
Investigation of Resource

Monitoring Capabilities of KVM and

OpenStack

Simon A. Balkau

Zurich, Switzerland

Student ID: 09-926-569

Supervisor: Patrick G. Poullie

Date of Submission: May 24, 2015

University of Zurich

Department of Informatics (IFI)

Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
ifi

V
E

R
T

IE
F

U
N

G
S

A
R

B
E

IT
–

C
o

m
m

u
n

ic
a

ti
o

n
S

y
s
te

m
s

G
ro

u
p
,

P
ro

f.
D

r.
B

u
rk

h
a

rd
S

ti
lle

r

Vertiefungsarbeit

Communication Systems Group (CSG)

Department of Informatics (IFI)

University of Zurich

Binzmühlestrasse 14, CH-8050 Zürich, Switzerland

URL: http://www.csg.uzh.ch/

1

Investigation of Resource Monitoring Capabilities of

KVM and OpenStack
Simon A. Balkau

Institute for Informatics, University of Zurich

Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland

simon.balkau@uzh.ch

Abstract—In clouds resources are deployed by virtual

machines (VMs), i.e., if a cloud customer wants to run a

job in a cloud, he starts an according VM that executes

the jobs. In case cloud resources, or rather resources of

a physical machine (PM) in the cloud, become scarce,

elaborated resource reallocation between the PM’s VMs

is necessary to ensure performance goals of VMs. When

reallocating resources it is important to know about the

current consumptions of VMs, in order choose efficiency-

and fairness-optimal reallocations. Therefore this paper

investigates resource monitoring capabilities of the Kernel-

based Virtual Machine (KVM) hypervisor and the Open-

Stack cloud computing software platform, to provide an

essential part of a cloud resource reallocation study.

Keywords—cloud computing, private cloud, measurement,

performance, virtualisation, kvm, ceilometer, OpenStack

I. STRUCTURE OF THE PAPER

The paper first provides a list of resources relevant to

cloud monitoring activities which is defined by resources

that can be shared by customers through a cloud. It

covers inter alia: CPU, RAM, Disk (I/O and capacity),

bandwidth.

Next, the capabilities of Linux monitoring have been ex-

amined, which leads to KVM and its resource monitoring

capabilities. It was investigated which resource can be

monitored with which granularity, which system call is

used to do so, and whether the measurement is possible

on a system/PM level or only done per VM.

Next, these capabilities are mapped to monitoring ca-

pabilities of OpenStack. Since OpenStack’s resource

monitoring component is Ceilometer, the latter was in-

vestigated in more detail. More precisely, it was inves-

tigated, which resources can be monitored in a cloud

that runs OpenStack as orchestration layer and KVM

as its hypervisors. It was concluded on whether certain

monitoring information accessible via KVM can not

be inquired via OpenStack. Also, it was investigated

Thanks to my supervisor Patrick G. Poullie, who is with the De-

partment of Informatics Communication Systems Group, University

of Zurich, Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland

whether OpenStack allows to partition the monitoring

information by user/tenant and whether alarms can be

triggered by OpenStack, if resource overload on a PM

occurs.

II. COMPONENTS OF A CLOUD

The term cloud is today splitted in three different

components, which also can be represented in layers (see

fig. 1). The highest layer is the Software as a Service

(SaaS), which is renting or borrowing an online software.

[1] This is the most known type which many people

sloppy refer as cloud. SaaS are software from web-mail

(Google Gmail, Outlook.com, etc.), CRM (Salesforce,

Microsoft Dynamics CRM, etc.) to full flavored business

collaboration suites (Google Apps for Work, Office 365,

etc.)

Another component, the middle layer, is the Platform

as a Service (PaaS). PaaS brings the benefits that SaaS

bought [sic!] for applications, but over to the software

development world. PaaS can be defined as a computing

platform that allows the creation of web applications

quickly and easily and without the complexity of buying

and maintaining the software and infrastructure under-

neath it. [2, 3]

The last component and lowest layer is the Infrastruc-

ture as a Service (IaaS). IaaS is the foundation of the

two other components and delivers Cloud Computing

infrastructure – servers, storage, network and operating

systems – as an on-demand service. Rather than pur-

chasing servers, software, datacenter space or network

equipment, clients instead buy those resources as a fully

outsourced service on demand. [2, 4]

III. LIST OF RELEVANT RESOURCES TO CLOUD

(IAAS) MONITORING

The fundamental key parts of a IaaS are servers

which consists of processors, RAM and storage. Addi-

tionally bandwidth of the network must not be neglected.

Nonetheless the services which keep up the cloud itself.

These can be monitored in a per server basis (see

2

Fig. 1. Diagram of the components of a cloud

section IV) or over the entire infrastructure (see section

V). Smith and Sommerville [5] tried to predict power

consumption of VMs. The problem behind measuring

power consumption of a VM is that, compared to a PM,

one cannot simple plug in the powercable in a power

meter. Another resource are licenses whether for the

infrastructure operating systems (OSs) or consumer OSs

or anything else which is liable for costs.

IV. LINUX MONITORING

Linux offers built-in and a vast number of third party

monitoring applications. The commonest built-in tools

are top and vmstat. With third party applications as

iostat, iotop, sar and IPTraf the monitoring can

deliver more and detailed data.

A. top

top is a command line tool which prints the current

running processes of the system, the workload of the

CPU, the utilization of the RAM and some other useful

data. In Linux every process has a folder in /proc/

with its corresponding distinct process id. In these folders

Linux kernel provides statistics relevant for the process.

top consolidates these values and present it to the user

in an easy-to-read manner. iotop is a third party tool

to deliver statistics for I/Os per process.

B. vmstat

vmstat displays information about memory, cpu,

disk and block I/O usage of the host.

C. iostat

The iostat command is used for monitoring sys-

tem input/output device load by observing the time the

devices are active in relation to their average transfer

rates. The iostat command generates reports that can

Fig. 2. Screenshot of top on an OpenStack controller.

Fig. 3. Screenshot of vmstat on an OpenStack controller.

be used to change system configuration to better balance

the input/output load between physical disks.[6] A neat

feature is, that subsequent reports display data since the

previous call.

Fig. 4. Screenshot of iostat on an OpenStack controller.

D. sar

sar is used for recording and analyzing of vari-

ous information on system activity. When performance

problems occur sar also allows with the benefit of

hindsight to analyze the load values of different subsys-

tems (CPU, memory, disk, interrupts, network interfaces,

etc.). After installing and configuring sar, sar will

collect system load values and save it for the specified

duration in the configuration. sar will save the logs

in /var/log/sa/sa[d-o-m] while [d-o-m] rep-

resents the day of month of recording.

To display CPU loads of a specific day the command

sar -P ALL -f /var/log/sa/sa12 will display

the CPU load of the 12th day of the month. As has

3

been said one can replace 12 with the desired day of

month. Parameter -f is optional. When it is omitted sar

displays values of the current day. Further the output can

be specified for a timeframe:

• -s [hh:mm:ss] sets the start time. When no

time indication is made sar will use 08:00:00 as

begin.

• -e [hh:mm:ss] sets the ending time of the

report. When no time indication is made sar will

use 18:00:00 as end.

To display RAM load one can issue sar -r. For

displaying overall I/O sar -b and for block device I/O

sar -d -p and for network interface load sar -n

DEV. [7]

This was only a small subset what sar can deliver.

Beside CPU, RAM, block I/O and network interface load

sar can deliver statistics for memory paging, memory

swapping, interrupts, power management statistics, net-

work statistics about sockets, IPv4, IPv6, TCP, UDP and

many more. [8]

One can see that this tool is a convenient tool for

monitoring, reporting and analyzing. For sar there also

exists graphical representation of collected samples like

sarface. Downside is, that sar only gathers data

system-wide and not per process.

E. IPTraf

IPTraf is a console-based network statistics utility

for Linux. It gathers a variety of figures such as TCP

connection packet and byte counts, interface statistics

and activity indicators, TCP/UDP traffic breakdowns, and

LAN station packet and byte counts. [9]

Fig. 5. Screenshot of iptraf on an OpenStack controller.

F. collectd

collectd is a daemon which collects system perfor-

mance statistics periodically and provides mechanisms to

Fig. 6. Detail view in iptraf for eth0 on an OpenStack controller.

store the values in a variety of ways. Those statistics can

then be used to find current performance bottlenecks (i.e.

performance analysis) and predict future system load (i.e.

capacity planning). [10]

Fig. 7. Graph showing CPU usage of collectd. [10]

V. INFRASTRUCTURE MONITORING

Normally one does not have only one or two servers

to monitor, which can be done manually, but many, up to

thousands of servers. For this amount one simply can’t

just inspect every server individually, it has to be done

in an elaborated and centrally manner.

Assume one is running an online shop business. There

are database, file and web server, some routers and

switches. On Friday evening a switch breaks down which

is connected to the database server, which store new

orders.1 What if the administrator did not recognize it

until Monday? This could lead to severe loss of revenue

for the business, and only because one did not monitor

the infrastructure.

Simple Network Management Protocol (SNMP) is the

1This is a fictitious example. One should always plan and set up a

network with redundancy when it’s business critical.

4

de facto standard for network management and device

monitoring.

A. SNMP [11]

Simple Network Management Protocol is an Internet-

standard protocol for managing devices on IP networks.

Devices that typically support SNMP include routers,

switches, servers, workstations, printers, modem racks

and more. SNMP is widely used in network management

systems to monitor network-attached devices for condi-

tions that warrant administrative attention. But SNMP is

not only limited to manage networks. It is also used to

get device informations of workstations and servers.

In typical uses of SNMP one or more administrative

computers, called managers, have the task of monitoring

or managing a group of hosts or devices on a computer

network. Each managed system executes, at all times,

a software component called an agent which reports

information via SNMP to the manager.

SNMP agents expose management data on the managed

systems as variables. The protocol also permits active

management tasks, such as modifying and applying

a new configuration through remote modification of

these variables. The variables accessible via SNMP are

organized in hierarchies. These hierarchies, and other

metadata (such as type and description of the variable),

are described by Management Information Bases (MIBs).

An SNMP-managed network consists of three key com-

ponents:

• Managed device

• Agent — software which runs on managed devices

• Network management station (NMS) — software

which runs on the manager

Fig. 8. Principle of SNMP Communication [11]

1) Managed device: A managed device is a network

node that implements an SNMP interface that allows

unidirectional (read-only) or bidirectional (read and

write) access to node-specific information. Managed

devices exchange node-specific information with the

NMSs. Sometimes called network elements, the managed

devices can be any type of device, including, but not

limited to, routers, access servers, switches, bridges,

hubs, IP telephones, IP video cameras, computer hosts,

and printers.

2) Agent: An agent is a network-management

software module that resides on a managed device. An

agent has local knowledge of management information

and translates that information to or from an SNMP-

specific form.

3) Network management station: A network

management station executes applications that monitor

and control managed devices. NMSs provide the bulk

of the processing and memory resources required for

network management. One or more NMSs may exist on

any managed network.

4) Management Information Base: SNMP itself

does not define which information (which variables)

a managed system should offer. Rather, SNMP uses

an extensible design, where the available information

is defined by management information bases (MIBs).

MIBs describe the structure of the management data of

a device subsystem. They use a hierarchical namespace

containing object identifiers (OID). Each OID identifies

a variable that can be read or set via SNMP. [11] Each

agent can have its very own MIB, which is why SNMP

is so adaptable.

5) Traps: Generally the network management station

polls statistics of the agent in a specified interval. But

then traps provides a way for an agent to notify the NMS

about a changed condition the NMS should know about.

After the notification the NMS can respond to the trap

like shutting down or restart a device or send a message

to the administrator or whatever one has configured. This

makes traps crucial.

B. Monitoring tools

Beside SNMP many different approaches to monitor

servers, services or devices exist. From recording and

analyzing to displaying values and alerting countless

tools are available. There are agent based and agentless

tools (see description of agents in section VI-C) which

often are installed on-premises. Some statistics can

be measured without an agent due its inherent nature

like HTTP, IMAP or sockets response times. SaaS

monitoring tools also exists. I picked only a few out of

the immense variety:

5

1) Paessler PRTG Network Monitor: Paessler PRTG

Network Monitor (PRTG) is a proprietary software

which collects statistics in a centrally manner. PRTG

is used as a network management station (NMS). The

downside of SNMP is, that one has to know the MIB

of the device one wants to monitor. PRTG provides

many so called sensors out of the box, including

SNMP sensors of known MIBs, which do simplify the

configuration of a NMS. The sensors monitor uptime,

bandwidth, application server, virtual server and some

more using (inter alia) SNMP and WMI.

PRTG does not only acquire data, it also provides

alerting, reporting and displaying the statistics. PRTG

is mainly used for Windows but Linux is also possible.

Either through installing net-SNMP or without agent.

When monitoring without an agent one has to give

PRTG SSH access to the station it has to monitor. With

PRTG it is not easily possible to monitor the KVM

hypervisor, but VMware, Xen and Microsoft Hyper-V

monitoring is available. [12]

2) Nagios: Nagios is a free and open-source powerful

monitoring system that enables organizations to identify

and resolve IT infrastructure problems before they affect

critical business processes. Nagios also provides, beside

monitoring, alerting and reporting. Nagios is extensible

by plugins. With plugins it’s possible to gather statistics

for anything and everything. It exists a libvirt plugin to

monitor KVM VMs. [13]

3) Munin: Munin is a free and open-source

computer system monitoring, network monitoring

and infrastructure monitoring software application.

Munin offers monitoring and alerting services for

servers, switches, applications, and services. It alerts the

users when things go wrong and alerts them a second

time when the problem has been resolved. Munin has

a master/node architecture (agent based) in which the

master connects to all the nodes at regular intervals and

asks them for data. [14] Munin often runs in parallel

with Nagios, because in Munin it’s easier to setup

new monitoring rules than in Nagios. It can also tie

into Nagios, sending notifications of thresholds being

exceeding with Nagios notification system. Munin is

also extensible by plugins. As for Nagios, a plugin

exists to monitor KVM VMs.

4) Monitis: Monitis is a monitor-software as a service.

It monitors applications, websites, servers, networks and

other cloud services and more. Monitoring is done in an

agentless or agent based manner. Monitis also delivers

an API and a SDK for extending Monitis’ monitor

capabilities. [15]

VI. KVM HYPERVISOR MONITORING CAPABILITIES

KVM in combination with Quick Emulator (QEMU)

provides QEMU Monitor Protocol (QMP), a JSON-

based protocol, which one can use to interact with a

QEMU instance (VM) and manage it too. [16, 17] QMP

allows applications to communicate with a running

QEMUed instance.

The library libvirt comes in handy for managing and

monitor the KVM hypervisor. Libvirt is a toolkit

to interact with the virtualization capabilities of

recent versions of Linux (and other OSes). [18]

When KVM is managed with libvirt one can use

grep pid /var/run/libvirt/qemu/* to get

the process ids (pids) of the currently running VMs.

Then one can use top -p pid-of-VM to get

statistics how much resources the VM uses of the

host. In figure 9 one can see, that currently one VM

Fig. 9. Screenshot of instance-pids on an OpenStack compute node.

is running, named instance-0000004b, and it uses 2

virtual central processing units (VCPUs). Now one can

run top -p 1463 and watch the details of the VM

process in relation to the hosts resources.

Fig. 10. Screenshot of top of an VM instance. The VM uses 6.8%

CPU and 18.6% RAM of the host.

A. Using /proc/ as monitoring base

KVM/QEMU creates a separate process for each VM.

Therefore one can use the /proc/ filesystem to gather

statistics not only of a VM but also for the host.

In the next few subsections the granularity of the /proc/

data is summarized. The summary is based on the Linux

kernel documentation for its filesystems [19] and a

separate documentation of iostats [20] and a blog entry

about network monitoring with /proc/net/. [21]

1) CPU: CPU information is accessible in

/proc/stat. The very first “cpu” line aggregates

the numbers in all of the other “cpuN” lines. These

numbers identify the amount of time the CPU has spent

performing different kinds of work. Time units are in

6

USER HZ (typically hundredths of a second). [19,

Section 1.3]

A simple bash script to calculate the CPU load is

given by Colby [22] on https://github.com/pcolby/

scripts/blob/master/cpu.sh. The script does not take

in account of that the values can overflow. [23,

Chapter 10, Section Jiffies]

To get the CPU time of a process one have to read the

cutime and cstime values from /proc/[pid]/stat.

[19, Table 1-4] With these values one can calculate the

CPU load of the VM instance when measured over

time.

2) RAM: Memory information for the host is acces-

sible in /proc/meminfo. The major informations are

the entries MemTotal, which specify the usable mem-

ory, MemFree, the memory which is free to use, and

SwapFree, which tells how much memory is evicted

to disk. [19, Table 1-5, Section meminfo]

To get the memory used by a process the values are

accessible in /proc/[pid]/status. The entry Vm

Size corresponds to the reserved memory for the pro-

cess. VmRSS reflects the amount of used memory. [19,

Table 1-2]

The values are both, for /proc/meminfo and

/proc/[pid]/status, in kilobytes.

Attention! Linux memory management

Collecting memory values is much more complex

than reading numbers out of the /proc folder.

The vast number of optimizations which Linux

memory management does to use memory effi-

ciently makes it difficult to get exact values, but for

the first glimpse of memory usage, the mentioned

values will most of the time suffice.

3) Disk I/O: Disk I/O information can be found

in /proc/diskstats which lists statistics for

every block device attached. Another place is

/sys/block/[blockdevice]/stat which

lists statistics for the requested block device. The former

is good when one is watching a larger set of disks,

which then avoids the overhead in opening and closing

many files to aggregate the values separately. The

latter is better if one is watching a small set of disks.

/proc/diskstats consists out of 14 fields, while

/sys/block/[blockdevice]/stat consists

out of 11 fields. Both represent the same values, but

/proc/diskstats’ rows are preceded by major and

minor device number and its device name. Depending

on what values are needed to monitor I’ll list some here:

Field 1 represents total number of reads completed.

Field 5 represents total number of writes completed.

Field 4 is the total number of milliseconds spent by

all reads.

Field 8 is the total number of milliseconds spent by

all writes.

Field 9 represents number of I/Os currently in

progress

As in CPU monitoring, the values for disk statistics can

overflow for a long running system. Considering that a

KVM host will run in a server farm, in a cloud or as

a terminal server around the clock the overflow should

not be neglected. [20]

To get disk I/O statistics for a process

/proc/[pid]/io will deliver some statistics. In

this file the fields read bytes and write bytes can be

consulted for monitoring how many bytes have been

read or written to the storage layer. As always this

statistics can overflow. [19, Section 3.3]

4) Network I/O: Network I/O is not easy to monitor

in Linux but nevertheless it still provides statistics

in /proc/net/. In this folder are many kinds

of statistic for different monitoring scenarios. The

simplest is /proc/net/dev which contains statistics

for every logical network interface. Among other

statistics it contains information about received and

transmitted bytes, amount of packets and how many

errors detected by the device driver. Another scenario

would be monitoring open sockets which can be found

in /proc/net/[protocol] while [protocol]

represents one of tcp, udp or raw for IPv4 and tcp6,

udp6 or raw6 for IPv6. The fields local address

and rem address are used most in this scenario. The

IP addresses are displayed as a little-endian four-byte

hexadecimal number. That is, the least significant byte

is listed first, so one will need to reverse the order of

the bytes to convert it to an IP address. The port number

is a simple two-byte hexadecimal number. [21]

Example: local address 6664A8C0:97DB will be

reversed to C0A86466:97DB which results in

192.168.100.102:38875.

B. Using libvirt as monitoring base

KVM/QEMU can be managed with applications of

libvirt [24] like the command line tool virsh and access

statistics with virt-top. For the mentioned monitoring

tools Munin, Nagios and collectd exists plugins with

libvirt as a base to enable them to monitor virtual

machines.

7

1) virt-top: Virt-top is a top-like utility for

showing stats of virtualized domains. Many keys and

command line options are the same as for ordinary top.

A domain is an instance of an operating system running

on a virtualized machine provided by the hypervisor. [25]

2) libvirt API: To get further insight in a domain I’ll

list here some API calls from the C-library. [26] For CPU

and memory usage virDomainGetInfo() provides

informations in a struct virDomainInfo:

s t r u c t v i r D o m a i n I n f o {
unsigned char s t a t e

unsigned long maxMem

unsigned long memory

unsigned s h o r t n r V i r t C p u

unsigned long long cpuTime

}

In this struct one can extract the maximum allowed

(maxMem) and the used memory (memory) in kilobytes,

the number of virtual CPUs (nrVirtCpu) for the domain

and the CPU time used (cpuTime) in nanoseconds.

The function virDomainBlockStats() provides

block I/O statistics:

s t r u c t v i r D o m a i n B l o c k S t a t s S t r u c t {
long long r d r e q number o f r e a d r e q u e s t s

long long r d b y t e s number o f r e a d b y t e s

long long wr req number o f w r i t e r e q u e s t s

long long w r b y t e s number o f w r i t t e n b y t e s

long long e r r s In Xen t h i s r e t u r n s

t h e m y s t e r i o u s ’ oo req ’

}

And with virDomainInterfaceStats() we get

statistics for an interface. Therefore if a domain as

multiple interfaces, multiple calls to this function is

needed.

s t r u c t v i r D o m a i n I n t e r f a c e S t a t s S t r u c t {
long long r x b y t e s r e c e i v e d b y t e s

long long r x p a c k e t s r e c e i v e d p a c k e t s

long long r x e r r s e r r o r s i n r e c e i v i n g

long long r x d r o p dropped p a c k e t s

long long t x b y t e s t r a n s m i t t e d b y t e s

long long t x p a c k e t s t r a n s m i t t e d p a c k e t s

long long t x e r r s e r r o r s i n t r a n s m i t t i n g

long long t x d r o p dropped p a c k e t s

}

C. Monitoring VMs

Monitoring of VMs can be done in two ways. First

way is to collect statistics from the hypervisor and host;

this is called agentless monitoring. Second way is to in-

stall a piece of software inside the guest OS (VM) which

allows an aggregator collecting statistics from inside the

VM; this is called agent based monitoring. Monitoring

with an agent delivers deeper and more granular data

for advanced monitoring, alerting and reporting. The

downside is the need to deploy and update agents to

systems. Sometimes there are restrictions or not allowed

to deploy an agent to the system, e.g. a public cloud.

[27]

VII. SETTING UP OPENSTACK

For section VIII I had to have a running Open-

Stack infrastructure. OpenStack is a cloud operating

system that controls large pools of compute, storage,

and networking resources throughout a datacenter. [28]

From the UZH ifi I’ve got three server (nodes, namely

n01, n02 and n03) in its testbed. With this in mind I

stuck to http://docs.openstack.org/havana/ install-guide/

install/apt/content/ch preface.html as a guide. The basic

architecture for a virtual machine OpenStack cloud needs

two nodes:

• a controller node and

• a compute node

The controller, as its name imply, manages the Open-

Stack cloud, while a compute node provides the hyper-

visor for the VMs. The services OpenStack currently has

are the following:

TABLE I. SERVICES OF OPENSTACK

Service Project name

Dashboard Horizon
Compute Nova
Networking Neutron

Storage

Object Storage Swift
Block Storage Cinder

Shared services

Identity Service Keystone
Image Service Glance
Telemetry Ceilometer

Higher-level services

Orchestration Heat

From these services the controller node runs the

Identity Service, Image Service, Dashboard, and the

management portion of Compute2. The controller addi-

tionally runs the Telemetry service. It also contains the

associated API services, MySQL databases, and mes-

saging system. The compute node runs the hypervisor

portion of Compute. By default, Compute uses KVM as

the hypervisor. Compute also provisions networks and

implements security groups.

I chose to deploy n01 as the controller of the OpenStack

cloud and n02 and n03 as compute nodes as shown in

figure 11.

2I write the type of nodes in lower letter, when referring the service

in capital.

8

Fig. 11. Chosen architecture for OpenStack

VIII. MONITORING IN OPENSTACK

OpenStack has a web page where the operators sum-

marize meetups. It turns out that operators are unhappy

with monitoring OpenStack in general. There are too

many tools and too many places in OpenStack that

require monitoring. It’s not clear how and what to

monitor. [29] I took only OpenStack’s integrated project

Ceilometer. For monitoring and alerting the OpenStack’s

Operating Guide mentions Nagios for process and service

monitoring. For trend-monitoring collectd. [30]

A. Ceilometer

The Telemetry module was originally designed to

support billing systems for OpenStack cloud resources.

The list of meters is continuously growing, which makes

it possible to use the data collected by Telemetry for

different purposes, other than billing.

Samples can be collected in three different ways:

• Notifications Processing notifications from other

OpenStack services, by consuming messages from

the configured message queue system.

• Polling Retrieve information directly from the

hypervisor or from the host machine using SNMP,

or by using the APIs of other OpenStack services.

• RESTful API Pushing samples via the RESTful

API of Telemetry.

The VMs are monitored by the Compute agent. This

agent is responsible for collecting resource usage data

of VM instances on individual compute nodes within

an OpenStack deployment. This mechanism requires a

closer interaction with the hypervisor. As Telemetry

supports libvirt the KVM hypervisor can be monitored.

Ceilometer’s Compute agent measures typical resources

like CPU usage, memory and disk I/O3 for every VM

instance. A short list is given in table II.

TABLE II. EXCERPT OF COMPUTE METERS

Name Type Unit Note
cpu Cumulative ns CPU time used.
cpu util Gauge % Average CPU utilisation.
memory Gauge MB Volume of RAM allocated

to the instance.
disk.read.bytes Cumulative B Volume of reads.
disk.read.bytes.rate Gauge B/s Average rate of reads.

The collected statistics can be accessed in four differ-

ent ways: with the REST API, with the command line

interface, or with the Metering tab on the OpenStack

dashboard or publish-subscribe method. [31]

The Compute samples are available per VM instance.

To gather statistics for a tenant, one has first to get

all the VMs a tenant is running and then requesting

the samples per VM. OpenStack’s dashboard Metering

tab lacks capabilities to visualize the collected data

(see figure 12). Nagios and collectd can find a remedy

with consuming the REST API [32] or command line

interface to access Ceilometer’s collected statistics. The

ICCLab of ZHAW has written a plugin for Nagios

and is available at GitHub: https://github.com/kobe6661/

nagios ceilometer plugin.

Ceilometer also provides an alerting system but is still

in development. [33] Three different types of alarms are

currently available:

• A static threshold value with a comparison opera-

tor such as greater than or less than.

• A statistic selection to aggregate the data.

• A sliding time window to indicate how far back

into the recent past you want to look.

3The full list of meters for the Compute service can be

found here: http://docs.openstack.org/admin-guide-cloud/content/

section telemetry-compute-meters.html. For every OpenStack

service: http://docs.openstack.org/admin-guide-cloud/content/

section telemetry-measurements.html.

9

Fig. 12. Graph showing CPU usage in Openstack Horizon.

OpenStack Metering tab only can display statistics for the

whole tenant (project) and is lacking capabilities to visualize

data of a single VM.

An alarm can be set to every meter of Ceilometer.

Due that Ceilometer only gathers data from OpenStack

services alarms cannot be set for a Physical Machine.

IX. CONCLUSION

Linux offers great and deep insight at the hosts re-

sources, but is not that easy to correctly collect data. It

is easier to use an existing monitoring tool like collectd

and for an advanced monitoring Nagios.

When virtual machines has to be monitored libvirt pro-

vides an excellent library to gather statistics.

OpenStack’s Ceilometer is a flexible monitoring tool,

but the dashboard tab has to be further developed. Like

setting up alarm thresholds or visualizing statistics per

VM/PM. When alarms are needed at PM-level one has

to use a third party tool like Nagios.

10

GLOSSARY

cloud Cloud computing is a model for enabling ubiq-

uitous, convenient, on-demand network access

to a shared pool of configurable computing

resources (e.g., networks, servers, storage, ap-

plications, and services) that can be rapidly

provisioned and released with minimal man-

agement effort or service provider interaction.

daemonIn multitasking computer operating systems, a

daemon is a computer program that runs as a

background process, rather than being under

the direct control of an interactive user. [34].

IaaS Infrastructure as a Service.

KVM Kernel-based Virtual Machine.

MIB Management Information Base.

NMS network management station.

OS operating system.

PaaS Platform as a Service.

pid process id.

PM physical machine.

QEMU Quick Emulator.

QMP QEMU Monitor Protocol.

SaaS Software as a Service.

SNMP Simple Network Management Protocol.

VCPU virtual central processing unit.

VM virtual machine.

WMI Windows Management Instrumentation allows

to manage and monitor Microsoft Windows

PCs and server.

APPENDIX A

SNMP

For further information on the SNMP there is a

book Essential SNMP written by Douglas R. Mauro and

Kevin J. Schmidt (ISBN: 0-596-00020-0, First edition,

published July 2001.) and it is also available as a website

at http://docstore.mik.ua/orelly/networking 2ndEd/snmp/

index.htm.

REFERENCES 11

REFERENCES

[1] Paul Gil. FAQ: What Is ’SaaS’? URL: http :

/ / netforbeginners . about . com / od / s / f / what

is SaaS software as a service . htm (visited on

02/26/2015).

[2] Rackspace Support. Understanding the Cloud

Computing Stack: SaaS, PaaS, IaaS. URL: http :

/ / www . rackspace . com / knowledge center /

whitepaper/understanding- the- cloud-computing-

stack-saas-paas-iaas (visited on 02/26/2015).

[3] Brandon Butler. FAQ: What Is ’SaaS’? URL: http:

//www.networkworld.com/article/2163430/cloud-

computing/paas-primer--what- is-platform-as-a-

service-and-why-does-it-matter-.html (visited on

02/26/2015).

[4] Diversity Ltd. Moving your Infrastructure to the

Cloud, How to Maximize Benefits and Avoid Pit-

falls. URL: http : / / diversity. net . nz / wp - content /

uploads / 2011 / 01 / Moving - to - the - Clouds . pdf

(visited on 02/28/2015).

[5] J. W. Smith and I. Sommerville. Workload Clas-

sification & Software Energy Measurement for

Efficient Scheduling on Private Cloud Platforms.

Tech. rep. School of Computer Science, University

of St Andrews, 2011. URL: http:/ /arxiv.org/ftp/

arxiv / papers / 1105 / 1105 . 2584 . pdf (visited on

03/02/2015).

[6] iostat(1) Linux User’s Manual. July 2013.

[7] Werner Fischer. Linux Performance Aufzeich-

nung und Auswertung mit sar. May 26, 2009.

URL: https : / / www . thomas - krenn . com /

de/wiki /Linux Performance Aufzeichnung und

Auswertung mit sar (visited on 04/30/2015).

[8] sar manual. Mar. 2015. URL: http : / / sebastien .

godard . pagesperso - orange . fr / man sar . html

(visited on 04/30/2015).

[9] About IPTraf. URL: http: / / iptraf .seul .org/about .

html (visited on 03/16/2015).

[10] collectd – The system statistics collection daemon.

URL: https://collectd.org/ (visited on 05/09/2015).

[11] Simple Network Management Protocol. URL: http:

/ / en . wikipedia . org / wiki / Simple Network

Management Protocol (visited on 03/20/2015).

[12] Paessler PRTG Network Monitor. URL: https : / /

www. paessler . com / prtg / features # easy to use

interface (visited on 04/19/2015).

[13] Nagios. URL: https : / / www . nagios . org / about /

overview/ (visited on 04/19/2015).

[14] Munin. URL: http://en.wikipedia.org/wiki/Munin

(software) (visited on 04/19/2015).

[15] Monitis. URL: http : / /www.monitis .com/product

(visited on 04/19/2015).

[16] QMP - QEMU. URL: http://wiki.qemu.org/QMP

(visited on 04/20/2015).

[17] Luiz Capitulino. A Quick Tour of the QEMU

Monitor Protocol. Slideshow. Aug. 2010. URL:

http : / /www.linux- kvm.org/ images/1/17/2010-

forum-qmp-status-talk.pp.pdf.

[18] libvirt: The virtualization API. URL: http://libvirt.

org/ (visited on 03/16/2015).

[19] T H E /proc F I L E S Y S T E M. June 9, 2009.

URL: http: / /git .kernel .org/cgit / linux/kernel /git /

torvalds/linux.git/tree/Documentation/filesystems/

proc.txt?id=HEAD.

[20] I/O statistics fields. Apr. 29, 2013. URL: http://git.

kernel.org/cgit/linux/kernel/git/torvalds/linux.git/

plain/Documentation/iostats.txt.

[21] Terry Dawson. Exploring the /proc/net/ Directory.

Nov. 16, 2000. URL: http://www.onlamp.com/pub/

a/linux/2000/11/16/LinuxAdmin.html (visited on

05/02/2015).

[22] Paul Colby. CPU load bash script. https://github.

com/pcolby/scripts /blob/master /cpu.sh. Oct. 6,

2013.

[23] Robert Love. Linux Kernel Development -. 2.

Edition. Sams Publishing, Jan. 12, 2005. ISBN: 0-

672-32720-1.

[24] Applications using libvirt. URL: http://libvirt.org/

apps.html (visited on 05/10/2015).

[25] Terminology and goals. URL: http : / / libvirt . org /

goals.html (visited on 05/10/2015).

[26] API Module libvirt-domain from libvirt. URL:

https://libvirt.org/html/libvirt-libvirt-domain.html

(visited on 05/10/2015).

[27] up.time. The Truth about Agent vs. Agentless Mon-

itoring. URL: http : / / www. uptimesoftware . com /

pdfs / TruthAboutAgentVsAgentLess . pdf (visited

on 05/12/2015).

[28] OpenStack - Logging and Monitoring. URL: https:

//www.openstack.org/ (visited on 05/06/2015).

[29] Openstack - Operations/Monitoring. URL: https :

//wiki.openstack.org/wiki/Operations/Monitoring

(visited on 05/07/2015).

[30] OpenStack - Logging and Monitoring. URL: http:

/ / docs . openstack . org / openstack - ops / content /

logging monitoring.html (visited on 05/07/2015).

[31] Openstack - Telemetry. URL: http : / / docs .

openstack . org / admin - guide - cloud / content /

ch admin - openstack - telemetry. html (visited on

05/14/2015).

12

[32] Openstack - Ceilometer REST API. URL: http:/ /

docs.openstack.org/developer/ceilometer/webapi/

v2.html.

[33] Openstack - Alerting. URL: https://wiki.openstack.

org/wiki/Ceilometer/Alerting.

[34] Daemon (computing). URL: http: / /en.wikipedia .

org / wiki / Daemon (computing) (visited on

05/19/2015).

