
GridDB - Enhanced Visualization
and Sharing of DDoS Fingerprints

Karim Khamaisi
Zurich, Switzerland

Student ID: 19-740-067

Supervisor: Dr. Bruno Rodrigues, Jan von der Assen,
Prof. Dr. Burkhard Stiller

Date of Submission: 07.09.2022

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland
URL: http://www.csg.uzh.ch/

Zusammenfassung

Mit der zunehmenden Bedeutung von Online-Diensten steigt auch die Verantwortung
seitens der Betreiber, ihre angebotenen Leistungen auf digitalen Plattformen sicher und
zuverlässig zur Verfügung zu stellen. Während der Covid-19 Pandemie haben wir gese-
hen, wie wichtig die Digitalisierung in unserem Leben ist. Beispielsweise im Bildungswesen
konnten Studierende trotz der Krise Vorlesungen online besuchen und Prüfungen digita-
lisiert ablegen.

Es ist jedoch riskant, sich bei der Erbringung einer Dienstleistung vollständig von digitalen
Geräten abhängig zu machen, da die geforderte Leistung bei einem möglichen Ausfall der
digitalen Komponenten nicht offline erfüllt werden kann. In diesem Zusammenhang gibt es
viele mögliche Ursachen, warum ein Online-Dienst plötzlich nicht mehr im vollen Umfang
funktionieren kann; zum Beispiel ein Stromausfall, ein fehlerhafter Quellcode oder ein
Cyberangriff.

GridDB konzentriert sich auf ein bekanntes Problem in Computernetzwerken, den Distri-
buted Denial of Service (DDoS)-Angriffen. DDoS-Angriffe stellen eine grosse Bedrohung
für die Verfügbarkeit des Internets dar. Trotz zahlreicher kommerzieller und wissenschaft-
licher Bemühungen konnten die Angriffe und deren Konsequenzen nicht eingedämmt wer-
den. Solche DDoS-Angriffe passieren jeden Tag. Da die Gesellschaft einem zunehmenden
Digitalisierungstrend folgt, stellen Angriffe dieser Art eine nicht zu vernachlässigende Be-
drohung für Unternehmen und Privatpersonen dar.

In früheren Arbeiten wurde das DDoS-Clearing-House-System aufgebaut, um DDoS-
Fingerprints auszutauschen. Dies ist eine digitale Signatur von DDoS-Angriffen, die von
Partnern in einer kooperativen Allianz zur Bekämpfung von DDoS-Angriffen registriert
wird. GridDB bietet ein einfaches Frontend, um die Handhabung von Paket-Erfassungen
(PCAPs) und den Austausch von Informationen zu verwalten. Daher sollte das Frontend
eine Schnittstelle zum DDoS Clearing-House haben, um dessen Status aktualisieren zu
können. Zu diesem Zweck wurden portable Backend- und Frontend-Anwendungen imple-
mentiert. Das Hauptergebnis dieser Arbeit ist die Integration der DDoSCH-Komponenten
in ein vollautomatisches und portables System, das die terminalbasierte Anwendung des
DDoS Clearing-House durch eine benutzerfreundliche Oberfläche ersetzt.

Die implementierte Anwendung ermöglicht es den Nutzern, die analysierten Angriffsdaten
in verschiedenen Visualisierungen zu betrachten, um die Wahrnehmung und das Verständ-
nis für die Art des Angriffs zu verbessern, was den Nutzern die Möglichkeit gibt, ähnliche
Angriffe in Zukunft zu entschärfen und ihre potenzielle Infrastruktur zu schützen.

i

ii

Abstract

As the significance of internet services grows, the need to maintain their online presence
likewise grows. During Covid-19, we witnessed the significance of digitization in our daily
lives. For example, in Education, despite the crisis, students were able to attend online
courses and take tests. But also in several other vital disciplines. However, relying only
on digital gadgets to provide a service is problematic since we will be unable to complete
the intended work if they go down. There are several reasons why an internet service
might go down, including a power outage, faulty source code, or a cyber assault.

GridDB focuses on a well-known issue in computer networks, Distributed Denial of Service
(DDoS) attacks. DDoS attacks are a significant threat to Internet availability that has not
been resolved despite several commercial and academic initiatives. DDoS attacks occur
on a daily basis, and as society continues to digitize, these attacks offer several dangers
to organizations and people.

In previous work, the DDoS Clearing-house system was built on sharing DDoS finger-
prints, a signature of DDoS attacks registered by partners in a cooperative alliance to
counter DDoS attacks. GridDB provides a straightforward Frontend to manage handling
packet captures (PCAPs) and sharing information. Thus, the Frontend should interface
with DDoS Clearing-House to update its status.

Therefor, portable Backend and Frontend applications were implemented. The primary
outcome of this work is the integration of the DDoSCH components into one fully au-
tomated and portable system, replacing the terminal-based application provided by the
DDoS Clearing-House with a user-friendly UI.

The implemented application allows users to view analyzed attack data in various visu-
alizations to increase the perception and understanding of the attack nature, which gives
users the ability to mitigate similar attacks in the future and to protect their potential
infrastructure.

iii

iv

Acknowledgments

I want to thank everyone who helped to increase the quality of this work in one way or
another, especially the people from the communication system group. Also, I would like
to thank Prof. Dr. Burkhard Stiller, who allowed me to write my bachelor thesis in his
department.

Further, I want to thank my supervisor Dr. Bruno Rodrigues for his helpful insights and
instant support during the whole time.

Last, I want to thank my family and friends who helped and stood by me during this
work.

v

vi

Contents

Zusammenfassung i

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Thesis Goals . 3

1.2 Methodology . 3

1.3 Thesis Outline . 3

2 Fundamentals 5

2.1 Background . 5

2.1.1 System Usability Score . 5

2.1.2 Attack types . 6

2.1.3 Detection patterns . 10

2.1.4 Situational awareness . 11

2.2 Related Work . 12

3 Design 15

3.1 Requirements . 15

3.2 Architecture . 16

3.2.1 DDoSCH . 16

3.2.2 DDoSGrid 2.0 . 18

vii

viii CONTENTS

3.2.3 GridDB . 20

3.3 Implementation . 23

3.3.1 DDoSCH . 23

3.3.2 DDoSGrid V2.2 . 25

3.3.3 GridDB . 27

4 Evaluation 37

4.1 Usability . 37

4.2 Portability . 44

4.2.1 DDoSGrid V2.2 . 45

4.2.2 GridDB . 46

4.2.3 DDoSDB V2.2 . 49

4.3 Automation . 49

4.4 Discussion . 50

5 Final Considerations 53

5.1 Summary . 53

5.2 Conclusions . 54

5.3 Future Work . 55

Bibliography 56

Abbreviations 63

List of Figures 63

List of Tables 66

List of Listings 67

Chapter 1

Introduction

No doubt COVID-19 greatly impacted our life negatively. However, the economic down-
turn enabled many organizations to digitalize their business models and perform internal
responsibilities online, i.e., online meetings. Nevertheless, moving forward with a more
digitalized word increases the probability of being a victim of a cyber-attack. Countries’,
organizations’, and individuals’ dependencies on digital devices make it essential to pro-
tect the data; protection against the highly sophisticated cyber-attacks nowadays is a
difficult subject [40, 42].

Despite today’s cybersecurity evolution, DDoS (Distributed Denial-of-Service) attacks
are still included in the most severe and challenging internet issues. DDoS attacks are
extremely harmful since they are inexpensive to execute, despite the fact that they may
cause enormous financial and reputational harm to their targets[21]. To perform a DDoS
attack, one must not be an expert in cyberattacks. One can buy a DDoS attack online
using a booter; these websites provide a DDoS attack as a service, and booters are one
of the main reasons for the evolution in the number of DDoS attacks [7]. Booters are
accessible on the internet and are easy to find; they are also affordable in terms of price,
and last but not least, they do not require any technical understanding of the attack itself
[7].

For example, a small business that was a victim of a DDoS is estimated to lose up to
$120’000, which increases a lot for larger companies [51]. According to the 2021 DDoS
Threat Landscape Report, DDoS attacks evolve each year in frequency, complexity, and
volume [30]. Compared to 2020, the number of attacks per month and the number of
packets sent over the network aiming to shut down a server or service increased [30].

When there is a conflict between two countries or when performing a military operation,
i.e., invasion, such operations come with cyber-attacks; the main target of attacks in
cyberspace is to disrupt the communication inside that target country and isolate it
from the media [62]. DDoS attacks are a prevalent and powerful tool to render essential
websites’ access to a country unavailable [62].

Two very recent examples are the cyber-attacks performed against Ukraine and Israel.
DDoS attacks against Ukraine’s military and financial institutions just before and during

1

2 CHAPTER 1. INTRODUCTION

the Russian invasion on February 24 were performed and attributed to Russian hackers [2].
However, the attack was not sufficient to make the websites go offline [2]. In contradiction,
on March 14, essential government websites were unavailable for some time in Israel due
to a massive DDoS attack [1].

Recent research showed that the top source country generating DDoS attacks during 2021
was the United States generating more than 50 percent of DDoS attacks recorded; the
following countries were Europe, India, and East Asia with different activities through
the quarters of the year [48]. A common reason is the large number of unsecured devices
connected to the Internet and their growing processing capacity, which allows attackers
to take control of a vast amount of unsecured devices that range from connected cameras
to smart fridges to launch malicious attacks [69]. Many of these devices are insecure by
design, and not often they are impossible to be secured due to their hardware and software
constraints.

The evolvement in the attack size and complexity made it harder for individuals and small
businesses to counter DDoS attacks independently. Thus, the trend toward countering
DDoS attacks in a cooperative approach is increasing [55, 57]. In related work, we noticed
two art of systems: a centralized and decentralized system for the cooperative defense
against DDoS attacks. However, centralized cooperative systems are usually overwhelmed
with massive data and face scalability, trust, and fairness issues [55]. As a solution for
those issues, the authors of this work [52, 54, 55] suggest a system based on Blockchain
and smart contracts to overcome the centralization and trust issues of the system.

While the attackers send many requests over the network (packets), they also leave traces
behind. The analyzed traces from an attack pattern are called fingerprints. It is possible
to get insights into those traces by investigating the captured exchanged traffic over
the network. Such insights can be obtained by the network traffic, which is logged by
networking equipment and made available by Packet Captures (PCAPs) or other file
types,e.g., flow-based data structure. PCAPs provide more comprehensive information
about the traffic and are thus preferable to flow-based data structures when trying to
discover new patterns of a DDoS attack [4]. In order to evolve in the mitigation process,
we need recent and reliable PCAPs from DDoS attack victims; this will help researchers
detect patterns of the DDoS attack’s nature and handle them accordingly.

Luckily, such a system to share fingerprints between different partners is implemented and
called the DDoS Clearing House (DDoSCH) [22]. DDoSCH is a terminal-based system
used to share such fingerprints and facilitate the sharing process of DDoS attacks’ infor-
mation. The DDoSCH is composed of multiple modules available in a GitHub repository
and consists of three main components:

1. Dissector: is installed on the victim’s machine; it is primarily responsible for sum-
marizing the network traffic upon the attack and generating valid fingerprints.

2. DDoSDB: is the backend database to share fingerprints.

3. Converters: are installed on potential DDoS victims’ machines and responsible for
translating fingerprints into mitigation rules.

1.1. THESIS GOALS 3

The primary goal of this work is to build a straightforward Frontend to manage the
handling of PCAPs and sharing information, taking as a basis the running terminal-based
backend, fully integrated within the DDoSGrid system. DDoSGrid is an open platform
developed in the scope of a master project at the University of Zurich, aiming to simplify
the extraction process of shared PCAPs by providing meaningful visualization allowing
a closer understanding of the nature of a DDoS attack [26, 65]. Similar work to the
DDoSGrid is the SecGrid system [25], which was also implemented at the University of
Zurich. In this work, the authors implemented a system to visualize and analyze attack
data, employing a Machine Learning approach to automatically classify the provided
traffic type while analyzing the uploaded dataset.

1.1 Thesis Goals

• Implement a Frontend allowing the Web-based interaction with the DDoSCH and
integrate it within the DDoSGrid system as an additional tab.

• Integrate the new DDoSDB version within the DDoSGrid.

• Provide a portable version for each of the employed applications.

1.2 Methodology

First, we studied the nature and types of DDoS attacks. Then, after we gained insights
into the attack types, we investigated current related work and tried to understand the
characteristics of systems that counter DDoS attacks. Finally, according to our studies
of the current work in the field of mitigation of DDoS attacks, we derive the requirement
of a possible system to protect potential victims against DDoS attacks. We took the
functioning terminal-based applications of the DDoSCH components and implemented a
straightforward Frontend to manage PCAP files in order to replace the inconvenient CLI
with a user-friendly interface.

1.3 Thesis Outline

Chapter 1 introduces the subject of the DDoS attack, points out the followed method-
ology, and mentions the thesis goals. Chapter 2 presents background knowledge about
DDoS attacks and describes related work. Chapter 3 describes the requirements to meet
the goals and shows the architecture behind the different components that should fulfill
those, also it includes information about the hardware and software implementation of
GridDB, DDoSGrid V2.2, and DDoS-DB V2.2. Chapter 4 explains and evaluates
the enhancement of the GridDB system. The last Chapter 5 concludes the thesis in a
final consideration including a summary, conclusions, and future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Fundamentals

2.1 Background

One primary goal of this thesis is to develop a frontend application to integrate the
new versions of DDoS Clearing House components into one system. Driven by the last
goal, the second goal of the thesis is to provide an evaluation of the system using the
System Usability Score. Thus, an overview of the System Usability Score is provided
in this subsection. The rest of this subsection is structured into three parts. The first
part provides an overview of the most in literature and practice of known DDoS attacks
types [52]. It gives a constructive characterization of the attack type and a description
of examples. The second part provides an overview of DDoS attacks’ detection patterns,
and the last part covers situational awareness. The related work subsection is the last
part of this chapter 2.

2.1.1 System Usability Score

It is Also known as System Usability Scale (SUS). SUS comes in handy once we are
interested in examining a product’s usability since it provides tools to quickly collect
users’ subjective ratings of some services [5]. Broke developed SUS in the late nineteens;
the original survey was composed of 10 statements that the survey participant could
evaluate on an agreement level by providing a score ranging from 0 to 5 [5]. So naturally,
the higher the score, the higher the usability. One can modify the SUS content as needed;
an example of the original compared to a modified version of a SUS is shown below [5].

5

6 CHAPTER 2. FUNDAMENTALS

Figure 2.1: Original vs modified SUS [5]

2.1.2 Attack types

Table 2.1 briefly describes the three primary attack categories, with some examples based
on a CloudFlare article [16]. The following subsections provide a constructive description
of each attack type.

Category Description Examples
Application Layer Attacks Attackers first connect with the target’s

server and then exhaust its resources,
trying to monopolize the transactions in
the web application.

HTTP Flood attack

Protocol-Based Attacks Attackers try to overload critical re-
sources by consuming all their process-
ing capacity, causing disruption of some
service.

Syn Flood and Ping of
Death

Volumetric Attacks Attackers send heavy requests to the vic-
tim’s server to consume its bandwidth.
This category is the easiest to generate
and thus the most common type of at-
tack.

UDP Flood, TCP
Flood, NTP Am-
plification and DNS
Amplification

Table 2.1: Categories of DDoS attacks

2.1. BACKGROUND 7

2.1.2.1 Botnets, Booters and OCI model

Before defining the different DDoS attack types, it is essential to understand the con-
cept of Botnets and Booters, their role within an attack, and comprehend the difference
between them. In addition, this subsection gives an overview of the OSI (open systems
interconnection) model.

Botnets: the word Botnet is derived from the two words Robot and Network; an
attacker tries to infect as many devices as possible, and each infected device is then a bot
and part of a group executing malicious or illegal actions [17]. The hacked devices, also
called unwilling victims, are controlled remotely by the BotMaster and execute malicious
activities without the acceptance of their owners [9, 41].

Booters: in a brief, straightforward description, Booters are a paid DDoS service offered
by cybercriminals to attack a victim’s website and render it inaccessible for visitors [11].
The price to hire booters is remarkably cheap; usually not more than $10 per month,
depending on the duration and number of attacks performed specified by the user who
purchased the subscription [35].

The main difference between Booters and Botnets is that Booters are offered as Fron-
tend websites and can be used legally to test one’s websites; for the attacks (or the tests),
Booters maintain private servers [35]. Conversely, Botnets consist of infected devices
controlled by a third party to launch an attack without the devices owners’ acceptance.
Nevertheless, booters typically use Botnets in their attacks [11].

OSI Model: the International Organization for Standardization created the OSI (open
systems interconnection) model to facilitate troubleshooting network problems, helping
isolate the source of the issue; it divides the communication systems into seven stacked
abstracts layers [20]. Commonly, DDoS attacks occur at the OSI model’s 3, 4 and 7 level
[19]. The Figure 2.2 illustrates the different OSI layers [20].

Figure 2.2: 7-layers open systems interconnection (OSI) model [20]

8 CHAPTER 2. FUNDAMENTALS

2.1.2.2 Application Layer Attacks

Application layer attacks (ALA), also known as layer seven attacks, where network re-
quests such as HTTP GET, HTTP POST take place, are more sophisticated than other
DDoS attacks, i.e., on the network layer, and thus are more challenging to detect [18,
50]. ALA are executed with a few "light" requests to the victim’s server, which allows
them to overcome volume-based detection mechanisms [50]. ALA are effective not only
because they do not require considerable resources from the attackers’ devices since they
use simple network requests but also it is hard to distinguish legitimate from illegitimate
received requests [18]. Few examples of ALA based on [29] are listed below:

• Request-Flooding Attacks: attackers send legitimate normal requests, i.e., HTTP
GET or HTTP POST, at a more increased rate consuming the server’s resources.

– HTTP GET attack: multiple attackers’ devices fetch a file or an image from
the victim at a coordinated point in time [12].

– HTTP POST attack: multiple attackers’ devices send data that is usu-
ally saved in the website’s database, i.e., submitting some form; queries and
database commands to save the pushed data are, in comparison to the sent
request, extensively more intensive [12].

• Asymmetric Attacks: attackers send high workload requests (not necessarily at
a higher rate) to consume the server’s resources, for example, the CPU or RAM.

• Application-Exploit Attacks: attackers exploit possible vulnerabilities of the
operating system where the victim’s servers are running. Then, using the sent re-
quests, attackers try to cause errors in the operating systems, such as SQL injection
and buffer overflows.

2.1.2.3 Protocol Based Attacks

Protocol-based attacks (PBA) exploit the weaknesses in layers 3 (Network Layer) and
4 (Transport Layer) of the OCI model [14]. One of the most illustrative attacks to
understand PBA is the SYN (Synchronized) flood. SYN flood attacks were one of the
first attacks to appear and are the most famous attack on the network layer today [13,
53, 59].

SYN flood utilizes the characteristic that is exploitable of the Transmission Control Proto-
col (TCP); SYN is a type of packet sent between the target and source server to establish
a reliable communication and create the connection between the two hosts [59, 61]. Ac-
cording to the TCP protocol specification, the connection creation process follows the
"Three-Way Handshake" sequence to establish reliable communication between the hosts
[31, 61]. Attackers send SYN packets to the "listening" ports in the target host; SYN
packets contain the IP address of the source host, but in DDoS attacks, the attacker or-
ganizes the SYN packets to include spoofed source addresses, which usually do not exist
[59]. According to the three-way handshake sequence, after the target host receives the

2.1. BACKGROUND 9

SYN packet, it responds with an SYN/ACK (acknowledgment) packet [59, 61]. Then, it
waits for the source host’s ACK packet to respond to finish the connecting process suc-
cessfully. However, in an SYN flood attack, the attackers send SYN packets with invalid
addresses. Therefore, the waiting ports in the target servers will never receive an answer
(confirmation ACK messages), thus waiting in vain or until the connection is timed out
[31, 59, 61]. With that, the attackers succeed in consuming and occupying the victim’s
host network resources [15, 59]. As a result, it will no longer be able to establish new
connections with legitimate new SYN requests [15, 59]. Figure 2.3 below illustrates the
SYN flood attack.

Attackers Victim

SYN/ACK

Normal User
Victim's server can no longer establish
new connections with normal users,
since all network resources are occupied.

Attackers send SYN packets Victim's server responses with a
SYN/ACK packet and waits for the ACK
packet from the source

Victim's server keep waiting but the ACK
confirmation will never come, since the
attackers used spoofed addresses

AttackersMaster

Figure 2.3: SYN Flood attack based on [15, 59]

2.1.2.4 Volumetric Attacks

Like PBA, attackers try to devastate the victim’s network, memory, or computing re-
sources and employ imperfections in the network and transport layer of the OCI model
[31, 39]. Specifically, attackers aim to consume the bandwidth of the victim’s network by
sending remarkably high volumes of malicious traffic [46]. To further understand Volu-
metric attacks, an example of an explanatory known volumetric attack is provided below,
namely the Reflection Amplification Attack.

Reflection Amplification Attack: this attack strategy consists of two different attack
types combined, 1) reflection attack and 2) amplification attack. Attackers first fake
the address of the sent request to be the same as the victim’s address (Reflection part),
then attackers design requests whose responses are considerably more extensive than the
request itself (amplification part) [58]. The two parts are defined individually beneath,
and the Figure 2.4 embodies the attack.

10 CHAPTER 2. FUNDAMENTALS

• Reflection Attack: attackers explore servers that provide open services that reply to
any requests without authentication of the source, such as Domain Name Systems
(DNS) and Network Time Protocol (NTP) [8]. DNS is a service to translate a
domain address from numbers (e.g., an IP address) into a user-friendly domain
name; NTP has its goal to synchronize the time among computer systems over the
network [8]. Attackers spoof the target’s IP address and send requests using the
User Datagram Protocol (UDP), which does not require a "handshake" (authenticity
of the source) to establish a connection [45, 58]. The responses to the requests made
to the servers with open services are directed to the target [8, 45].

• Amplification Attack: attackers structure their requests to have an amplified re-
sponse compared to the request size [10, 45]. For example, a DNS response to solve
a name are typically larger than the request itself, creating an opportunity to be
leveraged by attackers. Using Botnets and thousand of coordinated requests cause
damaging issues to the target’s bandwidth resulting in a denial of service [45].

Attackers Victim

Normal User
Victim's server can no longer establish
new connections with normal users since
all network resources are occupied.

Attackers send requests to open service
providers that do not require source
authentication, specifying the IP address
to match the victim's IP address

Open service servers forward all
incoming requests to the received
address, mainly the victim's address

Victim's server is overwhelmed with the number of
requests, and the whole available bandwidth is
consumed. As a result, the server can no longer
respond to regular users.

AttackersMaster

Request with spoofed IP
address

Open service providers
i.e., DNS, NTP

Figure 2.4: Reflection Amplification attack based on [8]

2.1.3 Detection patterns

There are several reasons why DDoS attack detection is a demanding task. Based on [27],
a few of many others reasons are listed below.

• The amount of open-source, available malicious tools on the internet.

• Spoofed IP addresses are usually used during a DDoS attack.

2.1. BACKGROUND 11

• The absence of a benchmark for DDoS protection and detection tools.

• A massive number of new systems rely on the internet.

Nevertheless, many systems propose a detection system for a DDoS attack. For example,
once searching for the keywords "DDoS Detection" in Google Scholar, almost 88’000 results
are displayed. The several works use different approaches and complex mechanisms. The
rest of this subsection shows some signs and detection patterns of previously introduced
attack types.

Request-Flooding Attacks: this kind of attack employs numerous GET and POST
requests coming from the same IP address simultaneously [34].

SYN flood: as stated before, connections that utilize TCP protocol establish the con-
nection in a specific sequence of exchanged messages. A sign indicating an SYN flood
attack is the massive number of flow compared to the sent packet per flow [60].

Reflection Amplification Attack: these attacks are evident due to their unusually
high bandwidth; furthermore, they are manageable to detect since they usually involve
packets that share the same source port with a single target [45, 46, 56].

2.1.4 Situational awareness

In cyberspace, situational awareness aims to encourage decision-makers in different organi-
zations and institutes to analyze surroundings threats and create meaningful visualizations
to understand and predict the situation quickly [63]. For this purpose, the Three-layer of
situational awareness model by Endsley presented in [KillerDashboard19 SitAwareness3LayModel,
63] is beneficial. It states the following:

1. Layer 1 - Perception: according to the state of the surrounding environment, we
perceive signs and indicators. Therefore, hands must be analyzed and evaluated.

2. Layer 2 - Comprehension: constructive understanding of the signs from layer 1.

3. Layer 3 - Projection: try to predict the impact of the crucial factors on the situation
for the coming future.

According to layer one, victims or targets have to keep an eye on network traffic tools
that gather and log network information made available by packet captures (PCAPs) in
the context of a DDoS attack. PCAPs provide insightful information to detect a DDoS
attack pattern [4]. At the second layer, victims of a DDoS attack have to understand and
analyze the gathered PCAPs. One technique to achieve this is to analyze and visualize
the data to facilitate the perception and comprehension task. This work aims to provide
enhanced and further detailed visualization of PCAPs; this helps with the last and third
layer, which is projection. Decision-makers must conclude and develop protection and
mitigation mechanisms for future attacks in this layer.

12 CHAPTER 2. FUNDAMENTALS

2.2 Related Work

• DDoS Clearing House: the DDoSCH (DDoS Clearing House) [22] is an open-
source project co-funded by the EU’s Horizon 2020 Research and Innovation pro-
gram. It consists of different modules with the primary goal of collaboratively com-
batting DDoS attacks. As mentioned in the introduction section 1, the DDoSCH
includes three main modules:

1. DDoS Dissector: its direct responsibility to extract DDoS attack’s character-
istics from the available traffic capture files making those available in a JSON
file. The DDoS Dissector module is installed on a DDoS victim’s machines.

2. DDoSDB: is a MongoDB Database of the whole system, where the fingerprints
generated by the DDoS Dissector are saved.

3. Converters: these Modules are responsible for the protection process of a pos-
sible DDoS victim. It interacts directly with DDoSDB and converts fingerprint
JSON files into a set of mitigation rules.

The DDoSCH provides the basis milestone for this work since it supplies the running
terminal-based backend.

• DDoSGrid: DDoSGrid systems were developed to identify DDoS attacks’ patterns
and characteristics by analyzing captured network flow information and providing
meaningful visualization to further increase the situational awareness of different
stakeholders [3, 6, 49, 65]. There are three open-source DDoSGrid systems where
each new version brings new utilities. The three systems are briefly described below.

– DDoSGrid 1.0: the first version of DDoSGrid systems was implemented
in the scope of a master project at the University of Zurich. One of the
project goals was to deliver visualizations of analyzed captured data files such
as PCAPs. The main objective was to understand the attack characteristics
through the different visualizations and help decision-makers and researchers
understand and develop new mitigation mechanisms.

– DDoSGrid 2.0: the second version focused on integrating the DDoSCH into
the previous DDoSGrid system [3]. It was built as a part of a Master’s Thesis
at the University of Zurich. DDoSGrid2.0 used an old version of the DDoSDB,
mainly DDoSDB 2.0. In the meanwhile, a new version of DDoSDB has been
released. This bachelor thesis aims to integrate the new version of DDoSDB3.0
into the DDoSGrid2.0 system.

– DDoSGrid 3.0: the latest DDoSGrid system’s version was also developed
at the University of Zurich [49]. DDoSGrid3.0 includes the real-time analysis
factor to visualize the network and thus detect, react, and, if possible, stop a
potential DDoS attack before causing enormous damage.

• DDoSDB: the DDosDB is a part of the DDoSCH and an independent web-based
application written in the Django framework [22, 64]. Its purpose is to share DDoS

2.2. RELATED WORK 13

attack information among different stakeholders and understand and improve mit-
igation strategies. In addition, the DDoSDB makes it possible to learn about par-
ticular characteristics of attacks since it facilitates the sharing of fingerprints after
anonymizing those to keep the victim’s identity unknown.

• MISP (Malware Information Sharing Platform): this work assumes that
handling individually recent complex IT threats is a demanding or even an im-
possible task [66]. That is why the authors introduce a trusted MISP enabling the
collaborative-knowledge-sharing about threats in cyberspace. Collaborators can add
new entries called events with different levels of granularity. It is possible to include
attachments and characteristics of relevant information; these are called attributes.
Once sharing a new event, Collaborators can specify different sharing levels, i.e.,
with people in the same organization or with all users on the platform.

• DDoS Playbooks: A DDoS playbook is a tool to guide a company or an orga-
nization on specific, clear steps during different stages of being under attack [32].
Playbooks can be combined, adjusted, and extended to increase the stakeholders’
understanding [32]. An example of a live DDoS Playbook [33] and a guide [47] on
creating such playbooks are illustrative for understanding DDoS Playbooks.

• SOChain: Like other works, this work assumes that victims or security operation
centers (SOCs) are hesitant to share their real-time DDoS data because of trust and
fairness issues [28, 68]. SOCchain proposes a decentralized system using blockchain
technology to overcome those issues. They further believe that the best mitiga-
tion is a blacklist of shared IP addresses and a platform to share relevant attacks’
information.

• Swarm intelligence: This work proposes a mitigation and detection system based
on multi-agent communication [36]. It introduces several types of agents:

1. Coordination agent: takes decisions and handles intermediate communications
among other agents.

2. Detection agent: as its name, this agent is to detect possible DDoS attacks.
3. Monitoring agent: this agent is always in live mode, and it mentors the network

and available cloud resources.
4. Recovery agent: this agent is triggered by a sub-agent of the coordination agent

(the decision-making agent (DCMA)). This agent is triggered once a DDoS
attack is detected; it will take the available resources of the attacker and log
essential information about the attacker and provide them to the DCMA to
make more precise decisions.

14 CHAPTER 2. FUNDAMENTALS

Chapter 3

Design

During the literature review phase, we studied a set of existing applications whose goal is
to counter DDoS attacks collaboratively; this helped to derive the needed requirements
to develop a system with a similar goal. It was also helpful to understand the crucial
traits such a system should have. Thus, in this chapter, we present the high-level re-
quirements, driven by the literature review and further investigation of different existing
systems. Second, we will describe the structure of the existing system and the new system.
Furthermore, the last subsection will include fundamental implementation decisions.

3.1 Requirements

An initial requirement was to have both DDoSGrid 2.0 and the used version of the
DDoSCH up and running. As mentioned in the literature review, there is already a
new version of the DDoSGrid system (DDoSGrid 3.0). However, we decided to use the
old but more stable version to accomplish one of the thesis goals: integrating the new
version of DDoSDB into the DDoSGrid system. In the architecture subsection, we de-
scribe the architecture of both systems in depth. An essential requirement with a more
technical nature is to provide a fully automated system, demanding from the user only
two things:

1. PCAP file: this file in the form of ".pcap" file extension should include a snapshot
of the network flow to be analyzed. The user should only upload the file once in one
place; all main system functionalities shall be triggered without further intervention.

2. Authentication token: a user can acquire such a token by being registered in the
DDoSDB user model. The new version of the DDoSDB uses the Django framework
that provides a powerful role-based user model. For example, an Administrator can
generate tokens for other users, which allows them to upload fingerprints using the
DDoS-Dissector module. Thus, a user does not necessarily have to create a new
DDoSDB account to use GridDB or DDoSGrid systems.

15

16 CHAPTER 3. DESIGN

Our goal is to have a system that integrates all DDoSCH house modules in one platform,
where utilizing the token and the uploaded PCAP file:

1. Upload the fingerprint of the analyzed PCAP file to the DDoSDB (sharing objec-
tive).

2. Envision the most important key metrics of the attack data (visualization objec-
tive [37, 38]).

3. Examine the attack’s data key metrics using the provided visualizations (investigation
objective).

Another requirement is using the DDoSCH components with a friendly UI instead of
having to deal with CLI. A user can operate the GridDB system and has to be able to use
the Dissector, DDoSDB, and Converters modules independently of each other (besides the
automated process and not instead). When using the automated process, i.e., running
all components of the DDoSCH, the endpoints will be protected using the headers, which
should include the authorization token. For example, it should be possible for a user to
generate a fingerprint without uploading it to the DDoSDB. In summary, we want the
GridDB system to bring utility to users who are not members of a DDoSDB.

After running the Dissector module, a summary of statistics of the attack characteristics is
generated and is called a fingerprint. Depending on the DDoS attack type, more statistics
are included in the fingerprint. From those metrics, we want to provide meaningful
visualization to understand the fingerprint and detect patterns more efficiently rather
than dealing with the generated JSON file. The dissector’s GitHub repository [23] clarifies
the included metrics and further information about the DDoS Fingerprint format.

3.2 Architecture

This section provides an overview of the three main components in this thesis: DDoSCH,
DDoSGrid 2.0, and the new, improved system GridDB. As mentioned in the literature
review part, a newer version of the DDoSGrid allows real-time analysis and network flow
visualization. However, after inspection of both versions, we decided to work with the
more stable version: DDoSGrid 2.0. We provide a description of its components, how
they interact with each other, and what changes we made to integrate the new version
of DDoSCH. DDoSCH’s new version has made significant changes to the system. We
highlight a couple of those changes in this subsection. For clearness, we use DDoSCH 2.0
and 2.2 as version notation for the different DDoSCH versions used in the DDoSGrid 2.0,
though the DDoSCH has not specified such version notation.

3.2.1 DDoSCH

In this subsection, we highlight the three main components of the DDoSCH and explain
how the user can interact with the different components at the top level and what type of

3.2. ARCHITECTURE 17

files are needed to execute the corresponding module. The different modules expect some
files as input to create the output and are not fully functional without a correct input
type. However, the DDoSDB module can still be used without the need to upload a file to
it. Using the provided UI with the powerful Django role-based user model, a superuser,
for example, can allocate rights to other users, allowing them to upload fingerprints to
the database. Also, a logged-in user can view and query fingerprints (if he/she has the
corresponding rights).

• DDoS Dissector: this module can be used in two ways (using the command-
line interface with changing the passed arguments). It can handle two types of
input files: ".pcap" and ".nfdump". The first way to use this module is to pass
one of the network-flow files; the module then will generate a fingerprint in a JSON
format. The passed network-flow file and the generated fingerprint can be saved and
used externally, i.e., for visualization purposes. Secondly, we can use it to dissect
and directly upload the generated fingerprint to the DDoSDB. The only notable
change between DDoSDissector 2.0 and 2.2 is the amount of data extracted from
the network-flow file. The newer version provides a more comprehensive fingerprint
with more attack vector metrics. In addition, the new provided python source
code is well refactored and well separated, making it easier to understand than the
previous version. For example, in version 2.2, the number of lines in the main.py
source code file decreased from 1117 to only 67 lines, which helped by decoupling
the functionalities in well-separated modules.

• DDoSDB: this module serves as the central database of the DDoSCH utilizing
a Django framework to manage the UI. There were two primary changes between
DDoSDB 2.2 and 2.0. First is the authentication process, e.g., how to authenticate
a user who wants to upload a fingerprint to the DB. Using the Dissector module,
it was possible to specify the path to the configuration file containing the DDoSDB
hostname and the user’s username and password. The Dissector then will establish
a connection to the DDoSDB server and get the user’s permissions, i.e., calling
the endpoint /my-permissions. Finally, it checks if the user is eligible to upload
fingerprints. Another way to authenticate the user was utilizing the authentication
token created using the OAuth2 provider employing the Django OAuth Toolkit. The
Admin of the DB has to create a new application using the OAuth provider, a client
secret, and a client id. The admin can then add an access token to be assigned
to a specific client id; this access token will be used in the Dissector module to
upload a fingerprint. The new version does not use the OAuth2 provider anymore,
but Django REST Framework Authentication assigns one or more tokens to a user.
Similar to the old version, Dissector 2.2 accepts an authentication token that is
directly specified in the configuration file (here without the user’s username and
password), which allows a user to upload a fingerprint. The second noteworthy
change is the actual database search and analytics engine. In the new version, they
used MongoDB instance to save and query fingerprints, whereas, in the previous
version, ElasticSearch was used to search and query fingerprints.

• Converters: this module accepts a fingerprint file (JSON format) and generates
firewall rules. It develops iptables, i.e., a list of IP addresses used by the attacker;

18 CHAPTER 3. DESIGN

those IP addresses will be blocked. Like Dissector 2.2, where the new version newly
supports connection to the MISP system to upload a fingerprint directly, Converters
2.2 accepts fingerprints generated by the MISP system modules to generate iptables.

Figure 3.1 shows the three components of the DDoSCH and the environment where the
components are supposed to run. First, the Dissector is installed on a DDoS attack vic-
tim, where the victim has access to the network flow data. Next, the victim uploads the
network flow data to the dissector module, which will anonymize the data and extract the
attack key metrics. Finally, a user can choose to upload the fingerprints to the DDoSDB,
but the Dissector can be used independently to create the fingerprint without upload-
ing it. For example, using the Dissector, a user can specify the DDoSDB hostname and
his/her authorization token and then upload the generated fingerprint to the DDoSDB.
If the fingerprint is shareable, every user in the system can view the anonymized finger-
print. Thus, the DDoSDB is a central database to share and view fingerprints among
the connected users, which supports encountering DDoS attacks collaboratively. The last
component is the converter, which accepts a fingerprint as a JSON format and generates a
set of mitigation and firewall rules, e.g., IP-Tables, to block IP addresses used to perform
the attack. The converter is installed on a possible DDoS attack victim; having access
to the available fingerprints in the DDoSDB, a possible victim can protect himself from
similar DDoS attacks.

Figure 3.1: Overview of the DDoSCH components based on [22]

3.2.2 DDoSGrid 2.0

Figure 3.2 shows the architecture of the DDoSGrid 2.0 system. Besides the components
of the DDoSCH, the DDoSGrid system implements three other main components:

(i) Miners: to extract visualization metrics from a fingerprint, the output is a JSON
file with the needed data to plot a chart.

(ii) The front-End (Vue.Js) application as the UI to upload network flow files and display
the visualizations.

(iii) The Back-End Node Express server.

The components highlighted in light-red color needed to be adapted and adjusted to
integrate the new version of DDoSDB forked from the DDoSCH project. Those were the

3.2. ARCHITECTURE 19

Front-End application and the corresponding Back-End. First, we deployed the system
for development and had everything up and running using the old version of DDoSDB.
The previous version of the DDoSDB is no longer available in the official repository of the
DDoSCH, but it was provided in the DDoSGrid repository. After having both systems up
and running, we investigated the connection points between the two systems. DDoSGrid
2.0 is bonded to DDoSDB in two ways. First, the authentication process of the user and
the web application, and second the upload process of fingerprints.

Figure 3.2: Architecture overview of the DDoSGrid components based on [3]

The new version of the DDoSDB authenticates users solely through assigning tokens;
further, there is no need to authenticate the application per se that wants to interact

20 CHAPTER 3. DESIGN

with DDoSDB. Now that we do not need to authenticate the application, we can remove
all unnecessary back-end code previously responsible for that. However, we still need to
implement a new authentication function to be aligned with the new type of authentication
provided in the new version of the DDoSDB. Instead of forcing the user to log in to his/her
DDoSDB account, we use the new simplified authentication approach. Now a user can
type in his/her token using the UI, the token is being sent to the back-end, and then the
back-end verifies if the token is valid by sending a GET request to the DDoSDB Django
server. Django answers with a 200 status code if such a token exists.

Concurrently with the API changes in the authorization process, we also adjusted how
DDoSCH modules run. The two modules, Converters 2.2 and Dissector 2.2, are changed to
accept different parameters. The backend ran those two components as child processes; we
also adjusted how the child processes were spawned—for example, Dissector 2.0 needed the
DDoSDB username and password to be given as parameters when running the module.
In contrast, the updated version 2.2 expected a configuration file with the DDoSDB
hostname, user authorization token, and the protocol (HTTP or HTTPS). For that, we
implemented a function to create the config file and pass it as a parameter to the dissector.

We also updated the front end by adding an input field for the user to enter the autho-
rization token; this can be obtained from the DDoSDB, where a superuser can create and
assign authorization tokens with different permissions to different users. In addition, the
corresponding endpoints for the authorization were adjusted, i.e., the way the front end
is notified that the user is authenticated and is eligible to interact with the system.

The final adjustment took place in the docker files. Since we want to provide a fully
dockerized version of both systems (GridDB and DDoSGrid 2.2), we adjusted those files
accordingly. For example, the python version used in the dissector 2.2 changed to 3.8,
so for the backend, we searched for a docker image that contains the needed node.js and
python versions.

3.2.3 GridDB

We want to create this system as an additional tab to the existing DDoSGrid systems
developed at the University of Zurich. The main objective of the new system is to provide
a more stable and scalable application where all the DDoSCH components are integrated
and can run automatically. Furthermore, as stated in the requirements section, the system
should replace the CLI of the DDoSCH modules and run them separately from each other
without the need to be authorized. E.g., by using the URI /dissector or /converters, the
user is redirected to the corresponding module and can operate it without needing an
authorization token. Unfortunately, in the previous versions of DDoSGrid 2.0 and 2.2, a
user can not interact with the system without being authorized (through an authorization
token in DDoSGrid 2.2 or a valid login credentials of a DDoSDB account in DDoSGrid
2.0). The new GridDB system allows users that do not have a DDoSDB account or an
authorization token to use the modules using a friendly UI to replace the CLI. In addition,
we will implement a fully automated upload process, such that the user upload a PCAP
file at one place and at one time.

3.2. ARCHITECTURE 21

GridDB consists of three main components Frontend, Backend, and DDoSCH compo-
nents:

1. Frontend: is a react.js application using the next.js framework to render the UI.
The Frontend is the starting point for the upload process of a PCAP file. It provides
visualizations of the attack characteristics, and it replaces the CLI of the DDoSCH
components in an understandable and straightforward web pages. In addition, we
decided to utilize the custom server inside the next.js application to authorize the
user and thus save code and API calls to the backend.

2. Backend: is an express node.js server responsible for running the DDoSCH com-
ponents as child processes. In addition, it handles data storage, such as saving
uploaded PCAP files and saving analysis data.

3. DDoSCH components: forked from the DDoSCH GitHub repository, the con-
verters, and dissector modules run inside the Backend as child processes, whereas
the DDoSDB runs as a separate web interface.

Figure 3.3 shows how the three systems are connected and how they interact. The dashed
lines illustrate a RESTFUL API communication between the system/components.

GridDB, DDoSCH, DDoSGrid

FrontEnd
NextJS

BackEnd
Node Express

MongoDB

BackEnd
Node Express

FrontEnd
VueJs NeDB

DDoS-DB
Django

Converters.py Dissector.py

RESTFUL API Childprocess Instance

G
ridD

B
D

D
oSG

rid
V2.2

D
D

oS-D
B

Figure 3.3: High Architecture overview of GridDB, DDoS-DB and DDoSGrid V2.2

We created Figure 3.4 to support the understanding of Figure 3.3. In Figure 3.3. In Fig-
ure 3.3, we showed each project and its sub-projects, e.g., DDoSCH includes DDoSDB,

22 CHAPTER 3. DESIGN

Dissector, and Converters. Figure 3.4 shows the actual environment in which a spe-
cific sub-project runs. For instance, the Dissector and Converters modules run inside
the GridDB environment as child processes. Similarly, the Miner sub-project runs inside
the DDoSGrid environment; we utilize its results through RESTFUL API between the
GridDB and DDoSGrid Backends (thus, the dashed line between the two Backends). In
contrast to the DDoSGrid, GridDB’s Frontend communicates directly with DDoSDB to
authorize the user. This is because we used nextJs server-side rendering to communi-
cate with the DDoSDB instead of forwarding the request to the Backend, which sends a
request to the DDoSDB to check the user authorization token. It is also important to
mention that each lane in Figure 3.4 illustrates the actual Docker environment in which
the corresponding application with the different sub-projects runs. For example, in the
GridDB lane, the Frontend, Backend, and MongoDB are all containers inside the Docker
GridDB stack. For instance, the Dissector and Converters sub-projects are part of the
Backend Docker container. Likewise, the miner sub-project is a part of the DDoSGrid
Backend Docker container.

G
rid

D
B

BackEndFrontEnd

C
hi

ld
 P

ro
ce

ss

Converters.py Dissector.py

MongoDB

D
D

oS
G

rid
 V

2.
2

FrontEnd BackEnd

C
hi

ld
 P

ro
ce

ss

Miner

NeDB
D

D
oS

D
B

 V
2.

2

DDoSDB

RESTFUL API Childprocess Instance

Figure 3.4: Detailed High Architecture overview of GridDB, DDoS-DB and DDoSGrid
V2.2

3.3. IMPLEMENTATION 23

3.3 Implementation

In this section, we describe essential implementation decisions we made during the devel-
opment process of DDoSCH, DDoSGrid 2.2, and GridDB.

3.3.1 DDoSCH

The first thing we did was get an instance of the DDoSDB up and running. In the
DDoSDB GitHub repository, a Linux-based installation guide is provided. We used
Virtual-Box to run Ubuntu 20.04 and started with the development. The installation
is straightforward; one would fetch the repository and install the needed dependencies.
For DDoSDB and Dissector modules, we made no changes to the source code to get
everything to work. For the converters module, we made some minor modifications to
the source code to make it work. Next, we worked with python virtual environments
to create a virtual environment for each module and installed the needed dependencies.
An alternative would be to run everything using docker; we used this approach at the
end of the development of the DDoSGrid 2.2 by modifying the provided docker files. For
example, the updated version of the DDoSCH components required a higher version of
python, namely 3.10; thus, we had to update the docker files accordingly.

Fortunately, the source code of the DDoSCH is very well-structured, and the modules are
well refactored and separated from one another, which makes them extendable and open
for further modifications. For the DDoSDB and Dissector, we implemented additional
endpoints for authorization and sending a fingerprint to a specific URI.

1 def check_token (request , token):
2 """ method to check if a token passed in the uri exists or not"""
3 token_exists (token) ? return response (status =200) : return resposne (

status =400)

Listing 3.1: Check token function in DDoS-DB

We made one modification to the Dissector to enable sending a fingerprint to some URI.
For that, we added an extra parameter --send_fp to the Dissector’s parameters.

1 /* other arguemnts */
2 parser . add_argument ("--send_fp ", type=Boolean , help=" Optional : send the

generated fingerprint to the URI specified in config files")
3 /* other arguemnts */

Listing 3.2: –send_fp tag added to the Dissector

In Addition, it was essential to implement a new args.parse() function to extract and
map the parameters, once including the new additional --send_fp tag.

1 if args. send_fp == True:
2 fingerprint . send_generated_fp (** parse_config_griddb (args. config))

Listing 3.3: check and parse arguments

24 CHAPTER 3. DESIGN

Once the GridDB calls the responsible function for spawning the Dissector’s child process
with the PCAP file hash, it automatically adds the tag send_fp as true. It automatically
modifies the configuration file by adding a new section [griddb].

1 [ddosdb]
2 host = ddosdb :8084
3 token = f270f2cf4e5b993331dd54bba08c72072fa9c3f6a6b21e4d1ee13d40fbc012
4 protocol = http
5 [griddb]
6 token = f270f2cf4e5b993331dd54bba08c72072fa9c3f6a6b21e4d1ee13d40fbc012
7 file_md5 = 9 f17044cad86bcf9857f32d5da65b7b8
8 send_fp_uri = http:// griddb :8080/ analysis / fingerprint /9

f17044cad86bcf9857f32d5da65b7b8

Listing 3.4: configuration file example

The new section should include the URI to which the fingerprint has to be sent. This
functionality replaces the --output tag provided by the Dissector to save the generated
fingerprint to the location delivered after that tag. We wanted to enable sending the
fingerprint using Http.requests rather than allowing the child process to modify the
local files.

1 def send_generated_fp (self , token: str , file_md5 : str , send_fp_uri : str
):

2 """
3 send fingerprint to specified uri from the config file
4 """
5 LOGGER .info(f" Sending fingerprint to: { send_fp_uri }")
6 // generate json of the fingerprint
7 generate_json_fp (self)
8 // check if token exists
9 if token:

10 add_token_to_request_headers ()
11 // send the request
12 try:
13 r = requests .post(send_fp_uri , headers =headers , data=fp_json ,
14 verify =False)
15 except requests . exceptions as e:
16 LOGGER .info(f" Fingerprint NOT sent to { send_fp_uri }")
17 LOGGER .debug(e)

Listing 3.5: sending fingerprint function

In contrast to the DDoSDB and Dissector, no Docker files were provided for the Converters
subproject; however, implementing such a Docker file is straightforward since it only
requires Python V10, and the project’s dependencies are provided under requirements.txt.

1 # select the required python image
2 FROM python :3.8 - slim
3 # Install pip requirements
4 COPY requirements .txt .
5 RUN python -m pip install -r requirements .txt
6 # change to the working directory
7 WORKDIR /app/ converters
8 COPY . /app/ converters
9 # declare the command to start the project

3.3. IMPLEMENTATION 25

10 CMD [" python ", " simple_iptables_converter .py"]

Listing 3.6: Docker file for converters

3.3.2 DDoSGrid V2.2

Since the OAuth2 is no longer supported, we implemented two new restful endpoints.
The user now first enters an authentication token on the landing page of the Front-End
application. Table 3.1 shows to which endpoint the authentication token is passed. The
information flow begins with the front-end input, that is passed to the API endpoint.

Mapping Method Parameter Parameter Type Status Code Returned Value Description
/auth/token/:token GET token<String> Path 200 Error: reason<String> Check if token exists

Table 3.1: Specification of the REST Interface: API

Then the API sends a GET request to the DDoSDB Django server, as stated in table
3.2. The DDoSDB server checks if the authentication token is available and returns a 200
status code if it is the case.

Mapping Method Parameter Parameter Type Status Code Returned Value Description
check-token/:token GET token<String> Path 200 Error: reason<String> Check if token exists

Table 3.2: Specification of the REST Interface: DDoSDB

In summary, the new authentication process begins with the user entering his/her authen-
tication token, which is sent to the API application and finally to the DDoSDB (for the
response the same flow but the other way around); This decreases the complexity of the
authentication process a lot. Moreover, We should ensure that this simplification does not
come at security costs. The generated authentication token is hard to replicate. It gives
the user exclusive access to upload a fingerprint to the DDoSDB (of the curse only if the
user has the corresponding permissions related to the token). In addition, both systems
do not collect sensitive data or users’ data. Again, with the authentication token, the
user can not log into DDoSDB.

After integrating the DDoSCH components into the DDoSGrid system, we updated the
docker files accordingly. The Docker-Compose file includes only two services: the Front-
and the Backend. Also, we updated the network to enable communication with the
GridDB system. The Docker-Compose file for the DDoSGrid V2.2 system looks as follows:

1 version : "3"
2 services :
3 ddosgridfrontend :
4 ports:
5 - " 3001:8081 "
6 build: "./ frontend "
7 volumes :
8 - .:/ usr/src/app
9 environment :

26 CHAPTER 3. DESIGN

10 - CHOKIDAR_USEPOLLING =true
11 ddosgridapi :
12 ports:
13 - " 3000:3000 "
14 build: "."
15 volumes :
16 - .:/ usr/src/app
17 environment :
18 - PORT =3000
19 - DDOSDB_CHECK_TOKEN =http:// ddosdb :8084/ check -token/
20 - DDOSDB_HOST =http:// ddosdb :8084/
21 - GRIDDB_HOST =http:// griddb :8080/
22 #make sure no / at the end of the
23 - CLIENT_APP_ORIGIN = http:// localhost :3001
24
25 volumes :
26 userdata :
27
28 networks :
29 default :
30 external :
31 name: griddb

Listing 3.7: Docker-Compose DDoSGrid V2.2

Figure 3.5 illustrates the needed stacks in order to run the DDoSGrid.

Figure 3.5: Docker overview of the DDoSGrid V2.2 stacks

The API image initially contained the API source code and the subprojects: Miner,
Dissector, and the Converters. For that, we need Node V10 and Python V3.10. This
was not an issue while we developed the system locally on our virtual machine. Instead,
the problem arose as we were dockerizing the application to provide a portable one. We
could not find a Docker image that includes Python V3.10 and Node V10. Therefore,
after trying various solutions (also mentioned in the evaluation chapter 4), we decided to
use the GridDB as a middleware to run the Dissector and the Converters. Furthermore,
we do not need any files in return from the Dissector since it is responsible for dissecting
and uploading the generated fingerprint to the DDoSDB. For that sake, we implemented
new endpoints for running the Converters and Dissector. The Information flow changed

3.3. IMPLEMENTATION 27

again to go through the GridDB system. First, a user uploads a network flow data file into
the DDoSGrid; the file is uploaded and saved to the local files. Then, if the user checks
the checkbox for exporting to the DDoSDB, we make two requests to the GridDB to run
the Dissector and the Converters. GridDB uses a Docker image which includes Python
3.10 installed. The first request is made to http://GridDB:8080/analysis/dissector;
we send the PCAP file in the request’s data and the token in the headers. The To-
ken and the PCAP file are the only two needed parameters to run the Dissector. Once
GridDB receives the request, we save the PCAP file in a different directory for DDoS-
Grid (data/public/DDoSGrid) and run the Dissector; by this, we introduce redundancy
to the project because the same PCAP file is saved in two places. In the first place,
such redundancy is unavoidable; the Dissector expects the path of the PCAP file as a
parameter. One possibility to decrease redundancy is to delete the PCAP file upon suc-
cessfully exporting the fingerprint to the DDoSDB. Once the Dissector is finished, we
send a response back to the DDoSGrid. A similar procedure is used for the Converters
(post request to http://GridDB:8080/analysis/converters); however, we also return
the generated IP-Tables to the DDoSGrid; this can be made available for the users to
install.

3.3.3 GridDB

We started the development process by initiating the needed application. First, we initi-
ated a next.js web application, and second, the node express server. Then, we created
a GitHub repository for each application and pushed the code there. Last, we integrated
DDoSCH components (Dissector.py, Convertes.py) into the backend and created the
needed docker files for each of the three components (Frontend, Backend, DDoSDB). In
order to avoid version confusion, before starting with the development, we tried various
ways to create the docker images. First, we searched for a way to have both Python V3.10
and Node V16 on the same docker image to match the subprojects (Converters and Dis-
sector) versions and the used node version for the backend. One possibility is to start
with a Node image and then install Python, e.g., using the following commands:

1 command FROM node :16- alpine
2 #COPY and install backend code
3 RUN DEBIAN_FRONTEND = noninteractive apt -get install -y python3
4 #COPY and install subprojects files

Listing 3.8: Docker Commands GridDB

We need Python in order to spawn the subprojects as child processes. The problem
we faced with the multi-stage builds during the DDoSGrid development phase was that
we created the executable files based on the right Python image. However, as we want
to run them, the available python image is unsuitable; thus, they would fail to run.
Alternatively, we searched for a Node image with the required python version already
installed; this decreased the build time of the containers dramatically. Building a Docker
container might take some time; in our case, building time sometimes exceeds 200 seconds.
Figure 3.6 illustrates the four Docker stacks to run the application.

28 CHAPTER 3. DESIGN

Figure 3.6: Docker overview of the GridDB components

Initially, the DDoSGrid V2.2 stack would not have been needed to run the application.
However, since the DDoSGrid is now dependent on the GridDB for running the Dissector
and Converters, we also allowed the GridDB to communicate with the DDoSGrid sys-
tem to utilize the miner subproject. The miner subproject requires Node V10 to run; the
GridDB system uses a later version not compatible with the needed one for the miner.
Like the GridDB running the Converters and Dissector inside its container and commu-
nicate the results to the DDoSGrid, the miner executes inside the DDoSGrid container
and communicates its results back to the GridDB using RESTful API. The miner gener-
ates visualization metrics in JSON files and saves them locally. We can upload the files
into an HTTP request using the Form-data module and send them back to GridDB. Since
we are still in the development phase, we had to pay attention to the ports exposed by
each application. For the development, we used the Docker-Desktop application (utilizing
Portainer extension) to manage and control containers and Docker images. We devel-
oped the system on a Windows machine, on which a Linux virtual machine for docker
is installed. Sometimes, we ran into RAM problems because the Virtual machine used
more RAM than needed; a good solution is to shut down the virtual machine and re-run
it again, e.g., using the command wsl --shutdown. In addition, we had to pay atten-
tion to the network on which the containers were running. As illustrated in the figure
3.6 above, we use three stacks, each running on a different network assigned by Docker.
Therefore, there is a probability that the different containers are not on the same network
and thus can not communicate. For that, we created a User-defined bridge network called
griddb and shared the network among the different stacks, so all containers were able to
communicate.

1 # create a network called griddb , e.g. using CLI:
2 docker network create griddb
3 # define the network in the differnet Docker - compose files:
4 networks :
5 default :
6 external :
7 name: griddb

Listing 3.9: Docker Commands GridDB - Networking

Usually, after executing a Docker-Compose file for the first time, Docker, by default, auto-
generates a network named after the service, e.g., <service_name>_default; we can see
this in Figure 3.7. Similarly, after executing the following command:

3.3. IMPLEMENTATION 29

1 docker network create griddb

and specifying the network name as griddb, a network with the name griddb will be
generated and added to the Docker Network list. The generated network is highlighted
in yellow in Figure 3.7. We can inspect available networks inside the Docker environment
by typing the command: docker network ls

Figure 3.7: Docker Network list

After assuring that the Docker files work well, we started with the development for the
Backend. We implemented the following endpoints following a similar procedure of the
DDoSGrid: user first uploads the network flow file to http://griddb/analysis/upload,
and upon successful uploading, the analyze function is called. In the following table, we
summarized the specification of the REST interface:

Mapping Method Parameter Parameter
Type

Status
Code Returned Value Description

/analysis GET - - 200 List of all Analysis Get all analysis as-
signed to some token

/analysis POST
Analysis
Schema
<JSON>

Body 201 Description: fail or
success Create a new analysis

/analysis/upload POST PCAP File
<.pcap> Files 200 Description: fail or

success
Upload and save a
PCAP file

/analysis/:id/analyse POST Analysis id
<String> Path 200 Description: fail or

success Analyze the PCAP file

/analysis/:id DELETE Analysis id
<String> Path 200 Description: fail or

success
Delete an analysis
Document by id

/analysis/fingerprint/:id POST Analysis id
<String> Path 200 Description: fail or

success

Save fingerprint in the
Directory matching
the id

/analysis/analysis-files POST
Analysis
Files
<JSON>

Files 200 Description: fail or
success

Save analysis files
from the miner

/analysis/dissector POST PCAP File
<.pcap> Files 200 Description: fail or

success
Run the Dissector
subproject

/analysis/converters POST
Fingerprint
File
<JSON>

Files 200 Description: fail or
success

Run the converters
subprocess

Table 3.3: Specification of the REST Interface: GridDB

Analyse function: the function is supposed to be called after the PCAP file is uploaded
to the system. Each file has a unique hash key; we use that key to save the PCAP file in

30 CHAPTER 3. DESIGN

the directory for the user. For example, in the front end, the user uploads the PCAP file
using a form. So, first, we call /upload endpoint, then call the /analysis/:id/analyse
endpoint.

Figure 3.8: File structure of the Data folder - GridDB

The data folder contains four other subfolders. For each project that interacts with
GridDB, a subfolder is automatically created to keep every system file separated from the
other. I.e., files uploaded using the GridDB frontend are saved in the griddb folder. For
each user, we create a folder according to his/her authorization token. Then, according to
the PCAP unique hash, we create another folder and save the actual PCAP file. Saving
the file according to its place is done after the /upload endpoint is called.

1 const uploadToClient = async (event) => {
2 // first extract name , pcapFile , description from the event
3 const body = extract_and_append_data (event , upload_token)
4 try {
5 // send the request to the backend
6 const response = await fetch(
7 process .env. NEXT_PUBLIC_BACKEND_API + " analysis / upload ",
8 {
9 body: body ,

10 method : "POST",
11 }
12);
13 // extract and check the status
14 const { status } = response ;
15 if (status === 200) {
16 const re = await response .json ();
17 // handle upload success => notify the user
18 // start analysis => send a request to the / analysis /:id={re.

id}/ analyse endpoint
19 startAnalysis (re.id , 2000);
20 } else {// handle if status !== 200}
21 } catch (err) {
22 // handle request failure }}
23 };

Listing 3.10: Handle upload PCAP file - GridDB FrontEnd

3.3. IMPLEMENTATION 31

The analyze function is mainly responsible for spawning all three subprojects and saving
the results to the database. The flow inside the analyze function is as follows: The backend
receives a request where the id is a parameter path; again, the id is a unique hash of the
PCAP file, which was initially communicated and sent in the response text of the /upload
endpoint. The function makes two checks:

1. is the uploader token present in the request headers

2. is there a folder with the id passed in the path parameter

If both conditions are actual, we can start with the analysis. Then, using try-catch blocks,
we run each subproject and update the status entry in the database immediately. For
instance, this is an example of running the Dissector subproject:

1 try {
2 analysis . dissect_status = "in - progress ";
3 analysis . export_status = "in - progress ";
4 analysis . filter_status = "in - progress ";
5 analysis . miner_status = "in - progress ";
6 await analysis .save ();
7
8 var startTime = new Date ();
9 const dissector_result = await pcapDissector . dissectAndUpload (

10 projectPathPCAP ,
11 uploader_token ,
12 analysis . file_md5
13);
14 var endTime = new Date ();
15 analysis . dissector_duration = (endTime - startTime) / 1000;
16 analysis . ddosdb_key = dissector_result . ddosdb_key ;
17 analysis . dissect_status = "done";
18 analysis . export_status = dissector_result .code === 200 ? "done" : "

failed ";
19 var projectPathFP = path. resolve (projectPath , ‘${id}.json ‘);
20 await analysis .save ();
21 } catch (e) {
22 analysis . dissect_status = " failed ";
23 await saveAnalysisToTheDB (analysis);
24 console .warn("Error occurred while running the Dissector ", e);
25 }

Listing 3.11: Try-catch block for the Dissector subproject

First, we update all entries of the subprojects status to in progress and save the changes
in the database. Then, we start a timer to measure the time of the subproject to finish.
After, we call the actual function for spawning the child process and save its results. The
function returns a promise; if rejected, it means the child process failed and the returned
code 400; if resolved, we return code 200. The function follows an identical procedure
for running the Converters subproject; we save the generated Ip-Tables file to the same
directory. However, a difference in the procedure is the case for the Miner since we run
it by sending a post request to the DDoSGrid backend; the Miner runs in a different
container. Thus the results are communicated using RESTFUL API. In the following
Code block, we illustrate how the results of the Miner subproject are received.

32 CHAPTER 3. DESIGN

1 try {
2 analysis . miner_status = "in - progress ";
3 await saveAnalysisToTheDB (analysis);
4 var formData = new FormData ();
5 formData . append (" pcapFile ", fs. createReadStream (projectPathPCAP));
6
7 var url = process .env. DDOSGRID_API_HOST + " analysis /miner";
8
9 var response = await axios ({

10 method : "post",
11 url: url ,
12 data: formData ,
13 maxContentLength : Infinity ,
14 maxBodyLength : Infinity ,
15 headers : {
16 "Content -Type":
17 " multipart /form -data; boundary =" + formData . getBoundary (),
18 " uploader_token ": req. headers . uploader_token ,
19 "id": id ,
20 },
21 });
22 // console .log(response);
23 analysis . analysis_duration = response .data. analysisDurationInSeconds

;
24 analysis . analysisFiles = response .data. analysisFiles ;
25 analysis . metrics = response .data. metrics ;
26 analysis . miner_status = "done";
27 await saveAnalysisToTheDB (analysis);
28 await requestAnalysisFiles (id , uploader_token);
29 } catch (error) {
30 analysis . miner_status = " failed ";
31 await saveAnalysisToTheDB (analysis);
32 console .warn("Miner failed !", error);
33 }

Listing 3.12: Try-catch block for the Miner subproject

In order to get the results from the miner, we must make sure that an instance of DDoS-
Grid V2.2 is up and running. Therefore, we implemented an additional endpoint in
the DDoSGrid V2.2 accessible under http://ddosgrid/analysis/miner; the Backend
runs the miner as a child process and saves the generated files locally. These files can
be obtained by requesting them in another POST request to the DDoSGrid V2.2 under
http://ddosgrid/analysis/analysis-files. Finally, as the miner successfully finishes
analyzing the uploaded PCAP file, we extract three things from the generated results:
cleaned results that include only the required attributes for the visualization, miner sub-
project duration to finish analyzing, and a summary of the key metrics. Those three
objects are loaded and stringified in JSON format to be able to load them in the response
data. First, we write the Status Code of the header as 200 and specify the returned data
content type as JSON. Additionally, we include the uploader token in the response header;
the uploader token is needed for the GridDB since the returned data will be saved in our
database, and for that, we need to know which user has sent that request.

1 res. writeHead (200 , {
2 "Content -Type": " application /json",

3.3. IMPLEMENTATION 33

3 " uploader_token ": req. headers . uploader_token ,
4 });
5 var json = JSON. stringify ({
6 analysisFiles : cleanedResults ,
7 metrics : metrics ,
8 analysisDurationInSeconds : analysisDurationInSeconds ,
9 });

10 res.end(json);

Listing 3.13: DDoSGrid V2.2 response of the Miner endpoint

The main POST request made by the GridDB to the DDoSGrid backend server to run
the miner under http://ddosgrid/analysis/miner returns for us three objects:

1. Analysis files: an array that contains supported diagrams and the file name of the
JSON file to generate the diagrams. One element of the array can look as follows:

Figure 3.9: Element of the analysis files array

For example, the file value in this entry contains the file name, in which the needed
data for rendering the top five VLANs exists, and the supported diagram is only a
Pie Chart.

2. The duration in seconds of the miner subprocess, we plot and compare the duration
with the durations of the other sub-projects, Dissector and Miner. Usually, the
Dissector sub-project takes the most time to finish since it analyzes the PCAP file
and uploads the generated fingerprint to the DDoSDB.

3. Metrics that include summary statistics of the attack.

These pieces of information are then saved in the database and are ready to be displayed
on the front end. Using the requestAnalysisFiles() function, we retrieve the actual
JSON files from DDoSGrid and save them in the Analysis directory. The figure 3.10 shows
what an analysis folder will look like after the function has returned.

34 CHAPTER 3. DESIGN

Figure 3.10: Example of an Analysis Directory - GridDB Backend

The Directory is named after the PCAP hash and includes:

(i) Fingerprint generated using the Dissector

(ii) PCAP file uploaded by the user

(iii) Analysis files generated by the Miner

(iv) Enable and Disable rules of the Ip-Tables generated by the Converters

On the Frontend side, we call the function start Analysis, which needs the PCAP file
hash as a parameter. Then it sends a post request to the backend with an authorization
token as a header. Finally, the status code is extracted from the response and handled
according to its value. We Use the local storage to save the interval Id; the SetInterval
function is responsible for fetching all the analysis from the backend every five seconds.

1 const startAnalysis = async (file_md5 , timeOutForToast) => {
2 setDoneAnalyzing (false);

3.3. IMPLEMENTATION 35

3 try {
4 const id = setInterval (() => {
5 getAllAnalysisWhileAnalyzing (token);
6 }, 5000);
7
8 localStorage . setItem ("id", id);
9

10 const response = await fetch(
11 process .env. NEXT_PUBLIC_BACKEND_API + ‘analysis /${ file_md5 }/

analyse ‘,
12 {
13 headers : {
14 uploader_token : token ,
15 },
16 method : "POST",
17 }
18);
19 const { status } = response ;
20 const re = await response .text ();
21 console .log(status);
22 // alert(re);
23 if (response . status === 200) {
24 setTimeout (() => {
25 toast. success (" Analysis should start in a bit !", {
26 duration : 4000 ,
27 icon: <DiGoogleAnalytics />,
28 });
29 }, timeOutForToast);
30 } else {
31 toast.error(" Failed to start analysis ! ");
32 }
33 } catch (err) {
34 console .warn(err);
35 }
36 };

Listing 3.14: Start Analysis Function GridDB - Frontend

For the data storage of the analysis information, we used MongoDB as our primary
database. Then, using Docker, we pulled the latest version MongoDB image. Also, we
used MongoExpress to have a UI of the database content.

1 services :
2 griddb - mongodb :
3 image: mongo: latest # use the latest image.
4 container_name : griddb - mongodb
5 restart : unless - stopped
6 ports:
7 - 27017:27017
8 griddb -mongo - express :
9 image: mongo - express : latest # latest image

10 container_name : mongo - express
11 restart : unless - stopped
12 ports:
13 - 8083:8081
14 environment :
15 ME_CONFIG_MONGODB_SERVER : griddb - mongodb

36 CHAPTER 3. DESIGN

16 ME_CONFIG_BASICAUTH_USERNAME : griddb
17 ME_CONFIG_BASICAUTH_PASSWORD : griddbgriddb

Listing 3.15: Docker-compose for MongoDB

In addition, we used the Mongoose module to create a Schema for a new analysis document.
An analysis document is defined as follows:

1 const analysisSchema = new mongoose . Schema ({
2 // ddosdb key is used to query the fingerprint in the DDoSDB
3 ddosdb_key : {type: String },
4 // to keep track if an analysis has been deleted
5 deleted : {type: Boolean , default : false ,},
6 // to keep track when was the analysis created
7 created : {type: Date , default : new Date () ,},
8 // does the system finished exporting the fingerprint to the DDoSDB ?
9 export_status : {type: String , default : " planned " ,},

10 // did the Dissector finish ?
11 dissect_status : {type: String , default : " planned " ,},
12 // did the converters finish generating the filter rules?
13 filter_status : {type: String , default : " planned " ,},
14 // to keep track of the uploader token
15 uploader_token : {type: String ,},
16 // description of the analysis
17 description : {ype: String ,},
18 // name of the analysis
19 name: {type: String ,},
20 // PCAP file size in MB
21 file_size : {type: Number ,},
22 // how much it took the miner to finish ?
23 analysis_duration : {type: Number ,},
24 // how much time it took the Dissector to finish ?
25 dissector_duration : {type: Number ,},
26 // how much time it took the converters to finish ?
27 converters_duration : {type: Number ,},
28 // PCAP file hash
29 file_md5 : {type: String , },
30 // did the miner subproject finish ?
31 miner_status : {type: String , default : " planned " ,},
32 // the location of the analysis files generated by the miner
33 analysisFiles : {type: Array ,},
34 // key metrics generated by the miner
35 metrics : {type: Map , of: String ,} ,});

Listing 3.16: Anylsis Schema

Using this approach allows us to be flexible in adding or modifying the current character-
istics of an analysis document.

Chapter 4

Evaluation

In this chapter, we discuss and indicate the main contributions of this work. We first
show our attempts to increase the system’s usability. Then we show how we succeeded in
providing a portable version of each used component in this thesis. Then, we describe how
we achieved delivering a fully automated system to handle network flow data of PCAP
type. And then, we discuss how the new provided system is more scalable and can handle
an additional amount of data. In the last section of this chapter, the discussion section, we
present and discuss the concrete contribution of this work using a table of contributions
and compare it to the previous DDoSGrid system.

4.1 Usability

We made the DDoSCH components more usable by introducing a friendly UI to run the
modules. We achieved this by implementing the Frontend using Next.js. Also, we made
it possible for people who do not have a DDoSDB authorization token to use the different
components using the provided UI. Thus, we implemented two pages for the Dissector
and Converters sub-projects besides the upload page, which serves as the main page and
embodies the entry point for the automated process. Hence, the Dissector and Converters
can be used without entering an authorization token; however, if the user clicks on the
Upload to DDoSDB Icon, the system asks for the authorization token. The users are
greeted on the landing page, and a brief explanation of the project objective is shown.
Figures 4.1 and 4.2 show the content of the landing page (in the development environment
accessible at http://localhost:8079/). The navigation bar at the top of the home page
shows the different DDoSCH components the user can use. At the bottom half of the
page, we include the components again with a brief description of the usage.

37

38 CHAPTER 4. EVALUATION

Figure 4.1: Landing Page - GridDB Frontend

Figure 4.2: Bottom of the Landing Page - GridDB Frontend

4.1. USABILITY 39

Users can now navigate to the desired page. In addition, we introduced two additional
pages for users who do not have a DDoSDB authorization token, making it possible to use
the DDoSCH components without requiring the CLI to run the projects. For example,
figure 4.3 shows how a user can use the Dissector subproject without logging in.

Figure 4.3: Dissector Subproject - GridDB Frontend

Once the Dissector sub-project is done, the generated Fingerprint is transmitted to the
Frontend and is ready to be downloaded as a JSON file. Figure 4.4 shows the results after
the Backend has communicated the results to the Frontend. We follow a similar procedure
for the Converters subproject. First, information about the usage of the Converters is
presented, then there is a form to upload the Fingerprint file. As soon as the Backend
generates the Filter rules, they are communicated to the Frontend. Finally, the system
writes them in a downloadable file, and the user can download the filter rules file with a
mouse click. With that, we replaced the CLI interface of the two projects with a user-
friendly interface. Additionally, after the Dissector is done, we present to the user the
target IP address of the attack, start and end dates, duration of the attack, and the
number of packets in the attack. Also, we visualize using a Bar-Chart the attack volume
in MB, the total number of unique IP addresses that were used in the attack, and the
number of bytes per packet. These metrics are shared among every generated fingerprint
file, and thus it makes sense to plot them. However, other metrics might not be included in
the Fingerprint and thus are hard to visualize in a chart. We used the react-hot-toast
library to notify and alert the user using notifications displayed on the project’s page.
With that, we give the user feedback and keep him/her updated conveniently. The top

40 CHAPTER 4. EVALUATION

part of Figure 4.4 n shows an example of such notifications, e.g., feedback is given to the
user once the Dissector has successfully finished.

Figure 4.4: Dissector Subproject Results - GridDB Frontend

Besides the two pages to run the sub-projects differently, we implemented the fully auto-
mated process to trigger all components of the DDoSCH and the Miner sub-project from
the DDoSGrid V2.2. Figure 4.5 shows the input field shown to the user once clicking on
the Upload to DDoSDB icon from the navbar. After submitting the Authorization token,
we use the NextJs server API to communicate with the DDoSDB server to check if the
authorization token exists. Upon successful authentication, the user is redirected to the
analysis page, where all previously uploaded analysis associated with that authorization
token is shown. Also, a button to upload a new analysis is shown, and the upload form
is displayed once the user clicks it. The users are asked to provide the PCAP file, the
name, and a description of the Data set. In addition, users can find a brief explanation
of the automated process in the upload form. Then, the users can upload the file and
receive feedback accordingly (success or failure). Upon successfully uploading the PCAP
file to the GridDB system, the analyze function is triggered, and the automated process
of spawning the subprojects starts.

4.1. USABILITY 41

Figure 4.5: Login Page - GridDB Frontend

Figure 4.6 shows what an analysis card looks like while the analysis is running.

Figure 4.6: Analysis in Progress - GridDB Frontend

42 CHAPTER 4. EVALUATION

The uploaded analyses are shown to the user in a Grid manner. In addition, each analysis
is displayed on a card with some information about it. Users can click on the analysis
card to display more information. When the user uploads a new PCAP file, analyzing
the PCAP file starts. Once the user has successfully logged in, feedback is given, and an
additional button, "log out," is shown on the navbar. Also, feedback is given when the
analysis starts and finishes.

Figure 4.7: Analysis Page - GridDB Frontend

The data set on the right side indicates that the miner failed to run; this was done for
illustration purposes, while for the analysis, we turned off the DDoSGrid container in
Docker. Users can click on the card to further inspect the analysis. Similarly, the system
displays various visualization and separated information about the sub-projects.

4.1. USABILITY 43

Figure 4.8: Analysis Information Page (top) - GridDB Frontend

Figures 4.8 and 4.9 show the analysis information page of a particular data set. Users
can delete or re-run the analysis, e.g., if the analysis failed. Also, the duration of the
subprojects is plotted. Usually, the Dissector sub-project takes the most time to finish.
On the DDoSCH card, we linked the analysis to the DDoSDB fingerprint page, such that
users are re-directed to the fingerprint in their DDoSDB account. The fingerprint in the
DDoSDB is displayed as a prettified JSON entry, where all the fingerprint information is
shown. For the visualization, we used the react-chartjs-2 library to display interactive
visualization, supporting hovering and excluding or including elements of the charts. For
the visualized data, we mainly relied on the generated data of the miner sub-project.
Hence, the visualizations are displayed beside the DDoSGrid card.

44 CHAPTER 4. EVALUATION

Figure 4.9: Analysis Information Page (bottom) - GridDB Frontend

4.2 Portability

The evolvement of hardware components is rapid, increasing the need to provide portable
systems [43]. Furthermore, portable systems are easy to transfer between different envi-
ronments [43]. At the beginning of this work, we used a virtual machine operating on
Virtual-Box software as our primary system for development. In addition, we used some
screen-sharing software during our weekly virtual meetings to discuss and inspect the
development process. However, we faced an issue once we wanted to share a functioning
copy of the files. One solution was to export the whole virtual machine and re-install it
on another device using the Virtual-Box software. Another solution was to use a virtual
machine in the cloud. The last and most elegant solution is to use Docker to dockerize

4.2. PORTABILITY 45

the applications; we created an organization on GitHub to push the code with the needed
Docker-compose files. Docker is an application that helps developers to decouple source
code from the used infrastructure during development; this facilitates testing, developing,
and deploying code [24]. Hence, we provided a Docker file for each subproject in this
thesis.

4.2.1 DDoSGrid V2.2

After integrating the new DDoSCH components into the DDoSGrid V2.2 system, we
updated the corresponding Docker files. However, we faced some challenges since the
Node image was bygone, namely Node V10. There were a lot of deprecated functionalities
if we had used a recent node image. In addition, if we would use Node V10 as our base
image for the Docker file, the required Python version (Python V3.10) was not supported
in that image. We tried to overcome this problem by using a multi-stage builds Docker
container. First, we pull the latest Python image using:

1 # start the first stage called : builder
2 FROM Python : latest AS builder
3 # COPY and Install requirements of Dissector and Converters

subprocesses
4 # start the last stage
5 # use Node V10 for the last stage
6 FROM node :10.22.1 - buster
7 # COPY and install miner and API dependencies
8 # COPY executable files from the builder stage
9 COPY --from= builder /usr/src/app/api/ .

10 COPY --from= builder /usr/src/app/miner .

Listing 4.1: Docker Commands DDoSGrid V2.2

telling Docker to start a new stage called builder. Next, we install the dependencies of
both DDoSCH subprocesses (Dissector and Converters), and then we start a new stage
using Node V10 to install the API module dependencies (since it is the last stage, there
is no need to name it). In the end, we copy the files, mainly the executable files of the
builder stage, to the last stage so that we have everything up and running in a lightweight
container. Unfortunately, this solution did not solve our problem since Docker will use
the image from the last build as its central image, which does not contain the required
Python version. We tried to update and install Python on the node image, but it was
impossible to use the latest and needed image. As a result, we decided to use the backend
code of GridDB as our reference to run the DDoSCH components through RESTful API.
Achieving this provides us with two fully portable and separate Docker containers.

The Dockerfiles of the Frontend were not changed since they work fine. Nevertheless, we
changed the Dockerfile of the DDoSGrid Backend only to include the miner subproject and
to install the required NPM modules of the node Express server. The previous Dockerfile
included the DDoSCH subprojects (Dissector and Converters), yet we removed them from
the Dockerfile since they are no longer needed. The new docker files are structured as
follows:

46 CHAPTER 4. EVALUATION

1 FROM node :10.22.1 - buster
2
3 RUN apt -get update ; DEBIAN_FRONTEND = noninteractive apt -get install -y

libpcap -dev tshark ;
4
5 COPY miner /usr/src/app/miner
6 WORKDIR /usr/src/app/miner
7 RUN npm install
8
9 WORKDIR /usr/src/app/api

10 COPY api /usr/src/app/api/
11 RUN rm -rf node_modules / ; npm i; mkdir -p tmp
12 EXPOSE 8080
13
14 CMD ["npm", "start"]

Listing 4.2: Final Docker Commands DDoSGrid V2.2

4.2.2 GridDB

For the GridDB, we assured before starting the development that we provide portable
Docker images. Thus, we dedicated enough time for that matter. First, we created
a Docker File for each component: Backend and Frontend. After that, we created a
Docker-Compose file to fire up both images and create the containers. Ultimately, we
integrated the DDoSCH components (Dissector and Converters) and defined the network
GridDB, on which both Stacks: GridDB and DDoSDB are supposed to work to enable
communication between the different containers. The GridDB Docker stack includes
four containers (frontend, backend, MongoDB, and MongoExpress). We employed recent
versions of the used frameworks for the GridDB system to increase the system’s quality
and make it extendable for future work and improvements.

During the Development phase, we ran the application only within the Docker environ-
ment; this helped us by specifying the URI of the applications that needed to communicate
with each other. For example, on the Backend, by server start, we establish the connec-
tion to our MongoDB; instead of hard-coding the actual URI of the DB, we can let docker
handle this for us by specifying the service name.

1 // connect to the mongoDB
2 console .log(" connecting to MongoDB ...");
3 const url = " mongodb :// griddb - mongodb :27017/ test";
4 mongoose . connect (url , { useNewUrlParser : true });
5 const db = mongoose . connection ;
6
7 db.on("error", console .error.bind(console , " failed to connect to

MongoDB "));
8 db.once("open", () => {
9 console .log(" ============== connected to MongoDB ============== ");

10 });

Listing 4.3: Docker URI handling example 1

4.2. PORTABILITY 47

Docker also came in handy for the environment variables of the Frontend application. For
example, for the connection with DDoSDB to check the authorization token, instead of
using localhost, we can use the service name of the DDoSDB container; this will work
because, for the authorization, we used nextJs server-side rendering to send the check
request, thus running inside the Docker environment. For other environment variables,
we had to specify the actual URI of the application since they are exposed outside the
docker containers, namely running on the browser, e.g., DDoSDB UI.

1 NEXT_PUBLIC_BACKEND_API ="http :// localhost :8080/ "
2 NEXT_PUBLIC_DDOSGRID_HOST ="http :// localhost :3001/ ddosgrid "
3 NEXT_PUBLIC_DDOSDB_HOST ="http :// localhost :8084/ "
4 NEXT_PUBLIC_DDOSDB_CHECK_TOKEN ="http :// ddosdb :8084/ check -token/"

Listing 4.4: Docker URI handling example 2

Usually, the build time for the GridDB is not less than 100 seconds. To identify the
top five commands, we plotted the duration in seconds in figure 4.10. As we can see,
running NPM install and NPM build are the commands with the highest running time.
Fortunately, building the Docker images is not a recurring task after everything is set
correctly, and we can utilize different libraries to refresh the files upon changes, e.g.,
we used the Nodemon library to re-run the backend image after changes automatically.
Rebuilding the Docker containers was a problem for us while creating the Docker files for
the DDoSGrid system with the version issue. Whenever we tried a different solution, we
had to rebuild the files since the changes were made directly to the Dockerfile and not
the Docker-compose file.

Figure 4.10: Docker Build Time Top 5 Commands - GridDB

To run the GridDB using Docker, we need four services to work together. However, if
we want to utilize the miner results, e.g., to display them on the GridDB Frontend, we
should ensure that an instance or a docker container for DDoSGrid V2.2 is also running.
Similarly, if we upload the fingerprint to the DDoSDB, we should ensure that an instance
of the DDoSDB is up and running. Therefore, we used Docker-compose to fire up all

48 CHAPTER 4. EVALUATION

four services to run the GridDB while utilizing the converters and Dissector (without the
upload possibility) sub-projects. The services are:

1. GridDB Frontend

2. GridDB Backend

3. MongoDB

4. MongoExpress

1 version : "3.4"
2 services :
3 # GridDB backend
4 griddb :
5 container_name : griddb
6 image: griddb
7 build:
8 context : .
9 dockerfile : ./ Dockerfile

10 environment :
11 NODE_ENV : production
12 DDOSDB_HOST : http:// ddosdb :8084/
13 DDOSDB_HOST_DISSECTOR : ddosdb :8084
14 FRONTEND_HOST : http:// griddb - frontend :8079/
15 SEND_FP_HOST : http:// griddb :8080/ analysis / fingerprint /
16 DDOSGRID_API_HOST : http:// ddosgridapi :3000/
17 # for CORS we use localhost :
18 DDOSGRID_API_HOST_CORS : http:// localhost :3000/
19 FRONTEND_HOST_CORS : http:// localhost :8079/
20 ports:
21 - 8080:8080
22 volumes :
23 - .:/ usr/src/app
24 links:
25 - "griddb - mongodb "
26 # Mongo Express Service
27 griddb -mongo - express :
28 # MongoExpress config
29 griddb - mongodb :
30 # MongoDB config
31 griddb - frontend :
32 build: "./ frontend "
33 ports:
34 - 8079:3000
35 volumes :
36 - "./.:/ usr/src/app"
37 env_file :
38 - ./ frontend /. env.local
39 networks :
40 default :
41 external :
42 name: griddb

Listing 4.5: Docker services for GridDB

4.3. AUTOMATION 49

4.2.3 DDoSDB V2.2

A Docker File for the DDoSDB image was already provided in the DDoSDB GitHub
repository [22]. However, we still needed to modify the Docker files provided by the
DDoSCH. For example, change the default network of the DDoSDB containers to enable
communication with DDoSGrid and GridDB.

1 networks :
2 default :
3 external :
4 name : griddb
5

Listing 4.6: Docker Network for DDoSDB

We also created a Docker file (included in the chapter design 3 under implementation) for
the Converters module, which was mainly used in the GridDB backend container.

4.3 Automation

Driven by the requirements, we wanted to provide a fully automated, scalable system that
integrates all new DDoSCH components. We also wanted the user to upload the files in
one place and at one time. With the help of the Backend functionalities, we achieved that
in the following way:

The user first enters the DDoSDB authorization token provided to him/her. After
that, the user is supposed to upload a network flow data file (PCAP file); we utilize
the http://griddb/analysis/upload endpoint to upload the file. Finally, we call the
http://griddb/analysis/:id/analyse endpoint upon successful upload to start the
analysis. By starting the analysis, we mean the following:

1. The system runs the Dissector subproject to dissect the uploaded PCAP file and to
generate the attack fingerprint.

2. The system sends back the generated fingerprint to the server and displays critical
metrics using visualizations.

3. The system uploads the fingerprint to the DDoSDB and sends the URI of the fin-
gerprint back to the user such that the user can view it using his/her DDoSDB
account.

4. The system runs the Converters sub-project to generate mitigation rules according
to the generated fingerprint by the dissector. An IP-Tables file is generated and is
made available for the user to download and enable.

Figure 4.11 illustrates the automated process; it starts with the user entering the au-
thorization token and then uploading the PCAP file. Finally, the Analyze function is
triggered, and the sub-projects start.

50 CHAPTER 4. EVALUATION

Figure 4.11: Automation Process - GridDB

4.4 Discussion

In this section, we discuss how the goals of this thesis were achieved and which were not.
For that matter, we created a Table of contributions. Also, we start by briefly explain
how we tried to increase the scalability of the data storage for the analysis information.

A scalable system is a system that can handle a more significant amount of data without
the need to add extra resources to the system [67]. We increase the system scalability
by scaling the data storage of the analysis information. The previous DDoSGrid V2 used
NeDB, an in-memory database, which is, according to the Developers, the DB is no longer
maintained, and it may have bugs and security issues [44]. In this regard, we decided to
use a more reliable DB. Thus, we introduced MongoDB as our primary database to save
the generated analysis documents. We utilize the powerful indexing of documents and the
fast querying provided by MongoDB. The analysis data from the DB are mainly requested
by the Frontend and displayed to the users. We used the latest MongoDB Docker image
to install the DB. Furthermore, we pulled and connected MongoExpress to the DB for
the visual representation of the DB content (MongoExpress is not an essential component
of the GridDB system but serves as an additional feature besides the actual DB and can
be turned off if not needed).

Initially, we had three main goals. The first is to integrate the newer version of the
DDoSCH components into the DDoSGrid system. The other two goals are to provide
a UI to employ the DDoSCH components and evaluate it according to the SUS. Due
to a time limitation and in common agreement with the advisor, we opt not to realize
the evaluation experiment according to the SUS. Instead, the focus was on the other

4.4. DISCUSSION 51

“evaluation dimensions” of the prototype. Thus, during the development, we focused more
on the portability of the operating systems and on the automation process of running
the DDoSCH components per click. Although we made changes to the UI compared
to the DDoSGrid, e.g., each analysis has its page and includes all related information
and visualizations to that analysis, we were of the view that the changes in the UI are
insufficient to evaluate the system according to the SUS. In contrast, in the DDoSGrid,
the visualizations of further analysis are displayed on the same page, namely the /grid.

In Table 4.1, we point out the goals achieved by this thesis and describe them.

Goal Description How Achieved
Integration
DDoSCH

DDoSCH provides three separate
components, operated using a CLI.
We aim to integrate the components
into one system and replace the CLI
with a user-friendly interface.

We built a Backend server to run two of the DDoSCH
components (Dissector and Converters) as child pro-
cesses. The third component DDoSDB is a Django
server with UI, which due to implementation lim-
its, can not be integrated within our Backend server.
However, we allowed communication between our
backend server and Django server using HTTP re-
quests.

Integration
DDoSGrid

The DDoSGrid V2 employed an
older version of the DDoSCH com-
ponents. In the meanwhile, the
components have been updated
and improved. Thus, we aimed
to integrate the newer version of
the DDoSCH components into the
DDoSGrid V2 system.

With the help of the GridDB system, we run the sub-
projects of the DDoSCH (Dissector and Converters)
inside the GridDB docker environment and commu-
nicate the results to the DDoSGrid system. We also
modified the required endpoints to allow a successful
connection to the DDoSDB.

Automation The DDoSCH components are sep-
arate from each other. Therefore,
each component can be used as a
one-decoupled system. We aimed
to automate the usage of the three
components.

We built a Frontend application to allow a user to up-
load a PCAP file; upon successful upload, we sent a
request to the Backend to start the analysis and au-
tomate the usage of the DDoSCH components. Next,
the Backend runs the Dissector, uploads the Finger-
print to the DDoSDB, and finally runs the Converters
module. This automated process requires the user
only to provide his/her authorization token and a
PCAP file.

Portability After implementing the different
systems in this thesis, we aimed to
provide a portable version for all ap-
plications. A portable version facil-
itates the team’s development and
decouples the development environ-
ment from the actual code basis.

Using Docker, we built a Dockerfile and a Docker-
compose file for all the applications we newly imple-
mented. For the DDoSGrid and DDoSDB, we modi-
fied the provided Dockerfiles to allow successful com-
munication with the GridDB system.

Table 4.1: Table of contributions

Further, GridDB uses the latest versions of the employed frameworks compared to the
DDoSGrid. For example, the Backend of the DDoSGrid uses Node V10 since it depends
on the libpcap library, which requires that version. Thus, besides the changes to the
UI, we increased the code quality by employing the latest versions to avoid deprecated
functionalities of the dependencies.

52 CHAPTER 4. EVALUATION

Chapter 5

Final Considerations

5.1 Summary

Systems that encounter DDoS attacks collaboratively are more likely to protect possible
victims from the same attack type. In addition, providing meaningful visualizations facil-
itates the objective of understanding the attack type. Such systems support the different
stakeholders and decision-makers in understanding the attacking nature and help in mit-
igating similar attacks in the future. Systems like GridDB, DDoSGrid, and DDoSCH
provide users with information about the attack characteristics and visualize critical met-
rics to ease the perception and understanding of the attack type.

We started this thesis by studying the nature of DDoS attacks and how they evolved.
Our focus was on systems that counter DDoS attacks collaboratively. We noticed that
most available works to counter DDoS attacks by sharing the network data provide reli-
able systems to protect possible DDoS attack victims from similar attack characteristics.
However, this approach has its downside, such as hesitating crowds to share their informa-
tion, fairness issues, and anonymization of the shared data. DDoSCH is an open-source
project that tries to protect possible DDoS attack victims by studying network flow data
of devices that have already been victims of a DDoS attack. DDoSCH consists of three
separate modules. The first module is the DDoSDB, a Python Django server serving as
the primary database. It is responsible for viewing, uploading, and inspecting generated
fingerprints of the attack data. The other two modules are the Dissector for generating
the fingerprint and the Converters to generate filter rules according to the attack finger-
print. DDoSDB employs the Django user-based model to allocate permissions to users
and groups; with that, we can define who is eligible to share and view attack data. The
Dissector module is also responsible for anonymizing the attack data.

Furthermore, the converters generate IP-Tables without showing the actual victim’s in-
formation, resulting in a system that correspondingly counters a set of issues of similar
systems that use an equivalent approach to protect against DDoS attacks. Those are
anonymization of the data (achieved by the Dissector), and the DDoSDB achieves fairness
by allocating permissions to users who are allowed to view the attack data. Addition-
ally, the Converters module defines a set of rules beneficial for everyone by blocking the

53

54 CHAPTER 5. FINAL CONSIDERATIONS

network traffic for IP-Addresses that were a part of launching a DDoS attack. The main
objective of this work was to integrate all DDoSCH components into one fully automated
system and replace the inconvenient way of running the DDoSCH modules using the CLI
with a user-friendly interface. Furthermore, another main objective of this thesis is to
replace the actual DDoSCH components running in the DDoSGrid system with the new
updated versions of these components.

For that sake, we followed an incremental development process. The first step was to run
both applications (DDoSGrid and DDoSDB), study their architecture, and understand
how they interact. After achieving this, we started by integrating the new DDoSCH com-
ponents into the current DDoSGrid code. The first achievement was implementing an
endpoint to authorize users and establish the connection between the two applications.
Allowing the Frontend component to be notified once the user is authenticated, which en-
ables him/her to interact with the DDoSGrid system. Then, we started by implementing
the Dissector and the Converters to be spawned as child processes of the DDoSGrid. We
faced only minor issues during that, for example, allocating root permission to the child
process to access the system files. The critical issues appeared as we tried to dockerize
the application and provide a portable version of the system. Namely, we could not find
a Docker image that satisfies all sub-projects versions. In addition, building time for the
Docker containers was too long, and we tried various ways to solve this problem. The
objective of integrating the DDoSCH components into the DDoSGrid system exceeded
the time we originally dedicated to that matter, since we spent too much time targeting
the versions issue. Parallelly, we started working on the new GridDB system using recent
versions of the employed frameworks. To avoid facing the same issue with portability, we
created and tested the Docker files before starting with the actual code. Last, we operated
GridDB as a middleware to run the Dissector and Converters sub-projects. We achieved
both objectives in parallel, without wasting too much time trying another solution to run
the sub-projects within the DDoSGrid environment.

As per the beginning of the thesis, we intended to focus also on the UI aspects to in-
crease the frontend code’s usability. Nevertheless, our focus was more on automating the
DDoSCH components and delivering a portable version of the developed systems. Thus,
we did not see the need to evaluate the system usability according to the system usabil-
ity score but more on providing an evaluation of how we achieved supplying a portable,
automated, and scalable system.

5.2 Conclusions

DDoS attacks are a significant threat to individuals, businesses, and governments. They
are increasing in complexity, volume, and duration each year. Thus, it is worth spending
efforts developing systems to encounter this cyber assault. However, due to the sophisti-
cation and the enormous amount of data used in the attack, dealing alone against such
threats became nearly an impossible task. Therefore, systems that handle DDoS attacks
in cooperative alliances have gained more interest. In this thesis, we integrated the compo-
nents of the DDoSCH into one portable system, GridDB. DDoSDB, one of the components
of the DDoSCH, provides a database to share analyzed network traces, i.e., fingerprints

5.3. FUTURE WORK 55

among registered users. Thus, users can share attack data and cooperatively comprehend
and protect their potential infrastructure against similar attack characteristics.

Systems employing the cooperative approach come along with high technical requirements.
For example, a centralized system often has to deal with vast data due to the nature
of the attack itself. Consequently, scalability issues may occur. Employing Blockchain
technology solves various issues that come along with systems that utilize a cooperative
approach against DDoS attacks. In addition, blockchain technology is helpful since it
targets decentralization, anonymization, and privacy concerns. However, other trust and
fairness issues may persist.

In conclusion, cooperatively combating DDoS attacks is a novel approach for protecting
potential DDoS attack victims and understanding the attack nature and characteristics
from already available attack data of other DDoS attack victims. In addition, providing
meaningful visualizations facilitates the perception and understanding of the underlying
data and supports decision-makers. Potential issues on those systems like Fairness, Pri-
vacy, and Scalability introduce additional requirements to the implementation and must
be adequately targeted.

5.3 Future Work

First, we consider the one unreached initial goal of this thesis as a priority for the feature
work; namely, the goal of evaluating the GridDB Frontend according to the SUS.

Second, we consider the performance testing of the system’s capabilities as the second
priority for future work. Performance testing is essential to identify bottlenecks and
determine the system’s weaknesses and strengths.

During the development of the GridDB system, our primary focus went more on automa-
tion, integration, and portability. In addition, we increased the Usability and discover-
ability of the employed UI by providing a brief explanation of usage and giving proper
feedback to the users upon actions.

Last, we point out the rest of possibilities for future work under extensions and improve-
ments.

Extensions and Improvements:

• Provide more visualizations according to the attack type: currently, the visualiza-
tions illustrate data shared among every generated fingerprint apart from the attack
type. For example, attacks on a specific layer include more sophisticated data; this
data can also be visualized to the users.

• Integrate the generated visualization of the miner project into the GridDB: Cur-
rently, we only visualize part of the summary data generated by the Miner project.
However, the Miner provides more advanced data, which are also saved in the
GridDB system as JSON files in the attack folder. Using these data, we can in-
clude more visualization.

56 CHAPTER 5. FINAL CONSIDERATIONS

• Let the GridDB activate the mitigation rules generated by the Converters with a
button click: Currently, the GridDB allows the user to download the generated IP-
Tables file; the file is in text format, which includes shell commands to enable the
rules. A possible extension is to let the GridDB system enable the rules automati-
cally on the actual device.

• Responsiveness of the UI: the system was developed on a screen resolution of
2560x1440 and thus optimized for this size. The system is still usable but might not
be optimal on a smaller screen, e.g., on mobile devices. Thus, further improvement
in UI design responsiveness can be made.

• Deploy the system: currently, the implemented systems in this work function in a
docker environment, another priority for future work is to deploy the system to be
available online.

Bibliography

[1] VentureBeat: Kyle Alspach. Israeli government websites temporarily knocked offline
by ‘massive’ cyber-attack. 2022. url: https://portswigger.net/daily-swig/
israeli-government-websites-temporarily-knocked-offline-by-massive-
cyber-attack (visited on Mar. 17, 2022).

[2] VentureBeat: Kyle Alspach. Ukraine: We’ve repelled ‘nonstop’ DDoS attacks from
Russia. 2022. url: https://venturebeat.com/2022/03/07/ukraine- weve-
repelled-nonstop-ddos-attacks-from-russia/ (visited on Mar. 17, 2022).

[3] Jan von der Assen. “DDoSGrid 2.0: Integrating and Providing Visualizations for
the European DDoS Clearing House”. In: University of Zurich (2021).

[4] Jan von der Assen et al. “Analysis and Classification of Cyberattack Traffic using
the SecGrid Platform”. In: LCN. 2021.

[5] Aaron Bangor, Philip T Kortum, and James T Miller. “An empirical evaluation of
the system usability scale”. In: Intl. Journal of Human–Computer Interaction 24.6
(2008), pp. 574–594.

[6] Luc Boillat et al. “A Tool for Visualization and Analysis of Distributed Denial-
of-Service (DDoS) Attacks”. In: Communication Systems Group, Department of
Informatics, Universität Zürich (2020).

[7] José Jair Cardoso de Santanna. “DDoS-as-a-Service: Investigating Booter Web-
sites”. PhD thesis. University of Twente, Nov. 2017.

[8] Chih-Chieh Chen et al. “Detecting amplification attacks with Software Defined Net-
working”. In: 2017 IEEE Conference on Dependable and Secure Computing. 2017,
pp. 195–201.

[9] Hyunsang Choi and Heejo Lee. “Identifying botnets by capturing group activities
in DNS traffic”. In: Computer Networks 56.1 (2012), pp. 20–33.

[10] Cloudflare. DNS amplification attack. 2022. url: https://www.cloudflare.com/
en-gb/learning/ddos/dns-amplification-ddos-attack/ (visited on Apr. 3,
2022).

[11] Cloudflare. How are IP booters different from botnets? 2022. url: https://www.
cloudflare.com/en-gb/learning/ddos/ddos-attack-tools/ddos-booter-ip-
stresser/ (visited on Mar. 31, 2022).

[12] Cloudflare. HTTP flood attack. 2022. url: https://www.cloudflare.com/en-
gb/learning/ddos/http-flood-ddos-attack/ (visited on Mar. 31, 2022).

[13] Cloudflare. Network-layer DDoS attacks. 2022. url: https://blog.cloudflare.
com/ddos-attack-trends-for-2021-q4/ (visited on Apr. 2, 2022).

[14] Cloudflare. Protocol attacks. 2022. url: https://www.cloudflare.com/en-gb/
learning/ddos/what-is-a-ddos-attack/ (visited on Apr. 2, 2022).

57

https://portswigger.net/daily-swig/israeli-government-websites-temporarily-knocked-offline-by-massive-cyber-attack
https://portswigger.net/daily-swig/israeli-government-websites-temporarily-knocked-offline-by-massive-cyber-attack
https://portswigger.net/daily-swig/israeli-government-websites-temporarily-knocked-offline-by-massive-cyber-attack
https://venturebeat.com/2022/03/07/ukraine-weve-repelled-nonstop-ddos-attacks-from-russia/
https://venturebeat.com/2022/03/07/ukraine-weve-repelled-nonstop-ddos-attacks-from-russia/
https://www.cloudflare.com/en-gb/learning/ddos/dns-amplification-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/dns-amplification-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/ddos-attack-tools/ddos-booter-ip-stresser/
https://www.cloudflare.com/en-gb/learning/ddos/ddos-attack-tools/ddos-booter-ip-stresser/
https://www.cloudflare.com/en-gb/learning/ddos/ddos-attack-tools/ddos-booter-ip-stresser/
https://www.cloudflare.com/en-gb/learning/ddos/http-flood-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/http-flood-ddos-attack/
https://blog.cloudflare.com/ddos-attack-trends-for-2021-q4/
https://blog.cloudflare.com/ddos-attack-trends-for-2021-q4/
https://www.cloudflare.com/en-gb/learning/ddos/what-is-a-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/what-is-a-ddos-attack/

58 BIBLIOGRAPHY

[15] Cloudflare. SYN flood attack. 2022. url: https://www.cloudflare.com/en-
gb/learning/ddos/syn-flood-ddos-attack/ (visited on Apr. 2, 2022).

[16] Cloudflare. What are the categories of denial-of-service attacks? 2022. url: https:
//www.cloudflare.com/en- gb/learning/ddos/ddos- attack- tools/ddos-
booter-ip-stresser/ (visited on Mar. 24, 2022).

[17] Cloudflare. What is a Botnet? 2022. url: https : / / www . cloudflare . com /
learning/ddos/what-is-a-ddos-botnet/ (visited on Mar. 24, 2022).

[18] Cloudflare. What is an Application Layer DDoS attack? 2022. url: https://www.
cloudflare.com/en- gb/learning/ddos/application- layer- ddos- attack/
(visited on Mar. 31, 2022).

[19] Cloudflare. What is layer 7? 2022. url: https : / / www . cloudflare . com / en -
gb/learning/ddos/what-is-layer-7/ (visited on Mar. 31, 2022).

[20] Cloudflare. What is the OSI Model? 2022. url: https://www.cloudflare.com/en-
gb/learning/ddos/glossary/open- systems- interconnection- model- osi/
(visited on Mar. 31, 2022).

[21] Amrita Dahiya and Brij B Gupta. “A reputation score policy and Bayesian game
theory based incentivized mechanism for DDoS attacks mitigation and cyber de-
fense”. In: Future Generation Computer Systems 117 (2021), pp. 193–204.

[22] DDoS Clearing House. 2020. url: https://github.com/ddos-clearing-house
(visited on Mar. 17, 2022).

[23] DDoS Clearing House – Dissector fingerprint format. 2022. url: https://github.
com/ddos-clearing-house/ddos_dissector/blob/main/fingerprint_format.
md (visited on July 26, 2022).

[24] Docker overview. 2022. url: https://docs.docker.com/get-started/overview/
(visited on Aug. 7, 2022).

[25] Muriel Franco et al. “SecGrid: a Visual System for the Analysis and ML-based
Classification of Cyberattack Traffic”. In: 2021 IEEE 46th Conference on Local
Computer Networks (LCN). IEEE. 2021, pp. 140–147.

[26] Getoar Gallopeni. Botnet Command-and-Control Traffic Analysis. Communication
Systems Group, Department of Informatics, 2020. url: https://bit.ly/2Z0HgoY.

[27] Akshat Gaurav, Brij B. Gupta, and Prabin Kumar Panigrahi. “A novel approach
for DDoS attacks detection in COVID-19 scenario for small entrepreneurs”. In:
Technological Forecasting and Social Change 177 (2022), p. 121554.

[28] A. Gruhler, B. Rodrigues, and B. Stiller. “A Reputation Scheme for a Blockchain-
based Network Cooperative Defense”. In: 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM 2019). 2019, pp. 71–79.

[29] Nazrul Hoque, Dhruba K. Bhattacharyya, and Jugal K. Kalita. “Botnet in DDoS
Attacks: Trends and Challenges”. In: IEEE Communications Surveys Tutorials 17.4
(2015), pp. 2242–2270.

[30] Imperva. 2021 Global DDoS Threat Landscape Report. 2021. url: https://www.
imperva.com/resources/reports/Imperva_2021-DDoS-Report.pdf (visited on
Mar. 17, 2022).

[31] Imperva. The Top 10 DDoS Attack Trends. 2015. url: https://www.imperva.
com/docs/DS_Incapsula_The_Top_10_DDoS_Attack_Trends_ebook.pdf (visited
on Apr. 2, 2022).

[32] Flexible IR. Playbook for DDoS. 2020. url: https://playbooks.flexibleir.
com/ddos-playbook/ (visited on Apr. 22, 2022).

https://www.cloudflare.com/en-gb/learning/ddos/syn-flood-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/syn-flood-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/ddos-attack-tools/ddos-booter-ip-stresser/
https://www.cloudflare.com/en-gb/learning/ddos/ddos-attack-tools/ddos-booter-ip-stresser/
https://www.cloudflare.com/en-gb/learning/ddos/ddos-attack-tools/ddos-booter-ip-stresser/
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-botnet/
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-botnet/
https://www.cloudflare.com/en-gb/learning/ddos/application-layer-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/application-layer-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/what-is-layer-7/
https://www.cloudflare.com/en-gb/learning/ddos/what-is-layer-7/
https://www.cloudflare.com/en-gb/learning/ddos/glossary/open-systems-interconnection-model-osi/
https://www.cloudflare.com/en-gb/learning/ddos/glossary/open-systems-interconnection-model-osi/
https://github.com/ddos-clearing-house
https://github.com/ddos-clearing-house/ddos_dissector/blob/main/fingerprint_format.md
https://github.com/ddos-clearing-house/ddos_dissector/blob/main/fingerprint_format.md
https://github.com/ddos-clearing-house/ddos_dissector/blob/main/fingerprint_format.md
https://docs.docker.com/get-started/overview/
https://bit.ly/2Z0HgoY
https://www.imperva.com/resources/reports/Imperva_2021-DDoS-Report.pdf
https://www.imperva.com/resources/reports/Imperva_2021-DDoS-Report.pdf
https://www.imperva.com/docs/DS_Incapsula_The_Top_10_DDoS_Attack_Trends_ebook.pdf
https://www.imperva.com/docs/DS_Incapsula_The_Top_10_DDoS_Attack_Trends_ebook.pdf
https://playbooks.flexibleir.com/ddos-playbook/
https://playbooks.flexibleir.com/ddos-playbook/

BIBLIOGRAPHY 59

[33] Flexible IR. Playbook for DDoS. 2020. url: https://board.flexibleir.com/b/
Tg9w9eR6pULq8XRZ2/1 (visited on Apr. 22, 2022).

[34] Ghafar A Jaafar, Shahidan M Abdullah, and Saifuladli Ismail. “Review of recent
detection methods for HTTP DDoS attack”. In: Journal of Computer Networks and
Communications 2019 (2019).

[35] Mohammad Karami, Youngsam Park, and Damon McCoy. “Stress Testing the Boot-
ers: Understanding and Undermining the Business of DDoS Services”. In: Proceed-
ings of the 25th International Conference on World Wide Web. WWW ’16. 2016,
1033–1043.

[36] R Kesavamoorthy and K Ruba Soundar. “Swarm intelligence based autonomous
DDoS attack detection and defense using multi agent system”. In: Cluster Comput-
ing 22.4 (2019), pp. 9469–9476.

[37] Christian Killer, Bruno Rodrigues, and Burkhard Stiller. “Security Management
and Visualization in a Blockchain-based Collaborative Defense”. In: ICBC 2019.
2019, pp. 108–111.

[38] Christian Killer, Bruno Rodrigues, and Burkhard Stiller. “Threat Management
Dashboard for a Blockchain Collaborative Defense”. In: The IEEE GLOBECOM
Workshop 27th on Blockchain in Telecommunications: Emerging Technologies for
the Next Decade and Beyond. 2019, pp. 1–6.

[39] Jiabin Li et al. “RTVD: A Real-Time Volumetric Detection Scheme for DDoS in
the Internet of Things”. In: IEEE Access 8 (2020), pp. 36191–36201.

[40] Yuchong Li and Qinghui Liu. “A comprehensive review study of cyber-attacks and
cyber security; Emerging trends and recent developments”. In: Energy Reports 7
(2021), pp. 8176–8186.

[41] Ahmed M. Manasrah, Thair Khdour, and Raeda Freehat. “DGA-based botnets
detection using DNS traffic mining”. In: Journal of King Saud University - Computer
and Information Sciences (2022).

[42] Stephan Mannhart. “Mitigation as a Service in a Cooperative Network Defense”.
MA thesis. Universität Zürich, 2018.

[43] Michael Mattsson, Hakan Grahn, and Frans Mårtensson. “Software architecture
evaluation methods for performance, maintainability, testability, and portability”.
In: Second International Conference on the Quality of Software Architectures. Cite-
seer. 2006, p. 18.

[44] NeDB GitHub. 2022. url: https://github.com/louischatriot/nedb (visited on
Aug. 29, 2022).

[45] NETSCOUT. What is a Reflection Amplification Attack? 2022. url: https://www.
netscout.com/what-is-ddos/what-is-reflection-amplification-attack
(visited on Apr. 3, 2022).

[46] NETSCOUT. What is a Volumetric DDoS Attack? 2022. url: https : / / www .
netscout.com/what-is-ddos/volumetric-attacks (visited on Apr. 3, 2022).

[47] F5 Network. F5 DDoS Playbook: A Procedural Survival Guide to Combating DDoS
Attacks. 2015. url: https://www.oar.net/sites/default/files/page-files/
F5\%20DD0S\%20PLAYBOOK\%20092915\%20FINAL\%20\%281\%29.pdf (visited on
Apr. 22, 2022).

[48] Azure Networking. Azure DDoS Protection—2021 Q3 and Q4 DDoS attack trends.
2022. url: https : / / azure . microsoft . com / en - us / blog / azure - ddos -
protection-2021-q1-and-q2-ddos-attack-trends/ (visited on Mar. 17, 2022).

https://board.flexibleir.com/b/Tg9w9eR6pULq8XRZ2/1
https://board.flexibleir.com/b/Tg9w9eR6pULq8XRZ2/1
https://github.com/louischatriot/nedb
https://www.netscout.com/what-is-ddos/what-is-reflection-amplification-attack
https://www.netscout.com/what-is-ddos/what-is-reflection-amplification-attack
https://www.netscout.com/what-is-ddos/volumetric-attacks
https://www.netscout.com/what-is-ddos/volumetric-attacks
https://www.oar.net/sites/default/files/page-files/F5\%20DD0S\%20PLAYBOOK\%20092915\%20FINAL\%20\%281\%29.pdf
https://www.oar.net/sites/default/files/page-files/F5\%20DD0S\%20PLAYBOOK\%20092915\%20FINAL\%20\%281\%29.pdf
https://azure.microsoft.com/en-us/blog/azure-ddos-protection-2021-q1-and-q2-ddos-attack-trends/
https://azure.microsoft.com/en-us/blog/azure-ddos-protection-2021-q1-and-q2-ddos-attack-trends/

60 BIBLIOGRAPHY

[49] Sandro Padovan et al. DDoSGrid 3.0: Enabling the Real-time Processing and Anal-
ysis of Cyber Attacks Traffic. 2022. url: https://files.ifi.uzh.ch/CSG/staff/
rodrigues/extern/theses/mp-padovan-nadig-birchler.pdf (visited on Apr. 7,
2022).

[50] Amit Praseed and P Santhi Thilagam. “HTTP request pattern based signatures for
early application layer DDoS detection: A firewall agnostic approach”. In: Journal
of Information Security and Applications 65 (2022), p. 103090.

[51] Bullet Proof. Bulletproof annual cyber security report 2019. 2019. url: https :
//www.bulletproof.co.uk/industry-reports/2019.pdf (visited on Mar. 17,
2022).

[52] B. Rodrigues et al. “Evaluating a Blockchain-based Cooperative Defense”. In: 2019
IFIP/IEEE Symposium on Integrated Network and Service Management (IM 2019).
2019, pp. 533–538.

[53] Bruno Rodrigues and Burkhard Stiller. “The Cooperative DDoS Signaling based
on a Blockchain-based System”. In: 2021 IFIP/IEEE International Symposium on
Integrated Network Management (IM). 2021, pp. 760–765.

[54] Bruno Rodrigues et al. “A blockchain-based architecture for collaborative DDoS
mitigation with smart contracts”. In: IFIP International Conference on Autonomous
Infrastructure, Management and Security. Springer, Cham. 2017, pp. 16–29.

[55] Bruno Rodrigues et al. “Blockchain signaling system (bloss): Cooperative signal-
ing of distributed denial-of-service attacks”. In: Journal of Network and Systems
Management 28.4 (2020), pp. 953–989.

[56] Bruno Rodrigues et al. “Blockchain Signaling System (BloSS): Cooperative Signal-
ing of Distributed Denial-of-Service Attacks”. In: Journal of Network and Systems
Management 28.3 (2020), pp. 1–27.

[57] Bruno Rodrigues et al. “SC-FLARE: Cooperative DDoS Signalingbased on Smart
Contracts”. In: IEEE International Conference on Blockchain and Cryptocurrency
(ICBC 2020). 2020, pp. 1–3.

[58] Thijs Rozekrans, Matthijs Mekking, and Javy de Koning. “Defending against DNS
reflection amplification attacks”. In: University of Amsterdam System & Network
Engineering RP1 (2013).

[59] Ahmad Sanmorino and Setiadi Yazid. “DDoS Attack detection method and miti-
gation using pattern of the flow”. In: 2013 International Conference of Information
and Communication Technology (ICoICT). 2013, pp. 12–16.

[60] Ahmad Sanmorino and Setiadi Yazid. “DDoS Attack detection method and miti-
gation using pattern of the flow”. In: 2013 International Conference of Information
and Communication Technology (ICoICT). 2013, pp. 12–16.

[61] C.L. Schuba et al. “Analysis of a denial of service attack on TCP”. In: Proceed-
ings. 1997 IEEE Symposium on Security and Privacy (Cat. No.97CB36097). 1997,
pp. 208–223.

[62] Paulo Shakarian, Jana Shakarian, and Andrew Ruef. Introduction to cyber-warfare:
A multidisciplinary approach. 2013.

[63] Huaglory Tianfield. “Cyber Security Situational Awareness”. In: 2016 IEEE Inter-
national Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData). 2016, pp. 782–787.

https://files.ifi.uzh.ch/CSG/staff/rodrigues/extern/theses/mp-padovan-nadig-birchler.pdf
https://files.ifi.uzh.ch/CSG/staff/rodrigues/extern/theses/mp-padovan-nadig-birchler.pdf
https://www.bulletproof.co.uk/industry-reports/2019.pdf
https://www.bulletproof.co.uk/industry-reports/2019.pdf

BIBLIOGRAPHY 61

[64] Communication Systems Group UZH. DDoSDB. 2022. url: https://www.csg.
uzh.ch/ddosgrid/ddosdb/ (visited on Apr. 7, 2022).

[65] Communication Systems Group UZH. DDoSGrid. 2020. url: https://www.csg.
uzh.ch/ddosgrid/ (visited on Mar. 17, 2022).

[66] Cynthia Wagner et al. “Misp: The design and implementation of a collaborative
threat intelligence sharing platform”. In: Proceedings of the 2016 ACM on Workshop
on Information Sharing and Collaborative Security. 2016, pp. 49–56.

[67] Charles B Weinstock and John B Goodenough. On system scalability. Tech. rep.
carnegie-mellon univ pittsburgh pa software engineering inst, 2006.

[68] Lo-Yao Yeh et al. “SOChain: a privacy-preserving DDoS data exchange service over
SOC consortium blockchain”. In: IEEE Transactions on Engineering Management
67.4 (2020), pp. 1487–1500.

[69] Saman Taghavi Zargar, James Joshi, and David Tipper. “A survey of defense mech-
anisms against distributed denial of service (DDoS) flooding attacks”. In: IEEE
communications surveys & tutorials 15.4 (2013), pp. 2046–2069.

https://www.csg.uzh.ch/ddosgrid/ddosdb/
https://www.csg.uzh.ch/ddosgrid/ddosdb/
https://www.csg.uzh.ch/ddosgrid/
https://www.csg.uzh.ch/ddosgrid/

62 BIBLIOGRAPHY

Abbreviations

API Application Programming Interface
CLI Command Line Interface
DDoS Distributed Denial of Service
DDoSCH DDoS Clearing House
IP Internet Protocol
JS JavaScript
JSON JavaScript Object Notation
OAuth Open Authorization
PCAP Packet Capture
SUS System Usability Scale
UI User Interface
URI Uniform Resource Identifier
URL Uniform Resource Locator

63

64 ABBREVIATONS

List of Figures

2.1 Original vs modified SUS [5] . 6

2.2 7-layers open systems interconnection (OSI) model [20] 7

2.3 SYN Flood attack based on [15, 59] . 9

2.4 Reflection Amplification attack based on [8] 10

3.1 Overview of the DDoSCH components based on [22] 18

3.2 Architecture overview of the DDoSGrid components based on [3] 19

3.3 High Architecture overview of GridDB, DDoS-DB and DDoSGrid V2.2 . . 21

3.4 Detailed High Architecture overview of GridDB, DDoS-DB and DDoSGrid
V2.2 . 22

3.5 Docker overview of the DDoSGrid V2.2 stacks 26

3.6 Docker overview of the GridDB components 28

3.7 Docker Network list . 29

3.8 File structure of the Data folder - GridDB 30

3.9 Element of the analysis files array . 33

3.10 Example of an Analysis Directory - GridDB Backend 34

4.1 Landing Page - GridDB Frontend . 38

4.2 Bottom of the Landing Page - GridDB Frontend 38

4.3 Dissector Subproject - GridDB Frontend 39

4.4 Dissector Subproject Results - GridDB Frontend 40

4.5 Login Page - GridDB Frontend . 41

4.6 Analysis in Progress - GridDB Frontend 41

65

66 LIST OF FIGURES

4.7 Analysis Page - GridDB Frontend . 42

4.8 Analysis Information Page (top) - GridDB Frontend 43

4.9 Analysis Information Page (bottom) - GridDB Frontend 44

4.10 Docker Build Time Top 5 Commands - GridDB 47

4.11 Automation Process - GridDB . 50

List of Tables

2.1 Categories of DDoS attacks . 6

3.1 Specification of the REST Interface: API 25

3.2 Specification of the REST Interface: DDoSDB 25

3.3 Specification of the REST Interface: GridDB 29

4.1 Table of contributions . 51

67

68 LIST OF TABLES

Listings

3.1 Check token function in DDoS-DB . 23
3.2 –send_fp tag added to the Dissector . 23
3.3 check and parse arguments . 23
3.4 configuration file example . 24
3.5 sending fingerprint function . 24
3.6 Docker file for converters . 24
3.7 Docker-Compose DDoSGrid V2.2 . 25
3.8 Docker Commands GridDB . 27
3.9 Docker Commands GridDB - Networking 28
3.10 Handle upload PCAP file - GridDB FrontEnd 30
3.11 Try-catch block for the Dissector subproject 31
3.12 Try-catch block for the Miner subproject 32
3.13 DDoSGrid V2.2 response of the Miner endpoint 32
3.14 Start Analysis Function GridDB - Frontend 34
3.15 Docker-compose for MongoDB . 35
3.16 Anylsis Schema . 36
4.1 Docker Commands DDoSGrid V2.2 . 45
4.2 Final Docker Commands DDoSGrid V2.2 46
4.3 Docker URI handling example 1 . 46
4.4 Docker URI handling example 2 . 47
4.5 Docker services for GridDB . 48
4.6 Docker Network for DDoSDB . 49

69

	Zusammenfassung
	Abstract
	Acknowledgments
	Introduction
	Thesis Goals
	Methodology
	Thesis Outline

	Fundamentals
	Background
	System Usability Score
	Attack types
	Detection patterns
	Situational awareness

	Related Work

	Design
	Requirements
	Architecture
	DDoSCH
	DDoSGrid 2.0
	GridDB

	Implementation
	DDoSCH
	DDoSGrid V2.2
	GridDB

	Evaluation
	Usability
	Portability
	DDoSGrid V2.2
	GridDB
	DDoSDB V2.2

	Automation
	Discussion

	Final Considerations
	Summary
	Conclusions
	Future Work

	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	List of Listings

