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Abstract

Overcommitment beschreibt die Zuweisung von mehr physikalischen Ressourcen (PRs) zu
einer Gruppe virtueller Maschinen (VMs) als eigentlich verfügbar wären. Dieses Grund-
konzept der Virtualisierung wird von vielen Anbietern genutzt, um die Betriebskosten
zu minimieren [14]. Der Hypervisor muss dabei Ressourcen nach der erstmaligen Zu-
teilung so umverteilen, dass er den sich ändernden Ressourcenanforderungen der VMs
gerecht wird. Aktuelle Methoden zur Rückgewinnung und Umverteilung von Ressourcen
wie RAM ballooning und page sharing erleichtern diese Aufgabe [10]. Die Orchestration
Ebene — welche den Start von VMs auf verschiedenen Hypervisern koordiniert — bietet
nicht so viele Möglichkeiten zur Umverteilung physikalischer Ressourcen wie ein Hypervi-
sor [14]. Physikalische Ressourcen können deshalb durch Orchestration Software wie z.B.
OpenStack nicht zufriedenstellend kontrolliert werden. Diese Arbeit gibt einen Überblick
über verschiedene Techniken zur Umverteilung von RAM, CPU-Zeit, Disk I/O und Netz-
werkbandbreite. Es werden die Fähigkeiten von KVM und OpenStack zur Umverteilung
von Ressourcen analysiert. Während der Arbeit wurde eine OpenStack Erweiterung ent-
wickelt, welche die Umverteilung physikalischer Resourcen auf der Orchestration Ebene
erleichtert.

Overcommitment, the assignment of more physical resources (PRs) than actually avail-
able to a group of virtual machines (VMs), is a core concept of virtualization used by
many providers to minimize cost of ownership [14]. This requires the hypervisor to real-
locate resources after initial assignment such that the changing resource demands of the
VMs can be met. Current resource reclamation and reallocation methods like memory
ballooning and page sharing facilitate this task [10]. The orchestration layer—which is
responsible for scheduling the VMs on different hypervisors—does not provide as many
options to reallocate PRs as the hypervisors [14]. This leads to a lack of control of PRs
in orchestration layer software like OpenStack. This thesis reviews techniques used to
reallocate memory, CPU cycles, disk I/O and network bandwidth and investigates the re-
source reallocation capabilites of KVM and OpenStack. During this thesis, an OpenStack
extension has been developed to facilitate the task of PR reallocation on the orchestration
layer.
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Chapter 1

Introduction

1.1 Motivation

Overcommitment of physical resources (PRs) is a common paradigm in todays cloud
infrastructures. Because virtual machines (VMs) not always use the maximum of assigned
resources simultaneously, the sum of guest resource limits can be higher than the total
amount of resources actually available on a host [10]. To achieve this, resources have to
be reallocated depending on the resource needs of the VMs [21].

Figure 1.1: An illustration of an OpenStack/KVM cloud infrastructure. The libvirt API not only
provides an interface for communication between the orchestration layer and the hypervisor, but also
enables to monitor and control guests. [26]

The orchestration layer represented by current IaaS-Software (e.g. OpenStack) and its
supported hypervisors (e.g. KVM, the Kernel-based Virtual Machine) allow to reallocate
physical cloud resources between VMs [14]. The hypervisor provisions the resources for
the VMs. The orchestration layer is responsible for the scheduling of VMs and their
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2 CHAPTER 1. INTRODUCTION

deployment on a physical machine (PM). It provides unified control of multiple hypervi-
sors [14]. In comparison to orchestration layer software, current hypervisors offer better
control of PRs [14]. The overall goal of the thesis is to find, document and if not yet
done implement methods used to reallocate resources of VMs running on KVM and us-
ing the open-source IaaS-Software OpenStack. KVM is a bare-metal hypervisor for the
linux operating system with full virtualization support, on which guests with an original,
unmodified kernel can be run [32].

1.2 Thesis Outline

The thesis is structured as follows.

Chapter 2 surveys state of the art reallocation methods for physical cloud resources. It
is examined if and how KVM and OpenStack make use of these methods. Tools which
support the implementation of such a method in a specific application such as KVM or
OpenStack are inspected as well.

Chapter 3 presents ways to reallocate resources with the libvirt API. This commonly
used API provides a comprehensive interface for KVM.

Chapter 4 discusses the current possibilities to reallocate PRs through the OpenStack
API. During this thesis, an OpenStack extension has been developed to control the PRs
of VMs. The decisions made in the process of writing the API extension are documented
in this chapter.

Appendix A contains benchmark results from experiments with RAM bandwidth. The
python code used to run the benchmarks can be found on the enclosed CD.

Appendix B holds results of disk bandwidth tests.

Appendix C documents the OpenStack API extension and its dependent parts written
as part of this thesis.



Chapter 2

Related Work

2.1 Reallocation Methods

This section surveys methods suitable to reallocate PRs. The chapter concludes with
a comparison of PR reallocation costs. Some of the methods are exclusively applied in
virtualized environments (marked with *) whereas others are also used in the absence of
virtualization.

The methods discussed are:

1. * Memory ballooning

2. * Hypervisor-/guest swapping (paging)

3. * Processor pinning

4. Page sharing/merging

5. CPU- & memory hotplug

2.1.1 Memory Ballooning

The concept of memory ballooning is well presented in the vSphere whitepaper of VMware
[10]. Guests can be assigned more memory as long as there is enough RAM available on
the host. Afterwards, memory has to be reallocated. In a fully virtualized environment,
the guest is abstracted through the virtualization layer which translates resource requests
[32]. Thus an isolated guest cannot know when the host is running out of memory.

The balloon driver establishes the required communication channel between the hypervisor
and the VM. In case of host memory shortcomings, the balloon driver allocates as much
memory as requested by the hypervisor (requested size and actual allocation may vary
slightly depending on implementation and machine states). The host communicates the

3



4 CHAPTER 2. RELATED WORK

Figure 2.1: Illustration of the memory ballooning process. Host and guest communicate through the
balloon driver (the black box). The violet area illustrates the amount of memory allocated to the guest
at boot time. The guest can inflate the balloon up to the <memory> memory limit (labeled <memory>,
because KVM makes use of this name in the VM configuration). The memory areas inside the balloon
are locked for the guest and given back to the hypervisor. [10]

balloon size through the balloon driver. Memory inside the so called balloon cannot
be accessed by the guest any more. The hypervisor reclaims this memory area. In the
VMware implementation of the driver, the guest informs itself periodically if the host
lacks any memory [10] whereas in the KVM implementation the host actively sends the
memory reclamation request [11]. Choosing an appropriate dispensable memory area is
up to the guest, which is the major advantage of memory ballooning. As long as the
balloon size does not exceed the size of dispensable guest memory, ballooning has no
impact on VM performance. Otherwise the guest moves memory pages to disk, which is
called guest paging or swapping. In contrast to VMware’s implementation of the balloon
driver, the linux virtio balloon driver will never trigger guest paging and only inflate the
balloon as much as possible [11]. This way, guest memory claims (e.g. reserved memory)
have a higher priority over memory reclamation requests of the host. In situations where
host performance is more important than guest performance, the VMware implementation
seems to be the right choice. It is unclear, if guest paging is always preferred in comparison
to hypervisor paging. If the host moves memory pages of the VM to disk, this may not
be a good choice. It would be better, if the host only pages memory areas not used by
any VM. The paging of memory areas used by VMs may be better controlled by the VMs
itself, because the host cannot know which guest pages are the most dispensable. In both
cases (hypervisor- and guest swapping), paging affects the performance of the VM in a
negative way.

2.1.2 Page Sharing/Merging

The idea behind page sharing, as presented in the VMware white paper [10], is to join
memory pages (one memory page typically has a size of 4KiB) with identical contents.
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It is not as much a method to reallocate memory, but rather a method to use memory
efficiently. This technique is especially efficient if the VMs are running the same operating
system or applications. The virtual memory is periodically scanned for identical pages. To
reduce the scanning overhead, the memory pages are hashed or stored in a tree. VMware
uses a hash table [10] whereas the linux kernel uses a red-black tree (ordered & balanced)
[2]. If a guest writes to a shared page, this page gets copied (copy-on-write technique). If
that page was shared between two guests, it is no longer shared.

Kernel Same-Page Merging (KSM)

Despite page sharing not being intended for virtualized environments only, the KVM is
still one of its primary users [2]. This is due to the fact, that two VMs with identical
operating systems can share a lot of memory. KSM can be configured on a linux system
by configuring the files under /sys/kernel/mm/ksm/.

2.2 Reallocation Tools

The previous section gave an overview of the methods to use and reallocate memory
efficiently, especially in virtualized environments. Theoretical methods have to be im-
plemented in an utility or tool to be useful in practice. Common utilities, tools and
configuration files used to reallocate resources on linux systems are:

1. * libvirt API

2. Linux control groups (cgroups)

3. Traffic control (tc)

4. taskset: retrieve or set a processes’s CPU affinity

5. cpuset: confine processes to processor and memory node subsets

6. nice, renice: modify scheduling priority

7. setquota: set disk quotas

8. ulimit: limit the use of system-wide resources

9. /etc/security/limits.conf: configuration file for limiting system resources
on a per user basis

Because the libvirt API is used especially in a virtualization context, it is marked by an
asterix. Tools 3 to 9 do not assist one of the relevant reallocation methods listed in the
previous Section 2.1. Nevertheless, they can be used to control resources in a traditional
linux environment (mostly on a per user basis). Section 4.5 for example illustrates how
tc can be used to control network bandwidth.
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2.2.1 Linux Control Groups (cgroups)

Control groups are a mechanism of the linux kernel used to group processes. Subsystems
(much like controllers) can be used to control resources of a cgroup. The subsystems
relevant to manage RAM, CPU, disk space/speed and network bandwidth allocation are
[12]:

� memory : Controls the amount of memory used by a cgroup.

� cpusets : Manages the assignment of CPUs to a cgroup.

� cpu: Used to set CPU access rate of a cgroup directly or relative to other tasks by
using CPU shares.

� blkio: Allows to control block I/O speed by using weighting or throttling policies.

� net prio: This subsystem allows to prioritize egressing network traffic on specific
network interfaces.

� net cls : The net cls subsystem can be used to tag network packages. In combination
with tc or iptables rate limits can be assigned to network packets of a cgroup.

While cgroups can be controlled by changing the files in the virtual file system manually
it is recommended to use the libcg library [15].

2.2.2 libvirt

libvirt is a common API to control memory, computing time, disk space/speed and net-
work bandwidth [16, 17, 18]. For VMs launched through libvirt, a cgroup hierarchy
is created automatically for the mounted cgroup subsystems (refer to last section for an
overview of the available cgroup subsystems). Most of the resources are controlled through
this cgroup hierarchy. But the net cls controller (see last section) is not used in libvirt
[16]. Nevertheless, libvirt allows to set absolute rate limits for incoming and egressing
network traffic on guest machines. Further usage examples can be found in Section 3.4.
The OpenStack extension written as part of this thesis further allows to set soft limits for
network bandwidth (see Section 4.5).

systemd and libvirt

systemd is a system and service manager for modern linux systems [31]. On systems
running systemd, the KVM domain instances launched through libvirt are placed in a
slice. A slice is a container for processes with specific resource limits. KVM domains with
similar resource demands can be grouped in a slice. systemd uses cgroups to implement
these limits but does not yet support all available subsystems [6].
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2.3 Cost of Reallocation

In view of technological improvements, memory is clearly the more scarce resource than
computing time. Researchers already predicted back in 1994 [34] that an increase in
CPU clock speed may not be of any use when the rates of clock and memory speed
improvement drift apart. While thinking about the cost of reallocating the resources
compared to each other, the kernel documentation about the memory cgroup subsystem
[24] makes a good point. If a program needs to allocate a lot of variables, the amount
of RAM needed is constant. You may remove a CPU. The program will get slower, and
eventually it will halt. The same principle applies to throttling disk I/O operations or
network bandwidth. But given the characteristics of the program (i.e. the amount of
variables needed at one point in time), you cannot run it with less memory unless you
move memory pages to disk. Paging is much more expensive in comparison to a change in
CPU time or network bandwidth. In a virtualization context the hypervisor has to take
care it doesn’t accidentally remove the wrong memory pages (the ones required to run the
current program). Choosing the right pages takes time and a thorough knowledge of the
memory content. Thus removing RAM is a difficult task which should be done carefully.
Reallocating RAM is most expensive in terms of time to find the dispensable pages.

2.4 Overview of PR Reallocation

Figure 2.2 concludes this chapter to give an overview about existing tools and methods to
reallocate PRs in virtualized environments. The libvirt API allows to reallocate all four
PRs. The libvirt API makes use of cgroups and the tc traffic control utility. libvirt uses
tc only to set hard limits (for more details about the methods in libvirt see Figure 3.1).

Figure 2.2: Overview of current tools and methods used to reallocate PR in virtualized environments.
The dashed arrow represents a ”uses” relation between two connected components. The grey boxes
represent the theoretical methods. The blue boxes are important tools to reallocate resources.
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Chapter 3

Controlling KVM Resources with
libvirt

This chapter describes—by using examples for each resource—how resources of VMs run-
ning on the KVM can be reallocated using the libvirt API [33]. The tests have been
conducted on a machine running Ubuntu 14.10. Figure 3.1 shows an overview of API
methods and parameters discussed in this chapter, which are relevant to PR reallocation
on KVM.

Figure 3.1: Overview of libvirt methods and parameters important for PR reallocation. Methods are
yellow, parameters are green.

9



10 CHAPTER 3. CONTROLLING KVM RESOURCES WITH LIBVIRT

3.1 Memory (RAM)

3.1.1 Memory Ballooning with setmem

<domain>
...
<memory unit=’KiB’>1048576</memory>
<currentMemory unit=’KiB’>1048576</currentMemory>
...

</domain>

Listing 3.1: Memory configuration of VM1

<domain>
...
<memory unit=’KiB’>1048576</memory>
<currentMemory unit=’KiB’>524288</currentMemory>
...

</domain>

Listing 3.2: Memory configuration of VM2

As mentioned in Section 2.1.1, the host can reclaim memory from a VM (also called a
domain in libvirt) using the ballooning technique. VM1 was started with 1024 MiB of
RAM and VM2 with 512 MiB. Using the libvirt command line tool virsh, the RAM of
VM1 can be restricted and given to VM2 as follows:

user@host:~$ virsh setmem VM1 524288
user@host:~$ virsh setmem VM2 1048576

By running watch -n1 free on both guests or virsh dommemstat <DOMAIN> or
virsh dominfo <DOMAIN> on the host (where <DOMAIN> is the name of the domain),
the almost instant change of free memory on VM1 and VM2 can be observed as expected.
For obvious reasons, the balloon cannot be inflated by more than the <memory> hard
limit, which is 1024 MiB in Listing 3.1 and 3.2. Setting <memory> in the configuration to
the PM maximum memory is not possible. The guest cannot allocate that much memory
at boot time and thus refuses to start, because the hypervisor needs some dedicated
memory itself to run properly.

Ballooning is implemented on the guest by means of the virtio balloon driver which gets
inserted into the guest at startup. By using the libvirt command line tool virt-install
to provision a new VM, the domain will have ballooning automatically enabled, if the guest
OS supports this method [17]. The guest xml configuration file then contains the following
snippet:

<devices>
<memballoon model=’virtio’/>

</devices>

The virsh setmem command inflates or deflates the balloon on running guests. The
balloon cannot be inflated by more than <memory> (see Listing 3.1 and 3.2). If the linux
system needs to allocate even more memory, a physical memory hotplug is needed [23].
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Logical memory hotplug allows to put online the new memory blocks [23]. Then they are
available for the running system. This increase of actual physical memory would make it
possible to modify the balloon driver code in such a way, that it would be possible to in-
crease the balloon size by even more than the <memory> ballooning limit [28]. Ballooning
is of course only necessary, if the memory hotplug did not provide the necessary amount
of memory required by the host. Augmenting the <memory> limit is reasonable if more
physical memory is actually available. Memory hotplug is still under active development
[23].

3.1.2 memtune Soft Limit

Whereas with setmem (see last section) it was possible to change the amount of current
RAM of a VM, virsh’s memtune feature allows to specify soft limits for the guest. These
limits only apply, if the host is running low on memory [17]. In my tests, the memory of a
host with 4096 MiB of RAM and two guests with fifty percent of the hosts memory each
was put under stress. The impact on VM1 with a soft limit of 1024 MiB and VM2 with
a soft limit of 512 MiB is visible in Figure 3.2. Because of memory congestion, each VM
is only allowed to use memory up to the defined soft limit.

user@host:~$ virsh memtune VM1 --soft-limit 1048576
user@host:~$ virsh memtune VM2 --soft-limit 524288

Listing 3.3: Example for setting a memory soft limit of 512 MiB on VM2 1024 MiB on VM1.

The proportional set size (PSS) is a measure used by the smem utility to report the current
memory usage of libraries and applications [29]. It includes a proportional share of shared
memory (see section 2.1.2 about page sharing).

Figure 3.2: This graph shows the effect of memory soft limits in a situation of excessive memory usage.
There was a memory stress test running on both VMs. VM1 has a memory soft limit of 1 GiB. VM2 has
a memory soft limit of 512 MiB.
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3.2 Computing Time (CPU)

Through the virsh nodeinfo command, the host’s physical CPU information is dis-
played:

user@host:~$ virsh nodeinfo
CPU model: x86_64
CPU(s): 4
CPU frequency: 808 MHz
CPU socket(s): 1
Core(s) per socket: 2
Thread(s) per core: 2
NUMA cell(s): 1
Memory size: 8086220 KiB

On the example host with 4 cores a sample VM is set up to boot with 4 VCPUs and
restricted to a maximum of 16 VCPUs:

<domain>
...
<vcpu placement=’static’ current=’4’>16</vcpu>
...

</domain>

The 4 cores can be monitored with the virsh vcpuinfo <DOMAIN> (see Section 3.2.2)
or the virsh vcpucount <DOMAIN> command:

user@host:~$ virsh vcpucount VM
maximum config 16
maximum live 16
current config 4
current live 4

Values marked with the config flag are specified in the xml configuration file of the
domain. Values with the live flag describe the current state of the domain. These
values can differ, if a dynamic adjustment on the running host (e.g. virsh setvcpus,
see next section, or virsh setmem) has been made.

3.2.1 setvcpus

Adding more VCPUs is possible with virsh setvcpus <DOMAIN><COUNT>, where
<COUNT> is the new number of VCPUs available to the VM:

user@host:~$ virsh setvcpus VM 8
user@host:~$ virsh vcpucount VM
maximum config 16
maximum live 16
current config 4
current live 8
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<COUNT> cannot be bigger than the maximum amount of VCPUs. The new VCPUs are
not used without proper configuration, which is not a behavior specific to CPU reallocation
but can be observed reallocating other resources too (see Section 3.1 about logical memory
hotplug for example). A look at the lscpu output on the guest shows them as offline
CPUs. They can be made available for linux, if the QEMU guest agent is configured
properly [19]. QEMU (quick emulator) is the emulator used by KVM. The <devices>
section of the VM configuration has to include:

<channel type=’unix’>
<source mode=’bind’/>
<target type=’virtio’ name=’org.qemu.guest_agent.0’/>

</channel>

Further, the QEMU guest agent has to be installed on the guest. On Ubuntu the package
is called qemu-guest-agent. Then the guest CPU can be made available (online)
using the guest flag:

user@host:~$ virsh setvcpus VM --guest 8

Completely removing a VCPU is not possible, but the VCPU can be marked offline (made
unavailable for the guest) again:

user@host:~$ virsh setvcpus VM --guest 4

This scenario enforces the assumption, that removing resources is generally harder than
adding them, because the guest operating system (OS) expects the resources it was pro-
visioned with to be present [14].

3.2.2 vcpupin

The virsh vcpupin <DOMAIN><VCPU><CPU_LIST> command allows to pin virtual
CPUs (VCPUs) to the host’s physical CPUs. <VCPU> is the VCPU which gets pinned to
a list of physical CPUs (<CPU_LIST>):

user@host:~$ virsh vcpupin VM 4 0,2-3

This forbids VCPU number 4 of the VM to use physical host CPU 1 for its calculations.
The new CPU affinity can be verified with the virsh vcpuinfo <DOMAIN> command
afterwards:

user@host:~$ virsh vcpuinfo VM
VCPU: 4
CPU: 3
State: running
CPU time: 0.1s
CPU Affinity: y-yy

[...]
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3.2.3 CPU <shares>

If two or more VMs make use of the same CPU, the relative amount of computing time a
VCPU is allowed to consume can be changed at runtime through the virsh schedinfo
command. A single VM always uses the whole CPU capacity. The initial configuration
can be found in the XML file of the domain:

<domain>
...
<cputune>
...
<shares>5</shares>
...

</cputune>
...

</domain>

VMs configured with a <shares> value lower than 5 will get less computing time assigned
and the opposite is true for VMs configured with a higher <shares> value [17]. The VM
with the highest shares value on the host receives most of the processor cycles, all other
VMs receive their proportional share. This means that it does not matter, if two hosts
have shares 10 and 20 or if they have shares 50 and 100 respectively. The behavior should
be the same in both scenarios. This behavior can be changed at runtime as follows:

user@host:~$ virsh schedinfo VM --set cpu_shares=<NEW_SHARE_VALUE>

<NEW_SHARE_VALUE> is the new share value. By issuing top on the host, the relative
priorities for VCPUs of different VMs pinned to the same host CPU can then be observed
by finding the QEMU instance processes of the two (or more) VMs. This is visible in
Figure 3.3.

Figure 3.3: VM1 has a CPU share value of 1024, whereas VM2 only gets 512 shares. This means
that VM1 gets twice as much computing time on the physical test CPU. The data was gathered using
virt-top.
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3.2.4 CPU <quota>

A CPU quota limits the bandwidth between main memory and the processor [17] and
sets all VCPUs of the VM to run at the same speed. Therefore it can also be effectively
applied to an environment with just a single VM. The <quota> is a hard limit, which
does not depend on the configuration of another VM. The <shares> parameter from last
section in contrast does depend on the configuration of other machines. The <quota> is
configured in the same place as the <shares> parameter (see last section). It can also
be changed at runtime:

user@host:~$ virsh schedinfo VM --set vcpu_quota=<NEW_QUOTA_VALUE>

<NEW_QUOTA_VALUE> is the new quota value. According to the libvirt documentation,
the parameter value can vary in the range [1000, 18446744073709551] in microseconds
[17]. To show the impact of the libvirt quota parameter on memory bandwidth in Mbit/s,
the stream benchmark can be used [22]. The python script schedinfo.py (see enclosed
CD contents) adjusts the quota parameter several times:

# create a data series of length 20
for quota in range(1000, 100000, 100):

# adjust quota
call([’virsh’, ’schedinfo’, ’VM1’, ’--set’, ’vcpu_quota=%s’ % quota])

Listing 3.4: schedinfo.py: the while loop for adjusting the guest quota on the host system.

Afterwards, the benchmark is run on the guest system and the results are saved in a
database:

# run the benchmark on the remote host
# and process the output
out = check_output([’ssh’, ’user@192.168.122.101’, ’"./stream/stream

.6176K"’])
for line in out.split(’\n’):

m = re.search(r’(\w+):\s+(\d+\.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)\s+(\d
+\.\d+)$’, line)

if m:
query = "insert into stream_bench (quota, rate, avg_time,

min_time, max_time, benchmark_type) values (%i, %s, %s, %s,
%s, ’%s’)" % (quota, m.group(2), m.group(3), m.group(4), m.
group(5), m.group(1))

cur.execute(query)
cnx.commit()

Listing 3.5: schedinfo.py: the benchmark executable is run on the guest system via ssh and the
benchmark results are processed and saved into a MySQL database.

Only triad operations are being evaluated [30]. In this benchmark mode, stream fetches
three values from memory, performs a multiplication on one value and writes the result
of an addition back to memory[30]:

a(i) = b(i) + q ∗ c(i)
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The arrays used by stream must be at least 4 times larger than the combined size of all last
level caches of the guest. Otherwise the benchmark includes cache bandwidth. This array
size constant has to be set at compile time. Because the cache size of the guest was not
accessible with dmidecode, the combined size of the last level caches on the host (12352
KB) has been used. The calculation has been made according to the documentation [30]:

12352 KB × 4 = 49408 KB

49408 KB

8 bytes
= 6176000 bytes

Listing 3.6: Compiling the stream benchmark.

gcc -O -DSTREAM_ARRAY_SIZE=6176000 stream.c -o stream.6176K

After the results were saved to the database, these results of the triad operations were
plotted against the quota parameter value using the plot-results.py script (see CD
contents). The script reads the values from the database and plots them using the python
matplotlib. This benchmark result can now be used to approach a reasonable quota
value range, where the impact on the guest is most useful.

Figure 3.4: Plotting the results of the stream triad benchmark. This test was performed with the libvirt
quota parameter in range [1000, 100’000] microseconds.

The host running the VM had two CPUs and 4GB of RAM assigned. The guest was
configured with one VCPU and 1GB of RAM. The resulting graph in Figure 3.4 shows
clearly, that a reasonable quota value for the specified testing environment has to lie
within range [1000, 100k] or smaller. Values above 100k for the quota parameter do not
change memory bandwidth any further.

This finding—the quota paremter being most useful within range [1000, 100k]—could
be confirmed by various redundant performance benchmarks on another host machine.
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The resulting graphs are given in Appendix A. They show the implications of the quota
parameter on VM performance. This analysis has been performed using the phoronix test
suite to see when performance of the benchmarks in the suite is degraded by the quota.

3.3 Disk I/O Speed

Figure 3.5: Virtual disk images are located on physical host drives. virsh blkdeviotune is used to
limit the speed to/from the guest block device (guest block devices vda1 and vda2 ). virsh blkiotune
is used to manage host block devices (sda and sdb).

The VM used in this section only contains one virtualized hard disk. More than one
disk per guest may be useful in different use cases, e.g. if another guest disk needs to
be on a dedicated physical host disk for security reasons or if more space on a dedi-
cated device is needed (see illustration in Figure 3.5). The disk file (see Listing 3.7) is
located on the physical drive of the host. Therefore, there exist two ways to control disk
I/O speed for the VM. On the guest side, the disk I/O speed can be controlled with
virsh blkdeviotune (see Section 3.3.1). libvirt makes use of QEMU to enforce the
blkdeviotune limits. The access speed to/from the host disk is controlled using virsh
blkiotune (see Section 3.3.2), which makes use of cgroups. blkdeviotune (the guest
side) only allows to set hard limits, whereas the blkiotune (the host side, controlled
with cgroups) allows to set soft and hard limits, even for individual host block devices.

user@host:~$ virsh domblklist VM
Target Source
------------------------------------------------
vda /home/user/VM.img
hda -

Listing 3.7: Listing the block devices of the VM.
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3.3.1 Guest Block Device Speed

I/O throttling with hard limits for guest block devices is possible with the virsh
blkdeviotune <DOMAIN><DEVICE><PARAMS> command. Current settings can be
queried as follows (where vda is the <DEVICE> we are interested in):

user@host:~$ virsh blkdeviotune VM vda
total_bytes_sec: 0
read_bytes_sec : 0
write_bytes_sec: 0
total_iops_sec : 0
read_iops_sec : 0
write_iops_sec : 0

Listing 3.8: The blkdeviotune hard limits to control guest I/O speed on guest block devices.

This also displays all the guest block device paramaters <PARAMS>, which can be con-
trolled with libvirt. I/O operations as well as the I/O speed (in bytes per second) of the
guest block devices can be configured separately (read/write) or combined (total).

Without changing these parameters, a 200 MiB file gets created on the guest in about 18
seconds:

user@guest:~$ dd if=/dev/zero of=file.out bs=200M count=1
1+0 records in
1+0 records out
209715200 bytes (210 MB) copied, 18.4686 s, 11.4 MB/s

After throttling the total I/O speed of the VMs vda block device to 5 MiB/s, it takes
about twice as long to create a file of the same size:

user@host:~$ virsh blkdeviotune VM vda --total_bytes_sec 5242880

user@guest:~$ dd if=/dev/zero of=file.out bs=200M count=1
1+0 records in
1+0 records out
209715200 bytes (210 MB) copied, 36.8286 s, 5.7 MB/s

Similar examples with different combination of I/O parameters could be constructed. In
this test I’ve chosen to set the rate limit in MB/s and not in I/O operations per second
(IOPS), because dd did not provide any information about the number of IOPS of the
task.

To measure the effect of a total_iops_sec limit (set with virsh, for the parameter re-
fer to Listing 3.8) on transfers per second (TPS), I’ve created the tps-iops-relation.py
script (see CD contents). According to the iostat manpage, TPS should be identical to
IOPS [13]. The script is run from the host and adjusts the virsh IOPS limit periodically.
For this reason it basically consists of one while loop. Every time the virsh IOPS param-
eter is adjusted, an iostat session (Listing 3.9) and a dd benchmark (Listing 3.10) on
the guest are started.
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# start iostat in background;
# refresh every second;
# save output in log file
p.call([’ssh’, ’-i’, ’/home/cloud/id_rsa_cloud@n02’, ’ubuntu@192.168.99.4’,

’rm’, ’-f’, ’iostat.out’])
pid_iostat = sp.Popen([’ssh’, ’-i’, ’/home/cloud/id_rsa_cloud@n02’,

’ubuntu@192.168.99.4’, ’iostat 1 > iostat.out’])

Listing 3.9: Deleting the old log file first and then starting a guest iostat session in the background.

# run dd benchmark on vm;
# wait for it to finish
sp.call([’ssh’, ’-i’, ’/home/cloud/id_rsa_cloud@n02’,

’ubuntu@192.168.99.4’, ’dd’, ’if=/dev/zero’, ’of=file.out’,
’bs=100M’, ’count=10’],
stdout=open(os.devnull, ’wb’), stderr=open(os.devnull, ’wb’))

Listing 3.10: Running a dd benchmark on the VM.

The last part of the main loop (Listing 3.11) consists of parsing and printing the IOPS
and TPS results, such that they can be read as CSV.

# download log file
sp.call([’scp’, ’-i’, ’/home/cloud/id_rsa_cloud@n02’,

’ubuntu@192.168.99.4:/home/ubuntu/iostat.out’, ’.’],
stdout=open(os.devnull, ’wb’), stderr=open(os.devnull, ’wb

’))

# parse iostat log
f = open(’iostat.out’, ’r’)
for l in f:

m = re.match(r’^vda\s+(\d+\.\d+)’, l)
if m:

tps = m.group(1)
print "%i, %f" % (iops, float(tps))

Listing 3.11: Parsing and printing the result.

Tests with IOPS limits above 50 showed no significant effect on the number of transfers
per second of a disk I/O task. Limits under 50 IOPS also lead to a decrease in TPS. The
exact results—i.e. the absolute TPS numbers—depend heavily on the configuration of the
dd benchmark. With a higher block size (bs) or a higher count the benchmark tends
to produce more transfers per second. This result is not precise, because it has not been
possible to make out a particular relation (in terms of a constant factor or multiplicator)
between the IOPS and the TPS. It has been concluded that dd is not quite the right
benchmark to achieve exact results in this experiment.

3.3.2 Host Block Device Speed

virsh blkiotune <DOMAIN> allows us to query and modify the host disk priority of
different guests. blkiotune only allows to set priorities for host block devices, not for
guest devices. To control guest disk access speed, refer to the last section. The <weight>
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parameter can be used to set host disk priority in the domain configuration file. The weight
for host disks can also be set with virsh blockiotune. To set different weights for
individual host disks, use the device-weights flag followed by a list of device/weight
pairs. Weight is always in range [100, 1000] [33].

user@host:~$ virsh blkiotune VM --weight 300
user@host:~$ virsh blkiotune VM --device-weights /dev/sda,100,dev/sdb,250

Listing 3.12: Example for changing the I/O priority on all host disks to 300 or to set different priorities
for the sda and sdb host devices. sdb could be an external host disk or another internal host partition.
In both examples, the weights always apply to the guest named VM as a whole.

Figure 3.6: Block write requests of two VMs running a dd test synchronously. The host performs the
writes on disk in batches, because the deadline scheduler is active. The VMs both have the same libvirt
I/O weights (500).

Figure 3.7: Block write requests of two VMs running a dd test synchronously. The host prioritizes the
writes on disk correctly, because the CFQ scheduler is active. The VMs have the libvirt IO weights 900
(VM 1) and 200 (VM 2).
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Thorough analysis of host disk IOs with dd tests lead to the conclusion, that the I/O
scheduler type of the host disk is an important key for using virshs blkiotune feature
efficiently. First tests with the deadline scheduler showed a delay between the writes of
two guests executing the same dd benchmark started at the same time. The deadline
I/O scheduler in linux executes the IO tasks in batches [7], which is visible in Figure 3.6.
This is undesirable to observe the effect of virsh’s soft limits with blkiotune. Figure
3.6 does not allow to draw conclusions about the I/O weight of the VMs, because on the
host, the deadline scheduler is in use.

user@host:~# echo cfq > /sys/block/sda/queue/scheduler
user@host:~# cat /sys/block/sda/queue/scheduler
noop deadline [cfq]

Listing 3.13: Changing the I/O scheduler to CFQ [5].

The complete fairness queueing (CFQ) scheduler is designed to support priority based I/O
activities [4]. After changing the scheduler on the host (see Listing 3.13), the disk write
IOs behaved as expected. Figure 3.7 shows that the host prioritizes the write requests of
the two VMs correctly. The complete set of test results is given in Appendix B.

3.4 Network Bandwidth

user@host:~$ brctl show
bridge name ... interfaces
virbr0 ... vnet0

vnet1

Listing 3.14: The default libvirt network setup with the virbr0 virtual switch and two VM network
interfaces.

libvirt creates a virtual network for the VMs by default [20]. All VM traffic is directed
through a virtual switch (interface labeled virbr0 by default). This is shown in Listing
3.14 or graphically in Figure 3.8. The bridge runs in network address translation mode
(NAT), which means that the virtual network with its VMs is not visible from computers
on the host network (besides the host itself), because the VMs operate in a dedicated
subnet. An instance of the dnsmasq DHCP server listens on the bridge interface and
assigns IPs to VMs. On newer versions of libvirt an additional network interface card
(NIC) named virbr0-nic ensures the static assignment of the MAC adress for the lifetime
of the bridge [27].

Each VM interface has two names (see the yellow boxes in Figure 3.8). On the guest side,
the interface will be most likely labeled as eth0. On the host side, the interfaces of the
guest machines are labeled as vnet0, vnet1, ..., vnetn. It is recommended to change the
default host labels of the NICs created for running instances (vnet0, vnet1, ..., vnetn),
because the machines may be started in different order. The host interface label of a VM
can be changed in the <interface> section of the domain configuration xml file:

<interface type=’network’>
...
<target dev=’<IFACE_NAME>’/>
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Figure 3.8: An illustrative network setup on hosts using (and guests launched through) the libvirt API
[20].

...
</interface>

Listing 3.15: Assigning a more descriptive label to the host interface of a domain.

<IFACE_NAME> is the new host interface name. By explicitly labeling the host interfaces
(vnet0, vnet1, ..., vnetn), they still show up in the corresponding guest as the ethernet
interface eth0 with its IP assigned but don’t accidentally change their host labels on
reboot. The mapping from the VM to the host interface can be made clearer with a
more descriptive label, so you can instantly tell which host interface belongs to which VM
interface. This is especially useful in scenarios as in Listing 3.17, where VM name and
interface name are required to map to the same VM.

Network rate hard limits for the whole network can be set via the libvirt network config-
uration file. This file can be modified for the default network with virsh net-edit
default [18]:

<network>
...
<bandwidth>

<inbound average=’1500’ peak=’3000’ burst=’4000’/>
<outbound average=’128’ burst=’100’/>

</bandwidth>
...

</network>

Listing 3.16: Exemplary rate hard limit settings in the network configuration
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Incoming and outgoing traffic can be controlled separately. According to the XML format
documentation for libvirt networking [18], the average and maximum (peak) rate in
kilobytes/second can be set. The burst attribute in kilobytes sets limit to the amount
of data transmitted at peak speed. Only the average limit is mandatory. peak is
not yet implemented for outbound traffic. It can be specified but will be ignored [18],
because the outbound traffic on the VMs interface represents the inbound traffic on the
corresponding host interface (see yellow boxes in Figure 3.8) and tc cannot be used to
control the peak rate on ingress traffic. These rate hard limits can also be applied in the
same way to dedicated interfaces of a domain.

The virtual network must be one of type routed, NAT or isolated [18]. As explained in
the beginning of this section, NAT is the default mode. All VMs communicate inside a
subnet and the virtual switch virbr0 acts as a router between the subnet and the host
LAN. In routed mode, the VMs communicate directly over the same LAN as the host.
In isolated mode, the VMs communicate on a subnet as in NAT mode, but the subnet is
completely isolated (i.e. the VMs cannot reach the host LAN and vice versa).

libvirt itself does also allow to change the network rate hard limits at runtime with the
virsh domiftune <DOMAIN><IFACE> [ <MODE> <AVERAGE>,<PEAK>,<BURST>
] command, where <AVERAGE>,<PEAK> and <BURST> are the limits in kilobytes/sec.
<MODE> stands for the --outbound or --inbound flag to adjust outbound or inbound
traffic. The dynamic adjustment at runtime has the same effect on the guests rate limits
as setting the parameters in the network configuration xml file (see Listing 3.16).

user@host:~$ virsh domiftune VM vnet0 --inbound 2000 --outbound 2000

Listing 3.17: Example for changing rate hard limits of a domain at runtime. Interface label and VM
name have to match the same VM (see Listing 3.15 on how to change the host interface label of a domain).

Figure 3.9: The result of limiting inbound network bandwidth to 500 MB/s (average) with virsh
domiftune VM vnet0 --inbound 500000.
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Chapter 4

Resource Reallocation in OpenStack

In the OpenStack framework, flavors are used to manage physical resources. A flavor is
a hardware template, which specifies the RAM size, disk size, number of cores and other
VM parameters [9].

The current version of OpenStack already allows to change the libvirt parameters relevant
in this thesis, which are memory soft and hard limits, CPU <shares>, the IO <weight>
and network bandwidth. The flavor extra specs, a list of key/value pairs, can be populated
with the according parameters. This includes soft limits like IO <weight> or CPU
<shares> and hard limits like CPU <quota>, disk writes/reads per second and the
in- and outbound bandwidth. Currently for such a constraint to be active, a VM has to
be booted with a flavor which holds the desired extra specs. Therefore the flavor is not
the solution of choice for dynamic resource reallocation, or the change of the constraints
during runtime. Also, by creating a new flavor for every possible combination of resource
limit and virtual machine, the administrative overhead of the flavors would become too
big.

Reallocation of resources is also possible through live migration, which allows to change
the flavor of a VM with minimum downtime. The live (or current) configuration of KVM
hosts can be changed dynamically at runtime with the libvirt API. The extension written
in this thesis is not an attempt to expose the whole libvirt API through the nova API (nova
is the part of OpenStack that provides acces to the compute nodes). Rather than that,
the focus lies on the libvirt parameters which allow to set soft limits. Those limits only
apply if resources get scarce and are applied in relation to the usage of other machines.
These are especially the CPU <shares>, the IO <weight>, and the memory soft limits.
libvirt’s network bandwidth parameters hitherto do not offer any comparable soft limits.
Absolute hard limits have to be used to reallocate the bandwidth. In Section 4.5 it is
shown how to manage network bandwidth priorities with tc.

The remainder of this chapter serves the purpose to document the process of writing an
extension for dynamic resource reallocation with OpenStack in detail.

25
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4.1 Using the libvirt Interface in OpenStack

To develop a nova API, which allows to access libvirt functionality to perform resource
reallocation, the devstack All-In-One Single VM approach was used [8]. For this setup, a
VM in the testbed served as devstack developer machine. Devstack makes it possible to
install a complete OpenStack environment on a VM or physical host.

Even though V2 API of nova should not be extended anymore, the code written in this
thesis relies on the V2 extension mechanism. The V3 microversion framework as docu-
mented in the nova developer API [1] was not applicable. In the very first iteration of the
extensions, the microversion framework has been adopted as documented. Unfortunately,
the plugin was not recognized by OpenStack. After a discussion with the supervisor, the
plugin has been edited to use the older fallback V2 extension mechanism. This approach is
much simpler, because it only requires to place the new controllers in the right contrib
directory. Afterwards, the extension shows up in OpenStack.

The nova API can be extended by placing custom controllers in the contrib folder of
the directory tree. The LibvirtResourcesController written in this thesis extends
the API with actions on the servers resource to control the PR of a server (see Appendix
C.1 for detailed documentation).

To test the new functionality of the API, the python command-line interface nova has
been extended accordingly. Refer to Appendix C.2 on how to use the CLI.

4.2 Reallocate Memory (RAM)

To integrate the control of ballooning capabilities into the OpenStack API, one has to
decide if the memory defined in the flavor of an instance represents the usage maximum
or if the guest is allowed to acquire more RAM than specified in the flavor. Figure 4.1
shows the difference between the two possible approaches to create a new instance ca-
pable to balloon up and down. Approach (1) leads to a discrepancy between the flavors
memory size defined in the database and the actual size of the VM. By modifing the
flavor object at run-time and expanding its memory size before creating an instance, the
actual template as defined in the database is not affected. Further, the dashboards in
horizon (web GUI of OpenStack) rely heavily on the flavors memory size to provide an
overview of memory used. Horizon uses the VM flavor to display aggregate information.
If instances were allowed to use more RAM than defined by the flavor, the aggregated
information in the dashboards would not reflect the actual aggregate resource consump-
tion of all VMs on the host. Because of these inconsistencies, approach (2) where the
flavor represents the maximum memory size allowed to be used by the machine was used
in the implementation. At the end of instance creation the instance will ballon down with
factor r which allows for an expansion later on if needed. An end user will have to keep
in mind to choose a flavor with a bigger memory size than in a default OpenStack envi-
ronment without the extension. Otherwise problems could arise while booting the VM.
The constant factor r can be modifed by setting the ballooning_ram_ratio option
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in the [libvirt] section of the nova configuration at /etc/nova/nova.conf. For
transparency reasons, the parameter—and therefore also the post-creation ballooning—is
disabled by default. The behaviour has to be explicitly enabled by setting an appropriate
ballooning_ram_ratio (e.g. 2).

Figure 4.1: In (1), the final allowed maximum memory size is larger than the size of the flavor template,
as defined in the database. In (2), the flavors memory size represents the maximum memory.

It was possible to write a hook to perform the ballooning after instance creation (see
Appendix C.3 for details). Unfortunately there exists no such hook for the start
of a VM! So once the instance is rebooted, it will be started with the maximum
memory configuration.

4.3 Reallocate Computing Time (CPU <shares> )

During the course of this thesis, the importance of so called soft limits has been repeatedly
emphasised. For this reason, the nova extension does not offer the possibility to add more
VCPUS, but rather to change the libvirt <shares> parameter (see Section 3.2.3). The
libvirt CPU quota was also not exposed through the nova API, because this is a hard
limit. Because VCPU pinning restricts the VM from using all available CPUs, it is rarely
used [3]. Therefore these settings will remain configurable only through virsh and are
not contained in the API extension.
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4.4 Set Disk Priorities (I/O <weight>)

As mentioned in Section 4.3, the importance of soft limits also led to the decision to only
make the libvirt disk IO <weight> parameter available through the nova API. Also, the
results of setting a disk IO limit in IOPS (hard limit) were not very precise, as explained
in the end of Section 3.3.1. The extension only enables to set the disk IO weight of the
whole guest. Weights on a per disk level have to be set with virsh.

4.5 Set Network Bandwidth Priorities

The network throughput of VMs launched with OpenStack can be controlled using the
tc utility. For the default network setup in a KVM only environment I refer to Section
3.4. An OpenStack network configured in the Flat DHCP Network Manager mode [25]
creates an additional interface and a new bridge labeled br100 by default. The KVM
bridge virbr0 is still around but no interfaces are attached to it. For matter of simplicity,
the new interface will be labeled eth1 in this section. In a real environment, the label
depends on how much physical ethernet interfaces the host machine has. If the host has
no physical ethernet interface, the interface created by OpenStack may also be labeled
eth0, because eth0 did not exist yet (see Listing 4.1).

user@host0:~$ brctl show
bridge name ... interfaces
br100 ... eth0

... vnet0

... vnet1
virbr0

Listing 4.1: Illustrative OpenStack bridge setup on a host with no physical ethernet interface.

user@host1:~$ brctl show
bridge name ... interfaces
br100 ... eth1

... vnet0

... vnet1
virbr0

Listing 4.2: Illustrative OpenStack bridge setup on a host with a physical ethernet interface labeled
eth0. The interface created by OpenStack is therefore labeled eth1.

Tc queuing disciplines (qdiscs) can be used to control the egress and ingress traffic. A
classfull egress qdisc can contain many other qdiscs with more classes (see Figure 4.3).
Whereas outgoing traffic can be filtered by its source and shaped accordingly, an ingress
policy only allows to drop incoming packets. The tc ingress qdisc is classless. It is
therefore not possible to use a priority qdisc for incoming VM traffic on eth1.
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4.5.1 Priorize with the tc priority (prio) qdisc

Note: the most recent version of the nova API extension features the htb qdisc ap-
proach described in the next section.

To prioritize the egress traffic of several VMs, the prio priority qdisc can be used. Even
though the current version of the API extension uses a htb qdisc (see next section), this
chapter describes how network can be prioritized with a prio qdisc. Such an approach has
been used in early iterations of the API extension.

Figure 4.2: The setup used to experiment with the tc qdiscs and filters on a default OpenStack network
in ”Flat DHCP Manger” mode. eth1, vnet0 and vnet1 are attached to the bridge br100. The red arrows
show the direction, in which the nova extension is able to prioritize network traffic. Figure 4.3 describes
the priority qdisc (yellow) with its classes and filters in further detail.

In my tests, VM0 on host 1 served as a reference machine representing the outside world.
With the iperf utility running in server mode on VM0 and in client mode on VM1 and
VM2, the egress qdiscs and filters could be confirmed as working correctly. Showing packet
statistics with the tc -s qdisc ls dev eth1 command and pinging the reference
VM0 from the corresponding VMs on host 2 confirmed that packets are classified correctly
in classes 1:1 and 1:2. The qdiscs and filters on host 2 were set up as in Figure 4.3.

The pfifo qdisc can be used to limit the queue size of an interface. The length of qdisc 10:
was set to 5 and the length of qdisc 20: to 1 packet. If the queue is full, no more packets
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Figure 4.3: The qdiscs and filters used to shape VM outbound traffic; *.4 and *.5 are the IPs of the
VMs VM1 and VM2. Traffic ist filtered and classified by source IP adress.

can be enqueued. Because the queue on qdisc 10: is longer, the VM with IP *.4 is able
to send more packets at a time.

Tests without the 10: and 20: qdiscs made it impossible to send packets from the two
VMs VM1 and VM2 at the same time, because packets enqueued in class 1:1 always
had priority. With no pfifo qdisc in place, which limits the amount of packets allowed to
send, the packets in class 1:2 with lower priority had to wait until no more packets were
enqueued in class 1:1. With the pfifo qdiscs installed, VM *.5 was always able to send
a packet for a short time, after the qdisc 1:1 with packets from VM *.4 stopped sending
packets because the queue limit of 5 has been reached. This approach allowed for more
fairness, but still leaves the priorities intact.

An early version of the python nova client extension did only allow to bulk set network
priorities for a set of instances. In comparison to the reallocation of the other resources
(as CPU shares or disk weight), the network priorities could only be set for a list of
instances, not for individual instances. This was so, because the priority mechanism was
implemented with the tc traffic control utility and network priority is not controlled with
libvirt. As described in this section, the setup of a working qdisc structure is slightly more
complicated than accessing a single method of a library. Once the prio qdisc with a fixed
number of bands is created, it is for example not possible to add another band, i.e to add
a priority for another machine. Of course, one could just create a prio qdisc with a lot
of bands, but how does one find a reasonable maximum? Therefore this ancient client
version did only allow to set network priorities for a list of instances. This simplified the
setup process. Every time new network priorities where set, the qdisc structure has been
destroyed and recreated from scratch.

In the old prio implementation of the API extension, network priorities could be set in
range [1:9], with 1 being the highest priority. This way, the classes can be labeled from
1:1 up to 1:9. In a very early version of the extension, the length of the pfifo queue
varied depending on the class priority. The size of the pfifo qdiscs has been made static
in later versions, because different pfifo qdisc length meant that some classes may drop
more packets than others (tail-drop).
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To reallocate network priorities, the new configuration variable pfifo_limit has been
introduced. It could be defined in the same place as the ballooning_ram_ratio (see
Section 4.2). This value determined the length (in packets) of the pfifo qdiscs inside the
classes/bands. The length may depend on the amount of network traffic and should be
changed to suit the needs of the network. With a low pfifo_limit (i.e. with shorter
pfifo qdiscs), the VMs will alternate more frequently while sending packets. If the pfifo
qdiscs are too short, too many of the arriving packages will be dropped. If the qdisc size
is big, the VMs with smaller network priority have to wait longer until they are able to
send a packet.

4.5.2 Priorize with the tc htb qdisc

The hierarchy token bucket qdisc (htb) is another qdisc which allows to prioritize network
traffic. In comparison to the prio qdisc, a minimum bandwidth can be garuanteed. This
avoids the starvation of traffic flows, as can be seen by example in the evaluation (see
Section 5.4.1). Therefore, the most recent API extension code makes use of htb qdiscs.

Classes under a root class in an htb qdisc can borrow excess from each other. This
concept of borrowing the excess bandwidth to other machines in combination with the
guaranteed minimum rate makes the htb qdisc the perfect tool for priority based traffic
control. Figure 4.4 illustrates a tc htb setup with classes which are allowed to borrow
excess bandwidth from one another.

Figure 4.4: htb qdisc setup to prioritize network traffic. Without the root class, excess bandwidth
would not be borrowed.

The most recent version of the client extension does allow to change the priority of a
single instance. This is an enhancement to the earlier implementation with the prio qdisc
in terms of usability and consistency, because the libvirt parameters can also only be
changed for single VMs.

The nova configuration has been extended by a new constant in the [tc] group of the
configuration file at /etc/nova/nova.conf. htb_rate defaults to 80 and represents the
total amount of allowed bandwidth of all the VMs on the host in Mbit. It needs to be
changed according to the networks specific needs.
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Chapter 5

Evaluation of the nova API extension

Figure 5.1: The simple multi user scenario to evaluate various aspects of the API extension. In an ideal
world, both users may be allowed to use half of the resources available.

The scenario to evaluate the nova API extension and the nova CLI extension is illustrated
in Figure 5.1. One user runs two instances which in sum should not use more than fifty
percent of the hosts resources. The other user runs only one machine, which is allowed to
use the other fifty percent of the resources available. In a more general scenario, resource
partitioning decisions should be made by the user. But to keep the scenario simple, user
1 decides to distribute the resource load evenly on the two VMs VM1 and VM2. The
sections in this chapter show the results when the extension is used to give user 1 more
resources and taking it from user 2 (giving user 1 more weight or a higher priority).

To test the correct behavior of the extension—especially the methods to set new resource
parameters—the virt-top utility has been used for the CPU and disk I/O experiments.
Memory has been measured with the smem utility using the proportional set size (PSS)
(see Section 3.1.2). The network bandwidth has been assessed with iperf. All results
have been processed as CSV and illustrated graphically. All self-written scripts used in
this evaluation are on the CD. The getter methods to display the current resource limits
of the VMs were tested by verifying the provided output. All tests have been performed
on a machine running devstack on Ubuntu 14.04.
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5.1 Memory Reallocation

5.1.1 Hard Limit, nova lv-set-mem

All three VMs have been booted with 2048 MiB of maximum memory (<memory>).
Afterwards, the current memory (<currentMemory>) of VM1 and VM2 has been re-
stricted to 512 MiB and the current memory of VM3 to 1024 MiB, such that RAM is
distributed according to the chosen evaluation scenario from Figure 5.1.

After around 30 to 40 seconds, the current memory of VM3 has been decreased by 512
MiB and the current memory of VM2 has been increased by the same amount (see Figure
5.2). User 1 does not use as much RAM on VM1 as he could, which is perfectly fine. The
new constraints are applied within 5 seconds which is fast in comparison to the memory
soft limit (see Figure 5.3).

Figure 5.2: Using nova lv-set-mem to distribute RAM: nova lv-set-mem VM3 512 && nova
lv-set-mem VM2 1024.

5.1.2 Soft Limit, nova lv-set-mem-soft-limit

VM1 and VM2 had a memory soft limit of 512 MiB and VM3 a soft limit of 1024 MiB,
according to the evaluation scenario in Figure 5.1. After some time (around 100 to 150
seconds), the soft limits have been changed. The memory hard limit was 2048 MiB for all
machines. Because both users make extensive use of their VMs there is memory congestion
on the host and it falls back to the memory soft limits. The new RAM soft limit is 1024
MiB for VM2 and 512 MiB for VM3. This change in RAM priority (a reallocation of
RAM from user 2 to user 1) is visible in Figure 5.3 around second 250 to 350. It can be
noticed, that the soft limit reacts slower to a change than the memory hard limit from
Figure 5.2. This might be due memory soft limits being a cgroup best-effort feature [24],
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which does not come with any sort of garuantee. When using the soft limit, RAM cannot
be controlled as precisely as when using the hard limit.

Figure 5.3: Effect of nova lv-set-mem-soft-limit to distribute RAM (nova
lv-set-mem-soft-limit VM3 512 && nova lv-set-mem-soft-limit VM2 1024). The soft
limit on VM1 remains unchanged.

5.2 CPU Reallocation

Figure 5.4: Three VMs with the same <share> value, which use CPU resources sequentially.

Figure 5.4 shows the default configuration. All new OpenStack instances are assigned the
same <share> value. Because the VMs work sequentially, this soft limit has no effect.
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Figure 5.5: Effect of nova lv-set-cpu-priority to distribute computing time (nova
lv-set-cpu-priority VM3 1024 && nova lv-set-cpu-priority VM2 2048). The CPU
shares on VM1 remain unchanged (1024 shares).

CPU is not scarce in this example. In Figure 5.5 the VMs of user 1 both have 1024 CPU
shares and VM3 of user 2 is configured with 2048 shares at the beginning. Because all
the three VMs are pinned to the same physical host CPU, they compete against each
other for CPU resources. After 50 to 60 seconds, 1024 shares are taken from VM3 and
given to user 1. Again 30 to 40 seconds later, the original configuration where both users
have 2048 CPU shares in total has been restored. This change in CPU priority is applied
within 5 to 10 seconds, which is comparable with a change in the memory hard limit.

5.3 Disk I/O Reallocation

To evaluate the disk I/O weight capabilities of the nova extension, the CFQ scheduler
has to be used (Section 3.3.2). VM1 and VM2 of user 1 both have a disk I/O weight of
500 for the start. VM3 of user 2 has an I/O weight of 1000. As observed in Figure 5.7a
this starting position to evaluate disk I/O reallocation does not fully comply with the
evaluation scenario in Figure 5.1. It shows, that VM3 completes a write job (writing 3
GiB) a little (around 100 seconds) faster than the machines of user 1. For a synchronous
disk I/O job on the same host block device (which takes about 700 seconds to complete
in this example) a VM with weight 1000 could be expected to be ten times faster than a
VM with weight 100. So a VM with weight 1000 could also be expected to complete the
task twice as fast as a VM with weight 500. Figure 5.7a shows that this is not quite the
case. This might be due to too little disk activity to fully activate the soft limit during
the whole duration of the disk job.

To test another combination of I/O weights, VM3 has been assigned a weight of 300, VM2
a weight of 900 and VM1 a weight of 500 afterwards. As seen in Figure 5.7b the priorities
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Figure 5.6: Effect of nova lv-set-cpu-priority to distribute computing time (nova
lv-set-cpu-priority VM3 100 && nova lv-set-cpu-priority VM2 500 && nova
lv-set-cpu-priority VM3 1000). It is clearly visible, that every time a VM with more shares
starts a CPU intensive task, the CPU time of the other machine with less CPU shares gets scarce. The
VM1 with weight 100 (which is the minimum weight) also shows throttled CPU time if no other VM
competes for CPU.

are respected when performing a synchronous write task of size 1 GiB. Even though VM1
and VM3 complete the job at the same time, VM1 starts the write job before VM3 due
to heigher I/O weight. VM2 has been clearly prioritized and completes the job first and
also starts writing early in comparison to the other two machines.
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(a) The starting point to evaluate disk I/O weights with nova
lv-set-io-priority. The VMs write 3 GiB of data.

(b) Using nova lv-set-io-priority to change host disk
I/O priorities: nova lv-set-io-priority VM3 300 && nova
lv-set-io-priority VM2 900. The disk weight of VM1 remains
unchanged (weight 500). The VMs write 1 GiB of data.

Figure 5.7: Evaluation of nova lv-set-io-priority
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5.4 Network Bandwidth Reallocation

5.4.1 Priority qdisc (prio) based Reallocation

Note: the most recent version of the nova API extension features the htb qdisc ap-
proach (see next section). Method names such as tc-nova-set-net-priorities
do not exist anymore in the most recent version!

Figure 5.8a shows the starting point to evaluate the deprecated nova tc-set-net-
priorites method which allowed to change network priorities of several machines using
the prio qdisc. It shows that the three VMs have no network priority and they all use the
same amount of network bandwidth.

Figure 5.8b shows the network bandwidth of the three VMs, when a very large qdisc size
is chosen (600 packets). VM1 and VM2 traffic should have higher priority than VM3
traffic. Figure 5.8b demonstrates that this is not the case. VM1 is starved whereas VM3
is able to send packets constantly.

Figure 5.8c shows a very similar picture. In this example, the priorities are also not
respected. It is not ideal that VM1 uses all the bandwidth for itself, because VM1 and
VM2 both have priority 1.

Because the tests with a large qdisc size were inconclusive, it is advised not to set a qdisc
size that large. Figure 5.9a shows a test with pfifo_limit 30. A qdisc length around
20 to 30 packets has been found as ideal. VM1 and VM2 are able to send packets, because
they have both priority 1. VM3 is starved because VM1 and VM2 are constantly sending
new packets which will always have priority before VM3 packets.

The traffic of the two prioritized VMs in Figure 5.9b with pfifo_limit=20 is less bursty
than in Figure 5.9a where pfifo_limit=30. Figure 5.9c shows that a very short qdisc
is good, if the VMs with lower priority should not be starved. But unfortunately the
priorities are not respected anymore. Especially after second 35, where VM3 uses most
of the bandwidth and VM1 and VM2 only very little. This example shows, that a very
short qdisc is also not ideal.
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Figure 5.8: Network bandwidth priority test using nova tc-set-net-priorities

(a) The starting point to evaluate network bandwidth priorities with nova
tc-set-net-priorities.

(b) The network priorities have been set with nova
tc-set-net-priorities ’VM1,VM2,VM3’ ’1,1,2’.
pfifo_limit is 600 packets.

(c) The network priorities have been set with nova tc-set-net-priorities
’VM1,VM2,VM3’ ’1,1,2’. pfifo_limit is 600 packets.
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Figure 5.9: Network bandwidth priority test using nova tc-set-net-priorities

(a) The network priorities have been set with nova
tc-set-net-priorities ’VM1,VM2,VM3’ ’1,1,2’.
pfifo_limit is 30 packets.

(b) The network priorities have been set with nova
tc-set-net-priorities ’VM1,VM2,VM3’ ’1,1,2’.
pfifo_limit is 20 packets.

(c) The network priorities have been set with nova
tc-set-net-priorities ’VM1,VM2,VM3’ ’1,1,2’. pfifo_limit
is very small (qdisc is only 5 packets long).
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5.4.2 Hierarchy Token Bucket qdisc (htb) based Reallocation

Figure 5.10 demonstrates the effect of a missing ceil paramter on the htb qdisc. In this
case, ceil is set to rate and it is impossible to borrow excess bandwidth. Figure 5.11 shows
the result of a measurement when network traffic is prioritized with the htb qdisc as it is
done in the most current version of the API extension.

Figure 5.10: htb provides the ceil parameter to allow borrowing of excess bandwidth. Without ex-
plicitely setting the parameter to a higher value than the minimuman guaranteed rate, borrowing will not
work properly. The rate priorities for the three VMs where: VM1 39mbit, VM2 26mbit, VM3 15mbit.

Figure 5.11: This illustration shows the effect of using the ceil parameter and setting it to 80mbit.
The rate priorities for the VMs are: VM1 39mbit, VM2 26mbit, VM3 15mbit. The excess bandwidth is
always used when only one VM is active on the network or in the case, where VM2 und VM3 are able to
use more than their minimum guaranteed bandwidth (second 60 to 80).



Chapter 6

Conclusions

6.1 Future Work

This section lists some future improvements and mentions missing functionality and pos-
sible weaknesses of the extension. The extension is built to control the PR allocation to
VMs of individual PMs. It serves this conceptual formulation of the thesis task very well as
shown in the evaluation. Even though the OpenStack extension exposes some reallocation
functionality of the hypervisors on the orchestration layer, the extension written during
this thesis cannot be considered a complete tool set. Especially not, if it is compared with
the current set of reallocation tools available on the hypervisor layer.

OpenStack may present VMs of different hosts in the same project dashboard. The
extension is not built to reallocate resources of VMs running on different hosts, because
the libvirt settings and the resource configurations are bound to one host. This could lead
to confusion. To use the extension effectively, it always has to be remembered which VM
resides on which host. Changes in resource allocation may otherwise not have any effect.

6.1.1 nova API Extension

Some libvirt parameters were not considered in the implementation because the extension
is focused on soft limits. The current memory—the memory available for the VM—is the
only implemented hard limit. Because the extension has been developed and written in a
single node devstack environment, the behavior in an environment with multiple hypervi-
sors remains unclear. Devstack does provide the ability to create multi node OpenStack
testing environments.

The extension does not yet have a method to reset the network priorities. They have to be
reset manually with tc (tc qdisc del dev <IFACE>, where <IFACE> is the host
NIC name which connects the VMs with the host). A future iteration of the extension
may feature a seperate API call to do this.
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6.1.2 Python nova client Extension

The usability of the nova client extension may not be perfect for daily use. A future user
may label or arrange the functions and parameters in another way. Also, the more recent
V3 microversion framework (see Section 4.1) needs to be adopted for the extension to be
compliant with future versions of OpenStack. The client extension does not support the
use of different units. To set the current memory for example with nova lv-set-mem,
a value in MiB is expected. A future implementation may allow the user to change the
resource parameters using different units as needed. An enhanced version of the extension
would also enable the user to change the resource priority of several VMs at once, much
like it has been implemented in a earlier version for the network priorities (see Section
4.5.1) or in the recent version for the nova tc-get-net-priorities method.

The syntax for setting the resource weights or priorities is not consistent across all four
resources. Whereas a high memory soft limit, a high I/O weight or a high CPU share
allows to use more of the mentioned resource, a hight bandwidth priority limits the guest
to use less network bandwidth. A weight based scale for network bandwidth would be
desirable in future versions of the extension, such that the syntax complies with the other
three resources.

6.2 Summary and Conclusion

This thesis reviews the different resource reallocation capabilites on linux systems in
general and especially in virtualized environments. Over the course of this thesis it became
clear, that current theoretical methods to reallocate resources are focused on reallocating
RAM. Memory ballooning and page sharing are two methods which are very prominent
in literature. The assumption has been made, that the importance of this resource comes
from its persistence character (see Section 2.3). The tools to reallocate RAM, CPU time,
disk I/O and network bandwidth have been assessed. The libvirt API has been found to
be the method of choice to reallocate resources in a KVM/OpenStack environment.

An extension for OpenStack has been built during this work, which enables to set resource
priorities for VMs running on KVM. Resources can then be reallocated by changing the
resource weights of the machines. The libvirt API did already provide useful soft limits for
disk I/O, RAM, and CPU time. The methods and parameters offered by the libvirt API
have been thoroughly tested and documented in Chapter 3. Because it is not possible to
set network bandwidth priorities with the libvirt API, an alternative approach with the
tc traffic control utility has been proposed and implemented (Section 4.5). During the
development of this feature, different tc qdiscs have been tested and evaluated. The htb
qidsc has been found to be the most reliable qdisc to prioritize network bandwidth. The
evaluation of the nova API extension and the client showed, that a memory soft limit is
not as timely and precisely as a memory hard limit or a CPU soft limit. Therefore it is
less reliable than the hard limit. For using the I/O soft limit, the importance of having
the right host I/O scheduler (CFQ) activated has been emphasized.
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Abbreviations

API Application Programming Interface

CFQ Complete Fairness Queueing
CLI Command line interface
CPU Core processing unit
CSV Comma-separated values

GB Gigabyte, 10003 bytes
GiB Gibibyte, 10243 bytes

HTB Hierarchy Token Bucket

IaaS Infastructure as a Service
IOPS Input/Output operations per second
IOs Input/Output operations
IP Internet protocol
I/O Input/Output

KB, KByte Kilobyte, 1000 bytes
KiB Kibibyte, 1024 bytes
KSM Kernel Same-Page Merging
KVM Kernel-based Virtual Machine

LAN Local Area Network

MAC adress Media access control address
MB Megabyte, 10002 bytes
Mbit/s Megabit/second
MiB Mebibyte, 10242 bytes
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NAT Network Address Translation
NIC Network interface card

PM Physical machine
PR Physical resource
PSS Proportional set size

tc Traffic control
TPS Transfer per second

VM Virtual Machine

QEMU Quick Emulator
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A.1 Memory Bandwidth Performance Analysis

(a) Apache benchmark; The benchmark score in-
creases in memory bandwidth.

(b) PHP benchmark; The benchmark score increases
in memory bandwidth.

(c) Python benchmark; The time required to run the
benchmark decreases in memory bandwidth(quota).



Appendix B

Disk I/O Measurements with dd

B.1 Deadline I/O scheduler

Figure B.1: Block write requests of two VMs running a dd test synchronously. The host performs the
writes on disk in batches, because the deadline scheduler is active. The VMs both have the same libvirt
I/O weights (500).
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B.2 CFQ I/O scheduler

Figure B.2: Block write requests of two VMs running a dd test synchronously. The host prioritizes the
writes on disk correctly, because the CFQ scheduler is active. The VMs have the libvirt I/O weights 900
(VM 1) and 200 (VM 2).

Figure B.3: Block write requests of two VMs running a dd test synchronously. The host prioritizes
the writes on disk correctly, because the CFQ scheduler is active. The VMs have the libvirt I/O weights
1000 (VM 1) and 100 (VM 2).



Appendix C

Libvirt Extension Documentation

The extension to the OpenStack source code contains three parts:

� Section C.1: An extension for the nova API

� Section C.2: An extension for the python-novaclient CLI (nova)

� Section C.3: A hook to modify the default memory allocation after instance creation
(see Section 4.2).

Those three parts have to be installed seperatly. All parts should be used with the stable
OpenStack release kilo. The python-novaclient extension and the hook depend both on
the nova API extension. The hook depends on the python-novaclient extension. The
hook and the novaclient extension are not mandatory, the nova API extension can be
used without installing the CLI extension or the hook.

C.1 Nova API Extension

The servers resource of the nova API was extended with actions for each resource request.
The PR of the machine with {server_id} on project {tenant_id} can be controlled
by sending a POST request to the URI {tenant_id}/servers/{server_id}/action.
The action to be performed on the servers PR has to be specified in a JSON formatted
request body.

57



58
A
P
P
E
N
D
IX

C
.
L
IB

V
IR
T

E
X
T
E
N
S
IO

N
D
O
C
U
M
E
N
T
A
T
IO

N
Action JSON Request Response Body Description

get-memory-soft-limit { ’soft_limit’: 500 } Returns the current memory soft limit of an
instance in KiB.

set-memory-soft-limit { ’set-memory-soft-limit’: {
’memory_limit’ : 128 } }

{ ’sucess’: 1 } Allows to set the memory soft limit in MiB.
Returns 1 on success, else 0.

get-current-memory { ’actual’: 65536 } Returns information about the current mem-
ory consumption in KiB. The actual mem-
ory represents the current memory allocated
to the VM, which is returned by the nova
lv-get-mem command.

set-current-memory { ’set-current-memory’: {
’memory’ : 128 } }

{ ’sucess’: 1 } Allows to set the current memory size in
MiB. Returns 1 if ballooning was successful,
else 0. memory has to be smaller than max-
imum memory (see Section 3.1).

get-cpu-priority { ’share’: 400 } Returns the CPU priority of the instance.

set-cpu-priority { ’set-cpu-priority’: {
’share’ : 400 } }

{ ’share’: 400 } Sets the CPU priority of the instance and
returns the current CPU priority. The scale
for the share value can be chosen by the user
(see Section 3.2.3).

get-io-priority { ’weight’: 500 } Returns the current IO weight of an instance.
weight is in range [100, 1000].

set-io-priority { ’set-io-priority’: {
’weight’ : 600 } }

{ ’weight’: 600 } Set the IO weight of an instance. weight is
in range [100, 1000]. Returns the current IO
weight.
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set-net-priority { ’set-net-priority’: {
’prio’ : ’3’ }

{ ’success’: True } Set network priority of an instance. The cur-
rent qdisc structure on the host will be recre-
ated. Existing priorities remain untouched.
prio is the new network priority in range
[0:98] (more details in Section 4.5.2).

get-net-priority { ’prio’: 1 } Get network priority of an instance. Returns
-1 in the case where no priority is set.

balloon-driver-enabled { ’ballooning_enabled’: True } Checks if the balloon driver of the instance
is ready for use. Returns True if this is the
case, else False.

Table C.1: Nova API extension reference
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Command Parameters Description

lv-get-mem-soft-limit instance-name: Name of the instance Show current memory soft limit of the instance.

lv-set-mem-soft-limit
instance-name: Name of the instance
memory_limit: New RAM soft limit in MiB. Set the memory soft limit for an instance.

lv-get-mem instance-name: Name of the instance Show current memory configuration of instance.

lv-set-mem

instance-name: Name of the instance
memory: New memory size in MiB. Value has
to be smaller than maximum memory (see Sec-
tion 3.1).

Set current memory configuration of instance.

lv-get-cpu-priority instance-name Name of the instance Get cpu priority of an instance.

lv-set-cpu-priority instance-name: Name of the instance
shares: New CPU share value

Set cpu priority for the instance.

lv-get-io-priority instance-name: Name of the instance Get I/O disk priority of an instance.

lv-set-io-priority
instance-name: Name of the instance
weight: New IO weight value

Set I/O priority for the instance.

tc-set-net-priority
instance-name: Name of the instance
prio: New network priority. Must be in range
[0,98]. 0 is the highest priority!

Set network priority of an instance. Example:
tc-set-net-priority testvm 43

tc-get-net-priorities
instance-map: List of instances, enclosed in
quotation marks.

Get network priorities of instance list. Example:
tc-get-net-priorities "vm1,vm2"
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tc-get-net-priority instance-name: Name of the instance Get network priority of an instance. Example:
tc-get-net-priority vm1

ballooning-enabled instance-name: Name of the instance Check the ballooning capabilities of an instance.

Table C.2: Python novaclient extension reference
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C.3 Instance Creation Hook

The hook is only executed, if a ballooning_ram_ratio is set in the [libvirt]
section of the nova configuration at /etc/nova/nova.conf. After instance creation, the
memory of the VM is set to:

flavor.memory mb

libvirt.ballooning ram ratio

Figure C.1: Logic of the instance creation hook with ballooning_ram_ratio=2

There exists no instance start hook. On VM reboot, it will start with the memory size
defined in the flavor.



Appendix D

Contents of the CD

The contents of the enclosed CD contains of the following parts:

� Experimental Cloud Setup in openstack install logs

� Benchmark scripts for disk I/O, CPU quota and memory in benchmark scripts

� Nova API with extension in ba nova

� Novaclient with extension in ba novaclient

� Instance post creation hook for RAM ballooning in ba libvirt resources hooks

� A ba shortcuts folder with symbolic links for fast access to the newly written code

|-- ba_libvirt_resources_hooks
|-- ba_nova
|-- ba_novaclient
|-- ba_shortcuts
| |-- libvirt_resources_client.py
| | -> ../ba_novaclient/novaclient/v2/contrib/libvirt_resources.py
| |-- libvirt_resources_ram_hook.py
| | -> ../ba_libvirt_resources_hooks/lrhooks/hooks.py
| |-- libvirt_resources_server.py
| | -> ../ba_nova/nova/api/openstack/compute/contrib/libvirt_resources.py
|-- benchmark_scripts
| |-- blkdeviotune
| |-- quota
| |-- smem
|-- openstack_install_logs

Listing D.1: Overview of the contents of the enclosed CD
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