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Abstract

The Internet of Things (IoT) enables real-time tracking of art, yet few projects have ex-
plored mobile and secure lightweight implementations of this. Existing solutions often
remain stationary or lack lightweight security capabilities. This makes transport implau-
sible, and security expensive or impossible. This thesis attempts to address this gap by
creating a cloud-based, mobile and MUD secured system for artwork tracking. To achieve
this goal, a STM32L4 board with humidity and temperature sensors is used. Using cel-
lular ToT, the system sends the collected data to an AWS-hosted server structure. This
server structure integrates the MUD protocol to ensure security via enforceable network
behavior. Real world test runs are used to show sensible data collection, as well as stable
network connection in various use cases and locations. The results show that the ap-
proach of this thesis is both a lightweight and viable solution to protect artworks in both
stationary and mobile environments.
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Zusammenfassung

Das Internet of Things (IoT) erlaubt Echtzeitverfolgung von Kunst, jedoch haben nur
wenige Projekte die mobile, sichere und ressourcenschonende Implementierung dessen
untersucht. Bestehende Losungen bleiben oft stationér oder haben keine, oder ressour-
cenlastige, Sicherheitsfunktionen. Das macht Transport implausibel und Sicherheit teu-
er oder unmoglich. Diese Arbeit versucht mit einem cloudbasierten, mobilen und MUD
gesicherten System fiir Kunstwerkverfolgung diese Liicke anzugehen. Um dieses Ziel zu
erreichen, wird ein STM32L4-Board mit Feuchtigkeits- und Temperatursensoren benutzt.
Mithilfe von Cellular IoT sendet das System die gesammelten Daten an eine auf AWS
gehostete Serverstruktur. Diese Serverstruktur integriert das MUD-Protokoll um die Si-
cherheit durch erzwingbares Netzwerkverhalten zu garantieren. Testldufe in der echten
Welt werden verwendet, um eine sinnvolle Datenerfassung sowie eine stabile Verbindung
in verschiedenen Nutzungsfillen und Standorten zu zeigen. Die Resultate zeigen, dass der
Ansatz dieser Arbeit sowohl eine ressourcenschonende als auch eine praktikable Losung
ist, um Kunstwerke in stationédrer und mobiler Umgebung zu schiitzen.
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Chapter 1

Introduction

1.1 Motivation

The Internet of Things (IoT) has drastically changed industries by allowing smart devices
to autonomously collect and send data. One sector where this evolution holds untapped
potential is the art world, especially in monitoring and protecting artwork during transit
and storage. Artworks are often delicate, vulnerable to shifts in temperature or humidity
that could cause irreversible damage, such as warping, cracking, or fading. The tracking
of such environmental factors is a region that IoT thrives in. Advancements in this field
have been made, but are most often limited to static art within museums [13] [2] or
require a central device to handle communication to the larger network [4], as discussed
in Section [3] This thesis aims to develop a more adaptable and cost-effective IoT system
capable of tracking both single and multiple artworks, whether stationary or on the move,
with an added layer of network security.

As seen in the title of this thesis, it is a part of the broader, EU-funded CERTIFY project.
That project focuses on life-cycle management for IoT devices. CERTIFY wants to create
a framework for security across many IoT systems. It uses concepts like security-by-design,
continuous monitoring, secure over-the-air updates, and collaborative risk assessment.
With these, CERTIFY attempts to provide robust protection to IoT systems. This thesis
tries to contribute to CERTIFY’s mission by using its principles for artwork tracking.

1.2 Thesis Goals

The central aim of this project is to create a secure IoT monitoring solution that uses
ST-boards to gather environmental data and transmit it via the Manufacturer Usage
Description (MUD) protocol to a cloud-based setup hosted on Amazon Web Services
(AWS). The four key objectives are as follows:

First, to build a two-server infrastructure in the AWS cloud that can handle incoming

data from the ST-boards, as described in Section

1



2 CHAPTER 1. INTRODUCTION

Second, to integrate MUD as a security layer, giving tighter control over device behavior
and helping defend against potential threats, as shown in Section [4.5]

Third, to enhance the ST-boards’ capabilities so they don’t just read sensor data but can
autonomously send this information over a mobile network as described in Section [4.4]

And finally, to test the entire system in real-world conditions, as shown in Section [4.8]

The deliverables of this thesis include a fully functional loT-based artwork tracking system,
complete documentation of the system’s design and implementation, a communication
protocol leveraging MUD), and analysis based on real-world testing of the system.

1.3 Methodology

The approach taken in this thesis was mostly practical. The focus was on building a
functional prototype for an IoT-based artwork tracking system. The project would need
to track artworks by monitoring environmental conditions like temperature and humidity
and use the mobile cellular network to transmit data. Once the goals were clear, the
system architecture was designed accordingly. The original idea was to use STM32L4
boards with built-in temperature, humidity, and acceleration sensors and connect them
to a cloud-based server system hosted on AWS via the cellular network. The acceleration
measurements would later be scrapped, as discussed in Section [5.8.6] Security wasn’t an
afterthought. From the start, the system design included the MUD protocol to restrict
and monitor device communication. Two AWS-based servers were to be used: one to
manage communication and MUD rules, and another to store the MUD files. The server
structure is further discussed in Section (4.2l

The project moved forward in phases. First, the servers were to be configured to commu-
nicate with each other and with the ST-boards. Then, the ST-boards were programmed
to collect sensor data and transmit it. For testing, an Android app was to be created to
gather GPS data alongside sensor data, as shown in Section Real-world trials would
be conducted in multiple stages, with and without full server integration, as shown in
Section [4.8. During these tests, data from the sensors, server logs, and GPS locations
were analyzed to validate performance, highlight areas for improvement and to deliver a
proof of concept.

1.4 Thesis Outline

The thesis is structured into seven chapters. It begins with this introduction, detailing the
motivation behind the project, the goals set, the methodology applied, and a brief layout of
the document. In Chapter [2] the fundamental background information is displayed. Here
key concepts such as Internet of Things, ST-boards, Manufacturer Usage Description,
etc. are explained. Chapter (3| covers the related works and research in the broader area
of artwork tracking. Chapter {4| dives into system design. It describes how the different
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parts of our artwork tracking system are planned to work together. This chapter also
entails the plans for proof of concept test runs of the system. In Chapter [5| we detail the
implementation of the concepts described in the preceding chapters. A substantial part of
the project was handling issues that arose, therefore those are also showcased within the
chapter. Chapter [f] covers the evaluation of the system. It explains how test runs were
set up, what kind of data was collected, and what results were observed. It also entails
a discussion as to what the results mean. Finally, Chapter [7| gives a quick summary,
concluding thoughts, and suggestions for possible future development.
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Chapter 2

Fundamentals

2.1 Overview

This chapter outlines the core technologies and concepts essential to understanding the
system built in this thesis. A foundational grasp of IoT, ST-Boards, MUD, and related
technologies is critical for what follows.

2.2 Internet of Things

The Internet of Things (IoT) can be defined as a network of devices or "things” embed-
ded with sensors, software, and other technologies to connect and exchange data with
other "things” and systems over the internet. These "things” can range from everyday
household items to complex industrial machines and tools. Using this concept of IoT,
devices can sense, collect, and send data, allowing smart behavior and automated pro-
cesses that no longer require direct human intervention. The ever increasing number
of such connected devices, combined with progress in sensor technology, cloud comput-
ing, and machine learning, has transformed IoT into a groundbreaking and foundational
technology of modern day automation and digital transformation [9].

IoT systems rely on several core components to function. Firstly, sensors are the most
fundamental part of most IoT systems. Their purpose is to collect data and convert it into
a digital signal. In the case of this project those sensors include temperature and humidity
measurements. Also [oT requires embedded systems and communication protocols. In
this project, the ST-board acts as the brain of the IoT device. It collects the sensors’ data
and communicates it to the network. In order for communication to be possible protocols
need to be in place. In this project the communication protocol is 4G LTE via cellular
network. The system also requires a way of storing and computing. This is most often
done using a cloud service. Lastly the system needs interfaces, that allow visualization
and interaction with the IoT [9).



6 CHAPTER 2. FUNDAMENTALS

2.3 Cellular IoT

Cellular Internet of Things (CIoT) technologies require little infrastructure and can be
very scalable. Unlike protocols such as Wi-Fi or Bluetooth, which need to be close to
routers or gateways, CloT enables long-range connections through regular mobile cellular
networks. This way devices can operate across large distances or even in motion.

In practice, this is a big advantage for use cases such as this thesis, where consistent,
secure data transmission must be possible even in movement. Whether an artwork is
transported across town or between countries, cellular coverage can ensure uninterrupted
tracking.

The standards behind CloT are maintained by the 3rd Generation Partnership Project
(3GPP), which defines multiple protocols like EC-GSM-IoT, LTE-M (Long Term Evo-
lution for Machines), NB-IoT (Narrowband IoT), and NR-RedCap (Reduced Capability
5G). Each of these options caters to different requirements, from ultra-low power con-
sumption to low-latency performance, making CloT highly adaptable [12].

In the context of this thesis, CloT allows ST-boards to transmit sensor data in real time,
directly over the cellular network, without needing a nearby receiver. This independence
from local infrastructure makes the system flexible and more suitable for real world de-
ployment scenarios. The use of licensed, secure spectrum also enhances reliability and
safeguards the transmitted data against unauthorized access.

Combined with cloud-based backend, this architecture offers a modern, mobile approach
to IoT deployments, one that is suited to protecting valuable and delicate items like
artworks during transportation.

2.4 ST-Boards

Built by STMicroelectronics, ST-boards are used in many IoT systems. According to
STM, they are good at balancing processing power with low energy consumption. The
STM series offers integrated sensor support, network communication, and real-time oper-
ating capabilities. These features are all important for this project’s goals [14].

The STM32L4 boards chosen here come with temperature, humidity, and acceleration
sensors, as well as SIM card slots for cellular communication functionality.

2.5 Manufacturer Usage Description

The Manufacturer Usage Description (MUD) is a framework introduced by the Internet
Engineering Task Force (IETF) to enhance the security of IoT devices by defining how
these devices should behave within a network. As IoT devices grow in number, so does
the risk of misuse or attacks. MUD provides a mostly standardized mechanism to specify
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the intended network behavior of a device, ensuring that it only communicates with
authorized endpoints. This approach limits the attack surface and makes it harder for
threats to make use of vulnerabilities in IoT systems [§].

MUD works via a MUD file, which is a JSON-based document created by the device
manufacturer or service provider. This file describes how a device is expected to commu-
nicate, including allowed IPs, protocols, and ports. When a device, such as an ST-board,
used for environmental sensing in this thesis, connects to the network, it sends a MUD
URL, which may be any HTTPS address, that points to its MUD file. A server side
MUD manager retrieves this file and translates the policies into rules that are enforced
across a part of the network infrastructure. This ensures that the device’s communication
is limited to before approved interactions, preventing unauthorized access or unintended
and faulty data transmission. Additionally, MUD makes network management easier as
it automates creation and application of access control policies. Instead of a human hav-
ing to manually configure access rules, the MUD manager, in this thesis: Bootstrapping
Server, automatically handles this tasks based on the device’s stored MUD file [§].

In this thesis, where an ST-board collects temperature and humidity data and sends it
to a server, MUD ensures that the data is transmitted securely. The MUD file specifies
that only registered boards can communicate with the server over only the designated
Port. This safeguards the server from malicious actors and ensures that the board works
as intended. It is important to note, that MUD protects the System from threats to the
device and not from the device as a threat itself.

2.6 Cloud-Based IoT Architecture

Besides IoT devices with functional sensors, an artwork tracking system needs a good
backend. In this thesis, Amazon Web Services (AWS) serves as the backbone. Their cloud
infrastructure is used for sensor data storage, policy enforcement, logging and MUD file
management.

For artwork tracking in general, this type of architecture ensures continuous access to
environmental data from multiple mobile units, even when they are not connected to the
same local network. It also provides a centralized point to enforce network policies via
MUD. It also allows for future enhancements like automated anomaly detection or user
alerts through notification services.

2.7 Artwork Tracking

Many artworks such as paintings, sculptures, and installations, are made and transported
every day. These countless artworks need to be shipped to exhibitions, museums and the
homes of art collectors.

Artworks are usually relatively fragile and susceptible to humidity, physical impact or even
temperature changes. This presents a lot of challenges when transporting such delicate
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goods from one place to another without harming them. Additionally, keeping track
of the artworks themselves is important such that they don’t get lost or stolen. These
challenges make IoT-based tracking systems particularly valuable, as they offer continuous
environmental monitoring, reducing the risk of damage.



Chapter 3

Related Work

3.1 Overview

The following chapter is a collection of similar projects and papers. In Section we
show what has already been achieved in the realm of artwork tracking. We also show
what differences exist between existing solutions and our thesis. In Section we show
work that has already made use of the Manufacturer Usage Description standard. Here we
show that MUD is being used in practice and also the differences between those projects

and our own.

Related Works

Mote Technol-
ogy

ity, Air quality

Citation Year Transmission Sensors Stationary/
Mobile
Fort et al.[4] 2022 BLE Temperature, | Stationary
Humidity
Zhang et al.|18] | 2021 4G Speed,  Tem- | Mobile
perature, Hu-
midity, GPS,
Acceleration,
Video
Shah and | 2016 Customized Temp, Humid- | Stationary
Mishra[13] Hopping ity, Light
Method
Ch. B. V et | 2021 WiFi Temp, Humid- | Stationary
al.[2] ity, Light
Trigona et | 2022 Bluetooth Microclimate, Stationary
al.[17] Vibration
Klein et al.[7] 2017 Low-power Temp, Humid- | Stationary

Table 3.1: Summary of Related Works mentioned in Chapter .
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3.2 Artwork Tracking

Existing IoT art monitoring solutions are often developed for stationary objectives such
as the preservation of artifacts in museums or monitoring of historic buildings. Fort et
al. [4] propose one such system that uses Bluetooth Low Energy (BLE) to monitor envi-
ronmental conditions and vibrations in wooden structures and artwork. Their approach
integrates multiple sensing modalities into a single compact platform, making it effective
in stationary settings. It must remain close to a BLE gateway to function. This limits its
usefulness for mobile tracking.

Zhang et al. [18] present a system that is more aligned with the goals of this thesis.
Their monitoring platform uses 4G. This eliminates the need for a local receiver and
enables tracking of artworks during transport. In contrast to this thesis, their solution
uses blockchain technology for logging and verifying environmental data. Blockchain can
increase transparency, but it also increases complexity and processing overhead. In this
project a simpler solution is used that relies on secure and predictable network behavior,
thanks to MUD.

Shah and Mishra [13] and Ch.B.V et al. [2], describe IoT systems used to monitor heritage
objects in buildings like temples or museums. Their projects have temperature, humidity,
and light sensors to measure environmental stability. They are effective in stationary
installations but aren’t suited for mobile applications. This is because they depend on
WiFi-based data transmission and require closely located receivers. Needing receivers
makes them unsuited for tracking individual items during movement or storage outside of
their network range.

Trigona et al. [17] also explore a similar domain. Their IoT system combines microclimate
and vibration sensing. Their setup that is deployed within a historic monastery, demon-
strates how environmental and structural data can be collected compactly. Their board
is capable of logging multiple environmental parameters, but data transfer also relies on
Bluetooth and even requires interaction with a mobile device. This limits automation
and can increase costs. Still, their approach shows the benefit of using multiparameter
sensing.

Another large-scale example is presented by Klein et al. [7]. They describe a wireless
sensing platform deployed in The Cloisters, a branch of the Metropolitan Museum of
Art. With over 200 nodes distributed across multiple galleries, their system analyzed
temperature, humidity, and air quality trends over time. The sensor density allowed the
researchers to identify localized changes and even impacts of visitors. Their system was
designed exclusively for static indoor use and requires continuous power.

3.3 MUD

Security in loT networks is an increasingly important topic, especially in very autonomous
systems that make use of public networks. The Manufacturer Usage Description standard
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from RFC 8520 [3], as described in Section [2.5] tries to tackle this topic. It allows device
manufacturers or device administrators to define wanted network behavior.

Multiple studies demonstrate the utility and extensibility of the MUD standard. Feraudo
et al. [3] expand upon the MUD framework, by introducing mechanisms for dynamic
traffic filtering and rate-limiting. They use tools such as eBPF and iptables. Their
implementation demonstrates how MUD can be used to limit traffic and reduce attack
surfaces.

Heeb et al. [6] analyze the impact of MUD on IoT security. Their paper shows strengths
of the standard, such as mitigating DDoS attacks. But it also highlights some big weak-
nesses, in the form of application layer vulnerabilities. In general they conclude that
MUD is effective on the transport layer at reducing attack surfaces, but ineffective on the
perception and the application layer. They note that MUD is especially vulnerable to
spoofing attacks.

3.4 Summary

In summary, many existing systems provide monitoring capabilities in static locations,
some address the mobile use case and others have built-in network security or simplicity.
The work presented in this thesis aims to fill a gap by proposing a cellular 0T system
secured through MUD. This allows individual and mobile artwork tracking with minimal
complexity and high security. The study by Heeb et al. [6] reinforces the importance of
MUD to secure IoT communication. But it also shows that depending on the use case,
MUD alone may not be sufficiently secure.
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Chapter 4

Design

4.1 Overview

The system is designed as a cellular IoT-based artwork tracking solution, consisting of
ST-boards as nodes for data collection, a communication protocol, utilizing MUD, as
discussed in [2.5] for data transmission, and a cloud-based server infrastructure on AWS
for data processing and storage.

4.2 Server Setup

A two-server infrastructure was designed with AWS, to enable the artwork tracking sys-
tem. The two servers are called Bootstrapping Server and MUD Server.

The Bootstrapping Server serves as the main point of contact for the IoT devices. It is
responsible for handling all incoming communication from the ST-boards over the cellular
network, as described in Section This server listens for data transmission via TCP
sockets. It also enforces MUD policies on the connections. It retrieves the MUD files
from the second server, the MUD Server, as further discussed in Section [4.5] For security
reasons, the server only allows communication with the MUD Server, registered IoT de-
vices and if necessary other admin IP addresses. The sole exception is a registration port,
where all communication must remain open to allow new boards to connect. The server
uses multiple threads to allow different communication channels, including TCP with IoT
devices and HTTP with the MUD Server.

The MUD Server’s task is to store and send MUD files corresponding to each IoT de-
vice. Every MUD file contains information on allowed network traffic and communication
behavior. The server has endpoints for uploading and downloading MUD files. It must
also have signing functionality, as stated in RFC8520 [§]. This is important, to ensure
authenticity and integrity of sent and received MUD files. Both of the servers are deployed
as AWS EC2 instances.

13
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4.3 Board Setup

The boards have the tasks of collecting sensor data and transmitting it to the server
structure. To do this the plan for the boards is to combine and enhance template code
from STMicroelectronics and the bachelor’s thesis by Mdimagh [11]. The template code
should have basic socket capabilities upon which the communications structure can be
built. The code from the bachelor’s thesis should have basic calls to the board’s sensors.
Both these code bases need to be majorly updated and changed to fit the needs of this
thesis. It is described in Section [5.8.2] why this design choice had to be changed in the
implementation phase of the project.

4.4 Server and Board Communication

The ST-boards, equipped with environmental sensors, connect to the internet using a LTE
cellular module integrated into the B-L462E-CELL1 [oT Discovery Kit. Data transmission
from the board to the Bootstrapping Server is performed via TCP sockets, allowing for
lightweight, direct communication without the overhead of HTTP. On the server side,
the Bootstrapping Server listens on a dedicated TCP port for incoming connections from
ST-boards.

During the initial connection, a board transmits its associated MUD URL, as described
in Section [4.5] This allows the Bootstrapping Server to fetch the board’s MUD file from
the MUD Server. Once the file is retrieved the Bootstrapping Server enforces the rules as
iptables. This completes the board’s registration process.

Each device, upon registering, can transmit messages containing environmental sensor
data (temperature and humidity), signal strength and an internal timestamp. The data
is sent automatically as soon as the board measures as sensor datapoint.

This communication model prioritizes simplicity. More sophisticated IoT communication
protocols certainly exist. The choice of TCP was based on the requirements of this project
and the capabilities of the boards.

4.5 MUD Flow Design

The MUD flow starts with the ST-boards. Each IoT device must have an inherent MUD
URL, that defines the location of the device’s MUD file. This URL is to be sent to the
Bootstrapping Server to register. The server in turn retrieves the MUD file from the
MUD Server and enforces its rules on the network traffic with the IoT device. To ensure
integrity, transmissions are verified according to RFC8520(§].

The MUD Server must only allow communication directly from the Bootstrapping Server
and trusted IPs of admins that are authorized to add new MUD files. It must implement
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endpoints to store new MUD files and to retrieve stored MUD files. The server must also
implement a signing method according to RFC8520 [§].

The Bootstrapping Server must generally only allow communication from the MUD Server,
the registered IoT devices, and trusted IPs of admins. The exception is the port used for
registration, as this port must remain open for all communication. The Bootstrapping
Server must be able to communicate to the MUD Server via HT'TP and the IoT devices
via TCP. To accomplish this, the Bootstrapping Server shall, using multiple threads, listen
for TCP on two ports (one for registration and one for data transmission) and HTTP on
another. It must implement an HTTP endpoint to retrieve MUD files from the MUD
Server. It must implement the functionality to read, interpret and enforce MUD files. It
must also be able to manage multiple registered boards.

4.6 Sensor Data Collection

The sensor data collection is done via ST-boards, as explained in [5.4] This hardware
portion comprises of B-L462E-CELL1 IoT discovery kits by STMicroelectronics, which
encompass STM32L4 boards fitted with humidity, temperature and acceleration sensors.
Our modified boards also have a SIM slot and antenna to enable cellular connection.

Data collection shall be done at regular intervals. The time of data collection must also be
recorded. As the boards have no global clock, their internal time is appended to the data
and is converted to a timestamp server side, as described in Section [5.8.5] The recorded
data is to be converted to a reasonable format and sent to the server.

The data is transmitted to the AWS server structure via cellular sockets using X-CUBE-
CELLULAR. Data is sent via TCP. Currently the system is not designed to do anything
with this data other than store it. Data transmission serves more as a proof of concept.

4.7 GPS Data Collection

GPS data is not necessary for the function of the system. Although, for testing purposes
GPS data is very important and in future research should be integrated, as discussed in
Section [7.3] Collecting GPS data in parallel to the other data, allows us to be able to
geographically trace where issues occur. The ST-boards do not have an inherent GPS
sensor, therefore, an alternative approach is necessary. An Android app shall be imple-
mented that periodically records GPS location and a timestamp. This allows us to later
combine the sensor and GPS data for testing, analysis and illustration purposes.

4.8 Test Design

The functionality and reliability of all parts of the system need to be verified. To do this,
two test runs were planned and executed. The test design was focused both on checking
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the individual components, as well as the combined system. The tests were split into two
main phases.

In the first phase the ST-boards should be tested without active servers. This was to
ensure that the integrated sensors worked correctly. At the same time a GPS tracking
solution was to be tested, as described in Section [£.7] During these first runs, the GPS
tracking would run in parallel with pinging an echo server, to ensure cellular connectivity,
and then in parallel with the sensors (see Section [6.1]).

The second phase also integrated the server structure. Here, the ST-boards transmitted
sensor data via cellular sockets to the Bootstrapping Server. The Bootstrapping Server
would process the data and save it to a .txt file, for further analysis. Each data point is
saved in JSON format. Some sample data is shown in Figure [L.1] These tests also used
the final version of the GPS tracking Android app, as described in Section [5.7]

Both phases would be real-world scenarios. The boards and GPS tracking devices would
be taken around the suburbs of Ziirich by train and car respectively. Later the GPS and
other data would be matched using timestamps and analyzed.

": "@", "temperature": "28.322449", "humidity": "43.508664", "rtc_timestamp": "2025-85-10 13:4@:15.242"}
- , "temperature”: "28.322449", "humidity": "43.5080864", "rtc_timestamp”: "2025-85-10 13:40:18.215"}
", "temperature": "28.322449", "humidity": "43.5e8e64", "rtc_timestamp": "2025-85-10 13:40:20.527"}

", "temperature": "28.322449", "humidity": "43.5e8e64", "rtc_timestamp": "2025-85-10 13:40:22.839"}
, "temperature"”: "28.340136", "humidity": "42.825932", "rtc_timestamp”: "2025-85-1@ 13:40:25.569"}

Figure 4.1: Example data for the second phase.



Chapter 5

Implementation

5.1 Overview

The system consists of a MUD Server, a Bootstrapping Server, ST-boards and a GPS App.
The implementation of the system was done in accordance to the design, in Section[d] apart
from the changes discussed in Section [5.8] The server infrastructure was implemented us-
ing AWS and Python flask and socket servers. The sensor data collection and transmission
was done using the ST-board sensors and sockets from X-CUBE-CELLULAR. The GPS
data collection was implemented in Kotlin using Android Studio. All relevant code used
in this project can be found on GitHub [1].

5.2 General Server Structure

The project needed a server structure that acts as a point of contact for the boards and can
store, retrieve, and enforce MUD policies. The structure should also have the capability
of receiving sensor data and storing it. To do this, a Bootstrapping Server and a MUD
Server were set-up using AWS. The general server architecture is depicted in Figure [5.1]

Communication between the ST-boards and the server infrastructure is performed over
TCP sockets using the cellular network connection provided by the B-L462E-CELL1 IoT
Discovery Kit. This choice was made for its simplicity, low overhead, and ease of inte-
gration with the X-CUBE-CELLULAR software package. On the server side, the Boot-
strapping Server and MUD Server are implemented in Python using the flask and socket
libraries.

The Bootstrapping Server receives communications from the ST-board through the cellu-
lar network using TCP. This can either be a sensor data point or a request to enter the
network using a MUD URL. The Bootstrapping Server then sends a request to the MUD
Server to get a MUD file and a certificate URL , which will later be used for retrieving the
certificate from the MUD Server. The MUD Server then retrieves the stored MUD file,

17
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Figure 5.1: Server Architecture

signs it and sends it to the Bootstrapping Server. Using the aforementioned certificate the
Bootstrapping Server verifies the signature before enforcing the IP table rules contained
within the MUD file upon itself. This allows the requesting ST-board to send data to
the Bootstrapping Server. The last step means sending the data receiving port to the
ST-board where it can send the sensor data to.
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Figure 5.2: ST-board Architecture

5.3 Board

The code on the ST-board is based on template code from STMicroelectronics. It includes
functionality to manually connect to a socket of a specified address. It is also able to read
sensor data from the humidity sensor and the temperature sensor. Furthermore it logs
data, such as signal strength.

This code base was extended by introducing automatic socket connecting because sending
data over sockets via manually sending commands to the board is not practical. This
allows the board to automatically send the connection request to the Bootstrapping Server
as seen in the box marked ”1” in Figure [5.2] This request includes sending a MUD URL.
The Bootstrapping Server will answer with either an error port number or the port number
of the endpoint where the sensor data should be sent to.

It also automates the process of repeatedly sending sensory and connectivity data to the
Bootstrapping Server, see the box marked "4” in Figure 5.2l The frequency of the polling
for sensory data can be changed at runtime by the user via the command mems period
<milliseconds>. However the frequency of sending data to the Bootstrapping Server
cannot be changed at runtime. We used Tera Term [16] to monitor the outputs from the
board and to send commands to the board.



20 CHAPTER 5. IMPLEMENTATION

5.4 Sensor Data

The ST-board used in this project is equipped with sensors capable of measuring tempera-
ture and humidity. These sensors are accessed via the STM32Cube hardware abstraction
layer and configured using the STM32CubelDE environment. The sensor data is col-
lected periodically and sent. This happens approximately every 3 seconds. The sensor
readings include temperature in degrees Celsius and relative humidity in percent. The
ST-board lacks a real-time clock. Therefore, each data measurement packet is appended
with an internal relative timestamp. This timestamp shows how long the board has been
on, or when it has last been reset. On the server side, this timestamp is combined with
the server’s timestamp, to approximate a time of measurement. This time is limited in
accuracy due to latency, as further discussed in Section [5.8.5]

5.5 Bootstrapping Server Structure

Booting up the Bootstrapping Server means the start of three different processes. The
first process is about the registration of new devices.

The Bootstrapping Server has a dedicated port to receive registration requests from IoT
devices, in our case the ST-board. The Bootstrapping Server expects a MUD URL on
this port , see box marked ”1” in Figure [5.3] This URL is to be contacted via HTTP by
the Bootstrapping Server. It points to the MUD Server responsible for the IoT device in
question. The MUD Server responds with the certificate URL, the MUD file, the signature
of the MUD file and the device ID, see box marked "3” in Figure [5.3

The certificate URL is the Bootstrapping Server’s target to retrieve the certificate issued
by the MUD Server, see box marked "2” in Figure [5.3] The certificate is used to confirm
the integrity of the MUD file. The certificate is used to decrypt the signed version of the
MUD file. Then the content of the signed MUD file is compared with the content of the
unsigned MUD file. After, the IP table rules in the MUD file are enforced and the board
gets to send sensor data to another socket port according to the IP table rules. The device
ID is saved as a device instance along the MUD URL and IP address.

The second process is about reading incoming sensor data from a registered ST-board. The
server reads incoming data, see box marked ”"4” in Figure [5.3] transforms the timestamp
data (see Section [5.4)), and stores it locally. This data is used for analysis purposes and
as a proof of concept. In a real-world application this data would be further manipulated
and potentially handled by a different server altogether.

The third process is about updating MUD files from registered boards. Every given time
period the Bootstrapping Server requests the MUD file from the MUD Server for each
currently registered STM board. Just like in the initial registration the MUD files get
validated using the corresponding certificate. Then they are enforced. If no MUD file
or certificate was found on the MUD Server or the validation failed all IP table entries
associated with the current board are removed and the board is unregistered. This stops



5.5. BOOTSTRAPPING SERVER STRUCTURE 21

Delete Existing
IP Table

Update All Saved MUD
Files

‘Open MUD Link
Socket

ST-board MUD URL _ Configuration
[1] Send I Read — U \
MUD URL ncoming

Data [isetup] Update Saved MUD Files

Enforce Initial IP
Table
Configuration

Open Data
Socket

Read
Incoming
Sensor Data

MUD File, Signature,
Device ID and Certificate URL

Request
MUD File

MUD URL,
Received

|
[Test]
| file < amountOfSavedFiles |

Il Data Received

Request
Certificate

MUD URL Not
Received

———————— Not All Data Received |

Not All Data Received,

MUD File, Signature, ~
Device ID and Certificate URL

MUD Server

pll Data Received Certificate Not Received— |

[ Request Certificate Received
Certificate

Sensor Data

-~Certificate- |~~~

- Certificate- -

Certificate Not Received:

Validate
MUD File

[2] Send Certificate

Certificate Received Return Port
Number

Save Sensor
Data and
Timestamp

Create
Device
Instance

Update
Device
Instance

Figure 5.3: Bootstrapping Server Architecture

all sensor data traffic coming from this device and it has to re-register to send new sensor
data.
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5.6 MUD Server Structure

The MUD Server uses RSA, a public key cryptography system, to maintain integrity of
MUD files. So a RSA key pair is generated on boot-up. Then the MUD Server checks
for existing MUD files in its directory and creates device instances for device ID and the

MUD file.
Now three processes start simultaneously.

The first listens to incoming MUD files. This is a HI'TP endpoint for device manufacturers
and alike to upload MUD files and the device ID to the MUD Server from outside, see box
marked ”5” in Figure [5.4] Just like in the boot-up procedure device instances are created
with device ID and MUD file for each received MUD file.

The second process is about certificate requests. The second process listens on another
HTTP port for requests from Bootstrapping Servers requesting the certificate. If the
certificate is successfully retrieved it is sent back to the requesting Bootstrapping Server,
see box marked "2” in Figure [5.4]

The third process listens on a third HT'TP port for MUD file requests. It receives a device
ID from a Bootstrapping Server. If such a device is found the MUD file is retrieved and
signed. If no errors occurred the signature, the MUD file, the device ID and the certificate
URL are sent back to the Bootstrapping Server.
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5.7 GPS App

The GPS data collection is done via Android app on a smartphone. The first imple-
mentation idea was to create a simple Python script that would run on QPython, an
Android-based mobile Python IDE. We noticed soon that Android Python libraries can-
not fine-tune the usage of the phone’s GPS sensors. They are restricted to updates every
couple of seconds or minutes, as the phone attempts to save power and simply overrides
the Python code. The only remaining solution was to write a complete standalone An-
droid app in Kotlin. The app can force the phone to ignore battery saving and query the
GPS sensor as often as needed. The app collects its GPS data every three to five seconds
and appends a timestamp. The data is then saved line by line in a .txt file on the Android
phone. Later this data can be used to map GPS locations to ST-board sensor data. The
issues that arose are discussed in Section [5.8.4]

5.8 Issues

A large part of the implementation phase of this thesis was identifying and solving issues.
In some cases, the issues were so great that fixing them would exceed the scope of the
project. Both types of problems are discussed in the following Section.

5.8.1 AWS

During the implementation of the AWS servers we noticed that AWS servers, on a free
account, do not have static IP addresses that remain the same after rebooting. This is an
issue, as the MUD Server shouldn’t allow global access, but permanently whitelisting the
Bootstrapping Servers IP is not possible. This means that the MUD Server will only have
the previous IP address of the Bootstrapping Server whitelisted. Since for the purposes
of this project no funds for a static IP address were allocated, this means that for every
booting process of the system, either the new Bootstrapping Server IP must be whitelisted
or global access must be allowed. As this project is not deployed for public or commercial
use the latter option was preferred.

5.8.2 Version Incompatibilities

At the start of this project we had access to two large code bases, one from a bachelor’s
thesis by Mdimagh [11] and the other from STM themselves. These two code bases had to
be merged. This would have produced a singular code base with socket pinging capabilities
and sensor data measurement capabilities.

However, the two code bases were not compatible due to version issues. Both of them are
built on top of STM libraries which went through lots of changes between when the sensor
data code from the bachelor’s thesis was written and the code for the sockets was written.
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This meant that it was infeasible to take the functionality from one code base and insert
it into the other one. Header files, functions and their parameters, and variables were
either renamed, relocated or just non-existent.

We decided to drop the code from the bachelor’s thesis and instead ask STM directly for
a code template including basic functionality for sensors and sockets.

5.8.3 Missing Header Files

The code base we got from STM was supposed to include some basic functionality for
operating the sensors on the board as well as a socket implementation just like in the
previous code base. This would solve our previous problem of having two different code
bases for each functionality that couldn’t be merged easily. However, the first iteration
of this new code was faulty. The code would not compile due to missing header files.
We tried to compensate for that by painstakingly going through the errors and trying to
find the fitting header files in the previous iteration of the code. Some files were findable
but many were not. In addition to this there we changes in the way they controlled the
sensors in their libraries. This meant we needed to ask for a working code base anew,
including the missing header files. Following this, we had a code base that would compile
and that had basic socket and sensory functionality. This base code was then possible to
be tweaked and improved upon for the needs of this thesis.

5.8.4 GPS App

One issue during the implementation phase of the project occurred while testing the
implementation state approximately halfway through. At that stage the plan was to take
the board on a test journey using public transportation in Ziirich. The board would first
log data from an echo script. Basically, it would ping a server over the mobile network
and log the signal strength and bit error rate. On the way back the board would log
temperature, humidity and acceleration data to check, that all systems work in a semi-
realistic environment. Additionally a way would need to be found to log the boards GPS
coordinates during the test, to map the data points to a geographical location. Since
this project’s ST-board does not include a GPS module, the idea was to run a simple
Python script on an Android phone, using the QPython mobile IDE. It quickly turned
out, that these mobile IDEs do not have the capability to override Android’s GPS tracking
standards. This lead to the code only being allowed to log GPS data approximately every
minute, which was insufficient. The quickest workaround was to create a functioning
Android app using Android Studio, that would have the capabilities of logging GPS data
in any way the project required. This was a relatively large unforeseen time sink.

5.8.5 Timestamp Compatibility

Another challenge arose during the implementation and testing phase. The ST-boards
have no real-time clock. As a result, each ST-board internally generates a relative times-
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tamp, representing the elapsed time since the device was powered on or last reset. This
relative timestamp is included in the data payload sent to the Bootstrapping Server along
with sensor readings. While sufficient for ordering data points locally on the board, these
relative timestamps cannot be directly used for comparing or correlating data between
multiple devices or against absolute time references, such as GPS logs. As the board
measures sensor data in approximately three second intervals and the delay to the server
is variable, these time differences must be addressed.

To fix this, a server side method reads incoming data and applies a server internal real-
time timestamp. This introduces uncertainties, as network delay and the three second
periods can make these times inaccurate. Luckily, inaccuracies of a few seconds have little
impact on the results of our tests, or much longer real-world uses.

During testing, this alignment of timestamps was critical for the combination of sensor
data and GPS logs to map geographic locations to the performance of the system.

5.8.6 Accelerometer

Another problem that arose, was the accelerometer turning off. When first testing the
board infrastructure with sockets, sending real data via the mobile network to the AWS
servers, the accelerometer stopped recording sensible values. It would still give an accel-
eration triple of (0,0,0) to the board, which would in turn send this triple to our server
infrastructure. Short amounts of testing would confirm that this data could not be cor-
rect. The problem turned out to be that the acceleration sensor was disabled. We tried
to enable it, trying to understand the underlying structure, going through many layers of
STM boiler plate code, comparing to the other sensors. This didn’t bear any fruits after a
big time investment. We decided not to sink any more time into this as the accelerometer
data wouldn’t be too important anyways given our GPS data measurements.



Chapter 6

Evaluation

6.1 Experimental Setup

To evaluate the functionality of the system test runs were set up. The first test run was
done without connection to the server structure. The idea was to check if the boards
were functional and could read sensible data. Also, a first version of a GPS tracker was
used, still running on a mobile Python IDE, which did not yet produce sufficiently good
results, see Section [5.8.4] Additionally, we pinged a server to check if the board had
mobile connectivity. The test run consisted of the board being brought onto a train in
the area of Ziirich, along with a phone running the GPS code. The board’s collected data
and the phone’s collected GPS data would then be matched and analysed.

In the second test run, the board was used with full functionality. The sensor data was
appended with a signal strength measurement in dBm. The board would measure and
send data every 2-3 seconds. Simultaneously a phone with the Android GPS tracking app
was brought. This could measure and log accurate GPS data every 4-6 seconds. This
time the experiment was conducted by bringing all devices in a car in the area around
Wangen in the Canton Ziirich, as seen in Figure [6.1]

27
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Figure 6.1: Route of second test run. Lighter red means stronger connection.

6.2 Results

6.2.1 First Test Run

The first test run produced mixed results. On the one hand, the board was able to reliably
record environmental data, and the signal strength of the pinging was reasonable. On the
other hand the GPS tracking code only produced novel data every few seconds to minutes
and was heavily inaccurate, as further explained in Section 5.7 Due to the faulty GPS
data no collected GPS data is shown in this chapter, as it would not add anything of
note. Figure[6.2] shows the temperature and humidity data collected during test run one.
The temperature had a high of 23.37°C and a low of 19.55°C, with a mean of 22.6°C. The
humidity ranged between 53.97% and 68.13%, with a mean of 58.87%.

Temperature Over Time

12:10 12:15 12:20 12:25 12:30 12:35
Time

Humidity Over Time

12:10 12:15 12:20 12:25 12:30 12:35
Time

Figure 6.2: Temperature (orange) and humidity (green) data of the first test run.
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The signal strength of the system is measured in dBm. This is a negative metric, meaning
that values closer to 0 are better and large negative values bad. As we had multiple
extreme outliers of exactly 0dBm during the two test runs, and good reason to believe
-51dBm was the best possible signal strength for our system, we treated all values of
0dBm as signal losses, where the system would return a default value. Figure [6.3| shows
the measured signal strength during the first test run excluding a singular signal loss
of 0dBm. In this run we had a high of -51dBm and a low of -85dBm, with a mean of
56.54dBm.

Signal Strength Over Time

dBm

=75

-80

-85

4500 4750 5000 5250 5500 5750 6000
Timestamp +1.73123e9

Figure 6.3: Plot showing the signal strength in dBm over time during the first test run.
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6.2.2 Second Test Run

The second test run produced much cleaner results. Especially due to the GPS app.
Figure [6.4] shows the signal strengths recorded during the second test run, with respect
to the GPS location. Figure shows all values recorded. These range from a high of
0dBm to a low of -101dBm, with a mean of -65.1dBm. Values closer to 0 represent better
connection, while values of 0 represent a lack of connection. The 31 occurences of 0dBm,
make up 3.27% of the data. Figure [6.4b|shows the same values, excluding signal strength
values of 0dBm. This way, the data had a high of -51dBm and a low of -101dBm, with a
mean of -67.3dBm. In Figure the same data can be seen plotted over time instead of
location.

Signal Strength by Location Signal Strength by Location (Excluding dbm = 0)

)
<\‘A—\ ﬂ,NA'\
47.44 Y 47.44 4 S =
M’ | ] 20 "~, S —60
41.43 / \‘ 47.43 4 / ™
/ -} —40 E f -70 E
; a1.42 ," i %gl. g 47.42 4 7 : %
] & 3 - &
47.41 r /" e E‘ 47.414 . N I - é
AN N |
47.40 ( ‘[ = 47.40 4 / : % ‘ —90
. S | © N ii
\3/' ‘“‘\l\‘
47.39 - 47.39 1 -
100 -100
8.58 8.60 8.62 Lﬂgtﬂdﬁ" 8.66 8.68 8.58 8.60 8.62 chthG4 8.66 8.68
(a) Signal strength in dBm, over GPS loca- (b) Signal strength in dBm, with dBm val-
tion. ues of 0 filtered out, over GPS location.

Figure 6.4: Plots showing signal strength in dBm at different GPS locations during the
second test run.
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Figure 6.5: Plot showing the signal strength in dBm over time during the second test run,
0dBm filtered out.
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Figure shows the temperature and humidity data collected, dependent on GPS loca-
tion. In Figure the temperature data is displayed. During the second test run the
temperature achieved a maximum of 34.44°C and a minimum of 27.17°C, with a mean
of 31.28°C. In Figure the humidity data is shown. It varied between a maximum of

35.87% and a minimum of 15.13%, with a mean of 26.21%.

Figure shows the same humidity and temperature data on a combined plot. This time
not in relation to geographical location, but time.

Temperature by Location

47.44 4

~~~
S -

47.43 4

e

8 47.42
]

Latit

47.41 4

47.40 4

47.39 4 N

8.58 8.60 8.62 8.64 8.66
Longitude

(a) Temperature.

Humidity by Location

47.44

47.43

itud

§ 47.42
3

Temperature (°C)
Latity

47.41

47.40

4739

e

r~

/ .

)

8.62 8.64 8.66
Longitude

(b) Humidity.

Figure 6.6: Plots showing the temperature and humidity at different GPS locations during

the second test run.
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6.3 Discussion

6.3.1 Sensor Data

The collection of sensor data during this project was done to show the functionality of
the system and not to analyze the data itself. A small analysis still follows to explain the
varying values in the two test runs. This is to show that the data is not arbitrary.

The sensor data from test run one, as seen in Figure [6.2] seems sensible. The board was
run for roughly 25 minutes in a stable and air conditioned environment inside a nearly
empty public train in Ziirich. The temperature is expected to slightly rise over time,
as the board was always kept in relative proximity to three heat sources. A laptop and
the two people conducting the test run. Generally as temperature rises, relative humidity
sinks, as the air can hold more water. This can be observed in the lower half of Figure [6.2]
The short spike in temperature and slightly longer spike in humidity can be attributed to
one of the people conducting the test run, breathing onto the board to ensure the sensors
react and do not measure arbitrary data.

The sensor data of the second test run is a little harder to decode. The second run was
done in a poorly air conditioned car, explaining the higher temperatures in general. Also
the test run was done on a very sunny day in May in the region of Ziirich. As one can
see in Figure [6.7] the data was collected in the afternoon at around 14:45 to 15:30 (rtc
timestamps are one hour behind the swiss timezone). This means the sun is south-west.
Looking at Figure it is clear that temperatures tend to rise when traveling south
or west, as the sunlight hits the board through the windshield, and tend to sink in the
opposite direction. In Figure it is visible that temperature and humidity roughly go
in opposite direction as they are expected to. On the other hand the humidity data is
also very volatile during test run two, especially when temperatures rise. Our believe is
that this is not a fault in the sensors, but much more due to human perspiration at these
temperatures.

6.3.2 Connectivity

It is vitally important that our system can provide reasonable signal strength and have
few disconnects. According to multiple commercial sources: Teltonika |15], MCA [10] and
Haven Technologies [5], for LTE a signal strength of more than -65dBm is excellent while
less than -85dBm is poor.

Given this benchmark, Figure|6.3|shows that our signal was always acceptable during test
run one, most of the time even excellent. With a mean signal strength of -56.54dBm and
only a single loss of connection, the system seems to work very well on train lines.

During the second test run the results were still very good, with a mean signal strength
of -67.3dBm and a loss of connection in 3.27% of data sent. This test showed that the
system works marvelously on a train line with good mobile communication infrastructure,
but has more issues when traveling through less populated areas, especially by car. This
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can be seen in Figure , where the path is light red (solid connection) in populated
urban areas and dark red (poor connection) in more rural regions. What can also be
observed in Figure is the scattering of connection losses. In Figure the yellow
dots are points where the signal was lost for a moment. These points seem to correlate
heavily with the entry and exit points of urban areas. They are also found often within
urban areas. Our interpretation is that these signal losses occur when the signal is handed
between cell towers. This obviously happens more frequently within urban regions and
upon entering or leaving them.
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Chapter 7

Final Considerations

7.1 Summary

The aim of this thesis was to develop an IoT-based artwork tracking system that has the
ability to track artworks in transit and stationary. This was successfully accomplished
with the use of a STM32L4 board with humidity and temperature sensors, a GPS Android
app, and a two-server AWS backend infrastructure that employs the MUD protocol.

The main goals were as follows: First, deploying an AWS Bootstrapping Server and an
AWS MUD Server. Second, integrating the MUD protocol to enable secure communication
between servers and [oT devices. Third, ensuring the ST-board could collect and transmit
sensor data via cellular networks. Fourth, test the entire system in real-world scenarios,
to ensure functionality.

7.2 Conclusions

This project enabled insights into loT devices, cloud server infrastructure, embedded pro-
gramming, as well as network security through MUD. The project posed many hurdles to
overcome, such as version incompatibilities, static IPs, missing files, missing GPS sensors,
faulty environment sensors and relative timestamps, all explored in Section [5.8] Despite
the encountered issues, all main aims of the project could be accomplished, even though
the scope changed in certain areas (e.g. development of a GPS Android app). The sys-
tem proved to be functional in both test runs, as described in Section and provided
sensible sensor data with good connectivity.

7.3 Future Work

Several enhancements or changes could be made to the system in the future. For research
purposes integrating a GPS module into the IoT device would be sensible. This could
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also have positive implications for a commercial use, as with GPS data the location of
an artwork can also be transmitted, massively improving the information usefulness and
security.

A UI dashboard could be added to the server infrastructure to massively enhance usability
of the system. This is not so much an issue for academic uses, but must definitely be
explored for commercial uses.

Security can be improved drastically. MUD is a protocol that protects the IoT device
and the server against threats, but not against the IoT device as a threat. There is no
spoofing protection for example. In a real world use case there is always a tradeoff between
security and light weight infrastructure, but at the least, one would have to expand upon
the MUD capabilities of this thesis.

Scalability is also something that has not been tested in this thesis. There is no proof this
system is scalable. At least scalability testing would need to be conducted in the future
and maybe the system would need to be expanded upon to enhance scalability.

As seen in some other papers, referenced in Section [3.2] more sensors could be added. For
example light, shock or air quality. These additional sensors could improve the monitoring
capabilities of this system drastically.

Anomaly detection is also something that the current system does not do. In a commercial
use, such a system would need a way to automatically detect anomalies both in sensor
data and communication, to alert the user.

For public distribution of such a system, the HT'TP protocol currently in use would need
to be substituted with HT'TPS to enhance security.

This thesis forms a foundation for a lightweight, secure and mobile artwork tracking
system that allows the use of modern [oT technology in the art sector. But as stated in
this Section, it is to be viewed as a base and needs to be expanded upon for more secure
and scalable use, in real world scenarios.
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