
Bruno Rodrigues, Eder J. Scheid, Jonas Brunner
Calvin Falter, Guilherme Sperb Machado, Thomas Bocek,

Burkhard Stiller

FlatFeeStack: a Blockchain-based
Sustainable Public Funding of Open

Source Projects

February 2022

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

–
N

o.
IF

I-2
02

2.
05

FlatFeeStack: a Blockchain-based Sustainable
Public Funding of Open Source Projects

Bruno Rodrigues1, Eder J. Scheid1, Jonas Brunner1, Calvin Falter1,
Guilherme Sperb Machado2, Thomas Bocek3, Burkhard Stiller1

1Communication Systems Group CSG, Department of Informatics IfI, University of Zürich UZH
Binzmühlestrasse 14, CH—8050 Zürich, Switzerland

2AxLabs, Zürich, Switzerland
3Ostschweizer Fachhochschule OST, Informatik

Oberseestrasse 10, CH—8640 Rapperswil, Switzerland
E-mail: [rodrigues¦scheid¦stiller]@ifi.uzh.ch, [jonas.brunner¦calvin.falter]@uzh.ch, guil@axlabs.com, thomas.bocek@ost.ch

https://flatfeestack.io

Abstract—Recent studies have shown a decrease in the
number of Open Source Software (OSS) projects and their
contributions due to several reasons, including the increased
complexity of OSS, a lack of time from contributors, a lack
of OSS funding, and also pointing to the need for extrinsic
motivations for contributors to invest time and effort in OSS.

Thus, the design and development of FlatFeeStack were
performed to offer a blockchain-based platform that promotes
incentives to sponsors and contributors to foster OSS based
on three main innovations: (i) a sponsorship model based on
flat fees including multipliers that allow for the predictability
of the amount sponsored to projects and encourage third-party
sponsors; (ii) an engine allowing for the evaluation of individual
contributions within a project to establish incentives based on
individual contributions; and (iii) enabling the payout to con-
tributors in cryptocurrencies simplifying the payment flow to
contributors and removing intermediaries to process payments,
which also allows for reinvesting (i.e., staking) cryptocurrencies.

Index Terms—Blockchain, Distributed Ledger, Open Source
Software, Incentives, Funding Schemes, Cryptocurrencies

I. INTRODUCTION

Open Source Software (OSS) is essential to foster in-
novation through transparent, collaborative contributions
without copyright restrictions restricting their use and
distribution. However, recent studies [11], [24], [6], [12]
have shown a decrease in the number of OSS projects
and their contributions due to several reasons, including
the increased complexity of OSS, a lack of time from
contributors, a lack of OSS funding, and also pointing to
the need for extrinsic motivations for contributors to invest
time and effort in OSS [20], [21], [32]. An analysis in [12]
presented the overall decline in the number of OSS commits
from 2014 onward, considering 224’342 OSS projects with
a total of 180’937,525 commits (cf. Figure 1), and confirms
the reasons for the decline in contributions for OSS as
described in [11] and [24].

In this regard, intrinsic and altruistic motivations have
been for many years the driving motivation for OSS contrib-
utors, but the increased complexity that often requires more
time for relevant contributions has also exposed a need for

Fig. 1: Decline in Commits in OSS Projects from 2013 [12]

extrinsic (mainly financial) incentives. The major factors are
also exposed in the same studies [11], [24], [12], showing
that the increasing number of OSS projects also influences
the competition and the complexity of these projects, which
often seek details to differentiate itself from others.

The need for incentives is not different within the
Blockchain community. Vitalik Buterin, the founder of
Ethereum, recently highlighted the need to create a sustain-
able and structured public funding scheme to retroactively
incentivize Blockchain projects [4], [30] (i.e., “give back to
the community"). This reinforces the need that extrinsic
motivations (i.e., financial incentives) are necessary not
only to foster contribution in traditional OSS, but to create
a form of sustainable income for these contributors [20].
In this sense, the Blockchain community not only requires
measurable incentives to solve open challenges, but it can
also offer a solution to the general problem on “how to
create a retroactive public funding of OSS", as it provides a
decentralized platform for developing financial applications
[35].

Platforms to raise funds are not a novel concept to
entrepreneurs, content creators, and artists. Patreon [34],
BuyMeACoffee [5], and Ko-Fi [23] are platforms offering a
way to offer an alternative source of income based on fiat

currency. Yet, studies from [11], [6], [24], [12], [20] showing
the decrease of OSS projects and their related contributions
indicate that such platforms do not efficiently stimulate OSS
contributors. For example, such platforms (i) are typically
centralized and not transparent to contributors, specifically
affecting their traction in the Blockchain community (fa-
voring decentralized solutions) [4], (ii) often present high-
fees that hinder the income of contributors and affecting
all types of contributors, and (iii) lack sponsoring models
that incentivize sponsors (individuals or companies) to
continuously support OSS projects.
FlatFeeStack builds upon the principle that sponsor-

ing (cf. definitions in Section II) platforms necessarily need
to consider as a fundamental basis of their design a public
and transparent way to create a structured and sustainable
source of income that fairly incentivizes contributors.
FlatFeeStack provides incentives for both contribu-

tors and sponsors to boost cooperative behavior allowing
for the following key contributions:

• Enabling the sponsoring of multiple OSS projects in-
stead of individual ones. Thus, it simplifies the spon-
soring process by avoiding multiple registrations of
sponsors and contributors over different OSSes.

• Enabling individual and corporate sponsors to provide
a periodic flat fee to support selected projects, in-
cluding the option to corporate sponsors for including
multipliers.

• Distributing donations based on a ranking of contri-
butions per OSS. Thus, contributors would receive a
donation proportional to the relevance of their contri-
bution.

• Enabling an optional pay-in or payout to contributors
in cryptocurrencies, which simplifies the payment flow
by removing intermediaries and fees, and allows con-
tributors to reinvest (e.g., by staking).

A flat fee in different categories allow sponsors to know
beforehand the amount to be distributed within an OSS.
Also, multipliers allow corporate sponsors to multiply a do-
nation of individual sponsors up to a certain pre-allocated
budget. In addition, enabling the sponsoring of multiple
OSS further simplifies the sponsoring side by allowing
a sponsor to select one or more OSS, and contributors
associated with those projects would receive an amount
proportional to the relevance of their contribution.

A proportional distribution of incentives per OSS in-
centivizes contributors to not only increase the number
of contributions, but also their quality. FlatFeeStack
introduces such an approach to determine the relevance
of contributions based on the assumption that each OSS
determines the relevance of contributions in their Git repos-
itory. Lastly, the alternative payment flow in cryptocurrency
allows for a simpler payment flow with reduced fees in
contrast to traditional fiat payout methods.

The remainder of this paper is organized as follows:
Section II overviews fundamentals and related work. While
Section III describes the design and analytics and details

experiments on each component, Section V summarizes
the work, extended by future steps.

II. BACKGROUND AND RELATED WORK

Incentives for entrepreneurs, content creators, software
developers, and artists are not necessarily the same, ren-
dering platforms effective or ineffective. Thus, definitions
on fundraising platforms, different models that influence
open source and Blockchain communities are compared.

A. Definitions

Fundraising: A broad definition encompasses all types of
funds coming to individuals or organizations, including the
mission and its methods to raise funds [15].
Crowdsourcing: A type of fundraising that leverages a net-
work of people to support (i.e., financial donations or other
social contributions) a cause or business [15], [6].
Sponsoring: Another form of fundraising concerned with
a long-term relationship between sponsors (donate) and
contributors (receive donations) [3].
FlatFeeStack provides an alternative where develop-

ers from OSS and Blockchain communities continuously
receive funds depending on their contributions toward
OSS, fostering innovation and code maintainability, and
incentivizing participation. In this sense, the fundrais-
ing and crowdsourcing models do not apply for the
FlatFeeStack case due to their short-termed nature,
where funds are gathered and shared once. Hence, the spon-
soring model applies for FlatFeeStack, which presents
a long-term and recurrent cycle of funding.

B. Payment Models

Different sponsorship models and payment structures
can make platforms interesting (i.e., incentivize) to spon-
sors. Depending on the target community, platforms may
opt for a one-off model with variable payments, a subscrip-
tion model with a fixed payment [20], or a hybrid approach.
While one-off models are suitable to individual sponsors,
a fixed (flat) fee subscription model is more suitable to
corporate individuals, once it allows to predict costs and
explore the social-responsibility image [6].

C. Incentives

Incentives are typically categorized as intrinsic or extrin-
sic. On one hand, while individual sponsors are typically
motivated by intrinsic values (e.g., sense of community and
ideological belief), corporate sponsors can be driven by
intrinsic and extrinsic values to retroactively help a com-
munity (e.g., a handy open-source library) and get rewarded
by exploiting the social-responsibility image [6] publicly.
On the other hand, contributors are incentivized by both
intrinsic and extrinsic motivations, as observed in [20],
[11]. In addition, technical characteristics, such as the
level of decentralization, open-source code, transparency,
and payment (pay-in and pay-out) in cryptocurrencies,
are relevant factors to incentivize, in particular, OSS and
Blockchain communities.

TABLE I: Comparison of Fundraising Platforms

Platform Type
Pay-in
Model Pay-out

Sponsoring
Structure

Proportional
Sponsoring Architecture Open Source

Patreon [34] Crowdfunding One-off
Direct transfer,
Payoneer, PayPal

1 to 1
(individuals)

✗ Centralized ✗

BuyMeACoffee [5] Crowdfunding One-off
Direct transfer,
PayPal, Stripe

1 to 1
(individuals)

✗ Centralized ✗

Flattr [14] Sponsoring
One-off and
Subscription

Direct transfer
1 to N (multiple
projects)

✗ Centralized ✗

Ko-Fi [23] Crowdfunding One-off PayPal, Stripe
1 to 1
(individuals)

✗ Centralized ✗

Liberapay [26] Crowdfunding
One-off and
subscription

PayPal, Stripe
1 to 1
(individuals)

✗ Centralized ✓

Goteo [19] Crowdfunding One-off
Direct transfer,
PayPal

1 to 1
(individuals)

✗ Centralized ✓

Gitcoin [16] Crowdfunding One-off Cryptocurrency
1 to 1
(individuals)

✗ Decentralized ✗

GitHub Sponsors [17] Sponsoring
One-off and
subscription

Direct transfer
1 to N (multiple
projects)

✗ Centralized ✗

Issuehunt [22] Sponsoring
One-off and
subscription

Stripe, direct transfer
1 to 1
(individuals)

✗ Centralized ✓

Tidelift [37] Crowdfunding Subscription Stripe
1 to N (multiple
projects)

✗ Centralized ✓

Open Collective [27] Sponsoring
One-off and
subscription

Stripe, direct transfer
PayPal

1 to N (multiple
projects)

✗ Centralized ✓

FlatFeeStack [8] Sponsoring
One-off and
subscription

Stripe, Cryptocurrencies
1 to N (multiple
projects)

✓ Hybrid ✓

D. Related Work

In order to encourage individual and organizational
sponsors as well as contributors to OSS and Blockchain
projects, Table I compares fundraising platforms consider-
ing their type, payment models and structure, architecture,
and whether they allow for a proportional sponsoring of
contributors. In this sense, the first important distinction
is their type. Most of these crowdfunding platforms are
relatively recent and based on the sponsoring model.

The sponsorship model based on periodic subscriptions
(e.g., Flattr [14], Liberapay [26], GitHub Sponsors [17], and
FlatFeeStack) aligns with the goal of creating con-
tinuous public funding for contributors. By directly inte-
grating with payment providers such as Stripe or PayPal,
the money is directly transferred to the creator’s payment
service provider account. Conversely, the one-off models
(e.g., Patreon [34], BuyMeACoffee [5], Goteo [19], Gitcoin
[16]) may be more suitable to artists or to raise funds
to kickstart a project, but they are not ideal for fostering
continuous contributions to running projects.

Open Collective[27] is a fully transparent donation plat-
form based on monthly recurring payments. While many of
the registered "collectives" represent open source projects,
the platform can also be used for other non-profit projects.
Issuehunt [22] is a platform which is specifically tailored to
open source software donations. Open issues can be funded
(i.e., creating a bounty) to incentivize more developers to
work on a task. The developer who resolves an issue first
gets the funded amount. Tidelift [37] provides a managed
open source solution for software development teams. With
the cheapest subscription being 1500$ per month and the
direct integration into the CI workflow, the platform is built
for enterprise-level customers.

While financial rewards are the most obvious incentive,
[25] shows that not all developers are willing to accept
rewards, especially when they feel that the financial support
could take influence on the innovation process. A recent
study by Overney [31] shows that only a small fraction
(0.04%) of public repositories on GitHub ask for donations.
Still, the demand for open source donations has increased
significantly during the past three years, with PayPal being
the top requested donation method across all Readme.md
files on GitHub [31]. This is especially interesting because
PayPal is a general digital payment service that is not
specifically tailored towards open source funding.

The architectural design of these platforms also deter-
mines a vital role to incentivize sponsors and contribu-
tors. For instance, characteristics such as crypto donations,
transparency, and decentralization are relevant factors for
the Blockchain community. However, the possibility of a
payment in fiat currency necessarily involves a factor of
centralization and reliance on third parties (e.g., to process
credit card transactions). Gitcoin [16] and FlatFeeStack
are highlighted, in which the latter was designed in a
hybrid architecture by also including the possibility of
fiat payments.

However, FlatFeeStack as designed differs from re-
lated work including a contribution analysis component,
which allows for the evaluation of the relevance of contribu-
tions (e.g., commits to a Git repository) and a proportional
distribution of sponsored resources to a project. Also, spon-
sors can include a multiplier model that allows sponsoring
companies to multiply the donation of individual sponsors
up to a specific pre-allocated budget in the contract.

III. BLOCKCHAIN-BASED PUBLIC FUNDING SOLUTION

The payment flow of the newly designed
FlatFeeStack’s (cf. Figure 2) outlines a sponsor
determining the type of donation (i.e., subscription or a
single one-off) for one or more projects and the proportion
to which the donation will be distributed among projects.
In this sense, FlatFeeStack operates as a multi-asset
wallet in which the contributor receives the asset that the
sponsor sends without performing conversions to a specific
currency. After the sponsor donates in the first stage, the
amount is distributed in the proportion determined among
the projects flagged by the sponsor. The second stage
(i.e., project fanning) is illustrated as an example with
two projects, where the donation is equally distributed to
each project.

Sponsor

flatfeestack

Project X Project Y

50% 50%

Contribution
Engine

Contribution
Engine

30%
50% 20%

15%
75%10%

Dev 1 Dev 2 Dev 3 Dev 1 Dev 4 Dev 3

Contributor 1 Contributor 2 Contributor 3 Contributor 4

Project
Fanning

Contributors
Fanning

Pay-out
Aggregation

One-off or
flat fee

subscription N Sponsors
 donate to

1 to N projects

1 Project has
1 to N Contributors

1 Contributor
participate of

1 to N Projects

Pay-in

Fig. 2: Example Sponsoring Flow

In the third stage (i.e., contributors fanning), the contri-
bution engine analyzes the Git repository associated with
each project to assess each contributor’s contribution asso-
ciated with the project. A contributor’s weight is calculated
using the commit evaluation engine, which computes a
score based on git contributions. The weight calculations
are based on a window of three months, and the weights
are updated monthly.

A multiple-week interval prevents unequal distribution
on less active repositories. In a weekly window, a single
modest edit to a README.md file (with no other commits
this week) may yield the same reward as a major pull
request the week before. A broad window, suggests that a
contributor’s compensation is spread across several weeks.
This means that the incentive for a single commit is paid
out in three monthly installments. Since a contributor may
be affiliated with one or more projects, the payment is
aggregated before the distribution in the final step.

Sponsor

Contributor

Auth

Frontend

Wallet

Scheduler

API

Contribution
Engine

Payment
Gateway

User dApp External

Fig. 3: FlatFeeStack Architecture

A. Architecture

The FlatFeeStack’s architecture (cf. Figure 3) man-
ages payments and funds of users (sponsors or contribu-
tors). While sponsors can be corporate or individual donors,
contributors receive sponsorship through their contribution
to open source Git repositories. The prototype is based
on a Web dApp (decentralized application) that connects
with the contribution engine oracle (cf. Subsection III-C),
an external payment gateway service in case of credit
card donations, and the EVM-compatible Blockchain (e.g.,
Ethereum [38] or Binance chain [2]). The dApp has distinct
functions based on type of user, for example, a sponsor may
donate to certain projects and the percentage donations are
distributed. These values must be transferred to the wallet,
in which the scheduler triggers transactions in the selected
period. Major dApp components include the following ones:

• API: The API (Application Programming Interface) con-
nects to the database and provides various endpoints
to manipulate the data, and checks if incoming re-
quests are authenticated. Also credit card details are
not handled by the API, only payment metadata;

• Auth: The authentication service manages the identity
of users and grants access to request data from the API.
It is based on a stateless (token-based) authentication,
not being connected to the authentication service, but
the identity of a user can be validated using a shared
secret. This means that the API does not need to
connect to the authentication service, but the identity
of a user can be validated using a shared secret;

• Frontend: The frontend provides the user interface
in order to register and sponsor projects. It uses the
endpoints provided by the API to query data from
the database;

• Scheduler: Triggers repeating tasks (e.g., payouts) and
aggregates data in the database; and

• Wallet: hold funds of sponsors or contributors.

In the contributor’s role, the dApp works as a wallet in
which the contributor enters his/her information about the
projects he/she participates in, as well as the periodicity of
the fund verification that the scheduler can automatically
request. In the role of sponsor, the user configures the
payment type, periodicity, and sponsoring multiplier pa-
rameters to incentivize the donation of individual sponsors
(cf. Subsection III-B).

B. Sponsorship Multipliers

The addition of multiplier factors is a feature that al-
lows corporate sponsors to incentivize the participation
of individual sponsors. Lack of incentive donations is a
major problem in the OSS community and, more recently,
Blockchain, as described in a review of incentive mecha-
nisms used by GitHub Sponsors [39]. A corporate sponsor
allocates an initial budget I B to be distributed between K
selected projects according to the pre-determined percent-
ages per project Pctx . Each selected project will have a
starting budget B determined as Bn =∑K

n=1 I B ∗Pctn .

Algorithm 1 Multiplier of Donations

Require: Bn =∑K
n=1 I B ∗Pctn

Require: MB I max. available budget per individual sponsor
Require: AB max. available budget

1: for each P ∈ Bn do
2: L ← list of new donations
3: for each D, i ∈ L do ▷ Loop donations in L
4: if D ≤ M I D then ▷ Ensure small donations
5: DN ← D ∗MF ▷ Multiply donation
6: AB ← AB −DN
7: MB I [i] ← MB I [i]+DN
8: if AB ≤ 0 || MB I [i] ≤ 0 then
9: abort() ▷ Check upper bounds

10: else
11: pay(DN) to P ▷ Pay multiplied donation
12: end if
13: end if
14: end for
15: end for

Then, a multiplier factor MF can be applied to small
donations up to a certain threshold M I D as detailed in
Algorithm 1 applied to multiply donations. The goal of
M I D in such an algorithm is to prevent multiplying large
donations and incentivize a higher number of individual
sponsors. Also, two upper thresholds are defined to ensure
that corporate sponsor funds are not maliciously depleted.
A maximum available budget AB defines an upper bound
on the maximum sponsored value across all projects (i.e.,
overall budget that a corporate sponsor is willing to donate),
and an upper bound for individual sponsors termed AI B to
prevent several small donations from the same individual
sponsor (i.e., prevent a single individual sponsor from
consuming the entire AB budget).

An example based on Figure 4 considers a corporate
sponsor making available a budget of 200 coins (i.e., AB =
200). It was considered that 20 individual sponsors donated
randomly generated values to evaluate the thresholds (i.e.,
M I D, M I B and AB) in each scenario. In addition, the
corporate sponsor specifies a multiplier factor of 2 to in-
centivize individual sponsors. The first scenario in Figure 4
upper left considers the ideal scenario where donations
do not exceed M I D and M I B and are multiplied by the

Fig. 4: Multipliers Analysis: Ideal Scenario (upper left) and
Ignoring Donations Above MID (upper right). Ignore Dona-
tion (in red) Above MIB (lower left) and Scenario Where AB
is Expired (lower right).

corporate donor (AB in blue donates the total budget being
reduced). In the second scenario in Figure 4 upper right,
the randomization range is slightly increased, implying that
some donors exceed the specified M I D , and thus their
donations are not multiplied.

The multiplication factor provides an extra incentive
for individual contributors to donate more and provides
a safeguard against malicious acts that can deplete the
budget allocated by the corporate sponsor. For example,
if the AB I threshold is not specified in the third scenario
(cf. Figure 4 lower left), another corporate sponsor can
exhaust the allocated budget (e.g., red bar) that would
be multiplied, and prevent the donation from individual
sponsors from being multiplied. Lastly, the last scenario
presents the moment when the total budget specified by the
corporate sponsor is reached (AB), and the multiplication
factor is no longer applied.

C. Contribution Engine

One of the major incentives for contributors to be more
active is the transparent and proportional distribution of
donations according to their contribution to the repositories
they participate. However, the assessment of contributions
is not a straightforward task, in which simple quantitative
metrics cannot translate the real relevance of contributions.
Thus, it is necessary to extract specific information from the
project in order to establish the relevance of, for example,
a commit based on tags that allow the identification of
how critical that change can be in the code. Thus, a
developer no longer contributes only through written code
but also through other activities such as communicating
and coordinating with other people involved in the project.

The process of analysis in the contribution engine is
structured in three major steps. The first step retrieves Git
data, which is equivalent to cloning a Git repository. In a

TABLE II: Git and Platform Metrics

Git-Specific Platform-Specific

Changes
- Additions
- Deletions

Issues
- Author of Issues
- Comments on Created Issues
- Written Comments

History
- Commits
- Merges

Pull Request
- Author of Pull Request
- Activity on Created Pull Request
- Performed Code Reviews

second step, required metrics are extracted and collected to
be offset against each other in the third step. Finally, each
contributor is given a share of the total contribution.

1) Git Iterator: The engine only clones the part of the
repository to be analyzed. The engine first update the
repository and if this process fails, the repository is cloned.
The cloning is executed so that the cloned repository will
only contain one branch, which is the one defined earlier.
To achieve this effect, the repository is configured as a single
branch repository with the specific branch as this single
branch. This means only the history leading to the tip of a
single branch is cloned. Otherwise, if the repository already
exists, it will only be fetched to update the remote-tracking
branch so that Git will update the remote changes in the
local repository.

2) Metrics: Two categories of metrics are distinguished
(cf. Table II). One is Git and repository-based and contains
metrics that can be read from a repository with Git. Since
the analysis engine is based on a Git repository, this Git
analysis is possible for queries. The second source of
metrics is platform-specific information. This subdivision
and allocation to categories allow a better overview of the
weighting of the individual metrics. The weighting of the
individual metrics is done in two stages. In the first stage,
the weighting within a category is defined, and in the
second stage, the weighting among categories. A weight
within a stage is always defined so that weights can be
added up to 1.

The contribution is then calculated in two stages in
accordance with the defined weightings. In the first step,
the developer’s contribution to be analyzed is calculated
as a percentage of the category’s total contribution. In the
second step, these calculated percentage contributions of
a category are balanced against the categories’ previously
defined weightings. This results in the following formula for
the contribution of a contributor.

Cdeveloper =
ctot al∑
c=0

ωc ×
∑mc,tot al

mc=0 ωmc ×θmc∑mc,tot al
mc=0 ωmc ×Θmc

(1)

where:
3) Analysis: Analyzing the repository for each developer’s

contributions using Equation 1, which result in a list of each
contributor with their percentage of the total contribution
to the project within the analyzed time frame. Table III
provides an overview of the categories used as well as
metrics with the corresponding weights. The weightings
were developed in a process in which they were initially
determined based on [33] and self-assessment. They were

Cdeveloper Calculated contribution of the developer
ctot al Total amount of categories
ωc Weight of the category c
c Index of the category
mc Index of the metric inside category c
mc,tot al Total amount of metrics within category c
ωmc Weight of the metric inside category c
θmc Value of the metric for the analyzed developer
Θmc Total value of the metric for all developers

TABLE III: Weights for Analysis (Based on [33])

ωc Category ωmc Metric
0.36 changes

0.7 additions
0.3 deletions

0.30 history
0.7 commits
0.3 merges

0.14 issues
0.5 author of issues
0.2 comments on created issue
0.3 written comments

0.20 pull requests
0.7 author of pull request
0.3 performed code reviews

adjusted through applications in real projects with the
agreement of open source contributors.

Table III shows the distribution of weights if no platform
information is to be analyzed. Additionally to this metric
weighting, different weights of pull requests exist due to
the activity on a pull request. A closed request counts 0.6;
an open one counts as 1.0. If a pull request is merged, it
counts 1.5 times. In addition to these states, the activity of
a pull request is also checked for approval. If this is the
case, the above value is multiplied by 1.4. For example,
an approved request, which was closed again afterward,
receives a weight of 0.84 and an approved, and merged
request receives a weight of 2.1. This multiplier is intended
to promote agreement among the developers and assure
the code quality since there is no other representation of
code quality in the evaluation.

To assess the engine’s results, the contributors involved in
the repository evaluated the overall results. Since personal
acquaintances to the main contributors of the neow3j
repository were available, it was chosen as an application
and evaluation example. For the repository analysis, the
request was sent to the analysis engine. With this request,
the neow3j repository on the master-3.x branch (the current
master branch) should be analyzed from January 1st to July
1st. Tests in Figure 5 (left) confirmed the assumption that
the time needed for mapping increases with the number of
contributors. Nevertheless, it is interesting to note that the
mapping duration is not constant when calculated down
to one Git user. With a duration of 278 ms to 577 ms per
Git user, it is so different that no reliable prediction can be
made for a different number of users.

Responses indicate which Git contributor was responsible

104 105

Duration [ms]

ru
st

N
e
x
tc

lo
u
d

re
a
ct

m
o
m

e
n
t.

js

23,897

1.53*10

1.99*10

5.35*10

Bucher Machado Muller
Contributor

0

10

20

30

40

50

60

C
o
n
tr

ib
u
ti

o
n
 [

%
]

13.78

31.23

55

20.9
18.61

60.49With Platform Information

Without Platform Information

Fig. 5: Contribution Engine: Execution Time for Collecting
Platform Information over 3 Months (left) and Analysis of
Contributions in the neow3j Project (right)

for which partition of the total contribution in the selected
period. This contribution’s summary is conducted within
multiple iterations, wherein these results were discussed
with the repository owner at each iteration. Consequently,
weights were adapted. The critical insight from the feedback
and adaptation was that the platform information was not
sufficiently weighted. Thus, this analysis is considered as
representative of the actual contribution. Figure 5 shows
the contribution per developer in the first semester of 2020,
where platform information was considered once and not
at the other time.

D. Payment Flow

The FlatFeeStack’s payment flow is designed on two
stages (contributor fanning and payout aggregation) as
shown in Figure 2. Within the payout aggregation, a project
contributor is identified by its Git email address. Once
a user can have multiple Git email addresses configured
(e.g., a work email on the office computer and another
email on the personal laptop), there exists a one-to-many
relationship between users and contributors. Furthermore,
a single contributor can be involved in multiple projects
and generate income from multiple sources. Therefore,
a payout aggregation is needed to map the rewards of
contributors to the platform’s registered users.

Receiving payments is as simple as validating an email
address and setting a payout address now that cryptocur-
rencies can be paid out. Because there is no need to first
register a project or perform identification verification, the
procedure of getting money as a contributor is simplified.
Paying out in cryptocurrency, on the other hand, necessi-
tates a fiat-to-crypto conversion. To generate an exchange
request, the balances of all registered contributors with a
payout address are totalled weekly. The administrator in
charge of transferring fiat to crypto receives an exchange
request. The administrator enters the exchange rate into
the system after the fiat money has been swapped. Each
balance (in fiat money) is tied to a request for an exchange.

A "pull payment" mechanism is used to pay the regis-
tered user. Instead of creating transactions for users with
a balance larger than zero on a regular basis, the balances
are deposited into a SC on a regular basis (Smart Contract).
Users can receive money by calling a method on the SC

that triggers the transfer of monies. The transaction fee is
passed on to the payment recipient when payments are
pulled. Other platforms include payout transaction fees in
their platform charge. However, because of the fanning at
the project and contributor levels, a sponsor who supports
five projects should pay a smaller platform charge than a
sponsor who supports twenty projects. To take it a step
further, a sponsor supporting a project with only one con-
tributor should pay lower fees than a sponsor supporting a
project with multiple contributors.

Further, using a smart contract increases transparency
and security for the contributors concerning but not yet
paid out balances. Even if a contributor decides to claim
his/her balances only yearly (to reduce transaction costs),
his/her funds are secured and only claimable by him/herself
in the smart contract. Even though the pull payment pro-
cess would also work without a smart contract, there was no
guarantee that a donation platform is actually in possession
of this money. Thus, using a smart contract with a pull
payment process provides the optimal level of transparency
and security from a user perspective.

The balances are stored using a mapping between
address and uint256. Because arithmetic operations in
Solidity "wrap" on overflow (i.e., if an integer overflows, the
most significant bits are lost), OpenZeppelin’s SafeMath [29]
library is used for all arithmetic operations. The SafeMath

library throws an error if an overflow happens and thereby
ensures that incorrect transactions are rolled back.

1) Fill: The fill updates the balances of addresses (i.e.,
contributors) and can only be called by the owner of the
contract. Thus, on SC deployment, the owner’s address is
stored in the _owner variable. This variable is used to ensure
that only the owner can call the fill method. Further checks
ensure that the input arrays addresses_ and balances_ have
the same length, as each balance needs to be assigned to a
specific address. The for-loop (line 20) updates the stored
balances of the smart contract based on the two input
arrays of the method. Additionally, the sum of all input
balances is calculated in the loop.

2) Release: A user can claim the balances that are as-
signed to his/her address. In the form of gas, the transaction
costs are thereby covered by the user who requests the
funds. Before a transfer is initiated, it is verified that the
balance of the requested address is greater than zero (line
33). To avoid race conditions when the function is called
rapidly multiple times, the balance of the address is set
to zero before the transfer is initiated. The order of lines
35 and 36 is important, as race conditions have already
been exploited to hack the DAO, which eventually led to
a hard fork of the Ethereum blockchain to restore stolen
balances [13].

3) BalanceOf: Returns the balance of an address. Since
the default value of possible mappings in Solidity is 0,
the balanceOf method always returns a value, even if the
requested address has never been registered in the SC.

d

Fig. 6: Selection of repositories to sponsor [7]

1 contract coreContract {
2 [...]
3 function fill(address[] memory addresses_,

uint256[] memory balances_) public
payable {

4 require(msg.sender == _owner, "Only the
owner can add new payouts");

5 require(addresses_.length == balances_.
length, "Addresses and balances
array

6 must have the same length");
7 uint256 sum;
8 for (uint i=0; i < addresses_.length; i

++){
9 balances[addresses_[i]] = balances[

addresses_[i]].add(balances_[i])
;

10 sum = sum.add(balances_[i]);
11 }
12 if(sum > msg.value) {
13 revert("Sum of balances is higher

than paid amount");
14 }
15 }
16 function release() public {
17 require(balances[msg.sender] > 0, "

PaymentSplitter: account has no
balance");

18 uint256 _balance = balances[msg.sender];
19 balances[msg.sender] = 0;
20 msg.sender.transfer(_balance);
21 emit PaymentReleased(msg.sender,

_balance);
22 }
23 function balanceOf(address address_) public

view returns (uint256){
24 return balances[address_];
25 }
26 }

Listing 1: Ethereum SC code available in [7]

Before a transfer is initiated, it is verified that the balance
of the requested address is more significant than zero
(line 17). To avoid race conditions, when the function is
called rapidly multiple times, the balance of the address
is set to zero before the transfer is initiated. The order
of lines 20 and 21 is essential, since race conditions have
already been exploited to hack the DAO, which eventually
led to a hard fork of the Ethereum Blockchain to restore
stolen balances [13].

An SC increases transparency and security for the con-
tributors in terms of assigned but not yet paid out balances.
Even if a contributor decides to claim his/her balances

Fig. 7: Balance after release function has been called [7]

only yearly (to reduce transaction costs), his/her funds are
secured and only claimable by him/herself in the SC. Even
though the pull payment process would also work without
an SC, there was no guarantee that a donation platform
actually possessed this money. Thus, using an SC with a pull
payment process provides the optimal level of transparency
and security from a user perspective.

Although, the use of cryptocurrencies provides advan-
tages in transparency and execution speed of payments,
drawbacks in terms of costs remain (cf. further discussed
in Section IV). After a successful payment/deposit of cryp-
tocurrencies with an active subscription, a user can start to
sponsor repositories (cf. Figure 6). The selection of projects
happens independently of the payment and can be changed
at any time.

From a contributors’ point of view, only a few steps are
required to receive a donation using the same registration
and dashboard as the sponsors. The Request funds button
(cf. Figure 7) uses Web3 [9] to claim the user’s balance
by calling the release() function of the SC. This requires
the user to have a Web3 enabled browser or an installed
extension such as MetaMask. A transaction to the SC is
created by clicking on the button that can be reviewed
and signed in a Web3 modal (e.g., Metamask). Therefore,
a user can claim the balance at any time from the SC. The
MetaMask extension even presents an error if a user tries to
claim a non-existing balance from the SC. After the release
function has been called, the user receives the funds. A
drawback is that the user needs to have ether to pay the
transaction cost to claim his/her balances.

A solution to this problem is the use of the Ethereum Gas
Station Network (GSN) [28]. Based on the GSN, a so-called
Paymaster contract implements the business logic to decide
which transactions to pay for. This enables, for example, the
use case where the donation platform pays the transaction
cost of the first claim. However, the use of an SC has already
been shown to “burn" a significant amount of a sponsor’s
donation amount. With the fanning donation architecture,
covering contributors’ first transaction fee would thus result
in an even more significant portion of the donation amount
being used for transaction fees.

IV. DISCUSSION AND LIMITATIONS

FlatFeeStack argues that there is the need to provide
financial incentives to foster the production and mainte-
nance of open source software. In this regard, different
platforms (cf. Section II) support open source projects at
different stages (e.g., to crowdfund or sponsor projects),
wherein FlatFeeStack sustainably creates incentives for
both, contributors and sponsors, based on a ranking of
contributions per project.

A. Contribution Engine and Definition of Metrics

While the FlatFeeStack presents a hybrid and op-
erational technical basis, a proportional distribution of
donations fosters relevant contributions, it also challenges
determining what constitutes “relevance". Once different
projects evaluate metrics differently, each project’s selec-
tion of metrics and related weights must go through an
internal discussion and voting process to determine rel-
evance. For example, a DAO (Decentralized Autonomous
Organization) could be deployed within registered con-
tributors of a project to vote on metrics, weights, and
contributions most relevant to this project. However, such
a decentralized decision-making model can be slow to
converge to a decision effectively and cumbersome in the
sense that the voting process could be manipulated [10]. An
approach to mitigate such effects involves an election with
representative project members in a permissioned DAO,
resulting in transparent definition metrics and weights.

Furthermore, the fact that metrics and weights for dis-
tributing incentives are deployed on-chain might have a
significant impact (i.e., it is open and verifiable). On one
hand, knowing which type of contribution is relevant to
distribute incentives proportionally is relevant. On the other
hand, contributions may be purposefully targeted to ma-
ximize contributors’ profits, while other actions (such as
reviews, comments, or bug fixing) may be ignored, since
they do not necessarily maximize profit. In this sense, the
FlatFeeStack proposed enables projects to reach their
definition of relevance through the definition of metrics and
weights, and provides the technicalities of this platform.

B. Crypto Payout and Transaction Fees

Enabling payout in cryptocurrencies has advantages and
disadvantages. While, on the one hand, it is possible to
simplify the sponsoring process by reducing intermediaries
(and additional fees) for paying contributors, on the other
hand, high transaction fees can impair its operation. For
example, to claim funds, a contributor first needs funds to
pay the transaction costs, significantly increasing the entry
barrier to receiving donations.

Implementing an SC provides transparency for contrib-
utors when it comes to amounts that have been allotted
but not yet paid out. Even if a contributor chooses to claim
his or her balances just once a year (to save transaction
fees), his or her assets remain safe and only claimable
by the contributor. However, FlatFeeStack cannot be

fully decentralized once it integrates traditional payment
services, which need to be handled in a centralized way by
a payment service provider (e.g., Stripe or PayPal), typically
involving fees split into two parts, (i) a fixed amount per
transaction and (ii) a percentage of the transaction amount.
Thus, FlatFeeStack implements a hybrid-architecture
providing crypto payments as an alternative as outline in
Table I.

In the case of crypto payment, each request made to the
Smart Contract (SC) must be paid by the contributor to
verify and request payments (e.g., by calling the release

() method where a user requests to retrieve the balance).
In this regard, the use of a blockchain platform with lower
transaction fees (in contrast to Ethereum), such as the PoS-
based (Proof-of-Stake) Tezos [18], is needed to reduce the
operational costs required to run the SC’s logic (e.g., contri-
bution fanning and payout aggregation) whose fees would
be shifted toward the contributor requesting the payment.
Therefore, using a smart contract could potentially “burn"
a significant amount of a sponsor’s donation amount.

Still, the transaction fees of blockchains are significantly
lower than automated bank transfers (considering PoS-
based chains). For example, Flattr [14] charges 3$ per
payout and the Stripe connect platform [36] charges fees
within the same range (2$/month per user + (0.25% + 25c)
per payout). Furthermore, since crypto payments are final,
there is no need for a lengthy onboarding process with
identity verification, and there is no need to deal with
denied or returned payouts. The usage of cryptocurrencies
for payment is limited because there is no method to set
up recurring payments in the form of a subscription.

With the upgrade to Ethereum 2.0 and the transition to
PoS [1], fees in the Ethereum network could potentially
develop more toward low fees (such as Tezos [18]), making
Ethereum a solid choice in the future. Also, there is an ad-
ditional configuration effort outside the donation platform
for users who have never used cryptocurrencies. However,
creating a new Ethereum account is comparable to the
effort of full customer identification (Know Your Customer,
KYC) required for other donation platforms.

V. SUMMARY AND FUTURE WORK

FlatFeeStack is an open-source (code available in
[7] and front-end at [8]) donation platform that provides
a new optimistic sponsoring approach, where sponsoring
and receiving donations for open source projects can be
achieved. Key contributions are (i) an on-chain sponsoring
model based on a flat fee subscription and multipliers, (ii)
a contribution engine distributing donations based on a
contribution ranking, and (iii) payout in cryptocurrencies
simplifying the payment flow and reducing intermediaries
fees. While (i) concerns a change in the sponsoring busi-
ness logic to incentivize further corporate and individual
sponsors, (ii) and (iii) provide the technical support to
incentivize further contributors making a statement about

the developers’ contribution and to simplify the payment
and receiving of donations.

Future work includes improving the availability of met-
rics by extracting platform-specific information that can
be assessed and applied to all repositories, regardless of
language or technology attributed to individual contribu-
tors. For example, considering the use of tags determined
(e.g., via DAO) by projects themselves, adjusting weights in
the contribution calculation will be possible. Concerning
FlatFeeStack’s pull payment, an approach using an
EVM-based SC can allow for a significant reduction of
fees in contrast to automated bank transfers. Transaction
fees must still be entirely shifted toward contributors to
keep sponsor fees low and enable the fanning-out donation
architecture. In this regard, next steps will address a fee
optimization of payouts for other Blockchains (e.g., Binance,
Tezos, or NEO), because with such a fanning out donation
architecture the ratio of payouts to sponsors is significantly
higher than on existing platforms.

REFERENCES

[1] “Upgrading Ethereum to radical new heights,” https://ethereum.org/
en/eth2/, (Last accessed December 2020).

[2] Binance, “Binance Smart Chain,” Dec. 2021, https://www.binance.org.
[3] L. Brennan, W. Binney, and E. Brady, “The Raising of Corporate

Sponsorship: A Behavioral Study,” Journal of Nonprofit & Public Sector
Marketing, Vol. 24, No. 3, pp. 222–237, 2012.

[4] V. Buterin, “Review of Optimism Retro Funding Round 1,” Nov. 2021,
https://bit.ly/3DAdRnm.

[5] BuyMeACoffee, “A Supporter is Worth a Thousand Followers,” Nov.
2021, https://bit.ly/31N4xj6.

[6] G. Cecere, F. Le Guel, and F. Rochelandet, “Crowdfunding and Social
Influence: An Empirical Investigation,” Applied Economics, Vol. 49,
No. 57, pp. 5802–5813, 2017.

[7] Flatfeestack, “Flatfeestack GitHub,” Dec. 2021, https://github.com/
flatfeestack.

[8] FlatFeeStack, “Flatfeestack - On the Shoulders of Giants,” Dec. 2021,
https://flatfeestack.io/.

[9] ChainSafe, “ChainSafe/web3.js,” https://bit.ly/3DBIQjd, (Last ac-
cessed December 2021).

[10] U. W. Chohan, “The Decentralized Autonomous Organization and
Governance Issues,” Available at SSRN 3082055, 2017.

[11] J. Coelho and M. T. Valente, “Why Modern Open Source Projects
Fail,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2017. New York, NY, USA:
Association for Computing Machinery, 2017, p. 186–196. [Online].
Available: https://bit.ly/3oyaadz

[12] M. Dorner, M. Capraro, and A. Barcomb, “Quo Vadis, Open Source?
The Limits of Open Source Growth,” arXiv preprint arXiv:2008.07753,
2020.

[13] S. Falkon, “The Story of the DAO – Its History and Consequences,”
2017, https://bit.ly/3lNobSZ, (Last accessed January 2021).

[14] Flattr, “Support Creators with One Easy Subscription or With One-
time Contributions,” Nov. 2021, https://flattr.com/.

[15] M. M. Gierczak, U. Bretschneider, P. Haas, I. Blohm, and J. M.
Leimeister, “Crowdfunding: Outlining the New era of Fundraising,”
in Crowdfunding in Europe. Springer, 2016, pp. 7–23.

[16] Gitcoin, “Gitcoin: Build and Fund the Open Web Together,” Nov. 2021,
https://gitcoin.co/.

[17] GitHubSponsors, “Invest in the Software the Powers Your World,” Nov.
2021, https://bit.ly/3dueKmP.

[18] L. M. Goodman, “Tezos - A Self-Amending Crypto-Ledger,” September
2014, https://tezos.com/whitepaper.pdf.

[19] Goteo, “Crowdfunding the Commons,” Nov. 2021, https://en.goteo.
org.

[20] I.-H. Hann, J. Roberts, S. Slaughter, and R. Fielding, “Economic
Incentives for Participating in Open Source Software Projects,” ICIS
2002 Proceedings, p. 33, 2002.

[21] ——, “Why do Developers Contribute to Open Source Projects? First
Evidence of Economic Incentives,” in 2nd Workshop on Open Source
Software Engineering, Orlando, FL, 2002.

[22] Issuehunt, “Where Open Source Grows,” https://issuehunt.io/, (Last
accessed January 2022).

[23] Ko-Fi, “Make an Income Doing What You Love,” Nov. 2021, https:
//ko-fi.com/.

[24] S. Krishnamurthy, S. Ou, and A. K. Tripathi, “Acceptance of Monetary
Rewards in Open Source Software Development,” Research Policy,
Vol. 43, No. 4, pp. 632–644, 2014.

[25] ——, “Acceptance of Monetary Rewards in Open Source Software
Development,” Research Policy, Vol. 43, No. 4, pp. 632–644, 2014.

[26] Liberapay, “Liberapay Recurrent Donations Platform,” Nov. 2021,
https://bit.ly/3DyiTAL.

[27] Open Collective, “Make Your Community Sustainable,” https://
opencollective.com/, (Last accessed January 2022).

[28] OpenGSN, “Gas Station Network,” Dec. 2021, https://opengsn.org/.
[29] OpenZeppelin, “SafeMath.sol,” Dec. 2021, https://github.com/

OpenZeppelin/openzeppelin-contracts/blob/master/contracts/
math/SafeMath.so.

[30] OptimismPBC, “Retroactive Public Goods Funding,” Jul. 2021, https:
//bit.ly/3oA5rZa.

[31] C. Overney, “Hanging by the Thread: an Empirical Study of Donations
in Open Source,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Companion Proceedings, 2020,
pp. 131–133.

[32] C. Overney, J. Meinicke, C. Kästner, and B. Vasilescu, “How to
Not Get Rich: An Empirical Study of Donations in Open Source,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, 2020, pp. 1209–1221.

[33] R. M. Parizi, P. Spoletini, and A. Singh, “Measuring Team Members’
Contributions in Software Engineering Projects using Git-driven Tech-
nology,” in IEEE Frontiers in Education Conference (FIE 2018), San
Jose, CA, USA, USA, October 2018, pp. 1–5.

[34] Patreon, “Change the Way Art is Valued,” Nov. 2021, https://www.
patreon.com/.

[35] B. Rodrigues, T. Bocek, and B. Stiller, “The Use of Blockchains:
Application-driven Analysis of Applicability,” in Advances in Comput-
ers. Elsevier, 2018, Vol. 111, pp. 163–198.

[36] Stripe, “Stripe Connect: Online Marketplace Payments Platform,”
https://stripe.com/connect, (Last accessed January 2022).

[37] Tidelift, “A Managed Open Source Subscription Backed by Creators
and Maintainers,” https://tidelift.com/, (Last accessed January 2022).

[38] G. Wood et al., “Ethereum: A Secure Decentralised Generalised
Transaction Ledger,” Ethereum Project Yellow Paper, Vol. 151, No.
2014, pp. 1–32, 2014.

[39] X. Zhang, T. Wang, Y. Yu, Q. Zeng, Z. Li, and H. Wang, “Who,
What, Why and How? Towards the Monetary Incentive in Crowd
Collaboration: A Case Study of Github’s Sponsor Mechanism,” 2021,
https://bit.ly/335h2qF.

https://ethereum.org/en/eth2/
https://ethereum.org/en/eth2/
https://www.binance.org
https://bit.ly/3DAdRnm
https://bit.ly/31N4xj6
https://github.com/flatfeestack
https://github.com/flatfeestack
https://flatfeestack.io/
https://bit.ly/3DBIQjd
https://bit.ly/3oyaadz
https://bit.ly/3lNobSZ
https://flattr.com/
https://gitcoin.co/
https://bit.ly/3dueKmP
https://tezos.com/whitepaper.pdf
https://en.goteo.org
https://en.goteo.org
https://issuehunt.io/
https://ko-fi.com/
https://ko-fi.com/
https://bit.ly/3DyiTAL
https://opencollective.com/
https://opencollective.com/
https://opengsn.org/
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.so
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.so
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.so
https://bit.ly/3oA5rZa
https://bit.ly/3oA5rZa
https://www.patreon.com/
https://www.patreon.com/
https://stripe.com/connect
https://tidelift.com/
https://bit.ly/335h2qF

