
Design and Development of a
Decentralized Access Control Tool

for BloSS

Mervin Cheok
Zurich, Switzerland

Student ID: 07-194-392

Supervisor: Bruno Rodrigues, Dr. Thomas Bocek
Date of Submission: March 20, 2018

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r



Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/



Abstract

Das ist die Kurzfassung...

each 1 sentence

- intro problem, ddos bloss, problem of bloss, - this thesis solve the proble, - how. using,
result are

i



ii



Acknowledgments

I thank my supervisor Bruno Rodriques for his help and guidance through the BloSS/IPFS
labyrinth and the continuous motivational words. They were much needed.

A big thank you also to Rowena Raths and my family for their everlasting support and
the understanding of my constant absence.

I want to mention and thank Ms. Pearl La Marca-Ghaemmaghami for helping me focus
on the important things.

Last but not least, a big shoutout to Andreas Gruhler and Lukas Eisenring.

iii



iv



Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Description of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Related Work 5

2.1 Distributed Denial of Service (DDoS) . . . . . . . . . . . . . . . . . . . . . 5

2.2 DOTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 InterPlanetary File System (IPFS) . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 System Design 7

3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 BloSS Data Sharing Scenario . . . . . . . . . . . . . . . . . . . . . 8

3.1.2 Technological Considerations . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Access Control for BloSS Data Sharing using IPFS . . . . . . . . . . . . . 10

3.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

v



vi CONTENTS

4 Implementation 15

4.1 BloSS Decentralized Application . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Sender and Receiver App Scripts . . . . . . . . . . . . . . . . . . . 15

4.1.2 Classes and their Functionality . . . . . . . . . . . . . . . . . . . . 16

4.1.3 Passwords and Key Store . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.4 Local Application Data . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.5 Libraries and Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Cryptographic Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Encountered Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Experimental Evaluation 23

5.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Test Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 File Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Discussion 27

6.1 Existing Tools and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3 System Design and Implementation . . . . . . . . . . . . . . . . . . . . . . 28

6.3.1 Requirement Fulfillment . . . . . . . . . . . . . . . . . . . . . . . . 28

6.3.2 Smart Contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Final Considerations 31

Bibliography 33

Abbreviations 37

List of Figures 39

List of Tables 41



CONTENTS vii

A Encryption Keys and Cipher Texts 43

A.1 Sender Public Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.2 Plain IP Address List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A.3 Encrypted IP Address List . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.4 Encrypted File Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

B Installation Guidelines 47

C Contents of the CD 49



viii CONTENTS



Chapter 1

Introduction

DDoS (Distributed Denial-of-Service) attacks have the simple goal of interrupting or sus-
pending services available on the Internet and its motivations range from personal grudges
over blackmail to political reasons [21]. A notable example is an attack conducted against
Domain Name System (DNS) servers responsible for domains such as Twitter, PayPal,
and Spotify [31] in October 2016. As a consequence, those services became unavailable to
many US (United States) users for several hours. Besides the frequency, also the strength
and growing duration of DDoS attacks increase their threat. One reason for the increasing
volume of attacks is the availability of many weakly secured or configured IoT (Internet
of Things) devices or home gateways [31].

The distributed nature of DDoS attacks suggests that a distributed mechanism is necessary
for a successful defense. In this regard, coordinated protection efforts have become an
attractive alternative to extend defense capabilities of a single system. Among existing
alternatives, the blockchain technology offers an out-of-the-box solution that not only
reduces the complexity of signaling DDoS attack information but could also provide means
of establishing financial incentives, for cooperation at a reduced operational cost [24].
Blockchain and smart contracts [11] combined provide an out-of-the-box solution that can
be used for signaling DDoS attacks information across multiple domains. Thus, existing
approaches using gossip-based protocols can be simplified and remove the need to build
specialized signaling protocols [26].

The Blockchain Signaling System (BloSS) [26] leverages blockchain capabilities to define
individual agreements or conditions in a smart contract to perform a mitigation service in
cooperative network defense. The signaling data is stored off-chain using the InterPlan-
etary File System (IPFS) [10, 23]. The IPFS link for the signaling data is stored in a
smart contract. However, BloSS requires a security mechanism to manage the access to
the addresses signaled in the blockchain, by using an off-chain access control mechanism.

Many concepts evolve around blockchain and private distributed data storage. Some con-
cepts are making or made the transition to a usable system. None of the systems satisfies
the needs of BloSS with IPFS. Encryption is the only mechanism available to control ac-
cess with IPFS. Technological incompatibility or immaturity are the main reasons. Thus,
a simple concept based on common encryption tools exchanging public keys via smart

1



2 CHAPTER 1. INTRODUCTION

contracts was designed and implemented. This simple system fulfills most of the BloSS
access control requirements.

1.1 Description of Work

1.1.1 Problem Description

An autonomous system (AS) can join the cooperative defense system by creating a
blockchain account and registering at a central smart contract. A central smart con-
tract holds the management information of the defense system, such as IP networks of
an AS, the address for the blockchain account of an AS and the address for the smart
contract of an AS. Is an AS registered, it can retrieve the reported addresses of other
ASes or can request help of other ASes by submitting IPs belonging to an attack. Has
an AS received the newest information, it then can use common DDoS mitigation tools
and techniques to react to an attack [1]. However, BloSS requires a security mechanism
to manage the access to the addresses signaled in the blockchain, by using an off-chain
access control mechanism.

1.1.2 Objective

The analysis of related works is an important factor to reveal which methods and tools
can be implemented. The design and development stage consists in the modeling of a sys-
tem capable of a decentralized authentication and authorization mechanism, using smart
contracts and a decentralized application (dApp). Access control systems regulate the
access to resources defining policies expressing the rights of subjects to access resources.
Therefore, the main goal of this thesis is:

• Design and develop and an off-chain mechanism to ensure that only authorized
participants of a cooperative network defense can access data stored off-chain.

Access control systems restrict access to critical or valuable resources defining policies
expressing the rights of subjects to access resources. Therefore, this thesis formalizes
and propose the design, operation, and evaluation of the access control mechanism. The
output is a working prototype consisting of the integration of the designed and imple-
mented elements into the whole system, producing results and material to be analyzed
and contrasted with the previously specified requirements.

1.2 Methodology

Based on the description of work, the following research steps need to be accomplished:



1.3. THESIS OUTLINE 3

• Problem analysis and planning: understanding of the BloSS requirements and anal-
ysis of storage platforms based on the previously listed requirements.

• Requirements and System Design: formalization or proposal of requirements to the
selected platform to operate with BloSS.

• Implementation: design of an architecture and its components and development
and integration with the BloSS system. Source code needs to be open source, well
documented, and readable. Use appropriate testing practices to test the prototype.

• Experimental Evaluation: concerning the time required to process, store and fetch
lists of IP addresses reported by BloSS in scale.

• Report Writing: involves the documentation process and motivation, background
information, related work, design decisions, implementation details, evaluation, and
conclusions.

1.3 Thesis Outline

Chapter 2 Background and Related Work acquires the needed knowledge about the
used technologies such as blockchain, IPFS, access control and encryption. The
chapter also gives an overview of the concepts and tools that can be used for private
distributed storage.

Chapter 3 System Design gathers the requirements for the BloSS access control mech-
anism. Based on these requirements possible tools and concepts are evaluated. At
last, a new system is designed using the newly gained information.

Chapter 4 Implementation provides the details on the developed proof of concept. The
code architecture, important building blocks such as the encryption tools and the
Ethereum and IPFS interfaces.

Chapter 5 Experimental Evaluation explains the used test setup for privte blockchain
and the installed BloSS dApps and then elaborates the result of the test run.

Chapter 6 Discussion provides a critical examination about the design and the imple-
mentation of the proof of concept. Potential for improvement is shown.

Chapter 7 Final Considerations does a final wrapup of the work of this thesis and rec-
ommends next steps.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Background and Related Work

2.1 Distributed Denial of Service (DDoS)

A Denial of Service (DoS) attack is a cyber attack, first occurred in the 1980’s. A DoS
attack aims to stop legitimate users from accessing a certain network resource. In 1999 the
first Distributed Denial of Service (DDoS) attack had been reported and most of the DoS
attacks from 1999 until today were of distributed nature [34]. One form of DoS attack
over the Internet is to generate a massive amount of traffic to occupy all the resources,
hindering them to provide service to legitimate traffic. This form of attack is difficult to
prevent; targets are vulnerable just because they are connected to the internet. When
the malicious traffic comes from multiple attacking entities, it is called a Distributed DoS
attack. Using multiple attack entities amplifies the DDoS attack and makes the defense
more complicated [22, 26]. The frequency of DDoS attacks is increasing. One reason
for the rising volume of attacks is the availability of many weakly secured or configured
Internet of Things (IoT) devices [31, 20].

The defense against a DDoS attack is severe. It proposes that a distributed mechanism
is necessary or advantageous for a successful defense. Hence coordinated protection is
becoming popular [24, 27]. Two example for coordinated DDoS signaling systems are
DOTS and BloSS.

2.2 DOTS

The IETF is currently proposing a protocol called DOTS (DDoS Open Threat Signaling)
covering both intra-organization and inter-organization communications to advertise at-
tacks. The protocol requires servers and client DOTS agents, which can be organized in
both centralized and distributed architectures to advertise black or whitelisted addresses.
A DOTS client should register to a DOTS server in advance sending provision and ca-
pacity protection information and be advertised of attacks. Then, the DOTS protocol is
used among the agents to facilitate and coordinate the DDoS protection service [? ].

5



6 CHAPTER 2. BACKGROUND AND RELATED WORK

2.3 Blockchain

A blockchain system is a so-called distributed ledger. The ledger is replicated to a large
number of identical databases. Different parties can host these. Happens a change in one
of the copies, all the other copies are simultaneously updated. If a transaction occurs, it
is permanently stored in all the ledgers. Communication happens directly between peers.
No central node has to be involved. Every record is visible to anyone with access to the
system. Once a record is stored in the blockchain, the record cannot be changed. Bitcoin is
the first blockchain system [17]. In the meanwhile, there are other systems ie. Ethereum.
Ethereum uses smart contracts [13]; these are contracts that can map executable logic
onto the blockchain [12, 25]. A smart contract is a programmable account.

Storing data on a blockchain can be expensive. Off-chain storage is used for better scal-
ing [30, 28]. The off-chain storage should be distributed as well.

2.4 InterPlanetary File System (IPFS)

The InterPlanetary File System (IPFS) is a distributed file system. IPFS is peer-to-peer
and integrates ideas such as Distributed Hash Tables, BitTorrent, versioning like Git and
the Self-Certified Filesystems (SFS). IPFS is a fully distributed system and has no single
point of failure. The data of a node is stored locally. Nodes can connect to each other
and transfer data [10].

2.5 Related Work

There are decentralized and distributed identity or key management concepts available.
For example decentral PKIs [15, 18, 14] or Self-Sovereign Identity. Most of the concepts
are not ready to use.

There are tools for sharing data using blockchain and off-chain storage. Unfortunately,
there is no tool available yet that suits the needs of BloSS. After an inspection of possible
tools, the conclusion is, that there are two camps: 1) of storage data sharing and 2) tools
for secure off-chain data stores protecting privacy. BloSS needs a combination of the two.
Some candidates that come near to what is searched are Enigma [35], Tahoe-LAFS [7],
StoreJ [33], and Peergos [4].

Enigma should work with Bitcoin and Ethereum, but only Bitcoin applications were found.
Tahoe-LAFS does not work with IPFS. StoreJ is distributed private storage that does not
yet support sharing.



Chapter 3

System Design

3.1 Requirements

A system able to comply with the goals described in Chapter 1, has to consider require-
ments of aspects such as the BloSS scenario and its use cases, general security consid-
erations as well as Blockchains with Smart Contracts and IPFS specific considerations.
Taking these aspects, BloSS should account the following requirements:

Functional Requirements:

1. Control which entity can access a specific IP address list stored on the off-chain
storage.

2. Share information between multiple parties.

3. Share different information types (file formats and file sizes).

4. Update the shared information timely.

5. Revoke access to shared information.

6. Ensure the availability of the shared data during an attack.

7. Ensure the integrity of the shared data.

Non-functional Requirements:

1. Consist only of parts that work in a distributed manner.

2. Use a private Ethereum Blockchain.

3. Use IPFS for off-chain storage.

4. Use Python 3.

7



8 CHAPTER 3. SYSTEM DESIGN

5. Run on Ubuntu.

The list entries are ordered by the sequence they were acquired. The following thow
Subsection guide through the development of the requirements for the Bloss Data Layer.

3.1.1 BloSS Data Sharing Scenario

For this work, the BloSS data transfer and sharing mechanism is in focus. For identifying
the corresponding requirements, the BloSS scenario has to be described in detail and then
examined.

BloSS is using a private Ethereum blockchain with smart contracts. All BloSS participants
have to be registered in a smart contract. A smart contract is used for coordination and
data is shared via IPFS.

A high-level consideration is that BloSS as a tool to fight DDoS attacks, should not
be susceptible to such attacks. BloSS is using a blockchain, a distributed technology,
to reduce the attack surface respectively to reduce the impact of a DDoS attack. If
one system cannot respond anymore, the remaining systems can still proceed with their
work. Therefore the used data sharing mechanism must comply with the property of a
distributed system.

Non-functional requirement 1: BloSS consist only of parts that work in a distributed
manner. Independent of a central management entity.

Figure 3.1: BloSS Data Sharing Scenario

Figure 3.1 visualizes the BloSS signaling and data sharing scenario. The circles are au-
tonomous systems (ASs) representing a node in the BloSS network. “S” for sender is the
AS that is attacked by a DDoS attack. “A<Nr.>” for accepted are the ASs whos attack
mitigation offer has been accepted by the sender, these ASs are participating in the DDoS
attack mitigation. “R” for rejected is the AS whos attack mitigation offer has been re-
jected by the sender. “N” for neutral is an uninvolved AS. The smart contract and the
files stored on IPFS are placed in the “Cloud”. The scenario is split into three phases:



3.1. REQUIREMENTS 9

Phase 1: The Sender is under attack. It sends a help request in the form of a smart
contract on the blockchain. Other ASs are checking the blockchain for requests and
find the request from the Sender. The other ASs then can offer their help in the
attack mitigation.

Phase 2: The three ASs A1, A2, and R decide to support the sender in the attack mitiga-
tion. They notify the sender by registering in the smart contract. AS neutral does
not participate in the mitigation. The sender decides which ASs can help. The offer
of A1 and A2 are accepted, the offer of R gets rejected.

Phase 3: The Sender processes the signaling data and stores it on IPFS. The correspond-
ing IPFS address hash is then stored on the blockchain again. The other AS can
retrieve the information from the blockchain, but only the approved AS will be able
to read the information. A1 and A2 can access the signaling data. The Rejected
and Neutral AS cannot access the information.

The scenario shows what is mentioned in Chapter 2. The IP information is sensitive. The
attacked AS does not want full disclosure about the ongoing attack, therefore, it wants to
share information as little as possible. Hence the first two functional requirements are:

Functional requirement 1: BloSS can control which entity can access a specific IP address
list stored on IPFS.

Functional requirement 2: BloSS can share information between multiple parties.

In the scenario, the data shared with IPFS are IPv4 addresses in a text file. The exact
format of this file is not defined yet. The question of how many files are used - one file
per participating AS or only one file per attack mitigation or other possibilities - is not
defined either. The IP information is the most important data that needs to be shared,
but not the only one. According to V.Revuelto [32] incident reviews and information
disclosure is part of the last stage of a DDoS response procedure. For reviewing and
analysis purposes logfiles and reports must be exchanged between the involved AS. Thus
the third functional requirement:

Functional requirement 3: BloSS can share different information types(file formats and
file sizes).

DDoS attacks can last for hours, and the attacking entities can change during an attack.
The IP addresses that have to be blocked can change during an attack. The involved AS
have to be notified in a short period so that the mitigation targets the correct attacker as
long as they are attacking.

Functional requirement 4: BloSS can update the shared information timely.

At a certain point of the mitigation, some involved AS might have to be excluded from
the mitigation process. No further malicious request are recorded from the domain of an
AS; there is no reason to provide that AS with more information. Review reports and
analysis data might want to be shared for a specified time only. As a consequence, the
fourth functional requirement is:



10 CHAPTER 3. SYSTEM DESIGN

Functional requirement 5: BloSS can revoke access to shared information.

An additional consideration is that the shared data must be available at any time during an
attack so that the participating AS can take mitigation actions. The data must be tamper
proof as well so that an attack can not manipulate the defense coordination actions.

Functional requirement 6: BloSS has to ensure the availability of the shared data during
an attack.

Functional requirement 7: BloSS has to ensure the integrity of the shared data.

The scenario can be summarized as such: BloSS is using a private blockchain with par-
ticipating AS that share a similar goal (the uninterrupted provision of their services) but
do not fully trust each other. The participants build a community of purpose to defend
against DDoS attacks. In this context, the participants are willing to share data, if needed.

3.1.2 Technological Considerations

The same technological conditions as in the BloSS proof of concept from Rodrigues et al.
[24] are applied for this work. The BloSS proof of concept is using a private Ethereum
blockchain and IPFS for off-chain storage. The BloSS dApps are running on an Ubuntu
server.

Non-functional requirement 1: BloSS uses a private Ethereum Blockchain.

Non-functional requirement 2: BloSS uses IPFS for off chain storage.

The BloSS concept dApp is written in Python 2 and uses web3.py to interact with the
Ethereum blockchain and the Python IPFSAPI to interact with IPFS. Since the beginning
of 2018 the web3.py module only supports Python 3. Thus the BloSS dApp components
have to be upgraded to Python 3.

Non-functional requirement x: BloSS uses Python 3.

Non-functional requirement x: BloSS runs on Ubuntu.

3.2 Access Control for BloSS Data Sharing using IPFS

This section elaborates how the previous high-level requirements can be met and why the
most appropriate solution is a simple public key encryption mechanism.

First, some vital information about the available building blocks. The Ethereum blockchain
with smart contracts and IPFS are the base technologies. Both share the property that
stored data is accessible by everyone. Plain data stored on IPFS or Ethereum is con-
sidered public data. Every party that gets hold of the address of a smart contract or
the address hash of an IPFS resource can access this data directly. Even without address
information, it is possible to find and access the data by exploring the blockchain or IPFS.



3.3. DESIGN 11

As mentioned in Chapter 2 IPFS offers no possibility to restrict access to resources except
encryption. The IPFS specification mentioned built-in encryption functionality [10]. The
API and ongoing discussions in the IPFS user group show that the encryption feature is
not yet implemented [3]. For both IPFS and Ethereum sensitive data has to be encrypted
by the user manually.

Combining the need for encryption with the requirement for a distributed system based
on a blockchain and IPFS is the starting point for the search for suitable tools. Is there a
distributed tool that allows sharing data and at the same time protect it from unauthorized
access using encryption? The evaluation of possible tools concludes “No”. Either there is
a mismatch in technologies, the tool is not ready, or it contains a centralized component.
Chapter 2 shows more information on this decision.

The lack of suitable tools forces the author to design a new concept. This concept builds
on the findings of literature research focusing distributed identity and key management.
Similar to the distributed private storage with sharing possibility, no suitable concept
seems ready for use. Chapter 2 lists the examined concepts such as decentralized PKI, Self-
Sovereign Identity or Attribute-Based Encryption. Although there are some promising
ideas, the adaption and implementation for the BloSS scenario exceed the scope of this
thesis.

Since building new secure applications is delicate - it is easy to neglect critical security
details - the design should be as simple as possible. Symmetrical encryption allows en-
crypting bigger data file. The shared file is encrypted with a generated random file key
using symmetrical encryption. The cipher file is then stored on IPFS. The file key is
encrypted using public key encryption. Together with the IPFS hash, the encrypted file
key is then stored in a smart contract. The public key encryption allows encrypting data
for a group of parties so that BloSS can encrypt data once and share it with a group of
participants. Every BloSS node has its public and private key pair.

3.3 Design

Due to the experimental state of BloSS and the growing IPFS ecosystem, the designed
solution depends on the following assumptions:

• It is assumed, that the shared public keys in the smart contracts are legitimate AS
known to and trusted by BloSS. It is not checked if a public key belongs to a trusted
node. All keys from the contracts are trusted.

• It is assumed, that IPFS can provide a resource all the time. Since resources have to
be provided by multiple nodes to be accessible during a DDoS attack. The incentives
to improve resource availability is not part of this work.

The following sequence describes the steps depicted in Figure 3.2. The sender is the BloSS
dApp that is attacked and asks other BloSS dApps called the receiver for support. This
sequence depend on the starting situation, where the sender has created a smart contract
(for simplicity named as the contract in the rest of the document) on the blockchain. The



12 CHAPTER 3. SYSTEM DESIGN

Figure 3.2: BloSS Sequence

address of that contract is known by all involved BloSS dApps. The receiver is known
waiting for other BloSS dApp to provide their public key information.

1. The sender polls the public key information from the contract. Currently, the con-
tract holds no keys and returns an empty set. The sender waits for a defined interval
until it starts the next polling request.

2. Receiver A (for accepted) registers his public key information in the contract.

3. Afther receiver A has successfully registered his public key information, the receiver
transitions into the polling phase. In the polling phase, the receiver checks the
contract for new IPFS information. Since currently there is no IPFS information,
the receiver waits for the next poll.

4. The sender polls for the public key information once more. This time he finds
the public key from receiver A. The sender uses this information to encrypt his ip
address list and to store the encrypted list on ipfs. The sender puts the decryption
information and the IPFS address in the contract.

(a) The sender creates a new file key (the sender generates a random key).

(b) The new file key is used to encrypt the current ip address list.

(c) The file key will be encrypted using the public keys of the receivers.



3.3. DESIGN 13

(d) The encrypted ip addresses are than stored on IPFS.

(e) The IPFS address hash and the encrypted file key are stored in the contract.

5. Receiver A polls again for new IPFS information. The receiver finds the new IPFS
address hash and the encrypted file key.

6. With this information the receiver can get the encrypted ip address list from IPFS
and use the file key to decrypt the ip address list.

(a) The receivers gets the IP address list from IPFS.

(b) The receivers uses its own private key to decrypt the file key from the contract.

(c) Using the plain file key, receiver A can decrypt the IP address list.

(d) With the plain IP address list, receiver A can start with possible attack mitti-
gation actions.

7. Receiver B (for blocked) polls for IPFS information. The receiver finds the IPFS
and the encrypted file key information.

8. With this information, receiver B can geht the encrypted IP address list but is not
able to decrypt the file, respectively is not able to decrypt the file key without the
IP address list can not be decrypted.

This sequence assumes, that the contract address is provisioned beforehand. This could
change and a mechanism for identifying the correct contracts on the blockchain could be
implemented in a following step.

The decision of which BloSS DApp is trusted and accepted for the DDoS mitigation is
pre defined for this scenario. Logic to make this decision dynamicly in real time can be
added in a next iteration. The decision making logic could for example use a reputation
system as information basis.



14 CHAPTER 3. SYSTEM DESIGN



Chapter 4

Implementation

4.1 BloSS Decentralized Application

Altough there is no software library or tool for the BloSS functionality, the code of the
BloSS prototype setup was available and could be used to understand the concept on how
to interact with Ethereum and IPFS. Based on this information and code snippets it was
possible to build Ethereum and IPFS adapters. The implementation effort is spent on
file handling, the cryptographic functionality and the public key exchange. Other BloSS
functionalities are mocked if needed or omitted if not needed at all.

Figure 4.1 shows the used python files. Elements marked as“script”are Python scripts, the
other elements represent classes. Two scripts sender app.py and recevier app.py are the
two entry points and are used to simulate the BloSS dApp behaviour, using the provided
BloSS dApp functionality. Together the two scripts emulate the in Section ?? proposed
procedute.

4.1.1 Sender and Receiver App Scripts

The sender app script simulates the actions of an attacked AS, which are the polling for
public keys of participating AS’s and the encryption and provisioning of the IP address list.
The receiver app script simulates the actions of an AS that participates in a mittigation
process, which are the publishing of its own public key, the polling for new information
from the smart contract, the fetching of the IP address lists from IPFS and the encryption
of that list.

Each script has a corresponding class object encapsulating the needet BloSS functionality.
The Sender class provides the functionality for the sender app script and the Receiver class
provides the functionality for the receiver app script. The scripts gets the path to a node
configuration file passed as argument. On startup, the script loads the configuration file,
that can be used to create the Sender or Receiver class.

15



16 CHAPTER 4. IMPLEMENTATION

Figure 4.1: BloSS dApp Components and Classes

On startup, the scripts also load and configure the Python logging module. This module
provides a flexible event logging system that allows to record the activities of the BloSS
dApp. The scripts log to the standard output console, but logging to a file or database
could be configured simply by adujsting the config definition in the two scripts.

The scripts exit with exit code “0” if the execution was error less. Should an error occure,
the script prints the corresponding error message and exits with code “10”. All exceptions
and errors that could occure during execution are caught in the scripts.

4.1.2 Classes and their Functionality

This Subsection describes the used class objects and their functionality of the BloSS dApp
also shown in Figure 4.1. When ever information should be logged, the Python logging
framework is used. Every class defines its own logger.

Sender: The Sender class gathers all needet functionality that is used for an AS that
initializes an attack mittigation. The Sender class is used by the sender app script.
During the initialization of this object, the connection to the Ethereum and IPFS



4.1. BLOSS DECENTRALIZED APPLICATION 17

client is established. Can the needed connections not be established, the initilization
fails with en exception.

Methods:

fetch recipients public keys(): Gets the published public keys of participating ASs
from the KeyExchangeContract.

publish current ip list(ip list path): Encrypts the current IP address list with the
public keys of the participating ASs, stores the encrypted list on IPFS and
publishes the IPFS hash and the file key in the KeyExchangeContract.

Receiver: Analog to the Sender class, this Receiver class gathers the needet functionality
for an AS that wants to participate in an ongoing mittigation. The Receiver class is
used by the receiver app script. Same as with the Sender initialization process, the
Receiver tries to establish connection to Ethereum and IPFS and the initialization
fails if the connections cannot be established.

Methods:

process signaling data(): Checks the KeyExchangeContract for new IPFS hashes.
If new hashes are found, the files are fetched from IPFS and decrypted.

fetch signaling data(): Get the corresponding file for a hash from IPFS and saves
the file on the local file system.

decrypt session key(message, pwd): Decrypt a cypher message using the Crypto-
Box object.

decrypt token file(file path, pwd): Decrypt a file with encrypted content using the
CryptoBox object.

publis public key(): Store this nodes public key to the KeyExchangeContract.

EthereumConsole: The EthereumConsole class represents the Ethereum interface for
BloSS. This class holds a connected instance of the Ethereum web3.py api. At
creation, the EthereumConsole takes an Ethereum RPC node host address and the
corresponding port number. An exception is thorwn, if web3.py can not connect to
the given host and port combination.

Methods:

unlock account(account, pwd): This method unlocks the given account on the con-
nected Ethereum node.

load key exchange contract for account(address, account): This method creates a
connected KeyExchangeContract object for the given contract address and the
account that should be used to interact with the contract.

KeyExchangeContract: The KeyExchangeContract class represents the Solidity Smart
Contract for the BloSS key exchange. This class implements all the method calls
to the Smart Contract. The class knows the location of the corresponding contract
ABI JSON file.



18 CHAPTER 4. IMPLEMENTATION

CryptoBox: All the cryptographic functionality is encapsulated in the CryptoBox class
(symetric encryption with Fernet and asymetric encryption with GnuPG). When
creating an new instance of this class, the GnuPG home directory has to be declared.
The public keys of the participating AS are imported by the CryptoBox into GnuPG.

Methods:

import trusted recipients(trusted recipients): Imports a list of public keys into
the GnuPG key ring. Returns a list of fingerprints of the imported public keys.

encrypt plain file for recipients(file path, trusted recipients): Encrypts a plain text
file for the given recipients. This is done by generating a new file key that is
used to encrypt the given file with AES 128. The generated file key is than en-
crypted for the public keys of the trusted recipients using GnuPG’s encryption
function.

gpg decrypt message(messge, pwd): Decrypts a given cypher text with GnuPGs
private key.

decrypt token(file path, pwd): Decrypt the given encrypted file with the given key.

IPFSConnector: Encapsulation for the IPFS API library. During the initialization of the
connector a connection to IPFS must be possible, otherwise the initialization fails.
The connector can add a file to IPFS and get the corresponding content for an IPFS
address hash.

Methods:

get(adr hash): Gets a file from IPFS.

add(file path): Adds a file to IPFS.

NodeConfig: Utility class for holding the different configuration parameters for the dApp,
GnuPG, Ethereum and IPFS. Uses the Python configparser to handle INI configu-
ration text files.

file handler: This file gathers utility functions for working with the local file system.

Methods:

init node home(): Creates a new home directory for the dApp, including the gpg home
and the data directory.

save content to file(file path, file content): Saves the content localy to the given
path.

4.1.3 Passwords and Key Store

The BloSS dApp must have access to account and password information to connect to
Ethereum and IPFS. The dApp also needs write access to the GnuPG key store. Authen-
tication data is sensible and requires careful treatment. The data should be accessible
only by legitimate entities. The combination of these three tools leave two options to
handle the authentication data: 1) enter the data manually at application startup or 2)



4.1. BLOSS DECENTRALIZED APPLICATION 19

load the data from a protected source. For the proof of work setup in this work, both
options would be viable. There are only a few nodes that need to be managed, and the
uptime of the nodes is not critical. Considering a more realistic deployment where a more
significant number of nodes needs to be managed and operated, option 2 is more suitable.

The BloSS dApp configuration file stores the authentication information. The configura-
tion holds the Ethereum account and password, the IPFS account and password as well
as the password for the GnuPG private key. To restrict access to this data, the correct
OS access rights for the configuration file have to be set. Only the OS user used for the
BloSS dApp (the configuration file owner) shall have access. The Linux file access rights
are set to “-rwx—— / 0700” which means that only the owner of the file can read, write,
and execute it. A file protected like this does not guarantee as failsafe protection. A user
with administrator privileges will still have access to the file. If the OS is compromised,
access to the data could be gained.

4.1.4 Local Application Data

The local BloSS installation has a home directory with the following structure:

/NodeHome

/config - Configuration

/data - Application data such as IP address lists.

/dApp - Python scripts

/gpg_home - GnuPG home directory

As in the previous section mentioned, the gpg home directory access rights have to be set
to “-rwx—— / 0700” to ensure that only the owner can use the configuration data. Since
the data directory will contain the IP address lists or other sensitive report data and the
Python scripts have to be protected from modification by third parties it is recommended,
to restrict access for the NodeHome directory.

4.1.5 Libraries and Tools

The used Python modules that had to be installed additionally are:

web3 The Python Ethereum console implementation.

ipfsapi The Python IPFS API implementation.

cryptography Pythons crypto library, used for the symmetric encryption.

gnupg The Python wrapper for GnuPG.

Further, GnuPG has to be installed on the local Ubuntu machine.



20 CHAPTER 4. IMPLEMENTATION

4.2 Cryptographic Tools

Pythons ”cryptography” library is used to encrypt the IP address list file with a random
key. This random key will be encrypted with GnuPG public-key encryption functionality.
To interact with GnuPG via Python, ”python-gnupg” a Python wrapper for GnuPG is
used. All these tools are free or open source software (FOSS) for Python 3.

The tools were selected after an evaluation with the following criteria: 1) the tool must
support Python 3, 2) it must be free or open source, 3) it is in active development, 4) it
is used by other projects and 5) it runs on Ubuntu, 6) it has undergone security reviews
with public reports.

The security vulnerability portal cvedetail.com [1] is used to check the tools for known
security flaws. According to CVE Detail, the selected tools have no severe issues or flaws.
Some minor security vulnerabilities are known, but none tangent the field of application
of this work. This does not prove, that there are no vulnerabilities, but it shows that the
tools at least undergo some reviews.

PyCrypto is a collection of hash functions and encryption functions. The library is in
version 2.6.1 and supports Python version 2.1 to 3.3. PyCrypto is an often used
library; the development is stopped. The last commit for this project is from June
2014 [19].

PyCryptodome is a PyCrypto active developed fork. It supports the same functionality
as its original and Python version 2.6 and all Python 3 versions. The newest version
3.5.0 dates back to March 2018. PyCryptodome is partially under public domain
and partially under BSD 2 released [6].

Cryptographic is a Python package providing cryptographic recipes and primitives for
Python developers. The developers of aim to make it the cryptographic standard
library for Python. Supported Python versions are 2.7 and 3.4+. Supported cryp-
tographic algorithms are symmetric ciphers, message digests, and key derivation
functions. The projects latest stable release 2.1.4 is from the 29.11.2017. Used
licenses are the Apache Software License, version 2.0 and the BSD license [5].

Deadlock is file encryption tool after miniLock in and for Python 3. Contrary to miniLock,
Deadlock is not audited and no longer in development. The last commit of the
project was in August 2014. The tool is published under the GNU Affero General
Public License [16].

GnuPG is a free implementation of the OpenPGP standard. Its primary purpose is
the end-to-end encryption of email communication; it lets encrypt and sign data
and communication in general. It also features versatile key management. In 2017
GnuPG is around for 20 years. The newest version is released at the 22.02.2018.
GnuPG is released under the GNU General Public Licence [2]. Python-GnuPG
is a GnuPG wrapper for Python. The latest version is 0.4.1 dating from 15.11.2017
and supports GnuPG version 2.1 and later [29].



4.3. ENCOUNTERED PROBLEMS 21

4.3 Encountered Problems

The public key exchange via smart contract encountered an encoding problem during the
development process. Some nodes could not decode the public key from the contract
correctly. Other nodes could decode as expected. All the affected nodes were located
on the same physical machine (Desktop 2). After the reinstallation of the machine, the
encoding problem has vanished. It is not clear why this problem occurred. Further
investigation is recommended.



22 CHAPTER 4. IMPLEMENTATION



Chapter 5

Experimental Evaluation

This Chapter shows the verification procedure for the design described in Chapter 3. First
comes an explanation of the test setup, followed by the data gathered during a test run.

5.1 Test Setup

The test setup uses a local network consisting of three computers. These three computers
build a private Ethereum blockchain with five nodes. Two dedicated nodes for mining
and three nodes for the BloSS dApp: one Sender dApp that provides the IP address list,
one dApp that is accepted by the Sender to participate in the attack mitigation and one
dApp that is rejected by the Sender. The three computers are two more powerful desktop
machines and one notebook. Two Ethereum nodes are deployed on each of the machines
with better performance, one mining node, and one dApp node. The notebook hosts only
one dApp. The described setup is depicted in Table 5.1. Miner nodes run with port 30303
and RPC port 8545. DApp nodes run under port 30304 and RPC port 8546.

For the setup, all dApps use the same source code version. The Rejected Receiver does
not publish a public key to ensure that the Sender encrypts the data for the accepted
receiver. Each dApp has a new GnuPG directory and a freshly generated key pair. A
new Key Exchange Contract is created on the blockchain, and the address is provisioned
to all three dApps.

Node Node 11 Node 12 Node 21 Node 22 Node 33
Purpose Miner Sender dApp Miner Accepted dApp Rejected dApp
Port 30303 30304 30303 30304 30304
RPC Port 8545 8546 8545 8546 8546
Network 12344 12344 12344 12344 12344
Machine Desktop 1 Desktop 1 Desktop 2 Desktop 2 Notebook
IP Address 192.168.1.100 192.168.1.100 192.168.1.101 192.168.1.101 192.168.1.102

Table 5.1: Ethereum Node Setup

23



24 CHAPTER 5. EXPERIMENTAL EVALUATION

5.2 Test Run

A test run is initiated by starting the three dApps (Sender, Accepted Receiver, and
Rejected Receiver) manually.

1. The Accepted Receiver publishes his public key to the key exchange contract. The
public key is accessible in the Appendix A.1.

2. The Sender gets the Receivers public key from the contract and starts the IP list
encryption.

(a) The sender generates a random file encryption key.

oAX5IC1vFddSuKlGRd4ascGFQaHcFMnETxAAQiSKCjU=

(b) A dummy IP list file gets encrypted with the file encryption key. The plain
file is accessible in Appendix A.2 and the encrypted list is accessible in the
Appendix A.3.

(c) The sender stores the encrypted IP list on IPFS and gets an IPFS hash in
return.

QmRnCZ4GE8dJjBe9HQCVksUxrrRDtCbwjzxGVGbi8h2FNi

(d) The file encryption key is encrypted using the Receivers public key. The en-
crypted file key is accessible in the Appendix A.4.

(e) The IPFS hash and the encrypted file key are stored on the key exchange
contract.

3. The Accepted Receiver finds the new IPFS hash and the encrypted file key.

(a) The Accepted Receiver gets the corresponding file for the hash from IPFS. The
Receiver gets the encrypted IP list form Appendix A.3.

(b) The encrypted file key can be decrypted using the Receivers own private key.
The receiver holds now the plain file encryption key.

oAX5IC1vFddSuKlGRd4ascGFQaHcFMnETxAAQiSKCjU=

(c) With the plain file key, the receiver can decrypt the encrypted IP list. The
receiver holds know the plain IP list from Appendix A.2.



5.3. FILE ENCRYPTION 25

4. The Rejected Receiver finds the new IPFS hash and the encrypted key.

(a) The Encrypted Receiver gets the corresponding file for the hash from IPFS.
The Receiver gets the encrypted IP list form Appendix A.3.

(b) The encrypted file key cannot be decrypted using the Rejected Receivers own
private key. The decryption call fails with an error message:

Could not decrypt session key. Abort data update process.

The GnuGP decryption attempt fails with following error message:

gpg: encrypted with RSA key, ID 4C4B9316

gpg: decryption failed: secret key not available

5. The Sender could decrypt the encrypted file key with his private key if needed.

5.3 File Encryption

BloSS must share data in a reasonable time so that the participating AS can react timely.
Otherwise, the mitigation efforts could be in vain, since they target obsolete attackers.

The symmetric encryption with fernet was tested with different file sizes:

• 20 IPv4 addresses in JSON format (< 1kB)

• 1000 IPv4 addresses in JSON format - 32 kB

• 10 MB

• 100 MB

All of the files could be encrypted within under 1 second. The goal is to handle 10MB
files.

Actions like adding data to IPFS and the transaction with a smart contract take much
more time than the encryption.



26 CHAPTER 5. EXPERIMENTAL EVALUATION



Chapter 6

Discussion

This Chapter challenges this thesis and illustrates the positive as well as the negative
aspects of this systems design and its implementation.

After a brief roundup of the existing tools and concepts for this domain, the acquired re-
quirements get reviewed by comparing to other requirements of a related signaling system.
The system design and implementation are then checked against this works requirements,
followed by a discussion about the used evaluation method. Last, some thoughts about
the general approach of this thesis.

6.1 Existing Tools and Concepts

The development of use cases and tools for blockchain in combination with a distributed
off-chain storage is very lively. As addressed in Chapter 2 the development of concepts and
tools for sharing private data progresses. Due tue the young but broad field of research,
it was difficult to discover compatible tools for an application with the BloSS technology
stack (Ethereum and IPFS). Hence the decision to design a new system. The new system
should be as simple as possible.

6.2 Requirements

The new requirements mainly rest upon a high-level scenario with some additional tech-
nical considerations. The resulting requirement s are correspondingly high-level. A cross-
comparison with the DOTS data channel requirements highlights this [8]. Although the
requirements head in the same direction and cover similar ground, the DOTS requirements
are much more specific. The security aspect shows this discrepancy very noticeable. To
mitigate this imprecision, some requirements have been revised during the design phase.

27



28 CHAPTER 6. DISCUSSION

6.3 System Design and Implementation

6.3.1 Requirement Fulfillment

The goal was to design a simple system that uses common, proven and easy to use tools
but satisfies as many requirements as possible. The proof of concept implementation
should cover all the requirements but in a most minimal way. Therefore the system is
validated against all requirements:

1. Control which entity can access a certain IP address list stored on the off-chain
storage.
Fulfilled, encryption is used for access control. Public key encryption allows en-
crypting the file key for a single participant or a group. Although everyone can get
the encrypted file from IPFS, it is useless without the file encryption key.

2. Share information between multiple parties.
Fulfilled, a sender can create multiple smart contracts, each contract for a partici-
pating receiver. Another way would be one smart contract that can hold multiple
public keys.

3. Share different information types(file formats and file sizes).
Fulfilled, the encryption mechanism can handle different file formats and works
tested with file sizes until 100MB.

4. Update the shared information timely.
Partially fulfilled, the symmetric encryption worked fast with encryption times for
under 1 Second for files up to 100MB. New information can be encrypted for the
known participants, and the new encrypted data can be stored on IPFS again. The
contract gets updated with the new IPFS hash. A bottleneck in the process is
storing information on IPFS. This aspect was neglected in this work. A task for
future work.

5. Revoke access to shared information.
Partially fulfilled, the sender can decide for which known participants the new in-
formation should be encrypted. A party that got access to the old data must not
necessarily get access to the updated data. However, the access to the old data
cannot be revoked. This is categorized as a minor issue. The participant had access
to the data before and could have stored it locally already.

6. Ensure the availability of the shared data during an attack.
Theoretically fulfilled, IPFS and Ethereums distributed nature ensures that the data
is available, even if a node stops operating.

7. Enusre the integrity of the shared data.
Theoretically fulfilled, IPFS and Ethereums storage should be tamper proof.



6.4. EVALUATION 29

The above statements assume 1) that IPFS does distribute stored files in its network
so that the file can be accessed even if one node dies. 2) The statements assume that
Ethereum guarantees the integrity of stored data.

6.3.2 Smart Contract

The key exchange contract consists mainly of getter and setters for the public key, file
encryption key, and the IPFS hash. Due to its simplicity, it offers little attack surface.
Currently, the contract can handle only one public key. The contract could be upgraded to
handle multiple keys and store them together with the wallet address of the corresponding
Ethereum account. This upgrade would make the interaction between the participants
even simpler.

Smart contracts security vulnerability are explored very little. Still, some best program-
ming practices and attacks are known [9]. This information should be applied to the key
exchange contract.

6.4 Evaluation

The experimental evaluation covers only the essential function of the concept. Aspects
such as transaction costs, IPFS performance and distribution should have been part of
the evaluation as well.



30 CHAPTER 6. DISCUSSION



Chapter 7

Final Considerations

This chapter gives a summary of this thesis work and findings. Recommendations for
next steps follow on the wrapup.

BloSS needs a decentralized access mechanism to control the access for data on the off-
chain storage. After literature research and evaluating new concepts and tools, no satisfy-
ing candidate was found. In consequence, a simple system based on common and proven
tools was designed and implemented. The evaluation of that proof of concept showed that
the combination of this simple tools could indeed satisfy the basic BloSS access control
needs.

Recommendations for the next upgrade steps for the BloSS access mechanism are: 1)
use Ethereum accounts linked to published public keys to decide which AS is a trusted
receipient. 2) Apply best practices for smart contract programming and check the known
vulnerabilities. 3) Create a mechanism to handle smart contracts with the application.
Currently, only one configured contract is in use. To handle multiple contracts and to
identify them on the chain would be a useful extension.

The blockchain ecosystems undergo rapid expansion. The development pace of concepts
and system is fast. During this work, no suitable system was found for the BloSS access
mechanism. This can change quickly in such a thriving ecosystem.

31



32 CHAPTER 7. FINAL CONSIDERATIONS



Bibliography

[1] CVE Details. https://www.cvedetails.com/. Accessed: 17.03.2018.

[2] GnuPG. https://www.gnupg.org. Accessed: 09.03.2018.

[3] IPFS FAQ. https://discuss.ipfs.io/t/file-encryption-built-into-ipfs/

323. Accessed: 18.03.2018.

[4] Peergos, an end-to-end encrypted, peer-to-peer file storage, sharing and communica-
tion network. https://peergos.org/. Acessed: 19.03.2018.

[5] pyca/cryptography. https://cryptography.io, . Accessed: 09.03.2018.

[6] Pycryptodome. https://www.pycryptodome.org, . Accessed: 10.03.2018.

[7] Tahoe-lafs documentation. http://tahoe-lafs.readthedocs.io/en/latest/.
Acessed: 19.03.2018.

[8] T. R. A. Mortensen, R. Moskowitz. Distributed denial of service (ddos)
open threat signaling requirements. https://tools.ietf.org/html/

draft-ietf-dots-requirements-14, Feb. 2008. Version: 14.

[9] N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on ethereum smart
contracts (sok). In International Conference on Principles of Security and Trust,
pages 164–186. Springer, 2017.

[10] J. Benet. Ipfs - content addressed, versioned, p2p file system. jul 2014.

[11] T. Bocek and B. Stiller. Smart Contracts - Blockchains in the Wings. In C. Linnhoff-
Popien, R. Schneider, and M. Zaddach, editors, Digital Marketplaces Unleashed, pages
1–16. Springer, Berlin, Heidelberg, Germany, 2017. URL https://goo.gl/M6LWrH.

[12] V. Brühl. Bitcoins, blockchain und distributed ledgers. Wirtschaftsdienst, 97(2):
135–142, 2017.

[13] V. Buterin. Ethereum: a next generation smart contract and decentralized applica-
tion platform (2013). URL {http://ethereum. org/ethereum. html}, 2017.

[14] V. B. J. C. D. D. C. L. P. K. J. N. D. R. M. S. G. S. N. T. Christopher Allen,
Arthur Brock and H. T. Wood. Decentralized public key infrastructure. Technical
report, Web of Trust, 2015.

33

https://www.cvedetails.com/
https://www.gnupg.org
https://discuss.ipfs.io/t/file-encryption-built-into-ipfs/323
https://discuss.ipfs.io/t/file-encryption-built-into-ipfs/323
https://peergos.org/
https://cryptography.io
https://www.pycryptodome.org
http://tahoe-lafs.readthedocs.io/en/latest/
https://tools.ietf.org/html/draft-ietf-dots-requirements-14
https://tools.ietf.org/html/draft-ietf-dots-requirements-14
https://goo.gl/M6LWrH


34 BIBLIOGRAPHY

[15] C. Fromknecht, D. Velicanu, and S. Yakoubov. A decentralized public key infrastruc-
ture with identity retention. IACR Cryptology ePrint Archive, 2014:803, 2014.

[16] C. Garvey. Deadlock on github. https://github.com/cathalgarvey/deadlock.
Accessed: 09.03.2018.

[17] M. Iansiti and K. R. Lakhani. The truth about blockchain. Harvard Business Review,
95(1):118–127, 2017.

[18] K. Lewison and F. Corella. Backing rich credentials with a blockchain pki. Technical
report, Tech. Rep, 2016.

[19] D. Litzenberger. Pycrypto on github. https://github.com/dlitz/pycrypto. Ac-
cessed: 09.03.2018.

[20] S. Mannhart, B. Rodrigues, E. Scheid, S. S. Kanhere, and B. Stiller. Toward
Mitigation-as-a-Service in Cooperative Network Defenses. 3001forthcoming.

[21] S. Mansfield-Devine. The Growth and Evolution of DDoS. Network Security, (10):
pp. 13–20, 2015.

[22] T. Peng, C. Leckie, and K. Ramamohanarao. Survey of network-based defense mech-
anisms countering the dos and ddos problems. ACM Computing Surveys (CSUR),
39(1):3, 2007.

[23] B. Rodrigues, T. Bocek, D. Hausheer, A. Lareida, S. Rafati, and B. Stiller.
Blockchain-based Architecture for Collaborative DDoS Mitigation using Smart Con-
tracts. In ForDigital Blockchain, pages 1–4, Karlsruhe, Germany, feb 2017. KIT.
URL https://files.ifi.uzh.ch/CSG/staff/rodrigues/extern/publications/

cooperativeblockchainddos.pdf.

[24] B. Rodrigues, T. Bocek, A. Lareida, D. Hausheer, S. Rafati, and B. Stiller. A
Blockchain-Based Architecture for Collaborative DDoS Mitigation with Smart Con-
tracts, pages 16–29. Springer International Publishing, Cham, 2017. ISBN 978-3-
319-60774-0. doi: 10.1007/978-3-319-60774-0 2. URL https://doi.org/10.1007/

978-3-319-60774-0_2.

[25] B. Rodrigues, T. Bocek, A. Lareida, D. Hausheer, S. Rafati, and B. Stiller. A
Blockchain-based Architecture for Collaborative DDoS Mitigation with Smart Con-
tracts. In IFIP International Conference on Autonomous Infrastructure, Manage-
ment, and Security (AIMS 2017). Lecture Notes in Computer Science Vol. 10356,
pages 16–29. Springer, July 2017. Zürich, Switzerland.

[26] B. Rodrigues, T. Bocek, and B. Stiller. Enabling a Cooperative, Multi-domain DDoS
Defense by a Blockchain Signaling System (BloSS). In Demonstration Track, pages
1–3, Singapore, Singapore, Oct 2017. IEEE. URL https://goo.gl/5TMFUt.

[27] B. Rodrigues, T. Bocek, and B. Stiller. Multi-Domain DDoS Mitigation Based on
Blockchains. In IFIP International Conference on Autonomous Infrastructure, Man-
agement and Security, pages 185–190, Zürich, Switzerland, July 2017. Springer.

https://github.com/cathalgarvey/deadlock
https://github.com/dlitz/pycrypto
https://files.ifi.uzh.ch/CSG/staff/rodrigues/extern/publications/cooperativeblockchainddos.pdf
https://files.ifi.uzh.ch/CSG/staff/rodrigues/extern/publications/cooperativeblockchainddos.pdf
https://doi.org/10.1007/978-3-319-60774-0_2
https://doi.org/10.1007/978-3-319-60774-0_2
https://goo.gl/5TMFUt


BIBLIOGRAPHY 35

[28] B. Rodrigues, T. Bocek, and B. Stiller. The Use of Blockchains: Application-driven
Analysis of Applicability. In Advances in Computers, volume 111, pages 163–198.
Elsevier, 2018.

[29] V. Sajip. Python-GnuPG. https://bitbucket.org/vinay.sajip/python-gnupg/

overview. Accessed: 09.03.2018.

[30] E. Sixt. Bitcoins und andere dezentrale Transaktionssysteme: Blockchains als Basis
einer Kryptoökonomie. Springer-Verlag, 2016.

[31] The Associated Press. Hackers Used ’Internet of Things’ Devices to Cause
Friday’s Massive DDoS Cyberattack. http://www.cbc.ca/news/technology/

hackers-ddos-attacks-1.3817392, Oct 2016. [Online, accessed 2017-1-10].

[32] K. V.Revuelto, S.Meintanis. Ddos overview and response guide. Technical report,
CERT-EU, Mar. 2017. CERT-EU Security Whitepaper 17-003.

[33] S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin. Storj a peer-to-peer cloud
storage network. 2014.

[34] S. T. Zargar, J. Joshi, and D. Tipper. A survey of defense mechanisms against
distributed denial of service (ddos) flooding attacks. IEEE communications surveys
& tutorials, 15(4):2046–2069, 2013.

[35] G. Zyskind, O. Nathan, and A. Pentland. Enigma: Decentralized computation plat-
form with guaranteed privacy. arXiv preprint arXiv:1506.03471, 2015.

https://bitbucket.org/vinay.sajip/python-gnupg/overview
https://bitbucket.org/vinay.sajip/python-gnupg/overview
http://www.cbc.ca/news/technology/hackers-ddos-attacks-1.3817392
http://www.cbc.ca/news/technology/hackers-ddos-attacks-1.3817392


36 BIBLIOGRAPHY



Abbreviations

AES Advanced Encryption Standard
AS Autonomous System
dApp Decentralized Application
DDoS Distributed Denial of Service
DNS Domain Name System
DOTS DDoS Open Threat Signaling
FOSS Free and Open Source Software
IoT Internet of Things
IP Internet Protocol
IPFS The InterPlanetary File System
JSON JavaScript Object Notation
OS Operating System

37



38 ABBREVIATONS



List of Figures

3.1 BloSS Data Sharing Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 BloSS Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 BloSS dApp Components and Classes . . . . . . . . . . . . . . . . . . . . . 16

39



40 LIST OF FIGURES



List of Tables

5.1 Ethereum Node Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

41



42 LIST OF TABLES



Appendix A

Encryption Keys and Cipher Texts

A.1 Sender Public Key

-----BEGIN PGP PUBLIC KEY BLOCK-----

Version: GnuPG v1

mQENBFqcNA8BCADH4ug+Wie3gjn5IYIGQ1+lk/rMqTEU1IoS3qT4L6kZx70xmKZR

s4BtcDvVoC7e58i21b+RC8yBhF2fIW0B091GLOzC8p1RdHKUgzocQne4wjM7ELBx

L5znuGRu8q7qQJMYdmnk/lbNpytyCdXNvi/E6EwDrLu1Qc1SGpOkonHH2Afm/Dx3

uwE3gOdVpqAeSthIqybH0Z88q1qgTFXzAXRyjEYlpKyMOUIaiIfDh/lwYGa6QJsU

H+gOIwPYocYTAsq947rHEaj3d/w9VVn5n72BrEql6Wqygpaoz9Vg8Cp0t7ooz0RZ

8iqjVQ5UNZ79z0YCFTus4C+xrpLzWUDQ1PBHABEBAAG0QE5vZGUgMTIgUmVjZWl2

ZXIgKE5vZGUgMTIgUmVjZWl2ZXIpIDxub2RlLTEyLXJlY2VpdmVyQGJsb3NzLm9y

Zz6JAT4EEwECACgFAlqcNA8CGwMFCQB2pwAGCwkIBwMCBhUIAgkKCwQWAgMBAh4B

AheAAAoJEBHuJq8e85jVsgoH/0dXJ0wUKfXyypCSh51NV0v+JWUOrmtLRALC9mUK

5eCqnmMyAEP4nrPfeqpfII9CqxGXsWdxg75Dt2+r+e8cEPdyzzMQF+gh2reATHaM

bsMsw5i7uK32h53hSoNmT6l9faibKsqvYFIdvgswLHmxQRRhxBZdLWavyoBT3CJw

0uEPmhJa70NrtN97RAvHvpLgB5VIWWhtoG6KLXoHNf0u4uYLfV9s2pCXhlDWkI5Q

6Eji7dC31w/yGT92RGk2mZXZTdIqhGZq3skgCxzQIQeFykl9grQ1HjY2qG888tk9

tO43Tl1ofG+fcW/PTzFYQ7QiVBUQO65o4Hu6OuVYBy3LGLS5AQ0EWpw0DwEIALfF

3s4RU+kzKohfb4fi4VF7tCWfHP9wj4egwfhTNETFM/87ci7Pplo6WJ4d1yOBnSej

5QLTMWfEXzJKNDma7NKVpwJ/mnP/Dm0FD7hIFey5vFrh17VCchYtSSkl8UUR+5R4

RQQ8nkQveFljol0LU9WeEbi4sBzJHy+XilhE4JFNKygGzOLTe4bpe4jr/Q2TqV2z

8ol8N/7PdigzlMVcOUQ5R1VpG5WTrNfFDZv5qnNsBe+MlVD9Pz5t7prnJeGJebe4

Q7d2/GNCFVepsGt3iDicpyvNg/eS/k5mCB7qSpCtAaedV0VSqKHVLU0b1gr6KVCJ

zcmZGigyrRiKuFOgt28AEQEAAYkBJQQYAQIADwUCWpw0DwIbDAUJAHanAAAKCRAR

7iavHvOY1QfSCACoqzvklGmKqOwYAdLfp2Q4naI9yfVxh7emDV4GEdhYAL8Mo3W0

Tm60j95gDcl0Q5OhodCdb8sgnXxje8Q/aWz+6AF/xe+cffETqnK1yE6f+P7cqNkg

MJji5UevSX4gn/tmJEr/ahybmE0SWLy2p+pIxt1ne9EI0+wqbjT4LgXcs+vjVlcJ

m5hzgkVE36WsR63hyLq5DK+CTuWJoq7pyby3+vvmEgBC+VVTnxv1jCEumXoHHWbt

jk3cM7SLPH/vHZuNAUiTKOOsT64q8hlJfnJ74jeAfBBgbekL4uEs/zmys1cIt5Xe

LwIANgjncxeP56WXtftWe5EZ5VM0rqO03q1B

43



44 APPENDIX A. ENCRYPTION KEYS AND CIPHER TEXTS

=7W/v

-----END PGP PUBLIC KEY BLOCK-----

A.2 Plain IP Address List

[

{

"ip_address": "139.250.139.232"

},

{

"ip_address": "203.82.136.126"

},

{

"ip_address": "153.98.150.227"

},

{

"ip_address": "0.57.174.170"

},

{

"ip_address": "149.202.188.67"

},

{

"ip_address": "10.31.178.183"

},

{

"ip_address": "250.187.19.221"

},

{

"ip_address": "5.103.198.238"

},

{

"ip_address": "9.44.35.3"

},

{

"ip_address": "195.88.95.142"

},

{

"ip_address": "244.64.69.49"

},

{

"ip_address": "209.71.110.165"

},

{

"ip_address": "222.45.45.215"

},



A.3. ENCRYPTED IP ADDRESS LIST 45

{

"ip_address": "83.160.228.129"

},

{

"ip_address": "60.100.193.137"

},

{

"ip_address": "87.37.108.46"

},

{

"ip_address": "155.150.185.86"

},

{

"ip_address": "199.65.221.243"

},

{

"ip_address": "219.68.152.20"

},

{

"ip_address": "2.192.38.29"

}

]

A.3 Encrypted IP Address List

gAAAAABar5yzHZJIckTTsESIjfYRh0l6mNKDs4UZzKc25IfQQ3UKB6KBuZUZkcAnb-

↪→ ROeFXmr5pxXKuS_50Jkd-7FfTtrPQRzLGe2JSystttAska48tTdKZb5XECdV3tFf0

↪→ xBqLASfICSdptoFWgm2AkS4K9J2HrJseCMNhI4e5MIBNsjXL4bsBIxPdcB-

↪→ _F_xmcU_dw_bSHYLyLnDPtvRB9pl1D4SehMjnjC4JCyQm4DqD5cdB2fpf_xz_SBFEz0

↪→ SFAEg7sVnLTYIPJoJLRvtgrzzpT7GU6OXuF29oVyII0

↪→ KYLHqN3a6TNaDlGUfOQFnoDCXh1jX6o3uBYN5GBDCtZu-3G3gKcG3t8inG0DGqi

↪→ KUw9bTUD0_eXI2olwAPmtPQfVmHFv40YU6jl-lIsoBDQn2xgU7cxv8cj5t0

↪→ ajpC4_fELuAO9GTKSAHhS3OzdpaVMTezqDHXHzDj2mFUzv0ziujI0

↪→ XCpXSU3qYwlkQvs-MYLpigb4O3fUZMabdy8SFhnwmfaMQVLcIwlvu3hzb8wM8Iebja4

↪→ iHP6d71lCe-pKaW9k1wme34xvqVM9WRj4Zvo5aN1cQnDyy0LLiYxMSS3LNRxr5zGGOi

↪→ 7y8Z2GwXdfJfvMxJxFXS9FgCW-

↪→ b4eHZbElskC6dsvzNgnG69rLkFHJE6YlzbeW3NlEkHdnzYjiFk42v-Sf78WdF4x-

↪→ MFl2wCFNgu2Q9Oc5RnYL1G6YLs6nfjP8eTPtC7CDYVXLXfDFn0

↪→ VqC5qT41ZIzqVDMH3FLexdvAzDDTfrekv_rx9YT9OkWBW3xz5UACaSRDr6jQ_fCkOBSb

↪→ iiMbFp7PSozjbjXe6NzHzRGE2a0adcmwAanGq12va_c7a6Q7gL_TUjk-579

↪→ EHzeTvoa7dZro7HJDJP2Tl3AwDtE0zxarN478UBI08HDbdvco4KiosRiwEHTFnT_bBW

↪→ -3E36_L-kq5uZ6wscyICj0xLz2GbvWq8mFgLt-OJle4Q-_0a3NjE51kAN7kgous-

↪→ ekyCARkpVAWXrenwqoO4t7ek5URYWnjoAVqi

↪→ yFFfdItcLoQbGYyufU89l9SaeLOZAvE6XjinR55FB-VfQGrHsAWxcl5WN45qymiRf30

↪→ -EOtKAVrVBhf_tm0u8k8DISohYQ7L2f4tZmWCo9lbiW0aT8MCqN97j8lei



46 APPENDIX A. ENCRYPTION KEYS AND CIPHER TEXTS

↪→ MzaAFu2DhRJL37lKFxDwhQmRoF832Wh91EIiJGGglSUqq1SHnMhrWCgchPvsTz-

↪→ H6Flp2cuKFeOeorDtow==

A.4 Encrypted File Key

-----BEGIN PGP MESSAGE-----

hQEMA2i5Ut5MS5MWAQf/eSTpCfCIK7cHtk3xxa20QaPxe4KUbFXSWo9aFRgv3qbn

t9fbs9RbOeg6kgHB5wXKO7QG9RQD/rLEpILB4G7hKkgz/vNCDPsgZOlFNGlNKVhw

fC2ZJqUFfgurVLiMTb4Xt+cBUYIXh+70zR9v22lpTk3gHRlDBLuw3IMk3QWCMkep

JV8TFUo6fCtvOuabxSnNWvhZQcLKMobjyW9UWOzUd57z8nPFbg2BPglzVksVkmJh

BVtgjaPdrOAS4jDFjJit53FQSED1nvAF3GNqL/AR1TvDklNF6WXhTSLCzIYUARbe

4fKPjZLDKTD5U95l7pyBAHFE+kT+dI7ld545E04dLNJnAapv1LdP2Z+qVqn8Y4N5

TjZTkXJHfaTKfOpeBzhHORcBHVlSlx2UtUyk24+7Nif7iMceC7DUuamkWnT+hfno

XL0LhFZnUzdkfbG4Pf+BC6nvmFcN8zlG8chrc8LOaBr2M70r4WiWCA==

=D3lC

-----END PGP MESSAGE-----



Appendix B

Installation Guidelines

47



48 APPENDIX B. INSTALLATION GUIDELINES



Appendix C

Contents of the CD

Bachelor Thesis The LaTeX files for the Bachelor Thesis document.

Source Code The Python source code for the BloSS decentralized application.

References The in the Thesis used references in PDF form.

49


	Abstract
	Acknowledgments
	Introduction
	Description of Work
	Problem Description
	Objective

	Methodology
	Thesis Outline

	Background and Related Work
	Distributed Denial of Service (DDoS)
	DOTS
	Blockchain
	InterPlanetary File System (IPFS) 
	Related Work

	System Design
	Requirements
	BloSS Data Sharing Scenario
	Technological Considerations

	Access Control for BloSS Data Sharing using IPFS
	Design

	Implementation
	BloSS Decentralized Application
	Sender and Receiver App Scripts
	Classes and their Functionality
	Passwords and Key Store
	Local Application Data
	Libraries and Tools

	Cryptographic Tools
	Encountered Problems

	Experimental Evaluation
	Test Setup
	Test Run
	File Encryption

	Discussion
	Existing Tools and Concepts
	Requirements
	System Design and Implementation
	Requirement Fulfillment
	Smart Contract

	Evaluation

	Final Considerations
	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	Encryption Keys and Cipher Texts
	Sender Public Key
	Plain IP Address List
	Encrypted IP Address List
	Encrypted File Key

	Installation Guidelines
	Contents of the CD

