
Investigation of Message Exchange
Capabilities of OpenStack

Simon Balkau
Glarus, Switzerland

Student ID: 09-926-569

Supervisor: Patrick G. Poullie,
Date of Submission: June 19, 2017

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Zusammenfassung

Der Fairness Service (FS) ermöglicht Fairness zwischen Cloudbenutzern, in dem durchge-
hend Informationen über den Ressourcenverbrauch von virtuellen Maschinen gesammelt,
die zur einer Gewichtsmetrik der Benutzer kumuliert, die Ressourcen der VMs entspre-
chend umverteilt, sodass die Gewichtsmetriken der Benutzer angeglichen werden und die
Benutzer dadurch einen fairen Teil der Ressourcen erhalten. Die derzeitige FS Implemen-
tation hat Details, betreffend Nachrichtenaustausch, der Implementation offengelassen.
Dies führt zu einem massiven Austausch an Nachrichten. Diese Arbeit entwickelt logi-
sche Nachrichtenflusstopologien, um den Nachrichtenaustausch zu minimieren, und beur-
teilt verschiedene Implementationsmöglichkeiten zur Eignung für eine einfache Nutzung
durch den FS. Zuletzt wird eine Programmierschnittstelle vorgeschlagen, die es möglich
macht, verschiedene Nachrichtenflusstopologien, und deren Implementationen, zweckmäs-
sig durch den FS zu nutzen. Aufgrund der Programmierschnittstelle und den vorgestellten
Implementationsmöglichkeiten kann eine Implementation für den FS vorgenommen wer-
den.

i

ii

Abstract

The Fairness Service (FS) achieves fairness among cloud users by continuously gathering
information about virtual machines’ utilization of multiple resources, aggregating this
information to the “heaviness” of users, and adapting virtual machines priorities, such
that the heaviness of users is aligned and, therefore, all users have access to a fair share of
resources. The current FS implementation has left open multiple implementation details
resulting in a massive volume of messages. This thesis develops logical message flow
topologies to reduce the message volume and evaluates suitable implementation options
for simple use for the FS. Finally, an application programming interface (API) is proposed,
making the message flow topologies and the implementation alternatives convenient for
FS to use. Based on this, API and the presented topologies implementations can be made
for the FS.

iii

iv

Acknowledgments

I want to thank my supervisors Patrick Gwydion Poullie and Dr. Thomas Bocek for
giving me the opportunity to write a thesis in a very interesting and industry-relevant
field.

Last but not least, my deepest gratitude to my family and friends for their continuous
support and love.

v

vi

Contents

Zusammenfassung i

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Outline . 2

2 Related Work 3

2.1 Equations of Heaviness . 3

3 Logical Message Flow Topologies 5

3.1 First Implementation of a Logical Message Flow Topology for the FS . . . 5

3.2 Fully Meshed Topology . 5

3.3 Ring Topology . 6

3.4 Star Topology . 7

3.5 Topology Changes . 7

3.5.1 Fully Meshed Topology . 8

3.5.2 Ring Topology . 9

3.5.3 Star Topology . 11

3.6 Proposed Pseudocodes . 11

3.6.1 Fully Meshed Topology . 12

vii

viii CONTENTS

3.6.2 Ring Topology . 13

3.6.3 Star Topology . 15

4 Implementation Options 17

4.1 Definition of Comparison Parameters . 17

4.1.1 Scalability . 17

4.1.2 Availability . 18

4.2 NoSQL Data Stores . 18

4.2.1 Distributed Document Data Stores 19

4.2.2 Distributed Key-Value Stores . 21

4.3 Distributed Messaging Systems . 25

4.3.1 AMQP Components . 26

4.3.2 RabbitMQ . 30

4.3.3 ZeroMQ . 31

5 Evaluation 33

5.1 Evaluation Environment . 33

5.1.1 Vagrant . 33

5.1.2 Ansible . 33

5.2 Setting Up a MongoDB Server . 34

5.2.1 Evaluation of a MongoDB Server 34

5.3 Setting Up a MongoDB Cluster . 34

5.3.1 Evaluation of a MongoDB Cluster 35

5.4 Setting Up a Redis Master-Slave Environment 36

5.4.1 Evaluation of a Redis Master-Slave Environment 36

5.5 RabbitMQ . 37

5.6 ZeroMQ . 37

5.7 Combinations . 39

5.7.1 MongoDB and Redis . 39

CONTENTS ix

6 Designing of an API 41

7 Summary and Conclusions 45

7.1 Future Work . 45

Bibliography 47

Abbreviations 51

List of Figures 53

List of Tables 55

A Installation Guidelines 57

A.1 Windows Preparations . 57

A.1.1 1. Step - Installing Oracle’s VirtualBox 57

A.1.2 2. Step - Installing Windows Subsystem for Linux (WSL) 57

A.1.3 3. Step - Installing Vagrant . 58

A.1.4 4. Step - Move files from Windows to WSL 58

A.2 Ubuntu Preparations . 59

A.2.1 1. Step - Installing Oracle’s VirtualBox 59

A.2.2 2. Step - Installing Vagrant . 59

A.2.3 3. Step - Installing Ansible . 59

A.2.4 4. Step - Running Demos . 59

B Contents of the CD 61

x CONTENTS

Chapter 1

Introduction

This chapter points out the current state, the goals of this thesis, and with which method-
ologies is worked with.

1.1 Motivation

Cloud computing allows for the large-scale sharing of computing resources in a techni-
cally and administratively scalable manner. Therefore, a large number of companies (not
limited to the information technology sector) have quickly adopted it, thus resulting in
high end-user adoption. Although cloud computing has already enabled a plethora of new
applications and business models, expertise in exploiting its full potential is still vastly
missing [48]. Even though companies are searching for cloud experts, this topic is not
always covered in academia. To bridge this gap, this bachelor thesis enables the acquiring
of industry-relevant competence by focusing on message exchange among the compute
nodes, which hosts virtual machines (VMs) for a user, that constitute a cloud.
The bachelor thesis of Stephan Mannhart [16] extended OpenStack via the nova-fairness
service, referred to as the Fairness Service (FS). The FS achieves fairness among cloud
users by (i) continuously gathering information about VMs’ utilization of multiple re-
sources, (ii) aggregating this information to the “heaviness” of users, or the burden that
user put on the cloud, and (iii) adapting VM priorities, such that the heaviness of users
is aligned and, therefore, all users have access to a fair share of resources. The Commu-
nications Systems Group (CSG) defined the Greediness Metric (GM), which was proven
to result in fair allocations and to give the incentive to users to configure the virtual
resources (VRs) of their VMs according to the expected load of these, when the GM is
deployed as a heaviness metric for the FS.
Although the FS as implemented by Mannhart in [16] was proven to achieve the desig-
nated functionality in a brief evaluation, multiple implementation details have been left
open. In particular, the message exchange among compute nodes running the FS leaves
room for improvement. The goal of this bachelor thesis is to make this improvement
possible.
Two essential node types in the OpenStack architecture are the controller node and the

1

2 CHAPTER 1. INTRODUCTION

compute nodes. The controller node coordinates the cloud, e.g., by scheduling VMs, and
stores essential information for other nodes or administrators to access. Compute nodes
perform the actual processing of workloads, i.e., hosting VMs. For this purpose, compute
nodes run the OpenStack service nova compute that is part of the OpenStack compute
project nova. The FS is implemented as an additional nova service called nova-fairness.
Accordingly, an instance of the FS runs on every compute node and has a server counter-
part on the controller node. In particular, the server hosts a centralized message broker
that relays all messages. Therefore, by default, all information exchanged between com-
pute nodes traverses the controller node. This is not scalable and introduces a single point
of failure (although, arguably, the controller node is always a single point of failure). To
overcome this drawback, the message exchange between compute nodes (and thus the FS)
is decentralized as described in [37]. Unfortunately, this decentralization still results in a
message volume that is quadratic in the number of nodes (as every node directly sends a
message to every other node) and that is produced periodically.

The goal of this thesis is to develop different alternatives for logical message flow topologies
suited for the FS. Different implementation options to allow for compute node commu-
nication should be compared, implemented, and tested for use with the FS. Finally, a
well-defined API has to be developed, making the message flow topologies and implemen-
tation alternatives convenient for the FS to use.

This thesis starts with literature research. Thereafter, a practical implementation is done
and concludes with a proposal for a common API.

1.2 Thesis Outline

This thesis is divided into the following remaining chapters:

Chapter 2 summarizes related work done, on which this thesis is based.

Chapter 3 presents different topologies and presents pseudocodes for possible implemen-
tations.

Chapter 4 discusses potential applications for implementing the presented topologies
and discusses their applicability in terms of availability and scalability.

Chapter 5 evaluates potential applications in terms of their applicability to logical mes-
sage flow topologies.

Chapter 6 discusses and provides a common API for the FS to communicate over dif-
ferent topologies.

Chapter 7 summarizes and concludes this thesis and proposes future work.

Chapter 2

Related Work

This thesis relies heavily on the previous studies and work of Stephan Mannhart in his
bachelor’ thesis [16] and the white paper of Poullie, Mannhart, and Stiller [37]. The
work of Poullie et al. laid the theoretical foundation for fair allocation in clouds. They
defined and proved several equations that are required to calculate the heaviness of an
user. In the white paper of Poullie et al. [37], the theoretical equations were applied with
measurable values from the OpenStack cloud, which are important for this thesis and will
be explained in the following section.

2.1 Equations of Heaviness

A cloud consists of a set of users, often called the tenant, project, or customer in different
clouds [31, 18], U = {u1, u2, ..., ux}; a set of nodes — in this particular context, nodes are
meant as compute nodes, N = {n1, n2, ..., ny} — and a set of VMs, V = {v1, v2, ..., vz}.
Set R = {r1, r2, ..., rm} consists of the physical resources (PRs) that nodes provide, which
VMs can use, e.g., processing time, memory, etc. In the white paper of Poullie et al. [37]
the following four functions were defined, which are essential for the heaviness equations.

o : V → U maps a VM to its owner

a : V → N maps a VM to the host that accommodates/hosts the VM

r : V ∪N ∪ U → Rm
≥0 maps (i) VMs to their VRs, (ii) nodes to their PRs, and (iii) users

to their quotas

l : V → Rm
≥0 maps VMs to the loads they impose on the PRs

To calculate the heaviness of VMs, PRs are used as parameters. As PRs are heterogeneous,
meaning they are measured in different units, e.g., disk I/Os, processing time in seconds,
memory in MB, etc., they have to be normalized with their weighting. This is called the
cloud-wide unique normalization vector. To calculate this normalization vector the cloud

3

4 CHAPTER 2. RELATED WORK

resource supply (CRS) is needed. The CRS is the combined PRs of all nodes, which is
denoted as the node resource information (NRI), and is calculated by function

CRS :=
∑
nj∈N

r (nj).

VM endowment calculates the penalty an user gets when the VM’s load does not conform
with the, for it, reserved PRs. The white paper of Poullie et al. [37] recommended defining
the endowment of a VM as the VM’s proportional share of the host’s PR

e (vi) 7→
r (a (vi))∑

vj∈V :a(vj)=a(vi)
r (vj)

· r (vi) .

Therefore, the used PRs of the user’s VMs during runtime, meaning a specific point in
time, must be collected. This is denoted by the function l and is called the runtime
utilization information (RUI).

The heaviness of VMs is defined as

HV (vi) := s (e (vi)) + d (vi) .

Function s : Rm
≥0 → R≥0 denotes the static heaviness as a cost of instantiating a VM.

Function s must strictly increase with each input dimension.

Function d : V → R is called the dynamic heaviness and represents the cost of pro-
viding for the VM’s load. d must be chosen, such that d (vi) > −s (e (vi)) and the
non-minimalistic condition, which is explained in greater detail in section III.C.4 in [37].

To calculate the heaviness of an user compared with other users, the actual user quota,
which is defined as the share of the cloud’s PRs that is proportional to ui’s quota, is
needed, and it is calculated by function

aq (ui) 7→
CRS∑

uk∈U r (uk)
· r (ui) .

This results in a vector of users’ quotas, whereas the heaviness of an user is scalar. Thus,
function s′ : Rm

≥0 → R≥0 has to be used to map the vector to a scalar. The recommendation
of Poullie et al. [37] was s′ = s. The heaviness of user ui “is defined as the sum of ui’s
VMs’ heaviness subtracted by ui’s unused quota” [37]:

HU (ui) :=

 ∑
vj∈V :o(vj)=ui

HV (vj)

− s′ (aq (ui)) .

Chapter 3

Logical Message Flow Topologies

This chapter addresses three logical message flow topologies and covers their assets and
drawbacks.

3.1 First Implementation of a Logical Message Flow

Topology for the FS

The first FS implementation of Poullie, Mannhart, and Stiller [38] used the existing cen-
tralized messaging system of OpenStack among compute nodes, which uses RabbitMQ. It
was replaced with the alternative ZeroMQ [30] to decentralize the information exchange
with minimal configuration changes. “In both cases, the message volume is quadratic
in the number of compute nodes, as every node sends messages to every other compute
node. Therefore, a message scheme was designed, that arranges the information flow
among compute nodes as a ring, i.e., every compute node sends messages to and receives
messages from exactly one other compute node. The size of the messages send on this
ring is linear in the number of users” [38]. Although, details about topology changes were
left out.

3.2 Fully Meshed Topology

In a fully meshed topology, which can be represented graphically as in Figure 3.1, any
node is directly connected to any other node. Thus, a node is able to send messages to
everyone without taking a detour through another node. To form a fully meshed topology,
each node needs to maintain a list of neighbors in the topology. A node needs to broadcast
to anyone in the topology so that the other nodes can update their lists and answer back
to the new node to update its list with the other nodes (cf. section 3.5.1.1). Each node
collects the RUI of the hosted VMs and applies function HV to calculate the heaviness
of the VMs. Since the heaviness of users can be calculated in a decentralized manner,
each node applies function HU to the calculated VM heaviness set, resulting in partial

5

6 CHAPTER 3. LOGICAL MESSAGE FLOW TOPOLOGIES

Figure 3.1: Representation of a fully meshed topology.

heaviness of users. Thereafter, the partial user heaviness is sent to the other nodes, where
they get aggregated to the final heaviness of users (cf. section 3.3, which applies a similar
method).

3.3 Ring Topology

In a ring topology, a node has two neighbors, and messages are sent in only one direction
along the path. This is shown in Figure 3.2. A known implementation of this topology
is the Fiber Distributed Data Interface (FDDI) [2]. To form a ring topology, a beginner,
called a master, is necessary. The master is responsible for maintaining the order in a
ring. To calculate HU , the master will initialize a vector with each entry containing the
heaviness of an user and send this vector to its successor. In a first cycle, each node,
when receiving the vector from its predecessor, calculates the new heaviness of the user
and updates the vector. After one cycle, not every node knows the correct set of HU

so a second cycle is needed. In this algorithm no set of HV is sent to another node.
Nonetheless, a redundant set of HV (ni) of node ni needs to be stored on another node to

Figure 3.2: Representation of a ring topology.

3.4. STAR TOPOLOGY 7

Figure 3.3: Representation of a star topology.

recover from an ungraceful removal, which is discussed in section 3.5.2.2.

3.4 Star Topology

A star topology consists of a central node and nodes around this node [49]. It thus looks
like a star (cf. Figure 3.3). Most of the computer networks today are in form of this
topology, e.g., a switch acts as the central node, and the computers are connected to this
switch. To calculate the heaviness of an user, the nodes calculate their partial HU sets and
send it to the central node, which then aggregates the HU sets of all of the compute nodes
to calculate the final HU set. This can then be sent back to the nodes. The disadvantage
of this topology is the higher use of the central node and it must be made sure that it is
not a single point of failure. Thus, high availability and fault tolerance is necessary.

3.5 Topology Changes

Topology changes occur for a number of reasons. One is adding new nodes to the topology.
Another is the removal or a failure of a node, e.g., a hardware or network failure resulting
in inaccessible nodes, or the often-forgotten case of rebooting a machine because of a
security update. The removal of a node can either happen gracefully or ungracefully.
When a node is removed ungracefully, this means the node could not remove itself cleanly
from the cluster; it leaves inconsistent data in the cluster. The difficulty lies in the fact
that to find out which node failed, a node needs to figure out if it failed or if the remote
node failed. The problem resulting from this error state is that the data are inconsistent
between some nodes and need recovery. Davidson, Garcia-Molina, and Skeen noted: “One

8 CHAPTER 3. LOGICAL MESSAGE FLOW TOPOLOGIES

Figure 3.4: Adding a new node to the fully meshed topology.

important aspect of correctness with replicated data is mutual consistency: All copies of
the same logical data item must agree on exactly one “current value” for the data item”
[6].

3.5.1 Fully Meshed Topology

This section discusses operations that should be conducted to add and remove nodes in a
fully meshed topology.

3.5.1.1 Adding a Node

To add a new node to the fully meshed topology, the new node broadcasts to every other
node that a new node exists in this topology. All remaining nodes need to answer to the
new node to let it know where to send the subsequent messages. After this, each node
has a new updated list of all participating nodes.

3.5.1.2 Removing a Node

To remove a node gracefully, the to-be-removed node notifies the other nodes that they
need to remove the HV set of this node, resulting in no inconsistent data. In the case of
an ungraceful removal, it gets a bit trickier to recover from the now inconsistent data.
The majority of the remaining nodes must agree that a node is unavailable and that its
HV set can be removed.

3.5. TOPOLOGY CHANGES 9

Figure 3.5: Adding a new node to the ring topology.

3.5.2 Ring Topology

This section presents the difficulties arising in a ring topology, when changes occur.
Nonetheless, possible solutions for these problems are given, too.

3.5.2.1 Adding a Node

To add a new node to the ring topology, the new node broadcasts that a new node is
available for the master to pick up. The master needs to rearrange the nodes to maintain
the order in the ring, e.g., the last node now needs to send messages to the new node,
whereas the new node needs to send its messages to the master. As more nodes are
added, the longer the round trip time (RTT) becomes. To mitigate the increasing RTT, a
multi-ring topology could be established as shown in Figure 3.6. Establishing a multi-ring
topology introduces a higher complexity in terms of reconfiguration and messaging. The
masters of the rings need to form a ring to exchange the intermediate aggregated messages
of their rings. For example, the master of ring 1 receives an aggregated vector from its
ring and passes it on to the master of ring 2. Then, the master of ring 2 introduces the
vector it has received from ring 1 into its ring, and so on.

3.5.2.2 Removing a Node

In a graceful removal (numbered messages colored in blue in Fig. 3.7), to-be-removed
node ni instructs the master node (1) that it will be removed, and it passes the ∆ HU (ni)
required to update the HU set. After this, the master node acknowledges the removal of
node ni and can rearrange the order of the nodes (3) and instruct node ni−1 to update the
HU set accordingly. In the event that node ni receives the HU set due to a race condition,
it sends HU unchanged to ni+1 in any case. In this case, the HU set will be corrected when
it reaches ni−1 again.

When the removal is ungraceful, the ∆ HU (ni) added of the removed node ni is needed to
recover from the inconsistent data. Therefore, a redundant data set of ∆ HU (ni) needs to
be stored, e.g., on node n(i−1). With this information, node n(i−1) can subtract ∆ HU (ni),
recover the HU set, and inform the master that node ni is unavailable. The master then
updates the ring order accordingly, which leads to a needed timeout in the event that a

10 CHAPTER 3. LOGICAL MESSAGE FLOW TOPOLOGIES

Figure 3.6: Representation of a multi-ring topology.

Figure 3.7: Removing a node in a ring topology in two different cases.

3.6. PROPOSED PSEUDOCODES 11

node was unwittingly removed, to instruct the master to include it again. The timeout
therefore dictates the maximum RTT and consequently the maximum size of a ring. This
becomes even more complex when it is extended to a multi-ring topology.

3.5.3 Star Topology

This section shows the simplicity of using this topology in the event of changes.

3.5.3.1 Adding a Node

To add a node in a star topology, only a connection between the central node and the
new node has to be established. Other nodes that are already in the topology do not
need to know that there is a new node. This makes it easy to add a new node in terms of
configuration complexity.

3.5.3.2 Removing a Node

In a star topology, a combination of the ring and broadcast topology could be used to
remove a node. In the event of a graceful removal, to-be-removed node ni announces it to
the central node, which then removes the partial HU (ni) set and updates the new heaviness
of users. If expire times te are set for the partial HU sets and removed when tnow ≥ te,
even an ungraceful removal leads to a recovery of the inconsistent data. Furthermore, the
removal of a node could be broken down to just allow the partial HU sets to always expire,
thus reducing the complexity even more. Another option instead of a timeout would be
the central node’s polling the liveness (heartbeat) of the compute nodes. If one heartbeat
fails, it could remove the failed node.

3.6 Proposed Pseudocodes

The current implementation [16] uses interval µ in seconds to calculate the new HU sets.
The proposed pseudocodes have introduced timeout θ to handle failed or non-responsive
nodes. In consequence, if too small interval µ was chosen, timeout θ may extend the
calculation interval. Furthermore, it can be differentiated between an accurate and an
inaccurate calculation. The accurate calculation has the goal of resulting in an HU set,
which is identical on all nodes n ∈ N f within the same calculation cycle. This can be
broken down to two phases:

1. The gather phase.

2. The calculation phase.

12 CHAPTER 3. LOGICAL MESSAGE FLOW TOPOLOGIES

During the gather phase, the cluster agrees on a common set of shared variables needed
for calculation. This means the cluster first has to figure out which nodes belong to the
set N f for the current calculation cycle. Next, the CRS value has to be determined, and
every node in N f must agree on it. After this, the calculation phase begins, proceeding
with exchanging the variables needed to calculate the HU set.

The inaccurate calculation leads to different HU sets among nodes n ∈ N f but should
converge to the same HU over time.

The reason for having two separate implementations is the different handling in the case
of a failing node in the N f set, as this has an impact on the CRS, or the fact that node
ni has not finished calculating its HV (ni) set and that interval µ has been given priority,
resulting in the removal of the NRI of node ni from CRS or in the use of an older HV (ni)
set for calculation.

3.6.1 Fully Meshed Topology

s e t timeout θ in seconds
phase1 :

c o l l e c t p a r t i c i p a t i n g nodes in N f

whi le NRI o f some node in N f i s mis s ing :
send own NRI to nodes o f which NRI i s miss ing

use NRIs to c a l c u l a t e CRS and norma l i za t i on vec to r
phase2 :

every µ seconds :
c o l l e c t RUI o f a l l VMs hosted by ni

apply HV to c o l l e c t e d RUI in order to c a l c u l a t e
heav ine s s o f a l l VMs hosted by ni

apply HU to c a l c u l a t e the heav ine s s o f a l l u ∈ U
send t h i s HU heav ine s s s e t to a l l n ∈ N f − {ni}
wait to r e c e i v e heav ine s s s e t from a l l n ∈ N f − {ni} or

timeout θ exp i red
i f t imeout θ exp i red

send r e s t a r t message to a l l n ∈ N f

go to phase1
aggregate HU s e t s to c a l c u l a t e the heav ine s s o f a l l u ∈ U
f o r every VM v hosted by ni :

s e t p r i o r i t i e s o f v accord ing to HV (v) and HU (host (v))

Listing 3.1: Steps of the FS accurate calculation running on node ni in a fully meshed
topology

The pseudocode in Listing 3.1 stops the calculation as soon as a timeout occurs on any
node. This leads to an abort as soon as any node has a failure, and with a higher number
of nodes, it is certain that at any given time a node has a problem, rendering this method
is not suitable at all.

3.6. PROPOSED PSEUDOCODES 13

s e t timeout θ in seconds
phase1 :

c o l l e c t p a r t i c i p a t i n g nodes in N f

whi le NRI o f some node in N f i s mis s ing :
send own NRI to nodes o f which NRI i s miss ing

use NRIs to c a l c u l a t e CRS and norma l i za t i on vec to r
phase2 :

every µ seconds :
c o l l e c t RUI o f a l l VMs hosted by ni

apply HV to c o l l e c t e d RUI in order to c a l c u l a t e
heav ine s s o f a l l VMs hosted by ni

apply HU to c a l c u l a t e the heav ine s s o f a l l u ∈ U
send t h i s HU heav ine s s s e t to a l l n ∈ N f − {ni}
wait to r e c e i v e heav ine s s s e t from a l l n ∈ N f − {ni} or

timeout θ exp i red
aggregate HU s e t s to c a l c u l a t e the heav ine s s o f a l l u ∈ U
f o r every VM v hosted by ni :

s e t p r i o r i t i e s o f v accord ing to HV (v) and HU (host (v))
i f t imeout θ exp i red

go to phase1

Listing 3.2: Steps of the FS inaccurate calculation running on node ni in a fully meshed
topology

The inaccurate calculation in Listing 3.2 is basically the same as the accurate calculation,
with the difference being that it does not stop when a timeout occurs. Still, after a
timeout, it has to gather N f to detect topology changes.

In both cases, the message volume needed to calculate the CRS is |N | · (|N | − 1) · |R| ⇒
O (|N |2 · |R|), as the NRI of node ni has to be sent to all remaining nodes n ∈ N f −{ni}.
To calculate the heaviness of user ui, all nodes must know s′ (aq (ui)), which results in a
message volume of O (|N | · |U |). The heaviness calculations run in the same manner as
the CRS calculation. Each node has to send every other node the heaviness of the users
it calculated, resulting in a message volume of |N | · (|N | − 1) · |U | ⇒ O (|N |2 · |U |),
which Poullie et al. [37] already explained. Thus, the summed message volume is
O (|N |2 · |R|+ |N | · |U |+ |N |2 · |U |).

3.6.2 Ring Topology

s e t timeout θ g r e a t e r than µ in seconds
phase1 :

f i g u r e out who the s u c c e s s o r node ni+1 i s
wait to r e c e i v e CRS and norma l i za t i on vec to r

from predec e s s o r node ni−1
use CRS from predec e s s o r and own NRI to c a l c u l a t e new CRS

and norma l i za t i on vec to r
send new CRS and norma l i za t i on vec to r to s u c c e s s o r node
wait to r e c e i v e CRS and norma l i za t i on vec to r

14 CHAPTER 3. LOGICAL MESSAGE FLOW TOPOLOGIES

from predec e s s o r node ni−1 and send i t to s u c c e s s o r
phase2 :

i f ni i s the master node :
s t a r t c y c l e t imer φ
every µ seconds and wait f o r HU s e t r e c e i v e d or

timeout θ exp i red :
i f t imeout θ exp i red :

send r e s t a r t message to a l l n ∈ N f

go to phase1
remove prev ious added HU s e t from the r e c e i v e d

HU s e t
c o l l e c t RUI o f a l l VMs hosted by ni

apply HV to c o l l e c t e d RUI in order to c a l c u l a t e
heav ine s s o f a l l VMs hosted by ni

apply HU to c a l c u l a t e the heav ine s s o f a l l u ∈ U
send t h i s HU heav ine s s s e t to the s u c c e s s o r
f o r every VM v hosted by ni :

s e t p r i o r i t i e s o f v accord ing to HV (v)
and HU (host (v))

wait f o r HU s e t r e c e i v e d or
timeout θ exp i red :
i f t imeout θ exp i red :

send r e s t a r t message to a l l n ∈ N f

go to phase1
stop c y c l e t imer φ and compare i t to θ ,

adapt θ i f needed , and send θ to the s u c c e s s o r
i f t imeout exp i red r e c e i v e d from any node n ∈ N f :

send r e s t a r t message to a l l n ∈ N f

go to phase1
go to phase2

c o l l e c t RUI o f a l l VMs hosted by ni

apply HV to c o l l e c t e d RUI in order to c a l c u l a t e
heav ine s s o f a l l VMs hosted by ni

apply HU to c a l c u l a t e the heav ine s s o f a l l u ∈ U
wait f o r HU s e t r e c e i v e d or

timeout θ exp i red :
i f t imeout θ exp i red :

send timeout exp i red to master
remove prev ious added HU s e t from the r e c e i v e d

HU s e t
aggregate r e c e i v e d HU s e t with own HU s e t
send t h i s HU heav ine s s s e t to the s u c c e s s o r
f o r every VM v hosted by ni :

s e t p r i o r i t i e s o f v accord ing to HV (v) and HU (host (v))
i f new θ r e c e i v e d :

adapt θ to new value and send i t to the s u c c e s s o r

3.6. PROPOSED PSEUDOCODES 15

go to phase2

Listing 3.3: Steps of the FS inaccurate calculation running on node ni in a ring topology.

As discussed in section 3.3, the ring topology needs a master. The idea behind this
topology is to combine all HU sets from the predecessor nodes, which finally incorporates
all HV sets at the last node, n ≥ ni,∀n ∈ N f , assuming that the master is the first node,
n1 ∈ N f . The main difficulty in this topology lies in the adding and removal of nodes,
as the master has to inform particular nodes about topology changes. Not only that, but
also the CRS changes for any topology change. Thus, it is recommended to make topology
changes at the beginning or the end of a phase and to start all over with phase1. The
same recommendation applies for changes in the U and V sets, too. Changes in the U
and V sets also increase the RTT, thus increasing the possibility of a timeout. Therefore,
it is recommended to monitor the RTT, which is denoted as φ in the pseudocode, and
to increase or decrease the timeout θ, e.g., with an exponential backoff. The exponential
backoff can also be used at phase1 when θ is too low or is unknown at the beginning.
This pseudocode does not handle master failover, in case the master disappears, and is
subject to future work.

To calculate the CRS, a message volume of 2 · |N | · |R| ⇒ O (|N | · |R|) is needed, as after
the first cycle, the full CRS is known only to the last node. Thus, a second cycle is needed.
The same applies to s′ (aq (ui)), which results in a message volume of O (|N | · |U |). With
the proposed pseudocode, a linear message volume in terms of the user and the nodes is
used to update the heaviness of users O (|N | · |U |). Thus, the summed message volume is
O (|N | · |R|+ 2 · (|N | · |U |)).

3.6.3 Star Topology

phase1 :
send NRI to c e n t r a l node

phase2 :
every µ seconds :

c o l l e c t RUI o f a l l VMs hosted by ni

apply HV to c o l l e c t e d RUI in order to c a l c u l a t e
heav ine s s o f a l l VMs hosted by ni

send t h i s heav ine s s s e t to the c e n t r a l node
get HU from the c e n t r a l node
f o r every VM v hosted by ni :

s e t p r i o r i t i e s o f v accord ing to HV (v) and HU (host (v))
go to phase2

Listing 3.4: Steps of the FS accurate calculation running on node ni in a star topology

In a star topology, a node registers its NRI at the central node. As the central node
does all of the calculation of the user heaviness, CRS and s′ (aq (ui)) do not need to be
broadcasted to any node. The registration at the central node is a single message per node;
thus, O (|N | · |R|). The heaviness of VMs generates a message volume of O (|N | · |V |).
The message volume to get the heaviness of users amounts to O (|N | · |U |). The total

16 CHAPTER 3. LOGICAL MESSAGE FLOW TOPOLOGIES

message volume adds up to O (|N | · |R|+ |N | · |V |+ |N | · |U |). As |V | � |U |. Because
more VMs than users are typically present, sending the CRS and s′ (aq (ui)) to the nodes
is usually feasible. The nodes, then apply HU on their behalf and send this set back to
the central node, where it is finally aggregated. This would reduce the message volume to
O (2 · (|N | · |R|) + 2 · (|N | · |U |)) and result in the pseudocode in Listing 3.5 and Listing
3.6.

s e t t imeout θ g r e a t e r than µ in seconds
phase1 :

send NRI to c e n t r a l node
phase2 :

every µ seconds :
c o l l e c t RUI o f a l l VMs hosted by ni

apply HV to c o l l e c t e d RUI in order to c a l c u l a t e
heav ine s s o f a l l VMs hosted by ni

wait to r e c e i v e CRS or timeout θ exp i red
i f t imeout θ exp i red :

go to phase1
apply HU to c a l c u l a t e the p a r t i a l heav ine s s o f u s e r s
send t h i s heav ine s s s e t to the c e n t r a l node
wait to r e c e i v e f i n a l HU from the c e n t r a l node

or timeout θ exp i red
i f t imeout θ exp i red :

go to phase1
f o r every VM v hosted by ni :

s e t p r i o r i t i e s o f v accord ing to HV (v) and HU (host (v))
go to phase 2

Listing 3.5: Steps of the FS accurate calculation running on node ni in a star topology

s e t timeout θ g r e a t e r than µ in seconds
phase1 :

wait to r e c e i v e NRI
phase2 :

every µ seconds :
send CRS to nodes
wait to r e c e i v e a l l HU s e t s o f N f or timeout θ exp i red :
aggregate the HU s e t s to a f i n a l HU s e t and

send i t to nodes
remove NRI o f timed out nodes

Listing 3.6: Steps of the FS accurate calculation running on the central node in a star
topology

The central node aggregates all HU sets to a final one. If a node does not send a set, it is
considered not to be participating anymore. Thus, its NRI is removed from the CRS for
the next cycle. A non-participating node, therefore, must first register itself again before
the next cycle takes place.

Chapter 4

Implementation Options

In this chapter, different implementation options are evaluated and compared with one
another, namely:

1. NoSQL data stores

• Distributed document stores, such as MongoDB

• Distributed key-value stores, such as Redis and etcd

2. Distributed messaging systems, such as RabbitMQ and ZeroMQ

4.1 Definition of Comparison Parameters

The comparison relies on two parameters, namely scalability (cf. section 4.1.1) and avail-
ability (cf. section 4.1.2).

4.1.1 Scalability

Scalability is not easy to define [13]. André Bondi [3] distinguished scalability into four
groups:

• Load scalability

• Space scalability

• Space-time scalability

• Structural scalability

In addition, Margaret Rouse defined scalability as “ [...] the ability of a computer ap-
plication or product (hardware or software) to continue to function well when it (or its
context) is changed in size or volume in order to meet a[sic!] user need” [47].

This thesis uses load scalability as a comparison parameter.

17

18 CHAPTER 4. IMPLEMENTATION OPTIONS

4.1.1.1 Load Scalability with Vertical or Horizontal Scaling

Load scalability can be performed in two ways:

• Vertical scaling, or scale-up

• Horizontal scaling, or scale-out

Vertical scaling works such a way that more of a resource is added to a single node to keep
an application working on a higher workload, for example, adding more CPUs, replacing
the CPU with a more powerful one, memory, disk drives, etc. Thus, it is limited in a
technological way.

Horizontal scaling works in such a way that more nodes are added and the workload
is distributed across these nodes. Thus, the hardware used is combined to fulfill the
workload.

In this thesis horizontal scaling is taken into account in comparing the implementation
options.

4.1.2 Availability

Availability, or high availability, is the ability to keep a system running for a long period of
time [46]. As software or systems regularly fail, the planning of backups and failovers has
to be conducted. In this thesis, software is compared, and thus, the ability the software
provides to keep it high available is reviewed.

4.2 NoSQL Data Stores

Modern applications are now meeting requirements that were not met with traditional
relational databases, thus leading to a new development of “not only SQL (NoSQL)” data
stores. NoSQL data stores provide a flexible data model, where fields can be added on the
fly without downtime, and where the fields do not have to be the same across records as in
relational databases. This makes it easy to store and combine the data of any structure,
such as document, graph, key-value, or wide-column. “NoSQL databases were all built
with a focus on scalability, so they all include some form of sharding or partitioning” [23]
(cf. section 4.2.0.1 about sharding and partitioning). With these possibilities, NoSQL
data stores can run on many nodes and scale across on-premises as well as in the cloud,
and some even replicate across the data centers, thus allowing horizontal scaling and
delivering a higher throughput and lower latency than relational databases do [23], [15].
This does not come without a drawback, however. The structured query language (SQL)
is a standard because “all relational databases have the same concept of storing data in
tables” [36]. Although a switch from one relational database to another still requires a
little change, “it is much easier than switching between two different NoSQL data stores.

4.2. NOSQL DATA STORES 19

Because each NoSQL data store has unique aspects in both how its data is stored as well
as how different bits of data relate to each other, no single API manages them all. When
embracing a new NoSQL data store, the developer must invest time and effort to learn
the new query language as well as the consistency semantics” [36].

4.2.0.1 Sharding and Partitioning

Sharding or partitioning is a method of splitting data into multiple instances of a data
store. These instances can be on the same node, but in terms of scalability, partitioning
over multiple nodes makes more sense. In this way, the size of the data stored can be
higher than the memory or the disk space of a single node. Without this splitting, the
limitation would be the vertical scalability (cf. Section 4.1.1.1) of a node. Furthermore,
the load in terms of computation and network bandwidth is shared across the cluster-
composing nodes. This technique facilitates horizontal scaling. The exact implementation
of partitioning differs from one data store to another, which will be discussed in the
following sections.

4.2.1 Distributed Document Data Stores

A document data store is a class of a NoSQL database. This class is discussed in the next
section.

4.2.1.1 MongoDB

MongoDB, Inc. defined MongoDB as: “MongoDB is a document database with the scal-
ability and flexibility that you want with the querying and indexing that you need” [28].
MongoDB allows multiple storage engine to be mixed within a single deployment, namely
WiredTiger, MMAPv1, and the In-Memory Storage Engine. “The storage engine is the
component of the database that is responsible for managing how data is stored, both in
memory and on disk. MongoDB supports multiple storage engines, as different engines
perform better for specific workloads. Choosing the appropriate storage engine for your
use case can significantly impact the performance of your applications” [27]. Comparing
these storage engines may lead to an improvement and is subject to future work. Tra-
ditional relational databases often need to have separate instances for different storage
engines to meet data requirements.

MongoDB supports several data models, such as documents; key-value pairs; flat, table
like structures; and objects with deeply nested arrays and sub-documents [23]. In this the-
sis, only MongoDB version 3.4 and the document data model will be considered, because
for the other data models specific software will be evaluated. Although, in the evaluation
of MongoDB in chapter 5, version 2.6 of MongoDB is deployed. This version suffices to
prove that MongoDB is high available and fault tolerance, that still holds true for version
3.6.

20 CHAPTER 4. IMPLEMENTATION OPTIONS

Data as Documents In MongoDB documents with a similar structure are organized
into collections, which would be a table in a relational database and documents would
be a row. A document contains fields, which could be represented as columns. Although
relational databases spread a record across many tables due to normalization. “Database
Normalization, or simply normalization, is the process of organizing the columns (at-
tributes) and tables (relations) of a relational database to reduce data redundancy and
improve data integrity” [50]. Typically, MongoDB stores all data for a record in a single
document [23]. These records are stored in a binary representation of the JavaScript Ob-
ject Notation (JSON) called the Binary JavaScript Object Notation (BSON). Therefore,
a document looks like a JavaScript object in Listing 4.1.

{
[{

t enant id : "f34d8f71 -7003-4280-a42f -6318d1a4af34" ,
node id : "b0ed0a61-a0b0-4e9f-b755 -340ecc6a98c3" ,
i n s t a n c e i d : "078f97cf -19e0-440d-aa5c -1234a75a57d3" ,
name : "instance -000005a2" ,
h eav ine s s : "24"

} , {
t enant id : "f34d8f71 -7003-4280-a42f -6318d1a4af34" ,
node id : "b0ed0a61-a0b0-4e9f-b755 -340ecc6a98c3" ,
i n s t a n c e i d : "11670529-3cd8-47d3-bda9-2ded5738424f" ,
name : "instance -000006e1" ,
h eav ine s s : "56"

}]
}

Listing 4.1: Possible representation of two documents for use with MongoDB

MongoDB Components MongoDB consists of several components, of which mongod,
mongos, and mongo are used in this thesis. These three components are called the core
processes [24].

The process responsible for handling data requests, data access management, and back-
ground management operations is mongod, which is the primary daemon process and
therefore the core database process [22].

Mongos, which is short for “MongoDB Shard”, is responsible for routing queries in a
MongoDB shard configuration to the shards containing the requested documents [25].

MongoDB can be interacted with a JavaScript shell interface called mongo. It allows one
to “test queries and operations directly with the database” and is intended for system
administrators or developers [20].

Scalability Horizontal scalability in MongoDB is supported through sharding and its
responsible process mongos, and in a limited way, it provides load scalability with replica-
tion by redirecting some clients to read from secondaries (cf. Section 4.2.1.1). A sharded
cluster in MongoDB consists of three components:

4.2. NOSQL DATA STORES 21

shard Each shard contains a subset of the sharded data. Each shard can be deployed as
a replica set (cf. Section 4.2.1.1).

mongos The mongos acts as a query router, providing an interface between client appli-
cations and the sharded cluster.

config servers Config servers store metadata and configuration settings for the cluster.

MongoDB shards the collections in a database, which means the documents are placed
on different nodes.

Availability MongoDB supports high availability and fault tolerance with a replication
mechanism. The replication is done with a group of mongod processes called a replica
set, which maintains the same data and thus provides data redundancy. “A replica set in
MongoDB is a group of mongod processes that provide redundancy and high availability.
The members of a replica set are:

Primary The primary receives all write operations.

Secondaries Secondaries replicate operations from the primary to maintain an identical
data set. [...]” [21].

Arbiter Arbiters do not have copies of the data and are optional. An arbiter maintains
a quorum in a replica set by responding to heartbeat and election requests from
other replica set members.

“The minimum recommended configuration for a replica set is a three member replica
set with three data-bearing members: one primary and two secondary members” [21].
Another option would be to exchange a secondary with an arbiter, resulting in a two
data-bearing member cluster, “but replica sets with at least three data-bearing members
offer better redundancy” [21] and thus is recommended.

4.2.2 Distributed Key-Value Stores

A Key-Value store stores values with a key, as the name implies. This type of database
uses a map, dictionary, or an associative array as the data model. Each key is associated
with a value in a collection, hence the term “key-value pair”. The key can be, depending
on the implementation, a string or hash, or the database may support binary key files,
such as images or other Binary Large OBjects (BLOBs). Key-value stores generally do not
have a query language. They provide commands, such as get, put, and delete to retrieve,
store, and delete data [1].

22 CHAPTER 4. IMPLEMENTATION OPTIONS

Figure 4.1: Architecture of a three node sharded MongoDB cluster with replica sets and
the retrieval process for high availability, fault tolerance, and horizontal scalability.

4.2. NOSQL DATA STORES 23

4.2.2.1 Redis

“Redis is an open source (BSD licensed), in-memory data structure store, used as a
database, cache and message broker. It supports data structures such as strings, hashes,
lists, sets, sorted sets with range queries, bitmaps, hyperloglogs and geospatial indexes
with radius queries. Redis has built-in replication, Lua scripting, LRU eviction, transac-
tions and different levels of on-disk persistence, and provides high availability via Redis
Sentinel and automatic partitioning with Redis Cluster” [42]. Redis is a key-value data
store with the ability to store complex data structures as a value. Redis stores all data
with an in-memory dataset. In addition, the data can be saved on the disk drive at
particular points in time or by persisting commands to a log.

Redis Components To provide high availability, fault tolerance, and horizontal scala-
bility, Redis consists of:

Redis Redis is the main process that stores the data.

Redis Sentinel Redis Sentinel provides high availability for Redis.

Redis Cluster Redis Cluster shards automatically data across Redis instances.

Special Features of Redis Redis supports expiration for the automatic invalidation
of keys, or publish-subscribe for clients subscribing to a key (cf. section 4.3).

Scalability Horizontal scalability is supported through Redis Cluster. Redis Cluster
shards the keys so that a key is a part of a so-called hash slot. In a Redis Cluster are
16384 hash slots. To compute the hash slot of a key, the 16-bit cyclic redundancy check
(CRC) value of the key is taken modulo 16384. A node in a Redis Cluster manages only
a subset of the hash slots. For example, a three-node cluster manages the hash slots
accordingly:

• Node 1 manages slots from 0 to 5500.

• Node 2 manages slots from 5501 to 11000.

• Node 3 manages slots from 11001 to 16383.

To add a node to the cluster only some hash slots from the other nodes have to be shifted
to the new node. The same applies if a node will be removed from the cluster [43].

24 CHAPTER 4. IMPLEMENTATION OPTIONS

Availability To ensure availability, Redis uses Redis Sentinel. Sentinel constantly
checks if master and slave instances are working as expected. If something is wrong
with a monitored Redis instance, Sentinel is also able to send notifications to various re-
cipients. If something happens with the master, Sentinel starts a failover process. In this
process a slave is promoted to a master, whereas the remaining slaves are reconfigured to
use the new master as a replication source. Sentinel also acts as a configuration provider.
It provides information for clients to discover the address of the current Redis master. If
a failover occurs, Sentinel sends the new address to the clients for reconfiguration [45]. To
ensure fault tolerance, Redis has a replication mechanism built into Redis instances, which
must be configured accordingly to replicate data. The replication is done asynchronously
in an one-master-N-slave scheme. However, that in the event of a master failure, data
may be lost. The reason for this is that the master acknowledges a writing to the data
store before the slaves have processed the change:

1. Client writes to Redis master

2. Master acknowledges writing

3. Master replicates with slaves

The reason for doing so is speed, as the master does not have to wait for the acknowl-
edgements of the slaves in the trade-off of consistency.

4.2.2.2 etcd

“etcd is an open-source distributed key value store that provides shared configuration and
service discovery for Container Linux clusters. etcd runs on each machine in a cluster and
gracefully handles leader election during network partitions and the loss of the current
leader” [5] (cf. section 4.2.2.2 for Linux containers). As with Redis, applications “write”
values and are associated with a key in the data store.

Special Features of etcd Besides the basic key-value data store features, such as
write, read, and delete keys, etcd supports nested keys with a tree-like structure, which
is referred to directories, as shown in Listing 4.2.

/ u s e r s
+−−+ f34d8f71 −7003−4280−a42f−6318d1a4af34

+−−+ 078 f97c f −19e0−440d−aa5c−1234a75a57d3
| +−− heav ine s s : ”24”
| +−− name : ”ins tance −000005a2 ”
| +−− node id : ”b0ed0a61−a0b0−4e9f−b755−340ecc6a98c3 ”
|
+−−+ 11670529−3cd8−47d3−bda9−2ded5738424f

+−− heav ine s s : ”56”
+−− name : ”ins tance −000006e1 ”

4.3. DISTRIBUTED MESSAGING SYSTEMS 25

+−− node id : ”b0ed0a61−a0b0−4e9f−b755−340ecc6a98c3 ”

Listing 4.2: Tree representation of a nested etcd key.

Furthermore, etcd supports the expiration of keys, which is called time to live (TTL).
Additionally, etcd allows watching for changes of values with notification to interested
parties.

Linux Containers Containers provides an option for partitioning PRs into isolated
groups. Another possibility for sharing PRs is virtualization, but in contrast to virtual-
ization, containers do not have full operating systems (OSs). Containers share the same
kernel and run instructions native on the CPU without interpretation or emulation. This
gives an application the illusion of running on a separate machine. Sharing resources,
while providing isolation, leads to lower overhead compared with true virtualization [12].

Scalability etcd does not provide a means for horizontal scalability.

Availability etcd is designed to be high available and fault tolerant. It does so with
replicating the data across the cluster members. Therefore, a higher number of members
decreases the write performance. Although, the read operations are load balanced across
the cluster.

4.3 Distributed Messaging Systems

Messaging systems are generally responsible for message routing, message queuing, and
message passing between the threads of a process (in-process communication), between
programs on the same computer, or even over a network (inter-process communication).
Using messaging systems promotes the loose coupling of processes through the asyn-
chronicity of messages, as the sender hands over a message to the message system and
advances its program, and the message system makes sure that the message will be handed
out to a receiver. Sometimes the message can also be transformed to transfer messages
between systems with which it would be impossible to communicate by adapting the
message before delivering. The transformation therefore requires intelligence on how to
adapt messages and is found only in message-oriented middlewares [52]. By providing
the queuing of messages, the communication can be independent timewise; neither the
sender nor the receiver has to be connected at the same time, thus providing resilience for
intermittent network connectivity between processes. The main process for managing a
message system is called message broker. In a message system, multiple message brokers
can be implemented for increasing throughput via load balancing or high availability. As
soon as there are multiple message brokers, routing comes into play. Sometimes the rout-
ing logic is implemented in the messaging system itself, and sometimes the sender and
receiver have to provide information, or both.

26 CHAPTER 4. IMPLEMENTATION OPTIONS

An Organization for the Advancement of Structured Information Standards (OASIS) stan-
dardized implementation is the Advanced Message Queuing Protocol (AMQP) version 1.0
[14], but as RabbitMQ at the time of writing only stably implements AMQP version 0.9.1,
the following sections will discuss the concepts that RabbitMQ supports. The standard-
ization ensures that client interactions are language independent and ensures interoper-
ability between AMQP implementing brokers. The AMQP provides different messaging
interactions as follows:

Request-response pattern The request-response pattern can be compared to a client-
server structure, where a client requests something in particular, for example, a
parametrized request, from the server and the server has to respond exactly to this
client.

Store-and-forward technique Store-and-forward is used when the publisher and sub-
scriber are not connected to the message queue within the same time domain. The
publisher can publish a message to a queue, without having the subscribers online.
When the subscriber comes online, it can fetch the message from the queue. To
fetch stored messages from the queue, the publisher need not to be online.

Publish-subscribe pattern A general publish-subscribe system has multiple publishers
and subscribers. A process can be a publisher and a subscriber at the same time.
The party who provides messages is the publisher. A publisher provides messages
for a particular topic. The consumer of these messages is called the subscriber, who
subscribes for a particular topic that he or she wants, to receive as soon the messages
are published. The publisher does not know which consumers are interested in a
topic.

4.3.1 AMQP Components

The AMQP concept, which can be represented graphically as in Figure 4.2, allots the
deliverance of messages first to an exchange. At the exchange messages are routed or
copied to one or more queues. The messages are stored in the queue until a consumer
fetches them, or they are pushed to the consumer depending on how the consumer has
registered himself or herself with the queue. The AMQP allows an administrator or
client application to define exchanges and queues, which enables the dynamic creation of
queues and exchanges to meet business requirements. The AMQP defines four message
exchanges, which are illustrated in the following sections.

4.3.1.1 Direct Exchange

In a direct exchange, messages are delivered to queues based on the message routing key
(cf. Figure 4.3).

To establish a direct exchange, a queue has to bind to the exchange with routing key K.
When a new message arrives at the direct exchange while routing key R is being held, the
exchange routes it to the queue if K = R [32].

4.3. DISTRIBUTED MESSAGING SYSTEMS 27

Figure 4.2: Concept of message acquisition, routing, queuing, and delivering in the AMQP.

The direct message exchange is often used to distribute tasks in a round robin manner.
Therefore, messages are load balanced among the consumers and not the queues.

The direct exchange has a special case called the default direct exchange. The default
direct exchange is when a queue binds itself to an exchange without a routing key. In
that case, the exchange routes messages with the routing key matching the queue name.

4.3.1.2 Fan-out Exchange

In a fan-out exchange, messages are routed to all bound queues, ignoring the routing
key. This exchange is predestined to broadcast messages, for example, to update the
configuration, state, or logs in a distributed application. This is graphically represented
in Figure 4.4.

4.3.1.3 Topic Exchange

In a topic exchange, messages are routed to bound queues matching the routing key or a
pattern of it. The topic exchange is used when the need for a publish-subscribe pattern
arises or when messages must be multi-casted.

In Figure 4.5, three different routing key patterns are defined for routing messages to the
specific queues:

• # matches all routing keys.

Figure 4.3: A direct exchange called example delivers messages with routing key K ex-
ample to the bound queue called example-jobs.

28 CHAPTER 4. IMPLEMENTATION OPTIONS

Figure 4.4: A fan-out exchange routing messages to three bound queues ignoring the
routing key.

Figure 4.5: A topic exchange routing messages to three bound queues with three different
routing key patterns.

4.3. DISTRIBUTED MESSAGING SYSTEMS 29

• *.high matches all routing keys ending with “.high”.

• example.* matches all routing keys starting with “example.”.

For example, if message m contains routing key “example.high” it would get delivered to
all three message queues as it matches all three patterns.

4.3.1.4 Header Exchange

A header exchange routes messages on multiple attributes in the message header instead
of a routing key. It ignores the given routing key attribute and takes the attributes from
the header attribute instead. If a queue is bound to a header exchange with more than
one header to match, one more attribute is needed, namely, if all of the headers or just
any must be matched. This is called the x-match argument. The benefit of a header
exchange instead of a direct exchange is that the headers can be integers, hashes, etc.,
instead of a string.

queue bind (
exchange=’example ’ ,
queue=’ important−backend−l ogs ’ , arguments={

’ s e v e r i t y ’ : ’ e r ro r ’ ,
’ host−group ’ : ’ backend ’ ,
’ x−match ’ : ’ a l l ’ })

Listing 4.3: Code snippet in python to bind queue important-backend-logs to header
exchange example requires to match all header attributes. In particular, a message
with severity matching error and host-group matching backend gets routed to the queue
important-backend-logs.

4.3.1.5 Combinations of Exchanges

The AMQP does not limit the user to binding an exchange directly to a queue. Ex-
changes can be bound together as well. For example, an application called app consists
of background workers, loggers, and tracers. The background workers are responsible for
cropping and resizing images. The tracers should receive all log messages, whereas the
loggers should receive only logs with severity levels critical and emergency. A graphical
representation of this application is in Figure 4.6. In Figure 4.6, all producers send their
messages to the Application exchange, which is of the direct exchange type. The Applica-
tion exchange sends all messages with a routing key starting with image to their bound
queues. Messages with the routing key logs will be copied to the traces queue and to the
Log exchange. Messages copied to the Log exchange will be processed further via this
header exchange. Multiple consumers can get their messages from their desired queues.
This enables the use of specialized applications or hardware for processing these messages.

30 CHAPTER 4. IMPLEMENTATION OPTIONS

Figure 4.6: An example of an application with multiple exchanges and multiple queues.

4.3.1.6 Message Acknowledgement

Sometimes it is necessary to acknowledge that a consumer successfully received or pro-
cessed a message. As soon as the message broker receives the acknowledgement, the
message is deleted from the queue. As networks and applications fail, the AMQP has the
acknowledgement feature allotted. For example, a monitoring application may live with
lost data and can acknowledge a message upon receiving, whereas a medical application
may not. When a broker does not receive an expected acknowledgement, the message will
be re-queued and delivered to other consumers, if connected to this queue [32].

4.3.2 RabbitMQ

One of the most popular and open-source message brokers is RabbitMQ [35]. RabbitMQ
implements the AMQP, but is not limited to it; it supports others as well, such as
the Hypertext Transfer Protocol (HTTP), Streaming Text Oriented Messaging Proto-
col (STOMP), and Message Queue Telemetry Transport (MQTT) protocols. RabbitMQ,
despite the fact that many message brokers are centralized, can be deployed in a dis-
tributed manner to load-balance the workload, improve the throughput, and facilitate a
federated deployment. Federation bears the benefit of connecting brokers together with-
out being in the same network or same cluster, for example availability zones. RabbitMQ
is extensible through plugins.

4.3. DISTRIBUTED MESSAGING SYSTEMS 31

4.3.2.1 Scalability

Scalability is provided through plugins, such as rabbitmq sharding [8] and rabbitmq con-
sistent hash exchange [7] but come with drawbacks. One caveat with sharding is, that
the sharding plugin creates multiple queues behind the scenes to act as a big queue. The
problem with this is that the numbers of consumers and shards for a queue need to be
equal; otherwise, some queues will never get drained. Another drawback is, that the total
ordering in the queue is lost. With the consistent hash exchange plugin the hashing is
done on a routing key basis and not per message. The most basic way of implementing
load balancing is to have the masters of queues on different nodes when RabbitMQ is
deployed clustered (cf. section 4.3.2.2).

4.3.2.2 Availability

Availability is supported by clustering the RabbitMQ message broker. Clustering connects
the nodes to a single logical broker. Exchanges are mirrored across all nodes, but queues
are not by default. Queues are located on a single node unless otherwise requested. A
client connecting to any node sees all queues in the cluster, though [33]. When a queue is
mirrored, one master and several mirrors exist. All operations on a queue will be done on
the master queue while being applied in the same order on the mirrors to keep the same
state. If the master fails the longest running mirror is promoted to be the master [34].

4.3.3 ZeroMQ

ZeroMQ, also known as ØMQ, 0MQ, or zmq, is a radically different way of providing
a message system. In contrast to the AMQP, where it is a family of messaging proto-
cols and needs an implementation, for example, the ready-to-use application RabbitMQ,
ZeroMQ is more like a build-your-own messaging system. ZeroMQ is a library of message
functionality, which needs to be embedded in an application. Although the AMQP has
the broker as a building block of messaging, ZeroMQ does not have a predefined broker,
as it aims to be brokerless and therefore massively distributable. ZeroMQ does come with
a library of broker-like functionality but needs to be included in every application where
needed. Brokers are called devices in ZeroMQ parlance. ZeroMQ works like a Transmis-
sion Control Protocol (TCP) socket but is not limited to TCP, with added transport and
messaging patterns. It treats queues as transport buffers and does not expose queues at
all, unlike the AMQP, which requires that all queues be managed explicitly at one central
place. Therefore, it appears “ [...] like having small brokers all over the network” [53].
These features allow to establish similar patterns and techniques as discussed in section
4.3, if implemented properly.

4.3.3.1 Availability and Scalability

Availability and scalability are not given a priori. The reason is that ZeroMQ is a library
for building a custom-made distributed application for a particular problem. Therefore,

32 CHAPTER 4. IMPLEMENTATION OPTIONS

the availability and scalability depend on how this application is written with ZeroMQ.

Chapter 5

Evaluation

In the evaluation, the applications discussed in Chapter 4 are deployed singularly in
different topologies, if suitable, as discussed in Chapter 3, or are combined to eliminate
specific shortcomings. The evaluation files are stored on the attached CD (cf. Appendix
B). Appendix A presents instructions for running discussed scenarios. The evaluation is
a proof-of-concept, if the application can be used for designated topologies. Further, high
availability and fault-tolerance is verified.

5.1 Evaluation Environment

The evaluation of the applications is done in virtual machines, running on a Microsoft
Surface Pro 4 with an Intel i7-6650U CPU, 16GB RAM, 256GB SSD, and with Oracle’s
VirtualBox 5.1 as a hypervisor. Each VM is configured with two VCPUs, 1 GB RAM,
40 GB dynamic expanding virtual disk, and two network interfaces, one to communicate
with the host and one to communicate directly between the VMs. At least two VMs get
instantiated, whereas the last VM is always the client node.

5.1.1 Vagrant

For reproducible development environments, a virtualization manager called Vagrant is
used. Vagrant simplifies setup of multi-node clusters with an expected outcome. It can
instantiate virtual machines with specified amount of memory or virtual central process-
ing units (VCPUs), manages the network connectivity, and other PRs, which can be
virtualized [10].

5.1.2 Ansible

Ansible is a configuration automation tool. It configures systems and orchestrates environ-
ments with simplicity and ease-of-use. This enables software to be deployed on multiple

33

34 CHAPTER 5. EVALUATION

nodes and orchestrates them together [40]. Ansible is used to deploy the software used in
the following sections.

5.2 Setting Up a MongoDB Server

With Vagrant, the environment of two nodes is set up quickly. Ansible provisions MongoDB
on the first node in four steps. MongoDB recommends to install MongoDB from their
own personal package archive (PPA) instead of the Ubuntu package repository, requiring
Ubuntu to be instructed with adding the official MongoDB repository. After an update
of the package list with sudo apt-get update, the installation of MongoDB is done with
sudo apt-get install mongodb-org. Following the installation, sudo systemctl en-

able mongod ensures that MongoDB is automatically started upon a reboot. MongoDB
is finally installed and ready to use.

The scenario files can be found on the CD at /Demos/mongodb.

5.2.1 Evaluation of a MongoDB Server

MongoDB as a database reflects the star topology. Therefore, it is important to ensure
high availability and fault tolerance as discussed in Section 3.4. As expected, a single
node neither provides both. Nevertheless, MongoDB supports a cluster deployment to
fulfill this need, which is evaluated in Section 5.3.1.

One advantage of MongoDB is that OpenStack’s telemetry service Ceilometer already
uses it as a first class datastore [29]. If OpenStack is deployed with the telemetry service,
MongoDB could be shared, reducing management work of an additional software.

5.3 Setting Up a MongoDB Cluster

Vagrant sets up a four nodes environment. Ansible provisions a MongoDB Cluster in
a configuration shown in Figure 4.1. The mongos service is placed on the client node.
Although, it can be placed separately on dedicated nodes [26]. The installation consists
of five steps:

1. The mongod services are deployed.

2. The replication set between these mongod nodes is set up.

3. The configuration servers are deployed on the mongod nodes.

4. The mongos service is deployed on the client node.

5. The sharding information is given to the mongos service.

5.3. SETTING UP A MONGODB CLUSTER 35

The deployment is done with Ansible files from the Ansible example repository [39] and
adapted to a more recent version of Ansible. These files, expect CentOS 6 as an OS.
Nevertheless, a MongoDB Cluster can be set up on Ubuntu, too.

The scenario files can be found on the CD at /Demos/mongodb-cluster.

5.3.1 Evaluation of a MongoDB Cluster

Requesting documents from a sharded cluster should contain the shard key [26]. If the
shard key is included in the query, mongos can determine on which shards the requested
documents are stored and only contact this subset of nodes. Otherwise, the query gets
routed to any node, which represents a broadcast, which should be avoided. Thus, care
must be taken to choose a shard key, upon which the most requests are made. Therefore,
if the partial heaviness of users are stored (cf. Section 6 and Figure 6.2), the user ID is
recommended to use as a shard key.

A synthetic data set has been used to evaluate fault tolerance and availability. The format
of this data set is shown in Listing 5.1. The data set consists of 50 distinct tenant IDs,
30 distinct node IDs, and a random partial heaviness of users on the given node. For
simplicity, each nodes hosts a VM of any user, resulting in a data set of 1500 documents.
The data set can be found on the CD at /Demos/mongodb-cluster/dataset.js.

[
{

t enant id : "GUID" ,
node id : "GUID" ,
h eav ine s s : "INTEGER"

} ,{
t enant id : "GUID" ,
node id : "GUID" ,
h eav ine s s : "INTEGER"

} ,
.
.
.

]

Listing 5.1: Representation of the synthetic data set used to test sharding and replication.

When data is stored in this scheme, each node that wants to calculate the heaviness of
an user requests documents with a matching tenant id key, and aggregates the returning
documents. Every time a node updates its heaviness of users in MongoDB, it has to
remove all documents belonging to itself. In case of a failed node, data of it would
still be in the data store. MongoDB provides a feature to remove data after a specific
time automatically, called expireAfterSeconds [19]. Thus, handling failures of the nodes
transparently.

36 CHAPTER 5. EVALUATION

5.3.1.1 Availability and Fault Tolerance

The availability and fault tolerance can be tested with shutting down MongoDB nodes.
Requesting a heaviness of an user, which was identified to be on shard node1, was still
available after removing node1. The removal is done with vagrant suspend node1, which
pauses the VM, rendering it unavailable for the other nodes. This proves, that MongoDB
provides high availability and fault tolerance when using replica sets.

5.4 Setting Up a Redis Master-Slave Environment

Figure 5.1: High available and fault tolerant Redis setup for evaluation.

Vagrant is configured to setup seven nodes, which Ansible provisions according Figure
5.1. The environment consists of one master and two slaves to provide redundancy. Three
sentinels monitor the master, to provide a quorum of at least two and a failover of the
master can take place. The provisioning is done with Ansible files from David Wittmann
[51] and adapted for this environment.

The scenario files can be found on the CD at /Demos/redis-cluster.

5.4.1 Evaluation of a Redis Master-Slave Environment

Redis as a data store is a centralized node, thus it is designated for a star topology.
Thereby, it must be made high available and fault tolerant. The evaluation is done with
a synthetic data set and the Node.js client node-redis-sentinel-client from Ben Buckman

5.5. RABBITMQ 37

[4]. The data set consists of an array of key-value pairs containing 50 distinct tenant IDs
and random user heaviness. The array contains 1500 key-value pairs.

In order that a node can calculate the heaviness of an user, it has to retrieve a list
containing the heaviness of an user from each node accommodating a VM of that user.
Thus, requires an expansible Redis data type, which the list fulfills.

5.4.1.1 Availability and Fault Tolerance

After inserting the data set, a random key was picked. With the key, the list was retrieved
from Redis. After this, the master node was suspended to let it failover to a slave.
Subsequently, the same list with the same key was retrieved, showing that the failover has
happened successfully and fault tolerance is given.

5.4.1.2 Redis Expiration

In Redis, expiration dates can only be set on keys and not values [41]. Thus, makes it
difficult to remove stale data automatically from complex data structures, such as a list.

5.5 RabbitMQ

RabbitMQ provides a simple approach to be high available, with the caveat of lesser
throughput. Also, RabbitMQ has limited horizontal scalability, Although, it scales verti-
cally. Thus, it was forbore from doing an implementation. Nevertheless, some implemen-
tation options are discussed.

Using RabbitMQ in a star topology as a central node as a broadcaster is not feasible. As
RabbitMQ is not a data store, only self-contained messages can be distributed with it.
Thus, a ring topology is desired, to get a linear message volume. For example, for each
participating node, a queue with the index of the node within the ring as a name should
be created, denoted as the output queue. Thus, the message passed in these queues, can
be recovered by checking its output queue if the message is still there. After the recovery,
the orphaned queue could get removed. Still, a master node is required to maintain the
order. Although, it would be more practical to implement it in ZeroMQ, which is more
flexible and a custom application has to be programmed anyway.

5.6 ZeroMQ

As discussed in Section 4.3.3, ZeroMQ is not an application per se, but an embeddable
messaging library. Thus, it cannot be evaluated without being implemented in an appli-
cation. Although, some implementation options are given.

38 CHAPTER 5. EVALUATION

ZeroMQ could be implemented in a partially meshed topology. For example, a node only
subscribes to notifications of users it hosts VMs for, as it is assumed that not all nodes
provides hosting for the same set of users, results in a partially meshed topology. As
ZeroMQ is inherently distributed, it needs to know where to subscribe from, in particular
which nodes hosts VMs of which user. OpenStack’s ZeroMQ implementation uses a Redis
server as a “matchmaker”, which is described in [16]. A similar approach could be used
in this topology. Each node stores its endpoint at the Redis server with the users as the
key, for example, in a list structure (cf. Figure 5.2). Thus, a node looks its users up
and subscribes the endpoints from the retrieved nodes. The lookup table is only needed
during build up of the connections. Nevertheless, if there is a change in topology, or a new
user appears on a node, all nodes have to recheck the lookup table and do adjustments
of the subscriptions. Therefore, in a busy cloud this implementation may not be wanted.
Another caveat in Redis, is the expiration only applies on keys and not on values (cf.
Section 5.4.1.2). Thus, an algorithm to remove lost nodes from the Redis lists must be
defined.

Figure 5.2: Lookup table to find nodes providing hosting for specific users.

Another implementation option is to use ZeroMQ in a ring topology. A similar approach
as the aforementioned can be made. Storing its endpoint in a Redis list, the order in a
ring could be established. Redis can notify nodes via its publish-subscribe pattern about
changes on a key [44]. Currently, the notification is not reliable, that means, when a client
disconnects and reconnects for a period of time, all notifications sent during that time,
will be lost. Thus, this renders it unfeasible. Another solution would be, as a node only
connects to its successor, to establish a heartbeat to detect a failure, or simple, when the
vector cannot be sent to the successor. When a failure occurs, a simple solution would
be, to look up the successor of the node which failed and send the vector to this node.

When the API discussed in Chapter 6 is implemented, several implementations with
ZeroMQ can be conveniently tested.

5.7. COMBINATIONS 39

5.7 Combinations

The implementation options do not have to be standalone. Combinations allow to mitigate
drawbacks of single topologies or applications.

5.7.1 MongoDB and Redis

Redis is often used as a cache [17] layer between the data store layer and the application
layer. The idea behind this setup is to reduce the workload on the data store layer. As
there are many same queries against the data store layer from different nodes, e.g. get
heaviness of user uk, but the result does not change for µ seconds the result of the query
could be cached in the Redis server. This reduces the calculation load on the data store
layer. The trade-off would be an increased message count, as in the worst case the first
step (i) the cache layer must be contacted if it has a precalculated value stored. If it
does, it is called a cache-hit, if it does not, it is called a cache-miss. If not (ii), one of the
compute nodes reach out to the data store layer and get the new heaviness of users from
it, calculate the new heaviness of users, which then (iii) the node stores in the cache layer
for other nodes. Thus, the expiration of keys in Redis can be used.

Another option for this implementation is to use the publish-subscribe mode of Redis.
This way, the subsequent accesses at the cache layer will save one trip, as the result would
be distributed to the nodes, which are interested in that particular result.

40 CHAPTER 5. EVALUATION

Chapter 6

Designing of an API

To propose an API, first, the parts required to calculate the heaviness of users were
identified. These were NRIs, RUIs, CRS, s′, HV s, and partial HUs.

These parts were mapped to the entity, which had knowledge of these. In Figure 6.1, it
is shown that the API has knowledge about or knows how to get information about the
CRS, s′, and partial HUs, for example. Meanwhile, the FS is can calculate the HV set of
its VMs with the ability to get its RUIs and the heaviness of users when it receives partial
HUs. The FS also knows about its nodes’ NRIs and delivers them to the API.

The procedure for the FS to communicate with the API is shown in Figure 6.2 in a
sequence diagram.

This sequence in Figure 6.2 enables the possible messaging implementations to act as a
server responding to a client, but this order must be maintained. When this order is kept,
the sequence in the FS to calculate the heaviness of an user does not need to be adapted to
different messaging implementations. An example for three topologies and their operation
executions is given in Table 6.1.

For operation request of all HU , the old partial HU must be in the return vector as well.
The reason for this is that the FS always subtracts its old partial HU upon aggregation
for the full HU . This, enables messaging patterns that keep the state of the old HU in the
full HU and must be subtracted, such as the ring topology.

The proposed API consists of six methods, namely:

Update NRI This method is necessary for updating the CRS.

Request CRS This method is responsible for calculating the CRS or for retrieving NRIs
as needed. Finally, the CRS must be returned.

Request s′ (aq (ui)) This method retrieves the value from a responsible entity.

Update partial HU The implementation of this method may differ from one topology
to another, but is mainly responsible for being sent somewhere where this value is
needed.

41

42 CHAPTER 6. DESIGNING OF AN API

Figure 6.1: Knowledge of parts required for heaviness of users calculation.

Operation Full Mesh Ring Star

Receive NRI
Send NRI to the remaining
n− 1 nodes.

Wait until vector arrives
add NRI to vector.
Send vector to successor.

Send NRI to central node.

Request of CRS
and s′ (aq (ui))

Wait for all n− 1 nodes’ NRI
and respond with CRS.
Acquire s′ (aq (ui))
from responsible entity
and respond with it.

Wait until vector arrives
read CRS from vector
and respond with it.
Acquire s′ (aq (ui))
from responsible entity
and respond with it.

Request CRS from
central node
and respond with it.
Acquire s′ (aq (ui))
from responsible entity
and respond with it.

Receives partial HU
Send partial HU

to all remaining nodes n− 1.

Wait until vector arrives
attach partial HU

to received vector.

Send partial HU

to central node.

Request of all HU

Wait for all n− 1 nodes’ HU ,
attach old and new partial HU

to the set, and respond with it.
Respond with vector.

Request all HU

from central node,
attach old partial HU to it,
and respond with it.

receive full HU Do nothing.
Update vector and
send it to successor.

Do nothing.

Table 6.1: Example of operations that the messaging implementations complete with
different topologies behind the API upon request of the FS.

43

Figure 6.2: Interaction between FS and API for a calculation of heaviness of users.

44 CHAPTER 6. DESIGNING OF AN API

Request all HU This method is responsible for retrieving all HUs, including the old and
new partial HU of the requesting FS.

Update HU The implementation of this method may differ from one topology to another,
but can be used to inform other nodes about the new HU .

Chapter 7

Summary and Conclusions

The development of logical message flow topologies in Chapter 3 has shown that a reduc-
tion of a linear message volume is possible, namely the ring and the star topology. Also,
the pitfalls and caveats of an implementation have been highlighted. The ring topology
may be the best in terms of the message volume, but is difficult to implement efficiently,
such as the master election, the master failover, and recovery from a lost node or vector.
Thus, the implementation has to be done carefully, or the system will break easily. The
star topology is easier to implement, but care must be taken to make the central node
highly available and fault tolerant.

Taking into account that MongoDB is easily made scalable and highly available, featuring
sharding, built-in replication, and a query router, the recommended implementation is a
star topology.

The API presented in Chapter 6 allows for the flexible implementation of different topolo-
gies. An implementation must expose the six proposed methods to the FS, and result in
no change in the sequence of the FS program.

7.1 Future Work

The ring topology needs a rock-solid implementation, which could be achieved with
ZeroMQ. Still, solutions for the mentioned implementation difficulties must be found.

As message volume reduction is a key point, the developed logical message flow topolo-
gies should be implemented with the presented API and then benchmarked to test their
efficiency.

The topology, bandwidth, and transport of a network could be evaluated, because, for
example, a single message can get splitted into multiple network packets.

45

46 CHAPTER 7. SUMMARY AND CONCLUSIONS

Bibliography

[1] Aerospike, Inc. What is a Key-Value Store? [Online; accessed June 5th, 2017]. url:
http://www.aerospike.com/what-is-a-key-value-store/.

[2] B. Albert and A. P. Jayasumana. FDDI and FDDI-II: architecture, protocols, and
performance. first. Artech House Telecommunications Library. Artech House, Jan.
1994.

[3] A. B. Bondi. “Characteristics of Scalability and Their Impact on Performance”.
In: Proceedings of the 2Nd International Workshop on Software and Performance.
WOSP ’00. Ottawa, Ontario, Canada: ACM, 2000, pp. 195–203. isbn: 1-58113-195-
X. doi: 10.1145/350391.350432. url: http://doi.acm.org/10.1145/350391.
350432.

[4] B. Buckmann. Redis Sentinel Client for Node.js. [Online; accessed June 8th, 2017].
url: https://github.com/DocuSignDev/node-redis-sentinel-client.

[5] CoreOS, Inc. Getting started with etcd. [Online; accessed June 5th, 2017]. url:
https://coreos.com/etcd/docs/latest/getting-started-with-etcd.html.

[6] S. B. Davidson, H. Garcia-Molina, and D. Skeen. “Consistency in a Partitioned
Network: A Survey”. In: ACM Comput. Surv. 17.3 (Sept. 1985), pp. 341–370. issn:
0360-0300. doi: 10.1145/5505.5508. url: http://doi.acm.org/10.1145/5505.
5508.

[7] GitHub. RabbitMQ Consistent Hash Exchange Type. [Online; accessed June 9th,
2017]. url: https://git.io/vHAH1.

[8] GitHub. RabbitMQ Sharding Plugin. [Online; accessed June 9th, 2017]. url: https:
//git.io/vHAHD.

[9] J. Hammons. Bash on Ubuntu on Windows - Installation Guide. [Online; accessed
May 2nd, 2017]. 2017. url: https://msdn.microsoft.com/en-us/commandline/
wsl/install_guide.

[10] Hashicorp. Introduction to Vagrant. [Online; accessed May 1st, 2017]. url: https:
//www.vagrantup.com/intro/index.html.

[11] Hashicorp. Vagrant and Windows Subsystem for Linux. [Online; accessed May 2nd,
2017]. url: https://www.vagrantup.com/docs/other/wsl.html.

[12] M. Helsley. LXC: Linux container tools. [Online; accessed June 5th, 2017]. 2009. url:
https://www.ibm.com/developerworks/linux/library/l-lxc-containers/.

47

48 BIBLIOGRAPHY

[13] M. D. Hill. “What is Scalability?” In: SIGARCH Comput. Archit. News 18.4 (Dec.
1990), pp. 18–21. issn: 0163-5964. doi: 10.1145/121973.121975. url: http:

//doi.acm.org/10.1145/121973.121975.

[14] john@rjohara.com. AMQP 1.0 Becomes OASIS Standard. [Online; accessed June
7th, 2017]. url: http://www.amqp.org/node/102.

[15] M. Gentz, S. Deng, lucasfmo, and C. Caserio. NoSQL im Vergleich zu SQL. [Online;
accessed April 16th, 2017]. Mar. 14, 2017. url: https://docs.microsoft.com/de-
de/azure/documentdb/documentdb-nosql-vs-sql.

[16] S. Mannhart. “Development and Evaluation of an OpenStack Extension to Enforce
Cloud-wide, Multi-resource Fairness during VM Runtime”. bachelor thesis. Zürich,
Switzerland: Universität Zürich, Communication Systems Group, Department of
Informatics, Mar. 2016.

[17] Microsoft Corporation. Azure Redis Cache. [Online; accessed June 5th, 2017]. url:
https://azure.microsoft.com/de-de/services/cache/.

[18] Microsoft Corporation. Was ist ein Azure AD-Verzeichnis? [Online; accessed May
31st, 2017]. url: https://msdn.microsoft.com/library/azure/jj573650.

aspx#BKMK_WhatIsAnAzureADTenant.

[19] MongoDB, Inc. Expire Data from Collections by Setting TTL. [Online; accessed
April 30th, 2017]. url: https://docs.mongodb.com/manual/tutorial/expire-
data/.

[20] MongoDB, Inc. mongo. [Online; accessed May 26th, 2017]. url: https://docs.
mongodb.com/manual/reference/program/mongo/.

[21] MongoDB, Inc. mongo. [Online; accessed May 26th, 2017]. url: https://docs.
mongodb.com/manual/core/replica-set-members/.

[22] MongoDB, Inc. mongod. [Online; accessed May 26th, 2017]. url: https://docs.
mongodb.com/manual/reference/program/mongod/.

[23] MongoDB, Inc. MongoDB Architecture. [Online; accessed April 12th, 2017]. url:
https://www.mongodb.com/mongodb-architecture.

[24] MongoDB, Inc. MongoDB Package Components. [Online; accessed May 26th, 2017].
url: https://docs.mongodb.com/manual/reference/program/.

[25] MongoDB, Inc. mongos. [Online; accessed May 26th, 2017]. url: https://docs.
mongodb.com/manual/reference/program/mongos/.

[26] MongoDB, Inc. mongos. [Online; accessed June 7th, 2017]. url: https://docs.
mongodb.com/manual/core/sharded-cluster-query-router/.

[27] MongoDB, Inc. Storage Engines. [Online; accessed April 30th, 2017]. url: https:
//docs.mongodb.com/manual/core/storage-engines/.

[28] MongoDB, Inc. What is MongoDB? [Online; accessed April 12th, 2017]. url: https:
//www.mongodb.com/what-is-mongodb.

[29] OpenStack Foundation. Configuring the Telemetry (ceilometer) service. [Online; ac-
cessed May 1st, 2017]. url: https://docs.openstack.org/developer/openstack-
ansible/mitaka/install-guide/configure-ceilometer.html.

49

[30] OpenStack Foundation. OpenStack Wiki: ZeroMQ. [Online; accessed March 10th,
2017]. 2014. url: https://wiki.openstack.org/wiki/ZeroMQ.

[31] OpenStack Foundation. Tenant. [Online; accessed May 31st, 2017]. url: https:
//wiki.openstack.org/wiki/Tenant.

[32] Pivotal Software, Inc. AMQP 0-9-1 Model Explained. [Online; accessed June 7th,
2017]. url: https://www.rabbitmq.com/tutorials/amqp-concepts.html.

[33] Pivotal Software, Inc. Clustering Guide. [Online; accessed June 9th, 2017]. url:
https://www.rabbitmq.com/clustering.html.

[34] Pivotal Software, Inc. Highly Available (Mirrored) Queues. [Online; accessed June
9th, 2017]. url: https://www.rabbitmq.com/ha.html.

[35] Pivotal Software, Inc. RabbitMQ - Messaging that just works. [Online; accessed June
8th, 2017]. url: https://www.rabbitmq.com/#getstarted.

[36] Pivotal Software, Inc. Understanding NoSQL. [Online; accessed April 16th, 2017].
url: https://spring.io/understanding/NoSQL.

[37] P. Poullie, S. Mannhart, and B. Stiller. Defining and Enforcing Fairness Among
Cloud Users by Adapting Virtual Machine Priorities During Runtime. Tech. rep. IFI-
2016.04. Zürich, Switzerland: Universität Zürich, Mar. 2016. url: https://files.
ifi.uzh.ch/CSG/staff/poullie/extern/publications/IFI-2016.04.pdf.

[38] P. Poullie, S. Mannhart, and B. Stiller.“Virtual machine priority adaption to enforce
fairness among cloud users”. In: 2016 12th International Conference on Network and
Service Management (CNSM). Oct. 2016, pp. 91–99. doi: 10.1109/CNSM.2016.
7818404.

[39] Red Hat, Inc. GitHub - ansible/ansible-examples. [Online; accessed May 22nd, 2017].
url: https://git.io/vHAHi.

[40] Red Hat, Inc. HOW ANSIBLE WORKS. [Online; accessed May 30th, 2017]. url:
https://www.ansible.com/how-ansible-works.

[41] Redis Labs. EXPIRE key seconds. [Online; accessed June 5th, 2017]. url: https:
//redis.io/commands/expire.

[42] Redis Labs. Introduction to Redis. [Online; accessed June 5th, 2017]. url: https:
//redis.io/topics/introduction.

[43] Redis Labs. Redis cluster tutorial. [Online; accessed June 5th, 2017]. url: https:
//redis.io/topics/cluster-tutorial.

[44] Redis Labs. Redis Keyspace Notifications. [Online; accessed June 5th, 2017]. url:
https://redis.io/topics/notifications.

[45] Redis Labs. Redis Sentinel Documentation. [Online; accessed June 5th, 2017]. url:
https://redis.io/topics/sentinel.

[46] M. Rouse. What is high availability (HA)? - Definition from WhatIs.com. [On-
line; accessed May 21st, 2017]. Sept. 2005. url: http : / / searchdatacenter .

techtarget.com/definition/high-availability.

[47] M. Rouse. What is scalability? - Definition from WhatIs.com. [Online; accessed
May 21st, 2017]. Apr. 2006. url: http://searchdatacenter.techtarget.com/
definition/scalability.

50 BIBLIOGRAPHY

[48] L. Schubert and K. Jeffery. Advances in clouds: Research in future cloud computing.
Tech. rep. Luxembourg: European Commission, Publications Office of the European
Union, 2012.

[49] Teach-ICT.com, Ltd. Star Networks. [Online; accessed May 17th, 2017]. url: http:
//www.teach-ict.com/gcse_new/networks/topologies/miniweb/pg4.htm.

[50] Wikipedia. Database normalization — Wikipedia, The Free Encyclopedia. [Online;
accessed May 30th, 2017]. 2017. url: https://en.wikipedia.org/w/index.php?
title=Database_normalization&oldid=781823261.

[51] D. Wittmann. ansible-redis. [Online; accessed June 8th, 2017]. url: https : / /

github.com/DavidWittman/ansible-redis#master-slave-replication.

[52] WSO2, Inc. Key Concepts. [Online; accessed June 7th, 2017]. url: https://docs.
wso2.com/display/EI611/Key+Concepts#KeyConcepts-Messagetransformation.

[53] ZeroMQ Community. Welcome from AMQP. [Online; accessed May 30th, 2017].
url: http://zeromq.org/docs:welcome-from-amqp.

Abbreviations

AMQP Advanced Message Queuing Protocol

BLOB Binary Large OBject
BSON Binary JavaScript Object Notation

CRC cyclic redundancy check
CRS cloud resource supply
CSG Communications Systems Group

FDDI Fiber Distributed Data Interface
FS Fairness Service

GM Greediness Metric

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

MQTT Message Queue Telemetry Transport

NoSQL not only SQL
NRI node resource information

OASIS Organization for the Advancement of Struc-
tured Information Standards

OS operating system

PPA personal package archive
PR physical resource

RTT round trip time
RUI runtime utilization information

SQL structured query language
STOMP Streaming Text Oriented Messaging Protocol

TCP Transmission Control Protocol

51

52 ABBREVIATIONS

TTL time to live

VCPU virtual central processing unit
VM virtual machine
VR virtual resource

List of Figures

3.1 Representation of a fully meshed topology. 6

3.2 Representation of a ring topology. 6

3.3 Representation of a star topology. 7

3.4 Adding a new node to the fully meshed topology. 8

3.5 Adding a new node to the ring topology. 9

3.6 Representation of a multi-ring topology. 10

3.7 Removing a node in a ring topology in two different cases. 10

4.1 Architecture of a three node sharded MongoDB cluster with replica sets
and the retrieval process for high availability, fault tolerance, and horizontal
scalability. 22

4.2 Concept of message acquisition, routing, queuing, and delivering in the
AMQP. 27

4.3 A direct exchange called example delivers messages with routing key K
example to the bound queue called example-jobs. 27

4.4 A fan-out exchange routing messages to three bound queues ignoring the
routing key. 28

4.5 A topic exchange routing messages to three bound queues with three dif-
ferent routing key patterns. 28

4.6 An example of an application with multiple exchanges and multiple queues. 30

5.1 High available and fault tolerant Redis setup for evaluation. 36

5.2 Lookup table to find nodes providing hosting for specific users. 38

6.1 Knowledge of parts required for heaviness of users calculation. 42

6.2 Interaction between FS and API for a calculation of heaviness of users. . . 43

53

54 LIST OF FIGURES

List of Tables

6.1 Example of operations that the messaging implementations complete with
different topologies behind the API upon request of the FS. 42

55

56 LIST OF TABLES

Appendix A

Installation Guidelines

The installation instructions are different for Microsoft Windows 10, hereinafter referred
to as “Windows”, than for Canonical Ubuntu 16.04, hereinafter referred to as “Ubuntu”.
Although the demos run on Windows, it is recommended to use Ubuntu.

In a terminal, special indicators are used as follows:

• $ denotes the standard user

• # denotes the root user

A.1 Windows Preparations

A.1.1 1. Step - Installing Oracle’s VirtualBox

The installation package for Oracle’s VirtualBox 5.1 is located on the CD in the folder
\Software\Windows\VirtualBox-5.1.22-115126-Win.exe or can be downloaded from
the product’s website https://www.virtualbox.org/wiki/Downloads.

A.1.2 2. Step - Installing Windows Subsystem for Linux (WSL)

Ansible does not support Windows as a control machine. Although, Windows 10 supports
a subsystem to support Linux to a certain degree, which can be used to run Ansible. The
requirement to use WSL is to have at least Windows 10 Anniversary Update (build 14393)
or later. The instructions are taken from [9] and a copy of this website is located on the CD
at Websites\InstallationInstructions\BashonUbuntuonWindows-InstallationGuide.
html. The installation is done in two steps:

1. Turn-on developer mode

57

58 APPENDIX A. INSTALLATION GUIDELINES

(a) Open Settings → Update and Security → For developers

(b) Select the Developer Mode radio button

2. Enable the “Windows Subsystem for Linux (beta)” feature via the command-line:

(a) Open a PowerShell prompt as administrator and run:

Enable−WindowsOptionalFeature \
−Online −FeatureName Microso f t−Windows−Subsystem−Linux

After the installation of the WSL, a restart is required. After the restart, a command
prompt can be opened and the bash command can be run.

A.1.3 3. Step - Installing Vagrant

The installation of Vagrant in WSL is the same as on Ubuntu (cf. Section A.2.2). After
installing Vagrant in WSL, there are some caveats using WSL. WSL support from Vagrant
is considered alpha. WSL puts a layer of isolation on to the Windows system, but Vagrant
needs access to programs installed on Windows and not WSL, e.g., VBoxManage.exe from
VirtualBox. Vagrant can be guided to use these files directly from the Windows system
instead of WSL. For this, an environment variable has to be set:

export VAGRANT WSL ENABLE WINDOWS ACCESS=”1”

Furthermore, in Windows the executables used by Vagrant need to be in the environ-
ment variable PATH. For Vagrant it is essential to have access to the VBoxManage.exe.
Therefore, the installation path of this executable must be added to the PATH environ-
ment variable, e.g., C:\ProgramFiles\Oracle\VirtualBox. More information about this
caveat can be found at [11].

A.1.4 4. Step - Move files from Windows to WSL

To be able to use the demos from the CD in the WSL, the files have to be moved to the
WSL.

1. The folder \SourceCode\Demos need to be copied from the CD to, e.g., C:\

2. In a WSL bash terminal following commands need to be entered:

mv /mnt/c/Demos ˜/

The demos are now available at the path ~/Demos in WSL. The following steps are the
same as for Ubuntu, beginning from section A.2.3.

A.2. UBUNTU PREPARATIONS 59

A.2 Ubuntu Preparations

A.2.1 1. Step - Installing Oracle’s VirtualBox

$ wget \
−q https : //www. v i r tua lbox . org /download/ orac l e vbox 2016 . asc \
−O− | sudo apt−key add −
$ wget −q https : //www. v i r tua lbox . org /download/ orac l e vbox . asc \
−O− | sudo apt−key add −
$ sudo apt−get update
$ sudo apt−get i n s t a l l v i r tua lbox −5.1

A.2.2 2. Step - Installing Vagrant

The Vagrant package in the Ubuntu repository is outdated. A more recent version can
be downloaded from the Vagrant website as a Debian package or from the CD located at
/Software/Ubuntu/vagrant_1.9.5_x86_64.deb:

$ sudo dpkg − i vagrant 1 . 9 . 5 x86 64 . deb
$ vagrant −v

The output should be:

Vagrant 1 . 9 . 5

A.2.3 3. Step - Installing Ansible

Ansible is installed from the terminal as follows:

$ sudo apt−add−r e p o s i t o r y ppa : a n s i b l e / a n s i b l e
$ sudo apt−get update
$ sudo apt−get i n s t a l l a n s i b l e

A.2.4 4. Step - Running Demos

The demos, in particular scenario files, are located on the CD at /Demos. Thus, the
current working directory has to be changed to the CD path.

The demos contain a succinct README file, to point out what this scenario does and
potential special instructions. The general approach to run a scenario is to change into
the folder of the desired scenario, e.g., for the mongodb-cluster $ cd Demos/mongodb-

cluster. Thereafter, $ vagrant up starts the provisioning of the scenario and $ vagrant

destroy tears the environment down.

60 APPENDIX A. INSTALLATION GUIDELINES

Appendix B

Contents of the CD

The contents of the CD is as follows:

Abstract is an unformatted abstract in English.

BA.zip contains this thesis as LATEX source file.

Bachelorarbeit.pdf contains this thesis in a PDF.

Bachelorarbeit.ps contains this thesis in PS.

Content contains this listing as digital reference.

Demos contains scenario files for the evaluation.

Software contains software, which is needed to run the scenario files.

Visios contains Microsoft Visio files and images used in this thesis.

Websites contains websites, of which citations were made.

Zusfsg is an unformatted abstract in German.

61

