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1 Executive Summary
Measuring public interest in a particular product or service is highly important for the strate-
gic planning of businesses. Today, secure and non-invasive methods of visualizing an audi-
ence’s mobility exist, which are key in an increasingly digitized society by passively tracking
wireless signals emitted by portable devices. The analysis of these signals enables the ex-
traction of Key Performance Indicators (KPI) for the efficient planning of marketing strategies
for business events or campaigns, which in turn improves the offering of a product or ser-
vice to a particular type of audience. The provision of a solution capable of benchmarking
live performance Key Performance Indicators (KPI) of exhibitions or events based on data
passively captured from signals emitted from mobile devices defines the essential basis for
the “Passive Wireless Intelligence Tracking System” project (PasWITS). Thus, it is possible
to obtain insights into how long visitors are engaged in an exhibition and how many visitors
and observers are on site. Additional metrics, such as peak times, popular routes, and the
duration of certain visits, will become measurable.

PasWITS explores two fundamental points from a business point of view: (1) the passive
capture of device data and its identification, and (2) data correlation and visualization, which
involves the correlation of devices and users and a prediction of scenarios (i.e., prediction of
events and exhibition performance). Also, by adding a dedicated visualization solution to the
scenario characterization, it will be possible to predict how a particular event or exhibition
might behave based on historical data.

Firstly, PasWITS contributes to the design of a suitable passive collection architecture
with different assumptions. Secondly, PasWITS provides a prototypical implementation by
correlating these data sources to ensure the precise identification of devices and their tra-
jectories. Thirdly, the visualization of KPIs is based on the processing of collected data. In
this regard, the KPI calculation and visualization, while not presenting an in-depth research
complexity, have a fundamental business impact, which enables clients to view the perfor-
mance of their exhibition or event in real-time. The fourth key contribution of PasWITS is the
creation of event and display profiles in order to create respective databases for predicting
success or failure based on those KPIs observed.

Despite pandemic-related challenges preventing the planned for large-scale testing and
evaluations, several positive observations can be made from both a business and an aca-
demic point of view. From a business point of view, the Cloud Counter solution has become
a product in the livealytics’ service portfolio. From an academic point of view, several peer-
reviewed publications have been published, in which the UZH team extended with students
investigated the theoretical and practical opportunity an operation of sensors carries.

The overall outcome of PasWITS indicates that the construction of a solution, while tack-
ling the multi-object tracking correlation problem, is highly valuable. The passive approach
taken and as proposed by PasWITS allows for a higher degree of accuracy in the under-
standing of how a certain crowd moves and behaves, without influencing the system under
evaluation, thus, generating an very useful input on the planning of their efficiency and po-
sitioning of public services. Also, improvements disclosed in this report allow livealytics to
expand into other customer segments, such as smart cities, tourism, and arts/entertainment.
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2 PasWITS
The PasWITS project involved livealytics, the SME focused on ”tracking & measurement
solutions provide insights to improve live customer experiences, optimize operational costs,
and increase sales.” and the Communication Systems Group CSG, Department of Infor-
matics IfI at the University of Zürich UZH with the expertise on ”excellent research in com-
munications, addressing communication mechanisms for charging, accounting, mobility, se-
curity, while considering Telecommunication economics, network management, and highly-
decentralized systems as major pillars of today’s communications in the Internet.” Thus,
based on an introduction into the combination of selected areas of expertise, the PasWITS
project goals are defined, the methodology deployed is summarized, and the structure of
this report is provided.

2.1 Introduction
Several methods for visualizing an audience’s mobility by (actively or passively) tracking sig-
nals emitted by portable devices carried by humans were proposed. However, they fall short
on real-time tracking due to a number of reasons, such as the oscillation and interference of
wireless signals or the lack of line-of-sight in image-based methods. Furthermore, real-time
satellite-based positioning technologies, e.g., the Global Positioning System (GPS), only
work outdoors (given the need for line-of-sight connection).

In this regard, there exist different indoor tracking technologies, ranging from capturing
wireless signals emitted by smartphones to the visual camera-based localization of devices.
However, in comparison to outdoor tracking, no specific technology has been established as
a de facto standard due to inefficiencies when used in isolation. For example, indoor tracking
based on Wi-Fi signals (i.e., IEEE 802.11 family of protocols) achieves a larger coverage
area than tracking based on indoor cameras but suffers from a lack of accuracy in tracking
the real-time position of these devices. The use of cameras ensures accurate tracking under
line-of-sight conditions but has a limited range and restrictions regarding privacy.

A single type of tracker may not give sufficiently detailed information about a device’s
position, often due to unreliability to estimate a position precisely. Thus, the main challenge
is the dynamic variations in error types and anomalies caused by the environment, such as
multi-path fading and signal attenuation. Therefore, combining measurements from different
tracking approaches, such as cameras, Bluetooth sensors, RFID-Tags (Radio Frequency
Identifiers), and other sources (e.g., LiDAR), can be used to increase the quality of estimating
device positions. Merging data from various nodes into “a sink” allows for the calculation of
correlations of these different data sources to estimate the devices’ position more precisely.

2.2 Project Goals
PasWITS had two fundamental goals from a business point of view: (1) the capture of pas-
sively device data and its identification, and (2) data correlation and visualization, which
involves the correlation of devices and users and prediction of scenarios (i.e., prediction of
events and exhibition performance).
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2.2.1 Passive Capture of Wireless Signals and Device Identification
The major technical challenges are the unique device identification and the correlation of
device(s) to its users considering that users might carry more than one device emitting wire-
less signals, and these devices can emit passive wireless signals through different sources.
Thus, it is possible to correlate the spatial and temporal dimensions through the RSSI signal
strength captured from different sources (e.g., Wi-Fi and Bluetooth) measured at a given
point in time. Thus, is possible to determine with a higher likelihood the uniqueness of
tracked devices. The major benefit of solving these challenges is to increase the precision
of the calculated performance metrics based on accurate measurements. Therefore, a solu-
tion that allows (a) broadening the number of tracked sources, and (b) enabling correlation,
at the analysis stage, the signal sources to uniquely identify the signals emitted by a single
device, will increase the accuracy of device detection.

Increasing the precision/accuracy of device identification and device-user correlation is
a key technical point to enable a competitive business advantage. Therefore, such identifi-
cation accuracy can be quantified, for example, based on a comparison of experiments in
controlled environments using a passive capture approach based only on the 802.11 Wi-
Fi protocol family, with the proposed approach combining Wi-Fi and Bluetooth sources and
correlating its produced data to avoid MAC-randomization. Hence, it will be possible to de-
termine a competitive advantage where the novel approach allows an increased accuracy
percentage to identify unique devices.

2.2.2 Data Correlation, Visualization, and Prediction of Performance
The challenges involve correlating wireless signals to unique devices and mapping these
unique devices to their users. Also, the input requires the event or exhibition settings to
determine the specific configurations for each customer, as well as external factors that
may influence the campaign (e.g., holidays, weather conditions, and others). Another chal-
lenge related to the data analysis involves predicting the performance of events or exhibi-
tions based on previous data (i.e., estimating the success or failure probabilities by profiling
events and exhibitions). Lastly, visualizing KPI metrics on a dashboard enables real-time
performance analysis of the event or exposure, allowing one to make adjustments on the
run when possible.

A solution for these challenges offers an opportunity to make marketing investments
more efficient. By extracting relevant information from the collected data, it is possible to
provide customers with a low-risk investment to promote an exhibition or event and obtain
live feedback on its performance. Therefore, solving such challenges is a great opportunity
to create a competitive advantage by combining a hardware and software solution capable
of extracting relevant information for exhibitors.

2.3 Methodology
The progress of the project followed a balanced approach between development and prac-
tice, in which developed prototypes were, at first, individually evaluated. In this sense, the
project used a referenced research method to investigate and design tracking methods that
can be used passively, as well as applied research to implement and test tracking methods
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individually as well as combined. As such, the project had two clearly stages structured in a
way that corresponded to its objectives:

1. Expand input of passive tracking sources: the first stage of the project involved
widening existing wireless tracking approaches, such as IEEE 802.11 (WiFi) and Blue-
tooth Low Energy (BLE), to operate passively. Both referenced and applied research
were used to tackle specific challenges of these protocols, such as MAC address ran-
domization in the case of WiFi and high imprecision of signals in the case of BLE. At
this stage of the project, input sources were expanded beyond WiFi and BLE to in-
clude RFID, LiDAR, and Cameras. In general, each individual input source followed
the general steps below:

• Design and data schema: based advantages and disadvantages of each source,
the prototype was designed to collect data in a passive and GDPR-compliant way
(i.e., anonymizing sources). The data schema refers to minimal necessary times-
tamped spatial coordinates and additional information such as angle of capture,
height, rotation, the field of view, and other information that each sensor may
provide.

• Applied development: The implementation and application process in use cases
was conducted in close partnership with LiveAlytics, which provided hardware and
allowed several prototypes to be evaluated with the product on real consumers.
This applied research stage proved advantageous for refining the prototypes to
the practical needs and challenges faced in an operational stage, such as signal
interference or, in some cases, lack of power and connectivity.

• Data analysis: data produced over a period (day or weeks) was analyzed individ-
ually to identify each source’s advantages and disadvantages in contrast to true
cases.

2. Correlate, predict, visualize: the second stage corresponds directly to the second
objective. The overlap with the first stage, in which different indoor tracking sources
were explored, concerns the definition of a data schema with minimal information. The
major point was to ensure that different sensors produced comparable data, which in-
volved pre-processing stages in producing spatial information of tracked objects based
on a synchronized global clock. Similarly, this stage involved referenced research on
the state-of-the-art (near) real-time distributed systems and data fusion approaches.
Three major steps were followed at this stage, overlapping with the design of each
data source in the first stage:

• Data structure and API: an essential step to realizing the correlation and pre-
diction of scenarios. This step was mostly based on existing definitions from ref-
erenced research and applied in practice. Thus, each tracking source should
periodically produce timestamped coordinates.

• Design of correlation and prediction engine: involved referenced and applied
research to solve the problem of correlating large amounts of data generated by
different sensors of different types.
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• Visualization: this stage tried to answer the question of how to provide a simple
and direct understanding that allows a non-technical user to understand the met-
rics provided by the system. In this sense, the production of the dashboard was
also based on referenced and applied research methods.

2.4 Report Outline
This final technical report of PasWITS is structured as follows.

• Section 3 outlines the fundamental concepts concerning each investigated input source
and the theoretical basis used in their solution.

• Section 4 presents in a general way the project’s modular development methodology,
which was organized in data input (involving several sensors), processing backend,
which receives data from several sensors and performs data correlation and prediction,
and frontend which presents information in an efficient way for users.

• Section 5 offers the results of the various experiments performed during the project,
including local evaluations, simulations, and in-field experiments performed along with
livealytics.

• Section 6 discusses those key findings, addresses the crucial points and impacts, and
outlines challenges faced in the execution of the project.

• Lastly, Section 7 summarizes the work performed and adds considerations along with
possible aspects for improvement.
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3 Fundamentals
While industrial relevance is shown at first, the fields of application are described secondly
to complement in a third part this perspective with their technical and formal foundations this
project builds upon and eventually exploits.

3.1 Industry-relevance of PasWITS
Although there are local and international companies in the same scope of internal tracking,
it is observed that the main focus of the project (correlation of different data sources) is not
explored by these companies. Companies often rely on the sole capture of Wi-Fi signals, it is
noted that their tracking method is based on an active mode - requiring that the analyzed de-
vice be connected to an access point. As proposed by PasWITS, a passive approach allows
understanding of how a certain crowd moves and behaves, without influencing the system
under evaluation, generating an extremely useful input on planning their efficiency and posi-
tioning of public services. First, PasWITS contributes to implementation by correlating these
sources to ensure precise identification of devices and their trajectories. Secondly, the vi-
sualization of KPIs is based on processing collected data. In this regard, KPI calculation
and visualization, while not presenting an in-depth research complexity, have a fundamental
business impact, which enables clients to view the performance of their exhibition or event
in real-time. The third key contribution of PasWITS is creating event and display profiles to
create a database for predicting success or failure based on the observed KPIs.

3.2 Fields of Application
The concept of the PasWITS project, jointly idealized by UZH and LiveAlytics, targets the
indoor localization scenario providing near real-time tracking. In this scenario, multiple use
cases are possible in public urban spaces or private events/trade fairs in order to analyze
the flow of people and obtain insight into their interest in a particular product or service. That
is the target of the concepts designed and evaluated in PasWITS considering the current
needs (i.e., customers, use cases) of LiveAlytics. For example:

• Live events and promotions: also known as MICE (Meetings, incentives, confer-
ences, exhibitions), in which the goal is to provide, for example, a view on the engage-
ment of visitors, obtain insights of which products/services are more attractive.

• Retail analytics: offers the opportunity to obtain important data concerning customer
behavior and the performance of different stores and activities. For example, it is
possible to provide heatmaps and flowcharts and test the impact of certain promotions
or store layouts on customer behavior.

• Health in public spaces: a use case that was adjusted during the execution of
the project. Tracking customers’ behavior indoors allows for increasing health and
safety measures such as safe distances, placement of customer-oriented services,
and checks based on their vaccination certificates.
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In addition, PasWITS was designed to follow an (1) modular and (2) data-driven approach
to (1) allow flexibility in the types of sensors used, and (2) combine the data from different
sensors allowing for more accurate tracking. These design steps were directly derived from
the project goals, namely (1) the capture of passive device data and its identification, and (2)
data correlation and visualization. As such, can be expanded to further use cases where the
fusion of data from different sensors is beneficial (i.e., general tracking) making PasWITS
not limited to the use cases above. Nonetheless, the approach requires harmonization of
data (pre-processing) and the use of a standard data format to correlate tracking data from
sensors of different natures.

3.3 Technical Foundations
These foundations encompass communication standards used, camera devices deployed
and evaluated, and formal methods exploited to solve the major questions posed.

3.3.1 WiFi IEEE 802.11
The IEEE 802.11 standard specifies a set of protocols for implementing WLAN as presented
in Figure 1. The IEEE 802.11 specification focus on the two lowest layers of the OSI model
since they incorporate both physical and data link components. The link layer provides
a set of rules determining how to access the medium and send data, but the details of
transmission and reception are left to the PHY layer (layer 1) [36].

Figure 1: The IEEE 802.11 Family of Protocols

Basic components of 802.11 are stations, access points, wireless medium, and distribu-
tion system. Stations are computing devices with wireless network interfaces, which are not
necessarily mobile devices. Access Points work as bridges between the wireless medium
and the rest of the world. They convert wireless frames to frames that can be transmitted
over fixed network connections [36]. Lastly, the wireless medium is the medium the data is
transmitted.

PasWITS relies on 802.11 probe-request frames sent by mobile devices to request in-
formation on available access points nearby. A probe-request frame (cf. Figure 2) consists
of various fixed-length header fields and a body of variable length consisting of a varying
amount that reveals certain properties about the sender.
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Figure 2: Probe Request Structure [36]

Probe Requests are broadcast in bursts at a high frequency by many devices containing
an 802.11 capable network card. Their purpose is to discover access points to associate
with [68]. The number of bursts, the number of probe requests contained in each burst, and
the exact timing between each packet, depending on several factors such as screen state,
charging state, airplane mode, Wi-Fi setting screen open, Bluetooth activation, and proximity
of a known network [68].

3.3.2 Bluetooth Low Energy (BLE)
Bluetooth (BT) is defined as a short-range communications system intended to replace the
cable(s) connecting portable and/or fixed electronic devices [13]. Operating in the unlicensed
2.4 GHz Industrial, Scientific, and Medical (ISM) frequency band, BT devices typically trans-
mit up to a distance of 10 meters to serve this purpose.

24 bit 8 bit 16 bit

LAP UAP NAP

CID OUI

EUI-48
LSB MSB

Figure 3: The Composition of BT Addresses [13]

A BT packet is composed of a 24-bit Company ID (CID) and a 24-bit Organizationally
Unique ID (OUI) (cf. Figure 3). Every BT device has a unique BT address, which is con-
structed as a 48-bit Extended Unique Identifier (EUI-48) according to the IEEE Standard
for Local and Metropolitan Area Networks [43]. The CID is vendor-assigned, whereas the
OUI has to be obtained from the IEEE Registrations Authority and is assigned to individual
organizations, manufacturers, or vendors of BT technology. For BT networking, parts of the
BT address are differentiated by the Lower Address Part (LAP), corresponding to the CID,
and the 16-bit non-significant and 8-bit upper address parts, forming the OUI.

The Project Ubertooth is the passive sensing device used for tracking BT packets. Uber-
tooth is a fully open-source hardware and software package for wireless development [37],
suitable for experimentation with both BT Low Energy (BTLE) and classic BT. Ubertooth al-
lows access to lower layers of Bluetooth protocols, which are normally hidden in off-the-shelf
Bluetooth modules, being available at low cost.
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Figure 4: The Ubertooth One Sniffer [40]

BT is a spread spectrum technology, meaning that it moves over a wide range of frequen-
cies during the transmission of data. Most BT monitoring hardware, therefore, implements
an array of transceivers to observe all channels used by the BT protocol simultaneously.
Ubertooth One used in this paper (cf. Figure 4), however, only uses a single transceiver,
opting instead to try and hop along with the hopping pattern of ongoing BT connections to
eavesdrop data being transmitted [37]. Consequently, only BT classic is fully supported by
Ubertooth One.

3.3.3 Ultra-wideband (UWB)
The Ultra-wideband technology was developed following the allocation of the 3.1-10.6 GHz
bands by the Federal Communications Commission (FCC) in 2002. The IEEE 802.15.3
UWB standard was initially introduced with the purpose of enabling high throughput, allowing
for high data transfer over short ranges. In comparison, the Impulse Radio UWB (IR-UWB)
standard was defined in the IEEE 802.15.4 specifications, to allow for highly accurate rang-
ing and positioning. While UWBs high throughput capability has not been adopted by the
industry, IR-UWB has seen multiple renewals and amendments, such as IEEE 802.15.4a,
which until recently was the most used UWB standard [73].In 2019, IR-UWB localization re-
ceived renewed interest due to the release of the IEEE 802.15.4z amendment, which aimed
to further increase IR-UWB ranging performance and Physical Layer security[21]. Leading
to the founding of the Fine Ranging (FiRa) Consortium, backed by industry leaders such as
Apple, NXP, Samsung, and Google[32].

In April 2021 Apple released the AirTag, which utilizes a combination of the previously
mentioned Bluetooth Low Energy (BLE), Global Positioning System (GPS) and IR-UWB to
allow any object, attached to the tag, to be localized across multiple orders of magnitude:
across town (GPS), across a house (BLE), and across a table (UWB), as depicted in Fig-
ure 5.

In comparison to BLE, UWB is a wideband technology that utilizes a broader spectrum of
frequencies, but at lower power and for multiple short bursts, called pulses [78]. The output
power of a UWB pulse is regulated to limit interference with other protocols, essentially: ”the
higher the rate, the lower the transmission power per pulse.[78]” As such, the protocols frame
transmissions are split across pulses and usually integrate with the noise on the spectrum
(cf. Figure 6).

UWB is therefore promising in terms of precise indoor localization. However, optimal
reliability and precision, in line-of-sigh scenarios, are only possible from a distance of 20 m
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Figure 5: Qorov’s Accuracy and Range Comparisons of Available Technologies [74]

Figure 6: UWB Frequency Context [53]

up to 70 m [46, 74, 98]. This could explain Apple’s AirTag localization protocol switching,
from BLE to UWB, as soon as it is within a 2 m range of the targeted tag. The proximity
of the tag ensures accurate localization even with obstructions such as cushions, chairs,
or wardrobes. This would allow for two tracking scenarios. The first scenario, utilizing four
permanent anchors to triangulate the position of all UWB tags within the predefined area
and layout. The second scenario could utilize UWB tags as beacons, sending out messages
to show an item’s presence, allowing the precise localization of lost or hidden items, even
within unknown area layouts.

3.3.4 Light Detection And Ranging (LiDAR)
LiDAR is a sensing technology that observes ranges (i.e., distances) backscattered by a
laser, in which a sensor is used to measure the backscattered light in the environment [61].
Thus, the distance can be estimated by measuring the time required for the laser light to re-
turn, given the speed of light. The basic principle for LiDAR originated in the early 1960s, and
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military institutions drove its technical developments for measuring distances and weapon
guidance [69].

LiDAR

Data Processing
Unit

Connection Ports

Figure 7: Slamtec Mapper M1M1 LiDAR Device [77]

The 2D LiDAR device used in PasWITS is the Slamtec Mapper M1M1 [77] (cf. Figure 7).
It is a 2D LiDAR able to perform 7,000 measurements per second and achieve a maxi-
mum range distance of 20 m with a 5 cm resolution in indoor and outdoor environments. A
Data Processing Unit (DPU) processes data in real-time, outputs a high-precision map, and
poses with a maximum data mapping area of 90,000 m2. Further, it provides a 10/100 Mbps
Ethernet port, an 802.11a/b/g/n/ac WiFi module, and Universal Serial Bus (USB) for com-
munication. Thus, it is suitable for tracking visitors in presentation stands without introducing
deployment complexities.

In addition, PasWITS used the 3D LiDAR Intel Realsense L515, which adds the depth
dimension for an indoor environment. The Intel Realsense L515 LiDAR is a small device that
is convenient and easy for mobility. It is the world’s smallest high-resolution LiDAR camera,
only 100 grams. Without ambient light, It can capture accurate depth data in the range of
0.25m to 9m [47], which is ideal for indoor environment detection use cases.

Figure 8: Intel L515 3D LiDAR [47]

This type of camera (cf. Figure 8) has a wide depth field of view, 70◦ × 55◦ (±3◦). For
an indoor environment, it is wide enough to cover the detected areas in this project. The
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detected image by LiDAR has a clear edge based on depth which is beneficial for object
detection. However, drawbacks still exist. The most influential concern is the ambient light
which greatly interferes with the detection range. Infrared light from sunshine could degrade
the resolution of detected images and affect the measurement results. Thus, the extent of
light affection is also considered and measured in this project.

In contrast to tracking solutions such as WiFi-based [75] and Bluetooth-based [76], LiDAR
tracking offers the following benefits:

• Precision: LiDAR scanners present a high precision in comparison to WiFi-based
and Bluetooth-based solutions. E.g., [75] implements a WiFi-based system, which
achieved a deviation of 1.1 m at a maximum distance of 10.8 m under good condi-
tions since Received Signal Strength Indicator (RSSI) values are not reliable, whereas
LiDAR devices can achieve a precision of 5 cm.

• Capturing objects, not devices: While the Android OS has enabled Medium Access
Control (MAC) address randomization by default since version 10 [63], Apple has ex-
tended MAC address randomization with iOS 14 [45]. Thus, device fingerprinting will
become increasingly difficult, not affecting LiDARs. Moreover, unlike Bluetooth or WiFi
tracking, it allows tracking objects without an intelligent device.

• Privacy: Data protection regulations have become increasingly strict, which ”light”
adheres to automatically. Tracking via WiFi or Bluetooth data could be complicated
because the MAC address is classified as personal data according to the GDPR [20].
Thus, LiDAR tracking does neither process nor even hold information concerning tracked
object identities.

• Line of Sight: LiDAR sensors can provide accurate results over long distances (up to
200 m in vehicles) [55]. Hence, LiDAR’s are often used in vehicles in combination with
other sensors [90].

However, LiDAR techniques show drawbacks due to their dependency on the physical
properties of light:

• Hidden objects: Due to the principle of operation, a LiDAR scanner cannot detect
objects that are behind other objects. This limitation can be compensated by a second
scanner capturing objects from a different angle.

• Large data sets: Depending on the resolution of the scanner (and also the aper-
ture angle and the use case), the number of data points collected can become exten-
sively large and data points deriving from static objects that are usually not of interest.
Henceforth, the post-processing of LiDAR’s data can be more extensive than that of
other measurement techniques (e.g., WiFi-based [75] and Bluetooth-based [76]).

• Robustness: The performance of a LiDAR scanner strongly decreases in heavy rain
or fog, which can reduce the detection rate of objects by up to 50% [30, 55].
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Figure 9: RFID Far-Field and Near-Field

3.3.5 Radio-Frequency Identification (RFID)
RFID (Radio Frequency Identification) refers to a technology, in which digital data is encoded
in RFID tags and captured by one or multiple readers through radio waves. RFID belongs to
the group of auto-ID technologies and it enhances them by allowing tags to be read without
a line of sight. Depending on the type of RFID the reading range is up to or slightly above
20 m [31]. Since data acquisition can be performed without human intervention, RFID tags’
operation is efficient. Due to no line-of-sight requirements, the placement of tags on objects
can be performed with fewer limitations, thus improving flexibility. In general, RFID tags are
categorized as follows [50]:

• Active Tags receive energy from their power supply to operate, they can autonomously
transmit data to the reader and cover greater distances than passive tags.

• Passive Tags do not operate on an energy source but receive power from the sig-
nal originating from the reader. They consist of a chip (with a unique identifier and
memory), an antenna, and a support or container. Once a reader passes the tag,
the respective radio frequency activates the microchip inside the tag to generate the
energy needed to operate.

• Semi-passive/Active Tags are equipped with an energy source, which is used to
power the microchip or even another device, such as sensors, but this does not power
the transmitter. To be able to transmit information, the tag still must be within range of
the reader/antenna.

Passive tags can be divided into Near-Field RFID and Far-Field RFID types, depending
on the frequency band used to communicate and the Electromagnetic (EM) spectrum. (cf.
Figure 9). In the near-field region, the interaction between components is dominated by the
magnetic field generated by the antenna, which induces an electric current in the tag by
inductive coupling and allows the chip to be activated. Tags of this type are part of the Low
Frequency (LF) and High Frequency (HF) classes. In contrast, in the far-field region type
the interaction of components is dominated by the EM field created by the antenna. The
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RFID tag resonates with the frequency of the EM field and the current generated activates
the chip. Tags of this type are part of the Ultra High Frequency (UHF) class.

RFID systems are attractive because of their relatively lower cost and technical potential
[8]. For example, RFID has a clear advantage over Bluetooth in deployment cost (compet-
itive tag cost), security (given one-way communication), and long-term maintenance cost
[24, 34, 76]. Within the RFID domain are different types of RFID tags, namely, passive and
active tags. The activeness refers to the need for a power source. In other words, an active
tag can only be functional when a power source is supplied, whereas a passive tag can
operate on its own without power [2]. Due to no power source, passive tags are less costly,
have longer usage, and come in smaller sizes.

3.3.6 3D Camera
In the context of the analysis of people’s movements, capacity, and engagement, a Xovis
PC2 Camera [97] is utilized. Additionally, Xovis 3D cameras are equipped with a 3D sensor
and two wide-angle lenses, which perceive the scene from different perspectives, achiev-
ing a precise depth map or 3D image of the entire scene. Both hardware and software
components of this technology have to be compliant with the EU General Data Protection
Regulation (GDPR) [89], and additional data protection laws, such as Federal Act on Data
Protection (FADP) [29], which are applicable in countries of the European Union. Thus, the
camera in use offers four levels of privacy protection: While level 0 of privacy has no restric-
tions, only a still image is shown in level 1 with insights on a person’s path. Level 2 disables
the video stream’s functionality, allowing only path tracking of visitors without revealing their
identities. In level 3, no tracked person paths’ are visible anymore, which makes it compelling
for use in places where strict privacy protection regulations apply.

3.3.7 Multi-lateration
Multi-lateration defines the process of geometrically estimating an object’s position in space
through distance measures to at least three points. It is called trilateration a case where
exactly three points are used. Mathematically, this corresponds to solving the following non-
linear system, with (xi, yi, zi) the position of the i-th point, (x, y, z) the position of the object,
and di the distance of the object to the i-th point. For planar problems, this can be simplified
further, leading to the following system in two variables:

(x− x1)
2 + (y − y1)

2 + (z − z1)
2 = d21

(x− x2)
2 + (y − y2)

2 + (z − z2)
2 = d22

(x− x3)
2 + (y − y3)

2 + (z − z3)
2 = d23

(1)

For planar problems, this can be simplified further, as is illustrated in Figure 10. This
leads to the following system in two variables.

(x− x1)
2 + (y − y1)

2 = d21
(x− x2)

2 + (y − y2)
2 = d22

(x− x3)
2 + (y − y3)

2 = d23

(2)
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Figure 10: A Planar Trilateration Problem

This system is then often linearized by subtracting the last equation from the other two,
leading to the following determined linear system of equations [59].

2(x3 − x1)x+ 2(y3 − y1)y = d21 − d23 + x2
3 − x2

1 + y23 − y21
2(x3 − x2)x+ 2(y3 − y2)y = d22 − d23 + x2

3 − x2
2 + y23 − y22

(3)

The solution is reached analogously for any higher-order multilateration problems. In
practice, distance measures are often imperfect, and the calculation of a solution for Equa-
tion 2 using a non-linear optimization leads to better results.

3.3.8 The Log-Distance Path Loss Model
The Log-Distance Path Loss Model is a popular model for radio signal decay over distance
[3]. It models the finding that a logarithmic function can approximate the decay of a signal
over distance. With RSS(d) the received signal strength at distance d, d0 a reference dis-
tance, n the path-loss coefficient and Xσ a zero-mean Gaussian random variable, it can be
defined as follows:

RSS(d) = RSS(d0)− 10n log

(
d

d0

)
+ Xσ (4)

In practice, the reference distance d0 is often set to 1 meter, and noise is ignored for the
calculation, simplifying the model even further. With RSSC , the received signal strength at 1
meter, it can then be expressed as follows:
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RSS(d) = RSSC − 10n log(d) (5)

RSSC is dependent on each device and has to be calibrated for. The path-loss coefficient
n is a factor that depends on the environment. For free-space, it is often chosen at n = 2.

3.3.9 Kalman Filtering
The Kalman Filter describes a type of Bayesian filter. Bayesian filters ”probabilistically es-
timate a dynamic system’s state from noisy observations” [33]. With the state at time t
represented as random variable st, it can be expressed mathematically as finding the prob-
ability distribution over st, which we then call belief Bel(st). With sensor observations over
time z1, zt, ..., zt, the belief is defined as follows:

Bel(st) = p(st|z1, z2, ..., zt) (6)

Bayes’ theorem tells us that this belief can also be expressed in the following way [56]:

p(st|z1, z2, ..., zt) = p(st|z) =
p(z|st) ∗ p(st)

p(z)
(7)

p(z|st) is the probability of making the observations z, given that we are in state st. p(st)
is the probability of being in the state st before our knowledge of the observations z. Finally,
p(z) is the probability of observing z without any restrictions by the state st. This theorem is
often expressed in the more high-level way

posterior =
likelihood ∗ prior

evidence
(8)

The Kalman Filter is then nothing more than a Bayesian filter that assumes the probability
distributions to be Gaussian. It is further detailed in [52, 56].

With

sk The state at time k

zk The observation at time k

Fk The state transition model at time k

Hk The observation model at time k

Qk The process noise covariance at time k

Rk The observation noise covariance at time k

we can define the state at time k as

sk = Fksk−1 + wk, wk ∼ N (0, Qk) (9)

and the observation at time k

zk = Hksk + vk, vk ∼ N (0, Rk) (10)
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3.3.10 The Kalman Filter Algorithm
We can now define the Kalman Filter algorithm as an iterative algorithm in two steps: the
predict step and the update step [52] [56]. In the following, the hat operator ”∧” will denote an
estimate of a variable, the superscript ”−” will denote a predicted (prior) and the superscript
”+” an updated (posterior) estimate.

During the Predict Step, we calculate the predicted state estimate ŝ−k and the predicted
error covariance P−

k

ŝ−k = Fks
+
k−1 (11)

P−
K = FkP

+
k−1F

T
k +Qk (12)

We correct the predictions using our measurements during the Update Step. We first
calculate the measurement residual ỹk and its covariance Sk.

ỹk = zk −Hkŝ
−
k (13)

S−
k = HkP

−
k HT

k +Rk (14)

We can then calculate the Kalman gain Kk.

Kk = P−
k HT

k S
−1
k (15)

Finally, we can compute the updated state estimate ŝ+k and the updated error covariance
P+
k

ŝ+k = ŝ−k +Kkỹk (16)

P+
k = (I −KkHk)P

−
k (17)

3.3.11 Similarity Algorithms
The correlation of multiple data sources is a fundamental aspect based on the position re-
ported by different input vectors, including their respective timestamps. Correlating tracking
sources based on known similarity algorithms are summarized in Table 1.

Equation 18 defines the Euclidean distance, calculated by taking the square root of the
sum of the squared pair-wise distances of every dimension. Distances (x, y) reported by
different tracking sources within a rolling time window (based on the timestamp of each
source) are compared in a simple Cartesian plane. The smaller the distance, the larger the
correlation is. Equation 19 is similar to the Euclidean distance but calculates the distance
between two vectors by considering the diagonal path (“beeline”) between two points, i.e.,
considering a grid line.

As with a slightly different approach, the cosine similarity measures the orientation of
two n-dimensional sample vectors irrespective of their magnitude. It is calculated by the dot
product of two numeric vectors, and it is normalized by the product of the vector lengths such
that output values close to 1 indicate high similarity. The Pearson correlation coefficient (cf.
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Table 1: Overview of Similarity Algorithms. Based on [35]

Algorithm Short Description Equation

Euclidean

Distance between 2 points in a
multidimensional space. Takes the square
root of the sum of the squared pair-wise

distances of every dimension

√√√√ n∑
i=1

(xi − yi)2 (18)

Manhattan
Similar to the Euclidean distance but the

distance is calculated based on grid lines,
taking the shortest diagonal path

n∑
i=1

|xi − yi| (19)

Cosine
Measures the orientation of two sample vectors
irrespective to their magnitude. Calculated by

the dot product of two numeric vectors

x · y
||x|| · ||y||

(20)

Pearson

Obtained via a Least-Squares fit and a value
of 1 represents a positive relation, -1 a
negative relation, and 0 indicates the

absence of relation

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(21)

Equation 21) is the most widely used measure for linear relationships between two standard
distributed variables and, thus, is often just called the “correlation coefficient”. Usually, the
Pearson coefficient is obtained via a least-squares fit. A value of 1 represents a perfect
positive relationship, -1 defines a perfect negative relationship, and 0 indicates the absence
of a relationship between these variables.
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4 Design and Prototype
PasWIT’s design starts with an overview, followed by the standard data structure defined.
While the date input is refined in all levels of detail, the Fusion Data Tracking System (FITS)
is determined as the proposed architecture. Finally, the data consumption perspective is
taken and detailed.

4.1 PasWITS Overview
PasWITS is based on the correlation of different passively emitted signals in events and
exhibitions to extract KPIs in relation to the public interest of a product or service to a partic-
ular type of audience. Considering that different sources of signal emissions (e.g., Wireless
802.11b or 802.11g and Bluetooth Low Energy - BLE) have different advantages and dis-
advantages, the combination of these in the same medication scenario allows for reducing
its disadvantages. Figure 11 illustrates the different architectural functions of the project in
which there are three different modules: input, back-end, and front-end.

Figure 11: PasWITS Architectural Functions

• Input: requires both the positioning and configuration of the different sensors used,
as well as manual input about details of the event or exhibition. Depending on the
physical characteristics of the place where the event or exhibition takes place (open,
closed, positioning of the target stand), different sensors can be used to measure the
public’s interest in the stand.

• Back-end: considers the operation in two modes: streaming and post-processing.
In the streaming operation mode, an API (e.g., HTTP/MQTT) would be available so
sensors can send data to be correlated in a rolling time window. In post-processing,
the data is correlated in a single batch for the event or display under analysis. In both
modes, KPIs (e.g., visibility, engagement, interaction rate, bounce rate) are calculated
and the analyzed data is stored with the configured characteristics forming the base of
prediction of events with similar characteristics.
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• Front-end: allows viewing KPIs and event configurations in a real-time dashboard and
generating logs and documents about the performance of the event or exhibition. In
addition to configuring sensors that often involve specific frameworks and procedures
for deployment, the front-end is the main means of user interaction to configure event
details and view their performance through data obtained from the backend.

4.2 Standard Data Structure
Different sensors use different formats to describe their measurements. A typical data stan-
dard (cf. Table 2), and data transformation steps, are necessary to correlate measurements
obtained from sensors of different types.

Location. Tracking is achieved by sensors that are installed in the location at certain
positions. Defined as an area where the PasWITS is installed to track the presence and
movement of visitors. A location is modeled by a coordinate system representing the area
covered by the sensors. A location’s data structure is defined by a name, an optional external
identifier, and, most importantly, a list of physically installed sensors at the location.

Figure 12: Exemplary Synthetic Measurement Generation Process. Left: True Sensor Posi-
tion (psen), Center: Relative Coordinates (prel) and Synthetically Generated Measured Posi-
tion (psyn,s). Right: Two Randomly Generated Measurements; One (p2syn,s) being Rejected

Sensor. At a pre-defined location, sensors are installed to capture visitors currently
present in the location. Each sensor is assumed to have an internal coordinate system,
which is used to express the X, Y, and Z coordinates of visitors they have tracked. To com-
bine the measurements of multiple sensors, their measurements must be translated from
their relative coordinate system to a common, global coordinate system. The common co-
ordinate system of sensors is the location’s coordinate system. To facilitate this transforma-
tion, information about the sensor’s position and orientation within the location are required.
Therefore, the sensor data structure contains the X, Y, and Z coordinates of the sensor’s
origin position related to the location’s coordinate system. Further, its orientation is captured
in the Pitch, Yaw, and Roll properties, which represent the rotation offset in comparison to
the location’s coordinate system orientation. This information enables the calculation of the
coordinate offsets and rotations. For instance, consider a sensor installed on the ceiling,
facing down, which means the sensor’s z-axis points to the floor as opposed to the location’s
z-axis, which points in the opposite direction. This particular setup would translate to a roll
of 180 degrees.
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Table 2: Data Structure

Property Description
Location

name Name of the location (e.g., Room number)
external identifier Field to store an id of an external system
sensors List of sensors installed at the location

Sensor
sensor identifier Unique identifier of the sensor
type Sensor type (e.g., RFID, Wi-Fi, Camera)
measurement unit Length unit of the measurement results (e.g., ’m’, ’cm’, ’mm’)
x origin X-coordinate of the sensor position, expressed in the

location’s coordinate system
y origin Y-coordinate of the sensor position, expressed in the

location’s coordinate system
z origin Z-coordinate of the sensor position, expressed in the

location’s coordinate system
yaw XY-plane rotation angle compared to the location’s

coordinate system orientation
pitch XZ-plane rotation angle compared to the location’s

coordinate system orientation
roll YZ-plane rotation angle compared to the location’s

coordinate system orientation
Measurement

object identifier Identifies the object captured by the sensor
sensor identifier Identifier of the sensor which recorded the measurement
x Measured x-coordinate (sensor internal coordinate system)
y Measured y-coordinate (sensor internal coordinate system)
z Measured z-coordinate (sensor internal coordinate system)
timestamp Timestamp the measurement was recorded

Prediction
object identifier Identifies the object captured by the sensor
x Predicted x-coordinate (location coordinate system)
y Predicted y-coordinate (location coordinate system)
z Predicted z-coordinate (location coordinate system)
timestamp Timestamp the measurement was recorded

Measurement. Each sensor produces measurements it captures in its reading range.
A measurement contains a timestamp, the sensor’s id, an object id, and the measured X,
Y, and Z coordinates. Depending on the sensor type, the object ID is assigned by the
sensor itself or determined by the object. A camera sensor, for instance, uses its indexing
scheme to identify objects, whereas wireless-based sensors usually use MAC addresses.
The coordinates are expressed relative to the sensor’s internal coordinate system.
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Prediction. Based on the measurement data collection, the system identifies unique
visitors by matching object IDs captured and assigned by the different sensors. It fits them
into clusters, mapping back to the unique real-world visitors. The system predicts the path
or timeline a visitor traveled in the period covered by the sensor measurements for each
identified visitor. The timeline is represented by timestamped position estimates (x, y, z),
expressed in the location’s coordinate system.

4.3 Data Input
The input refers to all types of data sources and configurations required to correlate multiple
data sources, as well as, to predict the position and movement of certain objects. Terms
such as object and device are often depending on the input source as these are based
on different tracking methods. For example, Bluetooth and Wireless tracking methods are
based on signals emitted passively by mobile phones whereas vision-based technologies
(e.g., LiDAR) track moving objects that correspond to moving persons within their tracking
range.

4.3.1 WiFi — ASIMOV
As mentioned in the section on fundamentals (cf. Subsection 3.3.1), mobile phones are
constantly probing nearby access points by sending probe-request packets. These packets
contain important information concerning the physical address of the phone (MAC address)
but are constantly switched by the mobile operating systems in an approach termed MAC
randomization.

ASIMOV circumvents such challenges by using available localization and Information
Elements (IE) to determine whether traffic captured originates from the same device pas-
sively or not. Thus, enabling the tracking of devices even when they use a MAC address
randomization. For this, the prototype ASIMOV was implemented. Unlike previous de-
anonymization approaches, such as NiFi [18] and Wobly [60], ASIMOV does not rely solely
on specific data fields that are not assumed to be stable over time or universally equal from
device to device. On the contrary, ASIMOV uses a combined Received Signal Strength In-
dicator (RSSI) value-based localization and the IE transmitted in every IEEE 802.11 probe
request frame. ASIMOV is entirely passive and can determine how many devices are present
and track over time a single device in the area covered.

The ASIMOV’s approach consists of a step to distinguish devices, divided into Data Gath-
ering and Data Analysis. Both processes are started by the user, who manages devices and
the processes through an intuitive management interface. The data gathering process or-
chestrates components to obtain data from available devices, aggregate these data, and
store relevant data. This process starts with monitor nodes being configured to capture de-
vices’ signals within a specified area. Monitor nodes dump Probe Requests (PR) received
at the specified Network Interface Card (NIC), extract relevant data fields, such as MAC ad-
dress, timestamps, RSSI values, and IEs, and return them to the Sync node. Sync nodes
aggregate and store data from monitors in a shared database for posterior analysis, inter-
acting with the Interface on one side and with the Monitor nodes on the other side.
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Figure 13: ASIMOV Architecture and Process to Distinguish MAC-randomized Devices

A. Information Retrieving The data analysis process is composed of three steps. In the
information retrieving step, the system loads data from the shared database for posterior
analysis: all packets are reassembled, such that for each PR, the RSSI values are measured
at different monitor nodes are stored. ASIMOV uses a multi-step approach, that combines
signal strength-based device localization with IEs. It, therefore, combines an external fea-
ture, with a feature, that is content-based and device-specific. Instead of relying solely on
probe request features, and struggling with the potentially small variance of IEs, ASIMOV
tries to increase the informative value of the IE, by adding the location estimate as an extra
source. Through this mechanism, it becomes possible to tell whether two probe requests
are possibly originating from one or multiple devices and ultimately to count present devices.
The necessary steps to make these decisions are described in Algorithm 1.

B. Positioning The positioning step uses RSSI information to localize devices using mul-
tilateration. To localize a device, RSSI values received at the different APs can be used to
estimate a distance in meters using the log distance path-loss model.

PL = PL0 + 10 ∗ γ ∗ log10
d

d0
+Xg (22)

The basic equation of the log distance path-loss model sets the path-loss(PL), repre-
sented by the RSSI value, in relation to several other factors [67]:

• PL0: The path-loss at reference distance d0

• γ: The path-loss exponent, a factor to incorporate different environmental factors

• d: The length of the path

• d0: The reference length

• X0: A normal (or Gaussian) random variable with zero mean, reflecting the attenuation
caused by path fading mechanisms.

Applying the path loss equation 22 to the measured RSSI values at the different receivers
results in an approximation of the distance the sender has to each AP. Often, however,
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Algorithm 1: Decision-making process
Result: Circumvent MAC address randomization based bias
while new packets are captured do

if packet is captured by multiple APs then
extract MAC address of sender and IEs;
if database contains combination of MAC address and IEs then

The device is not doing MAC address randomization;
else

if database contains equal IEs then
Create location estimate;
Compare current location with last location;
if locations close enough then

Devices are the same device doing MAC address randomization;
Add MAC address as alias to previous MAC address.

else
Devices are not the same;
Add to the database as new device;

end
else

Add data to database;
end

end
else

Discard packet;
end

end

multiple measurements exist for the same position and more than the minimum of three APs
are receiving a signal from the same sender. The ASIMOV system profits from the excess
data by incorporating as much information as possible into the multilateration process. The
emerging prediction error, resulting from an over-specified system of equations, is minimized
by using a non-linear least-squares approximation. This solution allows to fit a set of m
observations (more than three RSSI values) with a model that is non-linear in n unknown
parameters [95]. In this process, all unknown parameters, including parameters from the
path-loss formula, can be approximated.

C. Unique identification ASIMOV determines whether the original device is applying MAC
address randomization. The algorithm relies on snapshots of measurements over time,
combining knowledge from the current snapshot and the aggregation of past snapshots,
to classify devices as “not seen before”, “randomizing” if they are randomizing their MAC
addresses, or “non-randomizing,” if devices do not apply MAC randomization at all.

1. Already seen: Devices that can be identified as known, based on their IEs and their
location.
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2. Not seen before: Devices that have yet unknown IEs.

3. Randomizing: Devices that are randomizing their MAC addresses

4. Non-Randomizing: Devices that are not applying MAC address randomization

4.3.2 Bluetooth — BluePIL
BluePIL (Bluetooth Passive Indoor Localization) introduces a distributed streaming archi-
tecture that uses a node-sink topology to deliver near-real-time positioning estimates of BT
devices. It defines a data processing pipeline accomplishing identification and localization
tasks through passively captured BT Basic Rate/Enhanced Data Rate (BTBR/EDR) packets
in several steps, i.e., device identification, signal strength filtering, signal strength merging,
the localization algorithm, and location filtering. BluePIL is based on a Python implemen-
tation running on low-cost hardware (e.g., Ubertooth Devices and small computers, such
Raspberry Pi’s or ASUS Tinkerboard), and requires a minimal setup, since configurations
are handled automatically.

Sink (Laptop)

E. Localization
Filter

(1, 1)

Sensor (Ubertooth)

(N, 1)

Node (ASUS Tinkerboard)

BT Packets

BT UID

A. Device 
Identification

RSSI of 
UID

B. RSSI
Filter

Averaged
RSSI

C. RSSI
Merger

Estimated
UID Position

D. Localization
Algorithm

Filtered
ID

Position
Cloud

SoftwareHardware

Figure 14: BluePIL’s Data Stream Pipeline

Figure 14 describe the BluePIL data pipeline, designed toward a flexible deployment and
operation of individual hardware components (i.e., sensors, nodes, and sink). In general,
BluePIL is set up as a streaming data processing pipeline. It allows for physical or virtual
logical processing entities in a system deployed to be configured in different ways. BluePIL
is based on a distributed node-sink setup (i.e., , a system where many physical nodes send
data to a single physical sink), which is responsible for forwarding data to an entity, where
it can be stored or processed (e.g., the cloud). Computations are performed as early as
possible to avoid bottlenecks downstream and to reduce the amount of data forwarded by
the sink.

A. Device Indentification The identification step allows the system to profit from the fact
that BTBR/EDR lacks any sort of MAC randomization and avoids building complex systems
for fingerprinting by using a unique identifier that is already available: the BT address. The
BT address consists of the LAP, the NAP, and the UAP. These three address parts and their
usefulness for the device identification problem are discussed separately in the following.
The NAP is, as the name says, not significant, and can, therefore, not be derived from
passively captured BT traffic. [82] describes an approach, where possible NAP values are
selected heuristically from the list of all manufacturer OUIs. These values, however, have
to be validated through a targeted inquiry request, which breaks with the passive nature of
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BluePIL. The LAP is easily obtainable from passively captured BT traffic. It is contained in
the CAC in any packet and can be read without the need for any further processing [13, 82].

While LAP is not globally unique, it is sufficient to identify devices under certain circum-
stances [13, 19, 82]. As BluePIL’s goal is to identify mobile devices, such as smartphones or
tablets, it is important to account that the five biggest smartphone manufacturers share 72%
of the smartphone market among them (as of the first quarter of 2020 [48]). Considering a
the probability of encountering a LAP collision as P (col), b the probability of encountering
a different OUI as P (dO), and c the probability of encountering the same CID P (sC), it can
be stated that encountering the same LAP twice means that their OUI is different since BT
addresses are globally unique. Thus, the probability of a LAP collision is defined in terms
of P (col) = P (sC) ∗ P (dO). Even without any further optimization, this gives a fairly small
probability of around P (col) ≈ 5.96e−8.

Assuming that the 20 largest smartphone manufacturers share (almost) the entire mar-
ket, P (dO) ≈ 19

20
and P (col) ≈ 5.66e−8 holds. Thus, if in a certain environment the system

would register 10,000 different BT addresses, for example, the probability for a LAP collision
would still only be at 1 − (1 − P (col))10,000 ≈ 0.06%. This is sufficient for the potential use
cases of BluePIL and, therefore, the LAP as computed in [82] is used as a quasi-unique
identifier. This identifier is also suitable to identify individuals carrying a BT device, since all
devices in a piconet use the master device’s LAP for the construction of the access code,
i.e., two connected devices, such as a smartphone and a pair of BT headphones, do not
produce two separate identifiers.

B. Device Indentification RSSI values obtained from the sensor are pre-processed as a
first step. Figure 15 shows an example of RSSI measurements for a static device over a
period of five minutes. This example illustrates the large amounts of high-frequency, high-
variance noise that must be taken into account when working with this type of data. While
part of the noise can be attributed to inaccuracies of the sensor, a significant amount of
disturbance originates from the effects of multipath fading, i.e., a signal may travel along
multiple paths towards a sensor that diverges from the most direct path, the line of sight. This
effect is caused, for example, by reflections of the signal on surfaces in the surroundings of
the target device and the sensor. It makes the RSSI a difficult value to work with since the
distribution of this noise is not Gaussian, an assumption that many filtering and smoothing
approaches work under. The main goal of this step in the processing pipeline is, therefore,
the elimination of the noise caused by multipath fading and the conversion of the noise
distribution to a Gaussian one.

Existing research suggests that noisy parts of RSSI values correspond to the lower set
of values in the RSSI distribution. [16], defines a unidirectional outlier filter to be effective.
It eliminates values that deviate from the maximum value by a certain degree. [28] deter-
mines the maximum to be the most effective filter for a pre-processing of RSSI values for
localization purposes.

The signal that travels along the line of sight, i.e., that is not influenced by multi-path
fading, covers the smallest distance and, thus, arrives at the sensor with the highest strength.
A combination of a maximum filter followed by a mean filter is, thus, used in BluePIL. To
account for the streaming paradigm, these filters work in a purely retrospective way, i.e.,
work with a local subset of the data that only uses values from the past. To this end, a rolling
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Figure 15: (Left) RSSI Measurements for a Static Device Over a Period of 5 mins Using an
Ubertooth Sensor, and (Right) RSSI Values Potentially Useful (Top Box/Green) and Those
Probably Caused by Multi-path Fading (Lower Box/Red)

time window is implemented only containing values from the interval [tc−∆t, tc], with tc being
the current time and ∆t the window size, which are determined by the update frequency of
the sensor and the expected variance of the data.

C. RSSI Merger To compute a location from pre-processed RSSI values, a strategy has to
be determined to merge data streams. This part of the processing pipeline deals with two
problems: First, update cycles may differ between sensors, i.e., it cannot be assumed that all
sensors will have the same amount of data available at a specific point in time. Second, data
delivered by sensors may be fairly sparse. This may be due to the quality and capabilities
of sensors themselves, due to environmental factors or due to characteristics of the target
device. The goal of this step is to handle these problems, taking into account the streaming
paradigm implemented for BluePIL.

Interpolation is able to help with both the problem of differing update cycles and sparsity
of data. In general, BluePIL builds upon the assumption that update cycles of individual
sensors are short enough to legitimize the linear interpolation between two data points as a
valid estimation of the true state of the system. To enable the inference of RSSI values at
a certain point in time through interpolation, measured values must be available preceding
and succeeding said point. The signal strength merger will, therefore, delay the emission of
a value from a sensor until data is available from all other sensors before and after the point
in time, where the value was received.

D. Localization Algorithm Since BluePIL is completely passive, information is limited to
the signal strengths detected on an external sensor from any ongoing BT connection. This
rules out any fingerprinting-based approaches since they require the creation of a radio
map with the devices involved beforehand, leaving the path-loss-model-based approaches.
A path loss model requires parameters n and RSSC to be defined beforehand in order to
calculate a distance from a signal strength value. Based on existing research [16, 26, 88],
it is viable to set n to a fixed value based on the environment BluePIL is working in, as long
as this does not change drastically. n is dependent on environmental factors and does not
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vary between devices. The issue with RSSC , however, is not so easy to solve. Transaction
strengths may vary between BT devices. Due to adaptive power control, they may even
change over time for the same device [13]. The choice of a fixed value for RSSC is, therefore,
not an option.

To approach this, a method was designed that dynamically estimates the location of a BT
device and the necessary channel parameters of the path loss model. With k the number
of sensors, (xi, yi) the location of the i-th sensor, (x, y) the location of the target device, and
di the distance between the i-th sensor and the target device, the following multilateration
problem is defined:

(x− xi)
2 + (y − yi)

2 = d2i , i ∈ 1..k (23)

Since it is not possible to compute di from the path loss model directly due to the issues
mentioned before, the path loss model equation for distance is solved and then combined
with the multilateration problem above:

RSS(d) = RSSC − 10n log(d)

d = 10
RSSC−RSS(d)

10n

(24)

(x− xi)
2 + (y − yi)

2 = 10
RSSC−RSS(di)

5n , i ∈ 1..k (25)

A non-linear set of k minimizable equations is defined in terms of x, y and RSSC , with
RSSC the calibration signal strength 1 meter away from the target device and RSSi the RSS
measurement for the i-th sensor. This corresponds to a problem that can be solved using
a non-linear optimization algorithm. BluePIL uses Levenberg-Marquardt (LM), an iterative
minimizer that can be described as a combination of the Steepest Descent and the Gauss-
Newton methods [64] [66]. With p = (x, y, RSSC), the parameter vector, the vector p+ is
determined where fi(p+) is minimal for all i. LM works through a local linearization of the
non-linear set of equations at a certain area of interest according to the statement f(p+δp) ≈
f(p) + Jδp, where J is the Jacobian matrix. For BluePIL’s set of equations, the Jacobian
matrix is defined as:

J =



∂f1
∂x

∂f1
∂y

∂f1
∂RSSC

...
...

...
∂fi
∂x

∂fi
∂y

∂fi
∂RSSC

...
...

...
∂fk
∂x

∂fk
∂y

∂fk
∂RSSC

 =



2(x− x1) 2(y − y1) − log10
5n

∗ 10
RSSC−RSS1

5n

...
...

...
2(x− xi) 2(y − yi) − log10

5n
∗ 10

RSSC−RSSi
5n

...
...

...
2(x− xk) 2(y − yk) − log10

5n
∗ 10

RSSC−RSSk
5n


(26)
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With the Jacobian defined, LM then iteratively adjusts p by δp in a descending direction
until convergence is reached. To ensure that this convergence is to a global minimum, an
appropriate starting point p0 has to be defined. For the problem posed, it is important that
the minimum is found in the area of overlap of all sensors. To guarantee this, p0 is chosen at
the center of the area spanned by the sensors and with a value for RSSC that approximates
the range of values that are expected from the relevant device class.

p0 = (

∑
i xi

k
,

∑
i yi
k

,−30) (27)

Due to the limited resources available, the problem is generally limited to four sensors,
i.e. k = 4. The localization algorithm may, therefore, also be referred to as a quadlateration
algorithm in the following.

E. Localization Filter After having calculated a location in the previous step, the knowl-
edge of the motion of a person carrying a BT device can be used to improve these results
further. Kalman filters are a popular method for the improvement of positioning calculations
and have been used in various path-loss-based localization approaches [16] [100] [59]. They
combine models for the state of the system, the knowledge of previous observations, and
models for the observation of states to estimate the most plausible state of a system cap-
tured through noisy observations.

To use a Kalman filter, it is necessary to define the following: the state transition model
Fk, the observation model Hk, the process noise covariance Qk, and the observation noise
covariance Rk. BluePIL uses a simple kinematic model with (xk, yk) being current location’s
coordinates, and (ẋk, ẏk) the current velocity in x and y direction. The state vector is designed
in a similar manner to [100]:

sk =


xk

ẋk

yk
ẏk

 (28)

With ∆tk being the time difference to the last state estimate sk−1, the following state-
transition matrix is defined:

Fk =


1 ∆tk 0 0
0 1 0 0
0 0 1 ∆tk
0 0 0 1

 (29)

This expresses a belief that the subject carrying a BT device will have moved in the
direction gathered from the last measurement and that the velocity of said movement will
not have changed abruptly. For BluePIL’s process noise covariance, it is used a discrete
white noise as suggested in [56] and [7], under the assumption that the noise is a Wiener
process, i.e., is independent of previous time intervals and constant over a time interval.
With the variance σ2

v = 0.001 [56], it is defined as follows:
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Qk =


1
4
∆t4k

1
2
∆t3k 0 0

1
2
∆t3k t2k 0 0
0 0 1

4
∆t4k

1
2
∆t3k

0 0 1
2
∆t3k t2k

 ∗ σ2
v (30)

Values obtained from the previous step in the pipeline are used as observations, i.e.,
location estimates calculated through the modified multilateration method. Therefore, the
following observation vector is used:

zk =

[
xk

yk

]
(31)

Then, the following observation matrix is defined to express that the observation corre-
sponds to the x and y coordinates of the state vector:

Hk =

[
1 0 0 0
0 0 1 0

]
(32)

Finally, the observation noise covariance matrix is defined. Those values used were de-
termined experimentally and work well with sensors used for this setting, while for a different
set of sensors, these values might have to be adjusted.

Rk =

[
0.3 0
0 0.3

]
(33)

Using the Kalman filter allows for the improvement of values calculated in the previous
step using the information contained in previous values and the knowledge of the system
dynamics. It eliminates outliers and smooths these results simultaneously, using plausibility
as a determining factor.

4.3.3 LiDAR — LaFlector (2D) and LiCount (3D)
This section details the design of two different prototypes. One based on a 2D LiDAR initially
used to range objects within its field of view, and a 3D LiDAR counting with more capabilities
to distinguish between objects based on the view depth.

2D LiDAR LaFlector (a wordplay from laser beam emitted by the LiDAR and the laser’s
reflection) is designed to reach a flexible deployment and operation of individual hardware
components (i.e., sensors, nodes, and sink). It is based on a distributed architecture in which
multiple nodes are connected to the respective LiDAR sensors sending data to a sink. The
sink is responsible for collecting positioning data and determining the positioning of dynamic
(people) and static (environment) objects. Thus, pre-processing steps are performed as
early as possible to avoid bottlenecks downstream and reduce the amount of data forwarded
by the sink [71]. The following sections show the assumptions defined for its design, detail
LaFlector’s design, and provide implementation details. LaFlector’s code is open-source1.

1LaFlector’s source-code: https://gitlab.ifi.uzh.ch/rodrigues/laflector
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Figure 16: LaFlector’s Node-Sink Architecture

Assumptions These are considered for an ideal operation of LaFlector:

• LiDAR’s Placement: The scanner is to be placed to minimize dead spots, horizontally
aligned with the floor.

• LiDAR’s Height: Object classification expects a solid body with a pre-defined width
concerning the measured distance. Thus, the laser must be operated at upper body
height. Placing the scanner at foot level would lead to incorrect classifications.

• Disturbances: No other devices are continuously transmitting signals at the same
wavelength to which the LiDAR scanner could respond to. This applies, for example,
to laser pointers or infrared remote controls.

Architectural Components LaFlector’s design (cf. Figure 16) is based on a distributed
architecture consisting of a server acting as a sink and one or multiple nodes. A node is
connected to a LiDAR device over WiFi or Ethernet, depending on the node’s capabilities.
This node-sink design was chosen to ensure extensibility and allows for multiple nodes (i.e.,
LiDAR and data collection) to be run on one sink (i.e., data processing).

• LiDAR: consists of no other visible sub-components and is basically handled as a black
box. The Slamtec SDK provides the needed functions to work with the device.

• Node: The node’s software runs either on traditional X86 or ARM architectures (e.g.,
System-on-Chip devices, such as ASUS Tinkerboard or Rasperry PI devices) being
directly connected via a USB port to the LiDAR sensor. Sub-components include the
SDK Parser, Socket Client, and Data Pre-Processing as follows:

– The SDK Parser collects the data from the LiDAR and passes it to the pre-
processing.

– The Socket Client connects to the Socket Server of the sink and receives com-
mands.

– The Data Pre-processing converts the distance (r) received and the angle (ϕ) for
each data point into timestamped Cartesian coordinates (x, y).

• The Sink is the largest component consisting of six sub-components.
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– The Socket Server receives data from one or more nodes via a TCP connection.

– The Command Line Interface (CLI) provides an interface capturing user inputs,
forwarding them to the socket server, and controlling the behavior of the Data
Processing.

– The Data Processing is responsible to segment, classifying and tracking dynamic
objects in the line of sight of multiple nodes.

– TRhe Database supports the data processing component with a time-series da-
tabase (e.g., InfluxDB) to store data points delivered by the node.

– The External (Ext.) Storage maintains data being exported as a standardized
timestamped coordinate to be contrasted or combined with different tracking sour-
ces, for instance, to support measurements from wireless tracking (e.g., ASIMOV
[75] or BluePIL [76]).

– The Visualization provides instant feedback on objects.

To account for the data streaming in the distributed node-sink architecture, data received
by the sink work in a retrospective fashion, i.e., work with a local subset of the data that
only uses values from the past. Thus, a rolling time window is implemented only containing
values from the interval [tc − ∆t, tc], with tc being the current time and ∆t the window size,
determined by the update frequency of the nodes and the expected variance of the data
(timestamped position).

Merging Upstream Data To compute a location from pre-processed positions, a strategy
has to be determined to merge data streams in a rolling time window from different nodes.
Bilinear interpolation is used to fit individual upstreams sent by nodes at different cycles
with a weighted average of the nearest coordinates. In a rolling time window of ∆t s, pre-
configured by the sink, nodes accumulate timestamped (x, y) coordinates until tc is reached
and any missing (x, y) coordinate in the rolling time window is estimated by the interpolation
at the sink. LaFlector builds upon the assumption that the update cycles of individual nodes
are short enough to legitimize the interpolation between two data points as a valid estimation
of the true state of the system. To enable the inference of position values at a certain point
in time, measured values must be available preceding and succeeding a said point.

Location Algorithm If the same object is detected by multiple nodes, a measurement or
a set of measurements should be associated with this object. This association considers
the position i.e., placement of LiDARs and timestamped coordinates of tracked objects re-
ported by nodes. However, as LiDARs do not gather information from the tracked objects
i.e., persons, the challenge is to model the movement pattern so that the same person is not
accounted for multiple times. Thus, it is considered that people follow an almost constant
velocity pattern in an indoor environment, in which there are no sudden acceleration move-
ments in contrast to their own average velocity. A nearly constant velocity model is given as
follows [39]:

x(k) = Fx(k − 1) + w(k − 1) (34)

where F is the state transition matrix of each person in a given time tc, and w(k − 1) is a
zero-mean white noise Gaussian process with covariance Q. The white noise is a statistical
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model defined in [7] that represents the ”near-constant” velocity variation. F and Q are given
as:

Fx = I ⊗
[
1 ∆tk
0 1

]
(35)

and:

Q = I ⊗
T 3

3
T 3

2
T 3

2
T

(36)

where Q is the power spectral density [39] of the process noise, T is the scan time, ⊗ is
the Kronecker product and I is the identity matrix. This expresses a belief that the object
will have moved in the direction gathered from the last measurement and that the velocity
of said movement will not have changed abruptly. Values obtained from the previous step
in the pipeline are used as current observations. Therefore, the following observation vector
is used: zk( xk

yk ) Then, the following observation matrix is defined to express that the obser-
vation corresponds to the x and y coordinates of the state vector: rk( 0.3 0

0 0.3 ) Those values
used were determined experimentally and work for the evaluation scenario in this paper.
The following heuristics are applied after data collected by nodes are prepared.

Segmentation of Environment Data segmentation consists of two tasks. While the first
task is to detect static objects i.e., environment, the second task compares a different (x, y)
in T+1 with the static objects to determine moving objects. An implementation detail specific
to the Slamtec Mapper M1M1 LiDAR Device [77] is that matching has to be done with every
laser rotation, and each rotation contains hundreds of points. Thus, the angle and distance
list are written to a Python dictionary that has the advantage of a O(1) lookup time.

1 for angle in scan_dict.keys():

2 temp_angle = angle

3 while temp_angle not in static_dict.keys():

4 temp_angle = temp_angle + 0.001

5 if temp_angle - angle > 0.005:

6 break

7 if temp_angle in static_dict.keys():

8 # do not allow points that lay behind static objects , if this happens ,

something is wrong in the

9 # room and if the distance difference is bigger than a threshold it must

be a moving object

10 if static_dict.get(temp_angle) > scan_dict.get(angle) and (

11 static_dict.get(temp_angle) - scan_dict.get(angle)) > self.

_static_moving_distance:

12 angle_list_moving.append(angle)

13 distance_list_moving.append(scan_dict.get(angle))

Listing 1: Comparing Dynamic to Static Objects

This snippet shows the acquisition and construction of the Static Dictionary. This dictio-
nary remains unchanged for the rest of the current measurement. Once the static dictionary
is created, detection of moving objects can start. Angle and distance are now retrieved again
per rotation and written to the moving objects dictionary. The moving dictionary is compared
with the static dictionary and as soon as a threshold (parameter: static-moving-distance) is
exceeded, the value is stored in a separate angle and distance list. These values are then
checked and classified in the next step.
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Object Classification Starts with the two lists angle list moving and distance list moving,
which contain the segmented measured values of the last three rotations. The first task of
classification is to distinguish between multiple objects. To do this, one starts at the first
point and compares it with the following one. If the distance between the points is smaller
than a certain threshold (parameter: split-distance) it must still be the same object. The
checkpoints are shifted and it is checked again. This process is repeated until the object is
completely captured. After the objects from the lists are separated, they are identified in the
next step.

Object Identification Decide whether a set of points that were previously classified as a
human object can be assigned to an already existing object (i.e., same person). The set of
points is matched with all objects that are still active. There are three cases that need to be
distinguished:

• No object match: The points do not correspond to any previously known object. The
object must be new accordingly.

• One object match: The points can be clearly assigned to an object. In this case, the
new position of the object is set.

• Two or more matches: In this case, it is not possible to decide which points belong
to which object. Assuming that the objects continue to move in the same direction, the
expected positioning is determined by means of a direction vector derived from the last
way-points.

Output The output is available in two forms. Plot. The position of the detected objects and
their direction vectors are displayed in a dynamic X/Y coordinate system. This output form
serves for visualization. Logger. The system has a logger which creates a file with the start
time at startup. The verbose level determines which data is written to the log file and which
is not. This output is used for debugging. Furthermore, the logger function can be quickly
exchanged with a database client, so that the corresponding data ends up in a database
instead of the log file. This is in case the data should be further processed or combined with
another data source.

3D LiDAR While web user behavior analytics is prevalent, in-store customer behavior an-
alytics is less common due to difficulties in tracking users without disturbing them. With WiFi
and LiDAR combined, we can take a passive approach to monitoring user movements within
stores. LiCounter combines Yolo and Deep Sort algorithms for detection and tracking, which
is evaluated in real locations to collect the data. Further, data is used for classification results
by the Gaussian mixture clustering method based on business metrics.

The workflow of LiCounter contains three phases: The first phase is to design a method
for localization; the second phase is synchronizing two LiDARs and preparing data for seg-
mentation, and the last phase is data analysis.

1. In phase 1, only one LiDAR is used to collect images in different scenarios, these
images are labeled manually in order to train the detector of YOLOV3 and the tracker
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of Deep Sort. Virtual machines are set up with InfluxDB installed, which is able to
receive data from both LiDARs.

2. Based on the result from phase 1, the detected distance of LiDAR with light is tested
for a scenario setup. Two LiDARs are used in a designed mock scenario of shopping,
where location, light, and setup would be measured to test the method. Data are
collected from the scenario, which is used for segmentation in the next phase.

3. Phase 3 is implemented locally, containing data cleaning, defining metrics for clas-
sification, and user segmentation. Finally, a clustered result is returned containing
whether the user is interested in an object or not.

Data preparation and collection The Intel RealSense SDK is an open-source and cross-
platform library supported by multiple common programming languages [47]. The package
pyrealsense2 is used to access the official Intel RealSense SDK 2.0 in Python. It supports
streaming data from the LiDAR sensor and converting the 640*480 objects to a NumPy array
of depth data stored as a variable depth image. Further, openCV library (stands for Open
Source Computer Vision Library) converted the depth data into a color map to use existing
computer vision algorithms. To prepare a training dataset, data are saved as images of
people passing by and different positions at several indoor locations. Example images are
shown in Figure 17.

Figure 17: Example of Collected Images of 3D LiDAR (Intel RealSense L515). Lefthand-side
Within a Laboratory at UZH. Righthand-side, At The Train Station.

Data is collected from four locations and divided into two categories regarding the light
conditions. Different settings are applied to different locations. Figure 18, Figure 19 and
Figure 20 show the real setup environment of data collection.

Daytime Condition with natural light.

• UZH Laboratory: It is the most convenient location considering the light, but the
number of people is limited. Different angles are considered and tested cf. Figure
18.
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• Train Station: An ideal location to have more people and more light influences.
LiDAR is settled underground. The farthest distance detected is around 3.5 me-
ters cf. Figure 19.

• UZH/IFI entrance: The LiDAR is set on a chair on the side of the entrance, facing
people when they pass by. The distance is set as 2 meters cf. Figure 20.

Night Without natural light.

• Mock condition at home: There is no ambient light and a minimal number of
people passing by. This scenario allows long-time data collection and more pos-
tures.

Figure 18: Data Collection Setup at the UZH Laboratory

Figure 19: Data Collection Setup at Train Station
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Figure 20: Data Collection Setup at UZH/IFI Entrance

Image Labeling Labeling is an image annotation tool for generating text files with object
location information that the YOLO algorithm can use [84]. To label images for customized
object detection, in our case, a Person, we manually draw rectangles around the Person
as closely as possible and set the class name as person, shown in Figure 21. We use the
system timestamps as image names to avoid repeated names. The resulting data is a text
file with the coordinate, x, and y of each object in the image and the index of the class name.

Figure 21: Labeling Images With The Tool LabelImg for Customized Object

The color images used in detection are converted from depth data and applied with a
colormap, which is different from the normal RGB images. In other words, the images do
not show details of the person and the pre-trained detector can not recognize the person
in this type of image. Thus, a customized object detector needs to be trained. The image
together with the text file generated by LabelImg is our dataset for training. Data is split into
Train and Test as well. With YOLOv3, a pre-trained Darknet-53 model weight is used for the
customized object detector in order to achieve a faster and more accurate training [83].

Data Pre-processing and Cleaning From the queried data of the VM, only one feature
needs to be cleaned.Timestamps appear as strings in format 2022-01-19 14:51:28.156420
is convert into datetime object in the format of %Y-%m-%d %H:%M:%S.%f. Outliers exist in
in-depth measurements. Since the range of detection is only 9 meters in an ideal environ-
ment, any depth data above 9 meters (9000 mm) is an outlier. Some measurements only
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appear in one timestamp, having a duration of zero. Since a person cannot pass through
the scenario setting within one frame, the zero duration data are also considered outliers.

The 3D LiDAR has a Depth field of view 70◦ × 55◦ (±3◦. Camera front glass with -4.5mm
and focal length is 1.88mm [47]. L515 camera outputs depth, which is the distance from the
object to the image plane, as Figure 22.

Figure 22: Converting Camera Frame to World Frame [47]

The center of the detected object is recorded as (u, v) coordinates in the Image plane.
There is ambiguity in projecting the points from the image frame into the world frame but
knowing the focal length and the depth help to disambiguate the points in the world frame.
Here are two steps of how to convert from the camera frame to the world frame:

1. Conversion factor: Given the field of view of 70 degrees, the focal length of 1.88 mm,
and the image plane width of 640 pixels, we can calculate the focal length in pixels.
The conversion factor alpha is defined as mm per pixel.

2. Distance from object center to point of interest: We already know the depth d
from LiDAR, the x from image plane coordinates, and the focal length f in pixels. We
convert d to pixels using the conversion factor from step 1. Using similar triangles, we
can derive the X which is the horizontal distance from the object center to the point of
interest in the top view using X/u = (d+f)/f . The X is presented in pixels. We convert
it to mm using the conversion factor. Since we place the cameras 2 meters away from
each other, we can easily calculate the euclidean distance between the object center
and the point of interest as

√
X2 + (2− d)2.

Metrics Provide an overview of the performance, and can lead to the generation of action-
able insights. We can encourage users’ behavioral change by intervening in the system, in
order to optimize the metrics. Optimizations can be done manually, automatically, or by com-
bining both. The manual optimization refers to the Hypothesis-Experiment-Evaluation Cy-
cle, which is widely known in internet companies as A/B test, and in academia as controlled
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experiments[57]. Below are metrics that we developed for the LiDAR counting application,
focusing on measuring user number and user interest by measuring duration and distance.

• Total user number. A total number of distinct users appeared in the scene.

• Accumulated interested user number. A total number of distinct users that have
spent more than 10 seconds within 0.5 meter range of the point of interest.

• Percentage of interested users. It is calculated by the Interested users / total users.
Measuring how attractive the object is to the group of visited users. This is especially
useful when we have multiple points of interest placed in different places that might
have different user flow. This metric is not affected by the total user number. For
example, if a product is visited by 10 users, 10 interested is considered to be more
attractive than an object visited by 100 users but only 15 users are interested.

• Total time spent on an interesting object. When the distance between the user and
the point of interest is below 0.5 meter and the time spent is more than 3 seconds, the
time spent is counted as time spent on the interesting object.

• Variation of interest. Variation of user flow calculated on interested users. It is a
product-centered metric, which gives insights about which product is more likely to be
interested, even more, likely to be bought, and which does not.

• Variation of user flow. Divide the entire time into windows of 10 seconds. The number
of people that have appeared in each 10-second window is one record. The variation
of user flow is the variance of the record. A high total user number and high variation
of user flow might be caused by visitor groups. A high total user number and a low
variation indicate a stable user flow. This metric gives insights about the venue instead
of products. For instance, it can be used to compare two retail stores at different
locations, etc.

For example, the total number of people is defined as the number of distinct IDs in the
frame within a defined time range. To count this value, data are grouped by ID. There are
two cases to count.

1. Number of people at each timestamp: Since we cap the depth of each camera at 2
meters, there is no overlapping area. The number of people at each timestamp is the
sum of counts in both cameras. There are no repetitive counts in this case.

2. Total number of people: Repetitive counts can occur in this case. People are as-
signed a different ID when going out of the frame and coming back. This also applies
to people going from one camera field to the other one. One person would be assigned
two IDs when crossing from one camera to the other camera field, and be counted as
two people.

To solve the problem of counting twice a single person, we merge the IDs by replacing
the two IDs of the same person who is detected by both cameras with one new ID. This can
be done because whenever a person is crossing the border, it is within the detection range of
both cameras, and is assigned two different IDs. A person can be assigned a third ID when
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going outside the range of one camera and coming back, and a fourth ID when the same
happens for the other camera, and so on and so forth. Therefore, we need to keep track
of all the IDs that represent the same person and merge them as one ID to avoid repetitive
count.

We do this by analyzing neighboring points according to timestamp. We identify the
samples as should be merged when they satisfy all three criteria 1) happen at the same
time: the time difference between the neighboring points below 1 second. 2) at the border:
the sum of depth from both cameras between 16000 to 18000mm. 3)taken by two cameras:
one ID with the ’ 1’ flag and one without. We build a data frame called ’merge ID’ that collects
all the IDs and their next IDs which should be merged. Then we build a graph that has all the
IDs as nodes and the neighboring relation as edges. All the IDs that belong to a connected
graph are the same person that has been detected multiple times. In our original data frame,
we replace all the IDs that belong to the same graph with a new ID starting with ’m ’ followed
by an index number of that graph.

4.3.4 RFID and Camera — CCount
The application scenario considers 3D cameras and RFID readers mounted on the ceiling.
Individuals within an exhibition wear or hold a low-cost UHF RFID tag in the form of a badge.
As individuals walk within the view of the 3D camera and RFID reader, RFID tags are con-
tinuously read and the 3D Camera tracks the participant’s position. In such a scenario, the
CCount must correctly match data originating from 3D cameras with the data collected by
RFID readers to uniquely count people in the scene (cf. Figure 23).

Person A

Person C

Person B

RFID Reader 3D Camera

Figure 23: Illustration of the Application Scenario

The challenge is identifying RFID tags belonging to IDs assigned by the 3D camera and
is, thus, associated with an individual. If a person who left the scene returns later, CCount
has to recognize and prevent it from being counted twice. To accomplish this, a method for
correlating the RFID ID of the 3D cameras with the Electronic Product Code (EPC) of the
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RFID tags is required. For that, a frontend is developed to handle the interaction with the
user, encompassing the selection of the desired camera, the associated event date, and a
graphical representation of the dashboard associated with the selected event. The data is
then requested from the backend, which is hosted on Amazon Web Services (AWS) and
based on lambda functions (cf. Figure 24). It is built based on a serverless architecture built
upon microservices to scale components while maintaining extensibility dynamically.

3D CameraRFID Reader

Data
TransformationAPI Gateway

Data 
CorrelationDatabase

Process
Metrics and

KPIs

Backend Frontend

id, src, pos(x,y),  
timestamp

Pearson
Correlation

Distance

Capture

Visualization

Figure 24: CCount Workflow

• The API Gateway collects and aggregates data coming from 3D cameras and RFID
readers in time windows.

• Data Transformation: Data received at the API is typically encoded in different stan-
dards (e.g., Cameras use Protobuf and RFID readers use JavaScript Object Notation,
JSON), and in this sense, the data transformation standardizes them for database
storage.

• The Data Correlation retrieves data in pre-defined time windows from the database
and uses the Pearson correlation to determine, whether there exists statistical evi-
dence for a linear relationship among variable pairs, such as coordinates.

• Process Metrics and KPIs (Key Performance Indicators) handle the localization
and filtering of data and minimize errors by removing outliers. Once localization data
is processed, metrics, such as the unique count of individuals, dwell times, or visit
duration, are calculated.

• The Visualization provides a graphical frontend, where it is possible to visualize met-
rics and KPIs in near real-time, and a REST API, where data can be retrieved.

Cameras Implementation Details A camera sends data to the API Gateway, which for-
wards it to the Data transformation module. This module implements a lambda function that
comprises a list of objects, each containing the following attributes: timestamp, coordinates,
and numberOfPeople. The next step involves the preparation of the retrieved coordinates
for the actual heatmap creation process. Figure 25 shows an example of a heatmap during
the testing stage in the laboratory cafeteria (3D Camera deployed in the ceiling).

Heatmaps were dynamically generated based on the predefined time windows. The idea
is to iterate over elements in the coordinates array and uniquely count the occurrences of
every (x,y) pair with the timestamp laying within the slider values. This way, it is possible to
ensure that every time the slider is adjusted, the data is filtered and the heatmap is updated
accordingly.
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Figure 25: Adjusting Tracking and Heatmap Based on Camera Data

Data Transformation Before the correlation and metrics, as well as KPIs, are applied,
measurement data needs to be transformed into the correct format. Three steps are nec-
essary to correlate data: (1) transform relative into absolute positions and (2) ensure that
the time difference (∆t) is within a pre-determined offset for a given time window. Lastly, (3)
initial filtering of data and erroneous readings from RFID and cameras is performed.

1. Relative and Absolute Positioning For (1) different sensors operate on coordinate
systems that differ (i.e., are relative) from the absolute position in the monitoring environ-
ment. The necessary input is the internal mapping of the environment in which the position
of each sensor (here cameras and RFID readers) and its field of view (cf. Figure 26) are de-
termined. For example, cameras have a limited field of view relative to the RFID reader and
are typically installed at critical points, such as entrances, exits, or checkout lines, where
individuals tend to crowd. Conversely, RFID readers have a more extended range for tag
reading, coupled with reduced accuracy, especially at crowded points.

2. Clock Synchronization An essential aspect of distributed systems is the need to en-
sure that different nodes are synchronized, and in the context of using different sensors, the
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Figure 26: Absolute (Left) vs. Relative (Right) Positioning [79]

problem applies. At this step (2) RFID reader and cameras feature a built-in clock that keeps
track of the date and time information (i.e., received data is time stamped from its source).
Since the clock is subject to drift, it may need to be synchronized periodically via the Net-
work Time Protocol (NTP) or manually adjusted. Also, when receiving data in a time window,
duplicates with the same ID and time stamp, but in different locations, are eliminated.

3. Data Filtering The Kalman filter in step (3) is used to smooth RFID readings and allows
for the increased accuracy of values estimated in the previous time window. It requires two
central equations that require specification and parameterization to fit a particular context.
The first equation makes a forward projection about the state s based on the previous state,
an (optional) control input and an error term [51, 93], sk = Ask−1 +Buk−1 + wk−1.

The matrix A relates the state s at the previous time window (k − 1) to the current time
window (k). Matrix B relates the optional control input to the state s. w determines the
process noise, assuming that it is Gaussian noise with a mean of 0 and variance of Q,
p(w) ∼ N(0, Q). The second equation relates the state in time k to the measurement in
time window k with a measurement error zk = Hsk + vk. Therefore, the matrix H is called
the transition matrix. To specify the matrices A and B correctly, it is important to recall the
underlying process. The positions x and y in time window k received from RFID data rely
on positions of x and y in the previous time window k − 1 as well as on velocities ẋ and ẏ at
time k − 1. It is possible to take into account accelerations ẍ and ÿ, too.

The model defined assumes a constant velocity for individuals, i.e., the velocity is con-
stant between time windows (∆t) and the accelerations ẍ and ÿ are both 0. While this reads
as a simplifying assumption, it is justifiable in this situation, since the time windows are rel-
atively small (1 s). Moreover, variations in speed (i.e., deceleration and acceleration) are
considered in the process’ noise covariance matrix Q. Therefore, a control matrix B is not
specified. The transition matrix is obtained as follows:
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A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1


The Kalman filter also requires parameterizing R and Q. While it is possible to optimize

the transition or covariance matrix, instead of providing them, underlying algorithms for this
are computationally expensive and not suitable in the context of near real-time applications.
One of the parameters needed is the matrix of measurement noises R.

R =

[
σ2
x 0
0 σ2

y

]
This matrix contains measurement noises for x and y and their covariance. The covari-

ance is assumed to be zero, so it is needed to obtain the variance of x and y. The RFID
manufacturer states that in 66% of cases the real measurement will be within 1 m and in
85% of cases the real measurement will be within 1.5 m [44]. Assuming that the normal dis-
tribution holds for these errors, it is possible to fit a normal distribution to the values provided.
By adjusting the distribution shape (i.e., the parameter σ2, since µ is assumed to be 0), the
area under their curve is equal to 0.66 (with z values of -0.5 and 0.5). Thus, it is possible
to state that 85% of these observations are within 1.5 m, yielding a standard deviation of
around 0.52 m. Further, it is assumed that measurement errors for x and y are independent
(i.e., σxy = 0).

Figure 27 displays the values measured (blue) versus the values filtered (orange). It is
visible that large swings are smoothed out (e.g., for x in the interval [0:200]) unless there is
a sustainable movement in position (e.g., the one that occurs for x in the interval [200:400]).
This is more apparent when looking at measures of y, since there are a few upward swings,
all of which are smoothed out by the Kalman filter. While the unfiltered values are relatively
more variable, the filtered values show a smaller variation at the beginning of each interval.
The scenario used in this example is considered a static tag in the time interval [600:1000].

Data Correlation While cameras provide the actual position of individuals detected, they
are not able to distinguish between individuals. The camera assigns a new ID to every
individual detected in the frame, but different IDs may refer to the same individual leading
to inaccurate measurements. The Pearson correlation [9] was used to determine statistical
evidence for a linear relationship among variable pairs, such as time-stamped coordinates
originating from the camera and the RFID reader. The Pearson coefficient R in Equation
37 should be at least 0.5 with a tolerance of 1 second between time stamps, which means
that for each pair of coordinates ∀(x, y) ∈ CAM of cameras, and each pair of coordinates
∀(x′, y′) ∈ RFID of RFID tags, should have at least 50% of correlation (i.e., moderate)
with a max difference of one second between their time stamps. Considering that both
RFID and Camera are synchronized, correlation R-values less than 50% and within the time
window are discarded. A common result considering possible distortions in the RFID signal
especially when multiple tags are grouped during a peak time, for instance.

R =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(37)
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Figure 27: Comparison of Unfiltered and (Kalman) Filtered Values for x and y Coordinates
with Static RFID Tags

In order to normalize the data for RFID readers, boundaries of the 3D camera (i.e., line-
of-sight) need to be manually mapped into the RFID reader’s coordinate system. Whenever
a change is made to the configuration of the RFID reader (e.g., changing the antenna power
or moving the reader), and these values must be reassessed. In addition, the matching algo-
rithm has to read values for each RFID reader and apply the normalization. Furthermore, to
smooth the location data and improve accuracy a filter is required. In this regard, a Kalman
filter is one of the most suitable ones for near real-time applications: it does not require a
large memory of past observations, is recursive, and is relatively fast [11]. Conversely, a
moving average would require a certain number of rolling past observations to be kept in
memory for smoothing.

Process Metrics and KPIs In the context of real-world applications (e.g., shopping, sports
events, and concerts), it is often helpful to create aggregated views of data to understand, for
example, the overall trend and make it accessible for a more comprehensive (non-technical)
audience. Thus, these data can be used for different purposes, such as to inform policy
decisions or evaluate the effectiveness of marketing measures. The scenario of a trade fair
(or other exhibitions), for example, is valid for a merchant or Point-of-Reference (PoR) to
understand how visitors behave around a booth. In this context, three pieces of information
seem of particular interest for practical RFID tracking applications: (1) How many of the
visitor’s spot a particular booth? (2) How many of the ones, who spot the booth, move closer
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to see what it is about? (3) How many of the ones that inform themselves about the booth
move on to interact with the PoR? In an ideal setting, KPIs are easy to understand and
compare, which is often achieved by using a ratio:

Visibility =
Number of Views

Number of Opportunities

Engagement Rate =
Number of Visits
Number of Views

Interaction Rate =
Number of Interactions

Number of Visits
In order to understand the number of visitors in a place and its behaviors, it is possible

to use the concept of Views (or impressions). This concept is defined as a count within
the views zone of interest, describing the number of times the visit zone was viewed. In
a similar direction, the dwell time consists of a minimum and maximum time interval (in
seconds), which is different for each zone of interest. In this context, the dwell time is used
to associate targets to specific areas of interest. Indeed, if a target is within the dwell time
range and its location is inside a particular zone of interest, it is classified and assigned to
that zone. There are three zones (one for interaction, one for visitors, and one for view) with
others designated as opportunities. Given that (i) the reader can read 6 m in each direction,
(ii) the location accuracy is approximately at 50 cm; (iii) based on simulating multiple PoRs,
(iv) KPIs should be sufficiently different for later visualization. While the zone radius was
defined in 100 cm steps, the interaction zone shows a radius of 100 cm, the visiting zone
has a radius of 200 cm, and the view zone has a radius of 300 cm.

This definition enables a straightforward interpretation (and comparability) in practice
since these values are percentages and, thus, range between 0 and 100 because any count
in the interaction zone is also a count in other zones. Another consideration is comparability.
While the above definition enables the reader to understand the number quickly, it does not
tell how the number compares. One can base the assessment on how good a particular
value is, which is necessarily between 0 and 100. This, however, is not practical, since it
is not known if an interaction rate of 100% is practically achievable. Thus, two benchmarks
are used. The first benchmark is an in-group benchmark, comparing the KPI of a partic-
ular period to the minimum and maximum of that KPI during a specified time range. The
second benchmark does the same, but instead of using an in-group comparison, it uses an
out-of-group comparison.

Lastly, to determine whether an individual is within any of the relevant zones, the dis-
tance between each observation and PoR is calculated by the Euclidean distance, where p
denotes the observation of a tag consisting of x and y coordinates and M denotes the PoR
position with x and y coordinates: d(p,M) =

√
(px −Mx)2 + (py −My)2. Afterward, a binary

variable is created for each PoR’s zone. These variables equal 1, if an observation falls
within a defined zone, otherwise 0. This ensures that an observation can be simultaneously
in multiple zones.

Visualization CCount extensively uses tables and data visualization techniques, such as
heat maps, bar charts, and line charts, which rely on data that may be subject to change
over time and needs to be shared among different components. The heat map generation
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process is triggered as soon as the frontend receives the necessary data, in this case,
person coordinates, from the backend. Heat maps and other KPIs (e.g., number of unique

Figure 28: Visualization of Visitors and Dwell Time

visitors and dwell times as depicted in Figure 28) are dynamically generated based on the
predefined time windows. This allows for the iteration over elements in coordinates array
and uniquely counts occurrences of every (x,y) pair with the time stamp laying within the
slider values. This way, it is possible to ensure that the slider is adjusted, data is filtered, and
graphical elements are updated accordingly.

4.3.5 Synthetic Data Generation
Once the standard data structure is defined and implemented, as shown in the previous
section, PasWITS can start data pre-processing to transform received information according
to the defined structure. Thus, the use of APIs ensures that data can be received directly
from the sensors or from the synthetic data generator for the purpose of rapid scenario
experimentation and prototype evaluation.

In addition, since the fusion of different sensor data to generate coherent movement
patterns of individuals is not commonly utilized in practice, datasets for such (indoor) sensor
measurements are restricted (i.e., no open datasets are available). However, [23] made
their dataset of movement data in a real-world setting available. This data was generated
by using three 3D stereo vision cameras in a public building over 13 days. The authors
collected approximately 5.5 million measurement points and identified approximately 1,200
individuals taken in the summer of 2019.

Similarly to the authors’ purpose to use this dataset for benchmarking and the analy-
sis of occupant behavior and trajectory patterns, the dataset is used in this work here as the
ground truth dataset from which synthetic measurements are generated and which is used to
evaluate predictions of the PasWITS engine. Measurements can be emulated synthetically
by applying transformations to readily available real-world movement datasets (e.g., move-
ment of people inside a trade fair over several days) and artificially placed virtual sensors in
a virtual location.

Utilizing these data publicly available, the emulation of real-world sensor measurements
can be performed by a synthetic generation of expected sensor measurements, according to
the following transformations (equations 38 to 44 and Figure 12). The goal of this synthetic
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measurement generation is to replicate real-world measurement data produced by a client
utilizing the API. The process of synthetic measurement generation, described below, is
repeated for every combination of every position in the real-world dataset (pabs,i,t) with every
sensor (s).

The left part of Figure 12 shows the true position of the sensor (blue) and an individual i at
time t (gray). The center shows the true position of i in relative coordinates (prel) and the ran-
domized, synthetically generated measured position (psyn,s), based on the spatial precision
of the sensor (gray dotted circle). The right indicates two randomly generated measure-
ments of the sensor, where one (p2syn,s) would be rejected due to insufficient measurement
reach (blue dotted circle) of the sensor.
Relative Positioning By rotation and translation, with respect to the sensor’s (s) position
(psensor) in a globally defined frame of reference, the absolute position (pabs,i,t) can be deter-
mined of a real-world position of an individual i at time t [25, 54]. Concerning the aforemen-
tioned frame of reference, it can be converted into a relative position (prel,i,t,s) regarding a
new frame of reference using the sensor as the new coordinate system’s origin. The sen-
sor’s position (psensor) is static (i.e., regarding its placement) over time and described by the
combination of three coordinates (xs, ys, zs) with three rotational parameters (αs, βs, γs) all
defined in relation to the origin of a global frame of reference.

prel,i,t,s = Ts(xs, ys, zs) +Rs(αs, βs, γs) pabs,i,t (38)

where Rs(αs, βs, γs) and Ts(xs, ys, zs) are the sensor’s translation (Ts) and rotation (Rs) ma-
trices. The relative (prel,i,t,s) and absolute positions (pabs,i,t) are 1 × 3 matrices comprised of
the (x,y,z)-coordinates of i at time t.
Spatial, Randomized Measurement Error Additionally, the spatial measurement error of
the sensor (µs), i.e., the random introduction of spatial measurement errors in the real world
due to imperfect sensors, is taken into account and modeled, resulting in the synthetic posi-
tion without applying any spatial or temporal cutoffs (p̃syn,i,t,s).

p̃syn,i,t,s = prel,i,t,s + µs (39)

where µs is based on the spatial precision of the sensor (ρs), but randomized in the (x,y,z)-
coordinates. As the precision only gives the upper-bound of the (absolute) spatial error,
it needs to be ensured that the simulated error distribution follows a continuous uniform
distribution, which would be expected in reality, i.e., assuming errors without bias concerning
distance. Therefore, µs takes the following form:

µs =

xrandomized

yrandomized

zrandomized

where (40)

|xrandomized|, |yrandomized|, |zrandomized| ≤ ρs (41)

A rejection sampling method ensures that the simulated spatial errors follow the previ-
ously described continuous uniform distribution over a sphere (3D) or circle (2D). That also
provides significant performance benefits over other methods [49, 92]. Figure 29 shows this
process by using the true position of the center of the sphere and then deriving simulated
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measurements based on it, such that each of them is located inside the previously defined
sphere.

Figure 29: Exemplary Rejection Sampling Outcome for n = 100 with ρs = 30 cm. X, Y, Z Axis
in [cm]. True Position, Simulated Measurement, Sphere Boundary

Figure (29) shows the result of an exemplary rejection sampling as implemented by [49,
92] using the true position as the center of the sphere with an applied spatial precision of 30
cm. Here, a simulation of 100 measurements of this exemplary sensor leads to no points
being outside the sphere defined, which demonstrates that all randomized points outside the
defined error range were rejected.
Spatial and Temporal Cut-off Functions Subsequently, to model the limited measurement
reach of a real-world sensor (λs), the spatial cut-off function (Λs) is introduced. Applying
cut-off functions to the intermediate synthetic position p̃syn,i,t,s ensures that no synthetic mea-
surements are reported that lie outside the reach of the specific sensor. Similarly, a temporal
cut-off function (Γs) is introduced in order to ensure that no two measurements time points
(tx,i,s and tx+1,i,s) are reported, where the time between them is smaller than the temporal
resolution of the sensor (γs).

psyn,i,t,s = Γs Λs p̃syn,i,t,s (42)

where Λs and Γs take the following form, respectively.
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Λs =

{
if: distance(i, s) ≤ λs then Λs = 1

else: synthetic measurement is dropped
(43)

Γs =

{
if: (tx,i,s − tx+1,i,s) ≤ γs = then Λs = 1

else: synthetic measurement dropped
(44)

Object Identifiers and Randomization Lastly, each sensor measurement of each object
has an attached object identifier. To ensure that identifiers are randomized and cannot be
linked to the original individual’s ID, the identifier for measurement can be randomized. Here,
potentially different variants of randomization are considered to replicate different real-world
behaviors.

• Static, non-randomized identifier: For each object, every measurement uses the
individual’s true ID. A real-world application where e.g., the participants of a trade fair
receive an RFID ticket and use a Wi-Fi-based app linked to their name.

• Static, randomized identifier: For each object, a constant identifier that is different
from the true individuals’ ID is used. For example, a real-world application where
participants of a trade fair receive an entry ticket badge and use a Wi-Fi-based app,
which is not linked to their name.

• Object-based, randomized identifier: An object reports an ID that is randomized but
constant over measurements, regardless of the sensor. A real-world application of this
would be a Wi-Fi device reporting a unique MAC (Media Access Control) address to
the sensor.

• Sensor-object-based, randomized identifier: An object reports an ID that is ran-
domized for each sensor trying to measure that object. A real-world application of this
would be a Wi-Fi device reporting a unique MAC address to the sensor and utilizing
MAC address randomization to obfuscate its path.

4.4 FusIon Data Tracking System (FITS)
This PasWITS architecture is specified, its data processing pipeline discussed, and the re-
spective API defined.

4.4.1 Architecture
Figure 30 summarizes the FITS architecture further describing the processing flow. At first,
the pre-processing and analytics components are highlighted, which are supported by a time
series database used to store the continuous streaming of data, and the core database hold-
ing configurations of locations, sensors, and measurements. Further, the data processing
pipeline describes the exchange of data between these components. Lastly, the evalua-
tor metrics describe the prediction model used to cluster identified objects observed from
different sensors.
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Figure 30: FITS’ Pre-processing, Analytics, and Storage, to Data Consumption

1. Unique ID: ensure that each visitor captured is uniquely identifiable across the entire
measurement dataset. For example, picture two camera sensors that assign numerical iden-
tifiers to objects in their reading range. Combining measurements of the two sensors makes
it impossible to distinguish between the objects recorded. In the case of wireless sensors
(e.g., Wi-Fi or Bluetooth), this is not a concern, since objects are usually identified by their
unique Medium Access Control (MAC) address. However, since FITS does not make any
domain-specific assumptions, generic handling of object identifiers of any sensors is essen-
tial. Since every sensor that recorded the measurement has a unique identifier, concate-
nating the object ID and sensor ID makes the measurement identifiable across the entire
dataset.
2. Unit conversion: converts measurements from sensors into a standard format. As spec-
ified in the location’s sensor configuration, sensors have an origin position, and orientation,
and provide their measurements in a specific unit (e.g., “cm”). By calculating the position
offset, rotation angle, and multiplication factor, data from different sensors is harmonized
and translated into the location’s coordinate system.
3. Up-sampling: ensures that the resulting position timeline is not sparse and contains a
position prediction for each time step—even when no measurement was recorded for that
point in time. Up-sampling has two purposes: (i) To compensate for missing data and (ii)
to interpolate the position when the time interval is below one second. An interval of 1
s is sufficient to model the real-time movement of visitors. However, as this assumption
might change, this parameter could be made a configurable variable in the location object.
Eventually, up-sampling is done by first rounding the timestamped data to 1 s. Then, the
data is grouped by an object identifier, and for each missing second a new row is inserted,
as well as to impute the X, Y, and Z coordinates. A Kalman filter is used as a kinematic
process that assumes visitors are moving at constant speeds [94]. Then, it fits on the sparse
measurement data and is used to impute the X, Y, and Z coordinates of the up-sampled,
newly created rows.
4. Smoothing: Since sensors, based on the Received Signal Strength (RSS), are prone
to signal interference, the generated signal contains considerable noise. This step smooths
measurement data to remove the noise captured within the data. Again, an object identifier
groups the data, and the Kalman filter is used as a kinematic process that assumes visitors
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are moving at constant speeds and is applied to the X, Y, and Z coordinates to reduce data
noise.
5. Object Correlation: combines as the core idea measurements from different sensors
for improved tracking accuracy. To leverage this concept and combine measurements, firstly
measurements and sensors are identified, which originate from the same experiment by
building clusters of unique object IDs received on each measurement. An ID identifies a
cluster (i.e., cluster ID) and contains the list of object IDs belonging together. Thus, each
cluster maps back to a unique visitor in the location.

As previously mentioned, spatial and temporal dimensions are critical to group unique
objects into a cluster. For example, grouping objects considering a one-hour difference
does not lead to meaningful clusters, since the underlying visitor probably has moved in the
meantime. To this end, time windows are identified in the dataset by sorting data frames
by timestamps and filtering unique object IDs to build the respective clusters. Python™

dictionaries store which objects a particular sensor has captured and, similarly, by which
sensor a specific object was recorded. Additionally, it stores possible object ID combinations
across all sensors to build up a mapping structure that contains a cluster ID and a list of
object IDs best fitting together. At this stage, these dictionaries are iterated to calculate the
pairwise and cumulative Euclidean distance (loss) to determine the fit of the current cluster.

An important aspect is the calculation of the loss that is being used to select best-fitting
clusters. The next code block illustrates the implementation of a cumulative norm function
that is used to calculate a loss based on the Euclidean distance. The function receives a
list of vectors (cf. line 1), corresponding to the object cluster under evaluation. Each vector
represents a measurement with X, Y, Z coordinates belonging to the object ID part of the
cluster that is currently being evaluated. In the trivial case of only one vector, the loss of 0,
is returned.

1 def __cumulative_norm(self , vectors):

2 cumulative_norm = 0.

3 if len(vectors) == 1:

4 return cumulative_norm

5 index = [[i] for i in range(len(vectors))]

6 index_combinations = list(itertools.product (*index , repeat =2))[0]

7 for i in range(0, len(index_combinations) - 1, 2):

8 a = index_combinations[i]

9 b = index_combinations[i+1]

10 cumulative_norm += np.linalg.norm(vectors[a] - vectors[b])

11 return cumulative_norm

Listing 2: Cumulative Norm

Otherwise, all possible 2-tuples of vectors are calculated and iterated over (cf. line 7-9).
For each 2-tuple, consisting of a vector a and a vector b, the Euclidean distance is calculated
and summed up (cf. line 10). As the Euclidean distance is symmetric, the parameter order of
the function is irrelevant. Eventually, the cumulative norm of the list of vectors is returned (cf.
line 11). Subsequently, best fitting clusters (i.e., lower loss) are selected, a unique cluster
ID is assigned, and dictionary mappings are updated by inserting the new cluster ID as key
and a list of clustered object IDs as value. Finally, these measurements are re-indexed with
their appropriate cluster ID.
6. Prediction of Position: approximates the object’s position with those clusters computed
by combining all sensor measurements for a specific cluster. Measurements are grouped by
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Table 3: Relevant CLEAR-MOT Metrics According to [10, 42]

Metric Description
MOTA Multiple object tracker accuracy
MOTP Multiple object tracker precision
GT Total number of unique object IDs encountered

(relevant for the context of MT, PT and ML)
MT Number of objects tracked for at least 80% of lifespan
PT Number of objects tracked between 20% and 80% of lifespan
ML Number of objects tracked less than 20% of lifespan

cluster ID and timestamp. A weighted average of these different sensor measurements is
calculated to predict the X, Y, and Z coordinates at a specific point in time.
Data Storage: While the correlation and prediction of position steps are performed entirely
in memory, data persistence is needed to support the pre-processing correlation process.
Two databases are required, cf. Figure 30: a core database holding static configurations of
measurements or settings and a time series database to handle the data upstreaming. The
core database is used (i) to facilitate CRUD operations (Create, Read, Update, and Delete)
on locations and sensor configurations, (ii) to store meta-information on the job status, (iii)
to store the calculated object identifier clusters.

While the requirements for (i) to (iii) are typical CRUD operations performed by REST
APIs, they can be handled easily by any relational database system. However, a time series
database is used to store the predicted location timeline. Data can potentially become very
large, depending on the number of sensors and periods of measurement. For example,
considering a period of 10 h (e.g., an event starting from 6 am and running to 6 pm), with
an up-sampling rate of 1 s and 100 visitors, yields a total of 3.6 million rows. Thus, efficient
read and write operations become critical, when storing or fetching this amount of data.
Evaluator Metrics: The prediction model is analyzed using those metrics, as specified in Ta-
ble 3, to ensure complete coverage of the problem’s sub-tasks and to provide a holistic view.
To generate the mapping between true objects and predicted objects, mapping dictionaries
of prediction object IDs and true IDs are created based on the ”object identifier clusters”
provided by the API response and the true dataset.

The evaluation pipeline starts with naı̈ve metrics of clustering, where a contingency ma-
trix is constructed. Afterward, the assignment of predicted and true objects is performed
based on the highest overlap. Next, the bcubed measures recall, precision and fscore are
estimated using those previously mentioned mapping dictionaries between true object IDs
(also called occupant IDs in the dataset) and those prediction object IDs provided by the API
response. These conclude the clustering evaluation methods.

Next, the prediction evaluation is performed using the Euclidean distances between pre-
viously matched predicted and true objects for each timestamp using the contingency matrix
method. The total sum of error, the mean Euclidean distance, the minimum, and maximum
distance, and the median distance, in cm, are calculated. The most meaningful measures
evaluated later on include the mean and median. The total sum needs to be analyzed care-
fully since the number of measurement points directly impacts it. Finally, the naı̈ve Euclidean
distance metrics are also provided as visualizations, based on different splits.
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CLEAR-MOT metrics not only provide classical analogon to accuracy (MOTA) and pre-
cision (MOTP), but also allow for the identification of how many objects were either mostly
tracked (more than 80% correct), partially tracked (between 80% and 20% correctly tracked),
and mostly lost (more than 20% correctly tracked), and the number of false positives and
misses. To estimate the CLEAR-MOT metrics, individual frames are constructed for each
timestamp consisting of these objects predicted, the true objects, and their positional co-
ordinates for the specific timestamp. These frames are aggregated, and the evaluation
algorithms provided by [42] are used to calculate relevant metrics. Since MOTA is sensitive
to overfitting the model and the API provides up-sampled results, CLEAR-MOT metrics are
calculated once without controlling for up-sampling and once with controlling for up-sampling
(i.e., removing objects predicted from frames where no expected true objects exist).

4.4.2 Data Processing Pipeline
FITS’ workflow (data pipeline) consists of five stages as outlined below and follows the gen-
eral design assumptions determined above:
1. Sensor Configuration Data input specifies the virtual measurement setup of the syn-
thetic measurement generation. This includes the specification of sensor positions (xs, ys, zs)
& orientations (αs, βs, γs) as coordinate systems relative to the absolute frame of a reference
as well as the definition of sensor parameters described in subsection 3, namely sensor spa-
tial reach (λs), temporal resolution (γs), and the sensor’s spatial precision (µs). Additionally,
the specification of a sensor type is necessary to be able to analyze the performance using
this parameter. Optionally, variables, such as sensor identifier format (default: UUID4) and
stability functions (default: linear), can be defined.
2. Data Generation The synthetic data generation utilizes a call to the Synthetic Data
Generator module to generate the emulation dataset based on sensors provided above. Ad-
ditionally, it can take the preferred number of measurement points of the real-world dataset
that should be analyzed for this sample. Furthermore, the identifier randomization method,
including the identifier type, takes place. And lastly, it is possible to reduce the provided 3D
dataset into a 2D dataset by setting the necessary flag.
3. Data Streaming All API calls, according to the details above, are performed, and the
resulting output is stored temporarily. First, the API endpoint is called based on the test
data input (either local or via a public Internet Protocol address, if deployed in the cloud).
The pipeline starts with the construction of the API payload in the standard data structure
format. This payload is pushed to the API to generate a new location. The response is
temporarily stored, and the synthetic data received in the stage before is pushed to the API
using the location parameters received from the API call beforehand. The data input batch
is transferred to the API, and a response is queried every second to ensure that timeouts
are caught. Lastly, the response, if received, from the API is stored for further processing,
evaluation, and visualization as well as optionally persisted via an exportable file.
4. Data Pre-processing, Analytics, and Storage The core stage is responsible for pre-
processing incoming data and storing them for further analysis. Those steps were detailed
in Architectural Components and further steps on the evaluator metrics are detailed below.
5. Visualization The front-end module gathers all API responses as they would be sent to a
real-world client, and enriches these, such that visualizations of predictions are made avail-
able persistently, if necessary. Therefore, the module first transforms the JSON response
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of the API into a .csv file for the user, if requested. Afterward, the predicted movement of
individuals is generated as an interactive graphic in 3D and 2D.

4.4.3 API Overview
The REST API is the public-facing interface for clients to interact with the system. It exposes
the functionality over the HTTP protocol and uses JSON as its data format. In order to man-
age different locations and their respective setup of sensors, the POST /locations endpoint
is provided to support CRUD operations.

{

"id": 1,

"name": "BIN-2-A.10",

"external_identifier": "BIN-2-A.10",

"sensors": [

{

"identifier": "d418a88b-bc41-476a-93e1-b0669b9295b9",

"type": "RFID",

"x_origin": 6,

"y_origin": -2,

"z_origin": 4,

"yaw": 0,

"pitch": -2,

"roll": 4,

"measurement_unit": "cm"

},

{

"identifier": "08ea942b-9998-4604-a0de-7e516861a01f",

"type": "Wi-Fi 2.4GHz",

"x_origin": 0,

"y_origin": -1,

"z_origin": 1,

"yaw": 2,

"pitch": -1,

"roll": 1,

"measurement_unit": "m"

},

{

"identifier": "9af28219-8191-4ad3-9f33-f356688c6cc5",

"type": "camera",

"x_origin": 6,

"y_origin": -2,

"z_origin": 4,

"yaw": 0,

"pitch": -2,

"roll": 4,

"measurement_unit": "cm"

}

]

}

Once a location with a sensor configuration was setup, the client can post the collected
measurement data to the POST /locations/{location_id}/inputs endpoint to create a
new input batch job.
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[

{

"object_identifier": "37957",

"sensor_identifier": "d418a88b-bc41-476a-93e1-b0669b9295b9",

"x": 264.0,

"y": 255.0,

"z": -12.0,

"timestamp": 1559376000000

},

...

]

Upon receipt, the system starts to process the measurement data. As this task is com-
putationally expensive (O(n2)) and depends on the input size, its computation is done asyn-
chronously in a separate thread to keep the client from blocking. In response, the job and its
processing status is returned.

{

"job_id": 26,

"location_id": 28,

"status": "scheduled",

"created_at": "2021-12-17 08:49:37"

}

By polling GET /locations/{location_id}/inputs/{job_id} the client will be updated
on the job status and upon completion, the status is changed to finished and the client can
fetch the output of the computation - the location predictions.

{

"job_id": 26,

"location_id": 28,

"status": "finished",

"created_at": "2021-12-17 08:49:37"

}

To this end, the client fetches the results at
GET /locations/{location_id}/inputs/{job_id}/outputs.
Results contain the object_identifier_mappings as well as the positions - a timeline with
position estimates for the identified objects.
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"job_id": 26,

"location_id": 28,

"object_identifier_clusters": {

"6c7b7f07-53a7-4259-8ef9-71573ad88be1": [

"39202___1df21a15-6ca9-4d52-91d0-e389cd7742e3",

"39202___caafac72-433d-47ef-a41f-5c39b2ea1495",

"39202___bace279a-80b8-4ef7-80ec-13714e5c4e9d"

],

"57402ef7-35d4-4d7c-82bd-bb31e8923368": [

"39222___caafac72-433d-47ef-a41f-5c39b2ea1495",

"39222___1df21a15-6ca9-4d52-91d0-e389cd7742e3"

],

"d54ba674-3f35-4cb2-bf59-166453be7edf": [

"37957___1df21a15-6ca9-4d52-91d0-e389cd7742e3"

]

},

"positions": [

{

"object_identifier": "57402ef7-35d4-4d7c-82bd-bb31e8923368",

"timestamp": 1559376000000,

"x": 145.01,

"y": 270.8,

"z": 12.36

},

...

]

}

4.5 Data Consumption
Data consumption refers to the different ways to present information gathered by FITS or
directly via sensors to users. In this regard, the design of a front-end followed a modular
architecture that harmonically relates a group of five stakeholders with three different sub-
systems, such as a graphical UI, and a microservice-based backend.

4.5.1 Stakeholders
In order to have a better overview of all stakeholders involved in the system, Figure 31 shows
an Entity Relationship (ER) Diagram, i.e., a graphical representation of all entities and their
relationships to each other in the platform. Within the system, there coexist five main entities,
i.e., users, which have different roles, agencies, clients, campaigns, and activities.

The platform supports different authentication and authorization layers, which implies
users with different roles are able to perform different actions. Additionally, new users need
to be invited into the platform in order to be able to interact with other stakeholders. At the
top of the roles hierarchy, there are root accounts. These accounts are the most privileged
in the system and have the strongest authorization and security level. Indeed, they are
the only accounts that are consciously authorized to have a global overview of all other
stakeholders and perform all possible facets of system administration. Since there are no
security restrictions imposed upon these accounts, they are able to perform all actions which
can be performed by lower roles. These permission-based layers are known as the cascade
effects. Finally, root accounts are the only ones that are able to create new agencies and
can actively manage them.

In turn, agencies are per definition entities that contain and relate to multiple clients
(brands). Generally, agencies are external marketing companies that conduct large mar-
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Figure 31: Stakeholders ER Diagram

keting projects and represent multiple brands simultaneously. In the proposed architecture,
agencies are managed by super admins, which are responsible to assign new clients and in-
vite new users to their specific agency’s ecosystem. Similar to root accounts, super admins
can create new entities in their environment. However, they can not open new agencies or
assign clients to an agency they are not responsible for.

Clients (or brands) can have multiple marketing campaigns and cannot exist without be-
ing assigned to an agency. For those clients which are not assigned to a third-party agency,
a default agency will be assigned to them. In case of the existence of the same client in
multiple agencies, this will be treated as two different entities.

While a super admin is responsible for a whole agency, similarly admins are in charge of
managing a subset of clients that have been assigned to them by a super admin. Indeed, the
latter defines the client’s ecosystem for a client admin. Following the authorization cascade
principle, client admins can create new entities in their environment, however, they cannot
open new clients or assign new users to a client they are not responsible for.

Thereafter, project managers cannot invite new users to join the platform but are re-
sponsible to create and manage client campaigns. In contrast, analysts can neither create
campaigns nor invite new users and have almost everywhere within the platform read-only
rights. Nevertheless, they are responsible for monitoring different marketing campaigns and
ensuring a successful outcome of all promotional activities.

Table 4 summarizes the overall permissions-based authorization concept, which states
that different users with different roles perform different actions. It should be noted, that both
super admins and admins can create new users with a set of conditions. In fact, both are
able to invite new users within the platform only with an equal or lower role equal than theirs.
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For instance, a super admin is not allowed to create a new root account.

Table 4: User- and Role-based executable Actions within the Platform.

User role — Can create Agencies Clients Campaigns Activities new Users

Root ✓ ✓ ✓ ✓ ✓

Super Admin × ✓ ✓ ✓ (✓)

Admin × × ✓ ✓ (✓)

Project Manager × × ✓ ✓ ×

Analyst × × × ✓ ×

4.5.2 Zones of Interest
In this regard, the common pattern of all possible activity types (by stakeholders) is a product
that wants to be advertised in a certain location for a specific customer target. Therefore, an
activity type is always associated to a physical place where the product gets demonstrated,
distributed, or tested. This always implies a group of people in motion who consciously or
involuntarily come into contact with the product from different angles within the product area.
Because of this, in order to state whether the interaction with the product has been voluntary
or unintentional for a set of walkers, the surface is divided into five different circular surfaces
as shown by Figure 32.

Each circular surface can be viewed as a zone of interest, whose radius is depending on
the available area during the product demonstration. The approach consists of geometrically
distributing a predetermined amount of sensors over the entire area. The more sensors have
been placed on the surface, the more precise will be the measurements.

Indeed, the algorithm with which a certain person is assigned to a certain area of inter-
est is based on the signal strength of the perceived Wi-Fi signal and dwell time algorithm.
The dwell time consists of a minimum and maximum time interval (in seconds) and can be
configured independently of the zone. This interval, together with the signal strength, is then
used to associate targets to specific areas of interest. Indeed, if the MAC address of a target
is counted with a frequency that results to be within the dwell time interval, this target is
assigned to the zone which corresponds to the perceived signal strength.

As shown in Figure 32, five different zones of interest have been categorized.

1. Opportunities: (or Walkers-by, Passers-by, Footfall) Count within the maximum range
of the sensor(s). Describes the profile of a location in terms of total foot traffic. For
the assignation, it takes into account the number of MAC addresses counted within the
total pickup range of the sensors.

2. Views: (or Impressions) Count within the views zone of interest. Describes the number
of times the visiting zone was viewed. The calculation relies on the number of MAC
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Figure 32: Dimensions: Zone of Interests

addresses counted within a defined signal strength and minimum/maximum dwell time
range for the views zone of interest.

3. Visitors: (or Sessions) Metrics for the visitor’s zone of interest. It describes the number
of times the visiting zone was visited. The calculation takes into account the number
of MAC addresses counted within a defined signal strength and minimum/maximum
dwell time range for the visitor’s zone of interest.

4. Interactions: (or Goals, Targets, Leads) Count of actions that indicates a positive
lift for the brand or product, or an immediate impact on financial goals. The calcula-
tion takes into account the number of MAC addresses counted within a defined signal
strength and minimum/maximum dwell time range for the interactions zone of interest.

5. Bounces: Count within the visitor’s zone of interest that leaves the zone before con-
verting to a visitor. The calculation takes into account the number of MAC addresses
counted within the defined signal strength of the visiting zone with a dwell time smaller
than the required minimum dwell time.

4.5.3 Parameters
Location A location is a dimension that defines a group of available data collection lo-
cations for metrics and, by extension, performance indicators. Currently, all metrics are
available for individual activities and follow the hierarchy below:
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Campaign → Phase → Place → Location → Activity (→ Zone of Interest)

Date-time Date-time is a dimension that is defined as a date and time for the collection of
metrics and has the following hierarchy:

Y ear → Quarter → Month → Week → Day → Hour → Minute

Min / Max Dwell Time Minimum and Maximum dwell time are parameters that can be
viewed as zone boundaries for collecting metrics in a zone by defining an upper and lower
limit for visit duration (range in seconds). For instance, if the maximum dwell for the zone of
interest ”interactions” would have been configured to 10 minutes, a person who would have
stayed more than 10 minutes in that area would not be relevant for the analytics. In fact,
the latter might be someone working for the promotional team. The Min/Max dwell time is a
required parameter for the configuration of duration zones of interest.

Visit GAP Visit GAP is a parameter that expresses the length of time in seconds after
which a visit ends if a signal is not reacquired. For example, if the visit gap is 5 minutes and
a visitor returns within 5 minutes after leaving, that counts as one visit. This parameter is
required for the configuration of zones. Defaults are 5 minutes.

Duration Period The duration period is a parameter that defines the minimum size in
seconds for calculating the distribution of visitor duration. It is a required parameter for the
configuration of duration and is correlated with the minimum dwell time for the visiting zone.

4.5.4 Metrics
Count Count (or counter) is a metric that expresses the number of persons counted within
a given time period. It is computed with the total amount of filtered MAC addresses counted
within a given time period. In the platform, the count is always equal to or larger than the
unique count and is available for all zones and in quarter-hour, hourly, daily, and weekly time
frames. Furthermore, it can be aggregated to any time period from hourly data.

Unique Count Per definition, the unique count is a metric that can be viewed as the num-
ber of unique persons, expressed with the total number of unique MAC addresses within
a time frame counted within a given time period. At present, the unique count cannot be
aggregated, i.e., the sum of hourly unique counts per day is greater than the daily unique
count. Furthermore, it is available for all zones and in quarter-hour, hourly, daily, and weekly
time frames.

Average Dwell Time Average Dwell Time is a metric that expresses the average visit
length distributed over a time period. This metric can be viewed as the average of last seen
- first seen for the count. Per definition, a visit ends when a MAC address has not been seen
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for a sufficiently long period of time, i.e., a visit GAP. Average Dwell Time is available for all
zones and in quarter-hour, hourly, daily, and weekly time frames.

Frequency Per definition, frequency is a metric that counts how often visitors return. For
instance, a frequency of one is the number of visitors that visit once while a frequency of
two is the number of visitors that visit twice, and so on. This metric is available on a weekly,
monthly, and quarterly basis.

Duration This metric is a count of visits per duration, i.e., the distribution of visitor dura-
tions. For instance, a count of 74 for a duration of 300 seconds indicates 74 visits for 5
minutes. It is based on dwell time per visit and duration setting and is available on a weekly,
daily, and hourly basis.

Key Performance Indicators (KPIs) In the context of this thesis, KPIs are numerical val-
ues that demonstrate how effectively a marketing campaign is performing and achieving its
key objectives. Clients (or brands) use KPIs at multiple levels to evaluate the outcome of
their marketing investments in terms of reaching targets. High-level KPIs include overall fac-
tors, such as Visibility-, Engagement-, Interaction-, Bounce- and Return-Rate, Loyality and
Engagement Reliability. Table 5 illustrates the equations expressing these KPIs.

Table 5: KPIs Formulas.

KPI Variable Name Formula

Visibility (or Capture Rate) V V iews Count
Opportunities Count

Engagement Rate ERa V isits Count
V iews Count

Interaction Rate IR Interactions Count
V isitors Count

Bounce Rate BR Bounces Count
V iews Count

Loyalty L Count
Count Unique

Return Rate RR Count−Count Unique
Count

Engagement Reliability ERe σ(daily ERa)

• Visibility is a KPI that expresses the percentage of opportunities that saw the visit
zone. This KPI describes the visibility of a an activity.
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• Engagement Rate is a KPI that is expressed as the percentage of views that are
converted to visits.

• Interaction Rate is a KPI expressed as the percentage of visitors that stayed enough
in the ”interaction” zone to be considered interactors.

• Bounce Rate is a KPI that can be viewed as the percentage of views that entered the
visits zone but left before converting to a visit.

• Loyalty is a KPÎ which is expressed as the average number of visits by a visitor. For
instance, a loyalty of 1.9 indicates that, on average, people visited the activity about
twice. This KPI will vary depending on the time period and is implemented for visits
zone of interest. For example, weekly loyalty can usually be considered to be higher
than hourly loyalty.

• Return Rate is a KPI that is used to calculate the percentage of visitors that visit
the activity more than once. Typically, the return rate will vary depending on the time
period, i.e., weekly return rate is usually considered to be higher than the hourly return
rate.

• Engagement Reliability is a KPI that indicates the level of variability in daily perfor-
mance and provides a measure for different levels of performance (e.g., excellent or
poor performances). This KPI is defined as the standard deviation of the daily engage-
ment rate.

4.5.5 Microservice Architecture
Traditional application models used to work with monolithic architectures, whose processes
were tightly coupled, wrapped, and exposed into a single API. With a microservices archi-
tecture (also known as serverless), the system can be built with independent components
that run each application process as a service. Indeed, these services are loosely coupled,
well-defined, encapsulated, independent from each other, and exposed as a single container
or API endpoint. Differently from a monolithic point of view, each service can be viewed as
a reusable capability that needs to be as granular and abstract as possible.

Figure 33 illustrates the design for the serverless architecture adopted in PasWITS. The
overall idea consists of having one microservice which is in charge of opening SQL con-
nections, releasing database instances, and sending queries to the database itself. This
means, that if other micro functions need to perform data manipulations, they can invoke the
microservice that is in charge of managing the database directly. This has the advantage
that a single application manages connection pools. Therefore, if there would be a change
in the way the database is queried or accessed, only one microservice would need to be
adjusted.

On one hand, this compromise does not introduce an anti-pattern nor contradicts the fun-
damentals of a microservice-based architecture. In fact, single services still have their own
business logic and are well-encapsulated. On the other hand, the same database can be
queried and navigated through different collections by using multiple instances. This allows
easy communication across different services and reduces the complexity and negotiation
effort to resolve a simple request.
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Figure 33: Serverless Architecture and Shared Database.

4.5.6 User Experience
In order to follow state-of-the-art UX patterns, a design evaluation based on a clickable
prototype has been performed. The platform needs to have an intuitive navigation concept.
This implies, that the user must be able to navigate through different states and stakeholders
by following an unambiguous path. For this reason, a cascade structure has been adopted.
This means that all stakeholders are connected through a navigable route. For instance, a
client (or brand) might have a list of running campaigns, which might have in turn a series of
promotional activities.

On one hand and as illustrated in Figure 34 clients, their campaigns and activities are
connected through different cards. Indeed, in this overview, a client can immediately see its
last running campaign and all other campaigns. Similarly, its last running activity is shown
together with all other activities. The corresponding detail views are displayed by clicking on
a specific campaign or activity. This high-level and presorted overview allows each client to
see its last running items in their ecosystem. It is worth highlighting, that the last running
activity must not necessarily be part of the last active campaign.

On other hand, as shown in Figure 35, the campaign level shows a list of running cam-
paigns. Each card represents a campaign, it displays its overall score and contains two links
with the next respectively last performed activity. Campaigns can be sorted by name, status,
score, and last modified. Consistently to the navigation concept, campaigns and activities
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Figure 34: Clients Concept

Figure 35: Campaigns Concept

are linked by an unambiguous path. Indeed, by clicking on a certain activity (either at the
campaigns or clients level), the activity overview tab is displayed.

As illustrated in Figure 36, the activity tab contains the list of KPIs presented. These
indicators are used to measure using numerical and tangible values the effectiveness of
offline marketing investments and determine with a weighted average the overall score of
the activity. The navigation concept is highlighted again in the top left corner of Figure 36.
Indeed, it shows a nested navigation menu for navigating through the previous stakeholders
by inverting the flow of the cascade effect.

Data visualization using multiple charts represents the key elements of the dashboard.
Indeed, the presentation of the collected data in a pictorial or graphical format is at the base
of every analytical decision. Charts are necessary to identify patterns, give interactive visu-
alization and visualize temporal and spatial dimensions in a single and compact format. In
this regard, a list of relevant charts has been identified considering a set of metrics, dimen-
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Figure 36: Activity Concept

sions, and activity-related factors. For example, heat maps are graphical representations of
data with individual values contained in a matrix. These values are represented with different
color shapes based on their intensity. They are used to relate metrics such as the average
dwell time with different temporal dimensions (days and hours). Figure 37 illustrates a heat
map with average dwell time sorted by hours and days.

Figure 37: Heat Map

Figure 38: Histogram Series

© Copyright 2022, the Members of the PasWITS Consortium Page 70 of 125



PasWITS Final Report

A histogram creates intervals (bins) and counts how many values fall into each bin. His-
tograms are useful to visualize and relate zone of interest with temporal dimensions and
numerical metrics. Figure 38 shows the relationship between the metrics’ unique number
of visitors, the temporal dimension days, and the zone of interest wrapped into a single
histogram.

Figure 39: Line Plot

The line chart represents a series of data points connected with a straight line. Line
charts are most often used to visualize data that changes over time. Figure 39 illustrates
a line chart that relates metrics such as average dwell time and the visitor count, with a
temporal dimension expressed in hours.
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5 Experimental and In-field Evaluations
The experimental evaluations are concerned at first with the data input, secondly with the
FusIon Data Tracking System FITS itself, and the data consumption lastly.

5.1 Data Input
In different settings the role of data input was evaluated. First for WiFi, second for Bluetooth,
third with a LiDAR, and with a RFID and camera combination.

5.1.1 WiFi — ASIMOV
Three experiments had been conducted to test the localization-based approach of MAC
address de-anonymization. While two experiments were focused on localization, the third
one was run during a real-life event.

Localization Experiments Two experiments were conducted to localize devices based on
the signals that it emits. Experiment 1 is a localization experiment based on the emitted
RSSI values, measuring a designated sender’s RSSI values on four different monitor nodes.
Experiment 2 was a joint experiment: it included RSSI measurements from both WiFi probe
requests and Bluetooth-based measurements. For both experiments, the packet dumping of
the Probe Requests was conducted using tshark [96].

Figure 40: Sample Results of Localization Experiments. Left: Experiment 1 on Position
(0,1). Middle: Experiment 2 at Position (2,5). Right: Sample of Step 1 of Experiment 2

Experiment 1. aims to localize a device at different points in space within the covered
area. For this, four monitor nodes were placed at the corners of an 8 by 5-m grid to measure
RSSI values while a sender moves one meter at a time, halting one minute per grid point.
Starting with the first grid point, the sender started to send probe requests for one minute.
After each minute, the sender was moved forward to the next grid point until it reaches
all 48 grid points. As the sender was moving on a specified path, a Kalman Filter was
used to smooth out the location estimates. The sender was a Raspberry Pi 3 with Alfa-
AWUS036NHA Wifi-Adapter, and the monitors were four Spitz GL-Routers. Artificial probe
requests were generated and transmitted at a high rate using packet injection and the python
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package Scapy [12]. Each probe request contained a global sequence number and a burst
number for later identification. This experiment was conducted in open field space.

Experiment 2 aims to compare and combine the location estimates of both types of
frames and gain insights into whether a combined approach has better accuracy than the
Wi-Fi-only method. It included RSSI measurements from both Wi-Fi probe requests and
Bluetooth-based measurements. This experiment uses a configuration similar to experiment
1, but the area consists of a 5 by 5-m grid, with 32 measurement points, including an ad-
ditional Bluetooth device in place. The hardware used for monitors is also different. For
this experiment, monitors are four ASUS Tinkerboards equipped with an external network
card Ralink RT5572N USB dongle for packet monitoring and an Ubertooth One, which is the
additional hardware for Bluetooth packet capturing. This experiment was conducted in an
urban environment on a concrete balcony.

Both experiments 1 and 2 were evaluated by measuring the deviation of the sender’s
estimated position from the sender’s correct position. At each point on the grid, this deviation
is calculated and, finally, averaged overall steps.

For experiment 1, the overall error in meters was 87 m without filtering and 58 meters
applying Kalman Filter based smoothing. It results in a per step error of 1.7 m or 1.1 m
with the Kalman Filter. Including the maximal possible distance of 10.8 m, this results in
an error of 0.15 without filtering and 0.1 using Kalman Filter. The deviation of the unfiltered
location estimates ranges from 0.03 to 5 m. A sample of Experiment 1 on position (0, 1) is
shown in Figure 40. The true position is shown with the empty big blue circle. The different
estimates of the unfiltered (light blue), Kalman Filter based (dark blue), and variance-based
approaches (orange, green, violet) are shown as filled dots.

For experiment 2, the overall error in meters for the WiFi-based localization was 72 m
without filtering and 68 m applying Kalman Filter based smoothing. It results in a per step
error of 2.2 m or 2.1 m with the Kalman Filter. Including the maximal possible distance in
8.4 m, this results in an error of 0.26 without filtering and 0.25 with Kalman Filter. The devi-
ation of the unfiltered location estimates ranges from 0.44 to 4.5 m. A sample of experiment
2 with the sender at position (2, 5) is shown in Figure 40.

Bluetooth-based localization in experiment 2 achieved an overall error of 68 m. It results
in a per step error of 2.1 m. The deviation of the unfiltered location estimates ranges from 0.8
to 3.8 m. Including the maximal possible distance of 8.4 m, this results in an error of 0.25.
Due to the limited time of 60 s used for the measurement, not enough data was collected to
apply the Kalman smoothing.

Compared to experiment 1, experiment 2 produced slightly less accurate results, which
can be seen in the higher per step error and the fact that the Kalman Filtering did only
have a minor impact. The error does not source primarily from the variance of the different
types of estimates. They all tend to be quite close together; instead, location estimates are
completely off in their approximation (cf. Figure 40): the different location estimate variations
are close together, but far apart from the sender’s true location.

In-field Experiment Experiment 3 was conducted during a real-life event on June 2, 2020.
This experiment counts devices instead of verifying location estimates. Therefore, the effec-
tiveness of using the combined approach of IEs and location estimate was evaluated using
the system proposed. For this experiment, a livealytics booth was placed at the event with a
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Figure 41: LiveAlytics in-field Experiment. Left: Map of the Livealytics Booth at the Event.
Right: Monitoring Device in Use

4 by 4-m area (cf. Figure 41). The livealytics booth is represented by a cyan square and red
dots represent monitoring devices. The ASIMOV monitor nodes were placed at two meters
above the floor. The same devices were present in experiment 2, including all hard- and
software components used as monitor nodes. Figure 41 shows the devices placed at this
event. The monitor node code was slightly adapted to start and stop at specified times and
store all data locally. The monitoring process took about three hours.

Since the ASIMOV can run analyses using numerous parameters and different user
thresholds, it is possible to obtain different results. For the analysis of experiment 3, the
following parameters were chosen: 10 s of interval size, 2 km/h for the assumed walking
speed, 1s for in-burst threshold, and 3 for minimum AP detection rate. In this experiment,
ASIMOV detected 425 different devices on-site; 370 devices were seen multiple times, while
55 appeared just once. Additionally, of all detected devices, ASIMOV was able to identify 301
devices applying MAC randomization and 69 devices that were not. Overall, 708 different
MAC addresses were captured.

For this event, two external data sources were available to compare: a ticketing system
and a ceiling camera. The ticketing system counts the number of people entering and the
number of people leaving the site. The ceiling camera keeps track of the number of people
entering and exiting the area of the livealytics booth. However, both external evaluation
sources had a slightly different focus than the ASIMOV system: the ticketing system counted
all people entering and leaving the building and, therefore, did keep track of the overall event.
The ceiling camera was limited to the stand’s exact borders and did not include any person
outside of this area. An overall number of 566 people’s first entrances were accounted for,
which corresponds to the number of total visitors that entered the site for the full day. This
count, however, includes not only visitors but also all staff and exhibitors. The official number
of visitors during the entire day was 360. Additionally, the amount of people seen multiple
times using MAC address randomization is 370.

Assumptions The proposed system’s principles lead to assumptions of device density,
covered area, moving patterns, and interferences, which were made accessible. For device
density, it is assumed that one device represents one person, which is usually the case for
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mobile phones (one person typically carries one mobile phone). Since the system counts
devices, people carrying multiple devices can break with these assumptions. In such a
case, it can reduce the accuracy to infer the number of people present in a place. It is
further assumed that all devices are with WiFi turned on, producing probe requests.

The system needs to be evenly distributed in the area under surveillance. If the mon-
itoring devices can not cover the area entirely or have too much overlapping space, the
localization could fail. Further, it is assumed that people carrying devices are moving around
in space at a relatively slow pace. Even though the ASIMOV system can be configured
to different walking speeds, the localization approach fails if the devices’ position changes
quicker than the monitor nodes receive new probe requests. Lastly, it is assumed that no
interference with other systems producing probe requests, modifying existing packets, or
doing any radio wave disturbance.

Results Localization experiments have shown different results according to the hardware
utilized as well as other factors involved. For experiment 1, the RSSI-based localization of a
transmitting device using probe requests was successful, as the average deviation was low
— about 1 m per position using the Kalman Filter. Different from experiment 1, experiment 2
produced slightly less accurate results. This fact can be seen in the higher per step error and
the fact that the Kalman Filtering did only have a minor impact. The error does not source
primarily in the variance of the different types of estimates. They all tend to be quite close
together; instead, the location estimates are completely off in their approximation. All the
obtained location estimates variations are close together but far from the sender’s correct
location.

Possible reasons for the lower overall accuracy in experiment 2 include the environment
(it was tested on a concrete floor) and different hardware used (an ASUS Tinkerboard with
Ralink RT5572N WiFi adapter). Especially, the environmental aspects are known factors
for changing the measured RSSI values [65]. Additionally, it is possible and based on the
visuals in Figure 40, that the monitor on the bottom left corner was producing questionable
measurements. This behavior could have been provoked by the direct sunlight exposure of
this monitor compared to all other monitors [65].

It is not possible to state, whether the different behavior of experiment 1 in compari-
son to experiment 2 originates from the location or the different hardware. However, the
first experiment’s success was only repeated partially in the second experiment: first, the
Bluetooth-based approach had hardware-based failures, and secondly, the WiFi-based ap-
proach had a higher error rate than in the previous experiment. Therefore, based on results
of experiment 2, a combined approach of WiFi- and Bluetooth-based localization is unlikely
to improve.

For experiment 3, both retrieved validation numbers fall short to measure the number
of people that passed by the Livealytics booth due to the following reasons: the number of
devices counted by the ASIMOV system, 425, is between 566 and 360, and the number of
people counted in ticketing system and the total visiting people, respectively. Therefore, it
approximates the number of people present at the event. When the amount of detected MAC
addresses are compared to the number of devices identified, ASIMOV’s key contribution can
be seen.
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Limitations Apart from the advantages that the proposed approach has compared with
other ways to handle MAC address randomization, some limitations exist regarding the used
methods. The first concern is related to the instability of RSSI. One of the main reasons
some systems do not rely on the RSSI values [87][99] [62] [38] for localization is the fact
that it is error-prone and unstable. However, as the proposed system’s prime goal is not
localization but to distinguish devices from each other, the problem becomes less relevant,
and only in the worst case, this become an issue. In this solution, the IE identifies the device
in the first place [86]. Localization is only used if the IE identification fails due to having too
similar devices and the same IEs.

The proposed solution relies mainly on probe requests. If no such frames are transmitted,
the system is rendered impractical. However, compared to other frame types, probe requests
do not require association or interaction with the device and have a high transmission rate
compared other frame types. Additionally, probe requests are transmitted in bursts, which
increases the chance of a single packet being monitored by multiple receivers. Compared
to other proposed approaches and concerning the proposed solution, it can be stated that it
is an accurate effort to handle the difficulties imposed by MAC randomization.

5.1.2 Bluetooth — BluePIL
Experiments were conducted in an indoor and outdoor space to evaluate the effectiveness
of BluePIL’s device localization method. The respective scenes are shown in Figure 42. The
indoor experiment was performed in a room at that time being empty. This was ideal since it
allowed to keep the amount of signal interferences as low as possible.

The outdoor experiment was done on a private terrace in a residential area of Zürich.
This allowed to decrease the amount of signal interference from multi-path fading, since
more space was available. A 4.2m× 2.9m area was designated to perform the experiments.
An Ubertooth One sensor was placed at each of the four corners of this space and con-
nected to a MacBook Pro via a 2.5 m USB cable. Nine points were defined, where static
measurements would be carried out.

Figure 42: Evaluation Environments: (Left) Indoor and (Right) Outdoor
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Experiment 1 — Indoor This experiment was then conducted via a Nokia 7 Plus smart-
phone being connected to a pair of JBL Reflect Flow Bluetooth headphones. Music was
streamed over said connection throughout the experiment to generate traffic that could be
captured passively. In order to keep the conditions as realistic as possible, the headphones
were placed in a test subject’s ears and the smartphone in their front right pant pocket. The
test subject then stood for 5 min at each of the nine points indicated in Figure 43. The four
Ubertooth One sensors were configured to record any packets that could be intercepted
during that time interval.

Figure 43: Indoor Setup (x and y Axes in Meter)

Experiment 1 used a static version of the localization algorithm, which allowed for simpli-
fying the merging of data sets from individual sensors. The streaming interpolation method
used in the final processing pipeline could be omitted and the data could be merged using a
static interpolation and re-sampling process. While this initial approach differs slightly from
the final system, it does not invalidate results of this experiment as an evaluation of the de-
vice localization method. This experiment also included an evaluation of the filtering meth-
ods used in the BluePIL processing pipeline, namely the method used for signal strength
filtering and location filtering. The following variants were included for signal strength filter-
ing: a simple rolling mean filter, a rolling maximum followed by a rolling mean filter, and a
rolling maximum followed by a rolling median filter. With regards to location filtering, the
improvement gained by the Kalman filter was analyzed.

Experiment 2 — Outdoor A second experiment was designed to evaluate the BluePIL
device localization method under more challenging conditions and to evaluate the system’s
performance in its final streaming architecture. A space of 5m × 5m was designated to
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Table 6: Indoor Environment Experiment Results

True Point (m) Mean Estimated Mean Error Mean No.
Point (m, rounded) (m, rounded) Meas/Sensor

(2.10, 0.00) (1.798, 0.826) 0.888 258.5
(1.05, 0.00) (1.695, 1.692) 1.856 253.25
(3.15, 0.00) (3.193, 1.629) 1.718 206.25
(2.10, 1.45) – – –
(1.05, 1.45) (0.942, 1.522) 0.612 231.0
(3.15, 1.45) (2.761, 1.965) 0.671 299.5
(0.00, 1.45) (0.556, 1.238) 0.682 249.75
(1.05, 0.73) (1.118, 1.412) 0.822 190.75
(2.10, 0.73) (1.931, 1.809) 1.239 228.0
Overall Mean Error: 1.061 Overall Mean/Sensor: 293.63

perform the experiment. An Ubertooth One sensor was placed at each corner of the space,
connected to an Asus Tinkerboard. A MacBook Pro was used to control these nodes. 32
equally spaced points were chosen in the 5m × 5m space (cf. Figure 44). A test subject
holding a Nokia smartphone, which was streaming audio to a pair of Bluetooth headphones,
traversed these points, resting at each one for one minute. During this minute, data was
captured by Ubertooth sensors.

A first approach repeated Experiment 1 under more challenging conditions. 32 equally
spaced points were chosen in the 5m×5m space. They are shown in Figure 44. Experiment
2 follows the same testing procedure as Experiment 1 (i.e., same test subject and moving
pattern). This data was analyzed ex-post with the same static version of the pipeline used in
Experiment 1.

Figure 44: Outdoor Setup (x and y Axes in Meter)
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Table 7: Outdoor Environment Experiment Results

True Point (m) Mean Estimated Mean Error No. Localizations
Point (m, rounded) (m, rounded)

(1, 1) (0.989, 1.942) 1.263 36
(1, 4) (1.160, 3.108 1.255 33
(4, 1) (3.465, 3.188) 2.320 26
(4, 4) (3.227, 3.766) 1.065 26
(2.5, 2.5) (3.257, 1.703) 1.129 22
Overall Mean Error: 1.406 Mean No. Localizations: 28.6

This second step tested the system in its full streaming implementation. To this end,
five points were chosen in the 5m × 5m space. Again, the Nokia smartphone and the JBL
headphones were used to stream audio over BT. The near real-time positioning pipeline was
then run for 15 mins. During this time, the test subject covered each of the five points, resting
at each point for 2 mins and taking a maximum of one minute for the change between points.
One minute of buffering time was included at the beginning. These points were traversed
according to the following order: (1, 1) → (1, 4) → (4, 1) → (4, 4) → (2.5, 2.5).

Tables 6 show the results of the indoor experiments. The average location estimation,
the average localization errors, and the average number of measurements per sensor for the
Nokia smartphone’s LAP is shown. Data for the point (2.1, 1.45) is missing in these results
from the indoor experiments, due to the failure of one of the sensors that were only noticed
after the completion of the experiment.

Experiment 2 revealed concerns with the Ubertooth sensors used. Most importantly,
the performance regarding the number of packets captured deteriorated significantly from
Experiment 1. During the first part of the experiment, the number of packets captured per
second and per sensor was reduced to about 0.38 compared to 1.0 from before. This created
problems in the location computation, especially in the first part of the experiment: Due to the
decreased number and the fact that captured packets were not evenly spread throughout the
time interval, it occurred that, for some of the points, there was no overlap between these
points in time of the RSSI measurements. Consequently, it was impossible to merge the
RSSI value streams between sensors. Only points that produced a sufficient overlap of a
minimum of 10 s were, therefore, analyzed for the first part of the experiment.

Table 7 and Figure 45 show results for the second part of the experiment. It is noticeable
that the streaming processing pipeline handles the sparsity of sensor measurements better
than individual evaluations performed in part one of the experiment. This is mostly because
the processing stream is able to use values for interpolation that lie outside time intervals
defined as resting periods at each point. These results are more accurate than for the
first part of the experiment, but worse than in Experiment 1 with an overall mean error of
1.406m. It should be noted, however, that the mean error value for point (4, 1) forms an
outlier, differing from the next lower value by 1.057m, more than five times the difference
between any other two points (0.198m). This corresponds to a pattern that was already
observed in Experiment 1.
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Figure 45: Outdoor Experiment. (a) Point [1,1], (b) Point [1,4], (c) Point [4,1], (d) Point [4,4],
and (e) Point [2.5,2.5]

Discussion of Results and Findings All evaluations were conducted in real-world en-
vironment containing externalities such as multipath fading, interference with other objects
in the room, and other wireless signals. Overall, the positioning accuracy in both experi-
ments was fairly similar, with an average error of 1.04m and 1.061m for the outdoor and the
indoor experiments, respectively. The error values ranged from 0.398m to 1.703m for the
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outdoor and 0.612m to 1.856m for the indoor experiment. While the overall sensor perfor-
mance was quite similar in the indoor and the outdoor experiment, collecting around one
measurement per second, it was more stable in the indoor environment, where the mean
number of measurements per sensor for the Nokia smartphone’s LAP ranged from 190.75
to 299.5 compared to 132.75 to 439.5 in the outdoor case. Both sets of results show some
outliers in the upper range of the error values, most notably point (1.05, 0.00) for the outdoor
experiment and points (1.05, 0.00) and (3.15, 0.00) for the indoor experiment.

Device localization in Experiment 1 produces results at around 1m accuracy on average,
both in indoor and outdoor spaces without a prior calibration of the system to estimate RSSC

and, in a completely passive manner, setting it apart from existing approaches. Results for
the indoor space were slightly worse, which may be explained by higher amounts of noise
from multi-path fading due to the more constrained dimensions. The first part of Experiment
2 did not show the same level of success. The decreased timespan allocated for each mea-
surement combined with the deteriorated performance of the sensors led to large parts of
the data being unusable. The performance for remaining data points was significantly worse
than in the first experiment. The second part of the second experiment, however, showed
the effectiveness of the streaming architecture, most notably the signal strength merger
component, which dealt well with the additional sparsity of signal strength measurements
encountered. The localization performance was good, apart from a single outlier, a pattern
which was also observed during the first experiment. These results are comparable to exist-
ing research, which is advantageous given that the BluePIL system estimates locations and
channel parameters simultaneously.

The existence of negative outliers in localization results in both experiments warrants
discussion. An inspection of the raw data revealed that these outliers were not caused
by a failure in the processing pipeline, but were already present in the data received from
the sensors. A plausible explanation for this is that environmental factors, or possibly a
combination thereof, will have lead to RSSI values not representing the location of the test
subject accurately. The experiments took place in a residential area of Zürich, some of
them outdoors. Consequently, influencing factors, such as background noise, the topology
of the space, temperature, and humidity, could not be controlled and may have led to the
disturbance of the signal. The test subject carrying the test devices may itself have had an
effect on the signal strengths measured, as is had been suggested by the investigation of
the influence of the human body on RSSI measurements [91]. The Ubertooth sensors used
present another possible explanation since the accuracy and consistency of the RSSI values
they deliver is unknown.

The deterioration of sensor performance in Experiment 2 presented a further challenge.
Since the environment was identical to the outdoor space used in the first experiment and
the frequency of measurements was lower regardless of the distance from the sensor, these
two factors do not explain the degradation. One potential explanation could be the change
in weather conditions. While the first experiment occurred in spring, the second one was
performed in mid-summer, with temperatures exceeding 30◦C on an asphalt surface. The
sensors may have overheated, leading to the decreased frequency and lower accuracy of
measurements in the radio components. Existing research suggests a strong influence of
operating temperature on RSSI measurements for chips very similar to the one used in
the Ubertooth One [15]. The unpredictability of these results may have been exacerbated
by shade reaching some of the sensors over the duration of the experiment, breaking the
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assumption that all four sensors exhibit the same radio characteristics. This hypothesis
could also explain the better performance in the second part of the experiment, which was
executed later on the same day when temperatures were lower and the entire environment
was covered by shade.

5.1.3 LiDAR — LaFlector and LiCounter

LaFlector (2D LiDAR) The evaluation of LaFlector was conducted in a 18 m2 room. The
windows were covered and there were static objects in the room (e.g., sofa, table, TV, and
chairs). Runs were performed with the parameter’s default value. To simulate objects’ ap-
pearance, both entering the measurement room and spontaneously joining the measure-
ment height were attempted. To test an object’s disappearance, the tracked person left the
room or suddenly went below the measurement height. The measurement height was 144
cm above the ground for all test runs. Four scenarios were run five times each:

1. Single Person Tracking: One person moves through the room at a walking pace.
There are no other moving objects. This scenario is the basis for further evaluations.

2. Two Persons Tracking: Two people move simultaneously at a walking pace in the
room. They never stand behind each other and are always at least one meter apart.
Their paths might intersect at different times.

3. Two Persons Crossing: Two people cross paths. For a short time, one person stands
behind the other. They do not make any hard changes on their direction.

4. Single Person Behind Static Object: A static object stands in the room, which was
captured at the beginning. A person moves behind the object for a short amount of
time and continues in the walking direction.

These runs were measured using the following criteria. A criterion can be considered as
passed or failed.

• Positioning (Pos.): The tracking is accurate and continuous. The criterion is consid-
ered as passed if the object is tracked accordingly to the real position and there are no
unexpected jumps in the way-points.

• Classification (Class.): The person is recognized and correctly classified. No static
objects or objects are classified as human objects. The criterion is considered as
passed when the number of human objects is correctly detected.

• Identification (Id.): The same object is always identified as the same. If a person
reappearing from behind a static object is classified as a new object, the criterion is
considered failed. If two people cross each other and the system can no longer assign
the objects because the object identification was lost, the criterion is considered failed.
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Table 8: Failures in Each Scenario

# Scenario Pos. Class. Id.

1 Single Person Tracking 0 0 0
2 Two Persons Tracking 0 0 0
3 Two Persons Crossing 0 0 2
4 Person behind Object 0 0 1

Results Table 8 presents how often a criterion was not met in 5 runs. In general, it can
be stated that the location algorithm worked as expected for most scenarios. However,
there were failures in the identification and classification in Scenarios #3 and #4, which
are explained in the next sections. Results are represented with the created plots of the
LaFlector. A series of snapshots visualize the first scenario. These snapshots were taken
at a regular interval (every 5 seconds) during the run, in which the last snapshot represents
the remaining three scenarios before the object disappears/dies. Way-points are recorded
for the evaluation. In the usual tracking mode, the way-points are not displayed by default. If
desired, the plotting of way-points can be enabled in the plotter class.

Figure 46: Scenario #3: Two Persons Crossing Plot

Scenario #1: Single Person In the first scenario, during all five runs, the person was
correctly detected, tracked without interruption, and removed again after disappearing (i.e.,
marked as “dead”). No static objects were classified as people. Figure 47 depicts the
progress of the run with a running time of 40 s, in which the object alternately moved and
remained stationary.

Scenario #2: Two or More Persons not Crossing Paths In the second scenario, two
people were successfully tracked, as illustrated in Figure 46. Both persons were recognized
at the same time, and their path was tracked correctly. Even when two people/objects were
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Figure 47: Snapshot Series of a Tracking Run, Where (a) Object Not Detected in T0, (b),
Object is Detected and Tracking Started in T4, (c) In T8, Active Tracking and Direction Vector
is Visible, (d) Object Stopped and No Direction Vector is Calculated in T12 (e) Active Tracking
and Direction Vector Visible in T16, and (f) Object Died and All Way-points Cleared in T20 [T
Measured in Seconds]. Video Captures of the Evaluation Can Be Found at [72].

close to each other (but not behind each other), the identification worked without any issues
in five runs. The tracking was performed during 35 s.

Scenario #3: Two Persons Crossing Paths In the third scenario, two people cross paths,
assuming that they do not change their speed significantly. If a person started walking while
being covered by the other person, there would be no heuristic possibility to detect this.
Since according to the last confirmed information, the person was at rest. The five crossings
were performed with the following estimated crossing angles: twice 180 degrees, once 120
degrees, once 90 degrees, and once 60 degrees. In two out of five cases, the individuals
could not be positively identified after crossing. The smaller the crossing angle, the higher
the probability that the recognition fails because the persons are not distinguishable for the
LiDAR for a longer time. Accordingly, the identification of the objects failed at 90 and 60-
degree crossing angles. The best results can be achieved when the persons cross at a
straight angle (180 degrees). The plot of a run with a duration of 8 seconds and a straight
angle is depicted in Figure 46.

Scenario #4: Single Person Behind Static Object A flaw in the location algorithm oc-
curred in the second run of Scenario #4, after reappearing behind the static object. The ob-
ject was identified as a new object instead of the original due to a sudden change in speed or
change of walking directly behind the static object. Once the model defined in [7] represents
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a ”near-constant” velocity variation, the heuristic prediction model failed considering the co-
variance Q defined in the white noise Gaussian process. This highlights the importance of
choosing a suitable location model for the characteristics of the environment. Considering
that abrupt accelerations are exceptions for indoor tracking reproducing the behavior of an
exhibition, it is possible to tolerate such outliers.

Figure 48: Scenario #4: Single Person behind Object Plot

Discussion The results reflect the strengths and weaknesses of a LiDAR sensor. As ex-
pected, the positioning was accurate. However, as a natural disadvantage of tracking de-
vices based on light reflection, it is impossible to track when objects are obscured by other
objects, regardless of whether they are static or in motion. Herein, it can only be evalu-
ated with a certain probability whether the object still exists and where it is located when
reappearing. How well this case works also depends significantly on the parameterization.
For example, if people are expected to move close to each other, the split distance and
existing-new-threshold parameters should be decreased. This increases the probability that
the person will be detected. At the same time, it increases the risk that single persons will
be detected as several.

The LiDAR interface was responsible for making the data from the LiDAR scanner avail-
able for data processing. The data processing always received the latest laser data via the
Influx database and the data acquisition worked without interruptions via the socket.

From the first scenario, it can be deduced that the segmentation of static and moving
objects works reliably. The moving object was recognized as such and tracked. Further,
scenario 2 shows that the system can detect and track two or more people simultaneously.
Errors occurred in scenario 3, in which LaFlector could no longer determine which of the
intersecting persons was in two out of five cases. Scenario 4 further demonstrates that the
heuristic to predict movement worked as expected being able to associate the path with the
object.

Objects were recognized after disappearance except for one case. It follows that when
two crossing objects are in motion, the system appears to be less accurate than when one of
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the objects is static. It is possible that even better results could be obtained with more com-
plex, finer-grained heuristic predictions. However, this would also require a higher-resolution
LiDAR scanner. In particular, far-away objects from the scanner would otherwise take too
long to be reliably detected since the density of measurement points decreases with dis-
tance.

The graphical illustrations from the results are from the plotter of the system. The log
file created with each run contains the desired information according to the selected log
level. It is, therefore possible to read (x, y) points that an object had during a run. With a
simple code extension, the logger’s data could be made available for further processing or
combination with another data source. Therefore, the requirement of expandability can also
be confirmed.

LiCounter (3D LiDAR) This section presents the result of clustering from data that the
LiCounter produced during its experiments. Due to the limitations of measurements in a real
case, a scenario is made for testing the developed method with a mock shopping scenario. A
product is chosen as the point of interest, in this case, it is the scooter. Testers need to pass
through this scenario by performing as they are shopping, some of them are interested in the
scooter by standing close to the scooter and staying longer; and some are not interested,
thus passing by the scooter quicker. The data are trying to collect as many different use
cases as possible. A home basement location is chosen with complete darkness. Model 5
weights are used. Scenarios are designed as the Figure 49 shows. Two LiDARs are facing
each other from 4.6 meters away, the object is located in the middle(scooter), 2.3 meters
from 2 cameras.

Figure 49: Testing Scenario Setup

In the designed scenario, the goal is to collect data from different people who behave
differently. Specifically, people staying within 0.5 meters of the scooter for more than 10
seconds mean they are interested. People staying more than 1 meter away from the scooter
for an arbitrary amount of time are not interested. People staying within 0.5 meters of the
scooter but for less than 10 seconds are defined as random actions. Doing any random stay
to enrich the variety in the dataset.
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Figure 50: Testing Image from Model

The ground is flat enough to ensure that two LiDAR cameras are at the same height,
facing each other to detect the people. Since the space is limited in the evaluation scenario,
only one point of interest – the scooter is placed in the test, which cannot represent a shop-
ping case. There is also a limitation with the number of testers. Only two testers are in the
testing scenario and try to simulate a scenario of 40+ people by walking out of the frame and
returning. However, the Deep Sort algorithm can sometimes identify the tester as the same
person tracked and assigned the same ID. If more than 40 different people are testing, is it
not likely for Deep Sort to assign the same ID to different people. If more objects could be
placed and more testers could join, the testing scenario will better represent a real shopping
scenario

Aggregated Data Duration and distance to point of interest can be aggregated according
to ID. By seeing the duration and distance data together, we can tell whether a person is
interested or not. User 10 1, 26196 1, and 26340 1 have a duration of 0 seconds. Since we
assume a person cannot pass through the frame within 1 second, we consider them outliers.
Examples are given in the following tables and cf. Table 9.
Interested:

• User 12 stays for 17 seconds, is as close as 0.1 meter to the point of interest, and is
always within 1 meter.

• User 1 1 stays for 10 seconds, with a mean distance below 1 meter, and a minimum
distance of 0.5 meters.

• User m 4 stays for the longest duration, almost 5 minutes, with a minimum distance
below 0.2 meters, and on average below 1 meter.

Not Interested:

• User 26318 stays for 124 seconds, which is a relatively long time. The distance is
however mostly above 1 meter.
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Table 9: Table of Aggregated Data

ID duration s min distance max distance mean distance median distance
10 1 0 333.548 333.548 333.548 333.548
12 17 135.754 986.894 746.168 862.349
17 1 12 1043.73 1696.26 1242.42 1221.86
1 1 10 503.734 1195.82 878.085 939.682
21 1 55 535.317 2000 944.518 642.119
26148 5 935.945 1137.72 1009.91 982.993
26196 1 0 2000 2000 2000 2000
26318 124 969.066 2000 1426.55 1420.23
26333 9 932.863 1303.73 1046.97 948.048
26340 1 0 2000 2000 2000 2000
26349 1 36 919.834 2000 1158.82 1076.66
27 1 17 1045.88 1406.73 1155.09 1086.91
29 1 1 1318.52 1323.64 1321.08 1321.08
62 1 197 1202.48 2149.75 1361.29 1224.29
71 1 6 986.309 1127.39 1065.69 1072.92
m 0 192 186.17 2000 1198.11 1274.3
m 1 290 282.726 2040.44 1269.23 1267.13
m 2 295 424.273 2000 886.104 799.889
m 3 124 145.922 1029.47 608.459 714.834
m 4 298 187.018 2000 907.82 869.639
m 5 94 595.206 1011.2 886.911 939.012
m 6 94 452.63 2000 1011.86 990.608

• User 17 1 is also always more than 1 meter away, staying for 13 seconds.

Unclear:

• User 26349 1 stayed for 36 seconds, but mostly more than 1 meter to the point of
interest.

Clustering We compare the duration to the different aggregated measures of distance.
16 distinct persons are detected in this testing scenario. Furthermore, to avoid repetitive
counts, IDs of people that are simultaneously detected by both cameras are merged.

1. Duration and mean distance: Mean distance is distance weighted by duration since
the longer duration the more apparent, thus more weight. Only two clusters are identi-
fied. This clustering result ignores the distance to the point of interest as a horizontal
line at around 125 seconds can well separate the two clusters cf. Figure 51.

2. Duration and median distance: Three clusters are identified in Figure 51. Cluster
1 (yellow) with a duration below 60 seconds, regardless of the distance, Cluster 2
(purple) with a duration above 150 seconds and a distance above 1.2 meters, and
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Figure 51: Clustering of IDs.

cluster 3 (blue) with a duration above 200 seconds, distance below 1 meter. Cluster
1 is a mix of interested and uninterested people. Those who stay below 10 seconds,
no matter how long the distance, are not likely to be interested. Those who stay a
longer time with a distance below 1 meter are likely to be interested. This also fits
our description of an unclear group. Cluster 2 represents people who stay long but far
away from the point of interest. We consider them as not interested since 1.2 meters
is too far to see the point of interest clearly. People might be just staying somewhere
and chatting. Cluster 3 is more likely to be an interested group, since they stay very
long and relatively near (below 1 meter).

3. Duration and min distance: Min distance shows more clearly the group of people
who are not interested. Cluster 2, the yellow cluster in Figure 51, shows people who
have never been within 0.9 meter of the point of interest.

LiDAR Limitations The results can reflect the limitation of the solution for this project,
which can be used for further development.

• Inaccurate LiDAR. The detection of depth from LiDAR is inaccurate, and this type of
camera does not offer any tool for calibration so far. The inaccuracy of in-depth mea-
surement is the limitation of the device that cannot be overcome by data analysis meth-
ods currently.
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• Light Measurement. The detected distance based on light is measured from an app on
a mobile phone, which only measures indoor lighting conditions. It is not professional
to measure the influence of daylight. If it can be solved, the measurements and setup
of scenarios can be more accurate.

• Limited Testing Space. Due to the coronavirus, it is not easy for many people to gather
together to test. Thus, we lack data to represent the real case. Also, the lack of
adequate physical space to implement the camera and evaluate the method.

• Limited Data. Due to the lack of data, we cannot calculate the metrics mentioned. For
example, we do not have the data from different venues and points of interest, which
is unable to get results about the percentage of interested users, variation of user flow,
and variation of interest.

5.1.4 RFID and Camera — CCount
The evaluation of CCount combines and matches data collected by RFID readers with those
of 3D cameras.

Real-world test scenario A 3D camera was installed and configured at the Axelra office
to quickly test the efficiency of the data processing pipeline. Despite being able to quickly
identify and correct possible bugs, the local testing environment did not evaluate important
aspects, such as scalability and system reliability. Due to the collaboration with Livealytics,
we had the opportunity to collect and process data from cameras installed at a local shop
selling sports and outdoor activities clothes. It included data from four cameras in total, each
recording different zones of the shop.

Figure 52 shows the scene from the camera placed at the outdoor department of the
store. The camera collected and processed the data for generating the heatmap and the
back-end. Xovis claims that 3D cameras can recognize visitors individually, even if they are
standing nearby. Thus, to avoid nearby objects being recognized as visitors, the camera had
to be configured accordingly, ensuring that it would only detect individuals having heights
beyond a specified threshold. After testing sessions, an adequate configuration was found
to provide accurate results for the environment found at the shop.

After the CCount front-end page is successfully loaded, users are presented with two
text fields, the former indicating the selected day of interest and the latter the camera scene,
and important information regarding the total amount of people recorded. In Figure 52 the
camera scene with the corresponding heatmap is presented, providing a hot-spot analysis
of specific zones. Further, a time slider allows the user to specify a start-end range and in
turn filter the coordinates and update the other measurements.

From the composed chart presented in Figure 53 it is possible to observe that the to-
tal amount of visitors to the outdoor department remains constant during weekdays. On
weekends, more specifically on Saturdays, the camera was able to record up to double the
number of customers that usually visit the shop on weekdays. The overall average dwell time
shows a slight increase. A similar picture is also given from the daily dwell time summary,
illustrated in Figure 54.
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Figure 52: Heat Map/Path Visualizations Based on Camera Data

Another important functionality that CCount provides is interaction analysis and distance
calculation. For this specific real-world test scenario, we had the opportunity to put the
behavior and scalability of our distance calculation algorithm to the test. Table 55 shows
a list of five interactions that took place on October 23rd, 2020 having a minimum duration
filter of five seconds. Lastly, the list is sorted by the distance in descending order.

It can be seen from Table 55 that the highest distance is 0.56m, approximately a third of
the necessary distance (1.5m) required for ensuring social distancing. For a detailed look
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Figure 53: Outdoor Department Dwell Time History

Figure 54: Outdoor Department Dwell Time Summary (Daily)

at the selected day, CCount front-end also provides a daily summary of the interactions,
including the total number of interactions along with the average distance, as shown in Figure
56. From this composed chart we can observe that the average distance reaches its peak at
around 12:00 pm whereas the interactions greatly increase in the afternoon. CCount offers
the possibility to conduct this analysis for each day, given that data was previously recorded
and processed by the back-end.
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Figure 55: Outdoor Department Interactions

Figure 56: Outdoor Department Interactions Summary (Daily)

RFID and Camera A comparison of different RFID reader (Impinj xArray R680 reader)
configurations (cf. Table 10) demonstrates the results from a practical example. Selecting
the adequate RFID reader mode based on the environment is key to accurately calculating
the tags’ location. The test consisted of fourteen passive UHF RFID tags arranged in dif-
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ferent locations within a warehouse and an RFID reader, and a 3D camera mounted on the
ceiling. After running each mode for a minute, the collected data was analyzed.

Table 10: Average Count of Entries and Number of Electronic Product Codes (EPC) Found
for Each Reader Mode

Algorithm Average Count Number of EPCs found
Auto Set Custom 59.538462 13
Auto Set Dense Reader Deepscan 62.153846 13
Auto Static Dense Reader 62.384615 13
Auto Static Fast 60.692308 13
Dense reader M4 60.769231 13
Dense reader M8 61.384615 13
Hybrid M2 61.307692 13
Max Miller 60.076923 13
Max Throughput 61.461538 13

Figure 57: Heat Map of Max (Left) and Mean (Right) Throughput

Despite the use of multiple reader modes, 13 tags out of 14 were captured, i.e., with
a success rate of 92.9%. The “missing” tag was not isolated from the others; instead, it
was placed in a dispersed location where the signal could not be successfully captured. As
part of the matching algorithm between 3D cameras and RFID tags, a critical metric is the
number of times a particular RFID tag can be captured, i.e., how many data points a reader
can deliver within a certain period. As a result of changing several parameters in these
configurations, the different RFID reader modes delivered approximately 60 entries within
1 min, which corresponded to the granularity of a 3D camera of one data point per second.
Thus, the accuracy of the various algorithms can be compared.

Figure 57 (left) represents the heat map for RFID tags captured within a minute, whereas
the right graph shows the approximate position of data points captured within this minute for
each RFID tag. In regions where tags are more distant and the density is low, approximated
positions are similar across the maps. However, the RFID reader performs poorly when
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tags are clustered together closely, resulting in higher density. As a result, the heat map is
unclear, and it is impossible to distinguish between the various tags. This behavior results
in a large amount of noise in the data, making it more difficult for the matching algorithm to
correctly identify individuals wearing an RFID tag as they appear to be moving.

Figure 58: Recording Frame Used to Correlate RFID Readings. Warehouse in Schlieren,
Zürich.

Figure 58 shows a snapshot of a recorded video, which was used as the focal point on the
path where participants walked carrying RFID tags. Thus, it was possible to correlate RFID
readings outside the camera’s focal point with objects detected by the camera to increase the
accuracy of the track. Moreover, this setup successfully assessed the system’s functionality
in real time.

Single RFID Tag This scenario evaluates the accuracy and precision of CCount, when
tracking a single individual wearing an RFID tag under the scene; cf. Figure 60 (top) for the
correct path of a single individual wearing this tag. The algorithm identifies the individual
with 100% accuracy when the RFID reader regularly captures the RFID tag’s position. The
success rate of the correlation was higher than 70-80%. Figure 60 (top) shows the correct
path of the single individual wearing the RFID tag.

Since the CCount system assumes that each individual is assigned a personal and
unique RFID tag, the scenario considering people randomly walking but only a single in-
dividual carrying a tag should never occur. However, it was conducted to test the algorithm
with arbitrary noise in the data. Several randomly walked under the camera, but only one
carried an RFID tag. Since these individuals were moving in different directions, thus, mak-
ing it easier to find a suitable correlation for the algorithm, the tag was successfully assigned
to the correct individual. A false-positive rate of 0% was observed.

Multiple RFID Tags A group of individuals wearing RFID tags in a crowded environment
was tracked to assess the system’s accuracy and precision. The results indicated that the
algorithm barely managed to assign tags correctly. While every individual in this variant
wore an RFID tag, only one individual was walking. It has been previously demonstrated
that, with multiple tags, the inaccuracy of the RFID reader increases substantially, making it
more challenging to match the ID of the 3D camera with the RFID tags.
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Figure 59: Maps From a 3D Camera and an RFID Reader of a Single Person Wearing an
RFID Tag Walking Between a Group of People.

However, on selected occasions, the algorithm successfully found a match despite the
noise. Figure 60 shows a path taken that was correctly assigned. As seen, noise is present
in the data coming from the RFID reader. As for the previous scenario, a case considering
individuals wearing an RFID tag and standing still did not yield precise results. The algorithm
is designed to take only the correlation into account, which resulted in erroneous results as
shown in Figure 60 (bottom). A different metric, e.g., the Euclidian distance, can prevent this
wrong assignment.

Visitor Counts: 3D Camera vs. RFID Reader Data collected during these experiments
can be analyzed independently from each other and compared. In order to conduct this
comparison, visitor counts are grouped according to 1-min intervals (cf. Figure 62).

In contrast to the 3D camera, which assigns different and random IDs to people entering
and leaving the scene, RFID tags are always uniquely identifiable by the RFID reader, due
to their EPC. Thus, data collected from RFID readers can determine the unique number of
visitors present at any given time. In this scenario, two participants were physically present.
Still, the 3D camera assigned up to 13 different identities within five minutes (when using a
grouping based on 5 min intervals, different IDs were found to be 35). Note that the number
of RFID tags did not exceed the actual count of RFID tags present, i.e., 14.

In the period of 10:15-11:05 hours, these experiments were performed using two differ-
ent RFID tags. Participants entered and left the camera’s field of view constantly, resulting
in a large discrepancy between the two measurements. In the period of 11:10-11:20 hours,
different reader modes of the RFID reader were evaluated. In this scenario, no participants
were present at the scene. Instead, RFID tags were statically placed under the camera.
Therefore, the camera’s count equals 0, whereas the RFID count is almost constant at 13.
Consequently, the number of visitor counts taken from the RFID reader’s data can be inter-
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Figure 60: Top: Single Person Walking; Center: Single Person Walking Between a Group
(Multiple Tags); Bottom: Multiple Persons (Tags) Standing Still in a Group

preted as a valid number.

Data Visualization The KPIs defined in the section above are incorporated into suitable
visualization and displayed in the dashboard. A range of filters is embedded to facilitate
the analytical use of the board. Figure 61 shows how the dashboard changes with different
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Figure 61: Dashboard Centered as Merchant A on July 1 Between 09.00 - 14.00
(A) Visibility Rate (B) Engagement Rate (C) Interaction Rate

filters.
Marketing campaign statistics for merchant A on July 1, 2021, are shown in Figure 61.

It is clear that merchant A has a visibility rate of 69%, an engagement rate of 45%, and an
interaction rate of 15%. Among the 69% of opportunities that appeared also in the visit zone,
less than half of them converts to a visit, and less than a fifth of those visitors interacted with
merchant representatives. Moreover, one can see that the dials used for benchmarking allow
a quick assessment of the KPI in the broader context. For merchant A, the interaction rate
is clearly below its own and peer group averages, while the visibility and engagement rates
are both at or slightly above average.

As the web prototype presented can be seen as an information-oriented website, the Web
Usability Index can be used for evaluating the usability of this web application [41]. This
evaluation will go through the Index’s five categories checklist because the Web Usability
Index consists of a checklist with as many as 150 questions [22].

Starting from the first category: ”Navigation and Orientation: consistency of navigation,
the color of links, etc”. The author believes the web prototype has consistent navigation. It
is clear that the dashboard has all the filter options located on the top panel of the website.
Three filter options are presented as a drop-down menu and a one-time frame filter choice
is done with a timeline plus two adjustable handles.

In terms of ”Interaction and Information-Exchange: availability of a homepage, skip func-
tionality for intros, etc”, the web prototype does encourage users to engage on the dashboard
by providing a responsive display depending on the choice of filters a user has made despite
the dashboard having only one page.

For the categories ”Being up-to-date and Quality: marking of texts with author and date,
absence of spelling mistakes, etc” and ” Ease of Access and Accessibility: the connection
between URL and website, availability of high- and low-tech variants of the website, etc”, the
prototype has been reviewed by the friend of the author. He has confirmed that the website
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Figure 62: Visitor Count From 3D Cameras and RFID Readers

is available on the localhost and free from context errors.
Coming down to the last category on the list ”Information- and Text-Design: the size of

the font, expressiveness of icons, etc”, the three visual charts are intentional choices of the
author. The zone of interest scatter plot on the left side aims to present the overview of the
crowd during the selected time range. The two dial plots provide prompt comparisons across
merchants and/or over time. The text next to the dial is an aid for the users and provides a
written explanation and the exact analytical numbers.

5.2 FusIon Data Tracking System (FITS)
FITS was evaluated based on four different scenarios. As specified in Table 11, different
sensor types, sensor amounts, and the number of data points were defined to evaluate
the overall FITS performance. Accuracy was measured by clustering correctness, position
prediction error, accuracy, precision, and the overall percentage of correctly tracked objects.

The test data input specifies the virtual measurement setup of the synthetic measure-
ment generation. This includes the specification of sensor positions (xs,ys, zs) & orientations
(αs, βs, γs) as coordinate systems relative to the absolute frame of reference as well as the
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Table 11: Evaluation Test Cases

ID/Description # Sensors Sensor ID(s) M. Quality M. Points Quality Aspect
1 - Base case 1 1 High 20,000 1
2 - Dense sensors 5 1,2,3 High 4 x 5,000 2
3 - Low M. quality 1 4 Low 20,000 3
4 - Sparse data 1 1 High 500 4

definition of sensor parameters, namely sensor spatial reach (λs), temporal resolution (γs),
and the sensor’s spatial precision (µs). Additionally, the specification of a sensor type is nec-
essary to be able to analyze performance using this parameter. Optionally, variables, such
as sensor identifier format (default: UUID4) and stability functions (default: linear), can be
defined.

As depicted in Table 12, the “ID/Description” gives an identifier for the test case, “# Sen-
sors” defines the number of sensors used in this test case, “Sensor ID(s)” refers to sensor
IDs and parameters, “M. quality” determines the quality of measurements (e.g., sensors with
low error provide high quality), “M. points” specifies the number of true data points taken into
consideration, and “Quality Aspect” refers to the respective aspect of the four quality aspects
as defined above.

The characteristics of the virtual sensor used are listed in Table 12 and chosen based
on real-world expectations for these sensor types. The sensor positioning can be seen in
Figure 63 and was selected to mirror a real-world setup, i.e., sensors spread among the
location, but generally placed, where most people can be expected.

Table 12: Configuration of Virtual Sensors

ID Type Spatial Precision Spatial Reach Temporal Resolution
1 WiFi 2.4 GHz 60 cm [17] 20,000 cm [17] 150 ms [81]
2 RFID 20 cm [27] 100 cm [80] 20 ms [27]
3 Camera 40 cm 300 cm [85] 17 ms [85]
4 (low quality) BLE 100 cm [58] 1,700 cm [14] 2’56 ms [58]

Figure 63: Evaluation Test Cases’ Virtual Sensor Placement. X and Y Axis in [cm]. Left:
Test Cases 1 and 4. Center: Test Case 2. Right: Test Case 3.

Figure 63 depicts the sensor placement representing test cases: (a) Left represents test
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cases 1 and 4, (b) center shows the setup for test case 2, and (c) right highlights the sensor
for test case 3. These colored points indicate the individual sensors according to their IDs;
dotted circles around them define their measurement reach. Gray points determine the
aggregated, simulated measurement points and indicate, where people can be expected.
As the FITS performs both object fusion/clustering and position prediction, these metrics
are analyzed individually and in a combined manner. To ensure that all effects observed
are representative and not only a statistical anomaly, each test case is also executed three
times, and the respective values are reported as a mean, including their standard deviation.

Object Fusion Evaluation Results A single real-life visitor may be captured by multiple
sensors, each assigning a different unique ID to the object. Object ID clustering detects
similarities between objects recorded by different sensors and tries to link them together in
object clusters to recover the real-life visitor structure. The fusion algorithm minimizes the
pairwise Euclidean distance within these objects of a cluster.

Object fusion quality was evaluated using both naı̈ve and bcubed measures. The results
achieved show that for all metrics (Naı̈ve, bcubed recall, bcubed precision, and bcubed fs-
core) and test cases (1 to 4) these metrics achieved a result of 1.0 with a standard deviation
of 0.0, indicating that individuals that were part of the true dataset were correctly identified
for every sensor measurement point. These metrics calculated indicate how prominent the
overlap between the clusters found (i.e., the identified individuals) and the true individuals.
Metrics can take values between 0.0 and 1.0, whereas 0.0 would indicate a total mismatch
between found and actual clusters, and 1.0 would indicate a perfect replication of the pro-
vided initial clusters.

These results show that the model is able to correctly identify the clusters (i.e., individu-
als) that were present in the original dataset. This is achieved with full recall and precision.
For test cases with one sensor only (1, 3, and 4), this is intuitive since here the individuals
can directly be identified by their ID assuming, as here in this case, that the ID is constant for
any one-to-one interaction between a device and a sensor (i.e., no ID randomization takes
place when a device is already connected to a specific sensor). For test case 2, the model
is also able to correctly identify all clusters. This could be potentially not only related to
the good model performance, but also due to the use of real-world movement data, where
there might not have been many overlaps for this specific dataset slice and, therefore, no
ambiguous decisions for the model were made.

To verify that this behavior is not just an artifact of a model or evaluation error, the authors
verified that the clustering performance indeed drops, when a different ID randomization
method is used (e.g., randomization of the ID, when a device is already connected to a
specific sensor). An additional factor impacting these results is the up-sampling approach:
increasing the number of measurements that can be mapped to certain individuals increases
the overall accuracy.

Position Prediction Accuracy Results The position prediction quality was evaluated us-
ing different naı̈ve metrics. Those results are shown in Table 13. The metrics, all reported in
centimeters (cm), can be interpreted as follows: “Naı̈ve Total” defines the sum of errors over
individuals predictions; the lower, the better. However, values are comparable, when com-
paring test cases with the same amount of sensors and measurement points (test cases 1
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Table 13: Results for Position Prediction using Naı̈ve Metrics [cm]

Test ID Naı̈ve Total Naı̈ve Mean Naı̈ve Min Naı̈ve Max Naı̈ve Median
1 375,431 (1,415) 25.7 (0.1) 1.2 (0.2) 481.8 (15.2) 21.3 (0.2)
2 124,544 (1,023) 19.4 (0.2) 0.9 (0.3) 447.7 (18.0) 12.6 (0.5)
3 539,997 (6,162) 38.0 (0.3) 1.2 (0.6) 466.0 (76.2) 33.2 (0.3)
4 8,466 (393) 24.9 (1.2) 2.4 (1.0) 77.5 (20.0) 23.0 (0.7)

Table 14: Combined Quality Evaluation (cf. Table 3, Stripped of Up-scaling Data)

Test ID MOTA [%] MOTP GT MT [%] PT[%] ML[%]
1 91.8 (0.1) 773.1 (9.1) 237.0 (0.0) 68.9 (0.2) 12.8 (0.2) 18.3 (0.2)
2 96.7 (0.2) 619.4 (15.3) 56.0 (0.0) 66.7 (1.0) 24.4 (1.0) 8.9 (0.0)
3 94.9 (0.1) 1,549.9 (28.8) 246.7 (3.5) 63.4 (0.6) 17.4 (0.4) 19.2 (1.4)
4 99.1 (0.0) 790.1 (65.9) 4.0 (0.0) 100.0 (0.0) 0.0 (0.0) 0.0 (0.0)

and 3). “Naı̈ve Mean”, “Naı̈ve min”, “Naı̈ve max”, and “Naı̈ve Median” are standard statistical
parameters applied to the prediction error; for each of them, the model is more accurate, if
the value is lower.

As the goal was to propose a model that is able to estimate the indoor positions precisely
in all cases, the mean metric is evaluated with the highest priority. The mean metric de-
creases when the sensor count increases (test case 2 vs. 1), which indicates that it improves
its prediction accuracy by using multi-object tracking. Also, using lower quality sensors (i.e.,
have a higher inherent measurement error) produces higher prediction errors (test case 3
vs. 1). This is seen in the total error reported, higher for case 3 than the base case. Lastly,
the prediction error roughly stays the same, 24.9 (test case 4) compared to 25.7 (base case),
regardless of whether 20,000 or 5,000 measurement points are used. However, the case
with sparse data has a higher standard deviation, indicating that these predictions are not
as accurate (although acceptable).

Combined quality was evaluated using different CLEAR-MOT and related metrics. The
respective results are shown in Table 14. The CLEAR-MOT threshold was set at 100 cm,
considering an individual correctly identified, if they identified a point within one meter of the
individual’s actual location. The one-meter diameter was defined since the authors assumed
that this would be the maximum number of devices placed around the individual’s center.
Predictions with errors above this threshold are not considered “correctly tracked”.

MOTA is provided in %, in which the higher the percentage, the more accurate the
model’s predictions are. MOTP is a precision indicator given in cm. A lower metric shows
that the model’s predictions were precise. Lastly, MT (“Mostly Tracked”) indicates the per-
centage amount of “Ground Truth objects” (GT) that were correctly tracked in more than
80% of the measurement timestamps. A higher value for MT indicates that more objects are
tracked correctly, and therefore, the model’s predictions are better. Similarly, PT (“partially
tracked objects”) in percent (i.e., object identified correctly between 60% and 20% of the
time) and ML defines the percentage of “mostly lost objects” (i.e., identification in less than
20% of the cases correct).

© Copyright 2022, the Members of the PasWITS Consortium Page 102 of 125



PasWITS Final Report

Performance Evaluation FITS’ performance was evaluated to assess whether near real-
time processing is feasible (i.e., considering a run time of 15 minutes for 100,000 measure-
ments). The performance analysis consists of increasing load tests to estimate the system’s
run time concerning the input size (i.e., big O notation). The evaluation was performed on
an Intel Core i7-9750H processor and 32 GB of RAM. Both, the FITS API and the Python
script, were run in a single docker container to avoid the effects of the network. Table 15
shows the mean run time in seconds for each measurement with size N (number of data
points) and the number of iterations (i.e., number of times the experiment was repeated).

Table 15: Run Time Analysis

N Mean Run Time [s] No. Iterations
100 0.52 10
200 1.08 10
400 1.60 10
800 2.64 10

1,600 5.76 10
3,200 10.06 10
6,400 22.04 10

12,800 39.75 10
25,600 84.17 10
51,200 172.17 10
55,000 187.41 10
60,000 202.92 10
65,000 224.13 10
70,000 236.83 10
75,000 254.83 10
80,000 773.74 1

100,000 967.187 1

A dataset with 100,000 measurements and 1,000 visitors was created using the synthetic
data generator for evaluation. The Python script posts these measurement data to the REST
API of FITS and measures the run time until the input batch job computation has finished.
Benchmarks with increasing input size (100, 20,000, ..., 80,000, 100,000) were performed
subsequently. Each benchmark doubled in input size and was run 10 times to compute the
average run time.

Figure 64 shows that for an input size up to approximately 80,000 measurements, the
processing time is in the order of O(n). However, there is a tipping point at 80,000 mea-
surements, where the run time exceeds the linear bounds and increases drastically. It is
important to note that the system was tested as a whole and not only the developed tracking
algorithm. Thus, the performance of individual components (e.g., read/write speed of In-
fluxDB) do have a significant effect on the overall performance, which was not yet optimized.

Especially, experiments that draw the attention are those at 80,000 and 100,000 data
points, in which the increase of the average run-time time grows significantly, but not expo-
nentially. This turning point happens due to excessive memory usage by InfluxDB, in which
the operating system starts swapping data to the hard drive, significantly increasing the ex-
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Figure 64: Run Time Analysis

ecution time. Such bottlenecks can be mitigated by dividing the measurements produced by
the Synthetic Generator into two smaller datasets (e.g., two datasets of 50,000 data points).
This indicates that improvements in the execution pipeline can be made to distribute the stor-
age and processing of data (e.g., by using a distributed streaming platform such as Apache
Kafka).

Discussion of Results Taking test case 1 as the baseline, this shows that even one sen-
sor suffices to achieve a good prediction, i.e., achieving more than 50% “mostly tracked”
and a mean prediction error of less than the sensors’ spatial precision. The correlation of
objects was able to correctly identify individuals for every measurement point in test case 1.
Once only one type of sensor (Wi-Fi 2.4 GHz) is used in this test case, a perfect mapping
between an ID and the true object can be generated. Thus, the up-sampling allows for the
easier artificial fusion of true and predicted objects. This result is confirmed by analyzing the
contingency matrix generated of relevant object IDs predicted with the true occupant IDs,
which is of square diagonal format (assuming an ordering of columns). Although the sensor
itself has a spatial precision of 60 cm, the results achieved, based on the naı̈ve mean, re-
sulted in an average deviation of 25.7 cm. Lastly, those combined evaluation shows an MOT
accuracy of approximately 92%, with more than two-thirds (68.9%) of these objects being
tracked correctly in more than 80% of the cases. This can also be considered a highly viable
outcome.

Considering the measurement of additional sensors (test case 2) those results show
a clear indication that the FITS engine achieves the goal set, i.e., improving predictions’
accuracy by taking into account multi-object tracking. This is proven by not only the de-
creased average naı̈ve position error (6.3 percentage points lower than base case), but also
through the higher MOT accuracy achieved. While the “mostly tracked” objects roughly stay
the same, the multi-object tracking also achieves significantly lower “mostly lost” objects (9.4
percentage points lower than the base case), indicating that not only for easy to track objects
these predictions can be improved but also for previously harder to track objects. Summariz-
ing those results of test case 2: They show that the second quality aspect, namely increasing
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the prediction quality, when considering more sensors, is reached.
The results of test case 3 show that there is a measurable impact, as expected, on the

prediction quality, if lower quality measurements are provided. This can be seen in both the
naı̈ve position prediction mean metrics (12.3 percentage points higher than base case) and
in the “mostly tracked” objects (5.5 percentage points higher than base case). Especially
dominant is the effect of the higher spatial sensor measurement error, when analyzing MOT
precision, where the value almost doubled and indicated, therefore, a low precision. Lastly,
test case 4, where only 500 data points instead of 20’000 were taken into consideration,
shows that the statistical values reached are in general similar to the base case.

General Implications and Limitations Fusing data from different sensors and manufac-
turers implies the need to harmonize the data before its fusion. In this sense, FITS defines
a minimal data structure so that data received in different temporal and spatial resolutions
can be transformed into a uniform and comparable view. While this pre-processing stage
implies a higher overhead in data preparation, it also ensures that different correlation and
machine-learning models can be used. Furthermore, it contributes to the explainability of the
approach since they operate on uniform data. Thus, a practical limitation of the approach
proposed here is the need to adapt the pre-processing stage to the sensors used in order to
extract the minimal data defined in the framework.

The use of APIs for both receiving sensor data and communicating with the front-end
makes the approach used in FITS independent of the synthetic data generator. It is possible
for data to be sent directly through the API once the pre-processing component is adapted to
transform the data accordingly. However, regarding the synthetic load generator, a limitation
is related to the creation of possible anomalies typically observed in real environments (e.g.,
signal irregularities due to real-world barriers or walls), which might have a significant impact
and lessen the overall data quality in a real-world application. Therefore, it is probable, that
the synthetic data generation approach might not be able to entirely replicate the real-world
aspects.

FITS complements the state-of-the-art by presenting a structured approach to data fu-
sion, complementary to recent approaches based on ML to predict data patterns based
on data from distinct sensors [1, 4, 70]. More specifically, different ML approaches can be
incorporated into step 6 and within the evaluation presented in the FITS architecture (cf.
Figure 30).

While there are engineering aspects that could be improved on within FITS, the main
areas of improvement are the individual components of the processing pipeline. The Up-
sampling component does not support a configurable time resolution for the up-sampling
rate as opposed to the currently hard-coded value of 1 second. Further, the Kalman Filter
configuration in the Smoothing component could be obtained empirically to model the real-
world dynamics more precisely.

Another important implication is related to privacy since FITS can be used for both active
and passive tracking. While active approaches typically rely on the user’s consent, pas-
sive approaches do not require consent and may characterize a violation of privacy. In this
sense, the use of FITS in public environments e.g., public transportation, should be carefully
planned to avoid users identified by correlating wireless signals and cameras.
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5.3 Data Consumption
The Web interface was evaluated considering the System Usability Scale (SUS). System
Usability Scale [6] is a user-oriented testing strategy for measuring the usability of a cer-
tain system. With this testing approach, participants are asked to score different questions
with one of five responses that range from Strongly Agree to Strongly disagree. The ques-
tionnaire and the corresponding scoring system are outlined in the System Usability Scale
Template [6].

Due to the fact that the platform at the current stage can still be considered a minimum
viable product for early customers, the SUS approach has been chosen, since it can be used
on small sample sizes and obtain reliable results. It is worth pointing out, that the usability of
any software has to be considered in terms of the context in which it is used and therefore
its appropriateness has to be viewed in that context [6].

In order to obtain sensible results for the SUS test, ten people have been interviewed
with different backgrounds and skill sets. Participants have been divided into three different
groups based on the following criteria:

1. Developers
People who are technically knowledgeable and have a computer science background.
Developers have been selected from Axelra [5], a tech venture builder based in Zurich.
During the development of the platform, they have been involved in discussions re-
garding potential solutions and were aware of the progress of the system.

2. Promoters
People working for different brands and agencies who are part of their promotional
teams. These people have a good understanding of how to setup and run a pro-
motional activity or a marketing campaign. They have never worked before with the
platform implemented and have no technical background.

3. Brands and Agencies Managers
People at the head of different brands and agencies who are responsible for the out-
come of their marketing campaigns or promotional activities. These people are usually
not part of the promotional team and are mainly involved in high-level marketing strate-
gies.

The SUS experiment has been executed after the first official release in November 2019.
The results are described in the section below and can be found in Figure 65.

SUS Results and Personal Feedback In general, all groups considered the system well
integrated and free of inconsistency. Furthermore, almost all members would use the system
frequently, independently of the group they belong to. One issue which differentiates devel-
opers and non-technical people regards the complexity of the system in terms of technical
understanding. Developers found the system easy to use while promoters and managers
were struggling with it at the beginning. After explaining to them the core functionalities and
features they started to feel more confident to use it.

For instance, most of the parameters need to be configured before an activity is created.
Some of them, such as Visit GAP or Min/Max Dwell Time were not clear to them and lead
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Figure 65: System Usability Scale Results

to the insertion of random intervals or numbers. They were not aware, that based on those
metrics their activity would have setup in completely different ways. Another common issue
was the wording. Interviewed people were confused about the terminology applied to the
Stakeholders. Indeed, terms such as activities, campaigns, brands and agencies were new
to them and lead to an initial disorientation while approaching the platform. For instance,
they proposed to switch the term activities with measurements, since it is on the activity
layer where sensors are configured and will afterward result in measurements.

Evaluated Screens Figure 66 illustrates the first step for creating a new activity in the
front-end. First of all, one of the activity types needs to be selected.

Afterward, as shown by Figure 67 some activity details need to be configured. Firstly,
the activity name has to be inserted. Then, values such as the environment (i.e., activity
format) and surroundings (e.g., Indoor or Outdoor) have to be chosen. Finally, the activity
place has to be located. By manually moving the map sensor, the geographical coordinates
of the chosen location are calculated automatically. These values will be relevant to locate
the activity more specifically.

Figure 68 illustrates the third step of the activity form. Within this step, the activity con-
figuration is setup. In fact, using the colored slider, parameters such as radius and mix-max
dwell times for different zone of interests can be configured. Finally, a bunch of available
sensors can be assigned to the activity. These sensors will be then used for measuring
metrics during the activity life cycle.
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Figure 66: Activity Form - First Step

Figure 67: Activity Form - Second Step

Figure 69 and 70 show the activity dashboard. Charts can be sorted by date and time
and exported as PNG or PDFs.

Figure 71 illustrates the agency overview in the perspective of root user. The overview
follows a card-based design principle. Figure 72 illustrates the campaign overview. Within
this tab, all activities belonging to the concerned campaign can be tracked. Activities can be
stored as drafts or have an active status.

Finally, Figure 73 shows the sensor’s overview from the perspective of a root account.
Within this tab, all sensors can be monitored, configured, and assigned to other agencies.
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Figure 68: Activity Form - Third Step

Figure 69: Activity Overview - First Part

Furthermore, the current configuration for each sensor can be downloaded and executed
locally.

Performance to Display Metrics and KPIs As the complexity of the architecture and the
quantity of accumulated data grew, the front-end started being less responsive and requests
were taking longer to load. The culprit was the back-end, which needed more time to pro-
cess the information and some Lambda functions started timing-out as well. After further
inspection, the problem was to be found in the query executed to retrieve the data from the
database and not in the code written in JavaScript contained in the Lambda functions.
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Figure 70: Activity Overview - Second Part

Figure 71: Agencies Overview

All queries run against the table personCoordinates which contains the data gathered from
all the cameras. In average, this table grows by 73’000 newly inserted entries daily. There-
fore, the performance degradation was more noticeable every day.
Two approaches were taken to address the slow response time problem:

1. Database Indexing: In the field of databases, an index is a data structure implemented
with the goal of improving the speed of data search and retrieval in queries, at the cost
of additional storage space to maintain the index data structure. In a table without in-
dexes, every query forces the system to read all the rows contained in it. However, an
index reduces the number of rows to be read in order to complete the query. Indexes
can be generated using one or multiple columns of a table. Before deciding on which
column indexes shall be created, it is necessary to evaluate which operations are the
most frequent and critical. A wrong choice of indexes could degrade the overall perfor-
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Figure 72: Campaign Overview

Figure 73: Sensors Overview

mance as well since overhead is introduced to maintain the index data structure.
In order to create a correct index or a set of indexes, it is required to know how typ-
ically the database tables are accessed. By analyzing the queries which run against
the database when accessing the personCoordinates table, it can be concluded that
a look-up returns rows that satisfy the following predicate in the WHERE clause: filialeId,
camera, timestamp. Hence, an index composed of those three columns highly re-
duces the required time for execution. Table 16 shows how long it takes to retrieve
14’667 rows of an entire day without and with the index based on the columns afore-
mentioned; almost 100 times faster in average.

2. Cronjob to update a table from a view: Incoming data from the camera has to be
aggregated before being served to the front-end. Aggregation on the fly, as the data
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Run Without Index With Index
1st 27.865s 321ms
2nd 22.478s 242ms
3rd 15.664s 170ms

Average 22.002s 244ms

Table 16: Elapsed Time to Retrieve 14’667 Rows of Data With and Without An Index From
the personCoordinates Table Containing Around 5’700’000 Entries.

is retrieved from the database, was fast enough as long as the mole of data was not
too much. With too many entries in the database (more than 5’700’000 entries), the
performances started to quickly degrade. Therefore, an additional table containing the
result of the aggregation was created. The table is updated every 15 minutes from
view. The process of updating happens in the background, hence the operational cost

Run Aggregation on the fly Already aggregated
1st 117.067s 84ms
2nd 116.451s 36ms
3rd 115.772s 33ms

Average 116.430s 51ms

Table 17: Elapsed Time to Retrieve Data with Aggregation On-the-fly Versus Retrieving Data
Aggregated

of the update can be omitted. Table 17 shows the difference between aggregating
everything on the fly versus retrieving only the aggregated data. Important to mention
is that the aggregation on-the-fly retrieves data from the table personCoordinates,
which has already been optimized. Despite having a delay of 15 minutes before being
able to have the latest aggregated data, the solution utilizing the cronjob is definitely
required. Lambda functions do not timeout anymore and the data is retrieved almost
instantaneously.
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6 Discussions and Impacts
Overall, PasWITS achieved its intended results; however, it had been impacted by the pan-
demic. Therefore, these impacts are detailed below.

6.1 Methodology and System Design
The project was developed following the philosophy of proposing a modular and data-driven
approach. Thus, the initial focus considered the main tracking sources, WiFi and Bluetooth,
investigating in detail the possibilities of their use in passive tracking of mobile devices. Dur-
ing the testing of these prototypes, passive tracking of wireless signals poses several addi-
tional challenges related to data scarcity and signal variability due to various environmental
conditions. Therefore, the project investigated additional sources such as RFID, LiDAR,
and Cameras to expand the array of tracking solutions to ensure minimal privacy with an
economically viable approach.

To ensure that the expansion of other sources would not affect the main innovation pro-
posed in the project, i.e., the data correlation and prediction engine, a standard data struc-
ture was proposed to ensure that the data provided by each source can be pre-processed to
provide synchronized geometric coordinates on the same time scale. That is, they can pro-
vide timestamped coordinates based on the global clock. Another important consideration
regarding the various prototypes developed for the data sources is the use of an overall dis-
tributed architecture based on data streaming to a sink. With this, several capture sources
can be placed strategically, periodically sending data to the sink via a local network. The
sink, in turn, must be a node with greater processing power (than nodes spread across the
tracked site) to enable the possibility of correlating the data in real time or sending it to the
Cloud, where it is processed and made available to the front-end. This process entails a
relative delay for data visualization, implying that the term real-time is in the time scale of
minutes and not seconds.

6.2 Pandemic Impacts
One of the major challenges was the COVID pandemic which coincided with a large part
of the project’s development. livealytics focuses exclusively on monitoring and analyzing
marketing campaigns at public events, which were largely canceled or restricted during the
pandemic. As a result, the project’s execution was immediately affected, requiring minor
alterations to assure its continuation, albeit on a smaller scale. Several steps were made to
avoid these issues, including increasing the data input to include cameras and LiDAR and
offering a monitoring system (cf. Cloud Counter - CCount).

The inability to evaluate the created prototypes at events and trade fairs where other
livealytics prototypes were placed directly had a major influence on the project’s execution.
MICE (Meetings, incentives, conferences, and exhibitions) events constituted the majority of
the business that livealytics targeted, and as such, it impacted business and academic re-
sults. Consequently, techniques for evaluating data streaming systems were created using
a combination of simulated data creation and, to a lesser degree, actual sensors in con-
trolled conditions (university or private environments provided by livealytics as the Schlieren
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Warehouse). In this regard, collaboration was great so that prototypes could be examined
in actual surroundings, although on a smaller size.

6.3 Security Concerns — Privacy and Confidentiality
One of the important aspects addressed in the project’s development is the contradiction
between the search for increased accuracy in tracking individuals versus the privacy of the
tracked individuals. Privacy in its strict sense, i.e., not being observed by something or
someone, is not always possible in public environments - where crowds are monitored by
surveillance cameras or security personnel. On the one hand, increased accuracy requires
the search for methods that allow objective identification of individuals using unique visible
characteristics and unique characteristics of devices carried by individuals. On the other
hand, it is necessary to ensure that information obtained by different tracking approaches is
not invasive to the point of linking an individual to an identity. In this sense, privacy in the
PasWITS project refers to data privacy of monitored people/devices, ensuring that obtained
information is not linked to personally identifiable information.

Confidentiality concerns include who is authorized to access the information extracted
from a campaign. In this sense, monitoring information extracted locally in a campaign
is sent over an encrypted channel to a backend, and data (and metadata) is stored and
encrypted individually per client. Thus, a client only has access to its campaign’s data. Only
super users have access to the data of all clients/campaigns (cf. role-based access modeling
defined in Section 4). Another concern about distributed data streaming architecture is
the possible interception of data sent by one or more sensors to a local or cloud sink at
a campaign site (sniffing). In this sense, encrypted channels should be used to ensure
that data is not intercepted and modified by third parties. It is also important to note that
the prototype design allows the solution to be entirely hosted and run on-premises by the
client once they have the necessary resources. This option depends on how a final product
can be implemented by livealytics and bilateral agreements with customers who have strict
requirements regarding the external storage of their campaign data.
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7 Concluding Remarks
As a greater amount of data is generated by many mobile devices humans carry around
on a daily basis, at the same time, there is the possibility for these data to be captured
and analyzed for various purposes. As such, measuring the public interest in a particular
product or service is of fundamental importance for the strategic planning of businesses in
an increasingly digitized society. The mission of livealytics – the business and technology
partner of this project – is to provide a full-fledged analytics solution for measuring and
benchmarking the performance of sales and live marketing promotion activities, trade shows,
and retail spaces. As such, the PasWITS project explored the possibility of merging multiple
input sources with the geo-localization of devices. And it is now possible to increase the
accuracy for the unique identification of devices within the data link layer.

PasWITS followed a modular development methodology that allowed for a relatively easy
adaptation in face of the challenges faced (e.g., pandemic) and could expand the data input
vector (sensors) without compromising data correlation and prediction. Prototypes for the
several input sensor types were developed with a distributed data streaming architecture
based on (and requiring) a data structure for correlation (which was specified) and a scenario
prediction to be performed. The use of a standard data structure implied a compromise in
which it was necessary to include a pre-processing step in the collected data to ensure that
it could be sent and processed in a uniform and convenient way for its correlation (implying
greater tracking accuracy).

Although pandemic-related challenges have prevented large-scale testing and evalua-
tion (as originally planned for), several positive observations have to be made from both
a business and an academic, research point of view. From a business point of view, the
Cloud Counter solution has become a product in livealytics’ service portfolio. From an aca-
demic point of view, several academic and peer-reviewed publications have been prepared,
based on the CSG’s teamwork with students, to cover theoretical and practical opportuni-
ties in investigating the operation of sensors. Furthermore, the partnership between CSG
and livealytics was very insightful, constructive, and cooperative, in which there was ample
(when allowed due to health/safety regulations) opportunity for the evaluation of prototypes
in the field, as well as the availability of hardware and software used for livealytics for ex-
perimentation in an academic setting. This partnership was extremely beneficial in refining
the development of several prototypes and validating the results of those experiments per-
formed.

Finally, the project points out that a data-driven solution is extremely favorable for in-
creasing the accuracy of tracing through source correlation. In this sense, the concepts and
prototypes developed within PasWITS can be refined to become products, such as Cloud
Counter, and these can increase the service portfolio of livealytics. Furthermore, it is ob-
served that additional sources, like the Ultra-Wideband (UWB) communication technology,
can be developed further to increase the tracking accuracy at a relatively low cost, which
could boost livealytics in the resumption of public events.
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