix finds it confusing that
there are two variables in Protocol with similar names (Target and target). Securify 2.0
claims that the Solidity pragma version statement in Migrations is too complex:

1 pragma solidity >=0.4.21 <0.6.0;

Moreover, Securify 2.0 suggests renaming last completed migration variable in Migrations
because it does not comply with Solidity naming convention. As all of these findings
are correct, we evaluated them as true positives although they do not correspond to any
vulnerability type on our list.

Table 7.1 contains an overview of our results, while the detailed information can be found
in Appendix B.

Table 7.1: Overview of True Positives and False Positives in the Findings of the Security
Audit Tools

Mythril Securify Securify 2.0 Remix Manticore
True Positives 5 10 16 8 0
False Positives 1 15 1 60 0
Total 6 25 17 68 0

It is important to note that we removed two findings of Remix from the overview because
they were related to an internal error message in Remix and, therefore, could not be
considered neither as true positives nor as false positives. As a result, Remix has only 68
instead of 70 findings in Table 7.1.

The table demonstrates also that the number of findings does not necessarily correlate
with the number of true positives. Even though Remix has by far the highest number of
findings, it has a rather low number of true positives. On the other hand, Securify 2.0
with relatively few findings has 16 true positives and only one false positive.

In the next step, we have compared the findings of the security tools with the results of
our security audit. In order to do this, we went through all 57 identified vulnerabilities
and checked if they were found by the security tools. The results are presented in Table
A.1 in Appendix.

Although Securify 2.0 has not analysed Protocol which is the main and the most complex
contract in BloSS, it was able to identify the highest number of security audit findings
and has, therefore, the lowest number of false negatives. With seven findings, Securify
and Remix are together on the second place among the tools.

Besides, according to one of the internal error messages in Remix, it was impossible to
perform the check-effect-interaction. Thus, Remix could not check if there is a reentrancy,
and it is unclear if it would identify this vulnerability correctly.
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Altogether, we would like to stress that there are big differences between the security
tools. As discussed in Section 3.2, they use various analysis types and strategies and have
different vulnerability types in scope. In the concrete example of BloSS smart contracts,
Securify and Securify 2.0 performed the best. Although Remix had the largest number of
findings, most of them were evaluated as false positives during the manual security anal-
ysis. Mythril demonstrated good results regarding the ration of true and false positives.
However, as it focuses only on finding four types of vulnerabilities, it has a high number
of false negatives.

(a) Securify
(b) Remix

Figure 7.1: Highlighted Findings

The security tools vary also regarding their usability. Two of them, Securify and Remix,
highlight the line with findings in the code which makes it easier to find vulnerable pieces
of code. Moreover, Mythril and Securify 2.0 assign a risk level to every finding. Securify
marks its findings with color (e.g., red). However, it is not clear if the color indicates the
risk level or something else. There is no manual for the tool on the official page which
could explain this.

Figure 7.2: Reports Generated by Manticore

Although we do not have any findings from Manticore to review, it is important to note
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that it was the only dynamic tool that we tested. Besides, in contrast to other tools, it
creates automatically multiple reports in the folder where the project is located.

Regarding the security audit findings, we would like to emphasise that although we iden-
tified overall 57 vulnerabilities in the smart contracts, only one of them is considered a
high risk issue. Most of them, 39 findings, have a low risk level.

Table 7.2: Number of Findings per Risk Level and Contract

Smart
Contract

Risk Level
Total

Very Low Low Moderate High Very High
Enums 0 0 0 0 0 0
Migrations 0 4 0 0 0 4
Register 0 6 2 0 0 8
Protocol 2 29 13 1 0 45
Total 2 39 15 1 0 57

Table 7.2 demonstrates a short overview of the findings. As expected, the Protocol con-
tract which is the main and the most complicated contract in BloSS has the highest
number of findings.
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Conclusion and Final Considerations

In conclusion, it is important to highlight that this thesis was able to meet the initial
goals. By reviewing multiple studies, six general blockchain vulnerabilities and a list of 41
vulnerabilities related to Ethereum and Solidity were identified. In order to get the first
impression on the security level of the smart contracts in BloSS, we used five tools for
automated security audit: Mythril, Securify, Securify 2.0, Remix and Manticore. Their
findings were manually reviewed and true and false positives were identified.

In the next step, we analysed BloSS and its contracts regarding the previously determined
general blockchain vulnerabilities, Ethereum and Solidity vulnerabilities and CIA triad.
The result of the security audit is a list of 57 findings, where their risk level was estimated
based on the NIST Guide for Conducting Risk Assessments. Moreover, we classified the
findings of the security tools using our list of vulnerabilities and compared them with the
security audit results. As a result, we identified cases in which the findings match each
other as well as false negatives induced by security tools.

The comparison of the security tools is also a contribution of this thesis. Altogether, we
would like to note that Securify 2.0 has a big potential. At the time of writing, it is able
to detect the largest number of vulnerabilities among all analyzed tools. Besides, in the
particular case of BloSS, it had the best performance among the tools. Even though it
could not analyse Protocol contract due to the unsolved bug mentioned in Discussion, it
identified 17 findings. 16 of them were considered true positives, which is the best result
both in relative and absolute terms. Moreover, Securify 2.0 had the highest number of
matches with the security audit results and, thus, the lowest number of false negatives.
Nevertheless, as Securify 2.0 is rather new, it has some unsolved bugs and does not support
a Web GUI.

During the current project, we had to overcome several difficulties. First of all, as several
studies were used for creating our list of Ethereum and Solidity vulnerabilities, which
entailed removing duplicates. The studies often use different names for the same vulnera-
bility. For example, the terms frozen Ether and greedy contract stand in fact for the same
issue. By analysing the descriptions of the vulnerabilities, we tried to figure out whether
they belong to the same security issue or not.
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A similar problem occurred during the classification of security tools findings. Each of the
tools uses its own vulnerability names, which makes it difficult to compare their findings.
For example, Securify 2.0 identified several cases of External Calls of Functions. However,
the analysis of the findings descriptions showed that it was actually erroneous visibility
(functions were marked public instead of external). In this case, the naming can lead to
confusion. A standardised and universally acknowledged classification of smart contract
vulnerabilities would solve this problem.

Besides, it was often difficult to estimate the risk level of the findings. The evaluation of
the potential impact and likelihood of a threat event is rather subjective. In general, we
followed a conservative strategy and in uncertain situations assigned rather a higher risk
level to a finding than a lower one.

After the subjectivity of risk level estimation, the biggest limitation of the current study
is that we have used the security tools before performing our own analysis. Therefore,
the findings identified by the tools could influence our perception of the smart contracts
and, thus, our findings.

Finally, it is important to note that security audit of smart contracts is still a new and fast
developing area. Although there are a lot of studies and proposed approaches, this field
lacks standardisation. A universally acknowledged classification of vulnerabilities would
make the communication and comparison of different studies easier. At the moment, there
is no framework for conducting manual security audit of Ethereum smart contracts. Such a
guide would be especially useful for young professionals who do not have a lot of experience
in this area yet. Moreover, although security audit tools allow to perform security analysis
automatically, they are not error-free, which means that a manual security audit is still
necessary.
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Abbreviations

API Application Programming Interface
BloSS Blockchain Signaling System
CIA Confidentiality-Integrity-Availability
DAO Decentralised Autonomous Organisation
DDoS Distributed Denial-of-Service
DoS Denial-of-Service
EVM Ethereum Virtual Machine
GUI Graphical User Interface
IDE Integrated Development Environment
NIST National Institute of Standards and Technology
REST Representational State Transfer
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Glossary

Block timestamp dependency Dependence on block.timestamp or its alias which can
be manipulated by miners.

Distributed Denial-of-Service A target of an attack is flooded with requests from
different sources. The aim of the attackers is to overload the target with the requests.

Ether Native cryptocurrency in Ethereum.

Gas A fee required to pay for transaction or contract execution in Ethereum.

Reentrancy If one contract hands over the control to another contract, the second con-
tract can call back into the first one several times before the first initiated interaction
is completed [24].

Smart Contract A programming code which automatically executes the terms of an
agreement.

Solidity High-level Turing-complete programming language.

Transaction ordering dependence The order of transactions can influence the execu-
tion of a smart contract which leads to race conditions.
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Appendix A

Comparison of the Security Audit
Findings with the Results of the
Security Audit Tools

Table A.1: Security Audit Findings Identified by Security Tools

ID Vulnerability Mythril Securify Securify
2.0

Remix Manticore

ESV1 Reetrancy X

ESV2 Block
timestamp
dependency

X

ESV3 Block
timestamp
dependency

X

ESV4 Block
timestamp
dependency

X

ESV5 Block
timestamp
dependency

X

ESV6 Block
timestamp
dependency

X

ES7 Block
timestamp
dependency

X

ESV8 Block
timestamp
dependency

X X
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ESV9 Integer over-
flow und
underflow

ESV10 Unrestricted
write

X X X

ESV11 Unrestricted
write

X

ESV12 Unrestricted
write

X

ESV13 Unrestricted
write

X

ESV14 Non-validated
arguments

X X

ESV15 Non-validated
arguments

X

ESV16 Non-validated
arguments

X

ESV17 Non-validated
arguments

X

ESV18 Non-validated
arguments

ESV19 Non-validated
arguments

ESV20 Non-validated
arguments

ESV21 Non-validated
arguments

ESV22 Non-validated
arguments

ESV23 Non-validated
arguments

ESV24 External call X X
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ESV25 DoS with
unexpected
revert

ESV26 DoS with
unexpected
revert

ESV27 DoS with
unexpected
revert

ESV28 DoS with
unexpected
revert

ESV29 DoS with
unexpected
revert

ESV30 Erroneous vis-
ibility

X

ESV31 Erroneous vis-
ibility

X

ESV32 Erroneous vis-
ibility

X

ESV33 Erroneous vis-
ibility

X

ESV34 Erroneous vis-
ibility

X

ESV35 Erroneous vis-
ibility

X

ESV36 Erroneous vis-
ibility

ESV37 Erroneous vis-
ibility

ESV38 Erroneous vis-
ibility

ESV39 Erroneous vis-
ibility
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ESV40 Erroneous vis-
ibility

ESV41 Erroneous vis-
ibility

ESV42 Erroneous vis-
ibility

ESV43 Erroneous vis-
ibility

ESV44 Erroneous vis-
ibility

ESV45 Erroneous vis-
ibility

ESV46 Erroneous vis-
ibility

ESV47 Erroneous vis-
ibility

ESV48 Erroneous vis-
ibility

ESV49 Erroneous vis-
ibility

ESV50 Erroneous vis-
ibility

ESV51 Erroneous vis-
ibility

ESV52 Erroneous vis-
ibility

ESV53 Erroneous vis-
ibility

ESV54 Erroneous vis-
ibility

ESV55 Erroneous vis-
ibility
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ESV56 Erroneous vis-
ibility

ESV57 Erroneous vis-
ibility

Total 3 7 11 7 0
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Appendix B

Classification and Analysis of the
Security Audit Tools Findings

Table B.1: Mythril’s Findings

Contract
Finding’s Order

in the Contract’s Report
Vulnerability Type True Positive

Migrations 1 External call
Register 1 Unrestricted write X
Register 2 Unrestricted write X
Protocol 1 External call X
Protocol 2 External call X

Protocol 3
Block timestamp
dependency

X

Table B.2: Securify’s Findings

Contract
Finding’s Order

in the Contract’s Report
Vulnerability Type True Positive

Migrations 1
Non-validated
arguments

X

Migrations 2 External call
Register 1 Unrestricted write X
Register 2 Unrestricted write X
Register 3 Unrestricted write X
Register 4 Unrestricted write X
Register 5 Greedy contract
Protocol 1 Transaction ordering
Protocol 2 Transaction ordering
Protocol 3 Reentrancy X
Protocol 4 Reentrancy X
Protocol 5 Unrestricted write X
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Protocol 6 Unrestricted write X
Protocol 7 Unrestricted write
Protocol 8 Unrestricted write
Protocol 9 Unrestricted write
Protocol 10 Unrestricted write
Protocol 11 Unrestricted write
Protocol 12 Unrestricted write
Protocol 13 Unrestricted write
Protocol 14 Unrestricted write
Protocol 15 Division
Protocol 16 Division
Protocol 17 External call X
Protocol 18 External call

Table B.3: Securify 2.0’s Findings

Contract
Finding’s Order

in the Contract’s Report
Vulnerability Type True Positive

Migrations 1 Erroneous visibility X
Migrations 2 Erroneous visibility X

Migrations 3
Non-validated
arguments

X

Migrations 4
Non-validated
arguments

X

Migrations 5
Solidity naming
convention violation

X

Migrations 6
Complex Solidity
version pragma
statement

X

Migrations 7 Exception handling

Migrations 8
Uninitialised state
variable

X

Register 1 Erroneous visibility X
Register 2 Erroneous visibility X
Register 3 Erroneous visibility X
Register 4 Erroneous visibility X

Register 5
Non-validated
arguments

X

Register 6
Non-validated
arguments

X

Register 7 Unrestricted write X
Register 8 Unrestricted write X
Register 9 Unrestricted write X
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Table B.4: Remix’s Findings

Contract
Finding’s Order

in the Contract’s Report
Vulnerability Type True Positive

Migrations 1 Overspent gas
Register 1 Overspent gas
Register 2 Overspent gas
Register 3 Overspent gas
Register 4 Exception handling
Register 5 Exception handling

Protocol 1
Internal error during
the reentrancy check

N/A

Protocol 2
Block timestamp
dependency

X

Protocol 3
Block timestamp
dependency

X

Protocol 4
Block timestamp
dependency

X

Protocol 5
Block timestamp
dependency

X

Protocol 6
Block timestamp
dependency

X

Protocol 7
Block timestamp
dependency

X

Protocol 8
Block timestamp
dependency

X

Protocol 9 Overspent gas
Protocol 10 Overspent gas
Protocol 11 Overspent gas
Protocol 12 Overspent gas
Protocol 13 Overspent gas
Protocol 14 Overspent gas
Protocol 15 Overspent gas
Protocol 16 Overspent gas
Protocol 17 Overspent gas
Protocol 18 Overspent gas
Protocol 19 Overspent gas
Protocol 20 Overspent gas
Protocol 21 Overspent gas
Protocol 22 Overspent gas
Protocol 23 Overspent gas
Protocol 24 Overspent gas
Protocol 25 Overspent gas
Protocol 26 Overspent gas
Protocol 27 Overspent gas
Protocol 28 Overspent gas
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Protocol 29 Overspent gas

Protocol 30

Internal error when
checking if a constant
can be used instead of
a function

N/A

Protocol 31
Variables with
similar names

X

Protocol 32 Exception handling
Protocol 33 Exception handling
Protocol 34 Exception handling
Protocol 35 Exception handling
Protocol 36 Exception handling
Protocol 37 Exception handling
Protocol 38 Exception handling
Protocol 39 Exception handling
Protocol 40 Exception handling
Protocol 41 Exception handling
Protocol 42 Exception handling
Protocol 43 Exception handling
Protocol 44 Exception handling
Protocol 45 Exception handling
Protocol 46 Exception handling
Protocol 47 Exception handling
Protocol 48 Exception handling
Protocol 49 Exception handling
Protocol 50 Exception handling
Protocol 51 Exception handling
Protocol 52 Exception handling
Protocol 53 Exception handling
Protocol 54 Exception handling
Protocol 55 Exception handling
Protocol 56 Exception handling
Protocol 57 Exception handling
Protocol 58 Exception handling
Protocol 59 Exception handling
Protocol 60 Exception handling
Protocol 61 Exception handling
Protocol 62 Exception handling
Protocol 63 Exception handling
Protocol 64 Bytes and string length
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Table B.5: Links to Securify’s Reports

Contract Link
Enums https://securify.chainsecurity.com/report/8e44004f893ef8734e6a3d1fb34cbd61dcfe7efae39452f09b37d604ac16634f

Migrations https://securify.chainsecurity.com/report/7c1eaedd743fc5093bd37f1ce135d1b677a53945b2280dc37255fdfd120c57c0

Register https://securify.chainsecurity.com/report/133d35b1bb453eceba123fee76a73555ab595cc5e15b10e1694f42e379ad9283

Protocol https://securify.chainsecurity.com/report/93eccf4b6b71bfec4918ab8fece9c49667184ee823387a01c48de5c6cf6bb92d

https://securify.chainsecurity.com/report/8e44004f893ef8734e6a3d1fb34cbd61dcfe7efae39452f09b37d604ac16634f
https://securify.chainsecurity.com/report/7c1eaedd743fc5093bd37f1ce135d1b677a53945b2280dc37255fdfd120c57c0
https://securify.chainsecurity.com/report/133d35b1bb453eceba123fee76a73555ab595cc5e15b10e1694f42e379ad9283
https://securify.chainsecurity.com/report/93eccf4b6b71bfec4918ab8fece9c49667184ee823387a01c48de5c6cf6bb92d

	Abstract
	Acknowledgments
	Introduction
	Background
	Blockchain
	Main Characteristics
	Bitcoin & Ethereum
	Smart Contracts

	Security Frameworks
	The Confidentiality-Integrity-Availability Triad
	NIST Guide for Conducting Risk Assessments


	Related Work
	Security Audit & Vulnerabilities in Smart Contracts
	Tools for Automated Security Audit

	Blockchain Signaling System
	Methodology
	General Approach
	Tools for Automated Security Audit
	Security Analysis of Smart Contracts

	Findings
	Tools for Automated Security Audit
	Security Analysis of Smart Contracts

	Discussion
	Conclusion and Final Considerations
	Bibliography
	Abbreviations
	Glossary
	List of Figures
	List of Tables
	Comparison of the Security Audit Findings with the Results of the Security Audit Tools
	Classification and Analysis of the Security Audit Tools Findings

