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Abstract

Managing large amounts of physical resources in clouds or data centers is not an easy task
and e�ciency plays a decisive role in the performance of instances created by the clients.
The initial scheduling of the resources of a Virtual Machine (VM) is not always enough
to ensure a fair distribution of physical resources between the users.
This thesis improves an OpenStack service that managed cloud physical resources and
defined fairness through a heaviness metric which uses resource consumption information
of all instances to determine the heaviness of each user. Based on a number of metrics, the
cloud resources are reallocated at run-time to achieve a fair resource distribution among
the users. This thesis also describes, classifies and addresses the noisy neighbor problem
with the help of the fairness service. Another important topic is the impact of the virtual
resources scheduling in the physical resource distribution. The last part of the thesis is
formed by a number of tests that asses the performance of the newly created framework
in an OpenStack environment. Overall the new service proved to work accordingly in
di↵erent use-cases, reallocating resources between users and VMs in real time. The new
service has also improved the communication between the nodes and is decoupled from
the OpenStack services.
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Chapter 1

Introduction

These days there are many discussions everywhere about clouds, cloud computing, cloud
storage and many more. This area has evolved rapidly in the last years, and got adopted
by numerous industries and domain fields. A cloud platform provides virtualized scalable
computing resources, which are shared across multiple users over the internet, in a techni-
cally and administratively scalable manner [1]. Many enterprises obtained huge benefits
by using the pay per use cloud outsourcing model, where they saved money not only on
the initial investment, but also afterwards with the maintenance of software and hardware
resources [3]. This also results in a high end-user adoption in a large number of companies
not limited to the IT sector [2].

1.1 Motivation

Usually, in a cloud environment, users are o↵ered a multi-tenant architecture, where ap-
plications of many di↵erent customers run together in a shared infrastructure [4]. There
are three types of cloud environments: The first category is private clouds, where enter-
prises build their own hardware infrastructure and keep the cloud in a private network,
accessible only for them.
The second category is the public/commercial clouds, where physical resources location is
not exposed to the clients and everyone has access to it (Examples are: Amazon Elastic
Compute Cloud, IBM Blue Clouds or Windows Azure). The last category is represented
by the hybrid clouds. This means that the clients keep a private smaller cloud in-house,
for regular, normal usage, and, whenever a spike appears in utilization, resources will be
allocated in a public cloud to accommodate the sudden needs.

The most widespread use case for a cloud user is to start Virtual Machines (VMs), and
then execute its applications or jobs inside the respective VMs. Consequently, the VMs of
di↵erent users will use the physical resources of the same cloud nodes (CPU time, RAM,
disk I/O and network). This also means that VMs of di↵erent users will compete with
other VMs for physical resources on the same host. If these resources become congested,
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2 CHAPTER 1. INTRODUCTION

their performance will decrease a lot, without the user being aware of the reason for the
performance decrease [5].

In order to make sure resources are properly divided between the users, some considerable
e↵ort has been put recently into data center resources allocation. Resource allocation is
complicated by itself, but in clouds it gets even more complicated due to a number of
factors:

There are many physical hosts that could be spread in di↵erent locations and could
have di↵erent performance

More recently, VMs can use resources from more than a single host

Users also have quotas and di↵erent permissions which are also taken into consid-
eration

Since users are not aware of the underlying physical resources, the performance of
VMs should reflect as much as possible the defined virtual resources [6, 7, 8]

In the papers [10] and [9] there is shortly described the resource allocation process through
two steps which are conducted continuously and in parallel: ”In the first step called VM
scheduling, the cloud’s orchestration layer decides which VM is started next and which
node hosts the VM. This step statically multiplexes nodes and is conducted for every
VM that is started or live migrated. During the Runtime Prioritization step, a node’s
hypervisor, i.e., the operating system of a node, allocates the node’s physical resources,
such as CPU time, RAM, disk I/O, and network access, to the VMs. This step statically
multiplexes physical resources of individual nodes and is conducted permanently”.

The scheduling step means deciding which node will host a particular VM, while the second
step means deciding how many actual physical resources will be allocated. The time-
shared resources like CPU, disk I/O and network can be e�ciently allocated/reallocated
by priorities, while the space-shared resources like RAM or disk space will bring a bit of
overhead.
Taking this into consideration means that the second step allows to be flexible when
changing the performance of VMs, even if the scheduling happens of di↵erent node types
[9]. Even so, the VM scheduling is still taken more often into consideration, which leads
to ine�cient resource management over long periods of time [10]. Many clouds also use
VM migration in order to improve the performance, but that comes at a very high cost
in terms of overhead.

The initial scheduling of the resources of a VM is not enough to ensure a fair distribution
of physical resources between the users. In other words, most of the current approaches
are insu�cient to ensure multi-resource fairness during runtime, or just consider only a
few resources (e.g.: just CPU) [11].

In order to close this gap, the thesis [9] created a nova-fairness service (referred to as
Fairness Service) by extending the OpenStack nova services. The new service achieves
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fairness among users by gathering constantly information about the usage of VMs and
the physical resources used, aggregating this information to the heaviness of users and
reallocate physical resources to adapt to the VM new priorities. When the heaviness of
users is aligned, all users will have access to a fair share of the physical resources.

The Communications Systems Group (CSG) defined the Greediness Metric (GM), which
was proven to result in fair allocations and give incentive to user to configure the Virtual
Resources (VR) of their VMs according to the VMs subsequently load, when the GM is
deployed as heaviness metric for the FS.

One important example of functionality is the following: If two users X and Y deploy
VMs on two hosts A and B, and one physical resource (e.g., CPU, RAM, network access,
disk I/O) becomes congested on host A (could also be B). The fairness service ensures
that the congested resource is allocated in favor of the user, who puts less stress on the
cloud.

This means that even if user X runs more VMs on host A, a larger share of the congested
physical resources is allocated to his VMs, if his overall resource utilization (this includes
utilization information from host B) is small compared to user Y. Without the Fairness
Service, the congested physical resources will be allocated to the VMs of the two users by
some standard scheduling algorithm that only considers local/host information unaware
to which user the VMs belong to.

Even if the Fairness Service was implemented in [9] and it was proved to achieve the
desired functionality through some brief tests, there are many more details left open.
Therefore, this Master Thesis address some of these problems, especially the architecture
details of the implementation.

1.2 Thesis Outline

In Chapter 2, a few papers that analyze resources distribution in virtualized environments
have been discussed, as well as the first version of the fairness framework (referred also as
fairness service). Chapter 3 goes deeper in analyzing a common issue in today’s clouds,
the noisy neighbor problem, and how can the current implementation of the framework
improve such situations. Chapter 4 describes at a detailed level the new fairness framework
implementation and di↵erences compared to the old version. Chapter 5 explains the
communication part of the same new implementation. In Chapter 6 we test OpenStack
and the new framework in a simple scenario to check how the number of declared VCPUs
a↵ect VM performance in a resource contention situation. In Chapter 7 we test a few
use-cases to prove that the framework works accordingly with the new implementation.
Chapter 8 describes future steps that should be implemented, in order to improve the
fairness framework. The final conclusions are described in Chapter 9.
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Chapter 2

Related Work

There are three main approaches that take into consideration multi-resource fairness prob-
lems in cloud environments. The first solution is called Bottleneck-based Fairness (BBF)
[12, 8, 13, 14], where it is assumed that, with a single bottleneck, there exist other devices
which are not fully utilized. As a result, the allocation problem becomes here a scheduling
problem and it’s similar for a system with multiple bottlenecks [12].

The second approach and also the most heavily used is called Data Resource Fairness
(DRF) [15], and is basically a generalization of the max-min fairness to multiple resource
types. The max-min fairness maximizes the minimum resources received by a user and,
assuming all users have enough demand, each of them will get an equal share. This
approach was generalized my adding the concept of weight and sharing the resources
proportional to the dominant resource. On short, DRF tries to maximize the minimum
dominant share across all users [15].

The third approach is an extension to Proportional Fairness [16], where two classes of rate
control algorithm for communication networks are generalized to include routing control
and also provide proportional fair pricing implementations. A solution where resources
are prioritized during runtime should allow a better management and the ability to adapt
to changing needs. There are two papers [17, 18] that study priority functions needed in
order to schedule jobs, which could be used also for VM prioritization. The paper [19]
also includes runtime prioritization on data centers and allows users to prioritize their
own VMs.

As mentioned in the introduction, the paper [9] introduced a fairness service that proved
to work accordingly and achieve the desired functionality. However, there were a few
important issues that needed to be addressed. From architectural point of view, the nova-
fairness is an OpenStack nova service, strongly coupled with the rest of the OpenStack
environment. This means that all components are also managed by OpenStack, together
with the communication between them.
This strong coupling makes further development very di�cult, as well as maintaining the
solution. In order to bind the nova-fairness with the rest of the nova services, a lot of
overhead code had to be created, which is strongly connected to the structure of the Open-
Stack. Every time a new version of OpenStack is released, (usually every six months) the
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code must be adapted and possible drastically changed to still be compatible with the
other nova services.
Because of the increased code complexity, the classes often contained the so called antipat-
tern ”bowl of spaghetti”. This means that part of the code contained very long methods
that had tangled code with parts of the OpenStack nova code. The communication be-
tween di↵erent components of the service is done again with structures from other nova
packages, while the communication between nodes is managed both by OpenStack and a
third party Redis server [20] with ZeroMq [21] messaging queue.

Because of the di�culty of further extending the existing code, a new approach was taken,
to create a new service completely decoupled from OpenStack. Many parts from the initial
Fairness Service were still usable, such as the numerous metrics used to map or calculate
resources, and also gathering information/reallocation calls to the Libvirt [22] library.



Chapter 3

The Noisy Neighbor Problem

Cloud infrastructures today provide virtualized scalable computing resources, shared across
the internet. This means that multiple independent instances of applications operate in
a shared environment (or multi-tenant environment) [1]. The hypervisor virtualizes the
physical resources such that the instances have the illusion of exclusive access to the given
resources [1].

3.1 Problem Definition

To have an e�cient environment and to increase resource utilization, resource overbooking
proved to be a very good solution [27]. Usually, the tenant applications are competing
for the real hardware resources. The e↵ect is even more powerful in case of overbooked
systems since there is even a higher number of VMs asking for the same underlying
resources. This solution lead to one of the biggest challenges in clouds, the performance
unpredictability because of the resources contention [1].

The Noisy neighbor problem refers to a co-tenant that monopolizes the CPU, memory,
disk, network or other resources, thus having a negative impact to the performance of
other co-tenants. It has been proven that it can occur up to 80% performance loss just
because of a collocated instance/VM [26]. Since the performance di↵erence is so high,
many data centers allocate significant human resources to investigate this problem.

One interesting example in Amazon EC2 environment where noisy neighbors are not
addressed by default, is the Netflix Chaos Monkey service, which closes broken instances
in Amazon EC2, or even badly performing ones [23]. So, whenever a VM performance
drops significantly due to a noisy neighbor, the service will automatically kill the respective
instance and create a new one.

7



8 CHAPTER 3. THE NOISY NEIGHBOR PROBLEM

3.2 Types

The types of noisy neighbor di↵er, depending on the location of the respective co-tenant:
in case of the same physical machine (intra node level) the resources consumed could
the CPU cores, CPU time, CPU cache, Memory, Disk Storage, Disk speed, disk access,
Network bandwidth and others.
If the noisy neighbor is located on a di↵erent machine (inter node level), it can still impact
negatively the network bandwidth or disk bandwidth in the case of a network attached
storage. Since most hypervisors focus on allocating CPU time and memory capacity [26],
it is critical that also disk I/O and network bandwidth get to be properly allocated and
managed.

3.3 Finding And Addressing The Problem

In order to address the problem, the first step would be to identify if there is a noisy
neighbor, in what conditions an instance becomes noisy, and also to constantly monitor
the performance for the identification of new noisy neighbors. In the paper [1], there
are mentioned two approaches: monitoring the cloud applications and a heuristic based
approach.

The monitoring involves capturing metrics such as Memory usage and read/write errors
(R/W errors), network bandwidth consumption, storage usage, I/O operations and errors.
Since the hypervisor shares the real resources to the VMs, the ”noisy neighbor” problem
appears when an instance must wait in turn for the physical resources. Whenever some
pre-defined limits are reached for a VM, a noisy neighbor is identified.

Benchmarking the VM provides also metric results that can be compared with other VMs
of the same type. In case the performance of two instances of the same type of VMs and
on very similar nodes is very di↵erent, the presence of a noisy neighbor can be detected.

In large environments that run over large amounts of time continuously, the heuristics
based approach uses historical data to predict that a particular application will become
too greedy in the future [1].

3.4 Dealing With The Problem

In the same paper [1] there are described three classical ways of dealing with the noisy
problem: the first refers to cloning/migrating to another node of the cloud, the second to
borrowing resources from other nodes and the third approach refers to a way of defining
quotas for the resource allocation.

The first solution will clone/migrate the victim VM on another node (Figure 3.1), based
on performance, physical proximity or resource utilization. By moving the victim, the

grammar?



3.4. DEALING WITH THE PROBLEM 9

overhead is smaller, but still present, especially in the network when you have to transfer
large volumes of data (in GB).

There are also approaches for live VM migration, mainly based on which phase is carried
out first: if first the memory is migrated to the destination node, and then the rest of the
migration (applications) we have a pre-copy live migration. If the phases are reversed we
have a post-copy live migration [1].

Figure 3.1: Example of a VM migrated to another node [1]

The second solution refers to cases where the victims of a noisy neighbor in an over-
provisioned environment can get additional resources from another node (Figure 3.2).
There are solutions like Beowulf Allocator [25] and SETI@home [24] that can allocate
resources on any cluster in the grid, or even from another cluster [1].

The third approach is the closest to the approach taken in this thesis, and involves defin-
ing a quota system for physical resources. The main di↵erence is setting hard limits
at the scheduling point of the VM, whereas the fairness service try to achieve runtime
prioritization based on these quotas.

In the paper [27] there is also described the solution as a ”fuzzy-logic a�nity-aware engine”
which helps with in-server VM scheduling. Even if this scheduling has proved to be very
e�cient, it still does not help in the use case where, during runtime one or more VMs
become a noisy neighbor and take most of the resources of that node.

The Fairness service takes into consideration the users quotas, together with actual re-
source utilization, VM numbers, VM types and VM utilization by monitoring all the time
all nodes. In cases where a sudden consumption spike happens for a VM and the user
does not have the necessary quotas compared to other users on the same machine/node,
the runtime prioritization will intervene. This means that commands will be sent to the
hypervisor to reallocate the physical resources accordingly, and minimize the impact of
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Figure 3.2: Example of a VM using resources from another node [1]

noisy neighbor to the a↵ected VMs. If the problematic VM goes back to a normal utiliza-
tion rate, the reallocation process will be triggered again and restore the previous resource
priorities.
As an example, in the Chapter 6 we can notice a use case where there is a user with two
VMs using all CPU shares of the host. If a second user has a VM of the same type on
the host, with the help of the Fairness service, it will get more CPU time than the other
two VMs in an situation of overprovisioning resources.



Chapter 4

The New Fairness Service

As discussed in the second chapter, the first version of the Fairness service proved to work
accordingly and prioritize resources at runtime in a more ”fair” manner. However, the
strong coupling with the other nova services made further development and maintenance
too much of a di�cult task.

The new solution starts by creating a decoupled service that will run on the controller
node, as well as on each of the nodes and communicate between them independent of
OpenStack. The basic algorithms and logic for the metrics, heaviness calculation and
resource reallocation are kept from the first version, while the source code will be refac-
tored, more e�cient and easier to understand. This will help to keep the application in
a running state for the next developers and the process of understanding what is already
implemented kept simple.
The idea behind the decision comes from the Agile methodology, where it is recommended
to start building the simplest version of an application that run properly. Afterwards, in
each sprint, the application shall grow, but always be keep it in a running state, or reverted
if something gets broken [28].

4.1 Multi-resource Fairness and User Heaviness

As explained in paper [9], it is hard to define uniquely runtime fairness, because resources
such as CPU time, RAM, disk I/O, and network access, are shared, while users have
di↵erent demands in order to satisfy their workloads. Since the only useable information
from the hypervisor is the resource consumption, the fairness will be defined as ”prior-
itizing cloud users inversely to their heaviness”. In other words, the users that put less
load on the system will get a higher priority compared to the users that spend a lot of
resources. As a consequence, defining the user fairness directly depends on defining the
user heaviness.

As mentioned before, the heaviness algorithm will be kept from the previous fairness.
Therefore, the user heaviness is defined as the sum of heaviness of the user’s VMs, which
at its turn is defined by a metric that maps a resource consumption vector to a scalar [9].

11
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12 CHAPTER 4. THE NEW FAIRNESS SERVICE

The first configuration that is part of the heaviness algorithm is the VM flavor config-
uration. In order to understand how VM configuration a↵ects heaviness, the following
example is presented: There are three VMs, each of a di↵erent size from small to large (in
terms of virtual resources assigned to it), and all created on the same node. All of them
have to execute the same workload and utilize the same resources.
Usually, the size of the VM reflects how many actual resources the VM is expected to use
and, respectively, how many resources gets reserved for it. This means that executing the
workload on the small VM will result in a higher than expected load for that VM host,
while executing on the large VM will result in a higher amount of unutilized resources. In
contrast, executing the load on the medium VM will not result in many resources wasted
or overused [9].

Consequently, the metric will influence the heaviness by lowering it if the users configured
properly the VM. If the VM overuses or waste resources, the heaviness for the respective
VM and user will increase.

Idle VMs will get the same treatment as the VMs which waste resources. This will force
users to stop creating a large number of unused VMs and thus, increasing the overall
over-provisioning factor (physical resources are reserved for each created VM).

The resources utilized by a VM is the most decisive factor that is part of the heaviness
calculation. This information is collected periodically at runtime, and referred to as Run-
time Utilization Information (RUI). The service will also collect the hardware information
for the whole cloud cluster (all available nodes), referred to as Node Resource Information
(NRI), and it will also be part of the heaviness calculation. The sum of all node’s NRI
will be referred to as Cloud Resource Supply (CRS).

Since both of these resources values are heterogenous and measurable in di↵erent units,
they will be normalized to a scalar that will represent all of them equally.

Lastly, the heaviness will also take into consideration users’ resource quotas beside the
a↵ord mentioned NRI, CRS and VM flavors.

4.2 Measurements Description

To achieve as much e�ciency as possible in virtualized environments, clouds use to over-
commit resources (such as CPU) by a certain degree/factor. For example, a cloud can
overcommit CPU with a factor of 5, meaning that, there can be 5 times more VCPUs
that hardware CPUs in the system. This also means that the amount of resources a cloud
budgets for a VM not only depends on the clouds overcommit factors in addition to the
defined virtual resources.

From the previous implementation [9] we take the definition of VM endowment as the
share of the VM’s node’s physical resources that are proportional to the VM’s virtual
resources. This definition will help define how much resources are budgeted to a certain
VM and how they compare to the initial VM resources. To give an example, if a VM has

wiedergabe der paper
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three VCPUs and runs on a host, which has VMs with a total of 15 VCPUs, then the
VMs CPU endowment is 1/5 of the nodes CPU cycles.

The quotas of users are also not directly translatable to amounts of physical resources a
cloud allocates for a user, even if the cloud size or number of user changes. In order to
get a quota relatable to the real resources, the fairness quota will be defined as the overall
cloud resource supply divided by the number of users. The resulting value will be the
amount of physical resources a cloud can allocate to that user [9].

Since all measurements are on the same scale, the heaviness of a user can be defined as
the sum of VM endowments, which also contains the over-commitment factors, plus the
heaviness of each of its VM. The fairness quota will be subtracted from the user heaviness
at the end and the result will be a scalar [9].

4.3 The Fairness Framework

The OpenStack environment consists of two types of nodes: the controller node is the
cloud coordinator which takes care of VM scheduling, access, keeps all the information in
a dedicated database, has a communication server and in general, coordinates the whole
cloud. From a di↵erent perspective, the controller is the single point of failure for the
OpenStack cloud. The compute nodes are hosting the VMs and take care of processing
the VM workloads.

The Fairness Framework (mention also as service) is built as a python service that has
to run on the controller node, as well as on each compute node. As mentioned before,
the service is decoupled from OpenStack and can run independently of it. The most
important actions the service should execute on the controller node are:

Collecting all NRIs from the compute nodes

Assembling the CRS and sending it back to the nodes

Forward heaviness to all nodes at specified time intervals

On the compute nodes, the Fairness service has to take care of the following:

Gather and send the NRI to the controller node

Save the received CRS to use in heaviness calculation

Every time a user heaviness vector is received:

– Gather RUI and recalculate the heaviness

– Send forward the updated heaviness to the next compute node

– Calculate the new priorities and reallocate resources if needed

wiedergabe der paper



14 CHAPTER 4. THE NEW FAIRNESS SERVICE

The communication between the nodes is established using ZeroMQ in a peer-to-peer
manner, independent of OpenStack communication. The details will be presented in the
next section 5.4.

However, some information is required from OpenStack, such as the list of users, quotas
or VMs. This is achieved by calling the public OpenStack web API, authenticating with
administrator credentials and requesting the needed information. All http requests are
made synchronous, such that the data is received exactly when needed.

In the current version of the Fairness Framework, there are six resources tracked: CPU
time in seconds, memory in kilobytes, disk read speed, disk write speed, network receive
speed and transmit speed.

The CPU time represents the amount of time needed by the CPU to complete certain
tasks and, therefore, measures CPU usage. Since the CPUs on the nodes can be quite
di↵erent, one period of time from a CPU can be much more performant than the same
amount of time from another CPU. In order to normalize the performance, the Linux
operating system uses the so called ”BogoMIPS” [29].

The NRI represents the hardware resource capacities for a node, or in other words, the
performance of the host. Since the hardware components do not usually change (while
OpenStack is running), the NRI will remain unchanged throughout the program run.
Consequently, the NRI will be sent only one time to the controller node, and the newly
assembled CRS (the sum of all NRIs) will also be sent only one time. All nodes will store
the CRS and use it accordingly every time is needed.

Regarding resources, the NRI uses various system calls to get the hardware information. In
addition to the above-mentioned resource types, the NRI will also get the number of cores
of a CPU and weight them using node’s BogoMIPS to obtain the overall performance.

The RUI is collected periodically by each compute node for every successfully scheduled
VM of every active user. In order to get the information about the usage of resource, the
libvirt [22] library is used. Libvirt provides a user-friendly API and can connect to many
hypervisors. In paper [9] is explained that for time-shared resources (CPU time, disk I/O,
network access), the libvirt provides the accumulated resource consumption since boot
time.
The framework will calculate the current measurement period by subtracting the accu-
mulated consumption at the beginning of the period from the accumulated consumption
at the end of the period.

After the CRS has been sent to the compute nodes, the controller node will initialize a
vector of all users that have active VMs and their default heaviness (in the source code
also referred to as greediness). Afterwards, at a configurable interval, the controller will
send to the nodes this vector.
When a node will receive it, it will start to collect the RUI and then recalculate the
heaviness for all VMs hosted on it. As also explained in paper [9, 10] the input elements
for calculating heaviness are:
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The previous user heaviness

The cloud CRS

Scales and over-commitment factors

VM endowments

Current RUI

After the calculation and transformation to a generalizable scalar, the new vector of user
heaviness will be calculated. That involves each time subtracting from the value of each
user the old heaviness value and adding the new one. This is needed since the VMs of
a user most likely will be hosted on more than a single node, thus making it impossible
to calculate the entire user heaviness on a single machine; a user u

x

heaviness will be the
result of all nodes that have an active VM owned by u

x

.
Also, to be remembered that the user heaviness represents the sum of VMs heaviness
owned by that user, no matter on which node they are hosted.

As soon as the new vector is calculated, it will be send to the next node, in order for that
node to start its calculation.

The next very important step for the compute node is to calculate priorities for all VMs
and the reallocate the resources accordingly. As stated in [9], the framework reallocates
resources, based on weights. For example, if a VM has a CPU weight of 1 and the second
VM has a weight of 2, the second VM will get twice as much CPU time. However, if that
time is not used, the first VM can still use the remaining if needed.
This represents an important feature compared to assigning hard limits, which is not that
e�cient: resources can get easily wasted, unused or even overused. Basically, the full
capacity of the node can be utilized, even by smaller VMs. Following are the definitions
for mapping heaviness to weights, as reused from previous implementation [9].

CPU shares are prioritized based on the ratios of shares. A CPU-share distribution of
100 shares for CPU 1 and 200 shares for CPU 2 has the same e↵ect as 512 shares for
CPU 1 and 1024 shares for CPU 2. The framework maps priorities to CPU shares in
the range [1,100]. RAM soft-limits are assigned from 10 MB to the maximum amount of
RAM available to the VM. Disk weights range from 100 to 1000 with 100 representing
the lowest and 1000 the highest weight. These limits are defined by libvirt and have to
be adhered to.

Network priorities were translated in previous Fairness implementation into HTB qdisc
classes ranging from 1:0 to 1:98 with 1:0 being the lowest and 1:98 the highest priority.
However, this part is not currently used since a better, more e�cient implementation is
being developed in parallel by another thesis. This method will be merged into the current
Fairness implementation in later stages.

The reallocation process is executed by setting the respective priorities define above in
libvirt. The library will send the appropriate commands to the chosen hypervisor at
runtime, the result being visible in real time.
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Chapter 5

Improving Message Exchange

By default, the OpenStack communication is achieved by having a RabbitMQ [31] server
host on the controller node that acts as a centralized message broker. This means that all
messages sent between nodes, will also traverse and be processed by the controller node.
Since this is not scalable and strengthens the single point of failure disadvantage of the
system, the first Fairness implementation introduced a decentralized version, as described
in [9].

However, the implementation still resulted in a high message volume, which is quadratic
in the number of nodes and produced periodically. This is the case, since every node
sent directly messages to every other node. In addition, there were third party libraries
involved in the communication process, such as Redis message queue, which added to the
code complexity and maintenance e↵ort.

The next sections will describe the new implementation for the message exchange and the
integration within the general Fairness Framework.

5.1 Theoretical Insights For Reducing The Message
Volume

As explained in Chapter 4, the CRS message is exchanged only once, which means it
is considered insignificant compared to the heaviness message that is sent periodically,
for an undefined amount of time. Thus, the heaviness message volume will have to be
investigated and reduced accordingly.

We have defined the following protocol in order to reduce the message volume: Consider
a user heaviness vector m 2 Ru that cycles through all nodes in a predefined order and
its value gets updated every time it reaches a new node. Suppose that the node order is
given by the nodes’ indices (1 <= I < n), node n

i

sends message m to n
i

+1 and node n
n

sends message m to node n1. In this scenario, node n
i

+1 and n1 are called the successor
of n

i

and n
n

, respectively.

17
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The message m has one entry for each user with at least an active VM, u
x

2 U and it is
initialized with �1 · s(e

u

(u
x

)). We can assume here that the xth entry of m corresponds
to the user u

x

. After the first cycle, the message m will contain the calculated heaviness
for all users in the cloud, for every node with at least an active VM. This is a result of
each compute node updating the corresponding values for each hosted VM.

Afterwards, the message m will continue to cycle through the nodes, will give the user
heaviness and will also be updated by each node. As mentioned in chapter 4, each node
will first subtract the old value he added in the previous cycle and an add the new value.

More specifically, every node n
i

will maintain a vector m
local

2 Ru, which stores the value
n
i

added to m in the previous cycle. Therefore, m
local

will be initialized with zeros and
when n

i

receives m from the predecessor, m := m�m
local

. Every element in the array of
users of m

local

is then overwritten by zero and for each VM v
a

2 a(n
i

), h
v

(v
a

) is added to
the xth entry of m

local

, whereat x is obtained by o(v
a

) = u
x

.

The CRS message will also use the same technique to have a complexity of O(n · u). The
message will start from the central entity and traverse once all nodes n

i

.

After m has traversed the circle twice (first traverse is the CRS message), every node
knows the heaviness of each user and consequently, the message volume will become
2 · n · u 2 O(n · u). Therefore, the total message volume is bounded by O(n · u). Every
node only receives and sends messages from one other node, which will ensure a low
communication overhead. From a di↵erent perspective, all nodes, including the central
entity (controller in this case) will be part of a communication circle.

5.2 Implementation Details

The ZeroMQ implementation followed closely the above mention theoretical description
and creates a peer-to-peer network. As we can see in Figure 5.1, each node has a server
that receives messages and a client that will connect to the next neighbor’s server and
send messages.

The topology of the network is a circle, where the controller node is the first peer and
the rest of the nodes follow a certain order. In this case, ZeroMQ will create sockets for
communication, where you have to bind and get a permanent connection between two
nodes (until intentionally closed or crashed). More specifically, the client of one node will
connect to the server of the next node and so on, until the circle is complete.

However, there exist an initial discovery step in the implementation, executed only once
at system startup. When the fairness service on the controller node starts up, it will first
connect to the local database and get the IP addresses of all active nodes in the system.

Afterwards, the ZeroMq server on the controller will startup and wait for three types of
messages: neighbor and NRI message, CRS message and heaviness (HVN) message. The
server on the compute nodes will start with the startup of the fairness service and wait
for CRS and HVN messages.
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Figure 5.1: The circular topology of the Fairness Framework

5.3 Integration With The Fairness Framework

The neighbor and NRI message is part of the discovery step, the only time when nodes
connect directly to the controller. This is needed in order for each node to find its neighbor
and then connect to it. In order to reduce a cycle, the NRI is gathered by each node before
and sent into the same message as with the neighbor message.

The neighbor message contains the IP address of the sender (the node that request a
neighbor) and it will get as a return another IP address of the neighbor to connect to.
The NRI will contain a vector of physical resources, as described in Chapter 4, which will
be added to a CRS vector.

Since the controller keeps the list of all nodes previously taken from database, as soon as
each node from the list has connected (identified by IP address), gave their own NRIs and
received their neighbor, it will know when all nodes are ready. After creating the CRS
vector out of all NRIs received, the controller will start the single CRS ring by connecting
to the first node (the neighbor of the controller) and sending the CRS vector. When the
CRS vector arrives back to the controller, thus getting the second type of message, the
controller will start the HVN ring.

The HVN message will contain the initial vector of user heaviness, calculated as described
in Section 6.1. When the HVN message will arrive back to the controller node, the fariness
service will have to manage the third type of message.

The first step here is to calculate the amount of time it took for the message to go through
the whole ring, then to wait an interval of time equal to the initial configured interval
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minus the time it took for the message to come back. More specifically, delta
final

=
delta

interval

� delta
circle

. Afterwards, the received HVN message will be forwarded to the
first compute node and the cycle of heaviness will be started again.

For each fairness service of the compute nodes, the first step is to calculate the host NRI.
After having the required vector, the client part of the service will connect one time to
the pre-configured controller address, send its own IP address and NRI, and wait for the
neighbor. When the neighbor is received back (synchronously), the client will permanently
connect to its neighbor.
The order of nodes booting up is not important since the ZeroMQ implementation knows
to wait until the neighbor to connect to is available, and only then actually connect to it.
For example if a node n

x

tries to send a message to node n
y

, but n
y

is not yet booted up,
the message will wait in an internal queue of n

x

until the connection with n
y

is available.
This has been tested successfully even in di↵erent cases where a message is sent before
the node is started.

The first type of message, a compute node waits for is the CRS message. After getting it,
the fairness service will store it and use it in every new heaviness calculation that comes
next.

When an HVN message arrives, the service will start to get the RUI, information about
the received users and their VMs and then calculate the heaviness according to chapter
4. Here, the OpenStack API will be called in order to get the required information
synchronously. The next step includes transforming the required value to normalized
scalar and assembling the new vector of user heaviness as per Section 6.1.

After successfully updating the heaviness for each user that has active VMs on the current
node, the updated HVN message will be sent to the next node. One of the most important
steps is after heaviness is converted to weights and priorities, and the reallocation process
starts. With the new values, the libvirt library will be called and VM underlying resources
changed.

This HVN cycle will run indefinitely, the interval being configured in an external config-
uration file on the fairness service of the controller node.



Chapter 6

VCPUs And CPU Time Allocation

CPU time allocation, usually measured as a percentage of the CPU’s capacity, is one
of the most important resources allocated by a hypervisor, especially in a multi-tasking
environment. In clouds, the CPU time for a CPU core is split between the VMs that
run on that core, or applications within the VMs that utilize the respective physical core.
In cases of over-provisioning, the split gets to be even more important, since more VMs
compete for the same CPU time.

In order to investigate the benefits of the Fairness service regarding CPU time allocation,
a specific use-case has been analyzed. Suppose one node n is shared by two users, u

x

and u
y

, with the same quotas and exists only one type of VM flavor. When VMs are
instantiated, each of them will receive the same amount of CPU time, without taking the
owner into consideration. This means, for example, if u

x

creates two VMs and u
y

creates
only one VM, user u

x

will get much more CPU time.

The last information for this use-case is about the application of the two users. U
x

can
split his workload on multiple VMs/cores while u

y

is only able to run his application on a
single core in a VM. It is a common issue in virtualized environments to be able to scale
horizontally rather than vertically. It is easy for any application to run faster on a single
bigger VM, but scaling vertically always has a limit; you cannot increase the speed/core
of a processor infinitely, nor memory space or hard disk. The solution is to create/adapt
your application to scale horizontally, so to be able to scale with the number of VMs.

Out of the box, the behavior of OpenStack allocates the same amount of CPU time for
each VM, which means y will have half the CPU time of u

x

and half of the performance
respectively, even though they have the same quotas. In the Figure 6.1 we can observe
the above-mentioned CPU sharing, which we consider not be fair between the two users.
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Figure 6.1: Default OpenStack CPU allocation, each VM has one VCPU

One solution o↵ered by OpenStack is referred to as NUMA topology and CPU pinning [30].
This set-up allows a very specific configuration of what VMs get how much CPU, but is
not supported by all hypervisors (e.g.: not supported by Hyper-V). CPU pinning allows a
VM to have its own dedicated cores, with no sharing of the cores even in overcommitting
environments. However, having dedicated cores means the system will not be e�cient
enough, especially in cases the CPU will not be used 100%, and rather waste resources.

As we can observe in Figure 6.2, if we use the fairness service in this scenario, the CPU
time will be shared di↵erently: user u

y

will get about twice the amount of a VM of u
x

.

Another possibility would be to increase the VCPUs of the VM of u
y

to two and assume
u
y

can still scale on two cores of a single VM. Given the fact that VCPUs are also taken
into consideration by the fairness service, the first user will get the same amount of CPU
as the second one.

By default, OpenStack will schedule to the VM with two VCPUs approximately the same
amount of CPU time as for two VMs with one VCPU together. Basicaly, all existent
four VCPUs will get approximately the same amount of CPU time, as seen in Figure 6.3,
where the pink VM with two VCPUs has twice the amount of CPU time compared to a
VM with one VCPU.

The more interesting scenario is where the user u
y

has the above-mentioned setup, but
can only use one of the two VCPUs at full speed (only one VCPU out of two is stressed,
the other one is idle), a typical case where an application cannot scale to more than a
core. As seen in the Figures below 6.3 and 6.4, with OpenStack defaults only, the VM has
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Figure 6.2: CPU allocation with the Fairness service on, each VM has one VCPU

around 90 CPU time (from a maximum of 200 in this case, 100 per core), while each VM
of the other user got around 50. After starting the Fairness service (described in detail in
the next chapters), we can notice that the VM of u

y

dropped to around 50. This behavior
means that the VM is penalized for scheduling two VCPUs, but using only one of them
at full capacity. The rest of the CPU time will be split between the two other VMs.
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Figure 6.3: CPU allocation with OpenStack defaults, User 1 has two VMs, each with one
VCPU and User 2 has one VM with two VCPUs
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Figure 6.4: CPU allocation with Fairness service on, User 2 has a VM with two VCPUs,
only one VCPU is stressed, the other VCPU is idle
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Chapter 7

Evaluation

In order to test the fairness framework, a fresh installation of an OpenStack environment
has been prepared previous to this paper. The OpenStack version used was Newton, in-
stalled on an Ubuntu 16.04 server following the o�cial tutorials [9]. The system consisted
of a controller node and five compute nodes. All tests were conducted over a period of
approximately 15 minutes.

The first tests for the new fairness framework were presented in the previous chapter.
They include testing on a single node two users with the same type of VMs. One of
them has two VMs and the other one has only one. The di↵erence when running with the
fairness service and without it was clear and proved that the framework works accordingly.

In the next tests, the single VM of the user was given one more VCPU. Here the framework
showed the performance penalty in cases users schedule resources that they do not use,
compared to the default behavior of OpenStack, as seen in Chapter 5.

The multiple nodes tests are usually more important since they are much closer to a real-
life situation. Even if our framework focuses on fairness at node level, there are still many
situations taken into consideration: users that have VMs on more than a single node,
over-commitment for some of these and inter-node communication. We tested the setup
also present in paper [9] in order to verify if the service still performs as intended with
the new implementation.

The setup consists of two compute nodes and three users. The first user only has VMs on
the first node, the second has on both nodes and the third user has a VM on the second
node. User 3 will have an idle CPU, while User 1 and first VM of User 2 will compete for
the CPU on the first compute node.

In the Figure 7.1 we notice, that without the framework, The VM 2 of User 2 can use
the entire resources of node 2, since User 3 does not request almost any CPU time. The
situation on node 1 is di↵erent, since the two VMs compete for the CPU Time and, get
they get equal amount of CPU time.

After starting our framework (Figure 7.2), the resource distribution will change: Since
both users have the same quotas, but User 1 only 1 VM on node 1 and User 2 has another
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Figure 7.1: Default OpenStack CPU allocation, multinode setup: The VM of User 1 and
VM 1 of User 2 belog to node 1, the other two VMs belog to node 2

VM on the node 2, the first user will get more CPU than the second one.
Running another VM on a di↵erent node, will significantly reduce the priority of resources
on the current node.

These easy evaluation setups proved that the new implementation of the framework still
works as the previous one, since the algorithms applied the same logic. This expected
result confirms the finding in the paper [9]. However, after the full implementation of the
network reallocation and messaging, a full suite of tests is recommended.

The tests should reflect as much as possible the reality, which means more nodes and
many more VMs. The expected results could be defined before for several test cases
which will include the resource contention for all resource types. Nodes connecting and
disconnecting from the OpenStack network could be another type of use-case. Even if
the amount of time needed to create and asses such tests is quite high, the importance
remains unquestionable in order to create a real stable product.
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Figure 7.2: CPU allocation with Fairness Framework on, multinode setup: The VM of
User 1 and VM 1 of User 2 belog to node 1, the other two VMs belog to node 2
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Chapter 8

Future Work

It is important to define the next steps that come after this initial version, in order to
ensure a good direction for the project in the next development phases. One first impor-
tant step is to further consolidate the new implementation and adding virtual resources
counterparts for the missing ones.

Another important step would be to further implement the messaging system, together
with failure detection or recovery if nodes shut down.

8.1 VR Counterparts

When we want to create a new VM, we have to choose from a set of predefines VM
Flavors. These flavors define certain amounts of virtual resources which will be allocated
to the respective VMs. However, OpenStack does not have a virtual counterpart for every
physical resource. For example, you can define VCPU, VRAM or virtual disk space, but
cannot define virtual disk I/O or IOPS, nor virtual network access.

Since our framework assumes the existence of a virtual counterpart for each physical
resource, service should derive the virtual counterparts for the missing physical resources
such as disk I/O or network access.

In the current implementation, the fairness service equally partitions resources such as
virtual disk I/O or network access among the VMs in order to obtain the amount of
respective virtual resources. For example, if a node with a bandwidth of 50 Gbit/s hosts
five VMs, each VM’s will have a limit set to 10 Gbit/s.
Since VMs vary significantly in size, at least in terms of VCPU and VRAM, the derivation
should take these sizes into account, when obtaining the virtual counterparts of disk I/O,
network access and other resources not currently part of the VM flavours (VM flavors
contain no virtual counterpart). For example, a VM with a lot of VCPUs could get the
same proportion of network as the proportion of VCPUs to CPUs.
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8.2 Imporving The Message Exchange

Currently, our fairness framework has implemented a simple architecture that proved
to work in the current setup. However, for the future, it is highly recommended to
also implement mechanisms that would bring robustness, security, scalability and fault-
tolerance.

A good example is the situation when more nodes join the system, without restarting
the whole OpenStack environment, and, even more, when a node shuts down/leaves the
system. The fairness system should properly treat these cases and update the required
NRI/CRS vectors for all compute nodes. Another example could be in the future, where
many servers start to support hot-plug of memory, di↵erent cards or even CPUs. This
means that, while running, one could just add more RAM to the system and our service
should also update the relevant information.

One solution that can be applied is going further with the peer-to-peer network imple-
menting a reliable DHT network. In this way, the communication should not just be
fault-tolerant and robust, but also scale to a much higher number of nodes. Currently,
ZeroMQ used in the framework could indeed support such implementation and provide
the necessary communication mechanisms.

8.3 Other Improvements

There are a number of other possible improvements that could help the framework to be
more e�cient and accurate.

Improving network reallocation is a very important topic, since currently libvirt can only
set hard limits for the network tra�c. The first fairness implementation used Linux
specific tools like TC [33] to overcome this, but the recommended solution should be
based on libvirt, as for the other resource types. Finding a more reliable solution for this
would prove to be valuable for the overall network control of the VMs.

Adding more physical and virtual resource type could also increase the resource distribu-
tion accuracy. For example, disk space, disk IOPS, graphic cards performance and others
could be introduced.

As mentioned in the previous chapter, a large testing suite should also be part of the next
implementation phases, because of the numerous use-cases needed to be assessed.



Chapter 9

Conclusions

This paper investigated the fairness in virtualized environments and tries to bring a so-
lution that would better distribute the physical resources to the VMs. This approach
enforces the fairness at runtime and allows the OpenStack environment to react to re-
source contentions and reduce the need for VM recreation or rescheduling [9].

It has been investigated if some of the todays problems can be fixed with the help of the
fairness framework. The noisy neighbor is a very important one that can be addressed by
the runtime resource scheduling of the fairness service.

Because of complexity, maintenance and reusability issues, a new decoupled version of
the fairness framework has been implemented, while keeping the logic of algorithms the
same. The communication has also been completely redesigned and implemented as a
decentralized peer-to-peer network between the OpenStack nodes. The new version of
the service proved to work accordingly on an in-house OpenStack installation, with one
controller and five compute nodes.

The test cases revealed that the new implementation keeps the same behavior as initially;
this means that, in the same scenarios, the resources allocated to the VMs were around
the same percentage. After all parts are implemented, further tests should be created for
all di↵erent resources to ensure the fairness of the system.

The fairness framework proved to work correctly in basic situations, ensuring resource
allocation fairness whether it was a resource competition, or idle nodes not using the
initially allocated resources.
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CC Cloud Computing

CRS Cloud Resource Supply
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Appendix A

Installation Guidelines

In this appendix, there are provided additional technical information that would help to
install and test the Fairness Framework in an OpenStack Environment. The instructions
are meant to be executed with root permissions, on an Ubuntu 16.04 Linux distribution.
Other distributions or operating systems have not been tested.

A.1 Prerequisites

The first step into testing the framework is having an OpenStack environment installed.
The Fairness Framework was successfully tested in a system formed by a controller and
five individual compute nodes.
The version of OpenStack called Newton has been successfully tested; other versions of
OpenStack should work as well, as long as the URLs of the OpenStack API are updated
correspondingly to the API version. The installation of OpenStack was done according
to the o�cial tutorials for the version Newton and Ubuntu 16.04.

A.2 Controller Node

In order to install the fairness service on the controller the following steps are required:

Copy the source code into the local Python installation on the controller server, or
any other folder, as long as there is an entry in the environment variable PY THON PATH
with the path of that location

Enter the folder openstack fairness service, open the file fairness.ini and add
the corresponding properties required to authenticate to the OpenStack API. The
ring interval which specifies how often the HVN message is sent, must be also set
(in seconds).
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While in this folder, the addition libraries must be installed with the following
command:

( sudo ) pip i n s t a l l �r requ i rements . txt

Navigate to the folder fairness/controller service and execute the following com-
mand to start the fairness service on the controller node:

( sudo ) python cont ro l l e r manage r . py . . / . . / f a i r n e s s . i n i

A.3 Compute Node

The following step are required to be executed on each individual compute node:

Copy the source code into the local Python installation on the controller server, or
any other folder, as long as there is an entry in the environment variable PY THON PATH
with the path of that location

Enter the folder openstack fairness service, open the file fairness.ini and add
the corresponding properties required to authenticate to the OpenStack API. The
Controller Node IP address must be provided so that the node will know how to
connect to the OpenStack Controller.

While in this folder, the addition libraries must be installed with the following
command:

( sudo ) pip i n s t a l l �r requ i rements . txt

Navigate to the folder fairness/node service and execute the following command
to start the fairness service on the controller node:

( sudo ) python node manager . py . . / . . / f a i r n e s s . i n i


