
1

Technical Investigation of Computational

Resource Interdependencies
By Lars-Eric Windhab

Table of Contents

1. Introduction and Motivation .. 2

2. Problem to be solved .. 2

3. Discussion of design choices ... 3

3.1 Definition of computational resources .. 3

3.2 Measuring the resource consumption of a cloud w orkload .. 3

3.2.1 The test system .. 3

3.2.2. How to measure computational resource consumption ... 4

3.2.3 Process vs. thread ... 5

3.2.4 Where to measure.. 5

3.2.5. Simulating a cloud w orkload ... 11

3.2.6 Limiting resources .. 11

3.2.7 Sample size.. 11

3.3 Which w orkloads are investigated? .. 12

4. Solved and open issues.. 12

4.1 Results... 12

4.2 Conclusion... 15

4.3 Open issues .. 15

5. Critical consideration of the task, the w ork and result.. 16

6. References .. 17

7. Acknow ledgements... 17

8. Appendix ... 17

2

1. Introduction and Motivation

In clouds resources are deployed by virtual machines (VMs), i.e., if a cloud customer

wants to run a job in a cloud, an according VM is started on a Physical Machine (PM) to

execute the job. If the resources of a PM get overloaded, elaborated resource

reallocation between the PM's VMs is necessary to ensure performance goals of VMs.

To increase the efficiency of reallocations, it is necessary to account for

interdependencies of resources and starvation limits of VMs. For example, a VM might

need a certain minimum of RAM as otherwise its operating system crashes or becomes

so slow that the other resources it utilizes are virtually of no use. Also, CPU and RAM

may be required in a fixed ratio to start multiple threads. Contrary, it may also be the

case that for a single threaded program additional RAM is of no use, but it greatly profits

from more CPU cycles. If substitutions of resources are also considered, i.e.,

substituting RAM by disk space through paging or disk space or bandwidth by CPU

cycles through compression, even more complex interdependencies can be deduced.

In economics such interdependencies are modelled by utility functions, i.e., a VM’s

utility function maps the resources it is allocated to a number that quantifies the

performance it delivers with these resources for the workload assigned to it by its

customer. While it is technically possible to quantify a VM’s performance for the

currently allocated resources it is challenging to determine its entire utility function, as

this implies determining its performance with hypothetical resources without actually

assigning them. However, utility functions are essential to allocate cloud resources

efficiently, wherefore dependencies and starvation limits are to be investigated in the

framework of this internship.

2. Problem to be solved

Utility functions of different entities that consume computational resources are to be

investigated with a particular focus on entities relevant for cloud computing. Therefore, a

comprehensive list of these entities and the types of workloads they may have to

process is to be compiled. This list must highlight similarities, differences, and inclusions

between the entities and workloads. From a technical analysis conclusions on the

entities’ utility functions and how they depend on the workloads are to be drawn and

formalized. The technical analysis must also support the conclusions by practical

measurements/experiments.

3

3. Discussion of design choices

This section serves as justification for our design choices

3.1 Definition of computational resources

In order to deduce utility functions to enable fair resource allocation for different cloud

workload scenarios it is necessary to determine relevant computational resources that

are required for execution first.

These resources can be divided into a physical and a virtual category. Since virtual

resources such as file handles ultimately are limited by their physical counterpart we

concentrate our efforts on the latter.

The most relevant physical computational resources, in terms of performance, are the

central processing unit, the memory and the network bandwidth.

Their consumption levels can but do not have to correlate. Correlation is determined by

the consumption structure of an executed process and may change dynamically.

The usage of the CPU and RAM by a process for instance, might change in a fixed ratio

until it reaches a point where a new thread increases the CPU usage but does not

require additional RAM or vice versa [1]. Moreover it is possible that resources can be

used to substitute each other [2].

3.2 Measuring the resource consumption of a cloud workload

 3.2.1 The test system

 Host machine:

OS: Linux Ubuntu 14.04 Trusty Thar

CPU: Intel i7-3770 @ 3.4 GHz

CPU Cores (Physical / Logical): 4/8

Memory: 8 GB

Virtual machine:

OS: Linux Ubuntu 14.04 Trusty Thar

CPU Model: Sandy Bridge

CPU Cores (Virtual): 1,2,4,8

Memory: 1 - 8 GB

4

3.2.2. How to measure computational resource consumption

The resource consumption of a computer (real or virtual) can be measured at the

process level, where its total consumption equals the aggregated consumption of

each process it executes.

During this project we use a Linux based host system and VM (see 3.2.1).

There are a number of available tools that can be used to measure resource

consumption but we found none that covers all aspects that we want to monitor.

We therefore calculate the resource consumption ourselves by repeatedly

parsing and interpreting the data of the /proc/ kernel interface [3] with the help of

a specifically developed monitoring tool. The monitoring tool is written in java and

can be executed via the command line interface. It is possible to pass

parameters to choose whether only one process or all of them should be

monitored, the length of the observation and the relevant network adapters.

Additionally it will output the data to a text fi le to prepare it for plotting.

Resource Data Description Unit

CPU CPU activity CPU is activity in a 0.5 second interval %

Memory Allocated memory Change of allocated memory in a 0.5 second interval kB/s

Memory Allocated memory Allocated memory since the start of measurement kB

Memory Allocated memory Total memory that is allocated in the system kB

Memory Allocated memory Total memory is allocated in the system %

Bandw idth Dow nload Received netw ork data in a 0.5 second interval kB/s

Bandw idth Upload Sent netw ork data in a 0.5 second interval kB/s

Bandw idth Dow nload Total amount of received netw ork data kB

Bandw idth Upload Total amount of sent netw ork data kB

Disk Disk activity Disk activity in a 0.5 second interval %

Disk Data w ritten Amount of data w ritten on disk in a 0.5 second interval kB/s

Disk Data read Amount of data read from disk in a 0.5 second interval kB/s

Disk Data w ritten Amount of data w ritten on disk since start kB

Disk Data read Amount of data read from disk since start kB

 Table 1 - Overview of the monitor tool output

5

 Figure 1 - Example output of the monitor tool

3.2.3 Process vs. thread

A process itself could be broken down further into threads, since a thread can be

described as a subprocess of a process and is the smallest sequence of

programmed instructions that can be managed dependently by an operating

system scheduler [4]. However the expense of analyzing separate threads bears

no proportion to the information gained. This is because threads generally share

the process memory (apart from the thread local storage which is nearly

exclusively used to hold a reference to an object in the shared memory) and their

aggregated resource usage is visible via the parent process [5][6]. We therefore

conclude that the process level approach is sufficient for our experiments.

3.2.4 Where to measure

A workload can be described as all individual units of work that constitute a

discrete application [7]. A typical cloud workload thus consists of the middleware

such as the orchestration layer and hypervisor (Xen, KVM, VMware ESX) and

the virtual machine itself [8].

In our case the middleware consists of the KVM.

However, before a qualitative analysis of different cloud workloads can be begun

the influence of KVM needs to be analyzed in order to determine if it is feasible to

include it in our measurement.

To do so, it is possible to monitor the consumption of the virtual machine process

in the host OS (1), because it is the aggregation of all relevant workload

processes performed inside the VM including the middleware, or to aggregate

the consumption of all processes in the VM itself excluding the middleware (2).

6

Figure 2 - Abstraction of the components required to run a virtual machine

A series of tests were performed, while we monitored the VM Process’ resource

consumption in the host OS and inside the VM itself (VMOS).

7

CPU:

Figure 3 - Influence of the middleware on CPU consumption

Figure 4 - Erroneous CPU values in the VM when CPU is being limited in the host OS

8

Memory:

Figure 5 - Memory overload on host OS causes no memory deallocation for the VM Process

Bandwidth:

 Figure 6 - KVM influence on bandwidth usage

9

Disk:

Figure 7 - KVM influence on disk stats

An almost perfect correlation between the VMOS and VM Process is apparent in

the CPU usage for the encoding workload [Figure 3]. If we however use the CPU

in the host OS to capacity, by running a stress-test on 8 cores, we can observe

that the VMOS reported CPU usage starts to be higher compared to the actual

host OS values [Figure 4].

Furthermore, a significant difference in RAM allocation is visible. The VMOS

frees unused RAM while the VM Process will not do so . Even if we overload the

host OS’ memory (simulating a resource shortage), the allocated but unused

memory of the VM Process will not be released. Instead memory in the host OS

is swapped [Figure 5].

In terms of bandwidth usage no differences were observed [Figure 6] the same

holds true for the disk in and output where only a small delay when writing the

data is observed. [Figure 7].

While we assume that the RAM disallocation problem is caused by the

middleware (KVM), we believe that the differences in reported CPU usage are

caused by problems within the proc/stat kernel interface which is not working

correctly, in terms of CPU usage, within a virtual machine [9].

10

These findings have implications on our design.

To ensure the best accuracy of results, we decided to not include the middleware

in our measurements and solely focus on the vm executing the workload.

This has two reasons. First, the middleware varies between cloud hosts, so

analyzing a particular hypervisor bears no value when looking for general

patterns and second, in the special case of KVM it is not feasible to include it

when detailed RAM statistics are required because of the distortion it causes.

On the other hand, CPU values from within a VM can be erroneous but are not

altered by the KVM, thus must be measured in the host OS, to get the most

accurate results.

Bandwidth usage can potentially be measured in both environments.

This justifies our setup where CPU consumption is measured in the host OS

including the middleware while bandwidth, disk I/O and RAM statistics are

gathered inside the VM.

Figure 8 - The final measuring setup

In principle it would be possible to run the workload directly in the host OS and

measure consumption there if we want to disregard the middleware. However, to

isolate the workload and test different resource configurations with the possibility

of altering them dynamically, it is best run in a VM.

11

3.2.5. Simulating a cloud workload

The testing framework consists of a main machine (including host OS and VMs)

and a remote machine.

Workloads for the VM are generated in the remote machine to minimize any

influence in the host OS.

Since consistency in generating workloads is important to produce comparable

and reproducible results we used JMeter [10] to standardize and execute them.

3.2.6 Limiting resources

To understand how a workload utilizes different resources we must investigate it

while varying the resource parameters. We can change resource allocations by

creating different virtual machines, or we can limit them dynamically by running

stress tests or a bandwidth limiter [11, 12] in the host OS.

An interesting observation we made is that statically hosting a VM with less

available resources equals limiting the available resources in the host OS.

Figure 9 - Comparison of a 2VC VM setup and limiting physical CPU to 2 cores

3.2.7 Sample size

We collected at least 8 samples of each workload scenario and then used the

average for our study.

12

3.3 Which workloads are investigated?

In order to create utility functions representative workloads of common cloud

applications need to be investigated. The following table lists an overview of the

examined workloads.

Application Name Workload 1 Workload 2 Workload 3

ow nCloud Upload - 500mb file Dow nload - 500mb file Delete - 500mb file

VLC Player Stream - 96mb file (DivX

720p)
Encode - 96mb file (DivX

720p) to MP4

MySQL Update table -
5000 queries

Table 1 - Workloads

4. Solved and open issues

4.1 Results

CPU limitation

Workload CPU RAM Disk -

read
Disk -

written
Bandwidth - up Bandwidth -

down
Execution

time

ow nCloud
upload

decreased

demand
increased

demand
- - - - -

ow nCloud
download

increased

demand
- - - - - increased

ow nCloud
delete

- - - - - - -

VLC
stream

- - - - - - -

VLC
encode

increased

demand
- - - - - increased

MySQL
update table

- increased

demand
- - - - -

Table 2 - Workload behaviour when CPU is limited

13

RAM limitation

Workload CPU RAM Disk - read Disk -

written
Bandwidth - up Bandwidth -

down
Execution

time

ow nCloud
upload

increased

demand
- - - - - increased

ow nCloud
download

increased

demand
- - - - - increased

ow nCloud
delete

increased

demand
- - - - - increased

VLC
stream

- - - - - - -

VLC
encode

increased

demand
- - - - - increased

MySQL
update

table

increased

demand
- - - - - increased

Table 3 - Workload behaviour when RAM is limited

Disk limitation

Workload CPU RAM Disk -

read
Disk -

written
Bandwidth - up Bandwidth -

down
Execution

time

ow nCloud
upload

increased

demand
- - - - - increased

ow nCloud
download

decreased

demand
- - - - - increased

ow nCloud
delete

decreased

demand
- - - - - increased

VLC
stream

- - - - - - -

VLC
encode

- - - - - - -

MySQL
update table

increased

demand
increased

demand
- - - - increased

Table 4 - Workload behaviour when Disk is limited

14

Bandwidth limitation

Workload CPU RAM Disk -

read
Disk -

written
Bandwidth - up Bandwidth -

down
Execution

time

ow nCloud
upload

increased

demand
- - - - - increased

ow nCloud
download

increased

demand
- - - - - increased

ow nCloud
delete

- - - - - - -

VLC
stream

error error error error error error error

VLC
encode

- - - - - - -

MySQL
update table

increased

demand
- - - - - increased

Table 5 - Workload behaviour when Bandwidth is limited

Figure 10 - Visual comparison of the results

15

4.2 Conclusion

In terms of CPU limitation we observe two effects if a bottleneck is created. The first

being an increase in RAM usage while CPU usage stays constant or decreases. We

assume that the lacking CPU resource is substituted with RAM. The second effect,

when no substitution takes place, is that the workload will be executed slower with an

overall increased need of CPU cycles.

Some workloads were not affected by the CPU limitation at all, we attribute this to the

fact that the limitation was not effective enough to cause a lack of CPU resources for

the given workloads.

When we look at limiting RAM a very homogenous pattern is apparent. For all but one

workload it causes an increase in CPU demand while extending the needed amount of

time to execute the workload. In the case of streaming a video, RAM limitation does not

alter performance or consumption. This might be caused by us not being able to create

a significant RAM shortage since the streaming workload is, by nature, bound to

execute during a fixed amount of time and thus slow allocation of RAM, as it happens

when we overload the host OS RAM and force it to swap, does not impact the workload

since its RAM usage increases slowly.

As for disk I/O limitation, different patterns with overlapping features emerged. While we

still encounter workloads that are not affected for previously stated reasons, those that

were have one thing in common namely a prolonged execution time. However, we

observed that this prolonged execution time with slower I/O can either cause an overall

de- or increase of CPU cycles. The case of the MySQL workload shows us that RAM

usage can be affected by limited I/O too.

Effects caused by limiting the Disk I/O seem to be less distinct.

In the case of limiting bandwidth, the results were as we expected them to be. For the

tasks that require bandwidth to execute an increase in execution time as well as CPU

cycles used was observed. In the case of the streaming workload the limitation caused

it to not execute properly at all. This again can be attributed to the fixed amount of time

required to execute the workload properly which is not possible due to the limitation.

4.3 Open issues

The findings suggest that leontief preferences to model resource consumption in VMs

are a simplification at best. However, in order to formalize the results more

measurements with different limitation values need to be conducted

16

5. Critical consideration of the task, the work and result

The initial idea behind the project was our assumption, that different workloads do need

different resources in different compositions in order to execute. We have shown that

this is indeed the case. Furthermore we were able to highlight similarities, differences,

and inclusions between the entities and workloads. However, the task itself was very

broadly defined and therefore a lot of assumptions had to be made. For instance which

operating system and VM ware fits our purposes best and which workloads are most

representative and how we define a workload.

The investigation of resource consumption itself can be split up into two subtasks.

The first is finding an optimal setup, which was characterized by a trial and error

approach. In order to find out how to properly measure most accurately our design had

to be revised multiple times.

Once a stable design was found the second subtask which is the actual measuring

could be conducted without further problems.

Allthough we were able to identify consumption patterns that we can explain, we

encountered effects that are beyond our understanding. These results have to be

analyzed in detail and could be subject to further work. Furthermore more workloads

could be investigated as well as different setups regarding the middleware.

17

6. References

[1] http://superuser.com/questions/78362/what-is-the-relationship-between-cpu-usage-

and-ram (13.09.2014)

[2] No Justified Complaints: On Fair Sharing of Multiple Resources

[3] http://www.linux-praxis.de/lpic1/lpi101/proc.html (13.09.2014)

[4] http://en.wikipedia.org/wiki/Thread_(computing) (13.09.2014)

[5] http://www.programmerinterview.com/index.php/operating-systems/thread-vs-

process/ (13.09.2014)

[6] http://en.wikipedia.org/wiki/Thread-local_storage (13.09.2014)

[7] http://www.devx.com/blog/understanding-cloud-workloads.html (13.09.2014)

[8] http://www.dummies.com/how-to/content/types-of-workloads-in-a-hybrid-cloud-

environment.html (13.09.2014)

[9] http://linuxvm.com/topisbad.html (13.09.2014)

[10] http://jmeter.apache.org/ (13.09.2014)

[11] http://people.seas.harvard.edu/~apw/stress/ (13.09.2014)

[12] http://lartc.org/wondershaper/ (13.09.2014)

[13] http://aws.amazon.com/de/ec2/instance-types/ (13.09.2014)

7. Acknowledgements

I would like to thank Patrick Poullie and Thomas Bocek for their input and guidance

during this project.

8. Appendix

A CD with the montioring tool and its source code.

http://superuser.com/questions/78362/what-is-the-relationship-between-cpu-usage-and-ram
http://superuser.com/questions/78362/what-is-the-relationship-between-cpu-usage-and-ram
http://www.linux-praxis.de/lpic1/lpi101/proc.html
http://en.wikipedia.org/wiki/Thread_(computing)
http://www.programmerinterview.com/index.php/operating-systems/thread-vs-process/
http://www.programmerinterview.com/index.php/operating-systems/thread-vs-process/
http://en.wikipedia.org/wiki/Thread-local_storage
http://www.devx.com/blog/understanding-cloud-workloads.html
http://www.dummies.com/how-to/content/types-of-workloads-in-a-hybrid-cloud-environment.html
http://www.dummies.com/how-to/content/types-of-workloads-in-a-hybrid-cloud-environment.html
http://linuxvm.com/topisbad.html
http://jmeter.apache.org/
http://people.seas.harvard.edu/~apw/stress/
http://lartc.org/wondershaper/
http://aws.amazon.com/de/ec2/instance-types/

