
Prototypical Implementation of a
Cloud Experimentation

Environment by an OpenStack Fake
Driver

Stephan Mannhart
Steinach, Switzerland

Student ID: 11-917-515

Supervisor: Patrick G. Poullie, Dr. Thomas Bocek
Date of Submission: July 1, 2015

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

V
E

R
T

IE
F

U
N

G
S

A
R

B
E

IT
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Vertiefungsarbeit
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Contents

I Introduction 1

II Cloud Experimentation Environment 1

II.1 OpenStack Architecture . 1

II.2 OpenStack Installation . 2

II.2.1 Identity Service . 2

II.2.2 Image Service . 2

II.2.3 Compute Service . 3

II.2.4 Initial LXC Setup . 3

II.2.5 LXC Usage . 4

II.2.6 Networking Component . 4

II.2.7 Fake Driver . 5

II.3 Nova Compute Command-line Client . 5

II.3.1 VM Management Commands . 6

II.3.2 VM Information Commands . 6

II.3.3 Host Information Commands . 6

II.3.4 Diagnostic Data for Simulations . 6

IIIPerformance Limitations 7

III.1 Compute Host Limitations . 7

III.2 VM Limitations . 8

IVCRRA Implementation 8

IV.1 OpenStack Scheduling . 8

IV.1.1 Resource Consumption Data . 8

IV.1.2 Filtering . 9

IV.1.3 Weighting . 9

IV.2 Integrating CRRA . 10

IV.2.1 Starting Simulations . 10

IV.2.2 Conducting Experiments . 11

IV.2.3 Limitations . 11

1

Abstract

OpenStack is a powerful software toolkit to manage production clouds but when it
comes to simulating and experimenting with different cloud setups, it doesn’t provide
a ready to use solution. However, trying out different hypervisor and virtual machine
ratios as well as different resource consumptions can lead to interesting insights about
how to increase the effectiveness of a cloud. This paper shows the installation and
configuration of an OpenStack based experimentation environment with virtualised
compute hosts and faked virtual machines.

Keywords: OpenStack, LXC, fake driver, cloud experimentation environment

I. Introduction

This paper is structured into three main
parts: First I will provide insight into the
cloud experimentation environment that
has been set up to serve as an interface
for the simulations. After that I will fo-
cus on performance limitations in regards
to the used approach and finally, I will dis-
cuss the chosen concept of implementing a
cloud runtime resource allocation (CRRA)
simulation into the cloud experimentation
environment.

II. Cloud Experimentation
Environment

The cloud experimentation environment
(CEE) consists of the OpenStack “set of
software tools for building and managing
cloud computing platforms” [1], LXC con-
tainers for the various OpenStack compute
nodes and the fake driver handling all VM
operations. Following, I discuss all men-
tioned components of the environment in
more detail to provide a thorough overview.

II.1. OpenStack Architecture

LXC container
LXC container
LXC container

N15 physical host

nova compute
nova compute
nova compute

openstack controller
 & keystone

& glance

Figure 1: CEE OpenStack Configuration
Overview

In Figure 1 you can see the general Open-
Stack configuration that I chose for the
physical host N15 where I set up the CEE.
OpenStack consists of a number of services
that need to be installed on different hosts.

horizon The dashboard that can be ac-
cessed through a web browser to sim-
plify OpenStack configuration tasks
and provide an intuitive user interface
to manage VMs.

nova The compute service that manages
creating, scheduling and destroying
VMs.

neutron The new network service that was
introduced with the Folsom release
of OpenStack. This service should
eventually replace the legacy ”nova-
network” service [3]. This service

2 II CLOUD EXPERIMENTATION ENVIRONMENT

manages the network connections for
devices that are managed by other
OpenStack services, like VMs. Since
the CEE does not use real VMs, the
legacy nova-network service suffices.

keystone The identity service that handles
authentication and authorisation for
all OpenStack services.

glance The image service that manages
virtual machine disk images to be
used by the nova compute service.

The CEE discussed in this paper uses the
listed services. Additional unused services
include swift for unstructured data manage-
ment, cinder for block storage, ceilometer
for monitoring and metering, heat for cloud
orchestration and trove for database-as-a-
service functionality.

The main host is called “controller node” [2]
and runs the OpenStack base-installation as
well as the keystone and glance services. In
order to allow me to use multiple compute
nodes to host the hypervisor part of Open-
Stack, I used LXC containers [4]. Each LXC
container runs its own nova compute service
to serve as a hypervisor for the OpenStack
cloud. The controller sees the LXC contain-
ers as real compute hosts since the LXC vir-
tualisation allows for a complete sandboxing
of the compute host to simulate a real host.

II.2. OpenStack Installation

The whole installation was done for the
Juno release of OpenStack with the help of
the official OpenStack installation guide for
Ubuntu 14.04 [2]. The guide provides step-
by-step instructions to set up an OpenStack
installation with a controller node and one
compute node. The installation required 10
individual passwords to set up proper au-
thentication for all services. The most im-
portant password is the keystone password

for the admin tenant. Tenants are “contain-
ers used to group or isolate resources. Ten-
ants also group or isolate identity objects”
[5]. The admin tenant allows full access to
the nova compute service.

Initial setup of the OpenStack installation
included preparing the SQL database which
is used by most OpenStack services to store
their information and setting up the con-
troller node as an NTP server for the com-
pute nodes to synchronise time with. Mari-
aDB was used as an SQL server as it was
recommended by the installation guide.

II.2.1 Identity Service

The use of the identity service and its au-
thentication can be simplified by using a
small bash script that can be sourced to set
the proper username, password and authen-
tication URL for the identity service as en-
vironment variables.

1 e xpo r t OS TENANT NAME=admin
2 e xpo r t OS USERNAME=admin
3 e xpo r t OS PASSWORD=

ADMIN PASSWORD
4 e xpo r t OS AUTH URL=ht tp ://

c o n t r o l l e r :35357/ v2 . 0

Listing 1: Identity Settings

Listing 1 shows the bash script that
can be sourced with $ source

identity_settings.sh to set up the au-
thentication variables to use the command
line clients in OpenStack without needing
to supply the authentication data as pa-
rameters for every command.

II.2.2 Image Service

The image service provides an interface for
nova compute to access the VM images it
needs. The authentication works through
keystone and is set up permanently in the

II.2 OpenStack Installation 3

glance configuration file. In order to prop-
erly use the glance image service, I created
an initial image using CirrOS [6] that I later
used as the main image to start new in-
stances since all VMs will only be simulated
by the fake driver and the image will only
be needed for issuing a valid instance-boot
command.

II.2.3 Compute Service

To manage hypervisors for OpenStack com-
pute purposes, the nova compute service is
needed. The service has to be installed in
two steps: First step is to install the com-
pute service parts for the controller node
which consist of:

nova-api To handle user API-requests to
the compute service.

nova-cert To manage certificates.

nova-conductor To mitigate between
nova services and the underlying SQL
database.

nova-scheduler To schedule new VM in-
stances to the correct compute host.

nova-consoleauth, nova-novncproxy
To allow authentication for console
access like VNC to VM instances.

python-novaclient A command line
client to directly interface with the
nova API to execute nova compute
commands. This client was heavily
used to build the CEE and to test the
performance properties of the CEE.

The second step is to install the nova com-
pute services that are needed on the indi-
vidual compute hosts.

II.2.4 Initial LXC Setup

The LXC-based compute hosts only needed
the setup of the nova-compute service to ac-
cept VM instances that were scheduled by
the controller and to successfully manage
these instances throughout their lifecycle.

Since the LXC compute hosts deviated from
normal compute nodes in that they them-
selves are virtualised, the initial installa-
tion did not work as outlined in the in-
stallation instructions [2]. After thoroughly
analysing the nova-compute upstart log files
in /var/log/upstart/nova-compute [7], I
realised that the nova compute service tries
to load the kernel module“nbd” for network
block devices[8] in its upstart script located
in /etc/init/nova-compute.conf . Since
LXC containers are not allowed to load ker-
nel modules, the default upstart script failed
and I needed to remove the kernel module
loading. This presents no problem since no
real VMs are running on the compute host
and therefore network block devices are not
needed. It would however be possible to still
use the nbd kernel module within an LXC
container by loading it on the LXC con-
tainer’s host and since the LXC container
shares the kernel with the host, the mod-
ule would already be loaded when the LXC
container starts [9].

To simplify the IP address assignment for
large amounts of LXC containers, the dns-
masq DHCP server [10] was used to auto-
matically assign IP addresses based on the
host name. For each host, an entry with the
form dhcp-host=hostname,ip_address was
set up in the file /etc/lxc/dnsmasq.conf

on the controller node. This allows for a
convenient centralised IP management of a
large amount of LXC containers.

While testing the CEE, I ran into the prob-
lem of dnsmasq leases that did not ex-
pire fast enough and caused wrong IP ad-
dress assignments for LXC containers. This

4 II CLOUD EXPERIMENTATION ENVIRONMENT

was mostly due to LXC containers hav-
ing been removed and new ones being cre-
ated with the same name for test purposes.
The issued leases for dnsmasq are stored
in /var/lib/misc/dnsmasq.lxcbr0.leases

. To remove old leases, they can just be re-
moved from the leases file. To make these
changes effective, the lxc-net service has
to be restarted with # service lxc-net

stop # service lxc-net start . It is im-
portant to restart lxc-net with stop followed
by start instead of restart because there is a
known bug that prevents restart from cor-
rectly restarting dnsmasq [11]. The CEE
in it’s final configuration does not exhibit
this problem since all hosts are pre-created
and only get started or stopped according
to the needed amount of hosts, which does
not create the discussed lease problem.

II.2.5 LXC Usage

I created the initial LXC container from
a 64bit Ubuntu 14.04 image that was di-
rectly downloaded through the lxc CLI
with $ sudo lxc-create -t download -n

nova_0 to create an LXC container with
the name nova 0. This container was then
customised to work as a generic nova com-
pute host template to be cloned to generate
a multitude of containers.

1 #!/ b in / bash
2
3 count=‘ l s / va r / l i b / l x c | t a i l

−1 | t r −d ”nova ” ‘
4 new nova id=$ ((count + 1)) ;
5 new nova name=’nova ’

$new nova id ;
6
7 l x c−c l o n e −o nova 0 −n

$new nova name
8
9 # Add new dnsmasq r e s o l v e r

10 new nova ip end ing=$ ((100 +
new nova id)) ;

11 echo ”dhcp−hos t=
nova $new nova id , 1 0 . 0 . 3 .

$new nova ip end ing ” >> /
e t c / l x c /dnsmasq . con f

12 s e r v i c e l x c−net r e s t a r t
13
14 # Change i p i n nova . con f
15 sed − i ’ s / IP / 1 0 . 0 . 3 . ’

$new nova ip end ing ’ / g ’ /
va r / l i b / l x c /$new nova name
/ r o o t f s / e t c /nova/nova . con f

Listing 2: LXC Cloning Script

The bash script in Listing 2 simplifies the
cloning of the nova 0 template by automat-
ically creating an LXC container with incre-
mented host name of the form nova number
and adding the necessary host entry to the
dnsmasq configuration file as well as setting
up the correct IP address in the new hosts
nova configuration.

14:21 n15 / $ sudo lxc-ls --fancy
NAME STATE IPV4 IPV6 GROUPS AUTOSTART
--
nova_0 STOPPED - - - NO
nova_1 RUNNING 10.0.3.101 - - NO
nova_2 STOPPED - - - NO
nova_3 STOPPED - - - NO

Figure 2: LXC container list

To list the existing LXC containers, you
can use $ sudo lxc-ls --fancy which pro-
duces an output similar to Figure 2 with
the states and IP addresses of all LXC con-
tainers that are currently available on the
system.

To start container nova 1, execute $ sudo

lxc-start -dn nova_1 to start the con-
tainer as a daemon. To access container
nova 1, use $ sudo lxc-attach -n nova_1

to open a shell connection as user root. To
finally stop container nova 1, you can use
$ sudo lxc-stop -n nova_1 .

II.2.6 Networking Component

As described in section II.1, the CEE uses
nova-network as the networking component

II.3 Nova Compute Command-line Client 5

for the nova services. I primarily made
this choice because no real VMs are present
and therefore providing a fully featured net-
working component like neutron would have
been pointless. The nova-network service is
however still needed as I discovered: When
starting new instances, the network state of
the instance is requested from the network
service. With no network service available,
the request will time out and cause the VM
to go into an ERROR state from which it
can neither recover nor be destroyed. A
workaround for this problem was to directly
destroy the instance through the MySQL
database [12]. To simplify this process,
I wrote a small SQL procedure that can
directly be called with an instance-UUID:
destroy_instance(instance_uuid) . This
procedure could be used for different sce-
narios where an instance can’t be recov-
ered from an ERROR state but is no longer
needed for the outlined network problem as
the nova-network service solves this.

II.2.7 Fake Driver

The central part of the nova-compute ser-
vice is the virtualisation driver to interface
with the hypervisor. There are many com-
pute drivers available that can be used [13].
The default driver is the libvirt driver which
is also the driver that has been tested the
most [14]. The libvirt driver supports a mul-
titude of hypervisors [15] and would there-
fore be a good choice as a basic driver. The
CEE is actually able to fully use the libvirt
driver to start real VMs inside the LXC-
based compute host. This was very helpful
to observe realistic behaviour in regards to
scheduling or diagnostic information.

In order to allow useful simulations in
the CEE, a fake driver needs to be
used to bypass the actual hypervisor
and just fake VM actions like creat-
ing, starting, stopping or getting diag-

nostic information. To set up the com-
pute hosts for use with the fake driver,
compute_driver=fake.FakeDriver has to
be set in /etc/nova/nova-compute.conf .
After restarting the nova-compute service
with # service nova-compute restart ,
the changes will take effect and the fake
driver will now handle all VMs.

To make sure that the fake driver won’t
be constrained by the actual resources
that are available on the physical ma-
chine, the quotas for each tenant can be
adjusted to allow unlimited amounts of
memory, cpu cores and disk space to be
used by VMs within the tenant [16]. To
change the quotas, the admin tenant id
has to be requested with # keystone

tenant-list to use it to set the quo-
tas: # nova quota-update --instances

-1 --cores -1 --ram -1 --fixed-ips -1

--floating-ips -1 tenant_id . Since
OpenStack is written in Python and
is open source, the fake driver can be
changed to accommodate our needs. The
python source for the fake driver is located
in /usr/lib/python2.7/dist-packages/

nova/virt/fake.py . Since every LXC com-
pute host will need this source, changes
to the driver would need to be installed
separately on each LXC container. To
circumvent this, I set up a shared folder
on the physical machine that will be
mounted on each LXC container [17]. I
copied all relevant Python source files to
/opt/nova on host N15 and set the mount
point in the shared LXC configuration file
/usr/share/lxc/config/ubuntu.common.conf

which is read by all LXC containers.

II.3. Nova Compute Command-
line Client

The compute command line client [18] can
be used to directly talk to the nova API.

6 II CLOUD EXPERIMENTATION ENVIRONMENT

There are some essential commands to man-
age VMs and get diagnostic information
about compute hosts and VMs that I will
list in the following sections.

II.3.1 VM Management Commands

Create VM To create a new VM, you first
have to get the flavor-id through #

nova flavor-list and the image-
id of the CirrOS image through
nova image-list . With both
ids, you can then execute # nova

boot --flavor flavor_id --image

image_id vm_name

Start VM # nova start vm_name

Stop VM # nova stop vm_name

II.3.2 VM Information Commands

List all VMs # nova list

Show high-level info about a VM
nova show vm_name

Show VM diagnostics
nova diagnostics vm_name

Show VMs for host nova 1
nova hypervisor-servers nova_1

List diagnostics for all VMs on nova 1
nova host-describe nova_1

II.3.3 Host Information Commands

Show all OpenStack services
nova service-list

Show services of all hosts
nova host-list

Show resources of host nova 1
nova hypervisor-show nova_1

II.3.4 Diagnostic Data for Simula-
tions

In order to perform useful simulations, there
needs to be a way to obtain diagnostic
information from the CEE. This can be
achieved through the outlined command-
line client commands from the last two sec-
tions. I would like to highlight two of the
most useful commands in regards to simu-
lations. When simulating resource usage in
the CEE, the most interesting metrics in-
clude: CPU time, memory usage, disk
usage and network usage of the individ-
ual VMs as well as the compute hosts them-
selves.

11:15 n15 /root # nova hypervisor-show nova_1
+-------------------------+------------+
| Property | Value |
+-------------------------+------------+
cpu_info	?
current_workload	0
disk_available_least	0
free_disk_gb	599840
free_ram_mb	15872
host_ip	10.0.3.101
hypervisor_hostname	nova_1
hypervisor_type	fake
hypervisor_version	1000
id	1
local_gb	600000
local_gb_used	160
memory_mb	32768
memory_mb_used	16896
running_vms	1
service_disabled_reason	-
service_host	nova_1
service_id	5
state	up
status	enabled
vcpus	12
vcpus_used	8
+-------------------------+------------+

Figure 3: Hypervisor Stats

Figure 3 shows the output of the # nova

hypervisor-show nova_1 command to dis-
play hypervisor information about the com-
pute host nova 1. We can get detailed infor-
mation about disk- as well as memory-usage
from the host as well as a general overview
about VCPU usage.

7

11:38 n15 /root # nova diagnostics vm_1
+------------------+---------+
| Property | Value |
+------------------+---------+
cpu0_time	5254
memory	524288
memory-actual	524288
memory-rss	98172
vda_errors	-1
vda_read	262144
vda_read_req	112
vda_write	5778432
vda_write_req	488
vnet1_rx	2070139
vnet1_rx_drop	0
vnet1_rx_errors	0
vnet1_rx_packets	26701
vnet1_tx	140208
vnet1_tx_drop	0
vnet1_tx_errors	0
vnet1_tx_packets	662
+------------------+---------+

Figure 4: VM Diagnostics

To get information about the VMs, Fig-
ure 4 shows the output of the # nova

diagnostics vm_1 command to obtain di-
agnostic information about VM “vm 1”.
These information are particularly interest-
ing as they show CPU time, memory usage,
disk usage and network usage. The CPU
time can be used to calculate the current
CPU usage in percentage with the total cpu
time from /proc/stat [19].

III. Performance
Limitations

An important aspect of the CEE is the abil-
ity to simulate big loads with many hosts as
well as many VMs running. To test the per-
formance of the CEE, I conducted a set of
tests and gathered metrics about the phys-
ical host to determine the maximum load
that could be simulated.

III.1. Compute Host Limitations

The physical host limits the amount of LXC
containers that can be created since every
container needs a certain amount of disk
space as well as memory to run.

nova 1 nova 2 nova 3 nova 4 nova 5
213.6 249.9 249.9 201.3 202.1

Table 1: LXC Container Maximum Memory
Usage in MB

Table 1 shows the maximum memory us-
age for the initial 5 LXC test-containers.
To obtain these metrics, I needed to bind
the cgroup mounts to /sys/fs/cgroup

for all LXC containers [20]. After
that, I was able to obtain the maximum
amount of memory allocated to each con-
tainer during it’s lifetime by viewing the
content of /sys/fs/cgroup/memory/lxc/

nova_*/memory.max_usage_in_bytes . I cal-
culated an average memory usage of 223.3
MB which means the physical host N15 with
a total of 62 GB of memory would have
enough memory to run 273 LXC containers
considering that N15 itself needs an addi-
tional 3 GB for it’s own operating system.

The bottleneck in respect to the amount of
LXC containers that can be sustained on
N15 is the amount of disk space that an
LXC container needs. Since all containers
are clones of container “nova 0” they share
the same amount of disk space they need
to work. All files for container “nova 0”
are stored in /var/lib/lxc/nova_0/rootfs

which amounts to 994 MB. Since N15 only
has 67.3 GB of usable disk space, it could
only run a maximum of 69 LXC-based com-
pute hosts.

8 IV CRRA IMPLEMENTATION

III.2. VM Limitations

0

1

2

3

4

5

6

7

8

9

0

10

20

30

40

50

60

70

80

90

100

00
:0

1
01

:0
9

02
:1

7
03

:2
5

04
:3

3
05

:4
1

06
:4

9
07

:5
7

09
:0

5
10

:1
3

11
:2

1
12

:2
9

13
:3

7
14

:4
5

15
:5

3
17

:0
1

18
:0

9
19

:1
7

20
:2

5
21

:3
3

22
:4

1
23

:4
9

24
:5

7
26

:0
5

27
:1

3
28

:2
1

29
:2

9
30

:3
7

31
:4

5
32

:5
3

34
:0

1
35

:0
9

36
:1

7
37

:2
5

38
:3

3
39

:4
1

40
:4

9
41

:5
7

43
:0

5
44

:1
3

45
:2

1
46

:2
9

47
:3

7
48

:4
5

m
em

or
y

us
ag

e
(G

B
)

cp
u

us
ag

e
(%

)

time (s)

cpu usage
memory usage

Figure 5: Memory and CPU Usage for 1000
VMs

In regards to VMs, the CEE turned out
to be much more capable. In an attempt
to stress the physical host, I started 1000
VMs with one compute node (nova 1) run-
ning. I used dstat to log the CPU and
memory usage [21] that resulted in Figure
5 which clearly shows that the amount of
memory needed to support the VMs ini-
tially increases but starts to plateau around
the 30 minute mark. The memory usage
never exceeds 8 GB and it has to be noted
that the test was run on a freshly booted
machine.

The behaviour in respect to CPU usage
is also to be expected since the VMs are
running on a faked hypervisor and there-
fore consume no CPU time. The individual
spikes every 10 minutes could be caused by
other background processes and do not have
such a huge significance as they only last for
a single second.

IV. CRRA Implementation

The cloud runtime resource allocation or
CRRA is an important addition to the ex-
isting CEE that allows for simulated work-
loads to be assigned to the VMs. Since
the VMs do not actually exist and are only

faked by the fake hypervisor, CRRA be-
comes an important tool to conduct simula-
tions within the CEE. The nova command-
line client that was discussed in section II.3
allows detailed information-gathering with
respect to compute hosts as well as VMs
but in order to understand where this diag-
nostic data comes from, we need to take a
look at how scheduling in OpenStack works.

IV.1. OpenStack Scheduling

Filters
RetryFilter
AvailabilityZoneFilter
RamFilter
ComputeFilter
ComputeCapabilityFilter
ImagePropertiesFilter

Weighting
RAM weight
Metrics weight
I/O Ops weight

host 1
host 2
host 3
host 4

host 1
host 2

host 4

host 2
host 1
host 4

Figure 6: OpenStack Scheduling

As Figure 6 shows, scheduling takes three
steps in OpenStack: First, all hosts are fil-
tered by a predefined set of filters, then they
are weighted and finally, a host is chosen
from the resulting list of potential hosts to
run the VM [22].

IV.1.1 Resource Consumption Data

In order to apply the filters and weights
that will be described in the follow-
ing two sections, the nova scheduler
needs resource consumption data of all
hosts. This data is directly accessed
from the database by the scheduler and
stored there by each host in a default
time interval of 60 seconds as defined
in /usr/lib/python2.7/dist-packages/

nova/openstack/common/periodic_task.py

[27].

IV.1 OpenStack Scheduling 9

IV.1.2 Filtering

The first step in scheduling is filtering the
complete list of all nova compute hosts.
The set of filters to be used is defined in
/etc/nova/nova.conf [23]. The default set
of filters includes:

RetryFilter Skips nodes that have already
been attempted for scheduling.

AvailabilityZoneFilter Makes sure the
VM gets started on a node that is in
the availability zone as described in
the VM instance properties. Avail-
ability zones are nodes on a single
cloud site that are somehow isolated
from the other nodes, for example by
distinct power supplies [24].

RamFilter Chooses nodes that have
enough free RAM. Since the ratio
of physical to virtual RAM isn’t al-
ways 1:1, the default nova.conf setting
ram_allocation_ratio = 1.5 is used
to allow overcommitting of RAM. For
example, if a compute node only has
1 GB RAM, it is still able to run VMs
that require 1.5 GB. This makes sense
since the allocation does not directly
result in the complete consumption of
the allocated RAM. If the VM that is
set to require 1.5 GB RAM actually
only uses a maximum of 1 GB RAM,
then the host it runs on can easily
support it [23].

ComputeFilter Filters nodes that are ei-
ther disabled or that are offline.

ComputeCapabilitiesFilter Checks if
nodes satisfy additional capabilities
that could be needed by the in-
stance. Extra capabilities can also be
set through the flavor as key:value

pairs.

ImagePropertiesFilter Filters nodes
that don’t satisfy the architecture, hy-
pervisor type or virtual machine mode
that was set for the VM’s image.

IV.1.3 Weighting

After the initial host list has been run
through all filters, the list is weighted ac-
cording to the following ruleset: Three
weighers are applied to the host list. Af-
ter a weight has been assigned to each
host, the weights are normalised by scal-
ing each weight to the range between the
maximum and minimum weight recorded:
weight−minimum

range
. Each normalised weight-

value is then multiplied by the defined
weight multiplier. Following three weighers
are available:

RAMWeigher The more free RAM, the
higher the weight. The weight
multiplier is set in nova.conf as
ram_weight_multiplier and defaults
to 1.0 [23].

MetricsWeigher Different metrics of the
compute host can be weighed ac-
cording to defined weighting settings
that are configured through nova.conf
as weight_setting with the form
metricName=ratio . As an exam-
ple, if hosts with low previous load
(low cpu utilisation) are wanted, a
weight setting of the following form
could be used: weight_setting =

cpu.percent=-1.0" [25].

IoOpsWeigher The amount of input and
output operations specify the weight
for the host. More I/O opera-
tions give the host a higher weight.
The default weight multiplier is -
1.0, setting a preference on light
workload compute hosts. To set a
preference on heavy workload com-
pute hosts, a positive multiplier has

10 IV CRRA IMPLEMENTATION

to be chosen. The weight mul-
tiplier can be set in nova.conf as
io_ops_weight_multiplier [26].

From the weighted list, a potential host
is chosen randomly. The choice is how-
ever influenced by the nova.conf variable
scheduler_host_subset_size . If this vari-
able is bigger than the size of the host
list, the final host will be randomly chosen
among all possible hosts from the list. If
the variable is smaller than 1, it will be set
to 1 which results in the first host from the
list to be chosen as the final host. Every
other value in between makes the scheduler
choose a host randomly from a subset of the
weighted host list.

IV.2. Integrating CRRA

The main problem concerning the CRRA
integration into the CEE was the communi-
cation between the CRRA cloudlet and the
numerous LXC-based nova compute hosts.
The CRRA cloudlet itself is written in Java
[28] but the fake driver it needs to communi-
cate with is written in Python. To solve the
communication problem, I looked into dif-
ferent approaches for interprocess communi-
cation. There are generally two good ways
to do interprocess communication on a unix
based system: Either through named pipes
or through sockets [29]. After trying out
named pipes with a small Python to Python
prototype that I developed, I realised that
it is not very well suited for fast message
exchanges [30] and there is also the prob-
lem of named pipes that are missing, have
already been created or have the wrong per-
missions set. I finally decided to use TCP
sockets for the interprocess communication
[31]. The main advantage of this approach
is the way I can run the CRRA cloudlet as
a single instance on the physical host with-
out needing to create multiple cloudlets for

each LXC container. This is based on the
fact that each LXC container has it’s own IP
and can therefore be directly contacted over
TCP. Centralising the CRRA component of
the CEE eliminates the need of a time syn-
chronisation between simulations as they all
run within the same simulation instance.

N15 physical host

LXC-based
nova compute host

LXC-based
nova compute host

CRRA
Cloudlet send resource

information in
JSON over TCP

send resource
information in
JSON over TCP

Figure 7: CRRA Cloudlet in the CEE

Figure 7 shows the overall architecture for
the communication between CRRA cloudlet
and OpenStack. The CRRA cloudlet di-
rectly opens a TCP socket to each LXC host
and sends it updated resource information
every second about each VM that is cur-
rently running on the compute host. The
compute host itself only listens for incoming
TCP connections as soon as the fake driver
is initialised.

The communication takes place in the port
range from 50001 to 50050 with 50 LXC-
based compute hosts to avoid collisions with
existing TCP services [32]. The resource in-
formation is exchanged in JSON because it
is a well documented object notation with
implementations for Java as well as Python
[33] [34].

IV.2.1 Starting Simulations

At the beginning of a simulation, the CRRA
cloudlet starts the needed amount of LXC
containers to serve as nova compute hosts

11

through the LXC command line client with
lxc-start -dn nova_* . After the required
amount of LXC hosts have been started, the
cloudlet informs the LXC hosts through the
TCP socket about their resource configura-
tions in order to make sure the scheduling
will work realistically based on the resource-
limitations as defined by the CRRA cloudlet
input. To start a VM instance, the cloudlet
can directly communicate with the nova
API through curl [35].

The cloudlet then sends a request to all LXC
containers through the TCP socket to ob-
tain a list of VMs that have been sched-
uled to run on the hosts by the nova sched-
uler. With this information, the cloudlet
is now able to start simulating the resource
consumptions of all VMs in real time and
send the resulting changes in resources to
the LXC hosts in JSON over the TCP
socket. The cloudlet needs to simulate in
real time because the resource consump-
tions need to be requested directly from
the compute hosts through the nova API
or nova command-line client. Faster than
real-time simulations would result in gaps
in the resource consumptions that are com-
municated to the compute hosts and would
present a lacking overall picture in regards
to the resource changes.

IV.2.2 Conducting Experiments

With the approach outlined in the last sec-
tion, a researcher would now be able to di-
rectly conduct an experiment in the CEE.
The input parameters are the same as for a
Cloudsim simulation as the CRRA cloudlet
directly starts the compute hosts and VMs
according to it’s input parameters.

The researcher would however need to set
up a capturing environment where the out-
put from the nova command-line client or

nova API in regards to resource consump-
tions of VMs and compute hosts would need
to be recorded in order to use the data for
further analysis.

IV.2.3 Limitations

The outlined approach is mostly in con-
cept stage as there is not yet a modified
CRRA cloudlet available that would be able
to communicate with the compute hosts due
to time constraints. The fake driver mod-
ifications are also still missing but experi-
ments in regards to the TCP socket commu-
nications have been made that allowed me
to output random resource changes through
the fake driver.

V. Conclusions

OpenStack is very powerful to manage and
run complex cloud configurations. The ba-
sic OpenStack documentation was initially
very helpful in overcoming hurdles that pre-
sented themselves during the OpenStack in-
stallation process I went through. The spe-
cific requirement of a fake hypervisor driver
and nova compute hosts running inside LXC
containers however made the process much
more complicated since there are little re-
sources available online in regards to the
fake driver as well as running compute hosts
inside LXC containers. Based on these con-
straints, the CEE setup turned out to be
much more complicated than initially ex-
pected. Due to this fact, the implemen-
tation of cloud runtime resource allocation
could not be completed but a prototypical
implementation concept was developed that
is based on individual prototype tests as
well as discussions with the CRRA cloudlet
creator Patrick Taddei, to ensure a sound
concept.

12 REFERENCES

Glossary

Cloudlet A class to model cloud-based application services in Cloudsim [36].

Folsom, Juno Release names for different OpenStack versions.

Hypervisor A software or hardware component to create and run virtual machines.

Mounting To make a storage device accessible through the file system.

N15 The physical host in the CSG testbed that runs the CEE.

Tenant Containers used to group or isolate resources. [5]

Virtual Machine An emulation of a computer system.

Abbreviations

API Application Programming Interface
CPU Central Processing Unit
CRRA Cloud Runtime Resource Allocation
LXC Linux Containers
NBD Network Block Devices
RAM Random-Access Memory
VCPU Virtual CPU
VM Virtual Machine

References

[1] Opensource.com: What is OpenStack?, http://opensource.com/resources/

what-is-openstack, (visited on 06/27/2015)

[2] OpenStack Foundation: OpenStack Installation Guide for Ubuntu 14.04, http:

//docs.openstack.org/juno/install-guide/install/apt/content/, (visited on
06/27/2015)

[3] OpenStack Foundation: Deprecation of the Nova Network Service, http://docs.

openstack.org/openstack-ops/content/nova-network-deprecation.html, (vis-
ited on 06/27/2015)

[4] Ubuntu Documentation Team: Ubuntu Virtualisation Server Guide, https://help.
ubuntu.com/lts/serverguide/lxc.html, (visited on 06/27/2015)

[5] OpenStack Foundation: OpenStack Identity Concepts, http://docs.openstack.

org/juno/install-guide/install/apt/content/keystone-concepts.html, (vis-
ited on 06/27/2015)

http://opensource.com/resources/what-is-openstack
http://opensource.com/resources/what-is-openstack
http://docs.openstack.org/juno/install-guide/install/apt/content/
http://docs.openstack.org/juno/install-guide/install/apt/content/
http://docs.openstack.org/openstack-ops/content/nova-network-deprecation.html
http://docs.openstack.org/openstack-ops/content/nova-network-deprecation.html
https://help.ubuntu.com/lts/serverguide/lxc.html
https://help.ubuntu.com/lts/serverguide/lxc.html
http://docs.openstack.org/juno/install-guide/install/apt/content/keystone-concepts.html
http://docs.openstack.org/juno/install-guide/install/apt/content/keystone-concepts.html

REFERENCES 13

[6] Canonical Ltd.: CirrOS, https://launchpad.net/cirros, (visited on 06/27/2015)

[7] Ask Openstack: Nova-scheduler Driver Setting Instance to
Error State, https://ask.openstack.org/en/question/1279/

nova-scheduler-driver-setting-instance-to-error-state/?answer=1408#

post-id-1408, (visited on 06/29/2015)

[8] Wikipedia: Network Block Device, https://en.wikipedia.org/wiki/Network_

block_device, (visited on 06/29/2015)

[9] Michael Foord: Workaround for modprobe inside LXC, https://bugs.launchpad.
net/juju-core/+bug/1353443/comments/3, (visited on 06/29/2015)

[10] OpenStack Foundation: Dnsmasq DHCP Server, http://docs.openstack.org/

admin-guide-cloud/content/section_dnsmasq.html, (visited on 06/27/2015)

[11] James Page: Workaround for lxc-net Restart Bug, https://bugs.launchpad.net/
ubuntu/+source/lxc/+bug/1043588/comments/2, (visited on 06/29/2015)

[12] Remy van Elst: Fix inconsistent Openstack Volumes and Instances from Cin-
der and Nova via the Database, https://raymii.org/s/articles/Fix_

inconsistent_Openstack_volumes_and_instances_from_Cinder_and_Nova_

via_the_database.html, (visited on 06/29/2015)

[13] OpenStack Foundation: Nova.conf Configuration Options,
http://docs.openstack.org/juno/config-reference/content/

list-of-compute-config-options.html#config_table_nova_compute, (vis-
ited on 06/29/2015)

[14] OpenStack Foundation: HyperVisorSupportMatrix, https://wiki.openstack.

org/wiki/HypervisorSupportMatrix#Compute_Drivers, (visited on 06/29/2015)

[15] RedHat: libvirt.org, http://libvirt.org, (visited on 06/29/2015)

[16] Russell Bryant: OpenStack API Mocker or Simulator, https://ask.openstack.

org/en/question/28/openstack-api-mocker-or-simulator/?answer=52#

post-id-52, (visited on 06/29/2015)

[17] OpenSuSE: LXC Mount Shared Directory, https://en.opensuse.org/User:Tsu2/
LXC_mount_shared_directory, (visited on 06/29/2015)

[18] OpenStack Foundation: Compute Command-Line Client, http://docs.

openstack.org/cli-reference/content/novaclient_commands.html, (visited
on 06/29/2015)

[19] LinuxHowTos.org: /proc/stat explained, http://www.linuxhowtos.org/System/

procstat.htm, (visited on 06/30/2015)

[20] Fabio Kung: Memory Inside Linux Containers, http://fabiokung.com/2014/03/
13/memory-inside-linux-containers/#comment-3590, (visited on 06/30/2015)

https://launchpad.net/cirros
https://ask.openstack.org/en/question/1279/nova-scheduler-driver-setting-instance-to-error-state/?answer=1408#post-id-1408
https://ask.openstack.org/en/question/1279/nova-scheduler-driver-setting-instance-to-error-state/?answer=1408#post-id-1408
https://ask.openstack.org/en/question/1279/nova-scheduler-driver-setting-instance-to-error-state/?answer=1408#post-id-1408
https://en.wikipedia.org/wiki/Network_block_device
https://en.wikipedia.org/wiki/Network_block_device
https://bugs.launchpad.net/juju-core/+bug/1353443/comments/3
https://bugs.launchpad.net/juju-core/+bug/1353443/comments/3
http://docs.openstack.org/admin-guide-cloud/content/section_dnsmasq.html
http://docs.openstack.org/admin-guide-cloud/content/section_dnsmasq.html
https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1043588/comments/2
https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1043588/comments/2
https://raymii.org/s/articles/Fix_inconsistent_Openstack_volumes_and_instances_from_Cinder_and_Nova_via_the_database.html
https://raymii.org/s/articles/Fix_inconsistent_Openstack_volumes_and_instances_from_Cinder_and_Nova_via_the_database.html
https://raymii.org/s/articles/Fix_inconsistent_Openstack_volumes_and_instances_from_Cinder_and_Nova_via_the_database.html
http://docs.openstack.org/juno/config-reference/content/list-of-compute-config-options.html#config_table_nova_compute
http://docs.openstack.org/juno/config-reference/content/list-of-compute-config-options.html#config_table_nova_compute
https://wiki.openstack.org/wiki/HypervisorSupportMatrix#Compute_Drivers
https://wiki.openstack.org/wiki/HypervisorSupportMatrix#Compute_Drivers
http://libvirt.org
https://ask.openstack.org/en/question/28/openstack-api-mocker-or-simulator/?answer=52#post-id-52
https://ask.openstack.org/en/question/28/openstack-api-mocker-or-simulator/?answer=52#post-id-52
https://ask.openstack.org/en/question/28/openstack-api-mocker-or-simulator/?answer=52#post-id-52
https://en.opensuse.org/User:Tsu2/LXC_mount_shared_directory
https://en.opensuse.org/User:Tsu2/LXC_mount_shared_directory
http://docs.openstack.org/cli-reference/content/novaclient_commands.html
http://docs.openstack.org/cli-reference/content/novaclient_commands.html
http://www.linuxhowtos.org/System/procstat.htm
http://www.linuxhowtos.org/System/procstat.htm
http://fabiokung.com/2014/03/13/memory-inside-linux-containers/#comment-3590
http://fabiokung.com/2014/03/13/memory-inside-linux-containers/#comment-3590

14 REFERENCES

[21] Russell Barnes: Create a Graph of your System’s Performance, http://www.

linuxuser.co.uk/tutorials/create-a-graph-of-your-systems-performance/

4, (visited on 06/30/2015)

[22] OpenStack Foundation: Filter Scheduler, http://docs.openstack.org/

developer/nova/filter_scheduler.html?highlight=scheduler, (visited on
06/30/2015)

[23] OpenStack Foundation: OpenStack Scheduling Configuration Reference,
http://docs.openstack.org/juno/config-reference/content/section_

compute-scheduler.html, (visited on 06/30/2015)

[24] OpenStack Foundation: Scaling, http://docs.openstack.org/openstack-ops/

content/scaling.html#az_s3, (visited on 06/30/2015)

[25] Lianhao Lu, Yingxin Chen: Utilization-based Scheduling in OpenStack* Compute
(Nova), https://01.org/sites/default/files/utilization_based_scheduing_
in_openstack_compute_nova_1.docx, (visited on 06/30/2015)

[26] OpenStack Foundation: Create Nova Scheduler IO Ops Weighter, http:

//specs.openstack.org/openstack/nova-specs/specs/juno/approved/

io-ops-weight.html, (visited on 06/30/2015)

[27] Donald D. Dugger: Compute Node Update Interval, http://lists.openstack.org/
pipermail/openstack/2014-July/008216.html, (visited on 06/30/2015)

[28] Patrick Taddei: Cloudsim-RDA on GitHub, https://github.com/pattad/

cloudsim-rda/tree/master/src/main/java/ch/uzh/ifi/csg/cloudsim/rda,
(visited on 06/30/2015)

[29] Stackoverflow: Fastest Method for IPC between Java and
C/C++, http://stackoverflow.com/questions/2635272/

fastest-low-latency-method-for-inter-process-communication-between-java-and-c,
(visited on 06/30/2015)

[30] Adam Fraser: IPC between Python and Java, http://stackoverflow.com/a/

3804547, (visited on 06/30/2015)

[31] How to connect a Python Client to Java Server with
TCP Socket, https://norwied.wordpress.com/2012/04/17/

how-to-connect-a-python-client-to-java-server-with-tcp-sockets/,
(visited on 06/30/2015)

[32] Wikipedia: List of TCP and UDP Port Numbers, https://en.wikipedia.org/

wiki/List_of_TCP_and_UDP_port_numbers, (visited on 06/30/2015)

[33] Veer Shrivastav: Decoding JSON String in Java, http://stackoverflow.com/a/

16586100, (visited on 06/30/2015)

[34] Python Software Foundation: JSON Encoder and Decoder, https://docs.python.
org/2/library/json.html, (visited on 06/30/2015)

http://www.linuxuser.co.uk/tutorials/create-a-graph-of-your-systems-performance/4
http://www.linuxuser.co.uk/tutorials/create-a-graph-of-your-systems-performance/4
http://www.linuxuser.co.uk/tutorials/create-a-graph-of-your-systems-performance/4
http://docs.openstack.org/developer/nova/filter_scheduler.html?highlight=scheduler
http://docs.openstack.org/developer/nova/filter_scheduler.html?highlight=scheduler
http://docs.openstack.org/juno/config-reference/content/section_compute-scheduler.html
http://docs.openstack.org/juno/config-reference/content/section_compute-scheduler.html
http://docs.openstack.org/openstack-ops/content/scaling.html#az_s3
http://docs.openstack.org/openstack-ops/content/scaling.html#az_s3
https://01.org/sites/default/files/utilization_based_scheduing_in_openstack_compute_nova_1.docx
https://01.org/sites/default/files/utilization_based_scheduing_in_openstack_compute_nova_1.docx
http://specs.openstack.org/openstack/nova-specs/specs/juno/approved/io-ops-weight.html
http://specs.openstack.org/openstack/nova-specs/specs/juno/approved/io-ops-weight.html
http://specs.openstack.org/openstack/nova-specs/specs/juno/approved/io-ops-weight.html
http://lists.openstack.org/pipermail/openstack/2014-July/008216.html
http://lists.openstack.org/pipermail/openstack/2014-July/008216.html
https://github.com/pattad/cloudsim-rda/tree/master/src/main/java/ch/uzh/ifi/csg/cloudsim/rda
https://github.com/pattad/cloudsim-rda/tree/master/src/main/java/ch/uzh/ifi/csg/cloudsim/rda
http://stackoverflow.com/questions/2635272/fastest-low-latency-method-for-inter-process-communication-between-java-and-c
http://stackoverflow.com/questions/2635272/fastest-low-latency-method-for-inter-process-communication-between-java-and-c
http://stackoverflow.com/a/3804547
http://stackoverflow.com/a/3804547
https://norwied.wordpress.com/2012/04/17/how-to-connect-a-python-client-to-java-server-with-tcp-sockets/
https://norwied.wordpress.com/2012/04/17/how-to-connect-a-python-client-to-java-server-with-tcp-sockets/
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
http://stackoverflow.com/a/16586100
http://stackoverflow.com/a/16586100
https://docs.python.org/2/library/json.html
https://docs.python.org/2/library/json.html

REFERENCES 15

[35] Damion Parry: Create an OpenStack Instance with just Curl, https://catn.

com/2013/04/23/create-an-openstack-instance-with-just-curl/, (visited on
06/30/2015)

[36] John G. Michopoulos: What is a Cloudlet in Cloudsim?, http://www.

researchgate.net/post/What_is_a_Cloudlet_in_Cloudsim, (visited on
06/30/2015)

https://catn.com/2013/04/23/create-an-openstack-instance-with-just-curl/
https://catn.com/2013/04/23/create-an-openstack-instance-with-just-curl/
http://www.researchgate.net/post/What_is_a_Cloudlet_in_Cloudsim
http://www.researchgate.net/post/What_is_a_Cloudlet_in_Cloudsim

	Introduction
	Cloud Experimentation Environment
	OpenStack Architecture
	OpenStack Installation
	Identity Service
	Image Service
	Compute Service
	Initial LXC Setup
	LXC Usage
	Networking Component
	Fake Driver

	Nova Compute Command-line Client
	VM Management Commands
	VM Information Commands
	Host Information Commands
	Diagnostic Data for Simulations

	Performance Limitations
	Compute Host Limitations
	VM Limitations

	CRRA Implementation
	OpenStack Scheduling
	Resource Consumption Data
	Filtering
	Weighting

	Integrating CRRA
	Starting Simulations
	Conducting Experiments
	Limitations

